
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2012

Reliability models for HPC applications and a
Cloud economic model
Thanadech Thanakornworakij
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Statistics Commons, and the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Thanakornworakij, Thanadech, "" (2012). Dissertation. 335.
https://digitalcommons.latech.edu/dissertations/335

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/335?utm_source=digitalcommons.latech.edu%2Fdissertations%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

RELIABILITY MODELS FOR HPC APPLICATIONS

AND A CLOUD ECONOMIC MODEL

by

Thanadech Thanakornworakij, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

August 2012

UMI Number: 3532947

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3532947

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

3/12/2012

by.

Date

We hereby recommend that the dissertation prepared under our supervision

THANADECH THANAKORNWORAKIJ

entitled

RELIABILITY MODELS FOR HPC APPLICATIONS AND A CLOUD

ECONOMIC MODEL

be accepted in partial fulfillment of the requirements for the Degree of

Ph.D. in COMPUTATIONAL ANALYSIS AND MODELING

Recommendation concurred in:

Dean of the College

Supervisor o0pjps^nationjy5s^rc^

Head of Department

Advisory Committee

Apprarve

Director of Graduate Studies

Department

Approved:

Dean of He Graduata School

GS Form 13a
(6/07)

ABSTRACT

With the enormous number of computing resources in HPC and Cloud systems,

failures become a major concern. Therefore, failure behaviors such as reliability, failure

rate, and mean time to failure need to be understood to manage such a large system

efficiently.

This dissertation makes three major contributions in HPC and Cloud studies.

First, a reliability model with correlated failures in a £-node system for HPC applications

is studied. This model is extended to improve accuracy by accounting for failure

correlation. Marshall-Olkin Multivariate Weibull distribution is improved by excess life,

conditional Weibull, to better estimate system reliability. Also, the univariate method is

proposed for estimating Marshall-Olkin Multivariate Weibull parameters of a system

composed of a large number of nodes. Then, failure rate, and mean time to failure are

derived. The model is validated by using log data from Blue Gene/L system at LLNL.

Results show that when failures of nodes in the system have correlation, the system

becomes less reliable.

Secondly, a reliability model of Cloud computing is proposed. The reliability

model and mean time to failure and failure rate are estimated based on a system of k

nodes and s virtual machines under four scenarios: 1) Hardware components fail

independently, and software components fail independently; 2) software components fail

independently, and hardware components are correlated in failure; 3) correlated software

iii

iv

failure and independent hardware failure; and 4) dependent software and hardware

failure. Results show that if the failure of the nodes and/or software in the system

possesses a degree of dependency, the system becomes less reliable. Also, an increase in

the number of computing components decreases the reliability of the system.

Finally, an economic model for a Cloud service provider is proposed. This

economic model aims at maximizing profit based on the right pricing and rightsizing in

the Cloud data center. Total cost is a key element in the model and it is analyzed by

considering the Total Cost of Ownership (TCO) of the Cloud.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to reproduce,

by appropriate methods, upon request, any or all portions of this Thesis. It is understood that "proper request"

consists of the agreement, on the part of the requesting party, that said reproduction is for his personal use and

that subsequent reproduction will not occur without written approval of the author of this Thesis. Further, any

portions of the Thesis used in books, papers, and other works must be appropriately referenced to this Thesis.

Finally, the author of this Thesis reserves the right to publish freely, in the literature, at any time, any

or all portions of this Thesis.

Date

Author

GS Form 14
(5/03)

TABLE OF CONTENTS

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xi

CHAPTER 1 INTRODUCTION 1
1.1 Overview of HPC Systems 1
1.2 Overview of Cloud Computing 4
1.3 Organization of Dissertation 6

CHAPTER 2 RELATED WORK 7
2.1 A Reliability Model of HPC systems 7
2.2 A Reliability Model of Cloud Computing.. 10
2.3 An Economic Model for Cloud Computing Environment 13

CHAPTER 3 MARSHALL-OLKIN MULTIVARIATE MODEL AND
PARAMETER ESTIMATION 14

3.1 Marshall-Olkin Multivariate Exponential Model 15
3.2 Marshall-Olkin Multivariate Weibull Model 17
3.3 Parameter Estimation for Marshall-Olkin Weibull Distribution 18
3.4 Simulation of Parameter Estimation 19

CHAPTER 4 A RELIABILITY MODEL WITH CORRELATED FAILURES
FOR HPC APPLICATIONS 23

4.1 Introduction 23
4.2 System Reliability Model Failure Rate and Mean Time to Failure 25
4.3 Goodness-of-fit Test for System Reliability 28
4.4 Numerical Result for Correlated Failure Model 31
4.5 Conclusion 37

vi

CHAPTER 5 A RELIABILITY MODEL OF CLOUD COMPUTING
FOR HPC APPLICATIONS 38

5.1 Introduction 38
5.2 TTF Distribution of a Cloud System 40
5.3 Cloud System Reliability 42
5.4 Failure Rate and Mean Time To Failure 45
5.5 Virtual Machine and Hypervisor Failure 46
5.6 Numerical Result Examples for The Proposed Cloud Reliability Model47
5.7 The Expected Completion Time with Checkpoint 51
5.8 Conclusion 53

CHAPTER 6 AN ECONOMIC MODEL OF CLOUD SERVICE PROVIDERS 55
6.1 Introduction 55
6.2 Economic Cloud Model 57

6.2.1 Revenue 57
6.2.2 Cloud Cost Analysis 59

6.3 Analysis and Result 66
6.4 Conclusion 72

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 74

REFERENCES 77

LIST OF TABLES

Table 2.1 Significance of correlation with respect to correlation
coefficient values 9

Table 3.1 Average parameter estimates over 100 replications using
the EM algorithm for different sample sizes 20

Table 3.2 Average parameter estimates over 100 replications using
the univariate method for different sample sizes 21

Table 3.3 Variance of the parameter estimates for each sample size using
the EM algorithm 21

Table 3.4 Variance of the parameter estimates for each sample size using
the univariate method 22

Table 3.5 Average parameter estimates over 100 replications using
the univariate method for different sample sizes for A=5 22

Table 3.6 Variances of the parameter estimates for each sample size using
the EM algorithm for k=5 23

Table 4.1 K-S statistic and critical value of K-S goodness-of-fit test to
the TTF of 25 systems each represented by 2 nodes 30

viii

LIST OF FIGURES

Figure 4.1 The empirical CDF (ECDF) and the Weibull CDF of a 2-node
system K-S statistic=0.244 and its critical value=0.256 from the K-S test 30

Figure 4.2 The empirical CDF (ECDF) and the Weibull CDF of a 2-node
systemK-S statistic=0.3371 and its critical value=0.188 from the K-S test...31

Figure 4.3 System reliability of a system of 2 nodes 32

Figure 4.4 System reliability of a 3-node system in the special case and
general case models 33

Figure 4.5 System reliability of a 50-node system in the special case and
general case models 33

Figure 4.6 Mean time to failure of a system of 2 nodes 34

Figure 4.7 Mean time to failure of a 3-node system for the special case and
the general case models 34

Figure 4.8 Mean time to failure of a 50-node system for the special case and
the general case models 35

Figure 4.9 Failure rate of a system of 2 nodes 35

Figure 4.10 Failure rate of a 3-node system for the special case and
the general case models 36

Figure 4.11 Failure rate of a 50-node system for the special case and
the general case models 36

Figure 5.1 Cloud Computing Architecture 41

Figure 5.2 Cloud System Reliability with k= 3 and n= 12 for
the four scenarios in Equations. (5.3) - (5.6) 49

Figure 5.3 Cloud system Failure Rate with k=3 and «=12 for
the four scenarios in Equations. (5.11) - (5.14) 49

ix

X

Figure 5.4 Cloud System MTTF with k=3 and n= 12 for the four scenarios 50

Figure 5.5 Cloud System Reliability as function of the number of nodes (k) 50

Figure 5.6 Cloud System Failure Rate as function of the number of nodes (k) 51

Figure 5.7 Cloud System MTTF as function of the number of nodes (A) 51

Figure 5.8 Parameters of a checkpoint model 52

Figure 5.9 Waste Time versus Fault-Free Job Execution Time in Cloud System 54

Figure 6.1 Logit demand function 58

Figure 6.2 Exponential cost rise with an increase in availability level 63

Figure 6.3 Total revenue \pD(p), Equation (3)] versus total cost (Equation (24))
with 99.999, 99.99, and 99.95% availability level 68

Figure 6.4 a, b, and c. (a) Price per VM hour that maximizes profit for
a given server cost for 99.95% availability, (b) the number of servers
that maximizes profit for a given server cost for 99.95% availability,
(c) Maximum profit (revenue - total cost) for a given server cost for
99.95% availability 70

Figure 6.5 a, b, and c. (a) Price per VM hour that maximizes profit for
a given server cost for 99.99% availability, (b) the number of servers
that maximizes profit for a given server cost for 99.99% availability,
(c) Maximum profit (revenue - total cost) for a given server cost for
99.99% availability 71

Figure 6.6 a, b, and c. (a) Price per VM hour that maximizes profit for
a given server cost for 99.999% availability, (b) the number of servers
that maximizes profit for a given server cost for 99.999% availability,
(c) Maximum profit (revenue - total cost) for a given server cost for
99.999% availability 72

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Chokchai Box Leangsuksun, my advisor, for

recruiting me to the CAM Ph.D. program. He guides and gives me valuable feedback and

comments on my dissertation during my Ph.D. program. Secondly, I would like to thank

Dr. Raja Nassar who provides me time and patience to work with me and gives valuable

idea on mathematical and statistical modeling in all of my work. He also corrects and

improves my writing. Thirdly, I sincerely thank Dr. Mihaela Paun for her valuable

guidance throughout my dissertation. Finally, I would like to thank my committee

members, Dr. Zeno Greenwood and Dr. Weizhong Dai also for their valuable feedbacks

on this dissertation.

I would like to thank my dear Thai friends. Phongphonkit Phadungsak has helped

me on many occasions since I arrived in Ruston until he left. I also thank Nichamon

Naksinehaboon for helping and guiding me on Mathematics and Statistics in this

dissertation. I also thank Narate Taerat for answering my computer science problems and

for giving me Blue Gene/L log data used in this dissertation. I also thank my roommate

Mungtra Chusilp for helping me personally and for cooking good food. I would like to

thank also my Chinese friend Wang Liqun who helps me on many occasions and tutors

me for the CAM qualifying exam. Finally, I would also like to thank Waraporn Jindarat,

who always gives me love and moral support.

xi

xii

I would like to dedicate this dissertation to my family, my parents: Thanasub and

Vipada Thanakomworakij, my brothers and sister: Apicha, Manop, and Nuchanat

Thanakomworakij, for their endless and unconditioned love and for always supporting

me in everything in my life.

CHAPTER 1

INTRODUCTION

In today's computing, significant HPC systems have become larger with more and

more components, such as CPUs, storages and network cards. These systems support

large computational scientific or mission critical business applications, which run long

and are computationally intensive. The Top 500 [1] lists the top 500 most powerful High

Performance Computing (HPC) systems. The list is compiled twice a year by high

performance computing experts. In November 2011, The fastest supercomputer in the

Top 500 list was the K computer from Japan, which comprises 88,128 SPARC64 8-core

CPUs or 705,024 cores with the performance of 8.162 petaflops. The increase in

computing component counts significantly escalates the chance of failures. Furthermore,

any failure may interrupt applications, especially MPI applications. Hence, the system

failure behavior of computing must be studied and well-understood in order to deploy the

right fault tolerant mechanisms to handle mission critical applications effectively.

1.1 Overview of HPC systems

High performance computing (HPC) is the collection of computers tied together

with network to solve large complex applications. There are software management

programs for HPC systems, such as Rocks [2] and OSCAR [3], that provide the ability

for users or administrators to build and maintain an HPC cluster. To utilize parallel

1

2

computing, Message Passing Interface (MPI) is a standard library that allows parallel

applications in sending and receiving messages between processes. How best to divide

a complex parallel job to maximize HPC performance is a challenging area of study.

With the advent of multicore processors, OpenMP [4], [5] becomes a popular

parallel programming paradigm. OpenMP is an application programming interface (API)

used to support the execution of multi-thread in share memory architecture. OpenMP is

flexible and yet simple for programing. In addition, a hybrid programing model [6], [7],

which employs both MPI and OpenMP in the same application, is an interesting

programing approach. Performance comparisons among MPI, OpenMP, and hybrid (MPI

and OpenMP) have been extensively studied and evaluated [6], [8] . The studies showed

that applications may or may not gain performance improvement from the hybrid model,

depending on some applications characteristic and parameters [8], [9], [10].

When HPC systems become larger, failures become a major concern. For

example, the Blue Gene/L system at Lawrence Livermore National Laboratory (LLNL) is

comprised of 131,072 dual core processors. The Blue Gene/L system failed every other

day [11]. Hence, the HPC systems need to have effective fault tolerant mechanisms to

mitigate failures. A checkpoint/restart mechanism is a common fault tolerant technique

that creates software states of computing. When any failure happens, users can restore the

system from the last checkpoint file. When an HPC system performs checkpointing, the

system has to spend time, which is called checkpoint overhead, to synchronize

application presses and pause to save the computing information. If applications

perform checkpoints too often, they will waste considerable time and the applications

will delay the completion time. However, if checkpoints are performed too infrequently,

3

when failures happen, application recovery will spend considerable re-computing time,

which is the time since the last checkpoint. To optimize HPC performance, the

checkpoint scheduling or the appropriate time for checkpointing has been studied [12],

[13], [14].

An incremental checkpoint mechanism has been proposed to reduce checkpoint

overhead. In this mechanism, the user does not need to save the whole application every

time. The first checkpoint is normally a full checkpoint. The incremental checkpoint

saves only the part of the application that has changed from the previous checkpoint.

This can reduce the checkpoint overhead significantly. However, recovery time from the

incremental checkpoint after a failure is quite complex and costly. It involves loading the

foil checkpoint with every incremental checkpoint since the last full checkpoint and then

combining them together. Hence, the number of incremental checkpoints ,between full

checkpoints, must be optimized and has been studied in [15], [16]

Redundancy [17], [18] is used to handle the failure in HPC systems. This

technique uses more than one component to work on the same task, which increases the

likelihood that at least one component will not fail. The number of redundant components

is still a question. If one uses too many resources to do the same task, a lot of HPC

resources are wasted. On the other hand, if not enough redundant components are used,

failures may stop the entire application.

Fault tolerant mechanisms need accurate reliability estimation to be used

efficiently. Therefore, failure behavior in HPC systems needs to be understood.

4

1.2 Overview of Cloud Computing

Cloud computing provides play-as-you-pay services for customers over the

internet. There are three types of Clouds. First, a public Cloud allows users to select

services and pay per usage, like a public utility. Second, a private Cloud is a Cloud

infrastructure that serves mission critical services within an organization. Finally, a

Hybrid Cloud is a combination between private and public Clouds. The hybrid Cloud

provides services in organization and when it has excessive demand beyond its capacity,

the excessive jobs will be submitted to run on the public Cloud.

Virtualization is a core technology in Cloud computing environment. It allows a

machine to run more than a Virtual Machine and Operating System (OS). A machine

can also runs multiple types of OSes, such as Windows and Linux. Virtualization

normally consists of Hypervisor, also called a Virtual Machine Manager (VMM), and

Virtual Machines (VM). Hypervisor virtualizes hardware to allow multiple OSes in a

machine. There are two types of hypervisors: a Bare metal hypervisor which runs directly

on a physical machine and hosted Hypervisor which runs on the host OS. Virtual

machine is abstract software that runs a guest OS as if it were a real machine. It contains

virtual CPU, RAM, and Network. Well-known commercial virtualization products are

VMware [19], Citrix [20], and Microsoft Hyper-V [21]. Open source virtualization

products are Virtual Box [22], Xen [23], and OpenVZ [24]. To deploy and maintain a

Cloud system, there are many Cloud management systems available such as VMware

vCloud [19], OpenNebula [25], Eucalyptus [26], OpenStack [27], and Nimbus [28].

Cloud computing services can be categorized into three main groups:

Infrastructure-as-a-Service (IaaS): Cloud service providers allow users to lease

5

their infrastructures. The providers can then create virtual servers which define the

number of cores, the amount of RAM, the size of storage, etc., based on the need of

customers and charge them for the usage time. Examples of IaaS Cloud providers are

Amazon Elastic Compute Cloud (Amazon EC2) [29], and GoGrid [30], Rackspace [31].

Software-as-a-Service (SaaS): SaaS provides specific applications via the Internet

and charges the customer for a subscription fee. SaaS can upgrade an application without

the user interference. Users always use the newest version of services. Salesforce [32] is

an example of SaaS that provides a Customer Relationship Management (CRM)

application.

Platform-as-a-Service (PaaS): PaaS is a Cloud computing service that provides

facilities to develop and deploy applications over the Internet. Users do not need to own

hardware and software that they will run their applications. Google App Engine [33],

Bungee [34], and Heroku [35] are examples of PaaS providers.

With the increasing demand of HPC, Cloud service providers have offered HPC-

as-a-Service. Organizations that need to run their jobs on HPC systems do not need to

worry about maintaining an HPC system, upgrading computing resources, or paying

power and cooling cost. Examples of HPC-as-a-Service providers are Penguincomputing

[36] and Amazon EC2. Amazon EC2 [29] also provides a General Purpose Graphic

(GPU) cluster, which is the recent technology of parallel computing.

To deal with failures in Cloud systems, there are several fault tolerant techniques.

A redundant technique or High Availability (HA) is commonly used. A Cloud system can

create redundant virtual machines in different physical machines. The Cloud system will

monitor primary VMs. If a failure happens to the primary VMs, the system will

6

automatically fail over to the redundant VMs and fail back when the primary VMs

resume their operation. Furthermore, live migration is a pro-active fault tolerant

technique that allows virtual machines to move from the physical machines that are likely

to fail without any interruptions. Moreover, checkpoint/restart [37] can be deployed to

save a state of a VM or application. When a failure happens, it will restart the VM from

the last saved state. To optimize waste time and deploy fault tolerant techniques

efficiently, understanding reliability information of Cloud systems is crucial. In this

dissertation, system reliability, failure rate, and Mean-time-to-failure (MTTF) of Cloud

system will be discussed in Chapter 5.

1.3 Organization of Dissertation

This dissertation is organized as follows: Chapter 2 discusses related work on a

reliability model with correlated failures in an HPC environment, a reliability model of

Cloud computing for HPC applications, and an economic model for a Cloud service

provider. Marshall-Olkin multivariate and parameter estimation techniques for correlated

failure problem are discussed in Chapter 3. Chapter 4 presents a novel reliability model

with correlated failures in a &-node system for HPC applications. Chapter 5 proposes a

new reliability model of Cloud computing for HPC applications. An economic model for

Cloud service providers is described in Chapter 6. The conclusion and future work are

discussed in Chapter 7.

CHAPTER 2

RELATED WORK

This chapter discusses the related work on a reliability model of HPC systems as

well as a reliability model of Cloud computing. The related work on an economic Cloud

model is also discussed here.

2.1 A Reliability Model of HPC Systems

There are many studies in the literature that are concerned with the reliability

behaviors of HPC systems. Results in [38][39][40][41], showed that the time to failure of

an HPC system is best fitted by models with a time-varying failure rate distribution, such

as the Weibull, gamma and Lognormal distributions. However, previous researches [42],

[43] assume the time to failure to be the exponential distribution with constant failure

rate. Heath [38] studied the time between failures (TBF) of workstations and found that

the failures follow a Weibull distribution as showed in Equation (2.1). Xu [39] showed

that the TBF's of individual Windows NT Servers also fit the Weibull distribution well.

Recently, in [44], the authors developed a TTF distribution model for a &-node system,

where individual nodes follow a Weibull with independent failures assumption among

nodes. The Probability Distribution Function (PDF) of the Weibull distribution [44] with

scale (a) and shape (P) is given by:

7

/(*) = £(§)* e ^ • (2J)

The Cumulative Distribution Function (CDF) of the Weibull is given by

F(x) = 1 - e"©'. (2.2)

The PDF of the conditional Weibull distribution is given by

tP-{t+x)P
/(t + x|t)=5(t + z/_1« «* . (2.3)

The CDF of the conditional Weibull is given by

tP-(t+x)P
F(t + x\ t) = l — e aP . (2.4)

Then, the authors [44] developed the PDF of the jthTime to Failure (TTF) for a &-node

system expressed as

Sj(xj) = Y.Ufi nf-i(l - F,X (2.5)

where fL = f i (xd if the (j — l)thTTF belongs to the i t h node and

fi = fiO-j-i + xj\tj-i) if the j — l)t/lTTF does not belongs to the ith node.

The CDF of the system TTF of a &-node system is given by

= Pit <a) = Ja l f= 1 / i (T) nf=i(l ~ F t(j))dr. (2.6)

The A>node system reliability is given by

By(a) = 1 - SjCa) = nf.i(l - FiW)- (2-7)

The k-node failure rate is given by

I?=1/tnf=i(i-F£)

^ = i-J0
xZf=1/i(T) ni

k=1(i-Fl(T))dr • (2-8)

The &-node mean time to failure (MTTF) is given by

9

^) = /o"*yZf=i/inf=i(i-FI).
l*i

(2.9)

Some existing studies [41], [44] assume that there is no correlation among nodes

with regard to time to failure. However, a number of studies have shown that nodes in the

same system can be correlated. Xu [39] showed that there is failure dependency of

Windows NT Servers across the network. Lin [45] studied error log analysis and showed

that there are correlated times to failure among nodes in the systems. Also, Gottumakkala

[46] analyzed failure correlation using the Spearman correlation coefficient. The

Spearman correlation coefficient is given by:

where d is the difference in paired ranks, and n is number of cases.

He classified the correlation coefficient values to define the significant of

correlations as shown in Table 2.1. The result showed that 10 percent of the Time to

failures (TTF) have a strong correlation, 30 percent have a high correlation, and 60

percent have a weak correlation. Moreover, the related research [47] analyzed the data of

22 high-performance computing (HPC) systems collected over a nine year period at the

Los Alamos National Laboratory (LANL). The study showed that more than 30% of

nodes failed at the same time. Therefore, in order to estimate more accurately HPC

system reliability, the model should consider the possibility of simultaneous failures

among nodes. The fact that nodes can fail simultaneously gives rise to correlations among

them with regard to time to failure. This dissertation proposes a reliability model of a

system of k nodes with correlated failures for HPC applications in Chapter 4.

(2.10)

10

Table 2.1 Significance of correlation with respect to correlation coefficient values [46]

Correlation coefficient Significance of Correlation

p~ 0 Uncorrelated

-0.4 < p < 0.4 weak correlation

0.4 < p < 0.8 high correlation

—0.4 < p < —0.8 high correlation

0.8 < p < 1 strong correlation

-1 < p < -0.8 strong correlation

2.2 A Reliability Model of Cloud Computing

Many researchers have studied Cloud computing reliability. Kashi [48] studied

characteristics of hardware failure and hardware repair in Cloud computing. The result

showed that when a server failed, it has a greater chance of failing again. Also, successive

failures best fit an inverse curve. Moreover, Dai [49] introduced Cloud service

reliability. They classified failures into two groups, request stage failures and execution

stage failures. The request stage failures are calculated from overflow failures and

timeout failures by a Markov process. The reliability of request stage is given by:

Rrequest = £n=0 9n + En=S fn(t)dt, (2.11)

where fn(.t)is the PDF of waiting time to finish the n requests, qn is the steady

probability that the system stays at state n, S is the number of homogeneous schedule

servers. N is the capacity of the request queue, Tdis the due time.

The execution stage failures included data resource missing, computing resource

missing, software failure, database failure, hardware failure, and network failure. To

11

derive the reliability of the execution stage, the new evaluation based on Bayesian

theorem and Graph theory was proposed. A minimal combination of availability

elements, links and nodes, is called a Minimal Execution Spanning Tree (MEST). The

reliability of a Cloud service that has N MESTs is given by:

Rexecute = MUf=1 MEST^ = Y.% t Pr(^) Pr EJ^ I E J) , (2.12)

where Ej is the successful operation of the MESTj and Ej is the unsuccessful operation of

the MESTj. The reliability of a Cloud service can be calculated by:

RService ~ Rrequest ' Rexecute- (2-13)

Hacker, in [50], considered hardware reliability and assumed a virtual machine

per server. The proposed model was based on the Weibull distribution. However, this

work did not incorporate software reliability into the model. None of the work considers

reliability of Cloud computing for HPC applications. Chapter 5 discusses the reliability of

a Cloud computing application that includes both hardware and software.

Many studies have shown that the time to system failure (TTF) can be described

by a Weibull distribution [39], [50], [51]. Hacker [50] studied the impact of reliability

rates among individual components on the HPC system reliability. He also showed that

the time between failures for an HPC system followed a Weibull distribution. Xu [39]

also showed TTF's of Windows NT servers follow a Weibull distribution. Gottumukkala

et. al, [44] developed the reliability model of a &-node system for HPC applications when

individual TTF follows a Weibull distribution. They considered the excess life or time

since the last failure of an individual node in their reliability model to gain a more

accurate estimation of reliability of the system based on an assumption that nodes fail

independently. However, time to failure of some computer systems may not be

independent [39], [47]. Xu [39] showed that there is failure dependency of Windows NT

Servers across the network. Schroeder [47] presented a study of failures in an HPC

system at Los Alamos National Laboratory (LANL) that found that nodes were correlated

with regard to failure and that two or more nodes may fail at the same time, chapter 5

considers the excess life as well as correlation due to possible simultaneous failures of

nodes in the system.

For software reliability, there are many studies undertaken to understand the

characteristics of a software failure [52], [53], [54]. Alan [52] was interested in

understanding software reliability models and their utility. He evaluated nine different

software reliability models. He showed that a simple exponential model performs as well

or better than complex models, and the simple model outperformed the other models in

terms of both stability and predictive ability. Musa [53] evaluated seven model groups

on 15 data sets. Based on the evaluation, the exponential and logarithmic models were

recommended for modeling software reliability. Thirumurugan [54] studied software

reliability modeling in the testing and operational phases. In the operational phase,

software fault was not removed. Failures occurred at a constant rate over time [54], [55].

He considers an exponential software reliability model. Results showed that, at any given

time, the reliability in the operational phase was less than that in the testing phase.

The majority of software reliability models make the assumption that failures

occur independently. However, evidently in [56], the failures are not always independent.

G-Popstojanova [57] extended the classic software reliability theory, Markov renewal

modeling, in order to formulate software reliability models that considered dependent

failures and time to failure following the exponential distribution.

2.3 An Economic Model for Cloud Computing Environment

Pricing and economic analysis have been previously applied in grid and Cloud

computing. Abdelkader [58] studied an economic model for resource allocation in grid

computing and treated computational and storage resources as interchangeable. Price was

determined by demand and supply at the equilibrium point. Dash [59] proposed a self-

tuned economic model for a query service of scientific information based on the quality

of service and on profit guarantee. In his work, the economic model accounted for CPU

time, bandwidth, network, and disk space. Mihailescu [60] presented a dynamic pricing

or an auction model for allocating resources in large distributed systems. Woitaszek and

Tufo [61] analyzed an economic charging model in the perspective of a supercomputing

service provider. They examined IBM Blue Gene/L system, considered its cost and

applied a charging model that is used in Amazon EC2 to calculate a break-even point.

Results showed that pricing is not competitive with the commodity system in Amazon

EC2. Xinhui [62] considered not only Cloud Total Cost of Ownership (TCO) [62] but

utilization cost as well. The utilization cost is the cost calculated from using part of the

resources in order to evaluate efficiency of the Cloud. The utilization cost is calculated

according to the number of VMs. Walker [63] presented the real cost of a CPU hour for

three cases: purchase, lease and purchase-upgrade. He calculated the Net Present Value

and the Net Present Capacity of each case. Niyato [64] proposed economic models to

determine an optimal strategy between private Cloud and Cloud service providers for a

monopoly market, Nash equilibrium for competitive market, and bargaining for

cooperative market. Chapter 6 presents an economic model study, based on market

share and TCO, for a Cloud service provider in order to maximize profit.

CHAPTER 3

MARSHALL-OLKIN MULTIVARIATE
MODEL AND PARAMETER

ESTIMATION

This chapter discusses Marshall-Olkin Multivariate Exponential and Weibull

distribution. Marshall-Olkin Multivariate models are used to model the correlation

between components. Marshall-Olkin Multivariate models account the components

failing at the same time, which is applicable to model correlated failures as in the

litelature [47] that 30% of the failures in LLNL systems failing at the same time.

Furthermore, the Marshall-Olkin Weibul distribution has Weibul marginals, which

appropriate to model failures of an individual node following the Weibul distribution.

Also introduced is an univariate method for the parameter estimation of Marshall-Olkin

Multivariate models. The advantage of this parameter estimation technique is that it is

simple to estimate the parameters when the number of nodes is large while an existing

Parameter Estimation technique does not easily extend to estimate the parameters when

the number of nodes is larger than three. In addition, simulations to validate the

parameter estimations are also examined.

Acronyms

CDF Cumulative Distribution Function

PDF Probability Density Function

14

15

TTF Time to Failure

LLNL Lawrence Livermore National Laboratory

LANL Los Alamos National Laboratory

HPC High Performance Computing

GOF Goodness-of-fit

MOMED Marshall-Olkin's Multivariate Exponential Distribution

Notations

Zj (t, Aj) independent Poisson process of shock to component i

tjj Survival time of the ith node to the jth re-start of the system

•th
Rj (x) reliability of the system after the J restart of the system

•lh
Aj(x) failure rate of the system after the J restart of the system

3.1 Marshall-Olkin Multivariate Exponential Model

This multivariate survival expression in Equation (3.1) has k components and

2* -1 parameters, and it is based on the fatal shock model [65], [66]. Suppose that a

component fails after receiving a fatal shock. The occurrence of shocks is based on

independent

k

Fyx...Yk (yi> - , Vk) = exp {— ^ ^ A;,s max^, ys) - ̂ AUI maxCy,-, ys, yt)
i=1 i<s i<s<l

*1,2 k^x(yity2,...,yk)}. (3.1)

Poisson process Z,(/, A,) , with / = 1 2... k. In each Poisson process, t >0 and lambda is

the Poisson parameter. The events in the Poisson process, are shocks to

16

component i, the events in the process, Z i s(t,A. i s) are simultaneous shocks to both

components i and s, the events in the process Zi s l(t, Aj S j) are simultaneous shocks to

components i, s and / and the events in the process Z12 >k(t, A12,...,fc) are simultaneous

shocks to all k components. The Marshall-Olkin Multivariate Exponential Distribution

(MOMED) is the only multivariate exponential distribution model that has a marginal

exponential distribution, which the failures of the individual node still exponential

distribution.

Equation (3.1) can be used to obtain the reliability model for a system of k after

the re-start (j = 1,2,3,...). Here, re-start refers to the case when a failed node or nodes

are replaced to re-start the system. In the bivariate case, the general case presented in

Equation (3.1) reduces to

Fy(yi>ys) = plYi > yu ̂ > yj = expf-A^- - Xsys - X l i2Max(y i tys)}. (3.2)

Hence, the PDF is obtained as:

/<*.*) = (- D2^ =

| (A; + A12)As exp{—(A; + ALI2)YI - ASYS}, where y t is max ^ ̂

l(As + a1j2)a,- exp{—(As + X l t2)ys — Aty,}, where ys is max.

where i, s = 1,2 and i =£ s.

As known from the literature [53], an exponential distribution is appropriate for

modeling software reliability (Applications, VM's and Hypervisors), which will be

discussed more in Chapter 5. Software failures may be independent or dependent.

Independent software failures, for example, can occur in the case of embarrassingly

parallel jobs, such as biological sequence and video encoding. In case of dependent

failure, system configuration and operation environment may cause dependent software

17

failures [38]. Moreover, applications may fail at the same time, due to certain situation

such as communication outages between processes. Blocking communication, for

example, on an MPI application may cause simultaneous process failures. Another

example is simultaneous failures due to the fact that applications may have to wait on

data to become available.

3.2 Marshall-Olkin Multivariate Weibull Model

The Marshall-Olkin multivariate Weibull model is derived from the multivariate

exponential model by a variable transformation technique used in [65]. In the survival

function of the multivariate exponential (Equation (3.1)), consider the transformation

Y^X., c>0, i = 1 Using the transformation of variable technique in [67], one can

obtain the survival function of the general multivariate Weibull (MVW) which is given

by:

k

...,xk) = exp {- ̂ A txf - ̂ X l iS max(xf,xf) - max(xf,xc
s, xf)

i=1 i<s i<s<l

^1,2 km a x Of, - *£)}• (3-4)

Hanagal [65] and Prochan [68] considered parameter estimation for the special case of

the model in Equation (3.4). A special case of the Multivariate Weibull model presented

below.

•••**) = H*i > x l t ...,Xk > xk)

= exp {-Xxxl Xkx% - X l i2 kMax(xi,..., 4)}. (3.5)

The model considers only theZlj2 k(t), which is the Poisson process governing

simultaneous shocks to components l,2,...,k. The model is justifiable in an environment

where all components are simultaneously exposed to shocks.

The marginal function of Xh i = 1,..., k is a Weibull distribution and can be

expressed as:

P(Xi > Xi) = Fx(0, ...,0) = exp{-(Xi + X1>2 k)xf},i = 1, (3.6)

A common c assumption has been used in the literature by Proscan [68], D. Kundu and

A. K. Dey [69] and Hangal [65]. One advantage of a common c value is that it gives a

multivariate Weibull which marginal is a Weibull and agrees with literatures [39], [44],

[46] that an individual node's failures follow the Weibull distribution.

3.3 Parameter Estimation for Marshall-Olkin Weibull Distribution

Denote a PDF of the Weibull distribution by W(c,X). Consider three independent

processes, U12~W(A.12, c), Ut~W(A1(c), and U2~W(A2, c). Here, U12 is the distribution

governing the time to simultaneous failure of the two nodes, Ux is that for time to failure

of node 1, and U2 that of node 2. Let X1 = min {U12, f/j), and X2 = min [U12, U2}. The

bivariate vector (X1,X2) has the bivariate Weibull distribution with the parameters

[69].

This can be expressed as:

fix) = c2 (A, +AJ2)AJx,c~ ,x/'1) * exp {-(X+^2)x t
c - Zjx/}, i,j = l,2mdi*j. (3.7)

For parameter estimation of the multivariate Weibull, not much work has been done due

to the complexity of the problem. There is no explicit form for the Maximum Likelihood

Estimators (MLE) of the parameters. Moreover, The MLE of the unknown parameters

does not always exist [69]. Kundu [69] proposed an EM algorithm to estimate the

Multivariate Weibull when k = 2 or 3. This method is difficult to extend to estimate the

parameters of the Multivariate Weibull in the general case of k nodes.

19

A new method of estimation is proposed that can be easily extended to

multivariate cases. For two nodes, this method (referred to as the univariate method)

considers the observed time to failure for U12, which is the failure time that both nodes

fail together, U1 or U2, which is the failure time that node 1 or node 2 fail independently.

Maximum Likelihood Estimates for Xt, X2 ,X12 and c can then be obtained from the

Weibull distributions W(Al5 c), W (X2, c), and W (A12, c). The likelihood function is

expresses as:

L(x l t...,xn; X, c) = njLi cXxc~1exp {-Axc}. (3.8)

In this case three estimates for c are obtained. One can then take the average of the three

estimates as an estimate for c. For cases that more than two nodes {k nodes), Maximum

Likelihood Estimates for A;and c for node i, where i = 1,2, ..., k, failing independently

can be obtained from the Weibull distribution W(Aj, c), which is estimated from the

observed time f/j. Maximum Likelihood Estimates for X12...k can be obtained from the

Weibull distribution W (X12 k, c), which is estimated from the observed time U12 k.

Parameter c can be obtained by averaging from every Maximum Likelihood Estimate.

3.4 Simulation of Parameter Estimation

The simulation technique is used to validate the two estimation methods, the EM

algorithm and the proposed univariate method described above. The procedure that was

used to run simulation in order to generate time to failure for the case of two nodes was

defined as follows [69]. Consider the processes U12~ W(0.3,1.2), Ux~ W(0.5,1.2), and

U2~ 14^(0.3,1.2). Here, Xx and X2 are the time to failure for node 1 and node 2,

respectively. Next, the parameters were estimated using the EM algorithm and the

univariate method. The number of observations (sample size) was 10, 25, 50 and 100 per

20

replication. There were 100 replications for each sample size. Tables 3.1 and 3.2 present

the estimates for the two methods. Also, Tables 3.3 and 3.4 give the variance of estimates

for the two methods. A comparison of the average of each estimate over 100 replications

to its parameter shows that both methods gave accurate results. As expected, the

estimates became closer to their parameter values as the sample size increased from 10 to

100. Also, the variance of the estimates decreased with an increase in sample size. Both

methods seem to be equally good. However, the estimation method, based on the

univariate distribution, is simple to use, especially for any number of nodes while the

existing EM parameter estimation does not easily extend for more than four computing

nodes. Tables 3.5 and 3.6 shows an example of the parameter estimation and variance of

the univariate method for five nodes with initial parameter — 0.5, X2 = 0.3, A3 =

0.3, A4 = 0.7, A5 = 0.5, A12345 = 0.5, C= 1.2. The results show that the estimates

approach to the initial parameter when increasing the sample size and variance decreases

as the sample size increases.

Table 3.1 Average parameter estimates, over 100 replications, using
the EM algorithm for different sample sizes

Parameters

Sample size\^ II o

In

X2 = 0.3 — 0.3 c = 1.2

N= 10 0.5032 0.3512 0.3213 1.272

N = 25 0.5079 0.3033 0.3130 1.2377

N = 50 0.4993 0.3102 0.3065 1.2210

o

o

II Z
 0.4990 0.3070 0.3138 1.2014

21

Table 3.2 Average parameter estimates, over 100 replications, using the univariate
method for different sample sizes.

Parameters

Sample size~\^^ Ai = 0.5 A2 = 0.3 A^2 — 0.3 c = 1.2

N= 10 0.5119 0.2973 0.2747 1.4087

N = 25 0.4995 0.2978 0.3030 1.2753

o

II Z
 0.5057 0.3057 0.2989 1.2329

N= 100 0.5032 0.2933 0.3004 1.2162

Table 3.3 Variances of the parameter estimates for each sample size using the EM
algorithm

Parameters

Sample siz&\^ varC^) var(^) var(^2) var(c)

©

ii £

1

0.0351 0.0409 0.0231 0.0640

N = 25 0.0227 0.01209 0.0145 0.0204

N = 50 0.0094 0.0074 0.0054 0.0083

N= 100 0.0058 0.0036 0.0027 0.0046

22

Table 3.4 Variances of the parameter estimates for each sample size using the univariate
method

Parameters

#of X.

Observation

var(A,) var(^) var(^2) var(c)

N = 10 0.0590 0.0246 0.0248 0.18040

N = 25 0.0227 0.0111 0.0074 0.03526

N = 50 0.0085 0.0045 0.0044 0.19733

N= 100 0.0048 0.0025 0.0018 0.00906

Table 3.5 Average parameter estimates, over 100 replications, using the univariate
method for d i f fe ren t sample s izes fo r K= 5 .

Parameters

Sample size x.

Aj = 0.5 A2=0.3 A3=0.3 A4=0.7 As=0.4 ^12345 0-5 c= 1.2

o

ll Z
 0.5144 0.2992 0.2752 0.7882 0.3988 0.4981 1.39015

>
/"

)

ll Z
 0.4954 0.2889 0.3023 0.7262 0.4135 0.4955 1.2708

N = 50 0.5087 0.3067 0.3167 0.6983 0.4057 0.4873 1.2266

N= 100 0.4972 0.2976 0.3055 0.6955 0.3998 0.4894 1.2201

23

Table 3.6 Variances of the parameter estimates for each sample size using the EM
algorithm for k=5

\. Parameters

Sample size\

uar(Ax) var(A2) var(X 3) var(A4) var(A s) var(X 1 2) var(c)

N = 10 0.0458 0.0231 0.0221 0.1283 0.0359 0.0385 0.1313

N = 25 0.0166 0.0084 0.0092 0.0354 0.0147 0.0148 0.0442

N = 50 0.0090 0.0051 0.0051 0.0156 0.0042 0.0093 0.0210

N= 100 0.0047 0.0021 0.0022 0.0063 0.0036 0.0039 0.0096

CHAPTER 4

A RELIABILITY MODEL WITH
CORRELATED FAILURES FOR

HPC APPLICATIONS

In the previous work, there is only an independent case of reliability estimation

for HPC systems. This chapter will develop a reliability estimation with correlated

failures for HPC applications. The reliability model is validated by log data from

Blue/GeneL system from LLNL with K-S goodness-of-fit test. A system failure rate and

mean time to failure of such applications are also presented.

4.1 Introduction

Large scale High Performance Computing (HPC) systems play a critical role in

computational science. To meet the demand for faster computing, HPC systems are

composed of thousands of computing nodes. For example, the number of nodes of the

IBM Blue Gene/L at Lawrence Livermore National Lab is 65,536 nodes or 131,072

cores. However, in many cases, when a system has a single node failure, it results in the

total application failure [44]. Therefore, it is important to study the reliability of such

large HPC systems

A runtime scheduler or resource manager can make use of system reliability

information to improve the operation of an HPC system. For example, resource managers

23

can allocate a job (in an application), depending on the reliability information of the

nodes, in order to minimize performance loss in the considered system. The intelligent

job scheduler may allocate the long-running jobs to the more reliable nodes and may

schedule the short-running jobs to the less reliable nodes. Therefore, one can consider

system reliability in order to effectively utilize HPC resources to maximize performance.

Furthermore, the system reliability information of a system is an important factor to use

in fault tolerance performance models that help in mitigating system failures.

Time to Failure (TTF) provides important information on the reliability of a

system. There are several studies in the literature [38],[39],[40] which show that the

distribution of the time to failure (TTF) of a computer system is in accord with a time-

varying failure rate distribution such as the Weibull. In the previous study [46], a

reliability model was developed for an HPC system composed of k independent nodes,

each having a Weibull or a conditional Weibull TTF distribution. It has been shown in

[46] that the Weibull distribution gives the best fit to the TTF of each node in the LLNL

ASC white system. However, nodes in a computer system may also exhibit correlations

with regard to their TTF [39], [45]. Schroeder and Gibson [47], in a study of failures in

an HPC system at Los Alamos National Laboratory (LANL), showed that nodes were

correlated with regard to failure and that some nodes may fail at the same time. Hence, it

is necessary to develop a system reliability model taking into account simultaneous

failure of nodes.

In this chapter, a reliability study developed in [46] is extended, based on

independence among nodes, to model the reliability of an HPC system where nodes are

correlated in their time to failure due to the occurrence of simultaneous failures. It is

assumed that the system of k nodes fails when any of the nodes fail. When a node fails, it

is replaced or renewed, and the system is re-started again. The Weibull is considered as

the distribution of time to failure and uses the multivariate Weibull distribution, based on

the well-known Marshall-Olkin multivariate exponential model described in Chapter 3,

to account for simultaneous failures among nodes.

4.2 System Reliability Model, Failure Rate and
Mean Time to Failure

This dissertation considers a system of k nodes. Nodes can fail at the same time

which leads to nodes being correlated with regard to their times until failure. The

previous work [46] supports the fact that the time to failure of a node was best described

by a Weibull distribution. Hence, without loss of generality, the Weibull is considered as

the distribution of time to failure in this study. It is assumed that the system of k nodes

fails when any of the nodes fail.

The focus in this chapter is on a model where the nodes are not repaired, but

rather replaced. This is a realistic scenario in practice and has an advantage over repair

concerning delay in operation time and therefore cost of operation. In HPC systems there

are a relatively large number of nodes, and one does not wait to repair, but instead replace

using a spare node from the resource pool. It is not feasible to delay the computation

operation for the node to be repaired. The practical and efficient approach is to replace

the node and continue the operation, and in the meantime repair the failed node(s) if

necessary.

The interest at this study is in determining the reliability of the system after the

time it is re-started. It is important to note that the distribution of the time to failure is

26

Weibull for the node that is replaced and conditional Weibull for the other nodes. Note

that because of simultaneous failures, more than one node may be replaced at the same

time. The conditional Weibull is defined as the probability that a node will fail at time x i f

given that the node has survived until time ti;-, where i is the node that fails and j is the

jth system re-start. The conditional life PDF for a Weibull distribution can be expressed

as:

F(TIJ + XI\TIJ) = A.C(TIJ + xjc-1e-A(~t&+(to+*i)c

The CDF is given as:

P{X <t i J+x i \ t i j} = l - s

The k -node system reliability model can be expressed as follows:

RJ(X) = F(X) = > X >%2 > X >^3 > X > — >XK > X)

= exp {- Sf=i h * xl ~ E^=i hs max{xt', x's] - 2fAl=x AUI max{x-, x's, x{ }
i<s<l

(4.1)

(4.2)

1<S

Ai,2 k max{x[,...,x'k},

where

(4.3)

*i
xc , if the i thnode is replaced at j threstart

—tfj + (tij + x)c , if the i thnode is not replaced at j threstart.

Similarly for x's, x{, ...,x'k.

Note that after the j th failure of the system, node / that failed has a Weibull distribution

(since it was replaced at the time ti; when it failed) and the other nodes have conditional

Weibull distributions since they survived beyond time ty.

Equation (4.3) is readily derived from Equation (3.1) using the transformation of variable

technique with the transformation Yt = —tf + (xt + t{)c, tt > 0. In practice, t; can be

27

equal to zero, which corresponds to a node with a Weibull distribution or tt larger than

zero corresponding to a node with a conditional Weibull distribution.

From Equation (4.3), it is seen that the PDF can be expressed as follows:

dRj(x)
FJ(:*) = (-i)

dx

k

= [c h * x" + X i iS * x'is + ^ hs.l * <s,i + - + Ki k * <2 fc] *
i=1 i ,s- l i ,s , l=1

i<s

exp {- Zf=1 A; * x- - AijS max{x(', - Eui=i *ui max{xt'f x[} -
I <S

h,z fcmax{x^...,4}, (4.4)

where x[' = xc~1 if the ith node is replaced at the j th re-start

= (tij + x)c~x if the i th node is not replaced at the j th re-start.

„» _ dmax {x[,x's] _ _ dmax{x[,x' s„x' l) _j _dmax{*i x'k]
Xis~ Tx >Xis l~ Tx m(1 X^3.. .k~ d x

From Equation (4.3), it is seen that for the special case when one component is shocked

or all components are shocked simultaneously, the reliability can be expressed as:

Rj(x) = F(jx) = P(X t > x,X2 > x,X3 > x, ...,Xk > x)

= exp {- X t * xl - X1>2 k max{*i,..., x'k}, (4.5)

where x[= x° if the i th node is replaced at the j th re-start

= —tfj 4- (tij + x)c if the i th node is not replaced at the j th re-start.

The PDF of the system for the special case described in Equation (4.5) is expressed by:

//(*) =

[c £f= i X t * x;[' + X l i2 k * x"2 fc]*exp {- £f=1 X t * x\ - X1>2 k max{x[,..., x'k}, (4.6)

where x[' = xc~x if the i th node is replaced at the j th re-start

28

= (tij + x)c 1 if the i th node is not replaced at the j th re-start,

, „ dmaxfxj,
and *123...*= ^—"•

From Equations (4.4) and (4.5), one may define the failure rate " T j (x) " after the j ' h re

start of the system as:

//(*)
/}(*) =

Rj(x)

= cEf=1 Aj * x" + I^s=1 X i iS * x'i's + Zt,i=lAU(* X 'i',s,l + - + ̂ 1,2 k * Xl,2 k • (4-7)
i<s

For the special case, the failure rate is

Ij = = c * xi + ̂ 1,2 k * xx,2 k- (4-8)

From the definition of expectation, the MTTF is given by

E (x) = J0°°x * fj (x) dx, (4.9)

where FJ (x) is the PDF of an univariate distribution for the general case presented in

Equation (4.5) or the special case presented in Equation (4.6) for a system of £ nodes.

4.3 Goodness-of-fit Test for System Reliability

The system reliability model is validated by fitting it to experimental data using

the Kolomogorov-Smirnov (K-S) goodness-of-fit test. The failure logs are obtained from

the BLUE Gene/L system, located at Lawrence Livermore National Laboratory (LLNL).

The BLUE Gene/L logs are from June 3rd, 2005 to January 4th, 2006. The system is

comprised of 65,536 nodes. There were 99 nodes that failed more than 15 times within a

six months period. Moreover, some of the nodes failed simultaneously, which implies a

correlation among nodes with regard to time to failure.

Consider a system comprised of two nodes that are correlated with regard to their

TTF's. The times to failure of the two nodes give rise to a bivariate distribution (Xl5 X2).

The system reliability function can be obtained from Equation (4.5), for h= 2, by

letting Xt = X2 = X. This gives

Rj(x) = exp{—(X 1 + A 2 + A1i2)xc). (4.10)

In this case, = 0 since the bivariate data observed are the times to failure of

each node after the two nodes are put into operation at the same time. It is important to

point out that a general expression for tiy- not zero can be readily obtained from

Equation (4.5). Only the case when ty = 0 is used in order to agree with the observed

data . Using the EM algor i thm on the bivar ia te TTF data , the parameters A l s X 2 , A 1 j 2

and c are estimated. These estimates were used to fitted the cumulative distribution

function of the Weibull (1 — Rj(x)) to the observed Min(Xl3 X2) using the K-S

goodness-of-fit test.

Table 4.1 presents the goodness-of-fit of the modified K-S test [70] to a Weibull

distribution (Equation (4.10)) for 25 non-overlapping pairs of nodes. For each test, the K-

S test statistic and the corresponding critical value of rejection at the 5% level [70] is

presented. In this case, the modified K-S test is used since the Weibull parameters are

estimated from data. From Table 4.1, it shows that the Weibull distribution gave a good

fit to 23 pairs of nodes (critical value > K-S statistic). Figure 4.1 is representative of the

observed fit to the experimental data. It is known that the K-S test is a sensitive test.

Hence, even when the K-S test rejected the null hypothesis of a Weibull distribution, the

fit seems to be still adequate, as seen graphically in Figure 4.2.

30

Table 4.1 K-S statistic and critical value of K-S goodness-of-fit test to the TTF of 25
systems, each represented by 2 nodes

System Critical KS System Critical KS System Critical KS

value statistic value statistic value statistic

1 0.188 0.337 10 0.213 0.207 19 0.239 0.232

2 0.222 0.220 11 0.231 0.221 20 0.222 0.211

3 0.231 0.200 12 0.248 0.238 21 0.337 0.281

4 0.248 0.322 13 0.213 0.205 22 0.222 0.221

5 0.248 0.247 14 0.274 0.213 23 0.265 0.241

6 0.256 0.207 15 0.231 0.210 24 0.231 0.223

7 0.265 0.247 16 0.248 0.244 25 0.256 0.244

8 0.256 0.230 17 0.239 0.236

9 0.222 0.220 18 0.314 0.290

ECDF and Weibull CDF

10000 20000 30000 40000

Figure 4.1 The empirical CDF (ECDF) and the Weibull CDF of a 2-node system, K-S
statistic = 0.244 and its critical value = 0.256 from the K-S test.

31

ECDF and Weibull CDF

« C'-i

1 1 i r
*0000 30000 30000 40000

Figure 4.2. The empirical CDF (ECDF) and the Weibull CDF of a 2-node system, K-S
statistic= 0.3371 and its critical value=0.188 from the K-S test.

4.4 Numerical Result for Correlated Failure Model

This section exemplifies, for k = 2, 3, and 50 the effect of survival time (T) and

parameters for joint node failures (Ay) on system reliability, from Equation (4.3), and

on the failure rate, Equations (4.7) and MTTF, Equation (4.9). For k = 2, an example is

used where job run length (x) equals to 200 hours and the Multivariate Weibull

parameters equal to AX=0.00003, A2=0.00005, C=1.5, with A12={0, 0.00003, 0.00005,

0.00007}. For Jfc=3, assume A1J2, A1J3, A2j3 = 0.00005, and A1>2>3= {0, 0.00003, 0.00005,

0.00007}. For Jfc=50, define AI=0.000004 and C=1.5 with Au,..={3xl0-19,

5x10-19,7xl0~19} It is obvious from Equation (4.3) that when the joint failure rates

(Ay) increase, the reliability of the system decreases. This implies that a system with

independent nodes (Ai ; = 0) is more reliable than one where the nodes are correlated in

failure. Also, it is seen that the general model in Equation (4.3) is less reliable than the

special case (k > 2) in Equation (4.5). Also, as the number of nodes increases, the

32

reliability of the system decreases. Furthermore, reliability of the system decreases as

survival time T increases. These facts are demonstrated in Figures 4.3, 4.4 and 4.5.

Figures 4.6, 4.7, and 4.8 show, as expected, that the MTTF decreases when the

parameters for joint failure(Ajj(_) increase or as the survival time T increases. Moreover,

Figures 4.9, 4.10 and 4.11 show that the failure rate increases as the joint parameters

(A;j) increase in value or the survival time increases. Furthermore, one can observe that

when the number of nodes (k) increases, MTTF decreases and the failure rate increases as

expected.

(£.

E a>
to
D)

k=2, x=200, >*t = 3e-05, K2 = 5e-05, i
>-12 =

1 1 1
500 1000 1500

Survival Time T (Hours)

2000

Figure 4.3. System reliability of a system of 2 nodes

33

Special Case Model

k=3, x=200, = 3e-05
ij2 =5e-05, /.3 = 7e-05, c= 1.5

>.,23=0

-- >.^rr3e-05
* • * * ^ 56-05

A.?23=7ft-05

~r ~r

500 1000 1500

Survival Time T {Hours)

2000

GC e

Genera! Case Model

k=3r x=200, = 3e-05, K? - 5e-05,
/,i = 7e-05, — 56-05, c —1.5

>.m-0
— MT2 =• 3s-05

'-m - -'6-05
Ai23 = 7e-&5

_r T

500 1000 1500

Survival Time T (Hours)

2000

Figure 4.4 System reliability of a 3-node system in the special case and general case
models

Special Case Model

k=50, x=200, =4e*06, c «1.5

A

'•i2..se = 0
-- x,.,

"• /.is.»«5e-05 A* * = 7*45

\
I*,1 \

V. ^ \

w \ \

% \ \

V0 x x.

v '• s

:7;

1000 1500

Survival Time T (Hours)

£ 3 ^

<5?

Genera) Case Model

fc=50, x=200, /H=4e-06, c = 1.5

— >.12„ = 0
-- >£. = le-?9
• - • ' = 2e-"9

500 1000 1500

Survival Time T (Hours)

Figure 4.5 System reliability of a 50-node system in the special case and general case
models

fes2,x«200, I; = 3e-05, v.j * Sc^S5, e =1,5

f,a*0

§

8

a

s f*4

3000 4000 0
SwvwaiUme T (Hosts)

Figure 4.6 Mean time to failure of a system of 2 nodes

Special Case Model

k=3, x=200. k, = 3e-05
hi = 5e-05,7-3 = 76-05. c = 1.5

'-,23 = 0
5-123=3^-05

* * * * ''12*' ~ 5e-05 " = ?s-05

General Case Model

1000 2000 3000

Survival Time T {Hours)

4000

.i i—

k=3, x=200, = 3e-05, >.2= 5e-05,
= 7e-05, ~ 5e-05, c — 1.5

i. 123 = 0
—' A.;x, = 3e-05
* * *" F-M - 5e-05
— • 7&Q5

~r T~
1000 2000 3000

Survival Time T (Hours)

4000

Figure 4.7 Mean time to failure of a 3-node system for the special case and
the general case models

35

Special Case Model

k=50. x=200. U " <«-0S. c -1.5

- Je-ifc
= 5e-Oo

2000

Survival Time T (Hours)

General Case Model

k=50, x=200,= 1.5&06, c = 1.5
=0

= 1.5e-19 = 2e-t9

2000

Survival Time T {Hours)

Figure 4.8. Mean time to failure of a 50-node system for the special case and the general
case models

k=2, x=2G0, >-i = 3e-05, },2 = 5e-05, c = 1.5
X\2 = 0

—

— /,12=5e-05
— >~ijs = 7e-05

0 1000 2000 3000 4000

Survival Time T (Hours)

Figure 4.9 Failure rate of a system of 2 nodes

36

Special Case Model General Case Model

k=3, x=200; = 3e-05
>-2=5e-05, a3=7e-05, c = 1.5

;.i2S=3°-05

'•,23 = 53-05

1000 2000 3000

Survival Time T (Hours)

4000

k=3, x-200 >, - 3e-05, - 5e-05,
Aj=7e-05. '-,2'-, s'-zs = 5e-05, c = 1.5

>.„=0

i,.r. =5e-05

1000 2000 3000

Survival Time T (Hours)

4000

Figure 4.10 Failure rate of a 3-node system for the special case and the general case
models

Special Case Model General Case Model

k=50, x=200, =4e-06, c
'-12...5C = 0

— '*-12 so
= 5e-05 ?.,7_28=Te-05

• 1.5

1000 2000 3000

Survival Time T (Hours)

4000

k=50, xs200.Ai-4e-06.c- 1.5

3 -
•-«?. =0
'-is.. - i-5e-1S

2000

Survival Time T (Hours) Suvival Time T (Houre)

Figure 4.11 Failure rate of a 50-node system for the special case and the general case
models

4.5 Conclusion

Reliability information is important for improving HPC system utilization. In

order to mitigate the interruption of an application because of a failure, it is of importance

to know how reliability, mean time to failure, and failure rate of an HPC system are

affected by joint node failures. Many studies have shown the existence of failure

correlations among nodes in computer systems [39], [45] and [47]. In this chapter, a

general reliability model is proposed that accounts for joint failures among nodes and

developed the reliability, failure rate, and mean time to failure of a system based on k

nodes. Also validated is the model using observed times to failure from BlueGene/L

system. Results show that if the failures of the components (nodes) in the system possess

a degree of dependency, the system becomes less reliable. Moreover, when the failures of

components are independent, the proposed system reliability model is the same as the one

in [46]. Chapter 5 will extend this system reliability to model the reliability of Cloud

computing system.

CHAPTER 5

A RELIABILITY MODEL OF CLOUD COMPUTING
FOR HPC APPLICATIONS

Cloud computing has become popular for HPC applications. Many public Clouds,

such as Amazon Elastic Computing Cloud (EC2), provide their services specifically for

HPC users. Therefore, reliability information is necessary for administrators and users to

manage their systems and their jobs efficiently. This chapter presents reliability models

of Cloud computing accounting for correlation failure in software and hardware.

5.1 Introduction

Cloud computing allows businesses to rent computing resources from Cloud

service providers, such as Amazon, Rackspace, etc., instead of investing to acquire

computing facilities. Users can increase or decrease the amount of resources- -such as

storage, memory, and central processing unit (CPU) - as they need and pay per usage

according to the amount of services or resources they need, like in a traditional public

utility. When companies decide to use a Cloud service, they have in mind a Service Level

Agreement (SLA), which involves the reliability and performance of the Cloud service

within a desired time frame. Reliability of Cloud systems directly relates to its

performance. When a system fails, applications that are running on the Cloud can be

interrupted. If the system does not have any fault tolerant mechanisms, such as live

38

migration and checkpoint/restart, failed jobs have to be re-run. If the system provides

fault tolerant mechanisms, there is still some performance loss, re-computing time and

the time it takes to restart the system to function again. Therefore, it is important to

accurately estimate the reliability of a Cloud computing system in order to better mitigate

faults and therefore effectively utilize its performance to achieve the SLA of Cloud users.

The demand for High Performance Computing (HPC) is increasing for solving

advanced scientific researches and some mission critical applications. Many scientific

and HPC applications are running on the Cloud. For instance, CernVM [71] is the Virtual

machine image for running LHC experiment of High Energy Physics. In addition,

Amazon EC2 presents HPC case studies [72]. Recently, Penguincomputing [36] has

provided Cloud services customized for HPC, called HPC as-a Service [73].The benefit

of Cloud computing is cost-efficient even though it has scarified performance trade-off

[74].

In the Cloud environment, service providers must manage numerous computing

components such as processors, memory modules, storage, network switches, etc. The

more components, the more likely failures are to occur. A failure may interrupt an entire

application, for instance Message Passing Interface (MPI) applications [44]. MPI has

been used in most parallel scientific applications [75]. MPI on Cloud is active research

area. For example, Ying [76] presents MPI algorithm model and Raihan [74] analyzed

HPC applications and tested an MPI performance on the Cloud. If the service providers

could obtain the failure characteristic of the Cloud computing environment, they can

better manage the computing resources to tolerate the failures and sustain better

performance [77], [78].

40

Reliability information is one of the key factors to consider in the Cloud

computing environment. As such, many studies considered reliability as a main factor in

their research on performance and usage cost. The work of Artur [79] focused on

monetary versus reliability balance based on Spot Instances in the Amazon EC2. The

Spot Instances are idle resources. Users can bid a price for idle resources. Whenever the

price of resources is equal or less than the bid price, the Spot instances are allocated to

the users. On the other hand, if the price goes above the bid price, the Spot instances are

deallocated without warning. This leads to the question of how to bid the Spot Instances

with given SLA constraints. Prasad [80] presented a resource allocation method for data

processing, considering not just CPU speed, memory usage, data throughput, and

network speed, but also reliability. In his work, Prasad presented algorithms for

partitioning data in order to gain better performance and resource allocation for optimal

pricing and for meeting SLA constraints.

This chapter proposes a reliability model for a Cloud computing system that

considers software, application, Virtual Machine, Hypervisor, and hardware failures as

well as correlation of failures within the software and hardware. The accuracy of the

estimation is also improved by introducing excess life in order to account for the aging of

hardware.

5.2 TTF Distribution of a Cloud System

This section considers the reliability of an application that has t processes (Appl-

App €) in a Cloud system composed of s virtual machines deployed in k nodes as shown

in Figure 5.1, where each node can have a different number of virtual machines. An

assumption is made that it is an MPI application. A system fails when any one of the k

41

nodes fails or any software components fails. In the hardware case, when any node fails,

it is replaced with a new node and the system is re-started. In the software case, the VM

is re-started and the system operates again.

iMggiwiswJia

Figure 5.1 Cloud Computing Architecture

The interest is in determining the Probability Density Function (PDF) for the time

to the first failure of the system after the jth node replacement or a VM re-start due to a

failure. This time is referred to as the time to failure (TTF). Therefore, the following

assumptions can be made concerning the failure properties of individual nodes in a

system,

1) TTF of an individual node follows a Weibull distribution [41], [46]

2) TTF of an application that is running on a particular VM has an exponential

distribution [53], [55].

3) The first failure interrupts the entire application.

4) After a failure, the node is replaced with a new node at the next time instant,

and hence the system returns to a normal operational mode.

Consider a k-node Cloud system with n (n = €+s+k) software components (App,

VM and Hypervisor), each with an exponential time to failure), where any failure in any

one of the n components interrupts the entire application. If any of the software

42

components fails, the component (and hence the system) will be re-started. On the other

hand, if a node fails, the node is replaced and the system re-started.

In case of node failures, the distribution of the time to failure is Weibull for the

node that is replaced and excess Weibull for the other nodes. Note that because of

simultaneous failures, more than one node may be replaced at the same time. The excess

life is defined as the probability that a node will fail at time x given that the node has

survived until time t. The excess life PDF for a Weibull distribution can be expressed as

At, + *!<„) = Mt„ (5.1)

with the CDF given as:

P { X < t y + x | t y } = 1 + x r) , (5.2)

where i is the node that fails and j is the jth system re-start.

5.3 Cloud System Reliability

In general, there could be many possible combination of failure dependencies

among components. However, this study practically focuses on the four major scenarios

described as follows.

Four possible scenarios are

(1) Software failures occur independently. Also, hardware failures occur

independently.

From Equations (3.1) and (3.4), one can show that the reliability model of n software

components (Xk+1_Xk+n) running on k physical nodes (X-^, ••• ,Xk) can be expressed as

follows:

Rj(x) = F(x) = P(Xx > x,X2 > x, ...,Xk > x,Xk+1 > x,Xk+2 > x, ...,Xk+n > x)

43

= exp {- £f=1 Xix'i - I"=i yvx), (5.3)

where xt = xc if the ith node is replaced at the jth re-start

= —tfj + (tij + x)c if the ith node is not replaced at the jth re-start.

Similarly, for x's,x[, ...,xk. Note that for independence, only X; 's and y; 's are not equal

to zero.

Expression (5.3) can be readily derived from Equation (3.1) by using the

transformation Y t = X f , c > 0 for the nodes that have a Weibull time to failure (failed and

were replaced to restart the system), Y t = —tf + (tj + X) c for nodes that have an excess

Weibull distribution (did not fail when the system was re-started) and Y = X for the n

software components that have an exponential time to failure.

(2) In case of correlated software failures, and independent hardware failure, the

reliability model can be expressed as:

Rj{ x) = exp {- £f=1 - £"=i yvx - £",w=i yvwx - E",w,z=i Yvwz* ~ - - 7i2...n*}
V<W V <w<z

(5.4)

(3) For a system where software failures occur independently, but hardware

failures are correlated, the reliability model is given by:

R j (x) = exp {- £f=1 Ajx ' t - ljs=i hs maxfx-,x ' s] - T,kiiSil=1 Aisl max{x-,x [
i<s i<s<l

^123...» max{%i,..., xk} - yvx} (5.5)

(4) In the case of both software and hardware correlated failures, the reliability

model of the Cloud system is given by

44

Rj(x) = exp {-Z?=i hxl - S?s=i^is max{x'ux'5} - Zl,s,i=i *isi max{x-, x's, x[
i<s i<s<l

^123...fcmax {XLT ..., 5jv=1 YVX ~ Sw,w=1 Yvwx 5] v,w,z=1 yi2...n*}
V<W P<W<2

(5.6)

In all four scenarios, it is assumed that hardware and software fail independently

from each other.

From Equation (5.3), the PDF of an application on Cloud can be derived as:

f(x) = [c £f=i Xtxl + £S=i yv] * exp {- Ef=i ~ 2?=i Yvx}, (5.7)

where x- = xc_1 if the ith node is replaced at the jth re-start

= (tij + xY'1 if the ith node is not replaced at the jth re-start.

From Equation (5.4), the PDF for this case is

fix) =

[cYif=i^ixi "I" Yiv=lYv + Jlv,w=lYvw "I" 2 v,w,z=l Yvwz + — 7l2...n]*exP {.~Yii-i^-ixi ~
v<w v<w<z

lv=1Yvx £u,w=l YVWX 2 v,w,z=l Yvwzx Yl2...nx}• (-**^)
v<w v<w<z

The PDF that is derived from Equation (5.5) is given as:

f(.x) = \c Yii=i^-ixi + 5ji,s=i ̂ -isxis ^r^i,s,l=l^islxisl ^123...kxi23...k 2v=l Yv] *
i<s

exp {- I*=1 h * xl - X£s=1 Ais max{x-,x's] - £*s,i=i Aisi max{x-,xj,x't} -
i<s

-- ̂123...k max{xi, ...,x'k} - 25=1 yvx), (5-9)

_ _ j _ d m a x {x[,x's} _ dmax(4*s»*i} _A _ dmax {x[xk}
311(1 xis ~ ^ »xisi ~ ^ ,...,ana x123..,fc dx

The PDF from Equation (5.6) can be expressed as:

45

0 [p 5]i=i ̂ -i%i "I" Xi,s=l ̂ -is^is ~^~ j£i,s,i=l ̂ -isl^isl "" ^•123.../c^l23...k
i<s

Yiv=lYv Xu,w=l Yvw "t" Hv,w,z=lYvwz "t" ••• Yl2...n\ *
v<w v<w<z

k k k

exp {- Xi * x't - ̂ Xis max{x-, x's] - ̂ Xisl max{xj, x's, x[] - ...
i=l i,s=l i , s , l= l

i<s

~^-123...k maxjx-L, ..., Xk} — Xu=l — Xv,w=l YVWX ~ S V,W,Z= 1)W* — —

17<W v<w<z

Yl2. . .nX}- (5-10)

After the reliability and PDF of an application are determined, the information is used to

compute failure rate and mean time to failure of an application on Cloud.

5.4 Failure Rate and Mean Time To Failure

The failure rate " ̂ (x) " of independent failure of software and hardware after the

j ,h re-start of the system is given by:

x> = 7& = + (5.1D

For the case of dependent software failure and independent hardware failure, the

failure rate is

XJ = \ = C X f = l J-IXI + H"=l Yv + Ylv,W=lYvW + YIV,WJ!=IYVWZ + — + Yl2 ...1F (5 - 1 2)
"AXJ v<w v<w<z

The failure rate for the case of independent software failure and dependent

hardware failure is

Xj = ̂ , n C]Cj=i XiXi + 2i,s=l "* ^•123.../c^l23...k
7 i<s

(5.13)

46

In the case of dependent software and hardware failures, the failure rate is given

as:

% = r.(x) = c^i=l^-i x i 5ji,s=1 ̂ is*is £' t i , s , l=l^-is l x is l *" ^123...kxl23...k +
' i<s

5ji?=1 Yv 5j17,w=1 YVW X v,w,z=l Yvwz ••• Yl2...n• (5*14)
v<w v<w<z

The mean time to failure (MTTF) of an application on Cloud is given by:

E(x) = /"% * f(x)dx , (5.15)

where f(x) can be the PDF of the any case presented in Equations (5.7), (5.8), (5.9), and

(5.10) for a Cloud system.

5.5 Virtual Machine and Hypervisor Failure

There is some evidence indicating that Virtual machines, and hypervisors may

exhibit an increase in the failure rate with time, referred to as software aging [81],[82].

The current model can be readily modified to accommodate such a scenario. In this

situation, the aging software will be treated as a node, in which case the time to failure

distribution for the software will be Weibull or excess Weibull instead of the exponential.

More precisely, the TTF of a virtual machine or hypervisor follows a Weibull distribution

when it failed and is restarted. On the other hand, it will have an excess Weibull if a

virtual machine or hypervisor did not fail when the system failed. It is assumed that the

failures of virtual machines and hypervisors are independent. In this case, the reliability

model of n VMs and k hypervisors can be expressed as follows:

R](x) = P(Xx >x,X2> x, ...,Xk > x,Xk+1 > x,Xk+2 > x, ...,Xk+s > x)

= exp {- £{L i Xixl - Avxv}, (5.16)

47

where ^-and x'v = xc if the ith virtual machine or vth hypervisor is re-started

(rejuvenated) at the jth re-start

= —tf j 4- (tij + x)c if the ith virtual machine or vth hypervisor is not

re-junivated at the jth re-start.

One can obtain the reliability model of a Cloud computing system, including

virtual machines or hypervisors, from Equation (5.17).

S/ysM = RJ(x) • R/M, (5.17)

where Rj(x) can be obtained from Equations (5.3), (5.4), (5.5), or (5.6). The PDF of

system reliability, fys(x), can be readily obtained from Equation (5.17) by differentiating

-Rjys (x) with regard to x.

The system failure rate is given by:

-isys _ fsys(x)
A i ~ Rf s {x) •

The MTTF can be express as:

Esy'ix) = Jj°x * fsys(x)dx. (5.19)

5.6 Numerical Result Examples for The Proposed
Cloud Reliability Model

This section demonstrates by examples, for k = 3 and n=\2, the effect of survival

time (T) and parameter values for joint node failures (Ai;- J on system reliability for the

four cases, Equations (5.3), (5.4), (5.5) and (5.6), in Figure 5.2 and on the failure rate

(Equations (5.11), (5.12), (5.13) and (5.14)) and MTTF, Equation (5.15) in Figure 5.3.

The case of an all-to-all communication of MPI applications is considered where every

process sends information to every other process. If the data from a particular process

48

could not reach other processes, every other process has to wait, and thus all fail together.

In this case, the joint parameters reduce to only one parameter (y12 ...n)• An example is

used where job run length (x) equals 100 hours and the node parameters A1,Z2, A3, =

0.00005, the 2-node joint parameters A12, A13,A23 = 0.00 0 05, the 3-node joint

parameter A123 = 0.00003, C= 1.5, the 2 software-component joint parameters

Yi> —>Yi2 = 0.00003, the 3 software component joint parameter y123 = 0.0007,

and the hypervisor and VM parameters 1=0.00001. It is obvious from the reliability

Equations (5.3), (5.4), (5.5) and (5.6) that when the system has failures that are correlated

it becomes less reliable. Moreover, when the joint failure rates (Ay...) increase, the

reliability of the system decreases. This implies that a system with independent nodes

(Xij , Yij..= 0) is more reliable than one where the nodes are correlated in failure.

Furthermore, reliability of the system decreases as the survival time T increases, as

demonstrated in Figure 5.2.

Figure 5.3 shows that the failure rate increases as the joint parameters (A^.y^.J

increase in value or the survival time increases. Figure 5.4 shows, as expected, that the

MTTF decreases when the parameters for joint failure (A^ , y£;) increase or as the

survival time T increases.

Figure 5.5 shows the Cloud system reliability as function of nodes. As the number

of nodes increases, the reliability decreases. Figure 5.6 shows the Cloud system failure

rate when the number of nodes increases. The failure rate increases when the system has

more nodes. Figure 5.7 shows the Cloud system MTTF. When the number of nodes

increases, Mean time to failure decreases. Also, when adding more components and the

49

failures of components have correlation, the system becomes less reliable. That means

less reliability, more failure rate, and shorter MTTF.

Cloud System Reliability

a>
o

S and H ind
Sde? andH;rrf
S ind and H dep
SarsdHdsp

CM
O

O
O

500 1000 1500 2000 0
Survival Time T (Hours)

Figure 5.2 Cloud System Reliability, with k= 3 and n= 12, for the four scenarios in
Equations. (5.3) - (5.6).

Cloud System Failure Rate

O <N Q
O

Sand Hind
S dep and' B ind

S ind and H dep
S and H dep

o
o

o

o o

in
o o
o

1000 2000 3000 4000 0
Survival Time T (Hours)

Figure 5.3 Cloud System Failure Rate, with k= 3 and rv= 12, for the four scenarios in
Equations. (5.11) - (5.14).

Cloud System MTTF

O iR>

o
o

0 1000 2000 3000 4000

Survival Time T (Hours)

Figure 5.4 Cloud System MTTF, with 3 and n—12, for the four scenarios.

Cloud System Reliability

S and H ind

S ind and H dep
S sfKi H dep

0 100 200 300 400 500

Figure 5.5 Cloud System Reliability as function of the number of nodes (k) .

51

Cloud System Failure Rate

0 WO 200 300 400 500

KNodes

Figure 5.6 Cloud System Failure Rate as function of the number of nodes (k).

Cloud System MTTF

O lO
CO

— S and H ind -- S<je:>apdHI?v3
• • • S ind and H dep
- • S and H dec-o to

CM

O O
CM

o lO

o
o

o IR>
o

200 300 0 100 400 500

KNodes

Figure 5.7 Cloud System MTTF as function of the number of nodes (k).

5.7 The Expected Completion Time with Checkpoint/Restart

There are studies on the implementation of checkpoint/restart [83], [84] for MPI

applications in a Cloud environment. This section proposes a checkpoint/restart model

and utilize the reliability information from the four scenarios described above in the

52

checkpoint model. Figure 5.8 illustrates the checkpoint scheme used. Here, Tre is re

computing time, Trt is recovery time, C is checkpoint cost, CI is checkpoint interval, and

TTF is the time to failure of the system. The following equation gives the expected

completion time.

Wck] ~ Tfree + C*N + W, (5.20)

where Tck is the completion time, W ~ * (E[Tre] + Trt) , Tfree is the fault-

free execution time, MTTF is the mean time to failure, and N is the number of

checkpoints.

CT7VT Failure

ci- 're

Figure 5.8 Parameters of a checkpoint model.

The parameters that are defined are based on the work in [24]. The expected job

completion time, E[Tck] , can be obtained from fault-free execution time and Wasted

time, CN+W. From Figure 5.6, it is seen that the re-computing time can be expressed as:

Tre = TTF - [^j * CI. (5.21)

By taking expectation, users can obtain

E[Tre\ = E[TTF] - E[]* CI, (5.22)

where TTF is time to failure, CI is checkpoint interval, and

*«'><"• (5'23)

To find the waste time, the PDF and MTTF are used for the four scenarios described in

Section 5.3. An example of an application that runs on 12 VMs and 3 physical machines

is considered and assumes that hardware and software are independent of each other. The

parameters that are used for PDF and MTTF are the same as in Section 5.6 for the case k

= 3, and n= 12. Also, Trt,C and CI were assumed to be 40 seconds, 20 seconds, and 5

hours, respectively.

Figure 5.6 shows the waste time (CN + W) as a function of the Fault-free job

execution time. The different waste time of each cases comparing with the both software

and hardware independent failures is about 15% for correlated software failures and

independent hardware failures, 36% for independent software failures and correlated

hardware failures, 47% for both hardware and software correlated failures. As can be

seen, the smallest waste time is in the case when both the system software and hardware

components are independent. This is due to the fact that the system is more reliable when

the system components fail independently. The largest waste time is for the case when

one has correlations among software as well as among hardware.

5.8 Conclusion

Reliability information is important for improving Cloud computing system

utilization. In order to mitigate the interruption of an application because of a failure, it is

of importance to know how the reliability, failure rate, and mean time to failure of a

Cloud computing system are affected by joint node failures. Many studies have shown

the existence of failure correlations among nodes in computer systems [39] and [47]. In

this chapter, reliability models are proposed that consider software and hardware

components, which account for joint failures among nodes as well as VMs, and

54

developed the reliability, failure rate, and mean time to failure of a system based on k

nodes and s VMs. Four major cases are considered that are combination of software and

hardware failure correlation. Also, discussed is the reliability model for the case where

VMs and Hypervisors exhibit an aging effect. The waste time derived for each of the

four reliability scenarios is presented in Figure 5.9. Results show that if failures in the

system possess a degree of dependency, the system becomes less reliable.

Waste Time VS Execution Time

CO ~
S and H ind
S dep and H ted
S ind and H dep
S arid H dep

<0

<S
E
i— a>
CO

S
CN ~

1000 1500 2000 500

Fault-tree job Execution Time (Hours)

Figure 5.9 Waste Time versus Fault-Free Job Execution Time in Cloud System.

CHAPTER 6

AN ECONOMIC MODEL FOR CLOUD
SERVICE PROVIDER

For Cloud service providers, profit maximization and customer satisfaction are

the concerns. How to price and how large a data center is needed are important factors to

their profit. This chapter presents an economic model for a Cloud service provider to

maximize their profit and provide the information for their decision making for price of a

VM hour and how large the system should be. This model also accounts for several

different qualities of services.

6.1 Introduction

Cloud service providers offer resources and services over the Internet to users

who pay for an amount of usage as if it were a traditional public utility, such as electric

power and water. By utilizing the services of Cloud service providers, individual users or

enterprises do not need to invest into large in-house computing resources. Due to the

virtualization technology, enterprises can outsource excessive jobs by running on Virtual

Machines (VM) in third-party computing resources. This allows them to scale up or down

the amount of resources as needed and pay for only the time they use.

As demand for Cloud computing is increasing dramatically, new opportunities are

created for running a Cloud business. To maximize profits, one has to be able to estimate

the demand of the market in order to gain revenue and minimize cost. Based on supply

55

56

and demand [85], if the company sets the price lower than market price, it can, in

principle, increase its sales. On the other hand, if the price is set too high, sales may

diminish. Hence, a good pricing strategy is important for increasing revenue. A

successful pricing strategy can lead to a significant increase in profit [86]. If one can

understand the demand of Cloud computing, one can define the right price to gain market

share and increase revenue.

Another factor that impacts the profit of the Cloud service provider is cost. To

understand the cost of a Cloud service provider, total cost of ownership (TCO) [62] is

used in the analysis. The total cost of ownership analysis considers direct and indirect

cost of owning a business over its life span. The direct cost consists of equipment and

infrastructure cost, such as server, network, facility, etc. The indirect cost includes power,

cooling, license, etc). When one understands the TCO, one can decide on the right size of

a Cloud system based on demand in order to maximize profit.

This chapter proposes an economic model for a Cloud service provider, based on

revenue and cost, by considering computing resources charged to customers over time. A

logit model is considered for revenue analysis, and the total cost of ownership is used to

analyze the cost of a Cloud system. Also considered is a Service Level Agreement (SLA),

which guarantees a certain availability level and applies a probabilistic model to calculate

the expected penalty cost when a Cloud service provider cannot meet the guaranteed

level.

6.2 Economic Cloud Model

6.2.1 Revenue

Price influences the behavior of customers. If Cloud providers can set the right

price, they can get higher revenue, and hence more profit. A typical pricing in Cloud

services is directly related to the VM hours that Cloud system provides. If they can define

the demand function of their company or market-share function, they can define the right

price in order to have higher revenue. The revenue over a certain time period can be

computed as:

Revenue = Price * Quantity , (6.1)

where in Equation (6.1) Quantity is the number of VM hours that run on the Cloud

system and Price is that per VM hour. It is seen from Equation (6.1) that that the total

revenue is determined by the demand function. A Cloud provider can choose either price

or quantity. From the demand function shown in Figure 6.1, if the Cloud provider sets a

price, he or she will know the number of VM hours. On the other hand, if a provider

wants to sell a certain quantity (the number of VM hours), the Cloud provider has to set

price according to the demand function. In this work, three services with different

availability are considered. Three demand functions are utilized based on each service

with a different price.

A logit model is commonly used for representing a demand function [87] or

customer behavior [88], as shown in Figure 6.1. The logit model is the model of choice

used to model customer behavior in the market. When a company sets its price very high,

it can sell only to its loyal customers. Hence, setting the price at a high level will not

change the quantity that they can sell by a significant amount. On the other hand, when

58

one sets the price very low, one will gain considerably from demand. Changing the price

at a low level will not affect the change in demand. However, if the company sets the

price around the market price or the standard price, the demand will change dramatically.

The logit model is given as:

D(p) = C * exp{-(a + bp)}/(l + exp{—(a + bp)}), (6.2)

where p is price, a, b, C are parameters with C >0 b>0, a can be either less than or more

than 0, C refers to the maximum quantity of the market-share of that firm or the market

size. The market price is approximately equal to —a/b. Therefore, the total revenue can

be calculated by the formula

Total Revenue = p*D(p) , (6.3)

where D(p) is the number of VM hours.

Demand Function

1 0e+08

0 0.05 0.10 0.15 0.20

Price

Figure 6.1 Logit demand function

59

6.2.2 Cloud Cost Analysis

Cloud TCO is defined in [62] as the cost spent for owning the Cloud system over

its life span. It includes the cost of acquiring the Cloud system and operating it. The cost

will be classified into eight categories according to [62]: server, network, software,

power, cooling, facilities, real estate, and support and maintenance. In the model that is

presented here, quantity is considered to be the number of servers. A server can run a

certain amount of Virtual Machines (VM), called VM density [62]. This study is different

from other studies in the literature [62] in that it considers costs due to system failure and

repair, to maintain a certain level of availability, and to penalty cost for failing to meet

the SLA. In the following, all the costs considered in the model are described.

Server Cost

The Cloud has usually homogenous servers tied into racks. The total cost of

servers includes the original service price plus the upgrade cost to avoid performance

degradation in a competitive market. The server cost per rack is considered. Server cost

can be computed as:

Scost = Nserv* ServC + Upgradecost*years, (6.4)

where Nserv is the number of servers, ServC is a unit server cost, Upgradecost is upgrade

cost per year. In the server cost, the upgrade cost (Upgradecost) was considered to be of

importance. The upgrade cost is defined as follows:

Upgradecost = Nserv *ServC*percent, (6.5)

where percent is 0-100% of server cost.

60

Network Cost

The network cost is mainly the switch cost. The number of switches is based on

the number of ports that are needed from the servers. A server can have more than one

network interface card (NIC). An NIC may have more than one port. Therefore, network

cost is defined as:

Ncost = SwC*Nswitch, (6.6)

where SwC is unit switch cost and Nswitch is the number of switches calculated as:

Nswitch = Nport*Nnic* Nserv /NSWport, (6.7)

where Nport is the number of ports per NIC, Nnic is the number of NIC per server,

NSWport is the number of ports in a switch.

Software Cost

The software cost is mainly the cost for the license. There are Operating systems

costs for VMs and Software costs for managing VMs. The operating system cost is

applied per VM. Managing software is licensed by the number of processors in the

system. Therefore, the software cost is

SoC = Nvm*Oprice + Npps*SUprice* Nserv, (6.8)

where Nvm is the number of VMs, Oprice is the license price per VM. Npps is the

number of processors per server, SUprice is software unit price per processor used for

management of VMs.

Power Cost

The power cost is considered per server. In the current model, the power cost is

calculated by:

PowC = Nserv *Powpr*v , (6.9)

61

where Powpr is the power consumption required per server and v is the electric utility

cost (kWh).

Cooling Cost

The cooling cost is the power consumption used for cooling the system. In this

model, cooling cost is calculated by:

CoolC = Nserv *Powpr*Powpw*v, (6.10)

where Powpw is the power consumption of cooling 1W of heat from the equipment.

Facilities Cost

Facilities cost is the cost paid for equipment such as KVM switch and cables.

They are attached to racks. The facilities cost is calculated by:

FacC = Cfac*Nrack, (6.11)

where Cfac is cost of facilities per rack and Nrack is the number of racks in the system.

Real Estate Cost

Real estate cost is the cost spent for leasing a room required for hosting the

servers. Real Estate cost (REC) is computed by:

REC = Csq* Sqr. (6.12)

Here, Csq is cost per square foot per year and Sqr is the number of square feet needed

by the Cloud system. Sqr is calculated as:

Sqr = Nrack* SqRack , (6.13)

where SqRack is the space in square feet needed by a rack.

Support and Maintenance Cost

This cost comes from the salary of the IT staff, performance maintenance, system

configuration, and training. Support and maintenance cost is given by:

62

SupC = Salary + training + CSLA + RC + AVC, (6.14)

where Salary is the wage of all IT staff members.

Salary = wage*Nrack/rpIT, (6.15)

where wage is the salary per IT staff and rpIT is the number of racks that an IT staff

handles.

Training is the cost spent for training the IT staff, CSLA is the cost spent for

penalty due to Service Level Agreement (SLA), repair cost (RC) is cost due to failures in

the Cloud and A VC is the cost of preparing the system for a certain level of availability.

To approximate the repairing cost, it is assumed that the server time to failure (x)

follows a gamma distribution (T(ki,Si)) and failures are independent [44], The gamma

distribution fits well the TTF of HPC systems, [47], [46] and has a useful property in that

the sum of independent gamma random variables is also a gamma random variable.

Hence, the repair cost (RC) can be calculated by:

RC = HS", NFt *AC > (6-16>

where AC is average repair cost per failure and NF is the expected number of failures per

T
server. The expected number of failures can be obtained as E[-], where T is the lifespan

T
of the Cloud and x is the time to failure of a server. E[-] can be approximated using the

Taylor series expansion at a=/j.

^ -%(•*-*> + pC J C - ^ 2] = ; + l ! ? : £ 2 - < 6 - 1 7 >

Here, (i is mean time till failure and can be obtained from the gamma distribution.

Cloud customers may require different system availabilities. For example,

mission critical applications may need 99.999% availability, while other not so critical

applications may require a lower availability level. Cloud service providers have to

63

engineer the process of repair time in order to meet a given level of availability. The costs

that are usually encountered are the cost for reducing time-to-repair, the cost for

redundant equipment such as servers and switches, and the cost for hiring and training.

Scott [89] has shown that a higher cost is associated with achieving higher levels of

availability. He also showed that cost rises exponentially with an increase in the

availability level. This work follows Scott [89] in assuming an exponential relationship

between availability and cost, as shown in Figure 6.2.

Cost vs Availability

O _

c
Q> o
a>

Q_ c
a> O o

o _

99.9 99.95 99.8 99.85 99.99 99.999

Availability

Figure 6.2 Exponential cost rise with an increase in availability level

The availability cost for each availability level is calculated as follows:

AVC = exp{availability level} *HAC , (6.18)

where availability level is the level of availability such as 99.999, 99.99 or 99.95, as

shown in Figure 6.2, HAC is the highest availability cost for engineering the Cloud

system to have a 99.999% availability. To achieve 99.999% availability, one has to have

redundant servers and sufficient well-trained IT staffs. Therefore, HAC is a cost to the

system, which considers redundant server cost (RScost), availability software cost

64

(ASoC), additional switch cost (NCost) for redundant server, additional IT Staff (salary)

cost, training cost, additional facility cost, and additional space cost (AREC) (for

redundant servers). HAC is computed by:

HAC = Nserv *RScost + ASoC + NCost + salary + training + AREC+FacC +SpaceC+

PowC+CoolC, (6.19)

Availability software is the module that manages server redundancy for maintaining a

certain level of availability in a Cloud system. Availability software cost (ASoC) is

calculated by:

ASoC = Npps*ASUprice* Nserv, (6.20)

where Npps is the number of processors per server, and ASUprice is availability Software

price per processor.

For penalty cost, SLA is used for guaranteeing the satisfaction of a Cloud

customer. Quality (throughput and response time) [90] and reliability [29], [31] of Cloud

services are the main concern. Cloud service providers such as Amazon EC2 and

Rackspace guarantee certain availability for customers. If availability is less than the

point they claim, customers receive service credit back. Therefore, this analysis

approximates the cost coming from SLA due to refunds to customers as a result of failure

to meet the guaranteed level of availability.

Availability is uptime divided by the total operation time. Given A% availability

of a VM, one can calculate downtime (/) per year. If downtime exceeds t hours per year,

then the Cloud provider would encounter cost due to customer refunds. Therefore, one

wou ld l i ke t o know the p robab i l i t y (P D) t ha t t he to t a l downt ime in a yea r i s more than t

65

hours (that is the probability of encountering costs due to refunds). One can calculate this

probability for a VM as follows:

PD = Z£i(l " P|Xr < t]} * P[N(y) = r] , (6.21)

where r is the number of failures, Tr is the sum of repair times (tx +...+ tr), and N(y) is

the number of failures in a year interval. Assume that repair time follows a gamma

distribution T(a, (3) [91]. Hence, Tr is the sum of r independent gamma random variables.

Therefore, TR has a gamma distribution, r(r*a, (3). Hence, one can compute P[TR < t]

from T(r*a, p). It is assumed that time to failure (TTF) follows a gamma distribution

[47]. Hence,

P[N(y) = r] = e- '» ± . (6.22)

In practice, the gammas parameters a, P can be estimated from data on repair time. Also,

the parameters a and s can be estimated from data on time to failure of a server.

The expected penalty cost due to customer refunds (CSLA in Equation (6.14) is

calculated by:

CSLA = jNservNvm po_ * (6 23)

where SC is the service credit that is refunded to customers when availability of the VM

is less than A%, and Nvm is the number of VMs that run on a physical machine.

Total cost is the summation of eight costs over the lifetime of the Cloud. This can be

expressed as:

Total cost = Scost + Ncost + SoC + PowC + CoolC + FacC + REC + SupC (6.24)

The cost of a VM hour can be calculated by:

R = Cost/Total capacity, (6.25)

where Total capacity is calculated by:

Total capacity = D(p) * lifespan, (6.26)

where D(p) is the number of VM hours that the system run in a year.

6.3 Analysis and Result

This section shows with an example how to maximize the profit, based on

demand and cost analysis, by choosing the right price and right size of a Cloud. After

revenue and cost are analyzed, profit can be calculated from the following formula

Profit = Revenue - Total Cost, (6.27)

where Revenue is from Equation (6.3) and cost from Equation (6.24). Revenue as well as

cost were calculated for each of the availability levels in Figure 6.3. In this Figure, the

number of servers was determined by the level of demand in VM hours, (D(p)) for a

given price, p. The number of servers was then used to determine the total cost from

Equation (6.24).

To maximize profit, one can readily determine the number of servers that

maximizes the difference between total revenue [p(D(p)] and total cost over the lifespan

of a certain number of years.

Revenue and cost are considered over five years. Also considered are three types

of services that have different Quality of Service (QoS), which guarantee 99.999%,

99.99% and 99.95% availability. It is assumed that the maximum market share (C) of the

Cloud provider is l.OxlO8, 1.25xl08, and 1.5xl08 VM hours per year and the market

price is $0.20, $0.15, and $0.10 per VM hour [63] for each of the availability levels,

respectively. The server capacity is considered as the quantity in Eq (6.1). For the Cloud

cost analysis, a 42 1U compute blade racks is assumed. A dual-processor compute blade

server costs $2,000 [63]. The upgrade cost is equivalent to the original server cost [63].

67

Also, the redundant server cost was 1.5 times the original server cost and the number of

VM per server was 12. It is estimated that a server requires 0.6 kW to operate, and 0.6 W

for cooling. It is assumed that it requires 1W to cool 1W of heat from the equipment

(Powpw). A rack needs around 20 square feet (SqRack), which costs approximately $400

per square foot (Csq) [62]. A server has 2 NICs and each NIC has 2 ports. A 48-port

Gigabit Router costs around $3,000. For the software cost, it is assumed that the Cloud

uses Linux-based operating systems in VMs. The managing software cost and availability

software per processor is $100. Four racks per IT staff are assumed. The salary for an IT

staff is $5,000 a month. Training an IT staff per year costs $250. Repairing cost is

calculated by Cost per time ($200) [92], [48] multiplied by the number of failures. Mean

time-to-failure (MTTF) is 2184 hours with variance equals to 1657 [46]. No downtime is

assumed for 99.999% availability service because of redundancy. Mean-time-to-repair is

7.5 and 30 minutes for 99.99% and 99.95%, respectively.

Results are presented in Figure 6.3 for each service level agreement. Figure 6.3

shows revenue and cost for each availability level. Revenue is based on price and the

quantity (number of VMs) from the logit demand function in Equation (6.2). When

quantity is high, the price is low. Therefore, the revenue is less at high quantity. Cost is a

linear function because it is based only on the number of servers. When the number of

servers increases, the cost increases. To find the number of servers that maximizes the

profit, one chooses the number that maximizes the difference between revenue and cost,

Figure 6.3. For 99.999% availability service, the maximum profit is attained for 798

servers with a price of $0,182 per hour and a cost of $0.11 per hour. For 99.99%

availability service, 840 servers give the maximum profit with a price of $0. 143 per hour

68

and a cost $0.0773 per hour. For 99.95% availability service, the profit is maximized

with 1004 servers and a price of $0. 8919 per hour with a cost of $0,052 per hour.

99.999% Availability 99.99% Availability
o
<£>

Revenue
Cost

o

c D
o
E <0

o

o

1000 0 500 1500

o Revenue
Cost

c 3
o
E ro

0 200 400 600 800 1000 1200

The number of servers The number of servers

99.95% Availability

— Revenue
Cost

c D o e
CO

o o

0 200 400 600 800 1200

The number of servers

Figure 6.3. Total revenue \pD(p), Equation (3)] versus total cost (Equation (24)) with
99.999, 99.99, and 99.95% availability level.

Figures 6.4 (a) and (b). present price per VM hour and number of servers that

maximize profit for a given server cost and 99.95% availability. Figure 6.4 (c) shows the

maximum profit (total revenue - total cost) for a given server cost for 99.95%

availability. Figures 6.5 (a) and (b) present price per VM hour and number of servers that

maximize profit for a given server cost and 99.99% availability. Figure 6.5 (c) shows the

maximum profit (total revenue - total cost) for a given server cost for 99.99%

availability. Figures 6.6 (a) and (b) present price per VM hour and number of servers that

maximize profit for a given server cost and 99.999% availability. Figure 6.6 (c) shows

the maximum profit (total revenue - total cost) for a given server cost for 99.999%

availability. As seen from these graphs, as cost per server increases, the number of

servers that maximizes profit decreases, price per VM hour that maximize profit

increases, and maximum profit decreases. This analysis helps a Cloud service provider

determine price per VM hour and number of servers that would maximize profit, given a

certain cost per server. For instance, for 99.95% availability shown in Figure 6.4 (a), (b),

and (c), if server cost increases from 1,000 to 2,000 where the slope of price per VM hour

and the number of servers are flat, the Cloud service provider should keep the same price

per VM hour as well as the same number of servers in order to maximize profit. Notice,

however, that maximum profit for $2000 cost is less than that for $1000 cost.

70

(a)

Price per VM hour vs server cost for 99.95%

0.11 -

0.105 -

0.095

0 09 -

J 0.085 -

1000 2000 3000 4000 5000

Server cost

0)
The number of servers vs server cost for 99.95%

2000 3000

Server cost

(«)
Profit,total revenue,total cost vs server cost for 99.95%

Profit
— Total cost
— Total revenue

2000 3000

Server cost

Figure 6.4 a, b, and c. (a) Price per VM hour that maximizes profit for a given server
cost for 99.95% availability, (b) the number of servers that maximizes profit for a given

server cost for 99.95% availability, (c) Maximum profit (revenue - total cost) for a given
server cost for 99.95% availability.

71

(a)
Price per VM hour vs server cost for 99.99%

0.15

2000 3000

Server cost

(b)
The number of servers vs server cost for 99.99%

1000 2000 3000

Server cost

5000

Profit,tota! revenue,total cost vs server cost for 99.99%

h-
o PFIM

Total cost
Total revenue

•f © <o

r~
o
+ <y

r-o + Q)

O O +
(V
o

4000 5000 1000 2000 3000 0
Server cost

Figure 6.5 a, b, and c. (a) Price per VM hour that maximizes profit for a given server
cost for 99.99% availability, (b) the number of servers that maximizes profit for a given

server cost for 99.99% availability, (c) Maximum profit (revenue - total cost) for a given
server cost for 99.99% availability.

72

(a)
Price per VM hour vs server cost for 99.999%

0.24

0.22 -

0.2

0.18 -

J
u, ! , , r

0 1000 2000 3000 4000 5000

Server cost

(b)
The number of servers vs server cost for 99.999%

1000 2000 3000

Server cost

4000 5000

(c)
Profit,total revenue,total cost vs server cost for 99.999%

— Profs'
- Tola! cost
•• Total revenue

1000 2000 3000

Server cost

4000 5000

Figure 6.6 a, b, and c. (a) Price per YM hour that maximizes profit for a given server
cost for 99.999% availability, (b) the number of servers that maximizes profit for a given

server cost for 99.999% availability, (c) Maximum profit (revenue - total cost) for a
given server cost for 99.999% availability.

6.4 Conclusion

Finding the right size and the right price is crucial for a Cloud service provider.

The right sizing and right pricing of the Cloud is based on revenue and cost analysis.

Pricing is closely related to revenue. If the providers define the price per VM hour higher

than the market price, fewer customers are willing to pay. On the other hand, if the price

is very low, the cost will exceed the revenue. How to price a VM hour is important. The

Total Cost of Ownership is a tool used to analyze the cost of owning the Cloud.

This chapter proposed an economic model for Cloud service providers that can be

used to maximize profit based on choosing the right sizing in the Cloud data center for

three different qualities of service. In addition, customer satisfaction can be explored as

part of the future model. The demand is based on a logit model. TCO analysis is divided

into eight categories: server, network, software, power, cooling, facilities, real estate and

support and maintenance. The results show how to obtain the maximum profit based on

right pricing and right sizing. This work can be extended by considering revenue from

charging for storage and data transfer.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

HPC and Cloud computing are mainstream systems that have increasingly

gained popularity in scientific and business community. The rise in computing

demands and speeds for scientific and knowledge discovery requires new

computing systems that are growing larger into peta-scale or even in exa-scale in

the near future. When a large number of computing components work together,

failures frequently occurs. In order to deal with failures, failure behaviors in such

systems need to be studied and well-understood. In addition, there are also fault

tolerant techniques, for instance checkpoint/restart, redundancy, or live migration to

handle the failures. However, to use these fault tolerant techniques efficiently,

failure behaviors, such as reliability function, mean time to failure or failure rate,

must be taken into consideration during operation in the large scale environment.

This dissertation presents an improved reliability model for HPC

applications in an HPC system and a Cloud computing system. The main

contribution is a development of the first reliability model with correlated failures

in a A>node system, which is an idea extended from an independent case into

correlated failures. This dissertation also proposes the univariate parameter

estimation technique for Marshall-Olkin Multivariate Weibull distribution that can

74

easily estimate the parameters when a particular system has a large number of

nodes while the existing EM parameter estimation does not easily extend for more

than four components or computing nodes. Then, expressions are derived for the

probability of system failure at any time t, for the failure rate, and for the mean time

to failure. This work validates the reliability model by using log data from Blue

Gene/L system at LLNL. The result shows that when the particular system posses

the degree of dependence, the system become less reliable. Secondly, the proposed

work extends the idea of the reliability model with correlation failures of an HPC

system to model that of a Cloud computing system by modeling the software

components using Marshall-Olkin Multivariate Exponential distribution. The

empirical result shows that if failures of hardware and software behave

dependently, it decreases the system reliability. Finally, this dissertation develops

an economic model for Cloud service providers for their decision making in order

to maximize profit. As such, the pricing strategy is very vital. How to price to

maximize profit is then investigated. Cost is another important factor in profit.

Thus, Cloud TCO helps to analyze the cost. In this work, analysis of the failure cost

and the penalty cost for different needs of High Availability (HA) services are

included in Cloud TCO. The result enables Cloud service providers to decide the

right pricing and rightsizing strategy for the Cloud data center.

This dissertation can be further extended in several ways. The reliability

models with correlated failures both in HPC and Cloud systems can be improved

for the nodes in the system that employs redundant components. Moreover, this

work can also be considered as to how it accounts for different failure dependent

76

behaviors. For example, the failures in one node increase the probability of failures

in other nodes. In Cloud economic model, revenue and cost for data transfer and

storage can be enhanced in the model. Furthermore, analyzing the economic aspect

for other Cloud platforms such as Software-as-a-Service and Platform-as-a-Service,

which account for the cost parameters such as for application maintenance or

development environments, is another potential extension for this work.

REFERENCES

[1] "TOP500 Supercomputing." [Online]. Available: http://top500.org/. [Accessed: 10-
Nov-2011].

[2] "Rocks." [Online]. Available: http://www.rocksclusters.org/wordpress/. [Accessed:
10-NOV-2011].

[3] "OSCAR." [Online]. Available: http://svn.oscar.openclustergroup.org/trac/oscar.
[Accessed: 10-Nov-2011].

[4] C. Terboven, D. Mey, and S. Sarholz, "OpenMP on Multicore Architectures," in A
Practical Programming Model for the Multi-Core Era, vol. 4935, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 54—64.

[5] "OpenMP.org." [Online]. Available: http://openmp.org/wp/. [Accessed: 11-Feb-
2012].

[6] R. Rabenseifher, G. Hager, and G. Jost, "Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes," in 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing,
2009, pp. 427—436.

[7] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos, "Hybrid
MPI/OpenMP power-aware computing," in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010, pp. 1—12.

[8] B. J. Pope, B. G. Fitch, M. C. Pitman, J. J. Rice, and M. Reumann, "Petascale
computation performance of lightweight multiscale cardiac models using hybrid
programming models," in 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society,EMBC, 2011, pp. 433—436.

[9] R. D. Loft, S. J. Thomas, and J. M. Dennis, "Terascale Spectral Element Dynamical
Core for Atmospheric General Circulation Models," in Supercomputing, ACM/IEEE
2001 Conference, 2001, pp. 26 - 58.

[10] G. Wellein, G. Hager, A. Basermann, and H. Fehske, "Fast sparse matrix-vector
multiplication for TeraFlop/s computers," in Proceedings of the 5th international
conference on High performance computing for computational science, Berlin,
Heidelberg, 2003, pp. 287-301.

77

http://top500.org/
http://www.rocksclusters.org/wordpress/
http://svn.oscar.openclustergroup.org/trac/oscar
http://openmp.org/wp/

78

[11] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, "Scalable, fault
tolerant membership for MPI tasks on HPC systems," in Proceedings of the 20th
annual international conference on Supercomputing, New York, NY, USA, 2006,
pp. 219-228.

[12] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L. Scott,
"An optimal checkpoint/restart model for a large scale high performance computing
system," in IEEE International Symposium on Parallel and Distributed Processing,
2008. IPDPS 2008, 2008, pp. 1-9.

[13] S. W. Kwak and J. M. Yang, "Schedulability and optimal checkpoint placement for
real-time multi-tasks," in 2010 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), 2010, pp. 778-782.

[14] T. Dohi, T. Ozaki, and N. Kaio, "Optimal Checkpoint Placement with Equality
Constraints," in 2nd IEEE International Symposium on Dependable, Autonomic and
Secure Computing, 2006, pp. 77-84.

[15] M. Paun,N. Naksinehaboon, R. Nassar, C. Leangsuksun, S. L. Scott, andN. Taerat,
"Incremental Checkpoint Schemes for Weibull Failure Distribution," Int. J. Found.
Comput. Sci., 2010, pp. 329~344.

[16] S. Yi, J. Heo, and J. Hong, "Taking Point Decision Mechanism of Page-level
Incremental Checkpointing based on Cost Analysis of Process Execution Time," J.
Inf. Sci. Eng., vol. 23, no. 5, pp. 1325-1337, 2007.

[17] C. Engelmann and S. Bohm, "Redundant Execution of HPC Applications with MR-
MPI.," in In Proceedings of the 10th IASTED International Conference on Parallel
and Distributed Computing and Networks (PDCN) 2011, Innsbruck, Austria, 2011,
pp. 31-38.

[18] C. Engelmann, "Redundancy for Soft-Error Resilience in Large-Scale HPC
Systems," Schloss Dagstuhl, Wadern, Germany, 03-May-2009.

[19] "VMware Virtualization." [Online]. Available: http://www.vmware.com/.
[Accessed: 15-Nov-2011].

[20] "Citrix." [Online]. Available: http://www.citrix.com/lang/English/home.asp.
[Accessed: 15-Nov-2011].

[21] "Microsoft Hyper-V." [Online]. Available: http://www.microsoft.com/en-us/server-
cloud/hyper-v-server/default.aspx. [Accessed: 15-Nov-2011].

[22] "VirtualBox." [Online]. Available: https://www.virtualbox.org/. [Accessed: 15-Nov-
2011],

[23] "Xen® hypervisor." [Online]. Available: http://xen.org/. [Accessed: 15-Nov-2011].

http://www.vmware.com/
http://www.citrix.com/lang/English/home.asp
https://www.virtualbox.org/
http://xen.org/

79

"OpenVZ." [Online]. Available: http://wiki.openvz.org/Main_Page. [Accessed: 15-
Nov-2011].

"OpenNebula." [Online]. Available: http://0pennebula.0rg/ab0ut:ab0ut. [Accessed:
16-Nov-2011].

"Eucalyptus." [Online]. Available: http://www.eucalyptus.com/. [Accessed: 16-
Nov-2011].

"OpenStack." [Online]. Available: http://www.openstack.org/. [Accessed: 16-Nov-
2011],

"Nimbus." [Online]. Available: http://www.nimbusproject.org/. [Accessed: 16-Nov-
2011],

"Amazon Elastic Compute Cloud (Amazon EC2)." [Online]. Available:
http://aws.amazon.com/ec2/. [Accessed: 15-Nov-2011].

"GoGrid." [Online]. Available: http://www.gogrid.com/. [Accessed: 15-Nov-2011].

"Rackspace." [Online]. Available: http://www.rackspace.com/. [Accessed: 15-Nov-
2011].

"Salesforce.com." [Online]. Available: http://www.salesforce.com/. [Accessed: 15-
Nov-2011].

"Google App Engine." [Online]. Available: http://code.google.com/appengine/.
[Accessed: 15-Nov-2011].

"Bungee." [Online]. Available: http://www.bungeelabs.com/. [Accessed: 15-Nov-
2011].

"Heroku." [Online]. Available: http://www.heroku.com/. [Accessed: 15-Nov-2011].

"Penguin Computing." [Online]. Available: http://www.penguincomputing.com/.
[Accessed: 15-Nov-2011].

D. Kondo and A. Andrzejak, "Reducing Costs of Spot Instances via Checkpointing
in the Amazon Elastic Compute Cloud," in 2010 IEEE 3rd International Conference
on Cloud Computing (CLOUD), 2010, pp. 236-243.

T. Heath, R. P. Martin, and T. D. Nguyen, "Improving cluster availability using
workstation validation," in Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, New
York, NY, USA, 2002, pp. 217-227.

J. Xu, Z. Kalbarczyk, and R. K. Iyer, "Networked Windows NT system field failure
data analysis," in 1999 Pacific Rim International Symposium on Dependable
Computing, 1999. Proceedings, 1999, pp. 178-185.

http://wiki.openvz.org/Main_Page
http://www.eucalyptus.com/
http://www.openstack.org/
http://www.nimbusproject.org/
http://aws.amazon.com/ec2/
http://www.gogrid.com/
http://www.rackspace.com/
http://www.salesforce.com/
http://code.google.com/appengine/
http://www.bungeelabs.com/
http://www.heroku.com/
http://www.penguincomputing.com/

80

[40] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang, "Failure Data
Analysis of a Large-Scale Heterogeneous Server Environment," in Proceedings of
the 2004 International Conference on Dependable Systems and Networks,
Washington, DC, USA, 2004, p. 772-781.

[41] N. Raju, Y. Liu, C. Leangsuksun, R. Nassar, and S. Scott, "Reliability Analysis in
HPC clusters," in In Proceedings of High Availability and Performance Workshop
(HAPCW) 2006, in conjunction with Los Alamos Computer Science Institute
(LACSI) Symposium 2006,, Santa Fe, NM, USA, 2006.

[42] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, "Checkpointing
strategies for parallel jobs," in High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for, 2011, pp. 1-11.

[43] H. Jin, Y. Chen, H. Zhu, and X. H. Sun, "Optimizing HPC Fault-Tolerant
Environment: An Analytical Approach," in 2010 39th International Conference on
Parallel Processing (ICPP), 2010, pp. 525-534.

[44] N. R. Gottumukkala, R. Nassar, M. Paun, C. B. Leangsuksun, and S. L. Scott,
"Reliability of a System of k Nodes for High Performance Computing
Applications," IEEE Transactions on Reliability, vol. 59, no. 1, pp. 162-169, Mar.
2010.

[45] T. T. Lin and D. P. Siewiorek, "Error log analysis: statistical modeling and heuristic
trend analysis," IEEE Transactions on Reliability, vol. 39, no. 4, pp. 419-432, Oct.
1990.

[46] N. R. Gottumukkala, "Failure analysis and reliability-aware resource allocation of
parallel applications in high performance computing systems," Louisiana Tech
University, Ruston, LA, USA, 2008.

[47] B. Schroeder and G. A. Gibson, "A large-scale study of failures in high-
performance computing systems," in International Conference on Dependable
Systems and Networks, 2006. DSN 2006, 2006, pp. 249—258.

[48] K. V. Vishwanath and N. Nagappan, "Characterizing cloud computing hardware
reliability," in Proceedings of the 1st ACM symposium on Cloud computing, New
York, NY, USA, 2010, pp. 193-204.

[49] Y. S. Dai, B. Yang, J. Dongarra, and G. Zhang, "Cloud Service Reliability:
Modeling and Analysis," presented at the the 15th IEEE Pacific Rim International
Symposium on Dependable Computing, 2009.

[50] S. A. Ahson and M. Ilyas, Cloud Computing and Software Services: Theory and
Techniques, 1st ed. CRC Press, 2010.

81

[51] T. J. Hacker and Z. Meglicki, "Using queue structures to improve job reliability," in
Proceedings of the 16th international symposium on High performance distributed
computing, New York, NY, USA, 2007, pp. 43-54.

[52] A. Wood, "Software reliability growth models: assumptions vs. reality," in
PROCEEDINGS The Eighth International Symposium On Software Reliability
Engineering, Cupertino, CA, USA, 1997, pp. 136-141.

[53] J. D. Musa, Software Reliability Engineering. Osborne/McGraw-Hill, 1998.

[54] T. Shanmugam and D. R. P. Williams, "Analysis of Testing and Operational
Software Reliability in SRGM based on NHPP," International Journal of Computer
and Information Engineering, vol. 1, pp. 284-289, 2007.

[55] B. Yang and M. Xie, "A study of operational and testing reliability in software
reliability analysis," Reliability Engineering & System Safety, vol. 70, no. 3, pp.
323-329, Dec. 2000.

[56] D. Hamlet, "Are we testing for true reliability?," IEEE Software, vol. 9, no. 4, pp.
21-27, Jul. 1992.

[57] K. Goseva-Popstojanova and K. S. Trivedi, "Failure correlation in software
reliability models," IEEE Transactions on Reliability, vol. 49, pp. 37-48, Mar.
2000.

[58] K. Abdelkader, J. Broeckhove, and K. Vanmechelen, "Commodity resource pricing
in dynamic computational grids," in IEEE/ACS International Conference on
Computer Systems and Applications, 2008. AICCSA 2008, 2008, pp. 422—429.

[59] D. Dash, V. Kantere, and A. Ailamaki, "An Economic Model for Self-Tuned Cloud
Caching," in Proceedings of the 2009 IEEE International Conference on Data
Engineering, Washington, DC, USA, 2009, pp. 1687-1693.

[60] M. Mihailescu and Y. M. Teo, "On Economic and Computational-Efficient
Resource Pricing in Large Distributed Systems," in Proceedings of the 201010th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
Washington, DC, USA, 2010, pp. 838-843.

[61] M. Woitaszek and H. M. Tufo, "Developing a Cloud Computing Charging Model
for High-Performance Computing Resources," in 2010 IEEE 10th International
Conference on Computer and Information Technology (CIT), 2010, pp. 210—217.

[62] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang, "The Method and Tool of Cost Analysis
for Cloud Computing," 2009, pp. 93-100.

[63] E. Walker, "The Real Cost of a CPU Hour," Computer, vol. 42, no. 4, pp. 35—41,
Apr. 2009.

82

[64] D. Niyato, S. Chaisiri, and Bu-Sung Lee, "Economic analysis of resource market in
cloud computing environment," in Services Computing Conference, 2009. APSCC
2009. IEEE Asia-Pacific, 2009, pp. 156-162.

[65] D. D. Hanagal, "A multivariate Weibull distribution," Economic Quality Control,
vol. 11, pp. 193-200,1996.

[66] A. W. Marshall and I. Olkin, "A Multivariate Exponential Distribution," Journal of
the American Statistical Association, vol. 62, no. 317, pp. 30-44, Mar. 1967.

[67] R. V. Hogg, A. Craig, and J. W. McKean, Introduction to Mathematical Statistics,
6th ed. Prentice Hall, 2004.

[68] F. Proschan and P. Sullo, "Estimating the Parameters of a Multivariate Exponential
Distribution," Journal of the American Statistical Association, vol. 71, no. 354, pp.
465—472, Jun. 1976.

[69] D. Kundu and A. K. Dey, "Estimating the parameters of the Marshall-Olkin
bivariate Weibull distribution by EM algorithm," Comput. Stat. Data Anal, vol. 53,
no. 4, pp. 956-965, Feb. 2009.

[70] F. Parsons and P. Wirsching, "A Kolmogorov - Smirnov goodness-of-fit test for the
two-parameter weibull distribution when the parameters are estimated from the
data," Microelectronics Reliability, vol. 22, no. 2, pp. 163-167,1982.

[71] B. C. Aguado Sanchez, J. Blomer, A. Harutyunyan, and M. Mudrinic, "A practical
approach to virtualization in HEP," The European Physical Journal Plus, vol. 126,
no. 1, pp. 1-8, 2011.

[72] "Amazon AWS Case Studies: High Performance Computing." [Online]. Available:
http://aws.amazon.eom/solutions/case-studies/#hpc. [Accessed: 18-Nov-2011].

[73] "High-Performance Computing as a Service (HPCaaS)." [Online]. Available:
http://www.mellanox.eom/blog/2009/04/high-performance-computing-as-a-service-
hpcaas/. [Accessed: 18-Nov-2011].

[74] R. Masud and M. J. Sottile, "High Performance Computing with Clouds,"
University of Oregon, Technical Report CIS-TR-2010-06, Jan. 2010.

[75] M. Snir, J. Dongarra, J. S. Kowalik, S. Huss-Lederman, S. W. Otto, and D. W.
Walker, MPI: The Complete Reference, 2nd ed. The MIT Press, 1998.

[76] Y. Peng and F. Wang, "Cloud computing model based on MPI and OpenMP," in
2010 2nd International Conference on Computer Engineering and Technology
(ICCET), 2010, vol. 7, pp. V7-85-V7-87.

[77] N. Bonvin, T. G. Papaioannou, and K. Aberer, "Cost-efficient and differentiated
data availability guarantees in data clouds," in 2010 IEEE 26th International
Conference on Data Engineering (ICDE), 2010, pp. 980-983.

http://aws.amazon.eom/solutions/case-studies/%23hpc

83

[78] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, "Performance
and availability aware regeneration for cloud based multitier applications," in 2010
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2010, pp. 497-506.

[79] A. Andrzejak, D. Kondo, and S. Yi, "Decision Model for Cloud Computing under
SLA Constraints," in 2010 IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS), 2010, pp.
257-266.

[80] K. H. Prasad, T. A. Faruquie, L. V. Subramaniam, M. Mohania, and G.
Venkatachaliah, "Resource Allocation and SLA Determination for Large Data
Processing Services over Cloud," in 2010 IEEE International Conference on
Services Computing (SCC), 2010, pp. 522-529.

[81] T. Thein and J. S. Park, "Availability analysis of application servers using software
rejuvenation and virtualization," J. Comput. Sci. Technol., vol. 24, no. 2, pp. 339-
346, Mar. 2009.

[82] M. Grottke, Lei Li, K. Vaidyanathan, and K. S. Trivedi, "Analysis of Software
Aging in a Web Server," IEEE Transactions on Reliability, vol. 55, no. 3, pp. 411-
420, Sep. 2006.

[83] I. Goiri, F. Julia, J. Guitart, and J. Torres, "Checkpoint-based fault-tolerant
infrastructure for virtualized service providers," in 2010 IEEE Network Operations
and Management Symposium (NOMS), 2010, pp. 455-462.

[84] M. Slawinska, J. Slawinski, and V. Sunderam, "Unibus: Aspects of heterogeneity
and fault tolerance in cloud computing," in 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010,
pp. 1-10.

[85] S. E. Landsburg, Price Theory and Applications, 6th ed. South-Western College
Pub, 2004.

[86] T. T. Nagle and J. E. Hogan, The Strategy and Tactics of Pricing: A Guide to
Growing More Profitably, 4th ed. Pearson Prentice Hall, 2005.

[87] R. Phillips, Pricing and Revenue Optimization, 1st ed. Stanford Business Books,
2005.

[88] P. Dube, Y. Hayel, and L. Wynter, "Yield management for IT resources on demand:
Analysis and validation of a new paradigm for managing computing centres,"
Journal of Revenue and Pricing Management, vol. 4, no. 1, pp. 24-38,2005.

[89] D. Scott, "The High Cost of Achieving Higher Levels of Availability," Gartner
Research, Research Note, Strategic Planning SPA-13-9852, Jun. 2001.

84

[90] H. J. Moon, Yun Chi, and H. HaciguDmuDsD, "SLA-A ware Profit Optimization in
Cloud Services via Resource Scheduling," in 2010 6th World Congress on Services
(SERVICES-1), 2010, pp. 152-153.

[91] S. Arunagiri, J. T. Daly, and P. J. Teller, "Propitious Checkpoint Intervals to
Improve System Performance by Sarala Arunagiri, John T. Daly et al.," University
of Texas at El Paso, Technical Report UTEP-CS-09-09, Mar. 2009.

[92] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines, 1st ed. Morgan and Claypool Publishers,
2009.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2012

	Reliability models for HPC applications and a Cloud economic model
	Thanadech Thanakornworakij
	Recommended Citation

	tmp.1562785513.pdf.HcBDa

