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ABSTRACT 

With the enormous number of computing resources in HPC and Cloud systems, 

failures become a major concern. Therefore, failure behaviors such as reliability, failure 

rate, and mean time to failure need to be understood to manage such a large system 

efficiently. 

This dissertation makes three major contributions in HPC and Cloud studies. 

First, a reliability model with correlated failures in a £-node system for HPC applications 

is studied. This model is extended to improve accuracy by accounting for failure 

correlation. Marshall-Olkin Multivariate Weibull distribution is improved by excess life, 

conditional Weibull, to better estimate system reliability. Also, the univariate method is 

proposed for estimating Marshall-Olkin Multivariate Weibull parameters of a system 

composed of a large number of nodes. Then, failure rate, and mean time to failure are 

derived. The model is validated by using log data from Blue Gene/L system at LLNL. 

Results show that when failures of nodes in the system have correlation, the system 

becomes less reliable. 

Secondly, a reliability model of Cloud computing is proposed. The reliability 

model and mean time to failure and failure rate are estimated based on a system of k 

nodes and s virtual machines under four scenarios: 1) Hardware components fail 

independently, and software components fail independently; 2) software components fail 

independently, and hardware components are correlated in failure; 3) correlated software 
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failure and independent hardware failure; and 4) dependent software and hardware 

failure. Results show that if the failure of the nodes and/or software in the system 

possesses a degree of dependency, the system becomes less reliable. Also, an increase in 

the number of computing components decreases the reliability of the system. 

Finally, an economic model for a Cloud service provider is proposed. This 

economic model aims at maximizing profit based on the right pricing and rightsizing in 

the Cloud data center. Total cost is a key element in the model and it is analyzed by 

considering the Total Cost of Ownership (TCO) of the Cloud. 
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CHAPTER 1 

INTRODUCTION 

In today's computing, significant HPC systems have become larger with more and 

more components, such as CPUs, storages and network cards. These systems support 

large computational scientific or mission critical business applications, which run long 

and are computationally intensive. The Top 500 [1] lists the top 500 most powerful High 

Performance Computing (HPC) systems. The list is compiled twice a year by high 

performance computing experts. In November 2011, The fastest supercomputer in the 

Top 500 list was the K computer from Japan, which comprises 88,128 SPARC64 8-core 

CPUs or 705,024 cores with the performance of 8.162 petaflops. The increase in 

computing component counts significantly escalates the chance of failures. Furthermore, 

any failure may interrupt applications, especially MPI applications. Hence, the system 

failure behavior of computing must be studied and well-understood in order to deploy the 

right fault tolerant mechanisms to handle mission critical applications effectively. 

1.1 Overview of HPC systems 

High performance computing (HPC) is the collection of computers tied together 

with network to solve large complex applications. There are software management 

programs for HPC systems, such as Rocks [2] and OSCAR [3], that provide the ability 

for users or administrators to build and maintain an HPC cluster. To utilize parallel 
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computing, Message Passing Interface (MPI) is a standard library that allows parallel 

applications in sending and receiving messages between processes. How best to divide 

a complex parallel job to maximize HPC performance is a challenging area of study. 

With the advent of multicore processors, OpenMP [4], [5] becomes a popular 

parallel programming paradigm. OpenMP is an application programming interface (API) 

used to support the execution of multi-thread in share memory architecture. OpenMP is 

flexible and yet simple for programing. In addition, a hybrid programing model [6], [7], 

which employs both MPI and OpenMP in the same application, is an interesting 

programing approach. Performance comparisons among MPI, OpenMP, and hybrid (MPI 

and OpenMP) have been extensively studied and evaluated [6], [8] . The studies showed 

that applications may or may not gain performance improvement from the hybrid model, 

depending on some applications characteristic and parameters [8], [9], [10]. 

When HPC systems become larger, failures become a major concern. For 

example, the Blue Gene/L system at Lawrence Livermore National Laboratory (LLNL) is 

comprised of 131,072 dual core processors. The Blue Gene/L system failed every other 

day [11]. Hence, the HPC systems need to have effective fault tolerant mechanisms to 

mitigate failures. A checkpoint/restart mechanism is a common fault tolerant technique 

that creates software states of computing. When any failure happens, users can restore the 

system from the last checkpoint file. When an HPC system performs checkpointing, the 

system has to spend time, which is called checkpoint overhead, to synchronize 

application presses and pause to save the computing information. If applications 

perform checkpoints too often, they will waste considerable time and the applications 

will delay the completion time. However, if checkpoints are performed too infrequently, 
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when failures happen, application recovery will spend considerable re-computing time, 

which is the time since the last checkpoint. To optimize HPC performance, the 

checkpoint scheduling or the appropriate time for checkpointing has been studied [12], 

[13], [14]. 

An incremental checkpoint mechanism has been proposed to reduce checkpoint 

overhead. In this mechanism, the user does not need to save the whole application every 

time. The first checkpoint is normally a full checkpoint. The incremental checkpoint 

saves only the part of the application that has changed from the previous checkpoint. 

This can reduce the checkpoint overhead significantly. However, recovery time from the 

incremental checkpoint after a failure is quite complex and costly. It involves loading the 

foil checkpoint with every incremental checkpoint since the last full checkpoint and then 

combining them together. Hence, the number of incremental checkpoints ,between full 

checkpoints, must be optimized and has been studied in [15], [16] 

Redundancy [17], [18] is used to handle the failure in HPC systems. This 

technique uses more than one component to work on the same task, which increases the 

likelihood that at least one component will not fail. The number of redundant components 

is still a question. If one uses too many resources to do the same task, a lot of HPC 

resources are wasted. On the other hand, if not enough redundant components are used, 

failures may stop the entire application. 

Fault tolerant mechanisms need accurate reliability estimation to be used 

efficiently. Therefore, failure behavior in HPC systems needs to be understood. 
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1.2 Overview of Cloud Computing 

Cloud computing provides play-as-you-pay services for customers over the 

internet. There are three types of Clouds. First, a public Cloud allows users to select 

services and pay per usage, like a public utility. Second, a private Cloud is a Cloud 

infrastructure that serves mission critical services within an organization. Finally, a 

Hybrid Cloud is a combination between private and public Clouds. The hybrid Cloud 

provides services in organization and when it has excessive demand beyond its capacity, 

the excessive jobs will be submitted to run on the public Cloud. 

Virtualization is a core technology in Cloud computing environment. It allows a 

machine to run more than a Virtual Machine and Operating System (OS). A machine 

can also runs multiple types of OSes, such as Windows and Linux. Virtualization 

normally consists of Hypervisor, also called a Virtual Machine Manager (VMM), and 

Virtual Machines (VM). Hypervisor virtualizes hardware to allow multiple OSes in a 

machine. There are two types of hypervisors: a Bare metal hypervisor which runs directly 

on a physical machine and hosted Hypervisor which runs on the host OS. Virtual 

machine is abstract software that runs a guest OS as if it were a real machine. It contains 

virtual CPU, RAM, and Network. Well-known commercial virtualization products are 

VMware [19], Citrix [20], and Microsoft Hyper-V [21]. Open source virtualization 

products are Virtual Box [22], Xen [23], and OpenVZ [24]. To deploy and maintain a 

Cloud system, there are many Cloud management systems available such as VMware 

vCloud [19], OpenNebula [25], Eucalyptus [26], OpenStack [27], and Nimbus [28]. 

Cloud computing services can be categorized into three main groups: 

Infrastructure-as-a-Service (IaaS): Cloud service providers allow users to lease 
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their infrastructures. The providers can then create virtual servers which define the 

number of cores, the amount of RAM, the size of storage, etc., based on the need of 

customers and charge them for the usage time. Examples of IaaS Cloud providers are 

Amazon Elastic Compute Cloud (Amazon EC2) [29], and GoGrid [30], Rackspace [31]. 

Software-as-a-Service (SaaS): SaaS provides specific applications via the Internet 

and charges the customer for a subscription fee. SaaS can upgrade an application without 

the user interference. Users always use the newest version of services. Salesforce [32] is 

an example of SaaS that provides a Customer Relationship Management (CRM) 

application. 

Platform-as-a-Service (PaaS): PaaS is a Cloud computing service that provides 

facilities to develop and deploy applications over the Internet. Users do not need to own 

hardware and software that they will run their applications. Google App Engine [33], 

Bungee [34], and Heroku [35] are examples of PaaS providers. 

With the increasing demand of HPC, Cloud service providers have offered HPC-

as-a-Service. Organizations that need to run their jobs on HPC systems do not need to 

worry about maintaining an HPC system, upgrading computing resources, or paying 

power and cooling cost. Examples of HPC-as-a-Service providers are Penguincomputing 

[36] and Amazon EC2. Amazon EC2 [29] also provides a General Purpose Graphic 

(GPU) cluster, which is the recent technology of parallel computing. 

To deal with failures in Cloud systems, there are several fault tolerant techniques. 

A redundant technique or High Availability (HA) is commonly used. A Cloud system can 

create redundant virtual machines in different physical machines. The Cloud system will 

monitor primary VMs. If a failure happens to the primary VMs, the system will 
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automatically fail over to the redundant VMs and fail back when the primary VMs 

resume their operation. Furthermore, live migration is a pro-active fault tolerant 

technique that allows virtual machines to move from the physical machines that are likely 

to fail without any interruptions. Moreover, checkpoint/restart [37] can be deployed to 

save a state of a VM or application. When a failure happens, it will restart the VM from 

the last saved state. To optimize waste time and deploy fault tolerant techniques 

efficiently, understanding reliability information of Cloud systems is crucial. In this 

dissertation, system reliability, failure rate, and Mean-time-to-failure (MTTF) of Cloud 

system will be discussed in Chapter 5. 

1.3 Organization of Dissertation 

This dissertation is organized as follows: Chapter 2 discusses related work on a 

reliability model with correlated failures in an HPC environment, a reliability model of 

Cloud computing for HPC applications, and an economic model for a Cloud service 

provider. Marshall-Olkin multivariate and parameter estimation techniques for correlated 

failure problem are discussed in Chapter 3. Chapter 4 presents a novel reliability model 

with correlated failures in a &-node system for HPC applications. Chapter 5 proposes a 

new reliability model of Cloud computing for HPC applications. An economic model for 

Cloud service providers is described in Chapter 6. The conclusion and future work are 

discussed in Chapter 7. 



CHAPTER 2 

RELATED WORK 

This chapter discusses the related work on a reliability model of HPC systems as 

well as a reliability model of Cloud computing. The related work on an economic Cloud 

model is also discussed here. 

2.1 A Reliability Model of HPC Systems 

There are many studies in the literature that are concerned with the reliability 

behaviors of HPC systems. Results in [38][39][40][41], showed that the time to failure of 

an HPC system is best fitted by models with a time-varying failure rate distribution, such 

as the Weibull, gamma and Lognormal distributions. However, previous researches [42], 

[43] assume the time to failure to be the exponential distribution with constant failure 

rate. Heath [38] studied the time between failures (TBF) of workstations and found that 

the failures follow a Weibull distribution as showed in Equation (2.1). Xu [39] showed 

that the TBF's of individual Windows NT Servers also fit the Weibull distribution well. 

Recently, in [44], the authors developed a TTF distribution model for a &-node system, 

where individual nodes follow a Weibull with independent failures assumption among 

nodes. The Probability Distribution Function (PDF) of the Weibull distribution [44] with 

scale (a) and shape (P) is given by: 

7 
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The Cumulative Distribution Function (CDF) of the Weibull is given by 

F(x) = 1 - e"©'. (2.2) 

The PDF of the conditional Weibull distribution is given by 

tP-{t+x)P 
/(t + x|t)=5(t + z/_1« «* . (2.3) 

The CDF of the conditional Weibull is given by 

tP-(t+x)P 
F(t  + x\ t)  = l  — e  aP .  (2.4) 

Then, the authors [44] developed the PDF of the jthTime to Failure (TTF) for a &-node 

system expressed as 

Sj(xj)  = Y.Ufi  nf-i(l - F,X (2.5) 

where fL  = f i (xd if the ( j  — l)thTTF belongs to the i t h  node and 

fi = fiO-j-i + xj\tj-i) if the j — l)t/lTTF does not belongs to the ith node. 

The CDF of the system TTF of a &-node system is given by 

= Pit  <a) = Ja l f= 1 / i (T)  nf=i(l  ~ F t( j ))dr.  (2.6) 

The A>node system reliability is given by 

By(a) = 1 - SjCa) = nf.i(l - FiW)- (2-7) 

The k-node failure rate is given by 

I?=1/tnf=i(i-F£) 

^ = i-J0
xZf=1/i(T) ni

k=1(i-Fl(T))dr • (2-8) 

The &-node mean time to failure (MTTF) is given by 
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^) = /o"*yZf=i/inf=i(i-FI). 
l*i 

(2.9) 

Some existing studies [41], [44] assume that there is no correlation among nodes 

with regard to time to failure. However, a number of studies have shown that nodes in the 

same system can be correlated. Xu [39] showed that there is failure dependency of 

Windows NT Servers across the network. Lin [45] studied error log analysis and showed 

that there are correlated times to failure among nodes in the systems. Also, Gottumakkala 

[46] analyzed failure correlation using the Spearman correlation coefficient. The 

Spearman correlation coefficient is given by: 

where d is the difference in paired ranks, and n is number of cases. 

He classified the correlation coefficient values to define the significant of 

correlations as shown in Table 2.1. The result showed that 10 percent of the Time to 

failures (TTF) have a strong correlation, 30 percent have a high correlation, and 60 

percent have a weak correlation. Moreover, the related research [47] analyzed the data of 

22 high-performance computing (HPC) systems collected over a nine year period at the 

Los Alamos National Laboratory (LANL). The study showed that more than 30% of 

nodes failed at the same time. Therefore, in order to estimate more accurately HPC 

system reliability, the model should consider the possibility of simultaneous failures 

among nodes. The fact that nodes can fail simultaneously gives rise to correlations among 

them with regard to time to failure. This dissertation proposes a reliability model of a 

system of k nodes with correlated failures for HPC applications in Chapter 4. 

(2.10) 
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Table 2.1 Significance of correlation with respect to correlation coefficient values [46] 

Correlation coefficient Significance of Correlation 

p~ 0 Uncorrelated 

-0.4 < p < 0.4 weak correlation 

0.4 < p < 0.8 high correlation 

—0.4 < p < —0.8 high correlation 

0.8 < p < 1 strong correlation 

-1 < p < -0.8 strong correlation 

2.2 A Reliability Model of Cloud Computing 

Many researchers have studied Cloud computing reliability. Kashi [48] studied 

characteristics of hardware failure and hardware repair in Cloud computing. The result 

showed that when a server failed, it has a greater chance of failing again. Also, successive 

failures best fit an inverse curve. Moreover, Dai [49] introduced Cloud service 

reliability. They classified failures into two groups, request stage failures and execution 

stage failures. The request stage failures are calculated from overflow failures and 

timeout failures by a Markov process. The reliability of request stage is given by: 

Rrequest = £n=0 9n + En=S fn(t)dt, (2.11) 

where fn(.t)is the PDF of waiting time to finish the n requests, qn is the steady 

probability that the system stays at state n, S is the number of homogeneous schedule 

servers. N is the capacity of the request queue, Tdis the due time. 

The execution stage failures included data resource missing, computing resource 

missing, software failure, database failure, hardware failure, and network failure. To 
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derive the reliability of the execution stage, the new evaluation based on Bayesian 

theorem and Graph theory was proposed. A minimal combination of availability 

elements, links and nodes, is called a Minimal Execution Spanning Tree (MEST). The 

reliability of a Cloud service that has N MESTs is given by: 

Rexecute = MUf=1 MEST^ = Y.% t Pr(^) Pr EJ^ I E J ) ,  (2.12) 

where Ej is the successful operation of the MESTj and Ej is the unsuccessful operation of 

the MESTj. The reliability of a Cloud service can be calculated by: 

RService ~ Rrequest ' Rexecute- (2-13) 

Hacker, in [50], considered hardware reliability and assumed a virtual machine 

per server. The proposed model was based on the Weibull distribution. However, this 

work did not incorporate software reliability into the model. None of the work considers 

reliability of Cloud computing for HPC applications. Chapter 5 discusses the reliability of 

a Cloud computing application that includes both hardware and software. 

Many studies have shown that the time to system failure (TTF) can be described 

by a Weibull distribution [39], [50], [51]. Hacker [50] studied the impact of reliability 

rates among individual components on the HPC system reliability. He also showed that 

the time between failures for an HPC system followed a Weibull distribution. Xu [39] 

also showed TTF's of Windows NT servers follow a Weibull distribution. Gottumukkala 

et. al, [44] developed the reliability model of a &-node system for HPC applications when 

individual TTF follows a Weibull distribution. They considered the excess life or time 

since the last failure of an individual node in their reliability model to gain a more 

accurate estimation of reliability of the system based on an assumption that nodes fail 

independently. However, time to failure of some computer systems may not be 



independent [39], [47]. Xu [39] showed that there is failure dependency of Windows NT 

Servers across the network. Schroeder [47] presented a study of failures in an HPC 

system at Los Alamos National Laboratory (LANL) that found that nodes were correlated 

with regard to failure and that two or more nodes may fail at the same time, chapter 5 

considers the excess life as well as correlation due to possible simultaneous failures of 

nodes in the system. 

For software reliability, there are many studies undertaken to understand the 

characteristics of a software failure [52], [53], [54]. Alan [52] was interested in 

understanding software reliability models and their utility. He evaluated nine different 

software reliability models. He showed that a simple exponential model performs as well 

or better than complex models, and the simple model outperformed the other models in 

terms of both stability and predictive ability. Musa [53] evaluated seven model groups 

on 15 data sets. Based on the evaluation, the exponential and logarithmic models were 

recommended for modeling software reliability. Thirumurugan [54] studied software 

reliability modeling in the testing and operational phases. In the operational phase, 

software fault was not removed. Failures occurred at a constant rate over time [54], [55]. 

He considers an exponential software reliability model. Results showed that, at any given 

time, the reliability in the operational phase was less than that in the testing phase. 

The majority of software reliability models make the assumption that failures 

occur independently. However, evidently in [56], the failures are not always independent. 

G-Popstojanova [57] extended the classic software reliability theory, Markov renewal 

modeling, in order to formulate software reliability models that considered dependent 

failures and time to failure following the exponential distribution. 



2.3 An Economic Model for Cloud Computing Environment 

Pricing and economic analysis have been previously applied in grid and Cloud 

computing. Abdelkader [58] studied an economic model for resource allocation in grid 

computing and treated computational and storage resources as interchangeable. Price was 

determined by demand and supply at the equilibrium point. Dash [59] proposed a self-

tuned economic model for a query service of scientific information based on the quality 

of service and on profit guarantee. In his work, the economic model accounted for CPU 

time, bandwidth, network, and disk space. Mihailescu [60] presented a dynamic pricing 

or an auction model for allocating resources in large distributed systems. Woitaszek and 

Tufo [61] analyzed an economic charging model in the perspective of a supercomputing 

service provider. They examined IBM Blue Gene/L system, considered its cost and 

applied a charging model that is used in Amazon EC2 to calculate a break-even point. 

Results showed that pricing is not competitive with the commodity system in Amazon 

EC2. Xinhui [62] considered not only Cloud Total Cost of Ownership (TCO) [62] but 

utilization cost as well. The utilization cost is the cost calculated from using part of the 

resources in order to evaluate efficiency of the Cloud. The utilization cost is calculated 

according to the number of VMs. Walker [63] presented the real cost of a CPU hour for 

three cases: purchase, lease and purchase-upgrade. He calculated the Net Present Value 

and the Net Present Capacity of each case. Niyato [64] proposed economic models to 

determine an optimal strategy between private Cloud and Cloud service providers for a 

monopoly market, Nash equilibrium for competitive market, and bargaining for 

cooperative market. Chapter 6 presents an economic model study, based on market 

share and TCO, for a Cloud service provider in order to maximize profit. 



CHAPTER 3 

MARSHALL-OLKIN MULTIVARIATE 
MODEL AND PARAMETER 

ESTIMATION 

This chapter discusses Marshall-Olkin Multivariate Exponential and Weibull 

distribution. Marshall-Olkin Multivariate models are used to model the correlation 

between components. Marshall-Olkin Multivariate models account the components 

failing at the same time, which is applicable to model correlated failures as in the 

litelature [47] that 30% of the failures in LLNL systems failing at the same time. 

Furthermore, the Marshall-Olkin Weibul distribution has Weibul marginals, which 

appropriate to model failures of an individual node following the Weibul distribution. 

Also introduced is an univariate method for the parameter estimation of Marshall-Olkin 

Multivariate models. The advantage of this parameter estimation technique is that it is 

simple to estimate the parameters when the number of nodes is large while an existing 

Parameter Estimation technique does not easily extend to estimate the parameters when 

the number of nodes is larger than three. In addition, simulations to validate the 

parameter estimations are also examined. 

Acronyms 

CDF Cumulative Distribution Function 

PDF Probability Density Function 

14 



15 

TTF Time to Failure 

LLNL Lawrence Livermore National Laboratory 

LANL Los Alamos National Laboratory 

HPC High Performance Computing 

GOF Goodness-of-fit 

MOMED Marshall-Olkin's Multivariate Exponential Distribution 

Notations 

Zj (t, Aj) independent Poisson process of shock to component i 

tjj Survival time of the ith node to the jth re-start of the system 

•th 
Rj (x) reliability of the system after the J restart of the system 

•lh 
Aj(x) failure rate of the system after the J restart of the system 

3.1 Marshall-Olkin Multivariate Exponential Model 

This multivariate survival expression in Equation (3.1) has k components and 

2* -1 parameters, and it is based on the fatal shock model [65], [66]. Suppose that a 

component fails after receiving a fatal shock. The occurrence of shocks is based on 

independent 

k 

Fyx...Yk (yi> - ,  Vk) = exp {— ^ ^ A;,s max^, ys) - ̂  AUI maxCy,-, ys, yt) 
i=1 i<s i<s<l 

*1,2 k^x(yity2,...,yk)}. (3.1) 

Poisson process Z,(/, A,) , with / = 1 2... k. In each Poisson process, t  >0 and lambda is 

the Poisson parameter. The events in the Poisson process, are shocks to 
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component i, the events in the process, Z i s(t,A. i s) are simultaneous shocks to both 

components i and s, the events in the process Zi s l(t, Aj S j) are simultaneous shocks to 

components i, s and / and the events in the process Z12 >k(t, A12,...,fc) are simultaneous 

shocks to all k components. The Marshall-Olkin Multivariate Exponential Distribution 

(MOMED) is the only multivariate exponential distribution model that has a marginal 

exponential distribution, which the failures of the individual node still exponential 

distribution. 

Equation (3.1) can be used to obtain the reliability model for a system of k after 

the re-start (j = 1,2,3,...). Here, re-start refers to the case when a failed node or nodes 

are replaced to re-start the system. In the bivariate case, the general case presented in 

Equation (3.1) reduces to 

Fy(yi>ys) = plYi > yu ̂  > yj = expf-A^- - Xsys  - X l i2Max(y i tys)}. (3.2) 

Hence, the PDF is obtained as: 

/<*.*) = (- D2^ = 

| (A; + A12)As exp{—(A; + ALI2)YI - ASYS}, where y t  is max ^ ̂  

l(As + a1j2)a,- exp{—(As + X l t2)ys  — Aty,}, where ys  is max. 

where i, s = 1,2 and i =£ s. 

As known from the literature [53], an exponential distribution is appropriate for 

modeling software reliability (Applications, VM's and Hypervisors), which will be 

discussed more in Chapter 5. Software failures may be independent or dependent. 

Independent software failures, for example, can occur in the case of embarrassingly 

parallel jobs, such as biological sequence and video encoding. In case of dependent 

failure, system configuration and operation environment may cause dependent software 
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failures [38]. Moreover, applications may fail at the same time, due to certain situation 

such as communication outages between processes. Blocking communication, for 

example, on an MPI application may cause simultaneous process failures. Another 

example is simultaneous failures due to the fact that applications may have to wait on 

data to become available. 

3.2 Marshall-Olkin Multivariate Weibull Model 

The Marshall-Olkin multivariate Weibull model is derived from the multivariate 

exponential model by a variable transformation technique used in [65]. In the survival 

function of the multivariate exponential (Equation (3.1)), consider the transformation 

Y^X.,  c>0, i  = 1 Using the transformation of variable technique in [67], one can 

obtain the survival function of the general multivariate Weibull (MVW) which is given 

by: 

k 

...,xk) = exp {- ̂  A txf -  ̂  X l iS  max(xf,xf ) - max(xf,xc
s, xf) 

i=1 i<s i<s<l 

^1,2 km a x  Of, -  *£)}•  (3-4) 

Hanagal [65] and Prochan [68] considered parameter estimation for the special case of 

the model in Equation (3.4). A special case of the Multivariate Weibull model presented 

below. 

•••**) = H*i > x l t  ...,Xk > xk) 

= exp {-Xxxl Xkx% - X l i2  kMax(xi,..., 4)}. (3.5) 

The model considers only theZlj2 k(t), which is the Poisson process governing 

simultaneous shocks to components l,2,...,k. The model is justifiable in an environment 

where all components are simultaneously exposed to shocks. 



The marginal function of Xh i = 1,..., k is a Weibull distribution and can be 

expressed as: 

P(Xi > Xi) = Fx(0, ...,0) = exp{-(Xi + X1>2 k)xf},i = 1, (3.6) 

A common c assumption has been used in the literature by Proscan [68], D. Kundu and 

A. K. Dey [69] and Hangal [65]. One advantage of a common c value is that it gives a 

multivariate Weibull which marginal is a Weibull and agrees with literatures [39], [44], 

[46] that an individual node's failures follow the Weibull distribution. 

3.3 Parameter Estimation for Marshall-Olkin Weibull Distribution 

Denote a PDF of the Weibull distribution by W(c,X). Consider three independent 

processes, U12~W(A.12, c), Ut~W(A1( c), and U2~W(A2, c). Here, U12 is the distribution 

governing the time to simultaneous failure of the two nodes, Ux is that for time to failure 

of node 1, and U2 that of node 2. Let X1 = min {U12, f/j), and X2 = min [U12, U2}. The 

bivariate vector (X1,X2) has the bivariate Weibull distribution with the parameters 

[69]. 

This can be expressed as: 

fix) = c2 (A, +AJ2 )AJx,c~ ,x/'1) * exp {-(X+^2 )x t
c  - Zjx/}, i,j = l,2mdi*j. (3.7) 

For parameter estimation of the multivariate Weibull, not much work has been done due 

to the complexity of the problem. There is no explicit form for the Maximum Likelihood 

Estimators (MLE) of the parameters. Moreover, The MLE of the unknown parameters 

does not always exist [69]. Kundu [69] proposed an EM algorithm to estimate the 

Multivariate Weibull when k = 2 or 3. This method is difficult to extend to estimate the 

parameters of the Multivariate Weibull in the general case of k nodes. 
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A new method of estimation is proposed that can be easily extended to 

multivariate cases. For two nodes, this method (referred to as the univariate method) 

considers the observed time to failure for U12, which is the failure time that both nodes 

fail together, U1 or U2, which is the failure time that node 1 or node 2 fail independently. 

Maximum Likelihood Estimates for Xt, X2 ,X12 and c can then be obtained from the 

Weibull distributions W(Al5 c), W (X2, c), and W (A12, c). The likelihood function is 

expresses as: 

L(x l t...,xn; X, c) = njLi cXxc~1exp {-Axc}. (3.8) 

In this case three estimates for c are obtained. One can then take the average of the three 

estimates as an estimate for c. For cases that more than two nodes {k nodes), Maximum 

Likelihood Estimates for A;and c for node i, where i = 1,2, ..., k, failing independently 

can be obtained from the Weibull distribution W(Aj, c), which is estimated from the 

observed time f/j. Maximum Likelihood Estimates for X12...k can be obtained from the 

Weibull distribution W (X12 k, c), which is estimated from the observed time U12 k. 

Parameter c can be obtained by averaging from every Maximum Likelihood Estimate. 

3.4 Simulation of Parameter Estimation 

The simulation technique is used to validate the two estimation methods, the EM 

algorithm and the proposed univariate method described above. The procedure that was 

used to run simulation in order to generate time to failure for the case of two nodes was 

defined as follows [69]. Consider the processes U12~ W(0.3,1.2), Ux~ W(0.5,1.2), and 

U2~ 14^(0.3,1.2). Here, Xx and X2 are the time to failure for node 1 and node 2, 

respectively. Next, the parameters were estimated using the EM algorithm and the 

univariate method. The number of observations (sample size) was 10, 25, 50 and 100 per 
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replication. There were 100 replications for each sample size. Tables 3.1 and 3.2 present 

the estimates for the two methods. Also, Tables 3.3 and 3.4 give the variance of estimates 

for the two methods. A comparison of the average of each estimate over 100 replications 

to its parameter shows that both methods gave accurate results. As expected, the 

estimates became closer to their parameter values as the sample size increased from 10 to 

100. Also, the variance of the estimates decreased with an increase in sample size. Both 

methods seem to be equally good. However, the estimation method, based on the 

univariate distribution, is simple to use, especially for any number of nodes while the 

existing EM parameter estimation does not easily extend for more than four computing 

nodes. Tables 3.5 and 3.6 shows an example of the parameter estimation and variance of 

the univariate method for five nodes with initial parameter — 0.5, X2 = 0.3, A3 = 

0.3, A4 = 0.7, A5 = 0.5, A12345 = 0.5, C= 1.2. The results show that the estimates 

approach to the initial parameter when increasing the sample size and variance decreases 

as the sample size increases. 

Table 3.1 Average parameter estimates, over 100 replications, using 
the EM algorithm for different sample sizes 

Parameters 

Sample size\^ II o
 

In
 

X2  = 0.3 — 0.3 c = 1.2 

N= 10 0.5032 0.3512 0.3213 1.272 

N = 25 0.5079 0.3033 0.3130 1.2377 

N = 50 0.4993 0.3102 0.3065 1.2210 

o
 

o
 

II Z
 0.4990 0.3070 0.3138 1.2014 
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Table 3.2 Average parameter estimates, over 100 replications, using the univariate 
method for different sample sizes. 

Parameters 

Sample size~\^^ Ai = 0.5 A2 = 0.3 A^2 — 0.3 c = 1.2 

N= 10 0.5119 0.2973 0.2747 1.4087 

N = 25 0.4995 0.2978 0.3030 1.2753 

o
 

II Z
 0.5057 0.3057 0.2989 1.2329 

N= 100 0.5032 0.2933 0.3004 1.2162 

Table 3.3 Variances of the parameter estimates for each sample size using the EM 
algorithm 

Parameters 

Sample siz&\^ varC^) var(^) var(^2) var(c) 

©
 

ii £
 

1 

0.0351 0.0409 0.0231 0.0640 

N = 25 0.0227 0.01209 0.0145 0.0204 

N = 50 0.0094 0.0074 0.0054 0.0083 

N= 100 0.0058 0.0036 0.0027 0.0046 



22 

Table 3.4 Variances of the parameter estimates for each sample size using the univariate 
method 

Parameters 

#of X. 

Observation 

var(A,) var(^) var(^2) var(c) 

N = 10 0.0590 0.0246 0.0248 0.18040 

N = 25 0.0227 0.0111 0.0074 0.03526 

N = 50 0.0085 0.0045 0.0044 0.19733 

N= 100 0.0048 0.0025 0.0018 0.00906 

Table 3.5 Average parameter estimates, over 100 replications, using the univariate 
method  for  d i f fe ren t  sample  s izes  fo r  K= 5 .  

Parameters 

Sample size x. 

Aj = 0.5 A2=0.3 A3=0.3 A4=0.7 As=0.4 ^12345 0-5 c= 1.2 

o
 

ll Z
 0.5144 0.2992 0.2752 0.7882 0.3988 0.4981 1.39015 

>
/"

) 

ll Z
 0.4954 0.2889 0.3023 0.7262 0.4135 0.4955 1.2708 

N = 50 0.5087 0.3067 0.3167 0.6983 0.4057 0.4873 1.2266 

N= 100 0.4972 0.2976 0.3055 0.6955 0.3998 0.4894 1.2201 
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Table 3.6 Variances of the parameter estimates for each sample size using the EM 
algorithm for k=5 

\. Parameters 

Sample size\ 

uar(Ax) var(A2) var(X 3 )  var(A4) var(A s )  var(X 1 2 )  var(c) 

N = 10 0.0458 0.0231 0.0221 0.1283 0.0359 0.0385 0.1313 

N = 25 0.0166 0.0084 0.0092 0.0354 0.0147 0.0148 0.0442 

N = 50 0.0090 0.0051 0.0051 0.0156 0.0042 0.0093 0.0210 

N= 100 0.0047 0.0021 0.0022 0.0063 0.0036 0.0039 0.0096 



CHAPTER 4 

A RELIABILITY MODEL WITH 
CORRELATED FAILURES FOR 

HPC APPLICATIONS 

In the previous work, there is only an independent case of reliability estimation 

for HPC systems. This chapter will develop a reliability estimation with correlated 

failures for HPC applications. The reliability model is validated by log data from 

Blue/GeneL system from LLNL with K-S goodness-of-fit test. A system failure rate and 

mean time to failure of such applications are also presented. 

4.1 Introduction 

Large scale High Performance Computing (HPC) systems play a critical role in 

computational science. To meet the demand for faster computing, HPC systems are 

composed of thousands of computing nodes. For example, the number of nodes of the 

IBM Blue Gene/L at Lawrence Livermore National Lab is 65,536 nodes or 131,072 

cores. However, in many cases, when a system has a single node failure, it results in the 

total application failure [44]. Therefore, it is important to study the reliability of such 

large HPC systems 

A runtime scheduler or resource manager can make use of system reliability 

information to improve the operation of an HPC system. For example, resource managers 
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can allocate a job (in an application), depending on the reliability information of the 

nodes, in order to minimize performance loss in the considered system. The intelligent 

job scheduler may allocate the long-running jobs to the more reliable nodes and may 

schedule the short-running jobs to the less reliable nodes. Therefore, one can consider 

system reliability in order to effectively utilize HPC resources to maximize performance. 

Furthermore, the system reliability information of a system is an important factor to use 

in fault tolerance performance models that help in mitigating system failures. 

Time to Failure (TTF) provides important information on the reliability of a 

system. There are several studies in the literature [38],[39],[40] which show that the 

distribution of the time to failure (TTF) of a computer system is in accord with a time-

varying failure rate distribution such as the Weibull. In the previous study [46], a 

reliability model was developed for an HPC system composed of k independent nodes, 

each having a Weibull or a conditional Weibull TTF distribution. It has been shown in 

[46] that the Weibull distribution gives the best fit to the TTF of each node in the LLNL 

ASC white system. However, nodes in a computer system may also exhibit correlations 

with regard to their TTF [39], [45]. Schroeder and Gibson [47], in a study of failures in 

an HPC system at Los Alamos National Laboratory (LANL), showed that nodes were 

correlated with regard to failure and that some nodes may fail at the same time. Hence, it 

is necessary to develop a system reliability model taking into account simultaneous 

failure of nodes. 

In this chapter, a reliability study developed in [46] is extended, based on 

independence among nodes, to model the reliability of an HPC system where nodes are 

correlated in their time to failure due to the occurrence of simultaneous failures. It is 



assumed that the system of k nodes fails when any of the nodes fail. When a node fails, it 

is replaced or renewed, and the system is re-started again. The Weibull is considered as 

the distribution of time to failure and uses the multivariate Weibull distribution, based on 

the well-known Marshall-Olkin multivariate exponential model described in Chapter 3, 

to account for simultaneous failures among nodes. 

4.2 System Reliability Model, Failure Rate and 
Mean Time to Failure 

This dissertation considers a system of k nodes. Nodes can fail at the same time 

which leads to nodes being correlated with regard to their times until failure. The 

previous work [46] supports the fact that the time to failure of a node was best described 

by a Weibull distribution. Hence, without loss of generality, the Weibull is considered as 

the distribution of time to failure in this study. It is assumed that the system of k nodes 

fails when any of the nodes fail. 

The focus in this chapter is on a model where the nodes are not repaired, but 

rather replaced. This is a realistic scenario in practice and has an advantage over repair 

concerning delay in operation time and therefore cost of operation. In HPC systems there 

are a relatively large number of nodes, and one does not wait to repair, but instead replace 

using a spare node from the resource pool. It is not feasible to delay the computation 

operation for the node to be repaired. The practical and efficient approach is to replace 

the node and continue the operation, and in the meantime repair the failed node(s) if 

necessary. 

The interest at this study is in determining the reliability of the system after the 

time it is re-started. It is important to note that the distribution of the time to failure is 
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Weibull for the node that is replaced and conditional Weibull for the other nodes. Note 

that because of simultaneous failures, more than one node may be replaced at the same 

time. The conditional Weibull is defined as the probability that a node will fail at time x i f  

given that the node has survived until time ti;-, where i is the node that fails and j is the 

jth system re-start. The conditional life PDF for a Weibull distribution can be expressed 

as: 

F(TIJ  +  XI\TIJ) = A.C(TIJ  + xjc-1e-A(~t&+(to+*i)c 

The CDF is given as: 

P{X <t i J+x i \ t i j} = l - s  

The k -node system reliability model can be expressed as follows: 

RJ(X)  =  F( X )  =  >  X >%2 >  X >^3 >  X > — >XK >  X )  

= exp {- Sf=i h * xl ~ E^=i hs max{xt', x's] - 2fAl=x AUI max{x-, x's, x{ } 
i<s<l  

(4.1) 

(4.2) 

1<S 

Ai,2 k max{x[,...,x'k}, 

where 

(4.3) 

*i 
xc , if the i thnode is replaced at j threstart 

—tfj + (tij + x)c , if the i thnode is not replaced at j threstart. 

Similarly for x's, x{, ...,x'k. 

Note that after the j th  failure of the system, node / that failed has a Weibull distribution 

(since it was replaced at the time ti; when it failed) and the other nodes have conditional 

Weibull distributions since they survived beyond time ty. 

Equation (4.3) is readily derived from Equation (3.1) using the transformation of variable 

technique with the transformation Yt = —tf + (xt + t{)c, tt > 0. In practice, t; can be 
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equal to zero, which corresponds to a node with a Weibull distribution or tt larger than 

zero corresponding to a node with a conditional Weibull distribution. 

From Equation (4.3), it is seen that the PDF can be expressed as follows: 

dRj(x) 
FJ(:*) = (-i) 

dx 

k 

= [c h * x" + X i iS  * x'is + ^ hs.l * <s,i + - + Ki k * <2 fc] * 
i=1 i ,s- l  i ,s , l=1 

i<s 

exp {- Zf=1 A; * x- - AijS max{x(', - Eui=i *ui max{xt'f x[} -
I <S 

h,z fcmax{x^...,4}, (4.4) 

where x[' = xc~1 if the ith node is replaced at the j th  re-start 

= (tij + x)c~x if the i th  node is not replaced at the j th  re-start. 

„» _ dmax {x[,x's]  _ _  dmax{x[,x' s„x' l)  _j _dmax{*i x'k] 
Xis~ Tx >Xis l~ Tx m(1 X^3.. .k~ d x  

From Equation (4.3), it is seen that for the special case when one component is shocked 

or all components are shocked simultaneously, the reliability can be expressed as: 

Rj(x) = F(jx) = P(X t  > x,X2 > x,X3 > x, ...,Xk > x) 

= exp {- X t  * xl - X1>2 k  max{*i,..., x'k}, (4.5) 

where x[ = x° if the i th  node is replaced at the j th  re-start 

= —tfj 4- (tij + x)c if the i th  node is not replaced at the j th  re-start. 

The PDF of the system for the special case described in Equation (4.5) is expressed by: 

//(*) = 

[c £f= i X t  * x;[' + X l i2  k  * x"2 fc]*exp {- £f=1 X t  * x\ - X1>2 k  max{x[,..., x'k}, (4.6) 

where x[' = xc~x if the i th  node is replaced at the j th  re-start 
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= (tij + x)c 1 if the i th  node is not replaced at the j th  re-start, 

, „ dmaxfxj, 
and *123...*= ^—"• 

From Equations (4.4) and (4.5), one may define the failure rate " T j ( x )  " after the j ' h  re

start of the system as: 

//(*) 
/}(*) = 

Rj(x) 

= cEf=1 Aj * x" + I^s=1 X i iS  * x'i's + Zt,i=lAU( * X 'i',s,l + - + ̂ 1,2 k * Xl,2 k • (4-7) 
i<s 

For the special case, the failure rate is 

Ij =  =  c  * xi  +  ̂ 1,2 k * xx,2 k- (4-8) 

From the definition of expectation, the MTTF is given by 

E  ( x )  = J0°°x * fj (x) dx, (4.9) 

where FJ (x) is the PDF of an univariate distribution for the general case presented in 

Equation (4.5) or the special case presented in Equation (4.6) for a system of £ nodes. 

4.3 Goodness-of-fit Test for System Reliability 

The system reliability model is validated by fitting it to experimental data using 

the Kolomogorov-Smirnov (K-S) goodness-of-fit test. The failure logs are obtained from 

the BLUE Gene/L system, located at Lawrence Livermore National Laboratory (LLNL). 

The BLUE Gene/L logs are from June 3rd, 2005 to January 4th, 2006. The system is 

comprised of 65,536 nodes. There were 99 nodes that failed more than 15 times within a 

six months period. Moreover, some of the nodes failed simultaneously, which implies a 

correlation among nodes with regard to time to failure. 



Consider a system comprised of two nodes that are correlated with regard to their 

TTF's. The times to failure of the two nodes give rise to a bivariate distribution (Xl5 X2). 

The system reliability function can be obtained from Equation (4.5), for h= 2, by 

letting Xt = X2 = X. This gives 

Rj(x)  = exp{—( X 1  + A 2 + A1i2)xc). (4.10) 

In this case, = 0 since the bivariate data observed are the times to failure of 

each node after the two nodes are put into operation at the same time. It is important to 

point out that a general expression for tiy- not zero can be readily obtained from 

Equation (4.5). Only the case when ty = 0 is used in order to agree with the observed 

data .  Using the  EM algor i thm on the  bivar ia te  TTF data ,  the  parameters  A l s  X 2  ,  A 1 j 2  

and c are estimated. These estimates were used to fitted the cumulative distribution 

function of the Weibull (1 — Rj(x)) to the observed Min(Xl3 X2) using the K-S 

goodness-of-fit test. 

Table 4.1 presents the goodness-of-fit of the modified K-S test [70] to a Weibull 

distribution (Equation (4.10)) for 25 non-overlapping pairs of nodes. For each test, the K-

S test statistic and the corresponding critical value of rejection at the 5% level [70] is 

presented. In this case, the modified K-S test is used since the Weibull parameters are 

estimated from data. From Table 4.1, it shows that the Weibull distribution gave a good 

fit to 23 pairs of nodes (critical value > K-S statistic). Figure 4.1 is representative of the 

observed fit to the experimental data. It is known that the K-S test is a sensitive test. 

Hence, even when the K-S test rejected the null hypothesis of a Weibull distribution, the 

fit seems to be still adequate, as seen graphically in Figure 4.2. 
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Table 4.1 K-S statistic and critical value of K-S goodness-of-fit test to the TTF of 25 
systems, each represented by 2 nodes 

System Critical KS System Critical KS System Critical KS 

value statistic value statistic value statistic 

1 0.188 0.337 10 0.213 0.207 19 0.239 0.232 

2 0.222 0.220 11 0.231 0.221 20 0.222 0.211 

3 0.231 0.200 12 0.248 0.238 21 0.337 0.281 

4 0.248 0.322 13 0.213 0.205 22 0.222 0.221 

5 0.248 0.247 14 0.274 0.213 23 0.265 0.241 

6 0.256 0.207 15 0.231 0.210 24 0.231 0.223 

7 0.265 0.247 16 0.248 0.244 25 0.256 0.244 

8 0.256 0.230 17 0.239 0.236 

9 0.222 0.220 18 0.314 0.290 

ECDF and Weibull CDF 

10000 20000 30000 40000 

Figure 4.1 The empirical CDF (ECDF) and the Weibull CDF of a 2-node system, K-S 
statistic = 0.244 and its critical value = 0.256 from the K-S test. 
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ECDF and Weibull CDF 

« C'-i 

1 1 i r 
*0000 30000 30000 40000 

Figure 4.2. The empirical CDF (ECDF) and the Weibull CDF of a 2-node system, K-S 
statistic= 0.3371 and its critical value=0.188 from the K-S test. 

4.4 Numerical Result for Correlated Failure Model 

This section exemplifies, for k = 2, 3, and 50 the effect of survival time (T) and 

parameters for joint node failures (Ay ) on system reliability, from Equation (4.3), and 

on the failure rate, Equations (4.7) and MTTF, Equation (4.9). For k = 2, an example is 

used where job run length (x) equals to 200 hours and the Multivariate Weibull 

parameters equal to AX=0.00003, A2=0.00005, C=1.5, with A12={0, 0.00003, 0.00005, 

0.00007}. For Jfc=3, assume A1J2, A1J3, A2j3 = 0.00005, and A1>2>3= {0, 0.00003, 0.00005, 

0.00007}. For Jfc=50, define AI=0.000004 and C=1.5 with Au,..={3xl0-19, 

5x10-19,7xl0~19} It is obvious from Equation (4.3) that when the joint failure rates 

(Ay ) increase, the reliability of the system decreases. This implies that a system with 

independent nodes (Ai ; = 0) is more reliable than one where the nodes are correlated in 

failure. Also, it is seen that the general model in Equation (4.3) is less reliable than the 

special case (k > 2) in Equation (4.5). Also, as the number of nodes increases, the 
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reliability of the system decreases. Furthermore, reliability of the system decreases as 

survival time T increases. These facts are demonstrated in Figures 4.3, 4.4 and 4.5. 

Figures 4.6, 4.7, and 4.8 show, as expected, that the MTTF decreases when the 

parameters for joint failure(Ajj(_) increase or as the survival time T increases. Moreover, 

Figures 4.9, 4.10 and 4.11 show that the failure rate increases as the joint parameters 

(A;j ) increase in value or the survival time increases. Furthermore, one can observe that 

when the number of nodes (k) increases, MTTF decreases and the failure rate increases as 

expected. 
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k=2, x=200, >*t = 3e-05, K2 = 5e-05, i 
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500 1000 1500 
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Figure 4.3. System reliability of a system of 2 nodes 
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Special Case Model 
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Figure 4.4 System reliability of a 3-node system in the special case and general case 
models 
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Figure 4.5 System reliability of a 50-node system in the special case and general case 
models 
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Figure 4.6 Mean time to failure of a system of 2 nodes 
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Figure 4.7 Mean time to failure of a 3-node system for the special case and 
the general case models 
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Special Case Model 
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Figure 4.8. Mean time to failure of a 50-node system for the special case and the general 
case models 
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Figure 4.9 Failure rate of a system of 2 nodes 
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Figure 4.10 Failure rate of a 3-node system for the special case and the general case 
models 

Special Case Model General Case Model 

k=50, x=200, =4e-06, c 
'-12...5C = 0 

— '*-12 so 
= 5e-05 ?.,7_28=Te-05 

• 1.5 

1000 2000 3000 

Survival Time T (Hours) 

4000 

k=50, xs200.Ai-4e-06.c- 1.5 

3 -
•-«?. =0 
'-is.. - i-5e-1S 

2000 

Survival Time T (Hours) Suvival Time T (Houre) 

Figure 4.11 Failure rate of a 50-node system for the special case and the general case 
models 



4.5 Conclusion 

Reliability information is important for improving HPC system utilization. In 

order to mitigate the interruption of an application because of a failure, it is of importance 

to know how reliability, mean time to failure, and failure rate of an HPC system are 

affected by joint node failures. Many studies have shown the existence of failure 

correlations among nodes in computer systems [39], [45] and [47]. In this chapter, a 

general reliability model is proposed that accounts for joint failures among nodes and 

developed the reliability, failure rate, and mean time to failure of a system based on k 

nodes. Also validated is the model using observed times to failure from BlueGene/L 

system. Results show that if the failures of the components (nodes) in the system possess 

a degree of dependency, the system becomes less reliable. Moreover, when the failures of 

components are independent, the proposed system reliability model is the same as the one 

in [46]. Chapter 5 will extend this system reliability to model the reliability of Cloud 

computing system. 



CHAPTER 5 

A RELIABILITY MODEL OF CLOUD COMPUTING 
FOR HPC APPLICATIONS 

Cloud computing has become popular for HPC applications. Many public Clouds, 

such as Amazon Elastic Computing Cloud (EC2), provide their services specifically for 

HPC users. Therefore, reliability information is necessary for administrators and users to 

manage their systems and their jobs efficiently. This chapter presents reliability models 

of Cloud computing accounting for correlation failure in software and hardware. 

5.1 Introduction 

Cloud computing allows businesses to rent computing resources from Cloud 

service providers, such as Amazon, Rackspace, etc., instead of investing to acquire 

computing facilities. Users can increase or decrease the amount of resources- -such as 

storage, memory, and central processing unit (CPU) - as they need and pay per usage 

according to the amount of services or resources they need, like in a traditional public 

utility. When companies decide to use a Cloud service, they have in mind a Service Level 

Agreement (SLA), which involves the reliability and performance of the Cloud service 

within a desired time frame. Reliability of Cloud systems directly relates to its 

performance. When a system fails, applications that are running on the Cloud can be 

interrupted. If the system does not have any fault tolerant mechanisms, such as live 
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migration and checkpoint/restart, failed jobs have to be re-run. If the system provides 

fault tolerant mechanisms, there is still some performance loss, re-computing time and 

the time it takes to restart the system to function again. Therefore, it is important to 

accurately estimate the reliability of a Cloud computing system in order to better mitigate 

faults and therefore effectively utilize its performance to achieve the SLA of Cloud users. 

The demand for High Performance Computing (HPC) is increasing for solving 

advanced scientific researches and some mission critical applications. Many scientific 

and HPC applications are running on the Cloud. For instance, CernVM [71] is the Virtual 

machine image for running LHC experiment of High Energy Physics. In addition, 

Amazon EC2 presents HPC case studies [72]. Recently, Penguincomputing [36] has 

provided Cloud services customized for HPC, called HPC as-a Service [73].The benefit 

of Cloud computing is cost-efficient even though it has scarified performance trade-off 

[74]. 

In the Cloud environment, service providers must manage numerous computing 

components such as processors, memory modules, storage, network switches, etc. The 

more components, the more likely failures are to occur. A failure may interrupt an entire 

application, for instance Message Passing Interface (MPI) applications [44]. MPI has 

been used in most parallel scientific applications [75]. MPI on Cloud is active research 

area. For example, Ying [76] presents MPI algorithm model and Raihan [74] analyzed 

HPC applications and tested an MPI performance on the Cloud. If the service providers 

could obtain the failure characteristic of the Cloud computing environment, they can 

better manage the computing resources to tolerate the failures and sustain better 

performance [77], [78]. 
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Reliability information is one of the key factors to consider in the Cloud 

computing environment. As such, many studies considered reliability as a main factor in 

their research on performance and usage cost. The work of Artur [79] focused on 

monetary versus reliability balance based on Spot Instances in the Amazon EC2. The 

Spot Instances are idle resources. Users can bid a price for idle resources. Whenever the 

price of resources is equal or less than the bid price, the Spot instances are allocated to 

the users. On the other hand, if the price goes above the bid price, the Spot instances are 

deallocated without warning. This leads to the question of how to bid the Spot Instances 

with given SLA constraints. Prasad [80] presented a resource allocation method for data 

processing, considering not just CPU speed, memory usage, data throughput, and 

network speed, but also reliability. In his work, Prasad presented algorithms for 

partitioning data in order to gain better performance and resource allocation for optimal 

pricing and for meeting SLA constraints. 

This chapter proposes a reliability model for a Cloud computing system that 

considers software, application, Virtual Machine, Hypervisor, and hardware failures as 

well as correlation of failures within the software and hardware. The accuracy of the 

estimation is also improved by introducing excess life in order to account for the aging of 

hardware. 

5.2 TTF Distribution of a Cloud System 

This section considers the reliability of an application that has t processes (Appl-

App €) in a Cloud system composed of s virtual machines deployed in k nodes as shown 

in Figure 5.1, where each node can have a different number of virtual machines. An 

assumption is made that it is an MPI application. A system fails when any one of the k 
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nodes fails or any software components fails. In the hardware case, when any node fails, 

it is replaced with a new node and the system is re-started. In the software case, the VM 

is re-started and the system operates again. 

iMggiwiswJia 

Figure 5.1 Cloud Computing Architecture 

The interest is in determining the Probability Density Function (PDF) for the time 

to the first failure of the system after the jth node replacement or a VM re-start due to a 

failure. This time is referred to as the time to failure (TTF). Therefore, the following 

assumptions can be made concerning the failure properties of individual nodes in a 

system, 

1) TTF of an individual node follows a Weibull distribution [41], [46] 

2) TTF of an application that is running on a particular VM has an exponential 

distribution [53], [55]. 

3) The first failure interrupts the entire application. 

4) After a failure, the node is replaced with a new node at the next time instant, 

and hence the system returns to a normal operational mode. 

Consider a k-node Cloud system with n (n = €+s+k) software components (App, 

VM and Hypervisor), each with an exponential time to failure), where any failure in any 

one of the n components interrupts the entire application. If any of the software 
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components fails, the component (and hence the system) will be re-started. On the other 

hand, if a node fails, the node is replaced and the system re-started. 

In case of node failures, the distribution of the time to failure is Weibull for the 

node that is replaced and excess Weibull for the other nodes. Note that because of 

simultaneous failures, more than one node may be replaced at the same time. The excess 

life is defined as the probability that a node will fail at time x given that the node has 

survived until time t. The excess life PDF for a Weibull distribution can be expressed as 

At, + *!<„) = Mt„ (5.1) 

with the CDF given as: 

P { X  < t y + x  |  t y }  = 1 + x r )  ,  (5.2) 

where i is the node that fails and j is the jth system re-start. 

5.3 Cloud System Reliability 

In general, there could be many possible combination of failure dependencies 

among components. However, this study practically focuses on the four major scenarios 

described as follows. 

Four possible scenarios are 

(1) Software failures occur independently. Also, hardware failures occur 

independently. 

From Equations (3.1) and (3.4), one can show that the reliability model of n software 

components (Xk+1_Xk+n) running on k physical nodes (X-^, ••• ,Xk) can be expressed as 

follows: 

Rj(x) = F(x) = P(Xx > x,X2 > x, ...,Xk > x,Xk+1 > x,Xk+2 > x, ...,Xk+n > x) 



43 

= exp {- £f=1 Xix'i - I"=i yvx), (5.3) 

where xt = xc if the ith node is replaced at the jth re-start 

= —tfj + (tij + x)c if the ith node is not replaced at the jth re-start. 

Similarly, for x's,x[, ...,xk. Note that for independence, only X; 's and y; 's are not equal 

to zero. 

Expression (5.3) can be readily derived from Equation (3.1) by using the 

transformation Y t = X f  , c >  0 for the nodes that have a Weibull time to failure (failed and 

were replaced to restart the system), Y t  = —tf +  (tj + X) c  for nodes that have an excess 

Weibull distribution (did not fail when the system was re-started) and Y = X for the n 

software components that have an exponential time to failure. 

(2) In case of correlated software failures, and independent hardware failure, the 

reliability model can be expressed as: 

Rj{ x )  = exp {- £f=1 - £"=i yvx - £",w=i yvwx - E",w,z=i Yvwz* ~ - - 7i2...n*} 
V<W V <w<z 

(5.4) 

(3) For a system where software failures occur independently, but hardware 

failures are correlated, the reliability model is given by: 

R j ( x )  = exp {- £f=1 Ajx ' t  - ljs=i hs maxfx-,x ' s ]  - T,kiiSil=1 Aisl max{x-,x [  
i<s  i<s<l  

^123...» max{%i,..., xk} - yvx} (5.5) 

(4) In the case of both software and hardware correlated failures, the reliability 

model of the Cloud system is given by 
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Rj(x) = exp {-Z?=i hxl - S?s=i^is max{x'ux'5} - Zl,s,i=i *isi max{x-, x's, x[ 
i<s i<s<l 

^123...fcmax {XLT ..., 5jv=1 YVX ~ Sw,w=1 Yvwx 5] v,w,z=1 yi2...n*} 
V<W P<W<2 

(5.6) 

In all four scenarios, it is assumed that hardware and software fail independently 

from each other. 

From Equation (5.3), the PDF of an application on Cloud can be derived as: 

f(x) = [c £f=i Xtxl + £S=i yv] * exp {- Ef=i ~ 2?=i Yvx}, (5.7) 

where x- = xc_1 if the ith node is replaced at the jth re-start 

= (tij + xY'1 if the ith node is not replaced at the jth re-start. 

From Equation (5.4), the PDF for this case is 

fix) = 

[cYif=i^ixi "I" Yiv=lYv + Jlv,w=lYvw "I" 2 v,w,z=l Yvwz + — 7l2...n]*exP {.~Yii-i^-ixi ~ 
v<w v<w<z 

lv=1Yvx £u,w=l YVWX 2 v,w,z=l Yvwzx Yl2...nx}• (-**^) 
v<w v<w<z 

The PDF that is derived from Equation (5.5) is given as: 

f(.x) = \c Yii=i^-ixi + 5ji,s=i ̂ -isxis ^r^i,s,l=l^islxisl ^123...kxi23...k 2v=l Yv] * 
i<s 

exp {- I*=1 h * xl - X£s=1 Ais max{x-,x's] - £*s,i=i Aisi max{x-,xj,x't} -
i<s 

-- ̂123...k max{xi, ...,x'k} - 25=1 yvx), (5-9) 

_ _ j  _  d m a x  {x[,x's} _ dmax(4*s»*i} _A _ dmax {x[ xk} 
311(1 xis ~ ^ »xisi ~ ^ ,...,ana x123..,fc dx 

The PDF from Equation (5.6) can be expressed as: 
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0 [p 5]i=i ̂ -i%i "I" Xi,s=l ̂ -is^is ~^~ j£i,s,i=l ̂ -isl^isl "" ^•123.../c^l23...k 
i<s  

Yiv=lYv Xu,w=l Yvw "t" Hv,w,z=lYvwz "t" ••• Yl2...n\ * 
v<w v<w<z 

k k k 

exp {- Xi * x't - ̂  Xis max{x-, x's] - ̂  Xisl max{xj, x's, x[] - ... 
i=l  i,s=l i , s , l= l 

i<s  

~^-123...k maxjx-L, ..., Xk} — Xu=l — Xv,w=l YVWX ~ S V,W,Z= 1 )W* — — 

17<W v<w<z 

Yl2. . .nX}-  (5-10) 

After the reliability and PDF of an application are determined, the information is used to 

compute failure rate and mean time to failure of an application on Cloud. 

5.4 Failure Rate and Mean Time To Failure 

The failure rate " ̂  (x) " of independent failure of software and hardware after the 

j ,h  re-start of the system is given by: 

x> = 7& = + (5.1D 

For the case of dependent software failure and independent hardware failure, the 

failure rate is 

XJ =  \  =  C X f = l  J-IXI + H"=l Yv + Ylv,W=lYvW + YIV,WJ!=IYVWZ + — + Yl2 ...1F ( 5 - 1 2 )  
"AXJ v<w v<w<z 

The failure rate for the case of independent software failure and dependent 

hardware failure is 

Xj  =  ̂  ,  n C  ]Cj=i XiXi  + 2i,s=l "* ^•123.../c^l23...k 
7  i<s  

(5.13) 
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In the case of dependent software and hardware failures, the failure rate is given 

as: 

% = r.(x) = c^i=l^-i x i  5ji,s=1 ̂ is*is £' t i , s , l=l^-is l x is l  *" ^123...kxl23...k + 
'  i<s 

5ji?=1 Yv 5j17,w=1 YVW X v,w,z=l Yvwz ••• Yl2...n• (5*14) 
v<w v<w<z 

The mean time to failure (MTTF) of an application on Cloud is given by: 

E(x) = /"% * f(x)dx , (5.15) 

where f(x) can be the PDF of the any case presented in Equations (5.7), (5.8), (5.9), and 

(5.10) for a Cloud system. 

5.5 Virtual Machine and Hypervisor Failure 

There is some evidence indicating that Virtual machines, and hypervisors may 

exhibit an increase in the failure rate with time, referred to as software aging [81],[82]. 

The current model can be readily modified to accommodate such a scenario. In this 

situation, the aging software will be treated as a node, in which case the time to failure 

distribution for the software will be Weibull or excess Weibull instead of the exponential. 

More precisely, the TTF of a virtual machine or hypervisor follows a Weibull distribution 

when it failed and is restarted. On the other hand, it will have an excess Weibull if a 

virtual machine or hypervisor did not fail when the system failed. It is assumed that the 

failures of virtual machines and hypervisors are independent. In this case, the reliability 

model of n VMs and k hypervisors can be expressed as follows: 

R](x) = P(Xx >x,X2> x, ...,Xk > x,Xk+1 > x,Xk+2 > x, ...,Xk+s > x) 

= exp {- £{L i Xixl - Avxv}, (5.16) 
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where ^-and x'v = xc if the ith virtual machine or vth hypervisor is re-started 

(rejuvenated) at the jth re-start 

= —tf j  4- (tij + x)c if the ith virtual machine or vth hypervisor is not 

re-junivated at the jth re-start. 

One can obtain the reliability model of a Cloud computing system, including 

virtual machines or hypervisors, from Equation (5.17). 

S/ysM = RJ(x) • R/M, (5.17) 

where Rj(x) can be obtained from Equations (5.3), (5.4), (5.5), or (5.6). The PDF of 

system reliability, fys(x), can be readily obtained from Equation (5.17) by differentiating 

-Rjys (x) with regard to x. 

The system failure rate is given by: 

-isys _ fsys(x) 
A i  ~  Rf s {x )  •  

The MTTF can be express as: 

Esy'ix) = Jj°x * fsys(x)dx. (5.19) 

5.6 Numerical Result Examples for The Proposed 
Cloud Reliability Model 

This section demonstrates by examples, for k = 3 and n=\2, the effect of survival 

time (T) and parameter values for joint node failures (Ai;- J on system reliability for the 

four cases, Equations (5.3), (5.4), (5.5) and (5.6), in Figure 5.2 and on the failure rate 

(Equations (5.11), (5.12), (5.13) and (5.14)) and MTTF, Equation (5.15) in Figure 5.3. 

The case of an all-to-all communication of MPI applications is considered where every 

process sends information to every other process. If the data from a particular process 
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could not reach other processes, every other process has to wait, and thus all fail together. 

In this case, the joint parameters reduce to only one parameter (y12 ...n )• An example is 

used where job run length (x) equals 100 hours and the node parameters A1,Z2, A3, = 

0.00005, the 2-node joint parameters A12, A13,A23 = 0.00 0 05, the 3-node joint 

parameter A123 = 0.00003, C= 1.5, the 2 software-component joint parameters 

Yi> —>Yi2 = 0.00003, the 3 software component joint parameter y123 = 0.0007, 

and the hypervisor and VM parameters 1=0.00001. It is obvious from the reliability 

Equations (5.3), (5.4), (5.5) and (5.6) that when the system has failures that are correlated 

it becomes less reliable. Moreover, when the joint failure rates (Ay...) increase, the 

reliability of the system decreases. This implies that a system with independent nodes 

(Xij , Yij..= 0) is more reliable than one where the nodes are correlated in failure. 

Furthermore, reliability of the system decreases as the survival time T increases, as 

demonstrated in Figure 5.2. 

Figure 5.3 shows that the failure rate increases as the joint parameters (A^.y^.J 

increase in value or the survival time increases. Figure 5.4 shows, as expected, that the 

MTTF decreases when the parameters for joint failure (A^ , y£; ) increase or as the 

survival time T increases. 

Figure 5.5 shows the Cloud system reliability as function of nodes. As the number 

of nodes increases, the reliability decreases. Figure 5.6 shows the Cloud system failure 

rate when the number of nodes increases. The failure rate increases when the system has 

more nodes. Figure 5.7 shows the Cloud system MTTF. When the number of nodes 

increases, Mean time to failure decreases. Also, when adding more components and the 
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failures of components have correlation, the system becomes less reliable. That means 

less reliability, more failure rate, and shorter MTTF. 

Cloud System Reliability 
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Figure 5.2 Cloud System Reliability, with k= 3 and n= 12, for the four scenarios in 
Equations. (5.3) - (5.6). 
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Figure 5.3 Cloud System Failure Rate, with k= 3 and rv= 12, for the four scenarios in 
Equations. (5.11) - (5.14). 
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Figure 5.4 Cloud System MTTF, with 3 and n—12, for the four scenarios. 
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Figure 5.5 Cloud System Reliability as function of the number of nodes (k ) .  
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Figure 5.6 Cloud System Failure Rate as function of the number of nodes (k). 
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Figure 5.7 Cloud System MTTF as function of the number of nodes (k). 

5.7 The Expected Completion Time with Checkpoint/Restart 

There are studies on the implementation of checkpoint/restart [83], [84] for MPI 

applications in a Cloud environment. This section proposes a checkpoint/restart model 

and utilize the reliability information from the four scenarios described above in the 
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checkpoint model. Figure 5.8 illustrates the checkpoint scheme used. Here, Tre is re

computing time, Trt is recovery time, C is checkpoint cost, CI is checkpoint interval, and 

TTF is the time to failure of the system. The following equation gives the expected 

completion time. 

Wck] ~ Tfree + C*N + W, (5.20) 

where Tck is the completion time, W ~ * (E[Tre] + Trt ) , Tfree is the fault-

free execution time, MTTF is the mean time to failure, and N is the number of 

checkpoints. 

CT7VT Failure 

ci- 're 

Figure 5.8 Parameters of a checkpoint model. 

The parameters that are defined are based on the work in [24]. The expected job 

completion time, E[Tck] , can be obtained from fault-free execution time and Wasted 

time, CN+W. From Figure 5.6, it is seen that the re-computing time can be expressed as: 

Tre = TTF - [^j * CI. (5.21) 

By taking expectation, users can obtain 

E[Tre\ = E[TTF] - E[ ]* CI, (5.22) 

where TTF is time to failure, CI is checkpoint interval, and 

*«'><"• (5'23) 



To find the waste time, the PDF and MTTF are used for the four scenarios described in 

Section 5.3. An example of an application that runs on 12 VMs and 3 physical machines 

is considered and assumes that hardware and software are independent of each other. The 

parameters that are used for PDF and MTTF are the same as in Section 5.6 for the case k  

= 3, and n= 12. Also, Trt,C and CI were assumed to be 40 seconds, 20 seconds, and 5 

hours, respectively. 

Figure 5.6 shows the waste time (CN + W) as a function of the Fault-free job 

execution time. The different waste time of each cases comparing with the both software 

and hardware independent failures is about 15% for correlated software failures and 

independent hardware failures, 36% for independent software failures and correlated 

hardware failures, 47% for both hardware and software correlated failures. As can be 

seen, the smallest waste time is in the case when both the system software and hardware 

components are independent. This is due to the fact that the system is more reliable when 

the system components fail independently. The largest waste time is for the case when 

one has correlations among software as well as among hardware. 

5.8 Conclusion 

Reliability information is important for improving Cloud computing system 

utilization. In order to mitigate the interruption of an application because of a failure, it is 

of importance to know how the reliability, failure rate, and mean time to failure of a 

Cloud computing system are affected by joint node failures. Many studies have shown 

the existence of failure correlations among nodes in computer systems [39] and [47]. In 

this chapter, reliability models are proposed that consider software and hardware 

components, which account for joint failures among nodes as well as VMs, and 
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developed the reliability, failure rate, and mean time to failure of a system based on k  

nodes and s VMs. Four major cases are considered that are combination of software and 

hardware failure correlation. Also, discussed is the reliability model for the case where 

VMs and Hypervisors exhibit an aging effect. The waste time derived for each of the 

four reliability scenarios is presented in Figure 5.9. Results show that if failures in the 

system possess a degree of dependency, the system becomes less reliable. 
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Figure 5.9 Waste Time versus Fault-Free Job Execution Time in Cloud System. 



CHAPTER 6 

AN ECONOMIC MODEL FOR CLOUD 
SERVICE PROVIDER 

For Cloud service providers, profit maximization and customer satisfaction are 

the concerns. How to price and how large a data center is needed are important factors to 

their profit. This chapter presents an economic model for a Cloud service provider to 

maximize their profit and provide the information for their decision making for price of a 

VM hour and how large the system should be. This model also accounts for several 

different qualities of services. 

6.1 Introduction 

Cloud service providers offer resources and services over the Internet to users 

who pay for an amount of usage as if it were a traditional public utility, such as electric 

power and water. By utilizing the services of Cloud service providers, individual users or 

enterprises do not need to invest into large in-house computing resources. Due to the 

virtualization technology, enterprises can outsource excessive jobs by running on Virtual 

Machines (VM) in third-party computing resources. This allows them to scale up or down 

the amount of resources as needed and pay for only the time they use. 

As demand for Cloud computing is increasing dramatically, new opportunities are 

created for running a Cloud business. To maximize profits, one has to be able to estimate 

the demand of the market in order to gain revenue and minimize cost. Based on supply 
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and demand [85], if the company sets the price lower than market price, it can, in 

principle, increase its sales. On the other hand, if the price is set too high, sales may 

diminish. Hence, a good pricing strategy is important for increasing revenue. A 

successful pricing strategy can lead to a significant increase in profit [86]. If one can 

understand the demand of Cloud computing, one can define the right price to gain market 

share and increase revenue. 

Another factor that impacts the profit of the Cloud service provider is cost. To 

understand the cost of a Cloud service provider, total cost of ownership (TCO) [62] is 

used in the analysis. The total cost of ownership analysis considers direct and indirect 

cost of owning a business over its life span. The direct cost consists of equipment and 

infrastructure cost, such as server, network, facility, etc. The indirect cost includes power, 

cooling, license, etc). When one understands the TCO, one can decide on the right size of 

a Cloud system based on demand in order to maximize profit. 

This chapter proposes an economic model for a Cloud service provider, based on 

revenue and cost, by considering computing resources charged to customers over time. A 

logit model is considered for revenue analysis, and the total cost of ownership is used to 

analyze the cost of a Cloud system. Also considered is a Service Level Agreement (SLA), 

which guarantees a certain availability level and applies a probabilistic model to calculate 

the expected penalty cost when a Cloud service provider cannot meet the guaranteed 

level. 



6.2 Economic Cloud Model 

6.2.1 Revenue 

Price influences the behavior of customers. If Cloud providers can set the right 

price, they can get higher revenue, and hence more profit. A typical pricing in Cloud 

services is directly related to the VM hours that Cloud system provides. If they can define 

the demand function of their company or market-share function, they can define the right 

price in order to have higher revenue. The revenue over a certain time period can be 

computed as: 

Revenue = Price * Quantity , (6.1) 

where in Equation (6.1) Quantity is the number of VM hours that run on the Cloud 

system and Price is that per VM hour. It is seen from Equation (6.1) that that the total 

revenue is determined by the demand function. A Cloud provider can choose either price 

or quantity. From the demand function shown in Figure 6.1, if the Cloud provider sets a 

price, he or she will know the number of VM hours. On the other hand, if a provider 

wants to sell a certain quantity (the number of VM hours), the Cloud provider has to set 

price according to the demand function. In this work, three services with different 

availability are considered. Three demand functions are utilized based on each service 

with a different price. 

A logit model is commonly used for representing a demand function [87] or 

customer behavior [88], as shown in Figure 6.1. The logit model is the model of choice 

used to model customer behavior in the market. When a company sets its price very high, 

it can sell only to its loyal customers. Hence, setting the price at a high level will not 

change the quantity that they can sell by a significant amount. On the other hand, when 
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one sets the price very low, one will gain considerably from demand. Changing the price 

at a low level will not affect the change in demand. However, if the company sets the 

price around the market price or the standard price, the demand will change dramatically. 

The logit model is given as: 

D(p) = C * exp{-(a + bp)}/(l + exp{—(a + bp)}), (6.2) 

where p is price, a, b, C are parameters with C >0 b>0, a can be either less than or more 

than 0, C refers to the maximum quantity of the market-share of that firm or the market 

size. The market price is approximately equal to —a/b. Therefore, the total revenue can 

be calculated by the formula 

Total Revenue = p*D(p) , (6.3) 

where D(p) is the number of VM hours. 

Demand Function 
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Figure 6.1 Logit demand function 
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6.2.2 Cloud Cost Analysis 

Cloud TCO is defined in [62] as the cost spent for owning the Cloud system over 

its life span. It includes the cost of acquiring the Cloud system and operating it. The cost 

will be classified into eight categories according to [62]: server, network, software, 

power, cooling, facilities, real estate, and support and maintenance. In the model that is 

presented here, quantity is considered to be the number of servers. A server can run a 

certain amount of Virtual Machines (VM), called VM density [62]. This study is different 

from other studies in the literature [62] in that it considers costs due to system failure and 

repair, to maintain a certain level of availability, and to penalty cost for failing to meet 

the SLA. In the following, all the costs considered in the model are described. 

Server Cost 

The Cloud has usually homogenous servers tied into racks. The total cost of 

servers includes the original service price plus the upgrade cost to avoid performance 

degradation in a competitive market. The server cost per rack is considered. Server cost 

can be computed as: 

Scost = Nserv* ServC + Upgradecost*years, (6.4) 

where Nserv is the number of servers, ServC is a unit server cost, Upgradecost is upgrade 

cost per year. In the server cost, the upgrade cost (Upgradecost) was considered to be of 

importance. The upgrade cost is defined as follows: 

Upgradecost = Nserv *ServC*percent, (6.5) 

where percent is 0-100% of server cost. 
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Network Cost 

The network cost is mainly the switch cost. The number of switches is based on 

the number of ports that are needed from the servers. A server can have more than one 

network interface card (NIC). An NIC may have more than one port. Therefore, network 

cost is defined as: 

Ncost = SwC*Nswitch, (6.6) 

where SwC is unit switch cost and Nswitch is the number of switches calculated as: 

Nswitch = Nport*Nnic* Nserv /NSWport, (6.7) 

where Nport is the number of ports per NIC, Nnic is the number of NIC per server, 

NSWport is the number of ports in a switch. 

Software Cost 

The software cost is mainly the cost for the license. There are Operating systems 

costs for VMs and Software costs for managing VMs. The operating system cost is 

applied per VM. Managing software is licensed by the number of processors in the 

system. Therefore, the software cost is 

SoC = Nvm*Oprice + Npps*SUprice* Nserv, (6.8) 

where Nvm is the number of VMs, Oprice is the license price per VM. Npps is the 

number of processors per server, SUprice is software unit price per processor used for 

management of VMs. 

Power Cost 

The power cost is considered per server. In the current model, the power cost is 

calculated by: 

PowC = Nserv *Powpr*v , (6.9) 
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where Powpr is the power consumption required per server and v is the electric utility 

cost (kWh). 

Cooling Cost 

The cooling cost is the power consumption used for cooling the system. In this 

model, cooling cost is calculated by: 

CoolC = Nserv *Powpr*Powpw*v, (6.10) 

where Powpw is the power consumption of cooling 1W of heat from the equipment. 

Facilities Cost 

Facilities cost is the cost paid for equipment such as KVM switch and cables. 

They are attached to racks. The facilities cost is calculated by: 

FacC = Cfac*Nrack, (6.11) 

where Cfac is cost of facilities per rack and Nrack is the number of racks in the system. 

Real Estate Cost 

Real estate cost is the cost spent for leasing a room required for hosting the 

servers. Real Estate cost (REC) is computed by: 

REC = Csq* Sqr. (6.12) 

Here, Csq is cost per square foot per year and Sqr is the number of square feet needed 

by the Cloud system. Sqr is calculated as: 

Sqr = Nrack* SqRack , (6.13) 

where SqRack is the space in square feet needed by a rack. 

Support and Maintenance Cost 

This cost comes from the salary of the IT staff, performance maintenance, system 

configuration, and training. Support and maintenance cost is given by: 
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SupC = Salary + training + CSLA + RC + AVC, (6.14) 

where Salary is the wage of all IT staff members. 

Salary = wage*Nrack/rpIT, (6.15) 

where wage is the salary per IT staff and rpIT is the number of racks that an IT staff 

handles. 

Training is the cost spent for training the IT staff, CSLA is the cost spent for 

penalty due to Service Level Agreement (SLA), repair cost (RC) is cost due to failures in 

the Cloud and A VC is the cost of preparing the system for a certain level of availability. 

To approximate the repairing cost, it is assumed that the server time to failure (x) 

follows a gamma distribution (T(ki,Si)) and failures are independent [44], The gamma 

distribution fits well the TTF of HPC systems, [47], [46] and has a useful property in that 

the sum of independent gamma random variables is also a gamma random variable. 

Hence, the repair cost (RC) can be calculated by: 

RC = HS", NFt *AC > (6-16> 

where AC is average repair cost per failure and NF is the expected number of failures per 

T 
server. The expected number of failures can be obtained as E[-], where T is the lifespan 

T 
of the Cloud and x is the time to failure of a server. E[-] can be approximated using the 

Taylor series expansion at a=/j. 

^  -%(•*-*> +  pC J C - ^ 2 ]  =  ;  +  l ! ? : £ 2 -  < 6 - 1 7 >  

Here, (i is mean time till failure and can be obtained from the gamma distribution. 

Cloud customers may require different system availabilities. For example, 

mission critical applications may need 99.999% availability, while other not so critical 

applications may require a lower availability level. Cloud service providers have to 
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engineer the process of repair time in order to meet a given level of availability. The costs 

that are usually encountered are the cost for reducing time-to-repair, the cost for 

redundant equipment such as servers and switches, and the cost for hiring and training. 

Scott [89] has shown that a higher cost is associated with achieving higher levels of 

availability. He also showed that cost rises exponentially with an increase in the 

availability level. This work follows Scott [89] in assuming an exponential relationship 

between availability and cost, as shown in Figure 6.2. 
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Figure 6.2 Exponential cost rise with an increase in availability level 

The availability cost for each availability level is calculated as follows: 

AVC = exp{availability level} *HAC , (6.18) 

where availability level is the level of availability such as 99.999, 99.99 or 99.95, as 

shown in Figure 6.2, HAC is the highest availability cost for engineering the Cloud 

system to have a 99.999% availability. To achieve 99.999% availability, one has to have 

redundant servers and sufficient well-trained IT staffs. Therefore, HAC is a cost to the 

system, which considers redundant server cost (RScost), availability software cost 
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(ASoC), additional switch cost (NCost) for redundant server, additional IT Staff (salary) 

cost, training cost, additional facility cost, and additional space cost (AREC) (for 

redundant servers). HAC is computed by: 

HAC = Nserv *RScost + ASoC + NCost + salary + training + AREC+FacC +SpaceC+ 

PowC+CoolC, (6.19) 

Availability software is the module that manages server redundancy for maintaining a 

certain level of availability in a Cloud system. Availability software cost (ASoC) is 

calculated by: 

ASoC = Npps*ASUprice* Nserv, (6.20) 

where Npps is the number of processors per server, and ASUprice is availability Software 

price per processor. 

For penalty cost, SLA is used for guaranteeing the satisfaction of a Cloud 

customer. Quality (throughput and response time) [90] and reliability [29], [31] of Cloud 

services are the main concern. Cloud service providers such as Amazon EC2 and 

Rackspace guarantee certain availability for customers. If availability is less than the 

point they claim, customers receive service credit back. Therefore, this analysis 

approximates the cost coming from SLA due to refunds to customers as a result of failure 

to meet the guaranteed level of availability. 

Availability is uptime divided by the total operation time. Given A% availability 

of a VM, one can calculate downtime (/) per year. If downtime exceeds t hours per year, 

then the Cloud provider would encounter cost due to customer refunds. Therefore, one 

wou ld  l i ke  t o  know the  p robab i l i t y  (P D )  t ha t  t he  to t a l  downt ime  in  a  yea r  i s  more  than  t  
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hours (that is the probability of encountering costs due to refunds). One can calculate this 

probability for a VM as follows: 

PD = Z£i(l " P|Xr < t]} * P[N(y) = r] , (6.21) 

where r is the number of failures, Tr is the sum of repair times (tx +...+ tr), and N(y) is 

the number of failures in a year interval. Assume that repair time follows a gamma 

distribution T(a, (3) [91]. Hence, Tr is the sum of r independent gamma random variables. 

Therefore, TR has a gamma distribution, r(r*a, (3). Hence, one can compute P[TR < t] 

from T(r*a, p). It is assumed that time to failure (TTF) follows a gamma distribution 

[47]. Hence, 

P[N(y) = r] = e- '»  ± .  (6.22) 

In practice, the gammas parameters a, P can be estimated from data on repair time. Also, 

the parameters a and s can be estimated from data on time to failure of a server. 

The expected penalty cost due to customer refunds (CSLA in Equation (6.14) is 

calculated by: 

CSLA = jNservNvm po_ * (6 23) 

where SC is the service credit that is refunded to customers when availability of the VM 

is less than A%, and Nvm is the number of VMs that run on a physical machine. 

Total cost is the summation of eight costs over the lifetime of the Cloud. This can be 

expressed as: 

Total cost = Scost + Ncost + SoC + PowC + CoolC + FacC + REC + SupC (6.24) 

The cost of a VM hour can be calculated by: 

R = Cost/Total capacity, (6.25) 

where Total capacity is calculated by: 



Total capacity = D(p) * lifespan, (6.26) 

where D(p) is the number of VM hours that the system run in a year. 

6.3 Analysis and Result 

This section shows with an example how to maximize the profit, based on 

demand and cost analysis, by choosing the right price and right size of a Cloud. After 

revenue and cost are analyzed, profit can be calculated from the following formula 

Profit = Revenue - Total Cost, (6.27) 

where Revenue is from Equation (6.3) and cost from Equation (6.24). Revenue as well as 

cost were calculated for each of the availability levels in Figure 6.3. In this Figure, the 

number of servers was determined by the level of demand in VM hours, (D(p)) for a 

given price, p. The number of servers was then used to determine the total cost from 

Equation (6.24). 

To maximize profit, one can readily determine the number of servers that 

maximizes the difference between total revenue [p(D(p)] and total cost over the lifespan 

of a certain number of years. 

Revenue and cost are considered over five years. Also considered are three types 

of services that have different Quality of Service (QoS), which guarantee 99.999%, 

99.99% and 99.95% availability. It is assumed that the maximum market share (C) of the 

Cloud provider is l.OxlO8, 1.25xl08, and 1.5xl08 VM hours per year and the market 

price is $0.20, $0.15, and $0.10 per VM hour [63] for each of the availability levels, 

respectively. The server capacity is considered as the quantity in Eq (6.1). For the Cloud 

cost analysis, a 42 1U compute blade racks is assumed. A dual-processor compute blade 

server costs $2,000 [63]. The upgrade cost is equivalent to the original server cost [63]. 
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Also, the redundant server cost was 1.5 times the original server cost and the number of 

VM per server was 12. It is estimated that a server requires 0.6 kW to operate, and 0.6 W 

for cooling. It is assumed that it requires 1W to cool 1W of heat from the equipment 

(Powpw). A rack needs around 20 square feet (SqRack), which costs approximately $400 

per square foot (Csq) [62]. A server has 2 NICs and each NIC has 2 ports. A 48-port 

Gigabit Router costs around $3,000. For the software cost, it is assumed that the Cloud 

uses Linux-based operating systems in VMs. The managing software cost and availability 

software per processor is $100. Four racks per IT staff are assumed. The salary for an IT 

staff is $5,000 a month. Training an IT staff per year costs $250. Repairing cost is 

calculated by Cost per time ($200) [92], [48] multiplied by the number of failures. Mean 

time-to-failure (MTTF) is 2184 hours with variance equals to 1657 [46]. No downtime is 

assumed for 99.999% availability service because of redundancy. Mean-time-to-repair is 

7.5 and 30 minutes for 99.99% and 99.95%, respectively. 

Results are presented in Figure 6.3 for each service level agreement. Figure 6.3 

shows revenue and cost for each availability level. Revenue is based on price and the 

quantity (number of VMs) from the logit demand function in Equation (6.2). When 

quantity is high, the price is low. Therefore, the revenue is less at high quantity. Cost is a 

linear function because it is based only on the number of servers. When the number of 

servers increases, the cost increases. To find the number of servers that maximizes the 

profit, one chooses the number that maximizes the difference between revenue and cost, 

Figure 6.3. For 99.999% availability service, the maximum profit is attained for 798 

servers with a price of $0,182 per hour and a cost of $0.11 per hour. For 99.99% 

availability service, 840 servers give the maximum profit with a price of $0. 143 per hour 
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and a cost $0.0773 per hour. For 99.95% availability service, the profit is maximized 

with 1004 servers and a price of $0. 8919 per hour with a cost of $0,052 per hour. 
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Figure 6.3. Total revenue \pD(p), Equation (3)] versus total cost (Equation (24)) with 
99.999, 99.99, and 99.95% availability level. 

Figures 6.4 (a) and (b). present price per VM hour and number of servers that 

maximize profit for a given server cost and 99.95% availability. Figure 6.4 (c) shows the 

maximum profit (total revenue - total cost) for a given server cost for 99.95% 



availability. Figures 6.5 (a) and (b) present price per VM hour and number of servers that 

maximize profit for a given server cost and 99.99% availability. Figure 6.5 (c) shows the 

maximum profit (total revenue - total cost) for a given server cost for 99.99% 

availability. Figures 6.6 (a) and (b) present price per VM hour and number of servers that 

maximize profit for a given server cost and 99.999% availability. Figure 6.6 (c) shows 

the maximum profit (total revenue - total cost) for a given server cost for 99.999% 

availability. As seen from these graphs, as cost per server increases, the number of 

servers that maximizes profit decreases, price per VM hour that maximize profit 

increases, and maximum profit decreases. This analysis helps a Cloud service provider 

determine price per VM hour and number of servers that would maximize profit, given a 

certain cost per server. For instance, for 99.95% availability shown in Figure 6.4 (a), (b), 

and (c), if server cost increases from 1,000 to 2,000 where the slope of price per VM hour 

and the number of servers are flat, the Cloud service provider should keep the same price 

per VM hour as well as the same number of servers in order to maximize profit. Notice, 

however, that maximum profit for $2000 cost is less than that for $1000 cost. 
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Price per VM hour vs server cost for 99.95% 
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Figure 6.4 a, b, and c. (a) Price per VM hour that maximizes profit for a given server 
cost for 99.95% availability, (b) the number of servers that maximizes profit for a given 

server cost for 99.95% availability, (c) Maximum profit (revenue - total cost) for a given 
server cost for 99.95% availability. 
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Price per VM hour vs server cost for 99.99% 
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Figure 6.5 a, b, and c. (a) Price per VM hour that maximizes profit for a given server 
cost for 99.99% availability, (b) the number of servers that maximizes profit for a given 

server cost for 99.99% availability, (c) Maximum profit (revenue - total cost) for a given 
server cost for 99.99% availability. 
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(a) 
Price per VM hour vs server cost for 99.999% 
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Figure 6.6 a, b, and c. (a) Price per YM hour that maximizes profit for a given server 
cost for 99.999% availability, (b) the number of servers that maximizes profit for a given 

server cost for 99.999% availability, (c) Maximum profit (revenue - total cost) for a 
given server cost for 99.999% availability. 

6.4 Conclusion 

Finding the right size and the right price is crucial for a Cloud service provider. 

The right sizing and right pricing of the Cloud is based on revenue and cost analysis. 



Pricing is closely related to revenue. If the providers define the price per VM hour higher 

than the market price, fewer customers are willing to pay. On the other hand, if the price 

is very low, the cost will exceed the revenue. How to price a VM hour is important. The 

Total Cost of Ownership is a tool used to analyze the cost of owning the Cloud. 

This chapter proposed an economic model for Cloud service providers that can be 

used to maximize profit based on choosing the right sizing in the Cloud data center for 

three different qualities of service. In addition, customer satisfaction can be explored as 

part of the future model. The demand is based on a logit model. TCO analysis is divided 

into eight categories: server, network, software, power, cooling, facilities, real estate and 

support and maintenance. The results show how to obtain the maximum profit based on 

right pricing and right sizing. This work can be extended by considering revenue from 

charging for storage and data transfer. 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

HPC and Cloud computing are mainstream systems that have increasingly 

gained popularity in scientific and business community. The rise in computing 

demands and speeds for scientific and knowledge discovery requires new 

computing systems that are growing larger into peta-scale or even in exa-scale in 

the near future. When a large number of computing components work together, 

failures frequently occurs. In order to deal with failures, failure behaviors in such 

systems need to be studied and well-understood. In addition, there are also fault 

tolerant techniques, for instance checkpoint/restart, redundancy, or live migration to 

handle the failures. However, to use these fault tolerant techniques efficiently, 

failure behaviors, such as reliability function, mean time to failure or failure rate, 

must be taken into consideration during operation in the large scale environment. 

This dissertation presents an improved reliability model for HPC 

applications in an HPC system and a Cloud computing system. The main 

contribution is a development of the first reliability model with correlated failures 

in a A>node system, which is an idea extended from an independent case into 

correlated failures. This dissertation also proposes the univariate parameter 

estimation technique for Marshall-Olkin Multivariate Weibull distribution that can 
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easily estimate the parameters when a particular system has a large number of 

nodes while the existing EM parameter estimation does not easily extend for more 

than four components or computing nodes. Then, expressions are derived for the 

probability of system failure at any time t, for the failure rate, and for the mean time 

to failure. This work validates the reliability model by using log data from Blue 

Gene/L system at LLNL. The result shows that when the particular system posses 

the degree of dependence, the system become less reliable. Secondly, the proposed 

work extends the idea of the reliability model with correlation failures of an HPC 

system to model that of a Cloud computing system by modeling the software 

components using Marshall-Olkin Multivariate Exponential distribution. The 

empirical result shows that if failures of hardware and software behave 

dependently, it decreases the system reliability. Finally, this dissertation develops 

an economic model for Cloud service providers for their decision making in order 

to maximize profit. As such, the pricing strategy is very vital. How to price to 

maximize profit is then investigated. Cost is another important factor in profit. 

Thus, Cloud TCO helps to analyze the cost. In this work, analysis of the failure cost 

and the penalty cost for different needs of High Availability (HA) services are 

included in Cloud TCO. The result enables Cloud service providers to decide the 

right pricing and rightsizing strategy for the Cloud data center. 

This dissertation can be further extended in several ways. The reliability 

models with correlated failures both in HPC and Cloud systems can be improved 

for the nodes in the system that employs redundant components. Moreover, this 

work can also be considered as to how it accounts for different failure dependent 
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behaviors. For example, the failures in one node increase the probability of failures 

in other nodes. In Cloud economic model, revenue and cost for data transfer and 

storage can be enhanced in the model. Furthermore, analyzing the economic aspect 

for other Cloud platforms such as Software-as-a-Service and Platform-as-a-Service, 

which account for the cost parameters such as for application maintenance or 

development environments, is another potential extension for this work. 
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