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ABSTRACT 

The coupled oscillator model has previously been used for the simulation of 

neuronal activities in in vitro rat hippocampal slice seizure data and the evaluation of 

seizure suppression algorithms. Each model unit can be described as either an oscillator 

which can generate action potential spike trains without inputs, or a threshold-based unit. 

With the change of only one parameter, each unit can either be an oscillator or a 

threshold-based spiking unit. This would eliminate the need for a new set of equations for 

each type of unit. Previous analysis has suggested that long kernel duration and 

imbalance of inhibitory feedback can cause the system to intermittently transition into 

and out of ictal activities. The state transitions of seizure-like events were investigated 

here; specifically, how the system excitability may change when the system undergoes 

transitions in the preictal and postictal processes. Analysis showed that the area of the 

excitation kernel is positively correlated with the mean firing rate of the ictal activity. 

The kernel duration is also correlated to the amount of ictal activity. The transition into 

ictal activity involved the escape from the saddle point foci in the state space trajectory 

identified by using Newton's method. 

The ability to accurately anticipate and suppress seizures is an important endeavor 

that has tremendous impact on improving the quality of lives for epileptic patients. The 

stimulation studies have suggested that an electrical stimulation strategy that uses the 

intrinsic high complexity dynamics of the biological system may be more effective in 

iii 
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reducing the duration of seizure-like activities in the computer model. In this research, we 

evaluate this strategy on an in vitro rat hippocampal slice magnesium-free model. 

Simulated postictal field potential data generated by an oscillator-based hippocampal 

network model was applied to the CA1 region of the rat hippocampal slices through a 

multi-electrode array (MEA) system. It was found to suppress and delay the onset of 

future seizures temporarily. The average inter-seizure time was found to be significantly 

prolonged after postictal stimulation when compared to the negative control trials and 

bipolar square wave signals. The result suggests that neural signal-based stimulation 

related to resetting may be suitable for seizure control in the clinical environment. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Overview 

Epilepsy is a common neurological disorder affecting up to 1% of the world's 

population and may be caused by head injuries, high fever, low blood sugar level, 

poisoning, drug overdose, infection, or other genetic factors (Buck et al., 1997; Merlin, 

2009; Cockerell, 1996; Netoff et al., 2004; Kamali et al., 2004). Seizures are transient 

interruptions of brain function caused by abnormal temporal and spatial coherent firing of 

a neuronal population, lasting from a few seconds to a few minutes (Chiu et al., 2006a). 

Approximately 30% of all the patients suffering from epilepsy are intractable towards 

antiepileptic drug (AED) treatments (Schmidt & Loscher, 2005). Non-responders to AED 

may be treated with surgical resections. Surgeries can be performed to resect areas of the 

brain where seizures originate, or to create a series of incisions to prevent seizures from 

spreading to other parts of the brain. For those not eligible for surgeries, the ability to 

anticipate seizures and provide potential treatments in the form of electrical stimulation is 

at the forefront of epilepsy research (Fisher et al., 2010; Lehnertz et al., 1998; Morrell, 

2011; Stacey & Litt, 2008). The development of such a system could greatly enhance the 

quality of life of patients, providing them with early warnings of impending seizures, and 

automatic interventional therapy for the prevention of seizure episodes. 

1 
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A typical seizure event is indicated by the occurrence of low complexity, possibly 

rhythmic paroxysmal (LPR) electrical discharges called the ictal activity (Babloyantz & 

Destexhe, 1986; Lehnertz et al., 1998; Nair et al., 2009). High complexity is possibly 

chaotic (HPC) electrical brain activities that occur between the ictal events are the 

interictal regions. Multiple preictal states may exist between the interictal and ictal 

activities, which could potentially be used to develop seizure anticipation algorithms and 

may require different stimulation techniques depending on their proximities to the ictal 

onsets (Chiu et al., 2011; Colic et al., 2011). 

The motivation of my dissertation is to improve upon previous research on seizure 

modeling and seizure stimulation which can be useful for current epilepsy therapy. In this 

case, biological signals from rat hippocampal brain slices with seizure-like activity were 

obtained and used to provide parameter values for a modified computational seizure 

model. The computational model was then used to identify firing patterns that were used 

to mitigate seizure activity in rat brain slices. 

1.2 Research Objective 

The brain signal generated during a seizure is different from that generated under 

normal conditions, so databases of electrical signals for both seizure and normal activity 

were acquired. After that a modified seizure model was created based on these 

electrophysiological signals, and then a control method for seizure suppression was 

developed based on the computational model output (Figure 1-1). 
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Figure 1-1: Schematic of Research Plan: Incorporate the biological data into the 
computational model and use the negative control strategy to test the hypothesis. 

One goal of this research was to quantify the model parameters related to the 

network excitability during transitional dynamics between interictal and ictal activities. 

The kernel duration and amplitude were evaluated as the electrical activity in rat 

hippocampal brain slices (in vitro model) underwent different stages of preictal activities, 

as well as the return to interictal activity through the postictal process. 

Several computational models were used and modified in this work. First, a 

modification was made to the Cognitive Rhythm Generator (CRG, Zalay & Bardakjian, 

2009; Zalay et al., 2010) of seizure like activity (SLE). This model is robust and versatile 

because each model unit can become either an endogenous oscillator or a threshold-based 

spiking unit by adjusting a single model function variable. This is relevant to SLE 

transitions, providing a variant of the labile CRG previously proposed by Zalay and 

Bardakjian (2009). The probability distributions of the self-organized criticality property 

from human epilepsy patients have been reported and can be expressed as integrate-and-

fire oscillator networks (Worrell et al., 2002), which may also be an emergent property of 

the coupled oscillators. One proposed physiological mechanism of epileptogensis 

involves a gradual transformation from a normal threshold-based to a hyperexcitable state, 

which may involve sprouting of axonal collaterals leading to reverberating, or self-
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reinforcing oscillatory circuits (Bromfield et al., 2006). This transition may be easily 

captured and the current model can provide another simulation platform for the 

evaluation of future stimulation protocols on spontaneous as well as evoked seizures. 

Second, a modified Kolmogorov-Smirnov-based statistical test (Fasano & Franceschini, 

1987) was used to compare the dynamics of the biological data at different stages of 

SLEs and the simulated system outputs. Third, the reconstructed state space distributions 

of the in vitro experimental data undergoing SLE progression were compared with the 

simulated CRG network outputs at different system excitation levels on a slice-by-slice 

basis. This was necessary because a great deal of subject-to-subject spatial differences 

exist, as well as temporal variability, in the manifestation of seizure activities. 

The next goal of this work was to evaluate and develop feedback control 

strategies to suppress or reduce the occurrence of seizures based on the improved 

computational model described above. Seizure anticipation algorithms (Zalay et al., 2010) 

in conjunction with responsive stimulation feedback control strategies (Colic et al., 2011; 

Wagenaar et al., 2005) for the suppression of seizures has been in the forefront of seizure 

research for many years. The mechanism of this kind of feedback is to maintain the 

normal activity of the neuronal networks when state transitions into seizures are detected. 

Many kinds of stimulation strategies have been proposed and tested, such as controlled 

pulse stimulation (Albensi et al., 2008) and high-frequency stimulation (Su et al., 2008). 

Most recently, the use of the high complexity dynamics of the biological interictal data as 

a responsive stimulator has shown great promise in a computer simulation study (Colic et 

al., 2011). 
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In conclusion, the objectives of this dissertation (Figure 1-1) are: (1) Improve and 

validate our computer simulation model based on the signals recorded from the rat brain 

slice: Task #1: Record the neuronal seizure-like activities using a whole-cell patch-clamp 

technique from the single neuron on the CA1 region of the rat's hippocampus; Task #2: 

Model a four-neuron network under different seizure conditions; Task #3: Carry out data 

analysis/validation using experimental data. (2) Design and validate a computational 

model based stimulation method to control seizure-like activities: Task #1: Design the 

stimuli from our seizure model outputs; Task #2: Apply our seizure control method to the 

hippocampal slice and record the output signal; Task #3: Evaluate the validity of the 

seizure stimulation results. 

1.3 Dissertation Organization 

Chapter One gives a general description of the research objectives in this 

dissertation. 

Chapter Two introduces the main literature regarding the seizure characteristics in 

the rat hippocampal slice, particular models that represent the neuronal activities as well 

as previous works on the seizure control methods. 

Chapter Three describes all the methods used in this dissertation including in vitro 

data acquisition, in vitro slice seizure model, the computational seizure model, seizure 

stimulation tools, and statistical analysis. They were applied to accomplish the tasks of 

seizure activities modeling and seizure-like event (SLE) stimulation. The statistical 

analysis helps to test the significance. 

Chapter Four describes how the cognitive rhythm generator model was used to 

obtain various patterns of seizure-like activities under different conditions. The seizure 
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model output is matched to the data collected from in vitro slice seizure data. Statistical 

significance was defined as p<0.05 using students' t-tests (two-tailed, two-sample with 

equal variance). Results from Sections 4.1-4.3 have been published in Journal of Network: 

Computation in Neural Systems. Results from Section 4.4-4.5 will appear as a juried 

conference paper in IEEE EMBS Annual International Conference Proceedings 2012. 

Chapter Five discusses the computational model in detail and points out the 

advantage and disadvantage of this modified GRG SLE model. It also discusses the 

limitation of the seizure control strategy and the potential significance for seizure cure 

therapy. 

Finally, Chapter Six summarizes the dissertation research and suggests future 

research. 



CHAPTER 2 

BACKGROUND 

Chapter Two introduces the main literature regarding the seizure characteristics in 

the rat hippocampal slice, particular models that represent the neuronal activities, and 

previous work on the seizure control methods. 

2.1 Seizure Characteristics 

2.1.1 Epilepsy and Seizure Disease 

Brain diseases affect brain control function which controls memory, learning, speech, and 

movement. Epilepsy is one of the most common mental diseases. It happens to 1 person 

in every 200 and can affect people of any age, race and sex from any walk of life. Seizure 

is a result of the disruption of brain activity in a brief time, which can be characterized by 

high frequency action potentials that last from seconds to minutes. Such disruptions occur 

for a variety of reasons, not all of which can be identified. Some of the reasons are brain 

damage, scarring, chemical or hormonal imbalance, and tumors (Buck et al., 1997; 

Merlin, 2009; Cockerell, 1996; Netoff et al., 2004; Kamali et al., 2004). Seizures can 

affect muscle movements, sensations, behaviors, emotions, consciousness, or a 

combination of these factors. Epilepsy is one of the most widely studied diseases with 

research areas that include epileptogenesis, nonlinear network dynamics, electrographical 

signal feature extraction, seizure anticipation and feedback control. 

7 
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2.1.2 Seizure on Brain Hippocampal Anatomy 

When a seizure occurs in the region of the brain that involves memory or learning, 

rather than regions which can be removed without serious effect to daily life, doctors 

cannot surgically ablate the brain tissue that causes the seizure. Thus, to suppress seizures 

in this region, recent research has focused on methods to electrically control brain activity 

in the hippocampus (Figure 2-1) which is a large structure related to human learning and 

memory in the subcortical region (Berger et al., 2005). Seizures can affect the synaptic 

current, neurotransmitter release, and receptor function (Avoli, 2007). So far as we know 

the hippocampus is responsible for long-term memory (Brivanlou et al., 2004; Yeckel et 

al., 1999). The basic hippocampal circuit (Figure 1-1) begins at the dentate gyrus (DG) 

and goes through a series of Cornu Ammonis (CA) areas from CA3 to CA1 pathway 

(Figure 2-1) (Brijesh & Ravindran, 2007). The CA areas have numerous types of neurons, 

such as pyramidal neurons and interneurons (Brivanlou et al., 2004). This signal pathway 

is so called the perforant path which is a suspected seizure propagation (Levy et al., 

1998). 
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Figure 2-1: Schematic representation of hippocampal anatomy. 

2.1.3 Current Seizure Therapy 

Approximately 30% of all the patients suffering from epilepsy have seizures that 

are intractable towards antiepileptic drug (AED) treatments (Schmidt & Loscher, 2005). 

Non-responders to AED may be treated with surgical resections. Surgeries can be 

performed to resect areas of the brain where seizures originate, or to create a series of 

incisions to prevent seizures from spreading to other parts of the brain. For those not 

eligible for surgeries, the ability to anticipate seizures and provide potential treatments, in 

the form of electrical stimulation, is at the forefront of epilepsy research (Fisher et al., 

2010; Lehnertz et al., 1998; Morrell, 2011; Stacey & Litt, 2008). The development of 

such a system could greatly enhance the quality of life of patients, providing them with 

early warnings of impending seizures, and automatic interventional therapy for the 

prevention or mitigation of seizure episodes. 
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2.2 In Vitro Seizure Models 

Seizure in the rat hippocampal brain slices is characterized by hyper-exciting 

activity and synchronization of neuron firing. The pattern of this seizure-like activity has 

high frequency regular oscillation during the ictal period. It can be either induced by 

various chemical solutions or generated using different electrical stimulations. The 

neurons enter a high frequency, bursting state when these methods were applied. For 

chemical induction of SLE, the concentrations of specific ions are changed, such as 

raising K+, and/or lowering Mg2+or Ca2+ (Traynelis & Dingledine, 1988; Walther et al., 

1986; Albrecht et al., 1989). In contrast, the electrical seizure generating methods may 

cause serious damage to the cell so that the seizure activity is unable to regenerate ictal 

firing. 

The most common method to obtain seizure-like activity in an in vitro animal 

slice model uses high K+/low Mg2+. It provides a means to investigate the 

electrophysiological mechanisms and the transition between seizure (ictal) and inter 

seizure (interictal) periods. The concentrations of K+ and Mg2+ in the artificial solution 

are around 3-5 mM and 0.5-0 mM, respectively. By varying the concentrations of K+ and 

Mg2+ in the artificial cerebral spinal fluid, the brain slice can be used to obtain data on 

normal and SLE neuronal firing patterns. One of the most important advantages is the 

reversible nature of this transition. This allows each slice to act as its own negative 

control. 

However, the difference between actual seizures and in vitro models is still not 

clear. Most likely epileptic seizures in a living animal, including humans, are more 

complicated processes than those in a slice model. This must be taken into account when 
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stimulation methods are designed for humans. Yet, the rat hippocampal brain slice 

models are cost-effective and contain enough features to make them useful for academic 

research and translational medicine. 

2.3 Computational Models on Single Neuron and Neuronal Network 

2.3.1 Neural Modeling Description 

Many computational models of the biological neural systems have been designed 

and focused on different aspects of the neural systems. They are modeled to describe and 

predict the long-term and short-term plasticity of the neural systems and its relation to 

learning and memory, from the individual neuron to the system level. 

In 1952, Hodgkin and Huxley first delivered their circuit model of the ionic 

mechanisms (Hodgkin, Huxley, & Katz, 1952). Later, FitzHugh and Nagumo described 

their model which simplified the Hodgkin-Huxley model (FitzHugh, 1961; Nagumo et al., 

1962). In 1981, Morris and Lecar combined the two models above to generate their 

model of calcium and potassium channels (Morris & Lecar, 1981). In the following years, 

several additional models were published. Kernel-based neural models (Chon et al., 1998) 

were one of these in which the properties of the neurons were assessed experimentally by 

applying a Poisson distributed pulse train of electrical impulses to the system and 

electrophysiologically recording the evoked output (Dorval & White, 2006; Wyckhuys et 

al., 2010). The relationship between the input pulse train and the subsequent response of 

the neuron is represented mathematically as the kernel functions. 

However, such an approach does not account for the intrinsic oscillatory behavior 

in some subfields of the hippocampus which is responsible for memory consolidation. In 

addition, the kernel estimation is static in that it is not able to adapt over time to account 
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for possible changes in synaptic characteristics for long term application. To address such 

deficiencies, Beij L. Bardakjian et al. (2008) designed the mapped clock oscillators 

(MCO) model with tunable connectivity (Zalay et al., 2010). This model can be utilized 

or modified and contributed to this research in seizure modeling and seizure feedback 

control. 

2.3.2 Conductance-Based Model 

The Hodgkin-Huxley (HH) model of action potential (AP) generation and 

propagation is the single most successful quantitative model in neuroscience. The model 

represents the cornerstone of quantitative models of neuronal excitability. The heart of 

the model (Figure 2-2) is a description of the time- and voltage-dependent conductance 

for Na+ and K+ in terms of their gating properties. Gating properties can be the 

activation or inactivation variety which implies its amplitude is from 0 to 1. This 

amplitude increases with depolarization while the converse is true of inactivation. 

Kinetics of gating is represented either by the rate constants or the steady states 

(activation/inactivation) and the time constants (Hodgkin, Huxley, & Katz, 1952). 

Without any a priori assumptions about action potentials, the model generates APs of 

appropriate shape, threshold and refractory periods (both absolute and relative). 

inside 

outside 

/ I  

I 
R 

JL I 
K / 

JL 
Na 

T T J 
X 

Figure 2-2: Electrical Circuit for HH model description (Gerstner & Kistler, 2002). 



Consider each type of ionic channel as a distinct path of the current flow. The lipid bi-

layer can be modeled as a capacitor (impermeable layer as separator for two sides of 

different electrical potential). Balance the current through each path using the Equations 

2-1 and 2-2 (Hodgkin, Huxley, & Katz, 1952): 

'iny(t) = /c(t) + /»(t), Eq. 2-1 

C^f + Eq. 2-2 

Incorporating the sodium and potassium current after curve fitting of the conductance, we 

have (Hodgkin, Huxley, & Katz, 1952): 

C-df = -gNam3KVm - ENa) - gKn4(Vm - EK) - - EJ + /in,, Eq. 2-3 

The transmembrane potential can be computed based on the Na-K pump dynamics. Since 

channels are highly selective, we can consider the movement of each ion as an 

independent path across the membrane. The dynamics of each channel is defined by the 

relationship between the driving force (electrical potential, or voltage) and the ionic 

movement (rate of change of ion concentration, or current). In general, I = gV, where I is 

the current [p.A], V is voltage [mV] and g is conductance [mS]. As indicated by Figure 2-

2, there are primarily four major current pathways that significantly affect the potential 

across the membrane: Sodium current, potassium current, leak current (related to ion 

pump and non-selective channels), and capacitive current. 

Notice that the HH model is a fourth order system; when we consider a state 

space representation like this, it is difficult to visualize. Several reduction models have 

been proposed to collapse it onto two-dimension state space. The FitzHugh-Nagumo 

model is an example of such a reduction (FitzHugh, 1961; Nagumo et al., 1962) where 
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membrane potential is plotted against a recovery variable, w, in Figure 2-3 and the model 

equations are, 

v  =  v - v 3 - w  +  l e x t , Eq. 2-4 

rvv = v  — a  — bw,  Eq. 2-5 

where v and w were dimensionless state variables representing the membrane potential 

and membrane recovery variable. The parameters (a, b and r) are dimensionless. 

absolutely refractory 
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0.5 

0 NO MAN'S LAND 

0.5 

rwtlng. 

1 

-1.5 •0.5 
membrane potential, V 

0.5 

Figure 2-3: FitzHugh-Nagumo model illustration (Izhikevich, 2007). 
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An all-or-none spiking phenomenon in response to stimuli is illustrated above. 

However, excitation can lead to a block of oscillation. When I is weak or zero, there is 

not enough strength to drive the model to fire, so the model stays in a resting state. After 

increasing I input, the model enters the depolarization mode and starts firing. With 

external stimulation, the model can generate periodic bursting signal. However if I is 

further increased, the model turns into the refractory region. In this case, the firing action 

is stopped. The differences of the processes with stimulation and without stimulation are 

shown in Figures 2-4 and 2-5, respectively. 

0.4-i 

REFRACTORY 

0.2-
NO MAN'S LAND 

-0.2-
SOLF-EXCITATORY 

-50 -150 -100 
v 

Figure 2-4: FitzHugh-Nagumo model run without external stimulation (FitzHugh, 1961). 
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Figure 2-5: FitzHugh-Nagumo model runs with the stimulation (FitzHugh, 1961). 

2.3.3 Integrate-and-Fire Model 

The integrate-and-fire (InF) model (Figure 2-6) captures two key aspects of 

neuronal excitability: passive integrating response for (subthreshold) inputs and 

stereotypical waveform for excitation exceeding a particular amplitude (Lapicque, 2007). 

In Figure 2-6, a neuron (or a model unit i) receives inputs from multiple neurons 

(j). After the convolution operation with the synaptic impulse response, the output is 

compared with a threshold. If the intermediate signal exceeds the threshold, a 

stereotypical waveform is created artificially. Different equations can be setup based on 

the HH model of the capacitor (C) and the resistors (R). When the voltage (u) reaches a 

threshold level ($), a spike is created. This is an example of the leaky spiking model 

(Figure 2-7). When the voltage is smaller than the threshold, we have (Gerstner & Kistler, 

2002; Lapicque, 2007) 
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C % = {9i + dadaptYVi ~V) + l e x t ,  Eq. 2-6 

^adapt 9a*"Vt = — 3adapt> Eq. 2-7 

where gL is the leakage current and gadapt is the sum of all ionic current. When the voltage 

is equal or larger than the threshold, we have (Gerstner & Kistler, 2002; Lapicque, 2007) 

t -» {Registered Spikes} = S(t — tk), Eq. 2-8 

K([t, t + tre/]) = ^reset' Eq. 2-9 

9adapt($) = 9adapt Ginc• Eq. 2-10 
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Figure 2-6: The illustration of InF model (Gerstner & Kistler, 2002). 
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Figure 2-7: The InF model output over time (Gerstner & Kistler, 2002). 
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The major feature in this model is that the conductance can be adapted over time 

if a DC current is injected into the model so that the spike-to-spike interval will gradually 

increase. There is another example of an InF model that was published by Eugene M. 

Izhikevich (Figure 2-8) shown in Equations 2-11 and 2-12 (Izhikevich, 2003): 

v  = 0.04v2 + 5v + 140 — u +1 ,  Eq. 2-11 

u = a(bv — u). Eq. 2-12 

If v = 30 mV, then v = c, u = u + d. Here, v and u are dimensionless state variables 

representing the membrane potential and membrane recovery variable, respectively 

(similar to modified HH), but the if-then statement is used to reset the voltage to below 

the threshold. The parameters (a, b, c and d) are dimensionless. They are obtained by 

curve fitting the spike initiation dynamics of the cortical neurons so that the membrane 

potential has mV scale and the time has ms scale. The definitions of the parameters are as 

follows: 

• The parameter a describes the time scale of the recovery variable. The smaller the 

value, the slower the recovery. A typical value is a = 0.02. 

• The parameter b describes the sensitivity of recovery to the subthreshold 

fluctuations of the membrane potential. A greater value of the coupling of v and u 

results in a higher probability of subthreshold oscillations and low-threshold 

spiking. A typical value for b = 0.2. 

• The parameter c describes the after-spike reset value of the membrane potential 

caused by fast, high-threshold potassium conductance. A typical value for c = -65 

mV. 
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• The parameter d describes the after-spike reset of the recovery variable caused by 

the slow, high-threshold sodium and potassium conductance. A typical value for d 

= 2. 

Depending on the parameters selected, the different neuronal dynamics can be generated 

in Figure 2-9. 

peak 30 aaV 

V(t) 

U(t) 

reset d 

Sensitivity b 

Figure 2-8: Dynamics of the Izhikevich model (Izhikevich, 2003). 
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23.4 Mapped Clock Oscillators (MCO) Model 

The MCO model (Figure 2-10) is a multi-portal extension of the Winfree-type 

oscillator that includes not only the phase advance, but also amplitude variations (r) and a 

mapping function to relate the state variables (r, <|>) to transmembrane voltage (y). Each 

oscillator unit is equipped with four input portals representing different modes of 

coupling (gap junction, electric field, chemical synapse, and extra-synaptic coupling) and 

stimulation (Bardakjian and Diamant, 1994; Zariffa et al., 2004). Entrainment properties 

of the coupled nonlinear oscillators are governed by the intrinsic unit properties and the 

coupling mechanisms. As a result, the model is able to adapt to different network 

configurations, neuronal classifications and stimulation protocols. It is innovative in two 

major aspects. First, it allows for the customization of intrinsic neural characteristics so 

the cellular mechanisms responsible for the generation of rhythmic neuronal firing can be 

studied. Second, the types and strengths of the neural model connections can be adjusted 

to accommodate for plasticity. For a potential biomimetic device, an oscillator model 

was chosen because it reflects some key dynamics of the hippocampal neurons. Three 

different types of model units have been proposed (Zalay & Bardakjian, 2008): 

Oscillators, Labile clock and Hourglass. Depending on the neuron type, an appropriate 

model unit is selected. 
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Oscillator 
Ihut 1 

(state variables: 

OsciBator 
U*h 2 
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Electric Field (5 )̂ 

Syupse (Sa) 

Figure 2-10: A schematic representation of a two-cell oscillator model is shown. Four 
biologically relevant coupling portals are proposed: electric field, synapse, extrasynaptic, 
and gap junction. The inputs to each oscillator are connected through portals with 
effective coupling weights. 
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For the oscillator, it is dependent on two variables, the amplitude and the phase. 

The most basic form of oscillation is a sine or cosine wave. 

Fi(t) = cos (2nft), Eq. 2-13 

F2(t) = sin(27r/t). Eq. 2-14 

When F1 is plotted versus F2 on a 2-D plane, it produces a unit circle in Cartesian 

coordinates. When it is converted into polar coordinates, the result is a constant 

amplitude r = 1 and a phase advance at a constant rate of 27rf. The MCO model is built 

based on this concept and can be expressed as follows (Zalay & Bardakjian, 2008): 

f = wr( 1 + Sa — r2) + Syl sin(<p) + Sy2cos (<jp), Eq. 2-15 

(p = w(l + i?(<p)5^) + (p)(5yl sin(<p) + Sy2cos (^>)). Eq. 2-16 

Here r is the amplitude and <p is the phase information. Both of them are defined as a first 

order ordinary differential equation (ODE) with external inputs and coupling factors (S). 

If all external and coupled inputs are set to be zero, then all S-portals are zero. In this case, 

Eq. 2-15 is reduced to 

r = wr(l + Sa —r2). Eq. 2-17 

From the first order ODE of the amplitude, r has two equilibriums (r = 0 and r = 1). Here, 

r = 0 is an unstable point, r = 1 is a stable point. Next, consider the phase equation is 

given the same assumption, the new equation from Eq. 2-16 is 

<jo = w. Eq. 2-18 

This means that the phase is advancing at a constant rate and also the intrinsic frequency. 

If the possibility of the stimuli that affects the phase is considered, the equation needs to 

incorporate refractoriness (R) (Zalay & Bardakjian, 2008). This can be implemented as a 
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Butterworth highpass filter (Eq. 2-19) such that the pulse advance will not be affected 

when the phase is small. In the function equation, ri, t2, and r3 are parameters controlling 

the magnitude, phase-cutoff and order of the filter. 

Finally, the state space information is mapped onto the membrane voltage using static 

nonlinearity (Zalay & Bardakjian, 2008), 

The bias voltage (ao) sets the mean voltage level of the oscillator unit (which 

represents the resting potential of a given neuron). The mapping function (W) (Figure 2-

11) is the intrinsic voltage waveform of the oscillator, which depends uniquely on the 

phase. The basic procedure for identifying the waveform involves performing a patch 

clamp or extracellular field recording, isolating a characteristic waveform from the signal 

(with zero mean), normalizing it to the values in the phase over the interval 0 to 2it in 

such a way that the beginning of the waveform corresponds to <f> = 0, and creating a 

lookup table so that the values of W are tabulated against the value of <f>. Since r is 

supposed to be around 1 most of the time, a multiplier is given to account for slight 

variations in the action potential amplitude. 

R(<P) = - Eq. 2-19 

y = a0  + A(Sp)+rW((p).  Eq. 2-20 
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Figure 2-11: The intrinsic waveform the MCO model (Zalay & Bardakjian, 2008). 

Four types of stimuli shown in the model flow map (Figure 2-12) that can affect 

the oscillator are: 

• Synapse (Sp) (Zalay & Bardakjian, 2008): 

If the presynaptic cell does not have an AP, there is no postsynaptic response. V can be 

treated as a highpass filter in which it sets the threshold to determine if the pre-synaptic 

cell has an AP. The coupling factor c accounts for the location of the synapse (spatial 

information) or efficacy of the synapse. Also, the post-synaptic effect is accounted for 

through a convolution function as follows (Zalay & Bardakjian, 2008), 

A (sp(t)) = RM5
1

(^(<P)) fl aSp(u) • (t - u)exp {1 - a(t - u)}du. Eq. 2-21 

• Electric field (<j>) and extra-synaptic chemical coupling (a): Both portals utilize 

the same form of the equation (Zalay & Bardakjian, 2008): 

•cp(ym a0.mW(ym ao,m) 
Eq. 2-21 

C _ V« tcp(ym-<io,m\ , c 
p ~ Zim=iv _ ) ' ^p.ext• 

un 
Eq. 2-22 
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• Gap j unction (y): 

The gap junction is complex. The internal clock variables of coupled MCOs are 

accessed directly by the gamma-portal, bypassing the mapper. The n,h MCO is a network 

of n oscillators. 

Ring 

Effective Cooping Modes J 

Reccptormediated 0 «-portal 

Electric fidd f ^-portal 

Synaptic Q p-portal 

Gapjuactooal Q portal 

Mapper 

Mapper 

Figure 2-12: The flow map of the MCO model (Zalay & Bardakjian, 2008). 

r 
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This method for generating an output waveform is very versatile because it can 

accommodate any biological waveform shape, and the waveform can be recorded from 

any source, though mathematically the function is not analytic. Another interesting note 

on using the oscillator to model the neurons is that some neurons exhibit autonomous 

oscillatory behavior (e.g., some CA3 pyramidal cells). Even though conductance based 

models and some integrate-and-fire models can generate pulse trains, they usually require 

a constant DC current injection. 

The second type of oscillator is called the Labile clock (Figure 2-13) in which the 

neuron still behaves like an oscillator, but it will only be active as long as the input (X) is 

above a designated threshold. It maintains its active level as long as the stimulus is 

presented. This type of clock is defined by the amplitude and phase equations and the 

mapping function translates r and <j> into the voltage (y). The only difference between the 

Labile clock and the oscillator model is in the amplitude equation (Zalay & Bardakjian, 

2008): 

r = karxl3(y(X) ~ r2) + Syi sin(<p) + 5y2cos (<p). Eq. 2-23 

The input X contains two coupling factors (a and p) (Zalay & Bardakjian, 2008): 

X = KaSa  + KpA(Sp). Eq. 2-24 

The phase and mapping equations are the same as before since the phase of the Labile 

clock keeps advancing in the same manner as the oscillator. 



29 

> -20 
£ -40 

•60 

•80 

1 sec 

Figure 2-13: The model output of the Labile clock (Zalay & Bardakjian, 2008). 

The third type of unit of MCO model is the hourglass (Figure 2-14) which can be 

considered as an intermediate neural output. The equations are (Zalay & Bardakjian, 

2008): 

f = -kar^3(l  -  g(<p) -  r^3)(U -  g((p) - r) + X(1 - r), Eq. 2-25 

<P = kvlr - ky2<p(l - *0100 + X(1 — r). Eq. 2-26 

For the Gaussian function (g( <t>)) near 0, the limit cycle is at r = 0 and there is a repeller 

at the threshold (U). The effective driving stimulus (X) is multiplied by (1-r) so that the 

hourglass model exhibits refractoriness when it is active. It remains insensitive until r « 

1. If r < U, then the amplitude tends toward 0. The phase will advance as long as r is large, 

but g( </>) will pull r back inside the circle radius U. The resetting of the phase is achieved 

with the (j> in the middle term. When r goes to 0, the phase will remain near the peak 

location (^) of the Gaussian function so that the next activation cycle would not begin 

again at ^ = 0, but would start from where the phase last stopped. To bring the phase 

back to 0 only when r « 1 requires phase resetting. If r is near 1 (active), no phase 

resetting occurs. The g-function determines the duration of the ON-cycle in the hourglass 
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dynamic by modifying the amplitudes of the attractor limit cycles (Zalay & Bardakjian, 

2008): 

f l(„)=£exp(-£2^). Eq. 2-27 

20 r—-TT—"-' T ' • • f i i r i f | — t. 

0 • 

> -4 

0.5 sec 

Figure 2-14: The model output of the hourglass (Zalay & Bardakjian, 2008). 

2.4 Seizure Stimulation Methods 

Epilepsy is studied on different levels ranging from ion channel kinetics to EEG 

signals. For the EEG level, researcheres use the responsive stimulation feedback control 

system (Figure 2-15). The mechanism of this kind of feedback is to maintain the normal 

frequency level for the neurons. Therefore, this feedback control system can sense seizure 

activity and suppress it (Chakravarthy et al., 2009; Colpan et al., 2007). Other researchers 

have used chemical or electrical means to induce seizure events or seizure-like activities 

in animal brain slices or a cultured neuron (Wagenaar et al., 2005; Isomura et al., 2008). 

For example, van Drongelen et al. (2007) used an electrical stimulator to disperse seizure 

spiking in neurons cultured on a microelectrode array (MEA). This technique allowed 

them to track the seizure propagation through the cells on the MEA. Other stimulation 

methods have been developed to reduce seizure activity such as closed-loop stimulation 



31 

(Wagenaar et al., 2005), controlled pulse stimulation (Albensi et al., 2008), and high-

frequency stimulation (Su et al., 2008). These stimulation protocols are then typically 

incorporated as a component in systems that monitor EEG activity and attempt to control 

seizures. 

Internal EEG 
Amplification 

External EEG 
Amplification 

A/D converter 

Figure 2-15: EEG seizure control feedback system using the responsive stimulation 
(Colpan et al., 2007). 

Since neuronal communication in the hippocampus is quite complex and seizure 

invovling the hippocampus is difficult to understand, researchers model this interaction as 

a small neural network or specific neuron pattern for research purposes (Wagenaar et al., 

2005). Various nonlinear models of the hippocampus (Courellis et al., 2006) and neuron 

bursting patterns (Hemond et al., 2008) have also been used in models of hippocampal 

networks. Different neuron firing patterns (Izhikevich, 2004) have been used to model 
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seizures, but seizures seem to be unexpected ruleless phenomena and no single firing 

pattern has been found to describe them. 

Just as researchers reduced the size of their computational models to simplify a 

complex system, EEG seizure researchers often use brain slices or cultured networks of 

the neurons to simplify their biological models. In this case, seizure can be controlled and 

induced by different chemicals such as low-Mg, 4-Aminopyridine (4-AP, block of the 

potassium current), kainic acid and/or a high-potassium solution (Kasugai et al., 2007; 

Khosravani et al., 2005; Luhmann et al., 2000; Traynelis & Dingledine, 1988). In a 

typical rat brain slice model, the CA3 region of the hippocampus exhibited spontaneous 

electrographic seizure and then propagated to the CA1 region throughout the pyramidal 

cells (Traynelis & Dingledine, 1988). Such experimental data can facilitate seizure 

modeling and development of a feedback control system for the understanding and 

treatment of seizures. 



CHAPTER 3 

METHODS 

This chapter describes all the methods used in this dissertation including in vitro 

data acquisition, in vitro slice seizure model, the computational seizure model, seizure 

stimulation tools, and statistical analysis. They were applied to accomplish the tasks of 

seizure activities modeling and seizure-like event (SLE) stimulation. Statistical analysis 

helps to verify the results. 

3.1 In Vitro Data Acquisition 

In the low-Mg2+ model of epilepsy, Mg2+ blockade of post-synaptic N-methyl-D-

aspartate (NMDA) receptor channels and magnesium-sensitive Ca channels is reduced, 

thus increasing the network susceptibility to depolarizing influences, as well as 

decreasing membrane charge-screening effects (Derchansky et al., 2004). Hence, network 

hyper-excitable conditions can be produced. 

The experimental procedures used in this study were approved by the Tulane 

University Institutional Animal Care and Use Committee. Four male Wistar rats, three to 

four weeks old, were decapitated under deep isoflurane anesthesia and their brains were 

rapidly extracted and placed in ice-cold (~1 °C), oxygenated (95% O2, 5% CO2) artificial 

cerebrospinal fluid (aCSF) solution containing (in mM): 123 NaCl, 3.3 KC1, 1.5 CaC^, 2 

MgSC>4,24 NaHCC>3,1.2 Na^PO.*, and 25 glucose (pH 7.4) for five minutes. Transverse 
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hippocampal slices (Figure 3-1) (300 |im) were sectioned and transferred immediately 

into a storage chamber, where they were perfused with oxygenated aCSF solution and 

maintained at room temperature for one hour. 

Afterwards, a single slice at a time was moved to a recording chamber on an 

upright microscope (Olympus) and perfused with aCSF, bubbled with 95% O2 and 5% 

CO2, using a peristaltic pump (Ismatec, Glattbrugg, Switzerland) at a rate of two ml/min. 

Whole-cell patch-clamp recordings of pyramidal neurons in the CA1 region were 

conducted in the current-clamp mode under visual control using infrared light and 

differential interference contrast optics. Glass micropipettes having a tip resistance 4-5 

MQ were pulled on a horizontal puller (Sutter Instr) and filled with (in mM) 135 K-

Gluconate, 10 NaCl, 1 MgCl2, 2 Na2ATP, 0.3 NaGTP (Tris), 10 NaHEPES, 0.5 EGTA 

and 0.0001 CaCl2 (PH 7.4). Recordings were performed with a MultiClamp 700 amplifier 

and PClamp 10 software (Molecular Devices, Sunnyvale, CA). An initial 10-min 

stabilization period was provided before starting the recordings. Normal neuron activity 

was recorded using a standard aCSF solution for the first 10 minutes of recordings. The 

standard aCSF was then replaced with a modified aCSF solution containing a low 

magnesium concentration (0.25 mM instead of 2 mM MgS04), which was applied for at 

least one hour. The standard aCSF solution was then reapplied for another 15 minutes as 

the washout condition. All the datasets were sampled at 500 Hz after they were subjected 

to a built-in anti-aliasing lowpass filter (corner frequency 200 Hz) using Clampfit 10.2 

software (Molecular Devices, Sunnyvale, Ca). 
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Figure 3-1: A schematic illustration of a transverse hippocampal slice (Freund & 
Buzsaki, 1996). Whole-cell patch-clamp recordings of pyramidal neurons were 
conducted in the cell body layer of the CAl hippocampal subfield. 

3.2 Model Description 

The modeling of in vitro hippocampal slices exhibiting SLEs was achieved using 

the Cognitive Rhythm Generator (CRG) SLE model (Zalay & Bardakjian, 2009; Zalay et 

al., 2010). The amplitude and phase information of the limit cycles can be adjusted, 

enabling various complex state space geometries. The CRG model uses mode outputs 

that are combined via static nonlinear functions to incorporate nonlinear input coding 

functionality to modulate the excitability of the network. Excitatory pyramidal neuron 

and inhibitory interneuron subpopulations of the hippocampal CAl region can be 

represented using networks of four reciprocally connected model units. The dynamics of 

each unit can be defined by four differential equations defining the state space of the 

system. These state variables can then be mapped nonlinearly to generate the 

transmembrane potentials based on the action potential waveform that has been recorded 

and stored previously. 
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The CRG model was modified to enable each unit to behave either as an oscillator 

that can generate an action potential (AP) train without any external stimulation or as a 

threshold-based unit that only triggers an AP when the input is sufficiently large. Each 

CRG unit contains three components: a clock, a mapper, and a mode bank. The clock, 

described by Eq. 3-1 and Eq. 3-2, can undergo phase advancement depending on the 

intrinsic angular frequency (w„). The state variables ui„ and u2n describe the limit cycle 

stage of the oscillation dynamics. Eq. 3-3 and Eq. 3-4 give the differential equation 

representation of the synaptic function. It has an equivalent functionality of a first-order 

kernel, implemented as an exponential impulse response function, connecting the outputs 

of other model units. The modified equations of the nth oscillatory unit are: 

Uin — VVn{li2n(l + S(p,n) ^-ln(V00 ^h. n ^2n)}» Eq. 3-1 

u2n = w„{-uln(l + S,p i n)  + u2 n(V(x) -  ufn  - u|n)}, Eq. 3-2 

«3n = u4n, Eq. 3-3 

^4n ~ ~ 2/?n^4n ^n^3n» Eq. 3-4 

where /?„ is the kernel duration and S9>„ is the phase modulation function. The limit cycle 

of each CRG unit is defined by the function V(x). Previous implementation of an 

oscillator unit from the CRG SLE model consisted of a constant V(x) = 1. Our modified 

CRG model allows the limit cycle magnitude to change depending on the external driving 

force to the unit. Units One and Two are kept as oscillators with V(x) = 1. The inhibitory 

Units Three and Four are threshold-based units with V(x) controlled by the driving 

stimulus x, which is related to the receptor level X and the synaptic function mj„. 

V{x) = vj(l  + e -^(*-*3}), Eq. 3-5 

x = 8u3 n  + X, Eq. 3-6 
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where v/, v2 and V3 are the magnitude, slope and threshold. The coupling between CRG 

units can be achieved in two ways: electric field related coupling as described by Eq. 3-7 

and synaptic coupling as described in Eq. 3-8 (Zalay et al, 2010): 

S<p,n ~ ^0n "t" knii3n 4- fn(t), Eq. 3-7 

Ff i  = Em=l Cmnym + init). Eq. 3-8 

The field coupling portal depends on the modulation gain k„, the coupling offset con and 

an optional additive electric field input f„(t). The parameter cmn gives the coupling 

coefficient from unit m to unit n. The function i„(t) is the external electrochemical input 

which is set to be zero in this simulation. Finally, the nonlinear mapper function gives the 

output: 

Yn = Con + "3n + (Vum2 + u2n
2)2°W (tan-1 ̂ ), Eq. 3-9 

where the function W is the intrinsic action potential waveform. The power 20 in the 

amplitude is created so that state variables (u\n, U2n) not sufficient to trigger action 

potentials will have little impact on the electrochemical interaction described in Eq. 3-8. 

The CRG model used in this study consisted of four units (Figure 3-2). The first two units 

formed auto-associative excitatory connections with each other as well as uni-directional 

excitatory connections to Units Three and Four. They also received inhibitory feedbacks 

from Units Three and Four. 
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Figure 3-2: A four-unit CRG model consisting of two excitatory units (one and two) and 
two inhibitory units (three and four) along with the coupling coefficients are illustrated. 
Units Three and Four are also threshold-based units. 

A detailed list of the parameters along with their values used in the simulations is 

shown in Table 3-1. Different excitability parameters {fi ranging from 1 to 20, k from 1 to 

30, and X from 0 to 5) were used to evaluate how the system LPR dynamics related to 

SLEs can be affected. Furthermore, the ratio of k/fi, proportional to the area under the 

first-order kernel characteristics was also studied. For each {fi, k, X) combination, up 3-

minutes of simulation were performed. The relationship between the model parameters {fi, 

k, X) and the characteristics of the model dynamics (firing rate, the mean duration, and 

the overall percentage of time that the model dynamics remained in the LPR mode) were 

quantified using Pearson correlation coefficient analysis. The firing rate was defined as 

the inverse of the average peak-to-peak distance of the action potential train in the LPR 

SLE mode, defined as the period of time in which the slice or the model exhibited 

significantly lower maximum Lyapunov exponent in the interspike interval diagram 

(Wolf et al., 1985). This definition is consistent with experimental evidence of a drop in 
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dynamic complexity associated with seizure epochs (Chiu et al., 2006b). The maximum 

Lyapunov exponent for the interictal region was found to be 1.75 ± 0.11 (biological field 

data) and 1.43 ± 0.15 (modified model), while in the ictal region, the maximum 

Lyapunov exponent was computed to be 0.192 ± 0.141 (biological field) and 0.280 ± 

0.207 (modified model). In both cases, the complexity of the interictal and ictal activities 

are significantly different statistically (T-test, p < 0.01 in both biological and model data). 

Table 3-1: Model parameter symbols, explanations, and values used in the simulations 

Type Symbol Description Values 

Network Size M, N Number of the cell unit 4 

Unit 
Characteristics 

wn 
Intrinsic oscillator 

frequency [4.23 4.14 4.65 4.56] 
Unit 

Characteristics c0n Constant offset [-0.2 -0.2 0 0] 
Unit 

Characteristics 

W{<p) Intrinsic output waveform -

Network 
Connection 

cmn 
Coupling coefficient 

from unit m to n 

"0.5 0.5 -0.75 -0.75" 
0.5 0.5 -0.75 -0.75 
0.3 0.3 0 0 
.0.3 0.3 0 0 

Threshold 
Function 

Vi Magnitude 1 
Threshold 
Function v2 Slope 30 
Threshold 
Function 

v3 Threshold 0.5 

Excitability 

Pn Mode decay constant Vary 1 to 20 

Excitability K Modulatory gain Vary 1 to 30 Excitability 

X 
DC component (receptor 

level) 
Vary 0 to 5 

Optional Inputs 
/»(*) Field related input 0 

Optional Inputs 
in(t) Electrochemical input 0 

Unit Output yn Output of model unit -
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3.3 Statistical Comparison 

The in vitro experimental data was later partitioned into 3-minute non-

overlapping time windows after the identification of the ictal onsets. The CRG model 

outputs at different (fi, k, and X) combinations were generated. The inter-spike interval 

(ISI) distributions of the in vitro experimental data and the CRG model outputs were 

created and compared using histogram analysis. If the ISI pair contained an overlapped 

area of over 80%, they were then sent to the critical statistical test. The testing process 

consisted of the application of a bootstrap technique to the Fasano-Franceschini statistic 

(Fasano & Franceschini, 1987). 

Two bivariate groups, denoting the biological and model data respectively, have 

been compared. The successive ISI of each group, mapped on a two-dimensional space 

(ISI index t, ISI index t+1) = (pc, y), can be expressed as i = 1, and 

y/2)), i — 1, •••, rcj. The values m and n denote the number of ISI samples in group 

1 and 2, respectively. We tested whether the two ISI groups came from one common 

population/distribution. The Null Hypothesis was that the two ISI groups come from one 

distribution. The simplified Fasano-Franceschini statistic was defined as: 

FF = max {T x ,  T2 ,  T3 ,  T4) .  Eq. 3-10 

The two-sample Kolmogorov-Smirnov statistic (Tg)  for each quadrate (q = 1 to 4) of the 

2-D ISI distribution was defined as the maximum difference between the empirical 

bivariate distribution function of each group: 

Tq  = maxp? {D^q )(xj ,  yy) - D (
2

q )(xj ,yj)}.  Eq. 3-11 
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The common distribution { ( x j ,  y j ) , j  = 1,, m + n} was defined as: 

{(^li»Vii)'' 1» •••»f} U y2i)>i i}* Eq. 3-12 

The empirical bivariate distribution functions for the first group were then given 

as: 

D? (xj> yd = #{*ii ^ xi> yxi ^ Vj}/ m> Eq. 3-13 

Di2)(xj>yj) = #(*ii ^ ^ y,}/™> Eq. 3-14 

°i(3) fe y;) = #{*ii ^ yXi > y;}/m, Eq. 3-15 

Di(4) ixj' yj) = #{*ii ^Xj,yu> y;}/wi. Eq. 3-16 

The empirical bivariate distribution functions for the second group followed the 

above formulations (Eq. 3-13 to Eq. 3-16): 

D?{ x j 'Vi) = #{*21 ^ xpy2 i  ^ Vj}/ n,  Eq. 3-17 

dz2 )  ( x j> yj)  = #( x2i >x j ty2 i< yj}/n, Eq. 3-18 

Dz3)(xj>yj) = #(x2i ^ xj.y2i ^ yj)/n, Eq. 3-19 

£>24)(*;' y j )  =  H x 2 i  ^  x j > y 2 i  ^  y j ) / n -  Eq. 3-20 

The Fasano-Franceschini test statistic (FF) was computed using Eq. 3-10 given 

the original two groups. The data from the two groups were then combined to form a 

single group with the size m + n. Two bootstrap (or random groups) with replacement 

from the combined data were performed and the new bootstraps simplified Fasano-

Franceschini test statistic (FFb) was computed. The process was repeated 500 times (for b 

ranging from 1 to 500). The P-value defined the significance level in which the Null 

Hypothesis could be rejected was computed as: 

P = #{FFb > FF}/500. Eq. 3-21 
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If the P-value fell below 0.05 (the level of significance), then we rejected the Null 

Hypothesis in favor of the Alternative Hypothesis that the two groups belonged to two 

different parent populations. Otherwise, we accept the Null Hypothesis. 

3.4 In Vitro Hippocampal Slice Seizure Model 

The experimental procedures used in this study were approved by the Louisiana 

Tech University Institutional Animal Care and Use Committee. Male Sprague Dawley 

rats were anesthetized with CO2 and sacrificed at four to six weeks of age. Their brains 

were rapidly dissected and placed into ice-cold (~1 °C), oxygenated (95% O2, 5% CO2) 

artificial cerebrospinal fluid (aCSF) solution for 5 minutes. The aCSF solution contains 

(in mM): 123 NaCl, 2.5 KC1, 1.5 CaCl2, 2 MgS04, 24 NaHC03, 1.2 NaH2P04, and 25 

glucose (pH 7.4). The hippocampus was dissected, and 300 |im transverse slices were 

sectioned and transferred immediately into a storing chamber with ice-cold, oxygenated 

aCSF solution and maintained at room temperature for one hour. The Mg-free aCSF 

solution, consisted of the same aCSF recipe without the MgS04, was applied after the 

slice has been stabilized and transferred to the multi-electrode array (MEA) (Multi 

Channel Systems, Reutlingen, Germany). The electric field potential was obtained near 

the pyramidal neurons in CAl region of the hippocampal slices (see Fig. 1). The data was 

then lowpass anti-aliasing filtered at 400 Hz and sampled at 1 kHz for further analysis. 

3.5 Modified Cognitive Rhythm Generator Model 

For the simulation of the electric field potential of the Mg-free in vitro 

hippocampal slice, a modified cognitive rhythm generator (CRG) model was used. The 

CRG model utilized the experimentally determined input-output kernel functions to 

modulate the unit and network excitability. The main parameters in the kernel function, 
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representing the mode decay constant, modulatory gain, and receptor level have been 

carefully studied (Iasemidis et al., 2004) to reproduce the different dynamics that exists in 

the manifestation of seizure episodes in the in vitro hippocampal slice preparation. 

Subpopulations of the hippocampal CAl region can be represented using networks of 

four reciprocally connected model units. The state variables of each unit can then be 

mapped nonlinearly to generate the transmembrane potentials based on the action 

potential waveforms previously recorded. In order to estimate the field recording signal 

from the model, each neural unit signal was twice differentiated and then added together, 

as shown in Figure 3-3. 

100 nV | 

Figure 3-3: Simulated field potential generated using the modified CRG model, 
illustrating spontaneous generation and termination of SLEs. 

3.6 Field Stimulation 

Spontaneously generated SLEs can be terminated by the process of neural 

resetting. It is therefore, in our hypothesis, to evaluate whether the intrinsic 

characteristics of the neural activities may hold a possible key to SLE suppression 

strategy. Furthermore, recent study on a computer simulated seizure model indicated that 

model based electrical stimulation is helpful to seizure control (Colic et al., 2011). Here, 

it is also natural to speculate that the mechanism in which the neural resetting takes place 
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may be found at the termination of a seizure episode, called the post-ictal activity. In 

previous research, our group has shown that the state transitions associated with SLEs 

spontaneously triggered by Mg-free experimental condition can be represented by the 

modified CRG model with different parameter combinations (Iasemidis et al., 2004). 

Three different CRG-generated postictal activities were selected (Figure 3-4) and scaled 

to a range of ±200 |iV, similar to the physiological recorded data amplitude. These 

oscillator-model generated signals were treated as field potential stimulation to the slice 

preparation through the MEA, when the onsets of SLEs were detected (accompanied by 

an increase in spiking frequency and a reduction in signal complexity). One of the three 

candidate postictal signals was randomly selected. Next, the periodic bipolar square-wave 

pulses with a 10 Hz frequency and a 9% duty cycle were used as the stimulus to carry out 

the contrast experiment. Finally, a two-sided rank sum test was performed on the inter-

seizure interval to evaluate the Null Hypothesis that the negative control (NC), postictal 

stimulation (PS), and bipolar pluses (BP) stimulation come from the distributions with 

equal medians. 
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Is 

(b) 

Figure 3-4: Oscillator-based postictal field data was repeated to create the stimulation 
signals that are 15-seconds in length. 



CHAPTER 4 

RESULTS 

This chapter presents the various patterns of seizure-like activities that are 

obtained when the cognitive rhythm generator is modified under different conditions. The 

seizure model output is matched to the data collected from the in vitro slice seizure model. 

P-value test helps to quantify the fitting results statistically. Results from Sections 4.1-4.3 

have been published in Journal of Network: Computation in Neural Systems. Results 

from Sections 4.4-4.5 have been accepted by IEEE EMBS Annual International 

Conference Proceedings 2012. 

4.1 Threshold-Based Oscillation Model Output 

A network of two oscillators coupled with two threshold-based units was able to 

generate state transitions into and out of ictal events similar to those observed in in vitro 

^ I 
low-Mg hippocampal slices. An improvement in enhancing the similarity between the 

model output and the biological data can be achieved after the proposed modifications. 

The original CRG SLE model was configured such that spontaneous seizure activity can 

be generated. Silent periods without spiking can indeed be generated in the original 

model with the appropriate choice of coupling values and with the addition of 

refractoriness. In this work, one of the main foci was on reproducing single neuron AP 

dynamics. Once the threshold-based oscillatory function was implemented with the V(x) 

46 
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function, the radii of the limit cycles were allowed to vary between 0 and 1, depending on 

the excitation level. This way, threshold-based oscillation can be achieved without 

creating a different set of equations from endogenous oscillators. 

Different combinations of the parameters directly related to network excitability 

(ft, k, and X) were used to evaluate how the dynamics of the model network can be 

affected. Characteristics that described the higher frequency LPR spiking region, similar 

to the SLEs, such as the mean firing rate and the mean duration were quantified and 

summarized in Figure 4-1. Smaller /?, larger k, and larger X all led to higher mean firing 

rate, corresponding to the modeling of frequency features of the SLEs. The excitation 

ratio (k/p) was found to be most positively correlated (r = 0.9810; /?< <0.001) with the 

mean firing rate in the LPR mode (slope = 0.316). In general, ft parameter is more 

strongly correlated to the overall percentage of time that a network stays in the LPR 

mode (p<0.05). The k parameter is correlated to the average duration of the LPR mode 

(p<0.05). The firing pattern dynamics as a function of P, k, and X is shown in Figure 4-2. 
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Figure 4-1: The mean firing rate and the mean duration of the LPR mode, were evaluated 
as a function of /?, k, X, as well as the excitation ratio of k/fi. All of the analyses were 
performed on the model output signal from Unit One. (A) The overall percentage of time 
that a system stays in the LPR mode is most correlated to the kernel duration (p<0.05). 
(B) The modulation gain affects the average duration of the LPR mode negatively 
(p<0.05). (C) The modulation gain, excitation ratio, and DC excitation level are 
positively correlated to the mean firing rate within the LPR mode (Pearson correlation 
coefficient: r = 0.9721, 0.9810 and 0.9791, respectively; /?<0.05,/?<0.05 and p<<0.001, 
respectively). The mean firing rate is also found to be inversely proportional to the kernel 
duration. 
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Figure 4-2: The model outputs (from Unit One) are illustrated for different combinations 
of P, k, and X. Using (A) as the control, the parameters were changed one at a time. The 
parameters P and k both control the firing rates. (B) The mean firing rate decreases with 
an increasing p, while a larger k leads to a higher firing rate (C). (D) The parameter X 
mainly affects the firing pattern switching, and can also slightly increase the mean firing 
rate. 
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4.2 Low-Magnesium Seizure-Like Activity Simulation 

In the previous analysis of the CRG SLE model (Zalay et al., 2010), only the 

interictal and ictal dynamics were considered in the state space analysis. The dynamics of 

possible preictal activity and how the excitability of the CRG model may be used to 

describe these state transitions were evaluated here. The modified CRG model was able 

to simulate three different states: preictal, ictal and postictal state by changing the values 

of parameters /?, k, and X (Figure 4-3). Table 4-1 summarizes the best fit biological and 

model data having the largest P-values obtained using the Fasano-Franceschini statistic. 

The neuron excitability dynamics of the computational simulation was also estimated to 

be proportion to the ratio of k/fi. The excitability increased when the SLE transitioned 

from preictal to ictal state and decreased in the postictal state. 
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Figure 4-3: Matching the biological data with the CRG model output during (A) preictal, (B) ictal, and (C) postictal activities. The 
time varying ISI plot for each condition is also shown. The major differences between the different parameter combinations are 
related to the location of the periodic orbits (mean firing rate), and the duration in which the system stays in the LPR mode. 
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Table 4-1: A slice-by-slice summary of FF statistical comparison between the in vitro 
hippocampal slice data and the CRG model output is shown. The model was able to 
match each seizure state with P>0.05. The relative system excitability measure (k/fi) is at 
its highest value during the ictal state. 

Slice Seizure State P K X P-value k/p 

Preictal 5 20 3 0.87 4.0 

1 Ictal 3 20 3 0.07 6.7 

Postictal 6 20 3 0.15 3.3 

Preictal 6 10 3 0.27 1.7 

2 Ictal 3 20 3 0.47 6.7 

Postictal 4 10 2 0.08 2.5 

Preictal 5 30 4 0.08 6.0 

3 Ictal 2 30 4 0.12 15.0 

Postictal 9 30 4 0.26 3.3 

Preictal 3 20 3 0.10 6.7 

4 Ictal 1 10 3 0.13 10.0 

Postictal 3 20 3 0.84 6.7 
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43 Network State Space Analysis 

Quantitative analysis on the nonlinear dynamics of the model output was 

performed. The Jacobian (J) of a single unit second order system («/„, U2„) that is isolated 

from the rest of the network was analyzed first before investigating the coupled network 

dynamics. 

The threshold function V(x) would have a constant value of 1 for oscillators, resulting in 

an unstable focus at (0, 0). In the case of a threshold-based unit where V(x) =0, Hopf-

bifurcation occurs and the (0, 0) becomes a stable focus. 

By adjusting the p parameter alone while keeping the other model parameters 

identical, the transitions between interictal, preictal, ictal, and postictal dynamics can be 

created. An illustrative state space (un, U31, U41) for Unit One of a four-cell CRG model 

simulated data that best fit a low-Mg2+ in vitro model (using parameters from Table 2) is 

shown in Figure 4-4. The equilibrium points in model Unit One while the network 

exhibits high-complexity interictal state dynamics were found using Newton's method (a 

method for finding the approximate roots). In a projected state space of (uu, U31, U41), the 

locations for some of these points can be found at (-0.278, -0.326, 0.642), (0.085, -0.259, 

0.433), (0.293, -0.418, 0.892), and (0.179, -0.312, 1.172). In all these cases, the U31 state 

variable is negative in value. 

These equilibrium points are saddle foci, as observed visually as well as from the 

calculation of the eigenvalues. The eigenvalues of the 16-by-16 Jacobian matrix were 

W [ ~ 3uln ~ U2n 1 + S<P,n ~ 2ulnU2n 

~ Wn L-l - S<p,n - 2ulnu2n V(x) - 3ui„ - uln 

Eq. 4-1 

Solving the eigenvalues of Eq. 4-1 would give 

= wn(Y(x) ±;(1 + S*n)]. Eq. 4-2 
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obtained using MATLAB (R2007b). They consist of a mixture of real and complex 

values. The real parts of the eigenvalues indicate the stability of the manifolds, with 

positive values denoting instability and negative values denoting stability. The most 

positive (£„) and negative (£*) real parts for each of the identified equilibrium points were 

found to be = 3.721 ± 0.269), and (|^| = 4.474 ± 0.002) that correspond to the 

unstable and stable manifolds, respectively. 

The changes from interictal to ictal states involved the escape from the saddle 

point foci in the state space trajectory. The preictal dynamics, transiting between interical 

to ictal activity, does not appear to follow a direct path before settling on a more defined 

and quasi-periodic trajectory of the ictal state. 
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Figure 4-4: An illustrative example of the best-fit simulated CRG matched with the 
biological data is shown. (A) The state-space trajectories (un, U31, U41) for different fi 
values in the simulation are shown, demonstrating that the onset of SLE can be visualized 
as the departure from the saddle point foci in interictal dynamics. The ictal dynamics 
exhibits a quasi-periodic trajectory. (B) The simulated signals (from Unit One of the 
model) along with the in vitro data (from Slice One) at different SLE states are also 
illustrated to show the similarity between the model output and the in vitro patch-clamp 
recordings. However, the similarity of the amplitude and the spike distribution still can be 
improved by adjusting the model parameters. 



56 

4.4 Negative Control Experiment 

The negative control experiments were performed using the Mg-free solution on 

the rat hippocampal slice preparation, consisted of over six hours from three animals. 

Recurrent seizure-like activities (as shown in Figure 4-5) can be seen throughout. A total 

of 100 SLEs was observed. On average, the SLEs occurred eight to ten times every ten 

minutes and each SLE lasted half to two minutes. 

(a) 

60s 

Figure 4-5: Sample field measurement from the negative control experiment showing 
repeated SLEs at approximately 8.30 ± 2.23 times every ten minutes. 
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4.5 Suppression of Seizure-Like Events 

Once the NC trials have been completed, over five hours of PS and BP was 

performed under identical experimental condition. Two different stimulations were 

applied to the recording electrode when the ictal onset was detected. In most cases, the 

subsequent SLEs after a PS were delayed by over a minute while there was no obvious 

response with BP stimulation. Occasionally, a long period of interictal spiking activity 

would appear after PS. In these cases, the inter-seizure time was increased significantly. 

As an illustrative example in Figure 4-6, after a 15-second postictal stimulation, the 

subsequent SLE was prolonged for over six minutes and before resuming again. A 

ranksum statistic was performed using Matlab to compare the medians of the inter-

seizure time between the NC, PS and the BP trials (Figure 4-7). The mean inter SLEs 

time of NC, PS and BP tests is 1 ± 0.56 min, 3.01 ± 2.07 min, and 0.82 ± 0.63 min. The 

SLEs were found to occur more frequently in the NC situation than with PS (p < 0.002). 

In the contrast experiment, the responses of NC situation and BP stimulation were similar 

(p > 0.45). Compared to PS stimulation, BP stimulation did not reduce the SLEs 

frequency (p < 0.01). 
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100 

Figure 4-6: The effect of postictal stimulation (PS) on Mg-free in vitro hippocampal slice 
seizure model is shown. The seizure-like events are denoted as SLE. After stimulation 
(PS), interictal spiking events (*) were generated, leading to delayed or prolonged inter-
seizure time. 
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Figure 4-7: Ranksum statistics was performed on the negative control (NC) and postictal 
stimulation (PS) trials, showing that PS stimulation can prolong the inter-seizure time (p 
< 0.002). 



CHAPTER 5 

DISCUSSION 

This chapter discusses the computational model in detail and describes the 

advantages and disadvantages of this modified new model. It also discusses the limitation 

of the seizure control strategy and the potential significance for seizure control therapy. 

5.1 Slice Seizure Modeling 

Neural oscillatory phenomena have been observed in many regions of the brain 

such as the cortex, the spinal cord and the soma of a primary afferent neuron (Compte et 

al., 2008; Pedroarena et al., 1999; Ruscheweyh & Sandkuhler, 2005). Different patterns 

of seizure-like oscillations can be generated in vitro using various conditions as low-Mg , 

4-AP, high-Ca and other techniques (Gutierrez et al., 1999; Luhmann et al., 2000; Li et 

al., 2008). The importance to the proposed modification lies in the versatility. It adds to 

the model unit to adapt to behaviors such as endogenous oscillation and threshold-based 

spiking with changes in a few model parameters (Zariffa & Bardakjian, 2006). The V(x) 

parameter in this model controls whether a unit is an endogenous persistent oscillator or a 

threshold-based oscillator, depending on the type of neuron in the network. In addition to 

controlling the excitability, the kernel duration parameter fi can also modulate the number 

of AP spikes in the threshold-based mode. Through the combination of endogenous 

oscillator units and threshold-based activation, a four-unit modified CRG model can 

59 
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describe the dynamics of state transitions leading to seizure onsets in low-Mg2+ in vitro 

rat hippocampal model. The computer model can generate not only spontaneous seizures, 

but also induce slow biological state transitions. There are other plausible mechanisms 

underlying the observed non-spontaneous state transitions. Both intrinsic and extrinsic 

factors may lead to the modification of neuronal excitability over time. Some of the 

intrinsic factors include the type, number and distribution of the channel, the biochemical 

modification of the receptors, the activation of second-messenger systems, or even the 

modulating gene expression. Some examples of possible extrinsic factors include changes 

in ion concentration, alteration of synaptic contacts, long term potentiation, and 

modulating transmitter metabolism by glial cells. It has been suggested that system 

property changes lead to biological state transitions and that seizures may emerge 

because of a change in system parameters that may be invisible to passive observation 

(Richardson & Lopes da Silva, 2011). 

The overall coupled network dynamics can also be attributed to the balance 

between the inhibitory feedback connection strengths and the kernel excitability. In 

general, the excitation parameters p and k have opposite effects on the LPR mode 

dynamics. Keeping the inhibitory feedback coefficients at a constant level, the kernel 

duration parameter has been found to be more sensitive than the modulation gain 

parameter to the changes in the overall kernel spectral energy. Excitability is related to 

the area under the kernel function and is estimated to be proportional to k/p. Even though 

the kernel duration is not related to the synaptic memory of the individual cells, the 

features related to the LPR dynamics were positively correlated to the ratio of the 
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modulation gain and first-order kernel duration (Figure 4-1). During the ictal period, the 

value of this ratio was also maximized. 

The histogram representation of the ISI information was used as an initial analysis 

to obtain a small subset of CRG model parameter combinations that could match the 

whole-cell patch clamp recordings of CA3 pyramidal neurons undergoing state 

transitions to the ictal events. Then, the Fasano-Franceschini statistical method was 

applied to find the best model parameter combinations at different stages of SLE 

transitions. It has been observed that transitions from HPC interictal to LPR ictal state 

can be achieved by modulating the network excitability (Table 4-1). 

Some short lasting state transitions can occur without external stimulation 

between the interictal and ictal regions of the model state space (Figure 4-4). This effect 

is consistent with previous reports and can be attributed to the finding that unstable 

periodic orbits can be embedded within chaotic manifolds (So et al., 1997). The major 

differences between the different parameter combinations are the location of the periodic 

orbits, the duration, and the interval in which the system stays in the LPR mode. The 

main findings presented here are consistent with previous results of Zalay et al. 2010, 

especially in regard to the relationship of P (kernel duration) to excitability and SLE 

properties. Furthermore, changes from interictal to ictal states involved the escape from 

the saddle point foci in the state space trajectory was also displayed in both the original 

(Zalay et al., 2010) and the modified version, except that the deviation in the state space 

trajectory in this case was induced by changes in model excitation parameters. Local 

stability analysis using Jacobian matrices around the equilibrium points uncovers the 

most unstable and stable manifolds around these points, leading to the discovery of 



saddle point dynamics. Small negative state variables are always found to be in these 

interictal saddle points, where ictal episodes are typically associated with large swings in 

excitation level related to the magnitude of the mode response amplitude (Zalay et al., 

2010). 

Despite the advantage of the modified CRG model in the elucidation of the 

system level mechanisms in modulating the network dynamics, traditional approaches 

such as conductance-based models are more suitable for the investigation of specific 

molecular properties of individual neuronal units. The proposed model also does not have 

a formal method to account for synaptic plasticity for long term simulation. Future work 

to improve this model includes the development of plasticity rules to enhance non-

stationarity status and complexity of the model, thus narrowing the difference between 

the model and the physiological system behavior (Chiu et al., 2011). 

Spontaneous SLEs have been generated by many different types of computational 

models. One must take into consideration that not all epilepsy disorders are the same. 

Epilepsy can occur in many different regions of the brain and each has its own unique 

characteristics. A slice-by-slice model must be created to enable customized stimulation 

protocol for each subject. The CRG model consists of external input portals for the 

simulation of current injection as well as electric field stimulation, which enables the 

evaluation of different stimulation protocols for the suppression and prevention of ictal 

activities. A previous simulation study has shown that biologically-inspired interictal 

signal is superior to other random or periodic stimulation protocols in the suppression of 

potential ictal events (Colic et al., 2011). The ability to quickly and effectively adjust the 

model parameters related to network excitability for individual subjects would have 
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significant implications on the development of this model-based interictal dynamic 

stimulation strategy. The significance of this work is that the interictal, preictal and 

postictal stages of epileptiform activity can be modeled utilizing one set of equations by 

varying the excitability parameters accordingly. This capability has implications for 

modeling and testing the controllability of the seizures. The idea of abolishing seizures 

via electrical stimulation is to attempt to reset the seizure neurons (Good et al., 2009), 

related to two possible factors: (1) The effective strength of the synaptic kernel JC to the 

unit, related to /?, which was studied in this manuscript. (2) The threshold of triggering 

action potentials, vj parameter in the function V(x), which was fixed in this paper, but 

may be a variable for future studies. 

5.2 Slice Seizure-Like Activity Control 

Electrical signal stimulation is an effective method for controlling or suppressing 

seizure-like activities. Different types of electrical stimuli were found to act on the animal 

slices. These signals either elicited or reduced the seizure-like activity, which means the 

animal brains not only receive electrical signals but also recognize the signal pattern. It is 

not clear how to access the brain signal without disturbing or causing damage to the 

original neural system. A pattern carrying the wrong information perhaps induces seizure 

activity more strongly. Therefore, the stimulus design is a difficult challenge to this SLE 

control research. 

In this dissertation a new type of stimulus called the computational seizure model 

based stimulus is introduced for controlling the SLEs. The idea is to obtain a seizure 

suppression pattern directly from the in vitro signal of the animal brain slices. The 

previous researches have proved that both low frequency stimulation (LFS) and high 



64 

frequency stimulation (HFS) are delivered for the suppression of the SLEs in the animal 

brain slices. The LFS means the stimulating signal has the frequency of 0.5, 0.75, 1,2, 10, 

and 25 Hz. The stimulus with the frequency of 130 and 200 Hz is set for the HFS. Both 

the HFS and LFS can suppress within the certain time (Albensi et al., 2008; Khosravani 

et al., 2003; Good et al., 2009; Wyckhuys et al., 2010). Later researchers found that even 

a signal with 60 Hz frequency can block SLE with a longer time (Rajdev et al., 2011). In 

this case, the frequency of the stimulus may not play an important role in the seizure 

control strategy. According to this clue, people accomplished their research on other 

stimulus parameters including the pulse width, pulse amplitude and signal 

strength/duration. The results show that no single parameter can completely achieve 

abortion of the SLEs (Rajdev et al., 2011), which means we need a specific pattern for 

seizure stimulation strategy. 

There is a potential pathway to obtain the desired pattern from animal brain 

activity itself. In the inside environment of the mature body, they exit the self-regulation 

function. When the seizure happens, the brain may send out the signal and try to recover 

this abnormal situation. Hence, to apply this type of signal that is similar with the 

animal's own brain signal could be the most effective way to investigate the neural 

system. There are two special findings that are closely related to the neural self-regulation 

function and the seizure recovery signal. First, synaptic input is able to tune the neuronal 

response. The synaptic current can independently tune the mean firing rate and variability 

while the synaptic conductance offer the strong ability of tuning the spike rate, variability 

and reliability (Dorval II et al., 2006). Second, the study of interneurons and pyramidal 

cells during the in vitro SLEs suggested that the correlations of their excitatory and 
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inhibitory spikes increased at the end of the SLEs (Ziburkus et al., 2006), which means 

that inside the neuronal network a spiking communication mechanism stops the SLEs. 

This spiking information is the signal pattern we want to abstract from the brain activity 

for the seizure suppression. Corresponding to the above, in vitro postictal signal can be 

the best choice for seizure stimulation. However, the postictal signal recorded from the 

animal slices contains much random noise which is difficult to remove. This random 

component of the postictal signal has the probability to elicit other SLEs that are not 

supposed to happen. 

With the disadvantage of the in vitro postictal signal, we decided to use the 

postictal signal from our modified CRG seizure model. Researchers in the original CRG 

modeling group have selected the inter seizure signal from their model and injected it to 

their computational seizure model. The seizure-like activity was significantly reduced 

according to the model output after the stimulation (Colic et al., 2011). If the model 

output is sufficiently similar to the in vitro signal, it should work and be more convenient 

to stimulus control and seizure stimulation application. Therefore, in this dissertation the 

postictal signal is applied to the in vitro slice seizure model. Compared to the interictal 

signal, the postictal signal should contain more information about suppressing seizure 

because the interical signal may generate another ictal activity (SLE) later. 

Oscillator-based stimulation protocol was tested for its effectiveness to suppress 

seizure episodes in an in vitro hippocampal slice preparation. The Mg-free setup was 

chosen because it was able to generate a high volume of recurrent seizure-like activities 

(Swartzwelder et al., 1987), which makes it a valuable model to evaluate our postictal 

stimulation protocol. The suppression of SLEs should not be to block the interseizure-
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like discharges (Smith & Swann, 1986). During the experiment we found the potassium 

concentration must be very accurate; otherwise, the signal may show the interseizure-like 

activity which leads to inconsistent SLE. The accurate potassium concentration (3.3 mM) 

and the right temperature (31-33.5 °C) help to guarantee a longer time limitation of 

producing the repeat identified SLEs. This in vitro seizure model is very strict to the ion 

concentrations and temperature for getting the right SLEs. The recurrent seizure-like 

activities are excellent for testing all kinds of seizure stimulus on the animal slices, since 

it is easy to identify the preictal, ictal and postictal states from the SLE pattern. 

After the PS stimulation, most subsequent SLEs were delayed by approximately 

one minute. In a few instances (about 20% of the time), long interictal spiking activity 

would appear after PS, which would significantly prolong the onset of the next SLE. The 

manifestation of the interictal spikes after postictal stimulation can be considered a 

temporary resetting of the slice and then the magnesium-free environment would induce 

seizure-like activities again. Meanwhile, there is no effective response from the bipolar 

pulse signal stimulation. Even in some cases it seems to increase the seizure activity 

(Figure 4-7). But some of the interictal time also reduced in the bipolar pulse signal 

stimulation comparing to the control experiment. Along with the stimulation results, the 

postictal signals did prolong the inter SLE time, which means they have a large chance to 

supply the spiking information of stopping SLEs. 

The three postictal stimuli are selected from the modified CRG model with the 

parameter combination which can generate most common SLE patterns. They are 

randomly picked from the seizure-like field activity simulation and used as an example to 

test our computational seizure model-based stimulus. More tests with different 
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stimulating patterns under the altered strength need to be carried out to determine which 

stimuli will lead to seizure control or neuron resetting. One approach is to impose a 

baseline/control stimulus initially and then systematically vary the main stimulus features 

such as the spiking pattern, the amplitude, and the stimulation time. The electrical 

signals from the brain, as obtained from the simulation, would then be analyzed to 

generate rules that relate the stimulus characteristics to the brain signal. 

In the modified CRG model, different parameter combinations that offer seizure 

patterns need to be considered. Seizure patterns can differ from individual to individual 

and from species to species. It is possible to match these patterns through changes in the 

CRG model input parameters. Those factors may enable the suppression of seizures 

through forced resetting of the neuronal network activities. However, the suppression was 

short-lived, before the next imminent SLE would start. At this stage, the postictal 

stimulus appeared to help reset the neuronal network into normal activity. However, more 

work is needed to evaluate the long term effect of such stimulation on the neurodynamics 

of the subjects. 

This research may be applicable to the design of more effective deep brain 

stimulation strategies for epileptic patients. Selection of the resetting dynamics from the 

epileptic patient's own brain signal may enable a natural way to provide stimulation. If it 

is applied to the seizure disease in humans, the seizure lesion needs to be known before 

the stimulation. If a signal with unchanging characteristics is applied to the brain, 

nonstationary conditions within the lesion may cause that signal to be ineffective at some 

times or to even act as a trigger for the seizure. A more dynamic approach to stimulation 

may therefore be more safe and effective. In such an approach, the information from the 
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computational models for seizure prediction and stimulation would be stored in the 

stimulator and would be a component of a feedback loop in which the brain activity was 

measured and used to select the most appropriate stimulation. 



CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this dissertation, we have presented a modified CRG model of transitions 

among preictal, ictal and postictal activity, which can fit into two various seizure patterns 

under different biological environments and provide a computational-based stimulus 

generating tool for seizure stimulation. This seizure model also can be applied to other 

types of seizure research. The original CRG model equations (oscillatory type) were 

modified into threshold-based CRG model equations to match the changes of seizure-like 

activity over time within the neuronal network. The biological data recorded by whole 

cell patch clamp techniques from the rat hippocampal slices was used to adjust to the 

model's parameter, which in turn offered different SLE patterns. After the biological 

data were incorporated into the modified CRG model, statistical comparisons were used 

to quantify the match between the biological data and model outputs. Network state space 

analysis was also performed to explain the seizure activity simulation orbits in three 

dimensions. Based on this identified computational seizure network model, we selected 

the postictal simulation signals as our stimuli to control SLE on the animal slice. 

The signals from the model matched three states of the SLE over time. The changing 

curve of the parameter exhibit the inside process of the single SLE and the relationship 

among the excitation kernel, the mean firing rate and the number of SLEs. The 
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stimulation results demonstrated that postictal simulation signals could affect the SLE in 

vitro, which means that the model may be applicable for human seizure therapy. 

Further research should focus on stimulus design for suppressing the SLEs and 

how to embed this stimulation strategy into the entire seizure control system. The 

specific factors related to the seizure control need to be discovered from the patterns of 

the stimulus. If possible, a common pattern that is effective for all types of SLEs should 

be sought. A final stage of this research would be to test the design of a deep brain 

stimulator (DBS) for human seizure therapy. In this case, a completed seizure feedback 

control system is required for the future test. 

This seizure feedback control system (Figure 6-1) is to predict the seizure 

situation and reduce it beforehand. It consists of three functions: seizure prediction, 

seizure modeling, and seizure stimulation. We can induce different types of animal 

seizures or SLEs to test this negative control system. The prediction function is designed 

by the wavelet prediction system (WPS) with the accuracy above 90% (Chiu, 2006; Chiu, 

2011). The stimulation is the output signal of CRG model that is going to inject postictal 

waveform to the neuron right before the seizure happens, which is to apply a small 

perturbation to the system and results that the action potentials stay away from the 

continuous seizure-like bursting. For example, after the seizure inducing solution is 

applied to the animal's brain slices, the WPS begins to work. The computational model 

based stimulator starts the signal injection every time when WPS have predicted the 

seizure. The WPS stops working after having predicted the seizure and be back to work 

after the stimulation has finished. 
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Seizure Induction 

Method 

Animals or Brain 

Slices 

Seizure Prediction 

(Wavelet Prediction System) 

Postictal Signal Stimulation 

(From CRG model) 

Seizure Modeling 

(To obtain the postictal signal based on CRG model) 

Figure 6-1: Sketch of the feedback control system for seizure suppression test. 

This research may have potential implication in the therapy of epileptic patients, 

related to a better design for an adaptive deep brain stimulation strategy. Selecting the 

resetting dynamics from the epileptic patient's own brain signal is a possible way to 

enable a more natural way to provide stimulation. 
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A.1 Main Function Code 

clear all 

close all 

A = 0.75; 

for B = 1 : 1 : 20 

forK= 10: 10:20 

clear actual_y 

clear v 

%% Number of units and intrinsic waveforms to use 

warning off; 

N = 4; % N is the number of oscillators in the network. 

load Wfull.mat; 

% Load the intrinsic waveform for CRG (Other options are W6 and W7 depending on 

where the peak is located. 

% There should be N number of such waveforms 

% After loading this W.mat file, there is a Wfunction variable (membrane 

% potential) and Wfreq (phase in rad). 

% Modified so that it now has 30000 samples within 1 period! 

% also this waveform should have been normalized by the RMS. 

% Also note that Wfunction is between 0 and 1 here to keep it consistent 

% with the differential equation. 

% Make new waveform a global variable so that sub-routines can call them up. 

global Wfunction; % Wfunctions should be (1 by 30000) [in mV above baseline] 
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global Wfreq; 

global LeN; 

LeN = length( Wfunction); 

%% Defining model parameters 

% Angular frequency 

w = 2*pi* [1.01; 0.99; 1.11; 1.09]/l .5; % w is the intrinsic angular frequency. Size = N x 

l; 

% Offset factor 

CO = [-0.2; -0.2; 0; 0]; % cO is the constant offset 

% Simulation duration 

t last = 180; % Simulation end time (typically 600s) 

global Samplelntv; 

global SampleFreq; 

% Sampling frequency 

SampleFreq = 512; % Simulation sampling frequency 

Samplelntv = 1/SampleFreq; % Simulation sampling interval 

time = 0:SampleIntv:t_last; 

T = length(time); 

%% External Input 

% This is the part where we are supposed to replace the external field 

% perturbation with different Poisson noise 

% Pick one type of spike... 

%load FieldSpike.mat; 
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%load IntraSpike.mat 

%[Train 1 ,spiketime]=inhomotrain(T, spike, SampleFreq, 100,FFreq); 

%[Train2,spiketime]=inhomotrain(T, spike, SampleFreq, 100,5); 

Sf_e = zeros(N, 1 )*ones(l,T); % Sf_e is phi external input. Size = N x T; 

Sf_e = awgn(Sf_e,36.5); 

%Sf_e(l,:) = Trainl; 

% When we are working on current injection, then we will modify this one 

F_e = zeros(N,l)*ones(l,T); % F_e is synaptic external input.Size = N x T; 

%F_e(l,:) = Wweight*Trainl ;%change to 3 

%F_e(4,:) = -Train2; 

%% Initial conditions for each unit 

% Make sure the array has NxN number of elements 

v = [ 1; 0.001; 0; 0; % First unit 

0.001; 1; 0; 0; % Second unit 

-1; 0.001; 0; 0; % Third unit... 

0.001;-1;0; 0]; 

% Most recent state variables (or now initial conditions). Size = 4N x 1; 

% vl and v2 are Euclidean coordinates 

% v3 and v4 corresponds to dynamic mode (0, 0) 

k = ones(N, 1 )*K; % k is modulatory gain 

% default values for k is 1 for Wfull and 15 for W10. 

%% Coupling parameters 

C = [ 0.5, 0.5, -A, -A; 
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0.5, 0.5, -A, -A; 

0.3, 0.3, 0, 0; 

0.3, 0.3, 0, 0]; 

% Cf is phi coupling factor. Size = N x N; 

beta = ones(N,l)*B; 

% In paper beta = 20 is normal 

% beta = 1 is excitable 

%% 

% initialize updatedt, updated v 

updatedt = []; 

updated_v = []; 

actualt = SampleIntv:SampleIntv:t_last; 

actual_y = []; 

y = zeros(N, 1); % y last is a column array 

[t,v] = ode23(@subcrg0701 ,[actual_t],v,[],Sf_e,F_e,C,w,CO,k,beta); 

v = v'; 

for i = 1 :N, 

index = 4*i-4; % index is the index of state variable, NOT neural unit (start with 1, 

5, etc...) 

% W(i) = interpol(v(index),v(index+l),Wfunction,36000); % angle is between -pi 

to pi 

% OR 

for j = 1 :length(actual_t); 
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angle(j) = atan2(v(index+2j),v(index+l j)+eps); 

if angle(j) <=0, angle(j) = angle(j) + 2*pi; end; 

W(i j) = Wfunction(ceil(angle(j)*LeN/2/pi)); 

actual_y(i j) = C0(i) + v(index+3 j) + 

((sqrt(v(index+l j)A2+v(index+2j)A2))A20).*W(ij); 

end; 

end; 

f = figure; 

% title(['MCRG20110908 - a' num2str(A) 'b' num2str(B) 'k' num2str(K) 'wl.5Kr8X2'], 

'fontsize', 12); 

for i = 1 :N, 

subplot(N,l,i); 

plot(actual_t,actual_y(i,:)); 

ylabel(['Unitnum2str(i),1 Output']); 

ylim([-10 110]); 

xlabel('Time (s)'); 

end; 

% saveas(g, [rNetwork20101105Wavea' num2str(A) 'b' num2str(B) '.fig']); 

% saveas(g, [rNetwork20101105Wavea' num2str(A) 'b' num2str(B) '.tif], 'tif); 

%f = figure; 

[ISI, Peaks] = ThresDet(actual_y, SampleFreq, 15,3, 1); 

save(['MCRG20110908_a* num2str(A) 'b' num2str(B) *k' num2str(K) *wl.5Kr8X2' '.mat'], 

'actualt', 'actually', 'v', 'ISI', 'Peaks'); 



78 

% saveas(f, ['Network20101105ISIa' num2str(A) 'b' num2str(B) '.fig']); 

saveas(f, ['MCRG20110908 a' num2str(A) 'b' num2str(B) 'k' num2str(K) 'wl.5Kr8X2' 

•.tif], 'tif); 

end 

end 



A.2 The Derivative Function of CRG Model 

function dvdt = subcrg0701(t,v,Sf_e,F_e,C,w,C0,k,beta), 

% Sub-routine for CRG 

% 

% Inputs... 

% 

% t = sub-interval to be analyzed. 

% v = initial values of state for sub-interval = v last. Size = 2*N x 1; 

% Sf_e = external stimuli for phi portal. Size = N x T; 

% F_e = external stimuli for synaptic ODE. Size = N x T; 

% C  —  phi coupling factor. Size = N x N; 

% w = intrinsic angular frequency of oscillator or labile. Size =Nx 1; 

% CO = resting potential. Size = N x 1; 

% k = modulatory gain. Size = N x 1; 

% beta = mode decay constant. Size = N x 1; 

global Wfunction; 

global SampleFreq; 

global LeN; 

N = length(v)/4; 

dvdt = zeros(4*N,l); % Make sure that dvdt same size as v. Size = 4N 

y = zeros(N,l); 

current = ceil(t*SampleFreq); 
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for i = 1 :N, 

index = 4*i-4; % index is the index of state variable, NOT neural unit (start with 1, 5, 

etc...) 

% W(i) = interpol(v(index),v(index+l), Wfunction,36000); % angle is between -pi to 

Pi 

% OR 

angle = atan2(v(index+2),v(index+l)+eps); 

if angle <=0, angle = angle + 2*pi; end; 

W(i) = Wfunction(ceil(angle*LeN/2/pi)); 

y(i) = C0(i) + v(index+3)+(sqrt(v(index+l)A2+v(index+2)A2)).*W(i); 

end; 

Fn = C*y + F_e(:,current); 

%% 

for i = 1 :N, 

index = 4*i-4; 

Ka = 10; % Net contribution of alpha portal to hourglass and labile 

Sa = [0 0 0 0]; 

Kr = 8; % Net contribution of rho portal to hourglass and labile clock 

% X = [3 3 3 3]; 

X = [2 2 2 2]; 

% X = [4 4 4 4]; 

x(i) = Ka.*Sa(i) + Kr* v(index+3)+X(i); 

% x = [100 1 100 2]; 
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% v(3:4:15); % x is the driving 

% stimulus (for hourglass and labile clock). Here Srhist is updated to 

% the initial time of this sampling period only. Size = N x 1; 

% vl, v2 and v3 are parameters for the threshold functions in labile clock. 

vl = 1; % Magnitude parameter for labile clock (ON/OFF) 

v2 = 30; % Slope parameter for labile clock 

v3 = 0.5; % Input threshold to activate labile clock 

V(i) = getV(x,vl,v2,v3); 

end 

%% 

rl = l; 

r2 = 0.3; % Refractoriness (fraction of the intrinsic period) 

r3 = 8; % Sharpness of the refractoriness threshold 

for i = 1 :N, % index i is reserved for the oscillator index 

index = 4*i-4; 

R(i) = rl / ((1 +(2*pi*r2/angle)Ar3)A(0.5)); 

% Refractory as function of phase for oscillator. Size = 1 x N; 

end; 

%% 

for i = 1 :N, 

index = 4*i-4; % index is the index of state variable, NOT neural unit (start with 1, 5, 

etc...) 

Sf(i) = C0(i) + k(i)*v(index+3) + Sf_e(i,current); 
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% Sf(i) = 0; 

dvdt(index+l,l) = w(i)* (v(index+2)*( 1 +Sf(i)) + v(index+1 )*(V(i)-v(index+1 )A2-

v(index+2)A2)); 

dvdt(index+2,l) = w(i)*(-v(index+l)*(l+Sf(i)) + v(index+2)*(V(i)-v(index+l)A2-

v(index+2)A2)); 

dvdt(index+3,l) = v(index+4); 

dvdt(index+4,l) = beta(i)*Fn(i) - 2*beta(i)*v(index+4) - beta(i)A2*v(index+3); 

end; 

% v(index+3) 
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A.3 Threshold Detection Function of CRG model 

function [ISI, Peaks] = ThresDet(Input, fs, threshold, NumO, MinWidth) 

%%%%%%%%%%%0/o0/o%%%%%%%%%%%0/o%%%%%%%%%%%%%%%%% 

% [ISI, Peaks] = ThresDet(Input, fs, threshold, NumO, MinWidth) 

% Compute the ISI as a function of time 

% 

% ISI = gives interspike interval in units of seconds 

% Peaks = gives time of peaks 

% Input = [N by L] N number of sequence, L length of sequence 

% fs = sampling frequency 

% threshold = threshold value 

% NumO = min number of below thresholds points prior to peak 

% MinWidth = min width (samples) of above threshold points to consider 

% spike. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[N, L] = size(Input); 

decsn = Input > threshold; 

tmplte = [zeros(l,NumO) ones(l,MinWidth)]; 

tmplen = NumO + MinWidth; 

for i = 1 :N, 

Peaks{i} = []; 

counter = 1; 

forj = l:L-tmplen, 



if decsn(ij:j+tmplen-l) = tmplte, 

Peaks{i} (counter) = j/fs; 

counter = counter+1; 

j = j + tmplen; 

end; 

end; 

% subplot(2,2,i); 

if ~isempty(Peaks{i}) 

ISI{i} = diff(Peaks{i}); 

% plot(ISI{i}(1 :length(ISI{i})-l),ISI{i}(2:length(ISI{i})),'.'); 

% axis([0 100 0 100]); 

% title(['ISI for unit' num2str(i)], 'fontsize', 14); 

%% if t — 1 

% % title(['ISI20100929(2.0Mg)' num2str(10*(t-l))'-' num2str(10*t) 'rnin'] 

'fontsize', 9); 

% % else 

% % title(['ISI20100929(0.25Mg)' num2str(10*(t-l))num2str(10*t) 'min 

'fontsize', 9); 

% % end 

else 

continue; 

end; 

end; 
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A.4 Gaussian Function and R Function of CRG Model 

function gauss = Gaussian(phase, mag, spread, peak); 

gauss = mag/spread *exp((-(phase-peak). A2)/(2 * spread. A2)); 

function V = getV(x,vl,v2,v3), 

% V = vl ./ (l+exp(-v2*(x-v3))); 

if x >= v3, 

V = 1; 

else V = 0; 

end 
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A.5 Matching Function for Model Outputs and Biological Data 

clear all; 

close all; 

A = 0.75; 

for B = 1 : 1 : 20 

for K= 10: 10:20 

data_EX = load('20100916_MP_0normal_101owMg(0.25)_70wash.atf); 

fid = fopen(['C)verlapped_Area_0912.txt'],'at'); 

fprintf(fid,['\n' '20100913_MP_0normal_101owMg(0.25)_40wash.atf &. 

MCRG20110908 a' num2str(A) 'b* num2str(B) *k' num2str(K) 'w2Kr8X2' '.mat' '\n']); 

fclose(fid); 

% ISI 

a= 1; 

f = figure; 

for s = 1 : 4 

actual_y = data_EX(a:299999*s,2); 

input = actual_y'; 

subplot(2,2,s); 

[ISI Peaks] = ThresDet(input, 500,-40,3,l,s); 

a = 299999 * s; 

end 

saveas(f, ['ISI20100929_0.25Mg.tif], 'tif); 

% Histogram For Experimental Data 
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actual_y = data_EX(570000:690000,2); 

input = actual_y'; 

[ISI Peaks] = ThresDet(input, 500,-40,3,1); 

f = figure; 

[N, X] = hist(ISI{ 1,1},0:0.3:10); 

bar(X, N./sum(N), 1); 

ylim([0 1]); 

xlim([0 10]); 

xlabel('Time(s)'); 

ylabelCNormalized Distribution'); 

title(['Histogram20100929(0.25Mg,3min)'], 'fontsize', 14); 

saveas(f, ['ISI_Prel3_a' num2str(A) 'b' num2str(B) 'k' num2str(K) 'w2' '.tif], 'tif); 

% Histogram For CRG Model Output 

A = 0.75; 

for B = 1 : 10 

B = 10; 

dataMO = load(['MCRG20110908 a' num2str(A) 'b' num2str(B) 'k' num2str(K) 

'wl.5Kr8X3' '.mat']); 

f= figure; 

M = zeros(4,34); 

for i = 1 :4 

subplot(2,2,i); 

[M(i,:), Y] = hist(data_MO.ISI{l,i},0:0.3:10); 
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bar(Y, M(i,:)./sum(M(i,:)), 1); 

ylim([0 1]); 

xlim([0 10]); 

xlabel('Time(s)'); 

ylabelCNormalized Distribution'); 

title(['Histogram(a0.75b2k20) Unit' num2str(i) '(0.25Mg,10min)'], 'fontsize', 14); 

saveas(f, ['Histogram_a0.75b2k20_Unit' num2str(i) '.tif], 'tif); 

end 

saveas(f, ['Histogram_a0.75bl.tif], 'tif); 

% Normalized Histogram Overlapped Area Calculation 

x = N./sum(N); 

t = 0:0.3:10; 

a = length(t); 

total = zeros(l,4); 

S = zeros(l,a); 

for i = 1 : 4 

p(i,0 = M(i,:)./sum(M(i,:)); 

end 

for i = 1 : 4 

for j = 1 : a 

if x(j) >= p(ij) 

S(ij) = P<iJ); 

total(i) = total(i) + S(i j); 
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else 

S(ij) = x(j); 

total(i) = total(i) + S(ij); 

end 

end 

end 

f = figure; 

for i = 1:4 

subplot(2,2,i) 

plot(t,x,'or',t, p(i,:), 'og', t, S(i,:)); 

ylim([0 1]); 

xlim([0 10]); 

xlabel('Time(s)'); 

ylabelCNormalized Distribution'); 

title([rNormalized Histogram Overlapped Area Is' num2str(total(i)*100)'%'], 'fontsize', 

9); 

% saveas(f, [fNormalizedDistribution_a0.75b2k20_Unit' num2str(i) '.tif], 'tif); 

end 

saveas(f, ['NormalizedDistribution_a0.75b2k20_Unit' num2str(i) '.tif], 'tif); 

G = 0.8; 

if total(l) > G || total(2) > G || total(3) > G || total(4) > G, 

fid = fopen(['Overlapped_Area_0912.txt'],'at'); 
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fprintf(fid,['Overlapped_Area_a' num2str(A) 'b' num2str(B) 'k' num2str(K) 'Kr8X3' '\n' 

'%0.2f %0.2f %0.2f %0.2f\n'],total); 

fclose(fid); 

end 

end 

end 

end 

%% 

clear all; 

data_EX = load('20100916_MP_0normal_101owMg(0.25)_70wash.atf); 

actual_y = data_EX(570000:690000,2); 

input - actually'; 

[ISI Peaks] = ThresDet(input, 500,-40,3,1); 

[L R] = size(ISI{ 1}); 

matrix(l:R-l,l) = ISI{1}(1,1:R-1); 

matrix(l:R-l,2) = ISI{1}(1,2:R); 

save EX_Sz_16.txt matrix -ASCII; 

% clear all; 

C= I; 

for i = 3 : 4 

[L R] = size(ISI{i}); 

matrix(l:R-l,C) = ISI{i}(l,l:R-l); 
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matrix(l:R-l,C+l) = ISI{i}(l,2:R); 

C = C + 2; 

end 

save Model_Post_16.txt matrix -ASCII; 



APPENDIX B 

THE R PROGRAM CODE OF STATISTICAL ANALYSIS 

92 



93 

rm(list=ls(all=TRUE)) 

library(mixAK) 

library(mvtnorm) 

## Bivariate KS Test: 2 Sample 

## SAMPLING INDEPENDENTLY/SEPARATELY from FUSED 2 samples to 

calculate boot test stats 

modldat=read.table("C:/Documents and Settings/User/My Documents/Charles 

Modelling/Good Fit/Model_Post_l 6.txt", header=F) 

exptdat=read.table("C:/Documents and Settings/User/My Documents/Charles 

Modelling/Good Fit/EX_Post_l 6.txt", header=F) 

exptdat=exptdat[! duplicated(exptdat[,2]),] 

exptdat=exptdat[! duplicated(exptdat[, 1 ]),] 

#exptdat=unique(exptdat) 

dim(exptdat)dim(modldat) 

################### 

#MATRIX ASSUMPTIONS 

modim=dim(modldat) 

exdim=dim(exptdat) 

pval=matrix(0,nr=modim[2]/2) 

tststatvalp=matrix(0,nr=modim[2]/2) 

rr=matrix(0,nr=modim[2]/2) 

################ 

#OVERALL LOOP 
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system.time( 

for(l in l:(modim[2]/2)){ 

#MODEL DATA 

dd= modldat[, (2*1-1 ):(2*1)] 

dd=dd[!duplicated(dd[,2]),] #################CHANGE/CHECK THIS ALL THE 

TIME 

dd=dd[!duplicated(dd[, 1 ]),] 

#dd=unique(dd) 

xl=dd[,l] 

xl=xl[xl>0] 

yl=dd[,2] 

yl=yl[yl>0] 

dd=cbind(xl,yl) 

#EXPTAL DATA 

x2=exptdat[,l] 

y2=exptdat[,2] 

dd2=cbind(x2,y2) 

#STACKING FOR CRIT VALUE CALC 

dd3=rbind(dd,dd2) 

# 

#P-VALUE METHOD 
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nl=length(xl) 

n2=length(x2) 

nsim=500 

tstatboot=matrix(0,nr=nsim) 

#BOOT TEST STATS 

for(k in l:nsim){ 

#SAMPLING FOR GROUP 1 

ddb=dd3[sample(nl, replace=T),] 

#ddb=dd[sample(nl, replace=T),] 

xlb=ddb[,l] 

ylb=ddb[,2] 

#SAMPLING FOR GROUP 2 

dd2b=dd3[sample(n2, replace=T),] 

#dd2b=dd2[sample(n2, replace=T),] 

x2b=dd2b[,l] 

y2b=dd2b[,2] 

#STACKING 

x3b=c(xlb,x2b) 

y3b=c(ylb,y2b) 

#ESTIMATED COUNTS 

Grl =matrix(0,nr=(nl +n2),nc=4) 

Gr2=matrix(0,nr=(n 1 +n2),nc=4) 

for(i in l:(nl+n2)){ 
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#GROUP1 

Grl[i,l]=sum( ifelse( xlb <=x3b[i], l,0)*ifelse( ylb <= y3b[i], 1,0) )/nl 

Grl[i,2]=sum( ifelse( xlb >=x3b[i], l,0)*ifelse( ylb <= y3b[i], 1,0) )/nl 

Grl[i,3]=sum( ifelse( xlb >=x3b[i], l,0)*ifelse( ylb >= y3b[i], 1,0) )/nl 

Grl [i,4]=sum( ifelse( xlb <=x3b[i], l,0)*ifelse( ylb >= y3b[i], 1,0) )/nl 

#GROUP2 

Gr2[i,l]=sum( ifelse( x2b <=x3b[i], l,0)*ifelse( y2b <= y3b[i], 1,0) )/n2 

Gr2[i,2]=sum( ifelse( x2b >=x3b[i], l,0)*ifelse( y2b <= y3b[i], 1,0) )/n2 

Gr2[i,3]=sum( ifelse( x2b >=x3b[i], l,0)*ifelse( y2b >= y3b[i], 1,0) )/n2 

Gr2[i,4]=sum( ifelse( x2b <=x3b[i], l,0)*ifelse( y2b >= y3b[i], 1,0) )/n2 

} 

tstatboot[k]=max(abs(Gr 1 -Gr2)) 

} 

#OBSERVED TEST STATISTIC CALCULATION 

#STACKING AS ONE SAMPLE 

x3=c(xl,x2) 

y3=c(yl,y2) 

#ESTIMATED PROBYs 

datHl =matrix(0,nr=(nl +n2),nc=4) 

datH2=matrix(0,nr=(n 1 +n2),nc=4) 

for(i in l:(nl+n2)){ 

datHl[i,l]=sum( ifelse(xl <=x3[i], l,0)*ifelse(yl <=y3[i], l,0))/nl 

datHl[i,2]=sum( ifelse( xl >=x3[i], l,0)*ifelse(yl <-y3[i], l,0))/nl 
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datHl [i,3]=sum( ifelse(xl >=x3[i], l,0)*ifelse( yl >=y3[i], l,0))/nl 

datHl [i,4]=sum( ifelse( xl <=x3[i], l,0)*ifelse( yl >= y3[i], 1,0) )/nl 

#EXPERIMENTAL 

datH2[i,l]=sum( ifelse( x2 <=x3[i], l,0)*ifelse( y2 <= y3[i], 1,0) )/n2 

datH2[i,2]=sum( ifelse( x2 >=x3[i], l,0)*ifelse( y2 <= y3[i], 1,0) )/n2 

datH2[i,3]=sum( ifelse( x2 >=x3[i], l,0)*ifelse( y2 >= y3[i], 1,0) )/n2 

datH2[i,4]=sum( ifelse( x2 <=x3[i], l,0)*ifelse( y2 >= y3[i], 1,0) )/n2 

} 

tststatvalp[l]=max(abs(datH 1 -datH2)) 

#P-VALUE 

pval[l]=sum(ifelse(tstatboot>tststatvalp[l], 1, 0))/nsim 

rr[l]=max(tstatboot)-min(tstatboot) 

} 

) #SYSTEM TIME 

pval 

which(pval>0.05) 

pval[pval>0.05] 

max(rr)/nsim 

summary(rr) 

summary(tststatvalp) 
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