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ABSTRACT

In this work, microfluidic devices were developed for enriching post-translational 

modified proteins. Post-translational modifications (PTM) o f proteins play essential roles 

in cellular physiology and disease. The identification o f protein substrates and detection 

o f modification site helps understand PTM-mediated regulation in essential biological 

pathways and functions in various diseases. However, PTM proteins are typically present 

only at trace levels, making them difficult to identify in mass spectrometry based 

proteomics. This work study is about the design, fabrication and testing o f the 

microfluidic device for the enrichment o f  abundant amount o f  PTMs. Carbonylated 

protein is used as a representative PTM to illustrate the wide application o f this method 

for any PTMs converted into a tractable tag after derivatization. The surface topography, 

surface functional group mapping and elemental composition changes after each 

modification step of the treatment process were systematically measured qualitatively and 

quantitatively. Quantitative study o f capture efficiency and elution efficiency o f the 

device was also studied. Furthermore, there are also ideas that this proteome enrichment 

device can be assembled with other lab-on-a-chip components for follow-up protein 

analysis. For example, coupling with mass spectrometry will allow automatic low- 

volume fraction deposition on mass spectrometry.

As a part o f the microfluidic device designing, this work also aims at optimizing 

the operating parameters and geometric parameters o f  microfluidic devices with



microscale posts. The operating parameters studied are Reynolds number, Peclet number, 

Damkohler number, and equilibrium reaction constant. These parameters encompass the 

influence o f velocity, diffusivity, density, viscosity, hydraulic diameter, inlet 

concentration o f species and forward and backward reaction constants. This work 

theoretically analyzes the influence o f the above mentioned operating parameters using 

finite element analysis software COMSOL Multiphysics 4.2.a. The results o f this study 

would improve the design of microfluidic devices used for chemical reactions as well as 

that used for protein enrichment.
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CHAPTER 1

INTRODUCTION

1.1 Research Hypothesis

1.1.1 Central Problem

The objective o f this work is to design and develop microfluidic devices for the 

fast and effective analysis of proteins with specific focus on coupling microfluidic 

devices to facilitate and enhance proteomics study in aging related disease (in this work, 

Alzheimer’s disease (AD) is used as the research model). While in practical, most o f the 

work done is related with reactive oxygen species (ROS) generated protein post- 

translational modifications (PTM). Based on the knowledge the author has acquired, the 

hypothesis below is made:

In an organism that possesses a central nervous system, the number o f oxidized 

(e.g. carbonylated) proteins and their relative modification abundance ratio are correlated 

with aging and AD. The increase in carbonylation levels o f these particular proteins lead 

to the clinical symptoms observed in AD. For individual cases, protein carbonyl 

modification results in compromised protein function during the transition from normal 

aging to AD.

1



1.1.2 Dissertation Aims

The hypothesis has marked up a route between known (current knowledge in 

proteomics and protein PTM) and unknown (the real reason for age-related disease), and 

methodology in microfluidics and proteomics provide feet to travel on the route. Works 

made along this route will provide targets for future testing, putting human beings a step 

closer to understanding the role o f protein PTM in aging-related brain function decline. 

The following three Aims have been established to accomplish these goals:

Aim 1- Develop and use a solid-phase device to enrich carbonylated proteins from 

clinical samples.

Aim 2- Evaluate different strategies o f  the microfluidic device for protein 

carbonylation enrichment.

Aim 3- Use mathematical simulation tools to explore chemical functionalized 

microfluidic device models that enrich target proteins from flow-through solution and 

make optimization in geometric and operating features.

1.2 Approach

Proteomics works on age-related disease must work with low concentrations and 

small quantities o f carbonylated proteins. A feasible and efficient carbonylated protein 

enrichment method is necessary. Conventional methods detecting specific proteins are 

mainly immunoassays, which provide accurate quantitative proteomic measurements 

while it is time-consuming and complex in experiments. The development o f  an effective 

enrichment method for a protein sample of small concentration in existence is necessary. 

Furthermore, there are also demands in the protein samples purification process, which 

could and should also be integrated on the microfluidic enriching device. Chapters 3 and



3

4 introduce the design and fabrication o f two sets o f microfluidic devices, o f different 

materials and fabrication methods, that enriches carbonylated proteins from sample 

solutions with affinity based and antibody-antigen based methods. After the protein 

enrichment device described in Aim 1 is developed, it is necessary to quantitatively test 

the amount of carbonylated proteins enriched from the sample. In Chapters 3 and 4, 

fluorescence spectrometry is used to quantitatively study the capture and elute efficiency 

o f the devices developed.

The work of Aims 1 and 2 provide microfluidic enhanced proteomics study, the 

operate parameters, such as the density o f  affinity receptor and antibody chemical 

modification o f the device, and geometric parameters, such as the shape o f the microposts 

used, greatly affect the efficiency and reaction speed o f the device. Chapter 5 works on 

providing possible relationships among different parameters and the performance o f the 

device, and further summarizes and makes optimization suggestions.

1.3 Overview

Chapter 2 introduces the background knowledge and current research work on 

microchip proteomics, microfabrication and microfluidic simulation. Chapter 3 describes 

the first set o f micropost structured microfluidic device operated by a pressure-driven 

flow for protein carbonylation enrichment. The second set o f microfluidic device, 

described in Chapter 5, uses a material that supports resealing or hot-plugging and is 

more specific in target protein enriching. The simulation optimization o f a common 

model o f the microfluidic device that enriches proteins, which stand for the two sets o f 

experiments above, is described in Chapter 5.
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CHAPTER 2 

BACKGROUND

2.1 Relationship Between Protein and Aging Related Diseases

2.1.1 Proteins in Cell Functioning

Proteins are biological macromolecules biopolymers that built by amino acids, 

whose sequence is encoded by genes. The amino acids are connected with peptide bonds 

to form polypeptides, while a protein molecule could be composed from more than one 

polypeptide chain. Proteins have various functions and play essential roles in every cell 

functioning process, including enzymes that catalyze in biochemical reactions, structural 

supporting, mechanical functions, cell signaling, immune responses, cell adhesion—just 

to mention a few.

The variety o f  protein functions come from their different amino acid sequence 

and post-translation modification, which are based on the process o f protein synthesis. 

The process o f synthesizing a protein begins with the deoxyribonucleic acid (DNA) being 

transcribed into a messenger ribonucleic acid (mRNA) in the nucleus. After mRNA 

transport out o f the nucleus, it bonds with ribosome at the start codon (AUG), which is 

recognized by the initiator transfer RNA (tRNA). tRNAs transfer amino acids 

corresponding to the codon on mRNA, and ribosome will “do the patchwork” that builds 

the amino acids into polypeptides. This progress is called “translation.” After translation,



the amino acid residues in the poly-peptide chain are often chemically modified by 

posttranslational modification, which will change mechanical and chemical properties, 

folding structure and functional groups on the proteins.

2-1-2 Free Radical Theory o f Aging

2.1.2.1 Overview

Free radical theory o f aging, proposed by Denham Harman in 1956, states that it 

is possible that “one factor in aging may be related to deleterious side attacks o f free 

radicals (which are normally produced in the course o f  cellular metabolism) on cell 

constituents” (D. Harman 1956). Originally, “free radical” refers to OH and HO2 radicals 

that are present in living cells. By tracing o f metals such as iron, cobalt, and manganese, 

Harman states that “free radicals probably arise largely through reactions involving 

molecular oxygen catalyzed in the cell by oxidative enzymes and in the connective 

tissues" (D. Harman 1956). “Free radical” is produced when a “free molecule” (or 

saying, small molecules that can freely move in cytoplasm) gains or loses an electron and 

thus becomes charged. “Free radical” tends to obtain another electron from other 

molecules it encounter, in order to have its free electron paired. This “electron robbing” 

process may result in molecule damage: The free radical often pulls an electron off a 

neighboring molecule, causing the affected molecule to become a free radical itself. The 

new free radical can then pull an electron off the next molecule, and a chemical chain 

reaction o f radical production occurs (Cui, Kong and Zhang 2011).

2.1.2.2 The Effect o f Reactive Oxygen Species

In the 1970s, Harman further developed the free radical theory o f aging and 

specialization implying that reactive oxygen species (ROS), such as superoxide anion
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( 0 2~), hydroxyl radical ( OH), and hydrogen peroxide (H20 2) are produced in the 

mitochondria (D. Harman 1972). In this theory, ROS in the cell is mainly produced by 

the mitochondria in the process o f oxidative phosphorylation, a process that consumes 

most of the oxygen, and reproduces most o f the ATP molecule in the cell. The production 

o f ROS happens on the mitochondrial membrane as a part o f  the electron transport chain, 

as shown in Figure 2-1. On the membrane o f mitochondria, complex III is classically 

considered as the main source o f ROS, and release ROS into the mitochondrial matrix 

(Boveris and Cadenas 2000). Recent study shows that complex I also plays the role as a 

main ROS generator in the mitochondria in the heart and brain cells (Genova, et al. 2001) 

(Drouge 2002). As a result, mitochondrial proteins have a much higher chance being 

affected by the generated ROS.

Oxidative damage initiated by ROS is considered as a major contributor to the 

process o f cellular aging (Dalle-Donne, et al. 1999). The cell itself generates a defense on 

ROS, for example, superoxide dismutase (SOD, which converts 0 2' to H20 2), to ease the 

chance of being damaged by ROS. Proof shows that transgenic flies with extra copies of 

SOD caused “a decrease in protein oxidative damage along with a one-third increase o f 

mean and maximum life span” (Orr and Sohal 1994). It is noticeable that deletion o f  the 

mitochondrial SOD2 can EXTEND the lifespan in Caenorhabditis elegans (Van 

Raamsdonk and Hekim 2009). Considering that deleting the mitochondrial SOD gene in 

transgenic mice model leads to the central nervous system neurons severely affected and 

a shortened lifespan (Wallace and Melov 1998), it is possible that SOD is only important 

in specific cells, for example, in neuron cells.
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Figure 2-1: Electron transport chain, ATP generation, and ROS production. Different 
complexes (1-V) o f the electron transport chain are represented in the inner membrane 
(IM) of the mitochondria (Ricci, Waterhouse and Green 2003).

2.1.2.3 ROS in Neural Systems and Degenerative Disease

Degenerative disease indicates that the disease will result in the function and/or 

structure o f  the affected tissues or organs progressively deteriorating over time. Current 

study focuses on the role ROS plays in the process o f  aging-related disease development 

(Stadtman, Protein oxidation and aging 2006). Especially, various studies indicate that 

ROS is relevant with neural cell diseases and neurodegenerative diseases. The 

degeneration o f dopaminergic cell, which is a hallmark Parkinson’s disease, is considered 

relevant to the effect o f ROS (Jenner 2003). Also, numerous studies indicate oxidative



stress is also one o f the effects that happen at the very start o f  the development o f 

Alzheimer’s disease (Honda, et al. 2004).

2.1.2.4 Protein Post-translational Modification

Post-translational modification (PTM) o f protein is a chemical process, in which a 

ribosomally coded amino acid residue is modified into a non-standard amino acid residue 

by an enzymatic reaction. Currently, more than 300 various types o f  protein PTMs have 

been discovered. Majority o f them are considered to play key roles in cellular physiology 

and disease (Zhao and Jensen 2009). The identification o f protein substrates and 

detection o f modification site helps understand PTM-mediated regulation in essential 

biological pathways and functions in aging or age related disease.

PTM are not typically homogeneous, and a single gene can lead to various 

numbers o f products due to alternative splicing and the combination o f different 

modifications. Hence, the total amount o f protein in a single modification states in a very 

small fraction of the total amount o f products (Mann and Jensen 2003). The scale of 

protein concentrations one can look for can range from milimolar (10'3) to yoctomolar 

(10'24) (which is less than one molecule per liter). Thus, the determination o f post- 

translational modifications presents formidable challenges in mass spectrometry-based 

proteomic research due to a lack of suitable methods. High sensitivity is desired in PTM 

proteomics to detect a low abundant protein in the biological samples. So far, only a 

small fraction o f PTM has been extensively exploited at the proteome level. Currently, 

the global systematic proteomic study for the post-translationally modified proteins in 

proteomic comprises affinity-based enrichment and extraction methods, multidimensional 

separation technologies followed with mass spectrometry (Jensen 2004) (Zhao and
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Jensen 2009). Therefore, a selective enrichment o f modified proteins is critical for 

identification o f PTMs in complex protein mixture.

One of the widely used tube-based purification o f PTM derives from the affinity 

tagging. For example, carbonylated protein can be labeled by a Schiff reaction between 

carbonyl and biotin hydrazide, and consecutively enriched by avidin using biotin-avidin 

strong binding affinity (Ortega-Castro et al., 2010). Also, other PTMs such as nitrated 

proteins, nitrosylated proteins, glutathionylated proteins have been enriched for 

proteomics study using this affinity tagging approach (Casoni et al., 2005; Lind et al., 

2002; Lindermayr et al., 2005). Alternatively, immunoprecipitation (IP) has been widely 

used in biological and clinical research to specifically pull down a protein or proteins 

sharing the same functional groups from complex samples using the immuno-based 

capture followed by washing and eluting. For example, anti-dinitrophenyl (DNP) beads 

were modified to target carbonylated proteins (Kristensen et al., 2004).

2.1.2.5 Protein Carbonylation

Protein carbonylation is a well-used biomarker o f severe oxidative protein 

damage, which plays a fundamental role in human diseases (Rossi, et al. 2008).

Carbonyl (CO) groups (aldehydes and ketones) are produced on oxidization o f protein 

side chains o f lysine, arginine, proline and threonine residues, as shown in Figure 2-2.
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Figure 2-2: The structure of carbonyl derivatives produced by direct oxidation o f amino 
acid side chains: 2-pyrrolidone from prolyl residue, glutamic semialdehyde from arginyl 
and prolyl residue, a-aminoadipic semialdehyde from lysyl residue, and 2-amino-3- 
ketobutyric acid from threonyl residue (Dalle-Donne, et al. 1999).

The accurate quantitative proteomics analysis o f protein carbonylation will 

provide important information to characterize and help establish effective therapy to 

relate carbonyl to oxidative stress induced disease, such as AD (Boyd-Kimball, et al. 

2005). To obtain how oxidative pressure modifies protein by carbonylation, effective 

proteomic study on protein modification is needed. However, the traditional time and 

sample consuming experimental methods are restricting the further development o f 

proteomics (Nagele, Vollmer and Horth 2003). Progress in the identification o f 

carbonylated proteins could provide a new diagnostic biomarker identification method of 

increased accuracy, efficient sample analysis and less sample requirements for oxidative 

damage, and yield the basic information to aid the establishment o f  an efficacious 

antioxidant therapy. In this dissertation work, purification, separation and digestion o f 

carbonylated proteins in the micro fluidic device is used as a proof o f  principle: the 

micro fluidic device described here will provide an accurate dynamic analysis o f  low 

abundant protein modifications in a wide range o f PTMs, other than carbonylation 

studied here.
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A widely accepted method to study in vivo carbonyl groups was developed by the 

Levine group based on the reaction between carbonyl groups and dinitrophenylhydrazine 

(DNPH), which form a stable hydrazone product. The DNP derivatized proteins can be 

further separated by SDS-PAGE and then analyzed for carbonyl content by Westem-blot 

immunoassay with anti-DNP antibodies (Shacter, Williame and Levine 1994). Also, the 

DNP group itself absorbs ultraviolet light at 370 nm as a spectrophotometric assay which 

could be used to find the total carbonyl content in the protein sample (Levine, et al.

1994). Enzyme-linked immunosorbent assay (ELISA) which applies biotinylated anti- 

DNP and streptavidin-biotinylated affinity assay to quantitatively study the amount o f 

protein carbonyls (Winterboum and Buss 1999). Currently, 2D-PAGE and subsequent 

Western blot immunoassay the most commonly used method for the identification o f 

oxidized proteins in AD, and a more ideal result could be expected when the Western blot 

analyses are followed by mass spectrometry (Choi, et al. 2002) for the identification o f  

carbonylated proteins (Dalle-Donne, et al. 1999).

2.2 Proteomics

The word “proteomics” come from the analogy o f  the word “genomics” (James 

1997), which describes the process o f  the processes that analyze the structures and 

functions o f proteins in a macro perspective — analysis o f  a proteome — the entire 

complement o f proteins including post-translational modification (Steen and Mann 2004). 

Unlike genomics, in which the problem is somehow constant due to the chemical’s stable 

property o f DNA, the existence o f protein post-translational modification add variety in 

the set o f proteins. Two approaches named top-down and bottom-up proteomics are used 

in the proteomics study. In the top-down proteomics process, proteins are separated
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(mainly by 2D SDS-PAGE gel electrophoresis) and enzymatically digested into peptides. 

Peptides from each separate protein will be fed into tandem mass spectrometry analysis. 

A variation o f the top-down approach is called “shotgun proteomics,” in which proteins 

are first digested, then separated as peptides, prior to being fed into mass spectrometer 

(usually, separation and MS are combined together, such as LC-MS/MS) for protein 

identification (Washburn, Wolters and Yates 2001). In the bottom-up proteomics 

process, the protein mixture is digested and then directly sent to MS analysis — without 

separation o f proteins or peptides (Kelleher, et al. 1999).

2.3 Microfluidic Device for On-ehip Proteomics

As mentioned in Section 2.1.2, protein PTMs serve as the biomarker o f  severe 

oxidative protein damage, which plays a fundamental role in human diseases (Rossi, et al.

2008). The accurate quantitative proteomics analysis of PTM will provide important 

information to characterize and help establish effective therapy to relate PTM to an 

oxidative stress induced disease such as AD. To obtain how oxidative pressure modifies 

protein by carbonylation, effective proteomic study on protein modification is needed.

The conventional proteomics process typically extracts protein from the 

biological sample: cells or tissues, followed by separation and detection by gel 

electrophoresis. Protein bands o f interest will then be cut-out and the protein will be 

obtained via in-gel digestion, followed by MS analysis o f the resulting peptide mixture. 

The conventional target proteomics process leads to protein/peptide loss and decreased 

purity. Because large samples with high purity are advantageous, gel-free proteomics can 

complement the existing methods well. In non-gel proteomic approaches, a large volume 

o f solution is always used for separation. The required volume will also adversely affect



13

the efficiency o f protein analysis. Other than low efficiency, traditional processes are also 

slow and labor intensive.

Although the conventional proteomics study methods have a wide application for 

protein purifications, those time and sample consuming experimental methods are 

restricting the further development o f proteomics (Nagele, Vollmer and Horth 2003). 

Compared with the conventional proteomic study methods, application o f microfluidic 

device in proteomics study would provide in less time-consuming, less chemical 

consuming and possibly automatic protein sample cleaning, reduction, and digestion 

steps. Furthermore, the chemical/enzymatic reactions are performed and made more 

efficient by the enhanced concentration micro-scale environment. Another advantage of 

the microfluidic device is its low cost: current microfluidic device are made o f polymers, 

and a small volume also grants smaller chemical consumption. The incorporation o f 

microfluidic methods in PTM treatment experiments opens the door to a faster processing 

o f low abundant samples such as biopsy tissues or single cells.

2.3.1 Fabrication o f  Microfluidic Device

The microfluidic devices used for biochemistry experiments or biosensors are 

originally fabricated in the silicon or oxidized silicon materials (i.e., glass). The fast 

development o f silicon-based microfluidic devices are tightly related with the technology 

already extensively developed in the microelectronics industry such as photolithography, 

thin-film deposition, and anisotropic etching prior and around the 1990s. For the first 

time, under the possibility o f precisely microfabrication methods, research interest in the 

territory o f microfluidic sensor system has been vastly developed. For example, DNA 

electrophoresis arrays made o f SiC>2 with photolithographic methods (Volkmuth and



Austion 1992), enzyme-immobilized column detecting glucose make o f silicon and glass 

with anisotropic etching (Murakami, et al. 1993), gas chromatographic air analyzer 

fabricated on a silicon wafer with photolithography and chemical etching techniques 

(Terry, Jerman and Angell 1979), and microfluidic system for patterning neuron cells on 

silicon micromachined and chemical etched substrates (Martinoia, et al. 1999). Some of 

them are prototypes of current research interest in the microfluidic sensor, just with 

different materials.

However, silicon based materials’ origin in microelectronics industry have 

limitations in the area o f microfluidic sensors, such a slow and high requirements in the 

fabrication process (as of in in microelectronics industry, a clean room is usually 

required), time consuming bonding process (e.g. anodic bonding), and brittle, fragile and 

expensive material. After the 2000s, various substrates have been developed for the 

fabrication of the microfluidic based on different requirements (Freire and W heeler 2006) 

(Shadpour, et al. 2006). For example, silicon oxide has been preferably used in areas such 

as capillary electrophoresis and electrochromatographyraphy (Jacobson, Koutny, et al. 

1994) (Jacobson, Moore and Ramsey, Fused Quartz Substrates for Microchip 

Electrophoresis 1995), due to its high requirement o f  cleaning and limited surface 

modification potential (Silberzan, Leger, et al. 1991) (Silberzan, Perutz, et al. 1994). 

Compared with brittle glass or silicon substrates, polymer substrates are more versatile 

and can be shaped into the required structures by various techniques such as 

micromachining or hot embossing (Becker and Locascio 2002) (Stachowiak, et al. 2003). 

Furthermore, the cost to make polymeric microfluidic devices is substantially lower than 

the glass or silicon counterparts.



Polymeric microfluidic chip systems have been developed extensively in recent 

microfluidic studies (Duffy, et al. 1998) (Becker and Locascio 2002) (Sun, et al. 2007).

In this study, poly(methyl methacrylate) (PMMA) was used as the substrate o f the 

microfluidic device due to its potential for chemical and the various modification 

possibilities o f methyl ester function group on the surface o f PMMA substrate 

(McCarley, et al. 2005) (Adams, et al. 2008). This feature could lead to surface 

modification pathways o f variety, for example, carboxylic acid modification (Wei, et al. 

2005) or amine modification (Henry, et al. 2000), which potentially lead to flexible and 

various usages.

2.3.2 Proteomics in Microfluidic Devices

2.3.2.1 Sample Purification

Two successive major targets need to be accomplished for the “wanted” protein 

sample: (1) to extract the proteins o f interest from the biological sample and (2) to 

remove salts and other impurities from the protein sample. The microfluidic device 

usually provides solid-phase extraction, in which analytes are “captured” on stationary 

phase. Various surface modification methods are developed based on related based 

substrate, target proteins and other specific requirements via the hydrophobic, the 

electrostatic and/or the affinity interactions methods. Aldehyde is widely used as a 

crosslinker to covalently bind protein onto glass (Zhu, et al. 2001) or PDMS surfaces 

(Sandison, et al. 2010). Affinity molecules could also be used on the microfluidic devices 

to provide strong, highly specific and low background protein collection. In detail, 

specifically purify biotinylated proteins by the avidin functionalized microfluidic device 

(Orth, Clark and Craighead 2003), or purify Hisx6 tagged proteins by the Ni-NTA
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functionalized microfluidic device (Zhu, et al. 2001). Other substrates used to enrich 

protein or peptides include gold-coated silicon surface (Houseman, et al. 2002), thin 

layered agarose film on glass substrate (Afanassiev, Hanemann and Wolfla 2000) and 

polymers via layer-by-layer techniques (Rao, Anderson and Bachas 1999) (Katsuhiko, 

Takashi and Tsuyoshi 2006). Other than solid-phase extraction o f proteins, the solid- 

phase is also used to remove impurities from analytes. For example, polymeric 

membranes such as polyvinylidene difluoride (PVDF) are used to produce high surface- 

area solid-phase extraction phases, which could be used for protein desalting prior to ESI- 

MS (Lion, et al. 2003).

Chapters 3 and 4 focus on the methodology o f purification o f specific protein 

target (PTM proteins, especially carbonylated proteins) via the method o f solid-phase 

extraction. In the microfluidic device with monolithic microposts, antibodies or affinity 

molecules were immobilized to selectively purify tagged proteins from a mixture.

2.3.2.2 Protein Separation

Compared with the widely used one- or two-dimensional gel electrophoresis as 

conventional proteomics method, which is considered time-consuming and labor 

intensive (Chen, Wu and Mao 2002), the microfluidic devices provide the possibility for 

fast, high throughput and automatic protein analysis system. Moreover, in a microfluidic 

device, the problem o f protein purification is basically avoided compared with the 

conventional method.

A typical research topic on microfluidic protein separation is microscale 

electrophoresis. Isoelectric focusing (IEF) on the chip has been described (Figeys and 

Pinto 2001). Moreover, as a work under the spotlight, various microchip 2D
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electrophoresis systems under a different methodology for protein separations have been 

recently developed. Osiri et al. developed a 2D SDS p-CGE and micellar electrokinetic 

chromatography (MEKC) electrophoresis system on PMMA substrate (Osiri, et al. 2008), 

while Yang et al. reported a 2D electrophoresis system using IEF and PAGE as first and 

second dimension, respectively (Yang, et al. 2009). Ross and coworkers have also 

developed a system o f 2D separations on a 1D chip, which combines gradient elution 

moving boundary electrophoresis (GEMBE) and chiral capillary zone electrophoresis 

(CZE) (Ross, et al. 2010). Although electrophoresis experiments are all o f somewhat 

quantitative, those 2D microfluidic electrophoresis methods that emphases on 

quantitative study have been developed. Xu et al. have developed an on chip system that 

separates samples by MEKC in the first dimension and by CZE in the second, which 

could separate 20 kinds o f  standard amino acids under 20 minutes, as shown Figure 2-3 

(Xu, et al. 2009).
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Figure 2-3: Standard amino acid samples being separated with MEKC and CZE 2D 
electrophoresis system developed by Xu et al. (Xu, et al. 2009).

Another method that is widely applied to protein separation experiments other 

than electrophoresis is chromatography, which is one of the most powerful separation 

techniques in protein analysis work (Faure 2010).

A simplest microfluidic chromatography is to integrate a stationary phase by 

coating the channel walls o f the microfluidic device with interacting solid phase. 

Research frontier based on this very simple chromatography has two major directions. 

The most direct idea is increasing the available wall surface. For example, fabricate 

pillar-type structures in the microchannel o f  the microfluidic device. This target could 

become a reality on some o f the materials. Some o f the examples o f  this idea are 

mentioned in Section 2.3.1, pillar structures could be fabricated on PMMA materials by 

hot-embossing (Becker and Locascio 2002) (Stachowiak, et al. 2003), on PDMS 

materials by soft lithography (Whitesides, et al. 2001), on a silicon wafer by the well-
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developed wet or dry etching methods, and on a glass or metal substrate by 

micromachining (Martinoia, et al. 1999).

A more conventional idea to prepare stationary phase for the microfluidic 

chromatography is to fill the microchannels with externally prepared material. Figeys’s 

group has developed a “proteomic reactor” by filling the strong cation exchange (SCX) 

beads into the capillary tubing, in which proteins will bound to the beads at low pH and 

digested at high pH where trypsin enzyme was activated (Ethier, et al. 2006), as shown in 

Figure 2-4. The commercially available Agilent HPLC-Chip, which is made o f polyimide 

and packed with slurries o f conventional silica particles, is able to provide a smooth 

connection between on chip liquid chromatography and MS (LC/MS) (Yin and Killeen 

2007).

Figure 2-4: Left: Schematic representation o f  the proteomic reactor. The protein and 
trypsin are bound to the SCX material. Middle: Trypsin is activated by adjusting the pH 
to eight. The flow was stopped to let the digestion proceed without losing peptides. Right: 
Peptides were eluted by using an ammonium bicarbonate solution. (Ethier, et al. 2006).

2.3.2.3 Enzyme Digestion

Microfluidic devices are also developed to avoid the labor intensive and time 

consuming process o f conventional in-gel digestion process. Following the idea

Elution

mentioned in the last section, the microfluidic device with a trypsin functionalized
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surface in the microchannel that has a built-in pillar (Lee, Soper and Murray 2009) or 

monoliths developed on the glass (Peterson, et al. 2002) have been described. Also, 

trypsin-coated microparticles are being packed into the microchannels for digestion 

(Wang, et al. 2000). A more well-integrated system is the above mentioned “proteomic 

reactor” from Figeys group, by which separation and digestion are accomplished in one 

system (Ethier, et al. 2006).

2.4 Simulation

2.4.1 Overview

As mentioned in Section 2.3.2, application o f  a microfluidic device to proteomics 

study would provide a less time-consuming, less chemical consuming, low cost, more 

efficient, and possibly automatic protein sample cleaning, reduction, and digestion 

method. Microfluidic devices are widely used to identify disease susceptibility prior to 

the appearance o f physiological symptoms. Protein targeting microfluidic systems have 

been developed for immunoassays o f rapid saliva-based clinical diagnostics (Herr, et al. 

2007), chip-based oral cancer screening (Ziober, et al. 2008), and embryo metabolism 

measurement (Griffiths 2008). The microfluidic devices based on affinity interactions 

selectively capture target molecules with the affinity-based functionalized surface, and 

provide quantitatively and/or qualitatively analysis o f specific protein molecules and 

nucleotide sequences (Rogers 2000) (Mark, et al. 2010).

2.4.2 Modeling

In a microfluidic device, a protein o f  interest in the solution will be absorbed onto 

the inner surface o f the microchannel. This process can generally be separated into two 

steps (Lionello, et al. 2005): (1) the protein in the solution diffuses toward the protein-
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absorbing surface, and (2) the protein is absorbed onto the surface, and simultaneously 

some proteins on the surface are desorbed. When the adsorption step is much faster than 

the diffusion, the process is diffusion controlled. When the diffusion step is faster, the 

process is surface reaction controlled (depending on absorption/desorption constant) 

(Dulm andNorde 1983).

A variety o f  factors such as protein shape, protein orientation on the surface, and 

properties o f the surrounding environment, and protein and surface (Norde 1986)

(Haynes and Norde 1994) affect the protein absorption. Those factors dictate the strength 

o f different interactions between the protein and the surface, which include hydrophobic 

interactions, repulsive and attractive ionic or electrostatic interactions, and weaker 

interactions such as hydrogen bonding and van der Waals interactions (Norde 1986). The 

rates o f  protein adsorption and desorption depend on the absorption and desorption 

reaction constants, respectively, which in turn depend on both the protein and the surface. 

To simplify the problem, the Langmuir isotherm model is used, which is widely used to 

describe the surface-protein absorption/desorption process (Lundstrom 1985) (Andrade 

and Hlady 1986) (Skidmore, Hortsmann and Chase 1990). The Langmuir isotherm model 

states the relationship between the proteins and the surface by the “active sites” coverage 

and absorption/desorption reaction constants, which avoided the specific properties o f  the 

protein and the substrate, and refocus the analysis with a more common point o f view on 

the design o f the microfluidic device itself.

Another important process that affects the microfluidic device is protein diffusion. 

Diffusion time is a major consideration in the design o f the micro-scale microfluidic 

device. Under a wide variety o f conditions, the diffusion velocity o f proteins in the
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solution is relatively constant. For example, the widely used antibody protein IgG 

requires about three and a half hours to diffuse for 1 mm (Dodge, et al. 2001). Most 

analytes o f interest are smaller than IgG, and hence diffuse somewhat faster.

2.4.3 Effect o f Geometric Parameters

Geometric parameters have been widely studied for their effect on heat transfer. 

Heat fins, for example, are a major consideration in heat flow optimization (Cobble 

1971). Heat exchangers (Tsai, Sheu and Lee 1999) and heat sinks (Grannisa and 

Sparrowb 1991) for optimization and enhancement o f  heat flow have also been widely 

studied. Although geometric optimization for an improved transport has not been 

extensively used in protein enrichment related microfluidic device, practical work that 

increases the available wall surface has been published, as indicated in Section 2.3.2. For 

example, pillar-type structures in the microchannel o f the microfluidic device (Lee, Soper 

and Murray 2009), and pack silica particles in the microfluidic device (Figeys and Pinto 

2001) can directly increase the surface area. Given that the amount o f protein captured in 

a microfluidic device depends on absorption and diffusion and that both o f these 

processes depend on geometric features, geometric optimization in protein enriching 

microfluidic devices is likely to enhance performance greatly. Therefore, simulations will 

be performed to examine these geometric effects.



CHAPTER 3

AVIDIN-FUNCTIONALIZED CHROMATOGRAPHY ON PMMA  
MICROFLUIDIC DEVICE FOR LOW ABUNDANT POST- 
TRANSLATIONAL MODIFIED PROTEIN ENRICHMENT

3.1 Introduction

This chapter focuses on the design, surface modification, and both qualitative and 

quantitative characterizations o f a microfluidic microposts-structured PMMA chip. 

Specifically, a brass mold master was prepared using micromilling and subsequently used 

to replicate polymer microposts via hot embossing. The avidin-affinity microchip is 

accomplished by surface modifications involving carboxylic acid modification by UV, 

followed with EDC/NHS-mediated carboxyl-to-amine crosslinking between PMMA and 

avidin. This avidin terminated PMMA chip allows the enrichment o f carbonylated 

proteins from biological samples injected by a pressure-driven flow and further provide 

samples for proteomic study on aging and Alzheimer’s Disease. Micropost arrays were 

used to increase the encounter rate between functionalized avidin substrate and 

biotinylated carbonylated proteins in the streamline, and further improve the enrichment 

process. Various techniques including atomic force microscopy, X-ray photoelectron 

spectroscopy and fluorescence microscopy were incorporated to characterize the PMMA 

surface topography, surface functional group mapping, and elemental composition 

changes after each modification step o f the treatment process. In addition, a quantitative

23
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study o f biotinylated carbonylated protein capture recovery and elution efficiency o f the 

device was investigated. To validate the performance o f the chip, we used in vitro 

carbonylated standard proteins bovine serum albumin (BSA). This device requires a 

significantly less sample — approximately 106 fold less than the current commercial 

avidin column, making it useful for any biological experiments or analysis requiring 

avidin affinity enrichment. Also, this microdevice can be readily translated for 

fractionation o f other PTMs proteins, as long as they can be biotinylated tagged. 

Therefore, this microfluidic affinity enrichment analysis device will provide an accurate 

tool for dynamic analysis o f low abundant protein modifications in a wide range o f 

PTMs, other than the carbonylation described here.

3.2 Method and Materials

3.2.1 Reagent and Materials

PMMA used as the coverslip and microfluidic device substrate were purchased 

from GoodFellow (Berwyn, PA). Chemicals used for PMMA surface modification assays 

including l-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC), N- 

hydroxysuccinimide (NHS), avidin were purchased from Fluka (Steinheim, Germany) 

and Thermo (Rockford, IL), respectively. MES monohydrate was purchased from Alfa 

Aesar (Ward Hill, MA). Albumin bovine serum was purchased from Sigma-Aldrich (St. 

Louis, MO). Biotin Hydrazide and Sodium cyanoborohydride that were used for biotin- 

derivatization o f protein carbonylation were purchased from Sigma-Aldrich (St. Louis, 

MO). Standard RC dialysis tubing of 3.5 K MWCO was purchased from Spectrum Labs, 

INC (Greensboro, NC). Fluorescent dye 3-(2-furoyl)-quinoline-2-carboxaldehyde (FQ) 

was purchased from Invitrogen (Madison, WI). Fluorescein Biotin was purchased from
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Biotium, Inc. (Hayward, CA). Fluorescein Biotin was prepared in 0.4 M stock solution in 

phosphate buffered saline (PBS) buffer and was stored in the dark at -20° C in vials 

which contain 150 pi stock solutions each. BCA protein kit was purchased from Pierce to 

measure protein concentration.

Syringe pump were purchased from Next advance (Averill Park, NY, USA). 

Adapters and capillary tubes which were used to connect the syringe and microfluidic 

device were purchased from IDEX Health & Science LLC (Oak Harbor, WA) and 

Polymicro Technologies (Phoenix, AZ), respectively. Epoxy glue used to glue the 

capillary tube with the microfluidic device was purchased from Henkel Corporation 

(Rocky Hill, CT).

3.2.2 Fabrication o f Microfluidic Device

A PMMA microfluidic channel containing microposts inside was used to enrich 

biotinylated carbonylated proteins. The pattern o f  the microchip is depicted in Figure 3-1. 

The micropost-filled channels are 24 mm long, 1.4 mm wide and 100 pm tall. The 

microchannel contained a circular array of microposts 100 pm tall and 50 pm in diameter 

with an average 100 pm between the microposts. A total o f  3600 microposts was 

incorporated within a surface area o f 114 mm2 for capturing the biotinylated carbonylated 

BSA. The pillars are arranged to maximize the possibility o f  proteins coming into contact 

with these functionalized microposts. If they were arranged in an array parallel to the 

flow direction, it was predicted that the protein would follow the streamline between the 

microposts and have little chance o f contacting the microposts. However, this staggered 

pattern forces proteins to change their trajectory and hence enhance the encounter rate 

with the microposts and further improve protein capture recovery.
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24 mm

Figure 3-1: Solid-Phase microfluidic device: geometry and configurations. A. Details o f 
the microchannel, 1.4 mm in width, 0.1 mm in depth and 24 mm in length; B. 3600 
microposts o f 50 pm diameter is arrayed inside o f channel; C. Actual microfluidic device 
(scale bar is 4 cm); D-E. Scanning electron microscope (SEM) images showing the 
microposts (scale bar for Figure 3 -ID is 1 mm and for Figure 3-IE is 200 pm).

3.2.2.1 Mechanical Process

The process flow o f the mechanical fabrication steps o f the microfluidic device is 

shown in Figure 3-2. In detail, a mold master was prepared using micromilling and 

subsequently used to replicate polymer microparts via hot embossing (Soper, et al. 2000) 

The microfluidic post array was designed using computer-aided design software. The 

brass plate was first cut into a 5 mm thick and 12 cm diameter circle and the
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aforementioned patterns were then milled with a micro-milling machine (MNP 2522, 

KERN Micro-& Feinwerktechnik GmbH & Co. KG, Germany) to generate the mold 

master.

Micromilling 
crafted mold

Hoi embossingP M M A  chip

P M M A  chip

Brass moldBrass mold

Mold removed

B

Drill inlet & outlet 

LTV treatment

D

Ready for annealing 

[
PMMA

Coverslip

Enclosed channel

D=C I I I I I I  I I I  I I

G H

Figure 3-2: A. The mold master is crafted by micromilling a contrary structure o f the 
microchannel with microposts on brass; B-C. The mold master is used to replicate 
PMMA polymer microparts via hot embossing; D. After the mold is removed, the 
micropost pattern is left on PMMA chip; E. After hot-embossing, the microchip is cut 
from PMMA substrate, with inlet and outlet drilled. It is then cleaned and treated with 
UV before consecutive surface modification; F-G. A PMMA coverslip is annealed on the 
top o f the microchannel to form an enclosed structure; H. After annealing, silica capillary 
tubes were glued to the annealed microchip by Epoxy glue on both inlet and outlet ports, 
and the micro-device is ready for further chemical treatments.

The micromilling process was accomplished at 40,000 rpm and a feed rate o f 10-

20 mm/minute using a 50 pm carbide bit (McMaster-Carr or Quality Tools, Hammond,
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LA). This process was monitored by an optical microscope (Zoom 6000, Navitar, 

Rochester, NY) and a laser measuring system (Laser Control NT, Blum-Novotest GmbH, 

Germany) was employed to determine the tool length and radius. After milling, the mold 

master was polished using a 3 pm grain size polishing paper (Fibrmet Discs-PSA, 

Buehler, Lake Fluff, IL). Additionally, burrs at the surface o f  the microstructures were 

removed by a polypropylene cloth (Engis, Wheeling, IL) with a 1 pm diamond 

suspension (Metadi Diamond Suspension, Buehler).

The microfluidic channels on the PMMA chip were fabricated using hot 

embossing methods previously reported (McCarley, et al. 2005) (Lee, Soper and Murray

2009). Briefly, the structure o f  the microchannel is replicated by HEX 02 hot embossing 

system (Jenoptik Mikrotechnik, Germany) with the brass mold master hot-embossed on 

the PMMA substrate. During embossing, the molding die was heated to 155° C and 

pressed into the PMMA substrate a force o f 950 PSI for 150 seconds. The master was 

rapidly cooled to just below 155° C prior to removal from the mold.

3.2.2.2 Chemical Surface Modification

After hot-embossing, the microchip was cut from PMMA substrate and washed 

by 10% surfactant and IPA solution and DI water by sequence and then gently dried 

under nitrogen. The avidin immobilization method is based on PMMA carboxylic acid 

modification via UV treatment and carboxyl-to-amine crosslinking chemistry (McCarley, 

et al. 2005) (Lee, Soper and Murray 2009). Figure 3-3 demonstrated individual 

modification steps taken for avidin-biotin mediated coupling of carbonylated proteins to 

PMMA attachment sites o f the microchips.
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Avidin solution
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Figure 3-3: PMMA surface modification to generate avidin-terminated microchip for 
affinity chromatography.

In order to generate the carboxyl group on the surface of the PMMA substrate, the 

microfluidic chip and same sized 0.25 mm PMMA cover slip were exposed to a 254 nm 

UV lamp at 16 mW-cm'2 for 30 minutes (Wei, et al. 2005). The UV modified substrate 

and cover slip were clamped together between two glass plates and heated in the oven 

(101° C 30 min) to anneal the substrate with the coverslip to form an enclosed 

microfluidic channel. After annealing, 200 pm inner diameter silica capillary tubes were 

connected to a syringe that will be glued to the annealed microchip by Epoxy glue on 

both inflow and outflow ports.

To generate avidin functional groups on PMMA, the UV modified channels were 

chemically treated with a mixture of 5 mM l-ethyl-3-[3-dimethylaminopropyl]
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carbodiimide hydrochloride (EDC) and 5 mM N-hydroxysuccinimide (NHS) solution for 

15 minutes. Avidin was then immobilized on the surface o f the UV modified 

microchannels by flowing 1.36 mg/mL avidin solution prepared in PBS buffer (pH 7.4) 

through the microfluidic channel for two hours with a flow rate o f 2 pl/minute.

3.2.3 Protein Sample Labeling and Purification

3.2.3.1 In vitro Carbonylation o f BSA

BSA was oxidized with a hydroxyl radical-generating system consisting o f  

ascorbate/Fe(III)/02 (Requena, et al. 2001). Briefly, BSA was dissolved in 1 mL o f 

oxidation buffer (50 mM HEPES, 100 mM KC1, 10 mM MgCU, pH 7.4) to make a 10 

mg/mL solution. Oxidation was carried out by adding ascorbate and FeCfi to a final 

concentration o f 25 mM and 0.1 mM, respectively, and incubating overnight at 37° C, 

while constantly shaking. After incubation, the oxidation was stopped by the addition o f 

EDTA to a final concentration o f 1 mM. The reaction mixture was dialyzed overnight 

against oxidation buffer containing 1 mM EDTA at pH 7.4 (Requena, et al. 2001) (Feng 

and Arriaga 2008).

3.2.3.2 Determination Carbonyls with DNPH Assay

The carbonyl content o f MCO-BSA was determined using the well-established 

DNPH spectrometry method, according to the procedure described by Levine (R. L. 

Levine 2002). Briefly, 500 mL o f 10 mM, DNPH in 2 M HC1 was added to 100 mL o f 

oxidized BSA solution. The mixture was allowed to stand at room temperature for one 

hour. After the reaction, TCA was added to obtain a concentration o f 10%. Then, the 

mixture was incubated on ice for 30 minutes after which the solution was centrifuged at 

11000 g for three minutes; the supernatant was discarded. The pellet was washed three
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times with ethanol-ethyl acetate (1:1), and the precipitated protein was redissolved in 6 

M guanidine. The carbonyl content was calculated from the absorbance o f the DNPH 

derivative at 375 nm (molar absorption coefficient, 22000 M~*cm‘1).

3.2.3.3 Biotinylation o f Protein Carbonyls

In vitro oxidized BSA proteins were chemically labeled with biotin hydrazide 

using modified procedure by Yoo (Yoo and Reginer 2004). The biotinylation o f 

carbonyls in oxidized BSA allowed subsequent biotin-avidin enrichment via affinity 

based microchip. Biotin hydrazide binds to carbonyl groups through the hydrazide group 

(-NH-NH 2), forming a hydrazone linkage. A volume of 1 mL of oxidized BSA (2.5 

mg/mL) was incubated with 1 mL o f 10 mM biotin hydrazide in DMSO at 37° C for two 

hours with shaking. To stabilize the Schiff reaction product, 2 mL o f 30 mM sodium 

cyanoborohydride in PBS buffer was added and the mixture was cooled down to 0° C on 

ice for 40 minutes. To remove the unreacted and excess biotin hydrazide and SDS, the 

prepared sample underwent dialysis three times (four hours/each time) against PBS 

buffer. After removal o f  the excess biotin hydrazide, the biotin derivatized carbonylated 

BSA stock solution is ready for the avidin-affmity based enrichment in the microchip and 

the final concentration o f biotinylated carbonylated BSA was further identified using 

protein assay.

3.3 Testing the Microfluidic Device

Surface properties o f PMMA for each modification step of the treatment process 

(as shown in Figure 3-3) were systematically investigated qualitatively and quantitatively 

by water contact angle measurement, atomic force microscopy (AFM), X-ray
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photoelectron spectroscopy (XPS), and specific functional group labeling using 

fluorescence microscopy.

3.3.1 Surface Modifications Examination

Water contact angle o f PMMA substrate that have been treated by UV 

modification and control have been measured with optical contact angle system OCA 15 

goniometer from Future Digital Scientific Corp (Garden City, NY, USA). In the water 

contact angle experiment, 1 pL 18 MQ RO water droplet is dropped and water contact 

angle is measured by a digital video camera and the controlling software, which is 

provided by the manufacturer, for three times on pristine and UV treated PMMA 

substrates. The UV treatment is done by exposing the pristine PMMA substrate under 16 

mW/cm2 UV for 20 minutes.

3.3.2 Surface Topology Characterization

AFM studies were performed with a commercial instrument (Nanosurf easyScan 

2 equipped with a TFT-LCD display) operating in contact mode, using Silicon SPM- 

Sensor (NanoWorld, Neuchatel, Switzerland) with 0.2 N/m spring constant and 13 kHz 

response frequency. The detector is o f 2 pm thick, 450 pm long, and 50 pm wide. The 

detector side is ammonium-coated. All images were recorded in air at room temperature, 

at a scan speed o f 1.4 Hz. The background slope was resolved using the program 

provided by the manufacturer. No further filtering was performed. The surface 

topographies over a 20 pm x 20 pm o f area o f  the pristine, UV modified, EDC/NHS 

treated, avidin immobilized and biotinylated carbonylated protein captured PMMA 

materials were analyzed individually. Surface roughness (root-mean-square over area) 

was calculated by the software provided by the manufacture. The three-dimensional
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images were obtained by SPIP software version 5.1.5 from Nanoscience Instruments, Inc. 

(Phoenix, AZ, USA).

3.3.3 Surface Elemental Composition Profiling

PMMA sheets o f 250 pm thickness from Goodfellow were used in the surface 

function characterization using both Atomic Force Microscopy (AFM) and X-ray 

photoelectron spectrometer (XPS). To evaluate the changes in compositions and 

functional groups in PMMA after each four modification steps including (1) UV 

radiation, (2) EDC/NHS treatment, (3) avidin attachment, and (4) capture o f  biotinylated 

carbonylated BSA, the polymer surfaces were analyzed with an Axis 165 X-ray 

photoelectron spectrometer (Kratos Analytical) with monochromatized A1 K a (1486.6 

eV) X-ray source at 150 W power.

3.3.4 Fluorescence Validation o f Surface Modification

To test the chemical treatment effect, avidin immobilization and biotinylated 

protein captured on the surface onto PMMA substrate surfaces, a series o f fluorescence 

experiments was used to evaluate different surface modification reactions. PMMA sheets 

were viewed with an Olympus 1X51 inverted microscope (Olympus Corporation, Tokyo, 

Japan), using Plan N 10X objective (NA: 0.25) and a WFIN 10X eye piece. EXFO X-Cite 

120 mercury vapor arc lamp from Lumen Dynamics (Mississauga, Canada) was used as 

the fluorescence source, band-pass filters o f  488 nm-535 nm (green) and 535 nm-615 nm 

(red) were used to choose s supposed fluorescence wavelength. A CCD camera was used 

for image recording. This camera provides a 1360 * 1024 pixel (1.4 million) image. 

Images were analyzed using software DPController version 3.2.1.276 from Olympus 

Corporation.
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3.3.4.1 Fluorescence Mapping o f Immobilized Avidin

To confirm the biochemical functionality and uniformity o f  carboxylic acid layers 

on PMMA, surfaces prepared on bare PMMA substrates from UV radiation at 254 nm 

and EDC/NHS pretreatment were labeled with 1.36 mg/mL of 3-(2-furoyl)-quinoline-2- 

carboxaldehyde (FQ) labeled-avidin for two hours at room temperature. For the long term 

use, FQ was initially dried and stored in the dark at -20° C in vials which contain 200 

nmol FQ each. For FQ labeling of avidin, 200 nmol FQ were dissolved in 10 pi o f  10 

mM potassium cyanide (KCN) solution. After chemical treatment o f  EDC/NHS solution, 

the PMMA substrate was covered with FQ-labeled avidin solution (20 pM) for two hours 

at room temperature, and then rinsed carefully with DI water three times. After drying, 

the prepared sample was studied with an excitation wavelength of 480 nm and 2.5 

seconds o f exposure time. Fluorogenic reagent FQ in the presence o f  a nucleophile (CN- 

), which fluoresces only upon covalent binding to the protein primary amide group (- 

NH 2) (Michels, et al. 2007). When binding on protein, FQ absorbs blue light at 490 nm 

and emits red fluorescence at 525 nm.

3.3.4.2 Validation o f Biotinylated Proteins Capture

The avidin terminated microposts were used to capture biotin hydrazide-labeled 

carbonylated protein. To evaluate the binding reaction between biotin with captured 

avidin on the PMMA chip, PMMA with immobilized avidin were immersed with 0.4 M 

fluorescence-labeled biotin (Biotin-4-Fluorescein, B4F). After 30 minutes incubation at 

room temperature, the samples were then washed with DI water three times and air-dried. 

The samples were studied under fluorescence microscopy using a wavelength o f 516 nm 

with the exposure time o f one second. B4F absorbs blue (Ex: 488) light and emits green
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fluorescence (Em: 516). The control experiment was performed by omitting the avidin 

treatment step prior to B4F incubation. Also, to investigate the nonspecific binding 

between biotin with PMMA surface, we performed a control experiment by replacing 

avidin with native BSA before the incubation with B4F.

Additionally, FQ-labeled biotinylated carbonylated BSA were used to investigate 

the capture event with avidin-based affinity enrichment inside the microchip. After 

chemical treatment o f the EDC/NHS solution, avidin-modified PMMA surfaces were 

immersed in (20 pM) biotin derivatized BSA solution in PBS for two hours at room 

temperature, and then the samples were rinsed extensively with DI water and air-dried. 

The fluorescence image was taken with an excitation wavelength o f  525 nm and o f  2.5 

seconds o f the exposure time.

3.4 Quantitative Examination of the Microfluidic Device

3.4.1 Quantization of Capture Recovery

The purification efficiency o f the biotinylated carbonylated BSA by affinity 

chromatography on the avidin-functionalized microchip was investigated. Specifically, 

the capture efficiency is to find out how much carbonylated protein was captured by the 

avidin-modified microfluidic channel. The capture efficiency is defined as Eq. 3-1: 

C apture R ecovery

a m o u n t o f  e lu ted  p r o te in  in flo w  th ro u g h  3-1
in jec ted  p r o te in  a m o u n t

A syringe pump o f 5 pl/minute flow rate was used to inject FQ labeled 

biotinylated carbonylated BSA solution (6.25 pg/ml) flow through the avidin- 

immobilized microfluidic channel. The total injection time is 24 minutes. In a previous
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study by Edel’s group, 1.5 pl/minute flow was used as the optimal flow rate to study 

biotin-streptavidin binding kinetics in the microfluidics with comparable dimensions for 

this thesis (Srisa-Art, et al. 2008). For the case o f biotin-avidin binding is stronger than 

that o f biotin and streptavidin (Wilchek and Bayer 1990), 5 pl/minute is used as the 

volume flow rate to test capture and elution efficiency. A volume o f 5 pi o f flow through 

for every minute was collected for consecutive spectrophotometric assay o f FQ using 

Nanodrop 3000 at the emission wavelength o f 570 nm. Figure 3-4 depicted the 

experimental scheme on the quantification measurements o f  both capture recovery and 

elution efficiency. A total of 24 points with FQ fluorescence intensity value at 570 nm 

was used to evaluate the capture efficiency.

3 i n t n n i m m M t i i n i m m t i i n m n m . B « i
Protein enrichment: Collect the flow-through

every minute for 25 minutes

wavelength (nm)

Figure 3-4: Experimental set up sketch o f quantitative measurement o f capture recovery 
and elution efficiency.
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3.4.2 Quantization o f Elution Efficiency

When the microfluidic channel was saturated by biotinylated carbonylated 

proteins, elution efficiency was measured by injecting eluting buffer with flow rate o f  5  

pl/minute and the fluorescence intensities o f  eluted samples were measured using the 

same procedure mentioned above every minute. The eluting buffer (0.4% SDS, 0.8% 

methanol, 0.4% NaCl in water solution) was used to break avidin-biotin interaction by 

denaturing proteins. After elution, proteins are stabilized and renatured by removing the 

denaturing agent, SDS, through an Amicon Ultra-4 centrifugal filter unit (3500 Da MW 

cut-off). Specifically, the sample was centrifuged a total o f  three times at 7500g for 20 

minutes. The washing solvent was PBS buffer.

The eluting efficiency was further measured and defined as shown in Eq. 3-2:

e lu te d  p ro te in  a m o u n t
e lu te  e f f ic ie n c y  =  -------------   . Eq. 3-2

c a p tu re d  p ro te in  a m o u n t

3.5 Results and Discussion

3.5.1 Surface Modifications Examination

As shown in Figure 3-3, the pristine PMMA substrate is covered with a -C H 3 

group, which is hydrophobic, and the UV treated PMMA substrate is covered with -  

COOH group, which is hydrophilic. As per the research from McCarley et al. the surface 

concentration o f  carboxylic acid groups on PMMA increases strongly with exposure time 

in UV treatment (McCarley, et al. 2005). To test the affection of UV modification on 

PMMA coverslip/substrate, the water contact angle will be measured. The water contact 

angle shows a decrease in water contact angle (or an increase in surface hydrophobicity) 

on both PMMA chip and the substrate. The results obtained from this experiment are



shown in Figure 3-5 and Table 3-1. Water contact angle o f  pristine PM M A substrate is 

approximately 70°, while more hydrophilic UV treated PMMA substrate has a water 

contact angle o f  approximately 30°, which agrees with the referred study result well, in 

which the water contact angle o f PMMA substrate treated by 15 mWcm ' 2 UV for 20 

minutes and the referred sample an control are 78° and 28°, respectively (Wei, et al. 

2005).

Figure 3-5: water contact angle compartment o f  a 1 pL 18 MO RO water droplet on 
pristine (left, -70° o f water contact angle) and 20 minutes UV treated PMMA coverslip 
(right, -40° o f  water contact angle).

Table 3-1: Average water contact angle o f pristine and 20 minutes o f  16 mW/cm2 UV 
treated PMMA coverslip and substrate.

Substrate UV modified UV modified Pristine Pristine
coverslip substrate coverslip substrate

Water Contact 30.87 

Angle (°)

38.83 75.66 76.52
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3.5.2 Surface Topographic Analysis o f Modified PMMA Substrate

Atomic force microscopy is most often used to characterize surface morphology 

on the nanoscale. To investigate the change o f each individual surface modification steps 

on microfluidic channel surfaces, AFM was used to analyze the following five modified 

PMMA surfaces: pristine, UV modified, EDC/NHS treated, avidin immobilized and 

carbonylated protein enriched with their individual AFM images displayed in Figure 3- 

6 A-E. As indicated from the root mean square (rms) roughness summarized Figure 3-6F, 

PMMA surfaces were slightly rougher after each step o f surface modification, except the 

UV treatment step.

Pristine PMMA sheet has a relatively uniform and smooth surface with a root- 

mean-square (rms) surface roughness o f 16.8 nm, which is consistent with previous 

reports (Wei, et al. 2005). The roughness after UV modification was reduced to 6 . 8  nm.

It was previously stated that the roughness after UV radiation increases 50%. We highly 

speculate that the discrepancy o f the reported values is due to the extra IPA rinse step 

prior to the AFM study in the previous report. The ester reaction occurs between alcohol 

groups on IPA and carboxylic groups on the PMMA. Hence, after IPA wash, the surface 

roughness increases compared without the wash.
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Pristine ^  EDO/ Avidia Biotinlated 
treatment NHS

Figure 3-6: Surface topology o f PMMA substrate under different chemical modification 
steps. The scan range for both images is 20 pm x 20 pm, and the Z-range is 200 nm. A-E. 
3-dimontional map o f pristine, UV treated, chemically treated, avidin coated and biotin 
carbonylated protein captured PMMA.

The average rpm surface roughness for the EDC/NHS treated PMMA sheet and 

the avidin coated PMMA sheet are 54.3 nm and 70.1 nm, respectively, which are 3.2 and

4.2 folds higher than that o f pristine PMMA. Multiple studies about the surface 

roughness o f PMMA substrate as a function o f UV radiation time have been exploited in 

the last decade (Srinivasan and Lazare 1985) (McCarley, et al. 2005). An optimal 

condition to achieve the photochemical surface modification route (carboxylic acid
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formation) was set for duration o f 30 minutes UV under ambient laboratory atmosphere 

(McCarley, et al. 2005).

The noticeable increase o f the surface roughness for the EDC/NHS treatment and 

avidin coating steps reflects the different chemical functional groups alternating on the 

PMMA substrate surface: carboxyl group after UV modification, succinimide group after 

EDC/NHS treatment, and peptides after avidin immobilization. For biotinylated 

carbonylated protein captured surface, we found a rms roughness o f 55.5 nm. The 

observed roughness change indicates partially surface modification reactions at each step. 

We currently do not understand the direct relationship between various properties o f 

function groups coated on the surface and the surface roughness. However, for the 

microfluidic device, an increase in substrate surface roughness upon each chemical 

modification treatment is desired due to the size o f the device feature (50 pm for the 

smallest scale). Furthermore, the roughness magnifies the wetting and adhesion 

properties o f  a solid (Bico, Tordeux and Quere 2001), so the totally increased surface 

roughness is slightly helpful among the interactions between solutions and PMMA 

substrates. The increased roughness o f  the surface further increases the contact surface 

area, providing more avidin tethered to PMMA and further increasing the capture 

efficiency o f biotinylated modified proteins. On the other hand, the surface roughness 

could introduce the steric hindrance o f the surface accessibility; and the steric hindrance 

will restrict the achievement o f  high bonding density (Kazakevich and LoBrutto 2007). 

Therefore, surface roughness can be a very critical parameter for the surface accessibility.

Previously, Edwards developed mathematical models and interpreted the binding 

rate constant obtained from the surface plasmon resonance biosensors to study the



occlusion event due to steric hindrance, In his study, the expression S, steric hindrance,

represents the number o f receptor sites occluded by the bound state at a particular point.

It was shown that S is related to the association process, and it rises with increasing

association rate, ka. If ka is very large, S reaches its finite asymptote with a value o f

0.0028 s '1. This is due to the fact that the reaction rate becomes infinitely fast, so the

system becomes transport limited. On the other hand, if  ka is too small, there has not
%

been enough binding for occlusion effects to play a role (Edwards 2007). Based on 

Edwards’ study, for our application o f biotin-avidin binding with a relatively high 

association rate o f 7 x 1 0 7 M 'V 1 (Piran, Riordan and Silbert 1990), the steric hindrance is 

referred to as 0.0005 s’1. Also, for the extremely low dissociation rate, like 7.5 x 10' 8 s' 1 

for avidin-biotin (Piran, Riordan and Silbert 1990), steric hindrance plays a larger role in 

the reaction.

Additionally, Edward’s work demonstrated that steric hindrance, S, varies with P, 

the volume ratio o f ligand to receptor molecule. It indicates that increasing P enhances 

the steric hindrance accordingly. It was previously observed that the binding rate for the 

second biotin molecule was decreased due to steric hindrance (Buranda, et al. 1999). 

Hence, it is highly possible that when the biotin ligand molecules are larger than the 

spacing o f the avidin receptor molecules in the zone, a single binding event will occlude 

multiple binding sites. Particularly in our application because biotin molecules were 

attached to carbonylated proteins, so it is possible that steric hindrance from the first 

biotin binding causes the lower binding kinetics in the second process. Due to the steric 

hindrance effect, molecules o f various sizes could have different accessible surface area. 

When accounting for the steric hindrance, we speculate that larger biotinylated proteins



43

would experience higher steric hindrance, and therefore the protein binding and 

enrichment process might be compromised. With this speculation in mind, microdevices 

with longer and wider dimensions might be needed to counteract this steric hindrance 

effect to maintain the high capture efficiency for large molecules. Alternately, digestion 

o f proteins into smaller peptides prior to the affinity chromatography on avidin- 

functionalized PMMA microchip might be advantageous to overcome the steric 

hindrance effect in future experiments.

3.5.3 Surface Elemental Mapping o f Modified PMMA Substrate

Although the AFM results presented above reflected the potential surface 

modification reactions, more conclusive results are needed to prove the PMMA substrate 

surface have been successfully functionalized by steps. To prove the widespread 

existence o f the supposed functional groups, XPS analysis was used to identify the 

elemental percentage on the surfaces o f  surface-modified PMMA substrate by steps. As 

shown in Table 3-2, the X-ray photoelectron spectrum o f pristine and UV modified 

PMMA displayed two element’s existence: carbon and oxygen. Furthermore, it is also 

noticeable that the Carbon/Oxygen ratio o f  UV treated sample has decreased by 

approximately 32% compared with that o f  the pristine PMMA sheets. This observation is 

in agreement with the prior reported data (McCarley, et al. 2005), which indicates that the 

alteration o f the functional groups on the surface of PMMA substrate from the -CO O CH 3 

group to -CO O H  group. This semi-quantitative result indicates the introduction o f 

oxygen and carboxylic acid pathways during UV radiation. The survey spectrum for 

EDC/NHS treated and avidin immobilized PMMA substrate displayed two more 

elements: nitrogen and sulfur were additions to the peaks. Considering the succinimide
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group has a much higher sulfur percentage than proteins, the XPS results reflected the 

increase o f sulfur element decrease from 0.73% to 0.13% between the two steps. These 

results represented the success o f the surface modification o f EDC/NHS treatment and 

avidin coating.

Table 3-2: Surface elemental percentage analysis o f  surface-modified PMMA substrate 
by XPS.

Sample C (at. %) 0  (at. %) N (at. %) S (at. %) C/O

pristine 81.33 18.67 0 0 4.36

UV treated 74.8 25.2 0 0 2.97

EDC/NHS 72.37 24.03 2 . 8 6 0.73 3.01

avidin 74 22.83 3.04 0.13 3.24

biotinylated 71.61 20.31 7.73 0.35 3.53

3.5.4 Fluorescence Determination o f Surface Modification 

To evaluate the functional modification on the microfluidic channel, fluorescence 

characterization and optimization have also been investigated. Immobilization o f FQ- 

labeled avidin in the microchips was imaged using a fluorescence microscope and 

depicted in Figure 3-7A-B. Figure 3-7A showed FQ red fluorescence signals when both 

UV and EDC/NHS were performed prior to attaching FQ conjugated avidin onto PMMA 

chip. By omitting the UV step, the control experiment showed no observation o f 

fluorescence signal Figure 3-7B. Without UV radiation, no carboxylic acid was available 

for consecutive EDC mediated coupling to avidin. These images verified that the 

chemical attachment o f avidin on micro-PMMA substrates were localized to UV treated, 

EDC/NHS catalyzed areas, and no attachment o f avidin to UV untreated PMMA



substrates were observed. EDC and NHS ester groups facilitate carboxylic group to react 

with the amine group to form a stable amide bonds. This chemical reaction further helped 

to anchor avidin on the surface o f the COOH-modified PMMA microchip. Altogether, 

the results indicate that (1) carboxylic acid groups were formed on UV modified PMMA 

surface and (2) avidin was successfully immobilized on PMMA substrate through 

EDC/NHS mediated reaction between carboxylic acid and amines.



Figure 3-7: Fluorescence determination o f surface modification. A. Immobilizing FQ- 
labeled avidin on UV+EDC/NHS treated PMMA chip; B. Incubation o f FQ-labeled 
avidin after only EDC/NHS treatment and without UV radiation; C. Biotin fluorescein 
incubation with immobilized avidin PMMA microchip; D. Biotin fluorescein 
incubation on PMMA surface without avidin-tethered; E. Biotin fluorescein incubation 
with native BSA coated on PMMA; F. Capture o f  FQ-labeled biotinylated carbonylated 
BSA with avidin-terminated microchip.
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We also examined whether the immobilized avidin will specifically interact with 

biotin and further serve as affinity beds for the enrichment o f  biotin derivatized PTMs. In 

order to chemically map the functionality o f  avidin, Biotin-4-Fluorescein (B4F) were 

used and results were illustrated in Figure 3-7C-E. The image of Figure 3-7C indicated 

that avidin immobilized PMMA sheet emitted much stronger green fluorescent than its 

counterpart without the addition o f the avidin step (depicted in Figure 3-7D). Also, by 

replacing avidin treatments with native BSA coating, very little fluorescence signals were 

observed in Figure 3-7E. Even though native BSA was anchored on the PMMA chip, it 

could not provide affinity enrichment o f biotinylated molecules. This further indicated 

that little non-specific binding was observed. The images together indicated (1) the strong 

binding affinity between immobilized avidin and biotin and (2 ) the effective binding 

capability o f  avidin-tethered PMMA to biotin with little non-specific binding.

To further validate that biotinylated carbonylated proteins could be captured by 

avidin immobilized on the PMMA chip, we also used avidin immobilized surface to 

capture FQ-labeled biotinylated carbonylated BSA sample. As shown in Figure 3-7F, 

bright red fluoresce indicated the capture events o f biotinylated oxidized BSA with 

avidin-terminated PMMA. Thus, the avidin tethered to the PMMA microchip provided 

biotin binding sites and allowed purification o f  biotinylated carbonylated proteins.

These fluorescence images, which are qualitatively consistent with those obtained 

by XPS and AFM with regard to the distribution o f desired functional groups on the 

PMMA surface, confirm the functionality o f  the carboxylic acid, avidin-terminated after 

surface immobilizations and further validate the enrichment o f biotinylated carbonylated 

BSA.
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3.5.5 Quantification o f Capture Efficiency

AFM, XPS and fluorescence imaging are limited to provide qualitative and semi- 

quantitative measurements o f the modification and capture procedure. To quantitatively 

determine the recovery o f biotinylated carbonylated protein captured in this 

functionalized micro device and elution efficiency, we used quantitative fluorescence 

measurements o f effluents collected outside the chip.

In in vitro BSA metal catalyzed oxidation, 20 nmol carbonyls per mg o f BSA was 

generated in the oxidation environment outlined in the experimental Section 3.2.3.1. This 

value was measured by DNPH spectrophotomeric assay. After biotin hydrazide 

derivatization o f in vitro oxidized BSA and FQ labeling, the fluorescence intensity 

indirectly indicating the amount o f carbonylated BSA was determined as 41.5 A.U. at an 

emission o f 570 nm. This value served as the basal level for the first injected 5 pL o f 

biotinylated BSA.

As depicted in the experimental sketch in Figure 3-4, a syringe pump was used to 

push 6.25 pg/ml FQ-labeled biotinylated carbonylated BSA at a flow rate o f  5 pL/minute. 

Hence, 5 pi o f biotin derivatized BSA was injected into the avidin-affinity microchip and 

the flow through was collected every minute. A total o f 24 minutes o f injection was 

performed with only 15 pmol (picomole) o f carbonyl in 750 ng (nanogram) derivatized 

BSA injected. Then the collected volume was transferred to Nanodrop for fluorescence 

measurement. For each segment o f 5 pL collection, the trapped and captured biotinylated 

BSA was calculated as the difference in fluorescence intensity between the initial basal 

level o f 41.5 A.U. and the eluted.
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The biotinylated BSA capture recovery, which indicates the amounts o f 

biotinylated BSA captured by the functional PMMA chip with time, was determined by 

accumulating the captured ones from each of the previous time duration. With the 

increase o f injecting samples to the microchip, the captured protein increases 

dramatically in the first nine minutes and then it reached a fluorescence plateau around 

330 A.U. in the remaining injection, indicating the saturation of the chip, with all avidin 

groups bound to biotinylated proteins. Accounting the chip was saturated at 

approximately nine minutes, only 280 ng o f biotinylated carbonylated BSA were 

enriched through the microdevice, which provides attractable feature o f enrichment o f 

minuscule samples. If  all 750 ng derivatized BSA in the affinity microchip were to be 

proceeded, an increased geometry with higher surface area would be needed. Also, the 

captured efficiency o f biotinylated carbonylated BSA capture as a function o f time was 

estimated. Capture efficiency is defined as the amount o f protein captured in each 

collecting period (one minute equating to 5 pL of collected flow through) with respect to 

the amount o f the protein injected initially. As indicated in Figure 3-8A, the capture 

efficiency started at a high level o f 75%, and then decreased dramatically with time 

during the first nine minutes and then dropped to nearly zero for the remaining injection. 

The initial high capture efficiency was attributed to the geometry design o f the microchip. 

The fluid dynamics imposed by the geometric arrangement o f  the posts leads the protein 

mixture down specific streamlines that are inteijected frequently by the posts, thereby 

maximizing interaction o f the targeted proteins with the functionalized surfaces, and 

resulting in a high-efficiency capture o f the proteins directly onto the sides o f the posts. It 

is also intuitive that the captured proteins in the affinity based enrichment microchip is
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time-dependent, since more accessible biotin-binding cites are at the initial stage o f 

capture, while with more and more avidin molecules occupied, less captured proteins will 

happen.
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Figure 3-8: A. Capture recovery curve o f FQ-labeled biotinylated carbonylated BSA on 
avidin immobilized microfluidic channel; B. Elution efficiency curve o f FQ-labeled 
biotinylated carbonylated BSA from avidin immobilized microfluidic channel.
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The results indicated the effective enrichment regime was provided by this 

attractive avidin-based affinity microchip. To increase the capture recovery, a longer, 

wider and taller geometry of micropost-filled microchannels could be utilized in the 

future designs. In addition, a different arrangement o f posts can be configured, such as 

square array, equilateral triangular array, diagonal square array, etc. Toner’s group 

(Nagrath, et al. 2007) studied the hydrodynamic efficiency for each distribution on the 

basis o f the analytical solution derived by Drummond and Tahir (Drummond and Tahit 

1984). It was found that hydrodynamic efficiency o f  capture as a function o f the spacing 

between the microposts was greatest with the equilateral triangular micropost 

arrangement. Therefore, we adopted the equilateral triangular array in our application of 

the enrichment o f  proteins. To further improve protein captures, shorter center-to-center 

spacing between the microposts will be beneficial. It is foreseeable that excessive 

reduction in micropost spacing should not lead to physical trapping o f proteins between 

the microposts because the protein is in the nm range. Additionally, if  spacing between 

the microposts is constant, an increase in the micropost radius will increase the micropost 

density, resulting in a higher capture area.

3.5.6 Assessment o f  Elution Efficiency

After the microfluidic channel was saturated by biotinylated carbonylated 

proteins, elution efficiency was measured by injecting denature/elution solution (0.4% 

SDS, 0.8% methanol, 0.4% NaCl in water solution) at a flow rate o f 5 pL/minute. The 

accumulated elution with time and elution efficiency as a function o f time were both 

determined. The fluorescence intensity o f  a collected fraction of 5 pL during each minute 

elution was determined spectrofluorometrically using Nanodrop. The total elution with



52

time was assessed by accumulating all the measured fluorescence values in previous 

elution collection periods. As Figure 3-8B suggested, half o f  the captured protein was 

eluted in the first minute, followed by the remaining elution in the next ten minutes. This 

result indicates that biotinylated carbonylated proteins could be denatured and eluted in a 

relatively short time-span. The elution efficiency decreased with time. The minor peaks 

in elution curve elution may indicate that dead volumes exist in the microfluidic channel. 

The captured biotinylated carbonylated BSA released from avidin functionalized PMMA 

surfaces could be utilized for further mass spectrometry based proteomics analysis. After 

elution, proteins were renatured by removing denaturing regent with a MW 3500 Da 

filtration unit. It is possible that a small fraction o f denatured protein still existed or loss 

o f proteins during filtration process, which lead to the loss o f  proteins that could account 

for the difference in protein amount observed between captured (330 A.U.) and eluted 

amounts (280 A.U.).

Currently, a fresh prepared device was used for a new measurement with our 

current settings. The avidin-tethered substrate cannot be reused, because the avidin-biotin 

bond is one o f the strongest biological bonds known; and the harsh conditions necessary 

to break this bond to elute and recover bound proteins also destroy the avidin. But the 

desirable features o f PMMA microdevice making via hot embossing allow for low cost 

and high production, and make the reusability less o f  a concern. Nevertheless, there are a 

few approaches to explore in the future to make the microdevices reusable.

Previously, Holmberg et al, showed a short incubation in nonionic aqueous 

solutions at temperatures above 70° C can efficiently break the interaction without 

denaturing the streptavidin tetramer, and therefore the molecules can be regenerated and
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reused (Holmberg, et al. 2005). (2) Also, replacing tetramer avidin with monomeric 

avidin, the gentle elution and recovery using 2 mM biotin to compete for the biotin 

binding site can be used without sacrificing the avidin solid support (Mirzaei and Regnier 

2005).

3.6 Summary

Here we reported a novel and sensitive affinity chromatography o f the biotin 

derivatized carbonylated BSA on the avidin-functionalized microchip. An avidin- 

immobilized microposts-filled microchannel was designed with UV photochemical 

carboxylic acid pathway and EDC mediated amide coupling with PMMA. It is to 

facilitate the enrichment o f any PTM protein after biotin derivatization. Various 

characterization techniques, both qualitative and quantitative, were utilized to prove and 

evaluate the surface modification scheme and enrichment process o f  biotin derivatized 

carbonylated BSA. This biomedical microdevice, can proceed pg amount o f  proteins for 

enrichment of a trace level o f modified protein, 106 fold less than the current commercial 

avidin column, making it highly desired for any limited amount of biological samples 

requiring avidin affinity enrichment.



CHAPTER 4

ANTIBODY FUNCTIONALIZED IMMUNOSENSOR ON PDMS 
MICROFLUIDIC DEVICE FOR LOW ABUNDANT POST- 

TRANSLATIONAL MODIFIED PROTEIN DETECTION AND
PURIFICATION

4.1 Introduction

This chapter reports the fabrication, characterization and assessment o f  antibody 

based p-chip immunosensor to screen for PTM  using a Polydimethylsiloxane (PDMS) p- 

chip. In the work described in Chapter 3, PM M A p-chip for PTM proteins enrichment 

and extraction with avidin/biotin based approach is established. The disadvantage o f 

PMMA microfluidic device is that PMMA material suffers from its brittle characteristics, 

and the PMMA device is fragile under intermediate force. Furthermore, the capillaries to 

connect the inlet and outlet o f p-chip with external parts are normally sealed and secured 

by glue, which causes the connection defect o f  easy-breakage, entry blockage and 

inability o f resealing or hot-plugging. Comparing with PMMA, polydimethylsiloxane 

(PDMS) is o f extreme elastic and hence, the PDMS device could always be resealed.

The p-chip embedded with high density post arrays was utilized to specifically 

enrich carbonylated proteins. Techniques including atomic force microscopy and 

fluorescence microscopy were applied to characterize PDMS surface topography and 

surface functional group mapping changes after each modification step o f the treatment 

process. In addition, a quantitative study o f DNP-labeled carbonylated protein capture

54
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and elution efficiencies o f  the device was investigated. A test protein, in vitro 

carbonylated cytochrome C was enriched successfully by the chip even with its low 

abundant presence among large excess o f  interfering protein, bovine serum albumin 

(BSA). This device requires less than 700 ng protein sample for targeting carbonylated 

proteins, which is not achievable using the tube-based immunoprecipitation technique. 

This pIP device could be further adapted to purify a wide range o f other PTMs to 

facilitate proteomics based biomarker discovery.

4.2 Method and Materials

4.2.1 Reagent and Materials

Aminopropyltriethoxysilane (APTES) and glutaraldehyde used for PDMS surface 

modification assays were purchased from Alfa Aesar (Ward Hill, MA). For proteins used, 

anti-DNP and albumin bovine serum was purchased from Sigma-Aldrich (St. Louis,

MO), and cytochrome C was purchased from EMD Chemicals (San Diego, CA). Tween- 

20 and Sodium cyanoborohydride used in the Schiff bond stabilization assay were 

purchased from VWR (West Chester, PA) and Sigma-Aldrich (St. Louis, MO), 

respectively. As for fluorescent dye, 3-(2-furoyl)-quinoline-2-carboxaldehyde (FQ), 

naphthalene-2,3-dicarboxaldehyde (NDA) and Alexa488 labeled anti-DNP were 

purchased from Invitrogen (Madison, WI). TRITC-BSA was purchased from Sigma- 

Aldrich (St. Louis, MO).

The mold master for the process o f soft lithography was fabricated by positive 

photoresist S 1813 and developer Microposit MT-319, which were both purchased from 

Rohm and Haas Electronic Materials LLC (Marlborough, MA). SYLGARD 184 Silocone 

elastomer kit (PDMS) and a 3” * 2” glass board used to form the microfluidic devices
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were purchased from Dow Coming Corporation (Midland, MI) and GoodFellow 

(Oakdale, PA), respectively. UV glue LOCTITE 352 used to bind the silicon mold master 

and PMMA pocket with glass board was purchased from Henkel Loctite Corp (Rocky 

Hill, CT). The 1/16” x 0.030” Teflon tubing used on the inlet and outlet o f the 

microfluidic device was obtained from IDEX Health & Science (Oak Harbor, WA).

4.2.2 Fabrication o f Microfluidic Device

4.2.2.1 Microfluidic Device Design

Figure 4-1 demonstrates the channel embedded with micro-truncated square 

pyramid arrays. The 25.4 mm long, 1.5 mm wide and 150 pm tall channel is filled with 

truncated square micropyramids, which are 150 pm in height, 340 pm on the base sides 

and 130 pm on the top sides with an average spacing of 1 0 0  pm between micro­

pyramids. The pyramid shape with slanted sides rather than straight posts were formed 

from silicon wet-etching. Compared with the straight-pillar design, pyramids increase the 

surface areas subjected to incoming surface chemical treatment.
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B

Figure 4-1: A. Overview o f the structure o f microfluidic device; B. PDMS micropyramid 
structure in the device. Scale bar is 1 mm in length.

In the pIP device, reactive molecules were chemically immobilized on the 

surfaces o f the pyramid and channel walls to “capture” target protein. The “process o f 

capturing” is based on the interaction between molecules, and it could be considered as 

an instant reaction. The Reynolds number o f the system is roughly around 0.45, the flow 

pass through the device is therefore strictly laminar and the capture process is primarily 

affected by three factors, density o f antibody-tethered groups, molecular encounter rate 

and reaction time between the incoming protein and the activated sites on the
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functionalized surface. Hence, the micro-pyramid array was arranged in a staggered 

pattern to increase the chance o f the protein interacting with the functionalized surface 

for improving protein capture efficiency.

4.2.2.2 Fabrication o f the Silicon Mold Master

The microfluidic device was fabricated with PDMS, by a previously developed 

soft lithography method (Whitesides, et al. 2001) (Zhao, X ia and W hitesides 1997) using 

a silicon master patterned by wet etching. Specifically, an emulsion mask was printed on 

photographic films using a Linotronic 330 Linotype printer o f 25 pm resolution after the 

desired pyramid arrayed geometries in the micro-channel were designed by CAD 

(Computer aided design). Positive photoresist S I 813 was spin-coated to generate a 

uniform thickness o f ~2 pm  on the silicon wafer to serve as a sacrificial layer. After 

spin-coating, the mask was aligned onto the silicon wafer for a pattern transfer under UV 

light for about 65 seconds. After UV treatment, the wafer was developed by developer 

Microposit MT-319. Buffered oxide etching (BOE) was used to etch silicon oxide and 

further achieve the pattern transfer onto the silicon oxide layer of the silicon wafer. A 

silicon mold master was prepared by KOH wet-etching method. By the characteristics of 

wet etching on < 1 0 0 > four-inch silicon wafer, arrays o f truncated square pyramids were 

formed on the silicon wafer, which will further form the micro-pyramid structures on the 

PDMS replicate during PDMS molding process. To reduce the fragile silicon mold 

master from breaking, silicon mold master was glued onto a 2” x 3” glass plate by UV 

induced glue. A frame was also glued around the silicon mold, forming a pocket structure 

to hold the PDMS mixture in the subsequent soft lithography assay.



59

4.2.2.3 Soft Lithography

A 10:1 ratio o f  PDMS base with curing agent from commercially available 

SYLGARD 184 Silocone elastomer kit was used to form the PDMS mixture, which was 

poured into the pocket structure of the mold master. Vacuum pump was applied to 

remove bubbles generated in the mixing step. PDMS mixture, along with the mold 

master, was cured at 150° C for at least one hour to have the PDMS solidified. After soft 

lithography fabrication, the PDMS device embedded with micro-pyramids was peeled off 

from silicon mold master, then cut, punched with 1/16” ID puncher to create inlet/outlet, 

cleaned with DI water and air dried. Prior to chemical modification steps, the PDMS 

device was incubated in methanol for one hour and dried on the hot plate at 120° C for 30 

minutes to have the PDMS surface become more hydrophilic. The PDMS device and a 

2” x 3” glass plate was then treated by oxygen plasma for seven minutes (0.2 mbar), then 

bound together under pressure to form the microfluidic channel. A 0.30” inner diameter 

Teflon tubing was used directly to connect the inlet reservoir with a syringe for chemical 

injections without any glue treatment.

Due to the elastic property o f PDMS, inlet reservoir is directly connected with the 

syringe by Teflon tubing for chemical injections without any glue treatment. The tubing 

could be swapped freely between samples to prevent contamination. This PDMS property 

provided user convenience and the reduced failure which often happens in glue-based 

connections. In this chip, all injection, reaction, washing and elution procedures were 

achieved by pumping solutions through the attached tubing to inlet reservoir using the 

syringe pumps.
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4.2.3 Protein Sample Labeling and Purification

4.2.3.1 In vitro Carbonylation o f Protein Samples

Protein solution o f cytochrome C and BSA were oxidized with a hydroxyl radical- 

generating system consisting o f ascorbate/Fe(III)/02 (Requena, et al. 2001). First, the 

protein was dissolved in 1 mL o f oxidation buffer (50 mM HEPES, 100 mM KC1, 10 mM 

MgCh, pH 7.4) to reach a final concentration o f 10 mg/mL. Ascorbate and FeCl3 was 

added to the mixture for final concentration o f 25 mM and 0.1 mM, respectively. The 

oxidation was therefore carried out by incubating overnight at 37° C, while constantly 

shaking. The oxidation was stopped by adding EDTA to a final concentration o f 1 mM. 

The reaction mixture was dialyzed overnight against oxidation buffer containing 1 mM 

EDTA at pH 7.4 (Feng and Arriaga 2008) (Requena, et al. 2001) (Stadtman and Levine, 

Free radical-mediated oxidation o f free amino acids and amino acid residues in proteins 

2003).

4.2.3.2 Preparation o f DNP-Labeled Protein Samples

Protein solution (carbonylated cytochrome C or carbonylated BSA) after the 

oxidation assay was chemically labeled with DNPH, as described by Levine (R. L.

Levine 2002). Briefly, 100 pL of 1 mg/ml oxidized protein was added into 500 pL 

solution o f 10 mM DNPH in 2 M HC1. The mixture was allowed to stand at room 

temperature for one hour before adding 60 mg TCA to the mixture to a final 

concentration o f  10% w/v. The mixture was incubated on ice for 30 minutes. The mixture 

was then centrifuged at 1 1 0 0 0  g for three minutes, the supernatant would be discarded. 

The pellet was washed with an ethanol-ethyl acetate (1:1) mixture three times. For each
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time washing, the mixture is centrifuged at 11000 g for 90 seconds. The pellet was 

further dissolved in 100 pi PBS buffer to reach a final concentration o f 1 mg/ml.

4.2.4 Antibody Immobilization

The antibody functionalized device inner surface was accomplished by chemical 

modification methods. Figure 4-2 depicts the immunosensor fabrication steps, which 

includes the covalent immobilization o f the anti-DNP onto PDMS p-chip and the 

purification strategy o f carbonylated proteins. Sandison’s group demonstrated the use of 

glutaraldehyde activated PDMS for consecutive attachment o f  the antibody (Sandison, et 

al. 2010). Specifically, oxygen plasma was used to generate hydroxyl groups on the 

surface o f PDMS. Stalinization solution (5% aminopropyltriethoxysilane (APTES) v/v in 

95% ethanol and 5% dFEO as solvent) was flowed through the device for 10 minutes 

followed by ten minutes o f incubation time. Then the device was further cleaned with 

ethanol, air dried and treated on the hot plate at 80° C for 20 minutes. Crosslinker 

solution (glutaraldehyde 1% v/v in II2O, pH 9.2) was subsequently injected for ten 

minutes, followed by ten minutes o f incubation time. This crosslinker can further react 

with amine group o f antibody and result in antibody immobilization on chemically 

modified PDMS surface. Anti-DNP solution o f concentration 0.2 mg/ml (in pH 9.2 

solution) was flowed through the device for ten minutes, followed by 2 0  minutes o f 

incubation. The device was washed by pH 9.2 sodium carbonate buffer, containing 0.05% 

Tween-20 and 1% sodium cyanoborohydride for ten minutes both prior and after the 

antibody injection/incubation to stabilize the Schiff bond. A 1% bovine serum albumin 

(BSA) solution (in PBS buffer, pH 7.4, contains 0.05% Tween-20) was flown through the 

microchannel for ten minutes to block non-specific protein adsorption sites. Then PBS
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buffer was used to wash the device. It is ready for capturing DNP derivatized 

carbonylated cytochrome C. All the chemical treatment solutions and washing buffers 

were driven through the device channel by a syringe pump with a flow rate o f 5 pi per 

minute.

(C H 2 )3NH3 (C H /b N
I I

- O - S i - O -  — O - S i - O -

Oxygen
plasma

glutaraldehyde

C O H

<CH2)3 (C H 2 )3
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Figure 4-2: Chemical surface modification steps for immobilizing antibody in PDMS pIP 
device.

4.2.5 Conventional IP for Purification o f Carbonylated BSA

A conventional IP for carbonylated proteins was carried out for comparison with 

the p-IP method. Silver stained gel came from conventional IP experiments.

4.2.5.1 Chemicals and Facilities

MagnaBind carboxyl derivatized beads were purchased from Thermo (Rockford, 

IL), while chemicals used beads surface modification assays including l-ethyl-3-[3-
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dimethylaminopropyl] carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS) 

and N-morpholinoethane sulfonic acid (MES) buffer were purchased from Fluka 

(Steinheim, Germany), Thermo (Rockford, IL) and Alfa Aesar (Ward Hill, MA), 

respectively. The syringe pump used as the motion supplier o f the mobile phase in the 

pIP device was purchased from Next Advance (Averill Park, NY, USA). XDS 5 Dry 

vacuum pump used to remove bubbles from PDMS mixture was purchased from 

EDWARDS (Sanborn, NY).

4.2.5.2 Methodology

After the oxidized proteins (BSA and cytochrome C) were tagged with DNP to 

form a covalent bond with carbonyl groups, the DNP-tagged proteins were 

immunoprecipitated using anti-DNP antibodies by using both the conventional method 

and the p-IP chip. For conventional IP, MagnaBind carboxyl derivatized beads were 

covalently coated with anti-DNP antibodies as described by the manufacturer. Briefly, 5 

mM EDC and NHS were used to activate and crosslink the carboxyl to the primary 

amines o f 0.4 mg/ml anti-DNP. This conjugation reaction was performed in 0.1 M MES 

buffer with 0.9% NaCl at pH 4.7 for two hours.

The anti-DNP coated MagnaBind beads were added to the DNP-labeled protein 

solutions and then incubated for three hours at room temperature with vortexing. The 

unbound proteins were removed by washing the beads in PBS for 15 minutes, three 

times. For elution, the carbonylated proteins were eluted from the MagnaBind beads by 

washing them three times with IgG elution buffer (pH 2.8). The elutes were then heated 

in the water bath at 100° C for five minutes for denaturing, followed with SDS-PAGE
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separation and silver staining visualization according to manufacturer’s procedures 

(England and Cotter 2004) (Kristensena, et al. 2004).

4.3 Testing the Microfluidic Device

4.3.1 Surface Topology Characterization Using Atomic Force Microscopy

A commercial instrument Nanosurf easyScan 2 was used to study the surface 

topology after each modification including pristine PDMS, oxygen plasma treated, 

APTES/glutaraldehyde activated, anti-DNP immobilized and BSA blocked PDMS 

substrates. As for technical details o f the AFM, please refer to Section 3.3.2.

4.3.2 Fluorescence Validation o f Surface Modification

A series o f fluorescence experiments were used to evaluate the effect o f chemical 

modification after each chemical treatment steps. The fluorescence surface modification 

experiments were carried out with an Olympus 1X51 inverted microscope (Olympus 

Corporation, Tokyo, Japan). For details o f the fluorescence microscope, please refer to 

Section 3.5.4. These images were further analyzed by Image J software.

4.3.2.1 Chemical Mapping of Glutaraldehyde and Antibody

To verify the functionality and uniformity o f  crosslinker glutaraldehyde layer, and 

strong immobilization o f antibody onto the substrates, PDMS channel (without micro­

pyramid) prepared after oxygen plasma, APTES and 1% glutaraldehyde treatments were 

incubated with Alexa-488 labeled anti-DNP solution (0.2 mg/ml) for 30 minutes at room 

temperature. A negative control was performed by omitting the addition o f crosslinker- 

glutaraldehyde to study the effectiveness o f crosslinking and the formation o f Schiff 

bases (compounds having a C=N function). To evaluate the Schiff based covalent bond 

formed between anti-DNP antibody and the PDMS substrate, both sample and control
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were washed with 1% glutaraldehyde solution for 30 minutes. The samples were studied 

with the exposure time o f one second under fluorescence microscopy using ex/em filter 

sets o f 488/535 nm.

4.3.2.2 Validation o f Carbonylated Proteins Capture on Microchips

The anti-DNP functionalized PDMS channel was used to capture FQ-labeled 

DNP-derivatized carbonylated protein. To evaluate the binding reaction between DNP- 

labeled proteins with immobilized anti-DNP on the pIP device, PDMS substrate with 

anti-DNP immobilized were immersed with 20 pM FQ -labeled DNP-labeled 

carbonylated BSA solution in PBS. After 20 minutes o f incubation at room temperature, 

the samples were then washed with DI water three times and air-dried prior to 

fluorescence imaging study. Finally, for the validation o f elution process o f enriched 

proteins, the PDMS channel with captured FQ-labeled DNP-labeled carbonylated protein 

was then washed with 1% SDS solution for 30 minutes. After water rinse and drying, 

fluorescence image was then taken with an excitation wavelength o f 488 nm and one 

second o f exposure time.

For FQ labeling o f DNP-labeled carbonylated protein, 200 nmol FQ were 

dissolved in 10 pi o f 10 mM potassium cyanide (KCN) solution. Fluorogenic reagent FQ 

only fluoresces upon covalent binding to the protein primary amine group (-NH2) 

(Michels et al., 2007). When binding onto the protein, FQ absorbs blue light at 490 nm 

and emits red fluorescence at 525 nm.
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4.4 Quantitative Examination o f the Microfluidic Device

4.4.1 Quantification o f Capture Efficiency

We also investigated the purification efficiency o f  the pIP device by 

quantitatively measuring the capture efficiency o f the smaller amount o f  DNP labeled 

carbonylated cytochrome C at the presence o f  a larger amount of blocking proteins-native 

BSA. Carbonylation o f cytochrome C has been associated with oxidative stress induced 

disease and considered as a biomarker. For NDA labeling, 100 pi o f DNP derivatized 

carbonylated cytochrome C was mixed with 2.5 pi o f  sodium cyanide solution (0.2M) 

and 50 pi o f  NDA stock solution (1 mM). The labeling reaction proceeded for 15 minutes 

(Gottschlich et al., 2000). Hence, a mixed solution o f  NDA labeled DNP derivatized 

carbonylated cytochrome C (1 pg/ml) and TRITC labeled-BSA (50 pg/ml) was flowed 

through the anti-DNP-immobilized micro-chip with a flow rate of 5 pL/minute for 90 

minutes. For each minute, an outflow droplet o f 5 pL was collected and its fluorescence 

at both emission wavelength o f 479 nm (for NDA-carbonylated cytochrome C) and 572 

nm (for TRITC-BSA) were measured. With every minute collection o f flow through, a 

total of 130 points o f fluorescence measurements for each NDA and TRITC-BSA were 

recorded to calculate each individual capture efficiency changed with time. The pIP 

device is considered saturated after both outflow o f NDA-carbonylated cytochrome C 

and TRITC-BSA fluorescence intensities have raised to the same intensities as those in 

the injected solution. The capture efficiency estimates the amount o f captured 

carbonylated protein by the antibody modified microfluidic channel using indirect 

fluorescence measurement o f flow through by a fluorescence meter (Nanodrop 3300). 

Similar as Eq. 3-1, the capture efficiency is defined as:
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C apture  e f f i c ie n c y

a m o u n t  o f  e lu te d  p ro te in  i n f  low  th ro u g h  Eq. 4-1
in jec ted  p ro te in  a m o u n t

4.4.2 Quantification of Elution Efficiency

After the channel o f  the p.IP device was saturated, the device was washed with

PBS buffer and air dried. The elution and release o f  enriched carbonylated cytochrome C

was demonstrated by injecting the eluting buffer (1% SDS) to break the antigen and

antibody bond. With the eluting buffer injected in a flow rate o f 5 pL/minute for every

minute, the fluorescence intensities o f outflow were measured using the same procedure

mentioned above (as in Section 4.4.1). Similar as in Eq. 3-2, the eluting efficiency is

defined as:

e lu te d  p ro te in  a m o u n t
E lu te  e f f i c ie n c y  =  ------------- ;------------------------- . Eq. 4-2

c a p tu re d  p ro te in  a m o u n t

4.5 Results and Discussion

4.5.1 Surface Topographic Analysis o f  Surface-Modified PDMS Substrate

Surface topology plays an important role for antibody immobilization and protein 

purification, because the increased surface roughness enhances the contact surface area, 

providing more glutaraldehyde-activated and anti-DNP tethered arrays and further 

increasing the capture efficiency o f carbonylated proteins. AFM study was applied on the 

PDMS substrates after each chemical modification step, which includes (1) unmodified, 

(2) after oxygen plasma, (3) APTES treated, (4) glutaraldehyde activated, (5) anti-DNP 

immobilized, and (6 ) BSA blocked. For each o f the substrate studied, the individual 

representative AFM images are demonstrated in Figure 4-3 A-F and the corresponding 

surface roughness, denoted as the root mean square (rms), is summarized in Figure 4-4.



Figure 4-3: A-F. AFM images o f unmodified, oxygen plasma treated, APTES treated, 
glutaraldehyde treated, anti-DNP immobilized and BSA blocked PDMS surface.

Rq

original oxygen plasma APTES glutaraldehyde antiDNP BSAblock

Figure 4-4: Surface roughness root mean square (rms, in the unit o f nm) o f PDMS 
surfaces.



Morphology o f PDMS surfaces o f unmodified and after oxygen plasma treatment 

are relatively smooth and similar with surface roughness o f  2.38 and 1.3 nm, 

correspondingly. After oxygen plasma treatment, the PDMS surface becomes slightly 

smoother after oxygen plasma treatment, which is consistent with previous reports 

(Chang, et al. 2007). The rpm surface roughness for the APTES treated PDMS substrate 

is around 3.75 nm, while the crosslinker glutaraldehyde treatment increased the surface 

roughness to 14 nm. A “hilly area” was observed, as shown in Figure 4-3E, which is 

considered as the precipitation product from the chemical reaction between APTES and 

glutaraldehyde. Since a monolayer thickness o f APTES and glutaraldehyde is 

theoretically assessed as 0.8 nm and 1.4 nm, those measurements showed that multilayer 

o f APTES and glutaraldehyde were coated, and possible polymerization of 

glutaraldehyde has occurred (Razumovitch, et al. 2009).

The PDMS surface roughness has a noticeable increase after anti-DNP 

immobilization and protein blocking with BSA with respective surface roughness o f  27 

nm and 31.3 nm. Considering the physical size o f the proteins with molecular mass o f  

~60 kDa is around 6  nm, the increase o f surface roughness could be attributed by 

immobilized proteins forming in small groups o f conglomeration (-10-15 nm), which is 

in agreement with the reports from Ling Yu et. al (Yu, Li and Zhou 2005). The increased 

roughness is desirable for our pIP device, because the rough surface magnifies the 

wetting and adhesion properties o f a solid (Bico, Tordeux and Quere 2001), which is 

helpful for the reaction between carbonylated protein targets and the antibody-modified 

PDMS substrates.
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4.5.2 Studies o f Surface Modification by Fluorescence Determination

To achieve the objective o f capture carbonylated proteins using the immuno- 

affinity based purification approach, we used a chemical modification comprised o f 

salinization of PDMS substrate with APTES followed by coupling with amine-terminated 

antibody through glutaraldehyde. To assess the effectiveness of modification, quantitative 

fluorescence measurements o f each modification were investigated with a fluorescence 

microscope equipped with a CCD camera, and the data was analyzed using Image J 

software. Software ImageJ 1.45s (National Institutes o f Health, USA) was used to 

analyze the alteration o f fluorescence intensity by comparing the mean value o f the 

colored pixels. The mean value o f RGB pixels is a value between 0-255, which increases 

while the color intensifies. For fluorescence figures from Alexa488, green values were 

compared; and for fluorescence figures using FQ, red values were compared.

Firstly, we evaluated whether anti-DNP was immobilized onto the PDMS 

substrate via Schiff reaction. As demonstrated in Figure 4-5, the crosslinker 

glutaraldehyde anchored Alexa 488 labeled anti-DNP onto the surface o f PDMS substrate 

via strong covalent bonds (Figure 4-5 A), while the control without crosslinker treatment 

resulted little immobilization o f the antibody (Figure 4-5B). As demonstrated in Figure 4- 

5F, software ImageJ analysis indicates that PDMS substrates treated with crosslinker 

glutaraldehyde has fluorescence intensity o f ~2 .5-fold than the negative control.
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carbonylated BSA 30 minutes

Figure 4-5: A-B. Washing PDMS surface treated with (A) or without (B) crosslinker 
glutaraldehyde with 1% glutaraldehyde solution for 30 minutes; C. Anti-DNP 
functionalized channel capturing FQ labeled DNP labeled carbonylated BSA; D. Anti- 
DNP functionalized channel capturing FQ labeled regular BSA; E. Elute the channel in 
(C) by 1% SDS solution for 30 minutes; F. Average red value of (A)-(B), and average 
green value o f (C)-(E).
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Secondly, we also examined whether the anti-DNP terminated microchannel will 

specifically capture DNP-labeled carbonylated protein, which represents o f the tag 

labeled PTMs. In order to chemically map the functionality o f anti-DNP, FQ-labeled 

DNP labeled carbonylated BSA were used. Fluorogenic reagent FQ fluoresces only upon 

covalent binding to the protein primary amide group (-NH2) in the presence o f 

nucleophile (CN-) group (Michels, et al. 2007). As shown by Figure 4-5C, high intensity 

fluorescence was observed at an emission wavelength o f 560 nm, which represents that 

the anti-DNP functionalized p-IP device could interact with and capture DNP-labeled 

carbonylated proteins. Conversely, no significant reaction was observed for native BSA 

compared with the specific interaction o f anti-DNP against carbonylated BSA (Figure 4- 

5D).

Lastly, the elution o f enriched carbonylated BSA was observed by applying 1% 

SDS solution (Figure 4-5E). Image J analysis indicates that within 30 minutes, 34.5% of 

fluorescence intensity was reduced inside the microfluidic channel, which is shown in 

Figure 4-5F.

The fluorescence imaging helped us to answer three questions: (1) whether anti- 

DNP could be successfully immobilized on the PDMS channel; (2) i f  those immobilized 

anti-DNP are still active and able to capture target proteins; and (3) whether those 

captured proteins could be eluted out o f the device. The fluorescent images give us 

affirmative answers, which are consistent with those AFM studies, validating the desired 

functional groups present on the PDMS surface.
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4.5.3 Capture Efficiency Quantification

AFM and fluorescence imaging are both semi-quantitative studies, and they are 

limited as they could only validate the presence o f the functional groups without 

providing quantitative information in regards to how much carbonylated proteins are 

captured and eluted. Therefore, to quantitatively determine how the pIP device enriches 

DNP labeled carbonylated BSA by the process o f capturing and eluting, quantitative 

fluorescence measurements are necessary.

To evaluate the specific anti-DNP and DNP derivatized carbonylated protein 

interaction, we performed the off-chip fluorometric protocol with a mixture o f  low 

abundant carbonylated cytochrome C (NDA labeled) and large amount o f  native BSA 

(TRITC labeled). We achieve the captured protein estimation by studying the

fluorescence intensity difference between the injected protein sample and the outflow. To

measure the capture efficiency o f  DNP labeled carbonylated proteins, aqueous solution o f 

2 pg/ml NDA labeled DNP labeled carbonylated cytochrome C and 100 pg/ml TRITC- 

BSA were mixed together to reach a final concentration o f  1 pg/ml and 50 pg/ml, 

respectively. Here, TRITC-BSA is used as protein background.

Before assessing the capture and elution efficiency, the crosstalking between the 

two fluorescence dyes (NDA vs. TRITC) was investigated. The crosstalk effect is 

calculated by Eq. 4-3 and Eq. 4-4.

C rossta lk  e f f e c t  o f  NDA

NDA f lu o r e s c e n c e  in te n s i ty  a t 572 n m  ^
NDA f lu o r e sc e n c e  in te n s i ty  a t  479 n m  '
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C ross ta lk  e f f e c t  o f  NDA

NDA f lu o re sc e n c e  in te n s i ty  a t  479 nm  ^  ^
NDA f  luorescence  in te n s i ty  a t  572 n m  '

It was found that the NDA to TRITC crosstalking is around 12.37%, while

TRITC to NDA is estimated at 4.77%. After factoring the crosstalking effects, we then

determined the capture efficiency in every minute segment using Eq. 4-4 in Section 4.4.1

and depicted the values in Figure 4-6.
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Figure 4-6: Capture efficiency curve and capture total pillars o f A. NDA-labeled DNP- 
labeled carbonylated cytochrome C and B. BSA as control, with anti-DNP functionalized 
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By comparing the captured efficiency o f carbonylated cytochrome C and 

background protein BSA as a function of time, we notice that the pIP device has an 

apparent specificity on enriching carbonylated protein. Here, capture efficiency is defined 

as the amount o f the protein captured in each minute with respect to the amount o f  the 

protein injected initially for each minute. As demonstrated in Figure 4-6, the capture 

efficiency for carbonylated cytochrome C started at a high level o f -80% , and then the 

curve decreased to -40%  smoothly in 40 minutes. On the other hand, the capture 

efficiency for background BSA started at -45% , and then dropped dramatically to -10%  

in the first ten minutes. It is theoretical intuitive that the capture efficiency for 

carbonylated proteins starts high and drop smooth. The capturing process in the immuno- 

affinity based enrichment microchip is time-dependent, because there are more accessible 

antibody binding cites at the initial stage o f capture, while gradually more active 

functional sites are occupied by carbonylated proteins with time. It is also observed that 

the lower capture percentage and easier saturation o f BSA by the chip shows an 

insignificant amount o f BSA absorptions via unspecific binding. The initial 45% BSA 

capture efficiency could be the result o f some proteins displacing BSA, which was used 

to block the chip. As depicted Figure 4-7, BSA capturing reaches its plateau in terms o f 

captured total (A.U.) around the 85th minute, while the pIP device could capture 

carbonylated cytochrome C until the 110th minute, at which the p-chip is saturated, 

indicating no more anti-DNP binding sites available. Correspondingly, the zero capture 

efficiency indicates that even with continuous injection after saturation, the flow through 

o f the samples can no longer be captured in the pIP and will just elute through. To 

achieve more captured amount o f carbonylated protein, increasing the geometric surface
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within the device or increasing the antibody density inside the chip will be a prospective 

in further device improvements.

A.U. sample total elute 
negative control total elute
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Figure 4-7: Capture total pillars o f NDA-labeled DNP-labeled carbonylated cytochrome 
C and BSA as control, with anti-DNP functionalized micro-immunoprecipitation device.

NDA-labeled DNP-labeled carbonylated cytochrome C (1 pg/ml) was injected 

into the device at a rate o f 5 pL/minute prior to the capture saturation plateau, for a total 

o f 110 minutes, 550 ng o f carbonylated cytochrome C (or 11 picomole o f protein 

carbonyl) was injected into the immunoaffinity based microchip and the flow through 

was collected every minute. The collected volume was then transferred to fluorescence 

spectrometer for fluorescence measurement. All the fluorescence intensity o f  the captured 

NDA labeled carbonylated cytochrome C was summed up with a total o f  8249 A.U.



78

Considering 1 pg/ml NDA-carbonylated cytochrome C solution has an intensity of 

268.28 A.U. at 479 nm, a total amount o f 159 ng carbonylated cytochrome C were 

enriched by the microdevice. Hence, the chip was able to capture 28.0% o f  the oxidized 

proteins over the 110 minutes injection period, whereas only 10.9% o f the unoxidized 

protein was captured. The interference block protein BSA existed in 50 fold higher than 

the test protein, carbonylated cytochrome C. These results show that, even in extremely 

low abundance, the chip is highly specific to oxidized proteins.

4.5.4 Elute Efficiency Quantification

After the pIP device was saturated by DNP labeled carbonylated proteins, the 

capture proteins were eluted by injecting the elution solution (1% SDS in water solution) 

at a flow rate o f 5 pL/minute. By accumulating fluorescence values o f  each minute- 

fraction, the total eluted amounts for both eluted carbonylated cytochrome C and 

background BSA were shown in Figure 4-7. The fast-increase curve o f  eluted proteins 

indicates that carbonylated proteins could be denatured and eluted in a relatively short 

time-span. The fluorescence intensity o f eluted NDA labeled carbonylated cytochrome C 

was summed up with a total o f 5742 A.U., which indicates that elute efficiency o f 69.6% 

for carbonylated cytochrome C by the microdevice. The eluted carbonylated protein 

sample could be further utilized in a proteomic study for discovery o f  biomarkers. For the 

elution of BSA, the total fluorescence intensity o f 1194.7 A.U. as shown in the elution 

experiment, only a total o f  847 A.U. was shown in the TRITC-BSA capturing graph at 

572 nm. The redundant fluorescence intensity at 572 nm peak could be resulted by 

underestimating the crosstalking effect from the dye NDA. Also, the blocking BSA used
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in the device fabrication could also be labeled by excessive TRITC and potentially affect 

the fluorescence intensity o f the TRITC-BSA elute.

As a result o f the denaturing effect brought by the elution solution (1% SDS 

solution), the immobilized anti-DNP are denatured after elution. The PDMS pIP device 

hereby could not be reusable after an affinity-based enrichment experiment. Nevertheless, 

the low cost o f  PDMS substrate and low antibody amount required could make the 

reusability less o f a concern.

4.5.5 Conventional IP for Purification o f  Carbonylated BSA

A conventional IP for carbonylated proteins was carried out for comparison with 

the p-IP method. Silver stained gel from conventional IP experiments, demonstrating 

three washes (W1-W3) and three elutions (E1-E3) was shown in Figure 4-8. After 

comparison, p-IP proved to be more effective because it used significantly less samples 

(550 ng total protein vs. 5 mg), and required less time (less than three hours vs. six 

hours).
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Figure 4-8: Conventional immunoprecipitation o f DNP labeled oxidized BSA, shown by 
silver stained gel electrophoresis result.

Our micrometer-sized immunosensor (-3.1 pL) compared to ~1 mL tube based 

conventional IP assays accelerates the IP process significantly because o f  increased 

concentrations o f antibody-coated post arrays and targeted proteins in the p-chip 

platform. The close proximity also greatly enhances the encounter rate between the 

carbonylated proteins with anti-DNP antibody attributed from a short diffusion length.

4.6 Summary

Work described in this chapter shows a specific method for the detection of 

carbonylated protein using an immunosensor fabricated by the covalent coupling o f the 

antibody onto a PDMMS substrate. This method can be widely extrapolated to other 

types o f post-translational modified proteins. For example, nitrated proteins can be
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targeted using anti-nitrotyrosine-body. The specificity of the sensor was illustrated by 

showing little captured protein when the sensor was exposed to negative control-native 

BSA using both fluorescence imaging and capture quantification. The specific interaction 

was further demonstrated in quantitative capture efficiency using off-chip fluorometric 

assessment. This immunosensor can be readily translated to monitor the other PTM 

proteins using different monoclonal and polyclonal antibodies.



CHAPTER 5

SIMULATION BASED OPTIMIZATION OF MICROFLUIDIC  
DEVICES USED FOR MOLECULAR ENRICHMENT

5.1 Introduction

As described in Chapter 3 and Chapter 4, PMMA and PDMS microfluidic devices 

have been designed and fabricated to biochemically enrich the desired post-translational- 

modified protein. Various alternative enrichment methods could be used. For example, 

DNP-labeled carbonylated proteins could be selectively enriched by chemically 

immobilized anti-DNP on the wall o f  the microchannel. This method has the advantages 

o f high surface area to volume ratio, increased mass transfer coefficient, portability, and 

small analyte requirements. However, there are always requirements for microfluidic 

enricher to capture more molecular targets from the sample solution. Furthermore, 

microfluidic devices have the disadvantage o f a high pressure drop. To optimize the 

benefits o f the microfluidic devices, it is important to understand the effects o f the 

operating parameters on molecular capture efficiency.

This study aims to optimize the molecular capture within the microfluidic device 

with respect to the geometric and operating parameters. The geometric parameters 

studied include the shapes and hydraulic diameters o f the microposts. The operating 

parameters studied are Reynolds number, Peclet number and Damkohler number. These 

parameters are related to the flow velocity, diffusivity, and adsorption/desorption reaction

82
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constants. This work will use finite element analysis software to simulate the fluid 

mechanics and transport within the microdevice, based on the governing partial 

differential equations and boundary conditions. Capture efficiency and pressure drop will 

be obtained for simulations in which the above mentioned operating parameters are 

varied.

5.2 Nomenclature

The following nomenclature will be used to describe the governing equations. 

c0: concentration o f the target molecule in injected solution. 

c;n: solution concentration on inlet, before reaction (mol/m3) 

cout: outlet solution concentration (mol/m3)

cs: concentration o f bound reaction sites in reaction on the functionalized surface 

in the microfluidic device (mol/m2)

cso'. initial concentration of unbound reaction sites on the functionalized surface in 

the microfluidic device (mol/m )

y
D: diffusion coefficient (m /s)

Da: Damkohler number 

£>hy: hydraulic diameter (m)

E: capture efficiency

J: diffusion flux (mol/(m2s))

keq: equivalent reaction constant

k0jf. desorption reaction constant (s '1)

kon: absorption reaction constant (mol/(m s))

Pe: Peclet number
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R: surface molecule generation/consumption rate (mol/(m2s))

Re: Reynolds number, Re = pUiDhy/p.

U: flow velocity (m/s)

5.3 Study Design

Previous studies have compared the performance o f the inline and staggered array 

arrangements in the microfluidic devices and described their respective advantages and 

disadvantages. It is widely agreed that pressure drop is lower in the inline array 

arrangement than in the staggered arrangement (John 2010). Those existing works carried 

out about evaluating the capture efficiency and pressure drop o f microfluidic devices with 

microscale posts structures arranged in an inline pattern. The behavior o f square shaped 

microscale posts is studied in this chapter with respect to the Reynolds number, Peclet 

number, Damkohler number, and equilibrium reaction constant. The performance o f each 

shape is studied with respect to variation in pitch (wall-to-wall spacing between the 

posts) in the axial and transverse directions and microscale post aspect ratio. The capture 

efficiency and overall pressure drop are used to evaluate the overall performance o f  the 

microfluidic device.

Capture efficiency profile and pressure drop pattern for all the models developed 

in this study are obtained by numerically solving the governing equations using the 

commercially available computational finite elemental analysis software COMSOL 

Multiphysics 4.2.a. A basic microfluidic device 15 mm in length and 1.2 mm in width is 

modeled. This basic model included an array o f 25 x 3 microscale posts (25-50 in the 

axial direction and 2-6 in the transverse direction). For axis and transverse pitch 

experiments, the overall length and width o f the microchannel is fixed, and the array with
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smaller pitch length is placed in the middle o f  the channel for comparable groups or 

results. Figure 5-1 shows the arrangement o f  arrays o f  microscale posts for different 

transverse pitch.

B

Figure 5-1: Top view o f the design o f microfluidic device in COMSOL for simulation. A- 
B. Arrangement o f  arrays o f microscale posts for 400 pm and 160 pm transverse pitch, 
respectively.

Boundary conditions are applied on both sides of the microchannel and the walls 

o f the microscale posts. The governing equations and the boundary conditions are 

discussed in the subsequent sections. The Reynolds number is set between 0.01 and 10; 

hence, the flow is considered laminar for all the models. A uniform concentrated solution 

is introduced at the inlet o f  the microfluidic device and the concentration o f the target 

molecule use the value o f 0.004 M.

5.4 Theory

The device was modeled with a microchannel-and-array-of-posts model. A top 

view o f the microfluidic device is shown in Figure 5-1. The total length o f the
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microchannel o f  the device along the x-axis is L, the width o f  the device is W, the 

diameter o f  the microscale post is d, and the axial and transverse pitches are p a and p h 

respectively. To decrease the computational requirements o f  the simulation, two 

assumptions are introduced:

a. No-slip boundary condition is assigned to the walls o f  the microchannel 

and the microscale posts in contact with the fluid in the model,

b. The device in considered o f a high aspect ratio, so the boundary effects

along the top and bottom layers o f  the device were neglected.

The concentration profile and the pressure drop mapping o f the microfluidic 

device are obtained by solving three governing equations numerically. The governing 

equations are:

p (u  ■ V)u =  V ■ [ - p i  +  ju(Vu +  (V u)r )], Eq. 5-1

V • (u)  =  0, Eq. 5-2

V • (—DVc) + u - V c  = 0. Eq. 5-3

Eq. 5-1 is the momentum equation o f  the microchannel while Eq. 5-2 is the 

continuity equation. Eq. 5-3 is the concentration equation for the liquid. Certain boundary 

conditions are to be defined in order to solve the governing equations o f  the current 

model and these are discussed below.

For the inlet boundary condition, a uniform, unidirectional inlet flow rate was 

specified. The inlet flow velocity can be calculated from the Reynolds number and 

hydraulic diameter.

Ui = pR e /{D hyp). Eq. 5-4
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The pressure in the device (p) is calculated with respect to the pressure at the 

outlet, so the outlet pressure boundary condition is given by:

p0 =  0. Eq. 5-5

The non-slip boundary condition is represented by:

u s = 0. Eq. 5-6

where the subscript s  represents all surfaces that are in contact with the flowing fluid.

The transport o f the target molecule to the functionalized surface is governed by 

the diffusion equation:

- n  • (-V C S) =  R. Eq. 5-7

Eq. 5-8 and Eq. 5-9 represents the boundary conditions used for solving the 

advection-diffusion equation. In order to simulate the actual absorption/desorption o f 

species in the device, a uniform concentrated solution flow is applied at the inlet of the 

model and is represented using Eq. 5-8. In the case o f the assumption o f the high aspect 

ratio channel, the width o f  the channel is neglected in comparison with its height. In this 

two-dimensional simulation o f a microfluidic device, the top and bottom surfaces are not 

considered:

cin =  c0. Eq. 5-8

On the walls o f the microchannel or the microscale posts, the species absorption 

and desorption, R, is applied as the boundary condition. The “process o f capturing” is 

based on the interaction between molecules, and could be considered as an instant 

reaction. Thus, at any position that is very close to the wall, the number o f  molecules 

captured is the net result o f  adsorption and desorption. Therefore, for any position very 

close to the wall in the channel, the surface species generation/consumption rate R is:
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P k-onC^Sso cs) k 0ffC s, Eq. 5-9

where (csQ — cs) is the concentration o f available binding sites on the reactive surface.

The surface species generation/consumption rate R  is further described by four 

nondimensionalized parameters: Reynolds number (Re), Peclet number (Pe), Damkohler 

number (Da) and equivalent reaction constant keq Describing the system with 

dimensionless parameters could grant this study universal applicability, since the 

equivalent reaction constant combines the adsorption and desorption constants:

/ _  fc° f f  c  c meq — » ■ Eq. 5-10
^on^O

Damkohler number characterizes the relationship between diffusion transport and

reaction, as species in the center o f  the channel need to approach the channel wall prior to

being captured by the reactive sites on the wall:

_  kon^-sO ^hy ^  c  , ,Da = ----- -  -. Eq. 5-11

The flow velocity affects the operation o f the device by two means. A high flow 

velocity may result in turbulent flow and hereby result in rapid transport o f  target species 

to the channel wall. However, due to the restriction o f pressure drop, the flow in the 

microfluidic enricher remains laminar, where the influence o f  flow velocity on the 

molecule diffusion is described by the Peclet number (Pe):

DhyU
Pe =  . Eq. 5-12

D

Flow velocity differs in the microfluidic device o f  different scale and structure.

To find a more common solution for the micro enricher problem, we use Reynolds 

number (Re) to replace the flow velocity:
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Flow velocity differs in microfluidic device o f  different scale and structure. To 

find a more common solution for the micro enricher problem, we use Reynolds number 

(Re) to replace flow velocity, Eq. 5-4, Eq. 5-10, Eq. 5-11, and Eq. 5-12 can be used in Eq. 

5-9 to obtain:

All o f the solution that reaches the outlet o f  the microchannel will leave the 

device. Thus, an outlet boundary condition can be added to state that the outlet will 

quench all unabsorbed concentration:

The diffusion flux o f the target molecule toward the wall, and the diffusion flux 

on wall from a higher concentration region to a lower concentration region, is controlled 

by a diffusion equation:

Finite element analysis requires an appropriate meshing scheme. For the study 

presented in this paper, a triangular mesh was used. To determine the appropriate mesh 

size, an initial simulation was run with a relatively coarse mesh, and subsequent 

simulations were run with progressively smaller mesh elements until the relative 

maximum difference in capture efficiency between two successive mesh geometries was 

less than 0.3%. An example o f  grid dependency for one o f the models (square microscale

Eq. 5-13

- n  • (—DVcout) =  0. Eq. 5-14

hcs =  0. Eq. 5-15

The device capture efficiency is defined by:

Eq. 5-16

5.5 Mesh Optimization
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posts) is shown in Table 5-1. It can be noted from Table 5-1 that the refining o f the mesh 

for each model is continued until the value o f  both the output parameters (outlet 

concentration and the pressure drop) for two consecutive mesh settings are very close.

Table 5-1: Example o f grid dependency for the triangular mesh (for the model size o f  10 
mm x 1 .2  mm).

x-element y-element number o f  capture pressure drop
number number nodes efficiency

difference
difference

230 46 217370 - -

2 2 0 44 207621 0.26% -0.03%

2 1 0 42 198049 0.29% -0 .0 2 %

2 0 0 40 188806 0.32% -0.05%

5.6 Results and Discussion

The simulated concentration o f the target species is shown in Figure 5-2. The 

maximum concentration is at the inlet and the minimum concentration is at the outlet. 

This behavior is expected because the wall o f  the microfluidic device adsorbs the target 

species until the surface area becomes saturated. Three cases were considered. In Case 1, 

the parameters that govern diffusion and reaction rates were varied. In Case 2, the axial 

pitch between the microscale posts is varied. In Case 3, the pitch between transverse 

microscale posts is varied.
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Figure 5-2: Contour plot showing the concentration distribution in the microfluidic 
device after obtaining the solution o f  the model.

5.6.1 Case 1: Effect o f Transport and Reaction Parameters

The effects o f axial and transverse pitch are on both capture efficiency and 

pressure drop. These effects will also be discussed with respect to the effect o f  pitch on 

the microsystem’s inner surface area. In these studies, the hydraulic diameter o f the 

microposts was 200 pm. The length and width o f  the microchannel were fixed as 12 mm 

and 1.8 mm, respectively. The study is conducted over the range o f Re from 0.01 to 10, 

while not losing the generality o f the problem, Pe, Da and keq use constant value of 0.01.

Figure 5-3 shows capture efficiency as Re ranges from 0.01 to 10. The Pe, Da 

and &eq values used to generate these data were a constant value of 0.01. Capture 

efficiency decreased weakly with increased Re, from 13.60% at Re -  0.01 to 13.23% at 

Re — 10. Since Re represents the flow velocity when the other parameters are left 

unchanged, the flow velocity does not affect the capture efficiency in this laminar flow 

microsystem. The effect o f Re is greater for smaller Re values. To further examine the
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effect o f Reynolds number as Pe, Da and keq change, simulations with Re value from 0.01 

to 0 .1  will be compared.
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Figure 5-3: Capture efficiency as a function o f  Reynolds number

Figure 5-4 shows capture efficiency as a function o f Re for Pe values o f  0.01, 0.1, 

1 and 10. The values o f Da and keq were also set at 0.01. As Pe increased, capture 

efficiency decreased, from 13.60% for Pe = 0.01 to 5.29% for Pe = 0.1 and further to 

0.42% for Pe = 10. This result is expected from Eq. 5-12 because an increased Pe 

indicates a decreased diffusivity, D, and hence diminished transport to the capturing 

surface. Thus, a target species with a smaller diffusivity will be captured less efficiently 

in a given microfluidic device than a species with a larger diffusivity. Figure 5-4 also 

shows that the affection o f  Re is weaker than the effect o f Pe. However, at the highest 

value of Pe, the percent change in capture efficiency with Re is relatively large.
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Figure 5-4: Capture efficiency as a function o f Reynolds number for different Peclet 
numbers.

Figure 5-5 shows capture efficiency as a function o f  Re for Da  values o f 0.01, 0.1, 

1, and 10. For Da values o f 1 and 10, the capture efficiency is near 100%, and 

independent o f Re. As Da decreases, capture efficiency decreases from 66.54% at Da  = 

0.1 to 13.60% at Da = 0.01. This decrease is expected from Eq. 5-11 because Da is 

proportional to the adsorption constant, kon, so the rate o f reaction with the wall is 

increased as Da increases. Figure 5-5 also shows that the effect o f Da is much stronger 

than the effect o f Re. However, in the design o f the microfluidic device the ability to 

greatly alter kon, and hence Da, is likely to be limited. Nonetheless, any increase o f  Da 

will greatly improve the capture efficiency o f the device.
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Figure 5-6 shows capture efficiency as a function o f  Re for keq values o f 0.01, 0.1, 

1 and 10. As keq decreases, the capture efficiency decreases. This result is expected from 

Eq. 5-10, which indicates that keq is proportional to the releasing reaction constant &0ff- In 

this discussion, it is assumed that the Damkohler number, and hence kon, is constant. The 

effect o f reaction constant on the capture efficiency is limited. Even at low Re, where the 

effect o f kcq is strongest, capture efficiency changes by less than 1% for a three order o f 

magnitude change in keq.
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Figure 5-6: Capture efficiency variation with equivalent reaction constant.

5.6.2 Case 2: Effect o f Pitch

Simulations were performed to determine the effects o f  axial and transverse pitch 

on both capture efficiency and pressure drop. These effects will also be discussed with 

respect to the effect o f  pitch on the microsystem’s inner surface area. In these studies, the 

hydraulic diameter o f the microposts was 200 pm, The length and width o f the 

microchannel were fixed as 12 mm and 1.8 mm, respectively. The values o f  Pe , Da  and 

keq were all 0.01, and simulations were performed for Reynolds numbers from 0.01 to 10.

Figure 5-7 shows the capture efficiency and pressure drop within the microfluidic 

device as a function o f the axial pitch. The transverse pitch was fixed at 200 pm. The 

efficiency dropped by nearly a factor o f  2.7 as the pitch increased from 40 pm to 400 pm, 

and the pressure drop was reduced by two orders o f magnitude.
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Figure 5-7: A. Capture efficiency variation for different widths o f axial pitch distance 
with a fixed y-axis pitch width o f 250 pm; B. Pressure drop variation for different widths 
o f axial pitch with a fixed transverse pitch o f  250 pm.

Similar trends were observed when the axial pitch was fixed at 200 pm and the 

transverse pitch was varied, as shown in Figure 5-8. The decrease in efficiency as the 

transverse pitch increased from 100 pm to 400 pm was approximately a factor o f 2.5, as 

opposed to the factor o f approximately two for the same change in the axial pitch. The 

decrease in pressure drop for the same range was a factor o f approximately 18, and was 

similar to the decrease for the same change in the axial pitch. The pressure drop across 

the microfluidic device is almost proportional with Reynolds number applied on the flow 

for all pitch cases (data not shown). The pressure drop for an axial pitch o f 200 pm and a
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transverse pitch o f 100 pm is similar to the pressure drop for an axial pitch o f 40 pm and 

a transverse pitch o f 200 pm. Thus, narrow transverse spacing between posts more 

strongly affects pressure drop than narrow axial spacing. This result is expected. In the 

limit o f zero transverse spacing and finite axial spacing, the flow would be completely 

blocked, so the required driving pressure for finite flow would be infinite, but zero space 

between posts in the axial direction would still allow flow to be driven with a finite 

pressure.
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Figure 5-8: A. Capture efficiency variation for different widths of transverse pitch 
distance with a fixed axial pitch width o f 200 pm; B. Pressure drop variation for different 
widths o f transverse pitch with a fixed axial pitch o f 2 0 0  pm.
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The decrease in capture efficiency with an increased pitch may be strongly caused 

by the corresponding large decrease in the reactive functionalized inner surface area 

within the microchannel. This effect is examined in Figure 5-9 which shows the capture 

efficiency as a function o f  the inner functionalized surface area for the simulation results 

that were obtained from the axial and transverse pitch studies. The efficiency increased 

linearly with functionalized area for both studies. The slope for axial pitch variation is 

greater than that for transverse pitch variation, so efficiency increases more rapidly with 

increased surface area when transverse spacing is decreased than when axial spacing is 

decreased.

Capture efficiency

]
| axialpitch variation

transverse pitch variation
2 0

I
10 j

i
I

l

1.00E-5 1.50E-5 2.00E-5 inner surface area (nC2)

Figure 5-9: Relationship between capture efficiency o f  the microfluidic device and its 
inner functionalized surface area.

5.6.3 Case 3: Effect o f Aspect Ratio o f the Microscale Posts

Figure 5-10 shows the effect o f the aspect ratio, length to width (L/W), o f the 

rectangular shaped microscale posts on the capture efficiency and pressure drop of the 

microfluidic device. In all cases, the post structures had the same hydraulic diameter, 200
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jam, and the aspect ratio was varied from 1/3 to 3. For each aspect ratio, the total length 

and width o f the microchannel was adjusted to keep the axial and transverse pitch 

constant. Thus, length ranged from 8.33 to 15 mm and width ranged from 1 to 1.8 mm. 

Re, Pe, Da and keq were all set to 0.01.
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Figure 5-10: A. Capture efficiency variation for arrays o f different length to width ratio 
o f rectangular shape microscale posts; B. Pressure drop variation for arrays o f different 
length to width ratio o f  rectangular shape microscale.

As the aspect ratio increased, the capture efficiency for the microfluidic device 

also increases. This effect is expected because microscale posts with longer axial edges
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will overlap the flow line more and hence provide more chances for the target species in 

the solution to diffuse toward and react with the functionalized wall.

The change in pressure drop with the logarithm o f the post aspect ratio follows a 

symmetric curve. Thus, microfluidic devices with arrays o f  the same dimension (e.g. 

rectangular shapes with aspect ratios o f 3:1 and 1:3) will have similar pressure drops 

when the axial and transverse pitches are maintained.

5.7 Summary

The overall performance simulation of the microfluidic device designed for the 

separation and purification o f target molecule are studied in this paper. The microfluidic 

device is evaluated in terms o f its capture efficiency and pressure drop. The adsorption 

reaction constant strongly affects the device’s capture efficiency. The diffusion and 

desorption constants are also important. As a result, a high affinity between the 

functionalized surface and target molecule enhances the efficiency o f the device when the 

flow velocity is low and the diffusion rate high. The effects o f  the device geometry on the 

capture efficiency and pressure drop o f the device were also studied. The results 

demonstrate that a microchannel with a high density packed array o f microscale posts 

with high aspect ratio along the flow direction is beneficial for high capture efficiency. 

However, high density packed posts will lead to a large pressure drop. Practical devices 

will need to balance the need for large capture efficiency with the need for a low pressure 

drop.



CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, the design, fabrication, application and simulation o f 

microfluidic chips interfaced to post-translational modified proteins for proteomic 

applications is described. Two sets o f  pressure driven microfluidic device allows target 

protein to be enriched, detected by fluorescence spectrometry eluted for MS analysis. A 

simulation model o f  molecular enrichment microfluidic device based on geometric and 

operation parameters have been built. Overall, the significance of this work lies in the 

ability o f the microfluidic devices to serve as a fast and effective analytical tool for 

proteomic research works.

In Chapters 3 and 4, this work illustrated the direct use of affinity and antibody- 

antigen based microdevice to enrich carbonylated BSA. An obvious extension o f the 

study is to apply this biomedical micro device in the selectively enrichment o f 

carbonylated proteins from protein mixtures. We used carbonylated protein as a 

representative post translational modification (PTM) to highlight this novel strategy 

employed to enrich PTM in modification-specific proteomics. However, this microdevice 

is suitable for any protein that can be derivatized and labeled with biotin tags. For 

example, nitrosylated proteins (Pr-SNO) can be specifically reduced to free thiol groups 

on cysteine amino acid site, and then further labeled by thiol-specific biotin maleimide
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tags (Jaffrey and Snyder 2001). Likewise, another type o f PTM, glutathionylated proteins 

(Pr-SSG) can be enzymatically converted to thiol groups and consecutively tagged with 

biotin (Reynaert, et al. 2006).

The further proteomic study on carbonylated proteins will provide a better 

understanding o f major proteins and pathways/functions that may be responsible for 

aging and Alzheimer’s disease. Ultimately, the device described above will help on 

developing therapeutic approaches to prolong useful life and to treat or prevent diseases. 

Future work based on the design o f the microfluidic device in this work, which can 

detect, capture and elute biotinylated carbonylated BSA, are likely to be suitable for 

affinity enrichment for complex proteomics screening.

Another great potential o f  the microdevice in this work is to enrich PTM peptides. 

In order to accomplish this, protein lysate o f  interest will undergo digestion prior to 

injecting the proteolytically digested peptides into this affinity based enrichment 

microdevice. This potential application will help identify the modification sites o f  PTM 

and further disclose the possible pathways involved. Lastly, this subproteome enrichment 

micro-device can be assembled with other lab-on-a-chip components for follow-up 

protein analysis.

In the area o f  heat transfer, optimizing geometric features in designing heat fins 

has a long history (Cobble 1971). Also, great amount of work have been done in 

simulation enhanced optimization o f find in heat-exchanger (Tsai, Sheu and Lee 1999) 

and heat-sink (Grannisa and Sparrowb 1991).

There is a long history to designing and optimizing geometric features based on 

specific requirements and cases in the area o f  heat transfer devices (Kaye 1956), which



are originally widely applied in the electronic industry. In the work o f  heat sink design, 

until now, the inner geometric design is still on very importance about the heat sink 

performance (Bhatti, Joshi and Johnson 2002) (Cannell, Cooley and Garman 2004). In 

the work o f protein enriching device design, there is requirement o f decrease experiment 

time, and increase capture efficiency per surface area: shorter time means higher 

performance, while smaller inner surface area with high capture efficiency means 

decrease o f non-specific protein enriching. Future work should focus on the optimization 

o f the geometric design o f  the microfluidic device depending on operation parameters 

such as target molecular diffusion rate, absorb/desorb rate. Also, optimization work o f  the 

microfluidic device that reduces sample loss, for example, reduces dead volume o f the 

device is also necessary. Mathematic tools, including simulation software will play an 

important role in this work.
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