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ABSTRACT

The power-law distribution can be used to describe various aspects of social group 

behavior. For mussels, sociobiological research has shown that the Levy walk best de­

scribes their self-organizing movement strategy. A mussel’s step length is drawn from a 

power-law distribution, and its direction is drawn from a uniform distribution. In the area 

of social networks, theories such as preferential attachment seek to explain why the degree 

distribution tends to be scale-free. The aim of this dissertation is to glean insight from these 

works to help solve problems in two domains: cloud computing systems and community 

detection.

Privacy and security are two areas of concern for cloud systems. Recent research 

has provided evidence indicating how a malicious user could perform co-residence profiling 

and public to private IP mapping to target and exploit customers which share physical re­

sources. This work proposes a defense strategy, in part inspired by mussel self-organization, 

that relies on user account and workload clustering to mitigate co-residence profiling. To 

obfuscate the public to private IP map, clusters are managed and accessed by account prox­

ies. This work also describes a set of capabilities and attack paths an attacker needs to 

execute for targeted co-residence, and presents arguments to show how the defense strat­

egy disrupts the critical steps in the attack path for most cases. Further, it performs a risk 

assessment to determine the likelihood an individual user will be victimized, given that a



successful non-directed exploit has occurred. Results suggest that while possible, this event 

is highly unlikely.

As for community detection, several algorithms have been proposed. Most of these, 

however, share similar disadvantages. Some algorithms require apriori information, such 

as threshold values or the desired number of communities, while others are computationally 

expensive. A third category of algorithms suffer from a combination of the two. This work 

proposes a greedy community detection heuristic which exploits the scale-free properties 

of social networks. It hypothesizes that highly connected nodes, or hubs, form the basic 

building blocks of communities. A detection technique that explores these characteristics 

remains largely unexplored throughout recent literature. To show its effectiveness, the algo­

rithm is tested on commonly used real network data sets. In most cases, it classifies nodes 

into communities which coincide with their respective known structures. Unlike other im­

plementations, the proposed heuristic is computationally inexpensive, deterministic, and 

does not require apriori information.
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CHAPTER 1

INTRODUCTION

Nature is one of life’s most fascinating mysteries. It is self-regulated, highly decen­

tralized, and ever-evolving. Understanding how nature works may be the key to solving 

some of man’s most challenging research questions. In recent years there has been a 

growing interest in using interdisciplinary studies to investigate group behavior and the 

underlying dynamics of within-group interactions. Towards this end, researchers have 

begun to explore social animals - populations of interacting individuals that operate in a 

cooperative fashion to survive. Examples of group activities include: foraging, nest build­

ing, and group defense. Often times these interactions are asynchronous and decentralized 

- exhibiting emergent properties, where basic communication and action on local scales 

lead to complex phenomena on a global scale. Examples of emergent behavior include: 

collective harvesting, flocking of birds, self-organization, standing ovations, and traffic 

jams.

1.1 Research Questions

This research focuses on social groups from two different perspectives and seeks to 

answer two fundamental questions.

1. From an insider’s perspective, in what ways do communities emerge? That is, what 

internal processes have to occur on the micro-level to have group formation emerge

1
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on the macro-scale? Can mussels and Levy walks be used to describe these pro­

cesses? How can this type of behavior be used as a defense strategy?

2. From an outsider’s perspective, how to detect communities once they have formed? 

Given each individual’s local connections only, is it possible to classify individuals 

into their respective known global communities? How can the scale-free properties 

of social networks help shed light on this problem?

1.2 Limitations and Assumptions

The idea is to use insight gained from social group behavior to develop algorithms 

and social simulations that are, in turn, used to help solve real world problems. However, 

one well-known characteristic of this type of approach is local convergence. Since individ­

uals use peers within their vicinity to make decisions, this may lead to premature results - 

local optima where local best is taken as global best. Though this phenomena is inherent 

for populations of interacting individuals, this research does present ways to mitigate its 

occurrence.

For community detection, this work assumes non-overlapping communities - the 

notion that a network can be divided into disjoint communities where each individual 

belongs to one (and only one) group. However, in reality, it is quite possible for groups 

to overlap where individuals belong to one o f several groups.

1.3 Dissertation Overview

This dissertation aims to use power-law properties of social groups to develop: a 

defense strategy for cloud systems and a greedy heuristic for community detection. Chap­

ter 2 introduces an aspect of the technical cloud framework used by the work done in
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Chapter 3. Among other things, it details the notion of using a proxy server to serve as 

an intermediary between Internet users and multiple virtual machines. In light of an attack 

strategy recently described by researchers in [ 1J, Chapter 3 proposes a defense strategy, in 

part inspired by mussel self-organization behavior. Chapter 4 presents a greedy heuristic 

for community detection which exploits the scale-free nature of social networks. Lastly, 

Chapter 5 provides concluding remarks and ideas for future directions.



CHAPTER 2

WEB FARM-INSPIRED CLOUD FRAMEWORK

In this chapter, we introduce a web farm-inspired framework for dynamic and 

concurrent computational processing in the cloud. We compare and contrast this with the 

Hadoop-cloud framework, discuss the main problems associated with our approach, and 

give suggestions on ways to overcome said challenges. To implement the web-inspired 

framework, we use Node.js - a lightweight, single threaded, server-side framework which 

uses asynchronous callbacks to allow nondependent operations (parallel-like sections) to 

execute while waiting for I/O events such as “fetching a file” or “writing a file to disk.” 

We perform experiments to reveal two preliminary results that showcase the framework’s 

functionality and scalability.

One, for non-blocking operations, worker nodes which use Node.js servers are 

significantly faster than those which use traditional servers. In particular, a single Node.js 

is (on average) 2.11 times faster than one Ruby Webrick server, and is (on average) 1.88 

times faster than two Ruby Webrick servers. Two, we find that increasing the number of 

worker nodes improves overall performance for blocking computational operations. As the 

number of worker nodes increases, the total execution time decreases exponentially and the 

number of requests per second increases linearly.

4
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2.1 Introduction

Cloud computing has recently emerged as an information technology solution which 

facilitates access to on-demand utility storage and computing services. Customers are 

afforded the economy of scale at a low operational overhead. These features prove to 

be especially advantageous to small companies which lack financial resources and physical 

manpower. For larger companies, security and the privacy are more issues of concern; so, 

some organizations have developed private clouds, or even hybrid clouds, purposed to serve 

internal communities and trusted constituents. Research communities have also considered 

the cloud environment as a viable alternative platform for scientific workflows. Though 

promising, the jury is still out on whether this technology marks the next generational shift 

in platform of choice for low-cost computational processing and analysis [2—4],

The Internet, on the other hand, has found a formula that works - a formula which 

is efficient and highly scalable. This success is, in part, due to the way in which web 

services are hosted. More often than not, they take the form of web server farms. These 

farms are usually comprised of three basic components: load balancer, web servers, and a 

shared database server. The load balancer receives all the requests and forwards them to 

the web servers according to some scheme, i.e., round robin, least connection, source. The 

same content is duplicated on each server; so, it does not matter which server handles the 

request. Since this is the case, all servers must use a shared database for storage. This type 

of infrastructure grants websites the ability to accommodate the dynamic and bursty nature 

(sudden and dramatic increase in requests) of web traffic.
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We would like to bring these types of concepts to the science domain. In particular, 

we envision a web farm-like framework for dynamic and concurrent computational pro­

cessing in the cloud - an approach which allows researchers to quickly build, configure, 

and perform experiments using tools traditionally designed for web applications. For 

web services, developers create and deploy web applications to hypertext transfer protocol 

(HTTP) web servers which, in turn, receive, process, and deliver web content. We propose 

a similar framework whereby researchers develop and deploy computational applications 

to compute servers which, in turn, receive computational tasks (via representational state 

transfer (RESTful) requests over HTTP), perform computations, and deliver science prod­

ucts.

With this, researchers will have the freedom to work on either a system level, an 

application level, or both. Working on a system level gives one direct control over the 

infrastructure, i.e., the interface to computational services, the job routing scheme, the 

total number of nodes, the number of compute servers per worker node, etc. On the other 

hand, the application level is more concerned with developing the computational algorithm, 

which will be deployed as a job to run on the system - what executes, how it executes, and 

the resources it requires. There are several reasons why this framework would be beneficial. 

One, the basic infrastructure for communication between heterogeneous-roled components 

already exists. Two, most of the tools for infrastructural development, experimentation, and 

analysis are freely available (open-source), widely used, and rigorously tested. Three, this 

“building on existing web components approach” provides an infrastructural abstraction, 

and allows the researcher to focus on the algorithm itself, thereby increasing developer 

productivity.
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There are a number of other frameworks which leverage distributed resources for 

computational processing, i.e., Hadoop [5] with MapReduce [6], Pegasus [7], Swift [8j, 

SAGA [9], Condor [10], etc. However, the current state of the art does not easily lend itself 

to the degree of flexibility we require. Our ultimate goal is to dynamically upload and pro­

cess custom web coverage processing service (WCPS) [11] algorithms on heterogeneous 

platforms. Platforms of interest include: cloud, unmanned aerial vehicles (UAV), satellites, 

etc. In most of these cases, the upload bandwidth will be extremely limited. Implementing 

the framework on the cloud provides a basic proof of concept. We later plan to expand the 

implementation to other platforms.

This chapter presents a web farm-inspired framework for dynamic computational 

processing in the cloud. It is divided into eight sections. Section 2.2 compares and con­

trasts this approach with Hadoop-cloud framework. Section 2.4 presents and explains the 

web farm-inspired design, and goes into detail about the Node.js framework. Section 2.5 

describes the cloud services we use, and provides a general overview on our approach 

toward implementing the web farm-inspired framework. Section 2.6 conducts experiments 

(for blocking and nonblocking operations) to reveal preliminary results which showcase 

the framework’s functionality and scalability. Section 2.7 reviews the results, discusses 

the challenges associated with this approach, and identifies ways in which they can be 

overcome. Finally, Section 2.8 provides concluding remarks.

2.2 Hadoop-Cloud Framework

Most existing distributed application frameworks (i.e., Hadoop) are designed to 

handle large data processing jobs in a static batch-like fashion. When combined with a
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web service such as Amazon Elastic MapReduce [12], compute nodes could be provisioned 

on-demand to complete the job as fast as possible. To do this, individual nodes have to be 

assigned individual tasks in a coordinated and organized manner. Once each node receives 

and completes its respective task, each result must be collected. This is accomplished via 

MapReduce. Here, a one (master) to many (workers) relationship is assumed. Furthermore, 

there are two distinct phases: Map and Reduce. In the Map phase, the master node splits the 

big job into smaller tasks and assigns them to available worker nodes. In the Reduce phase, 

the master collects all the individual results and combines them in such a way to generate 

the desired overall output. Additionally, there is a distributed file system for scalability, 

data reliability, and fault tolerance.

The Hadoop approach caters specifically to big jobs; or small jobs which have been 

bundled together to form big jobs. Either way, the processing engine will not be able to 

process any new job until the current job has been completed. Thus, while processing, there 

are two ways to handle dynamic requests:

1. Option One:

(a) Reject them OR

2. Option Two:

(a) Collect requests

(b) Form batch jobs which consists of many requests

(c) Queue batch jobs (first in, first out (FTFO) default) or use custom schedulers, 

i.e., CloudBATCH [13]

(d) Process batch jobs (when available)
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If we choose Option Two, we would have to determine whether all batch jobs should be 

heterogeneous or homogeneous in size. If jobs are homogeneous, then problems could 

arise in a situation where the demand goes down and there are not enough requests to make 

a standard job. Perhaps determining an efficient “job padding” technique should suffice. If, 

on the other hand, jobs are heterogeneous, a priority scheduling scheme would be needed 

to prevent small jobs from being processed at the mercy of large jobs. As such, scheduling 

this many (big jobs) to one (processing cluster) computational paradigm may not be the 

best approach when processing smaller sized job requests (<C Hadoop job), i.e., requests 

made via web.

As it stands, there is no standard framework to handle dynamic computational 

requests. Usually, researchers have to build the infrastructure from the ground up [14]. 

Towards this end, we propose web farm-inspired computational cluster.

2.3 Related Research

Existing research to date primarily focuses on pleasingly parallel scientific applica­

tion dataflows with large datasets. This is attractive because it caters to two strengths of 

the cloud computing paradigm: on-demand scalability and minimal to no communication 

between compute nodes. Below, we give a few examples.

Wall et al. implemented reciprocal smallest distance (RSD), a comparative genetics 

algorithm, using Amazon’s Elastic Computing Cloud (EC2). They executed approximately

300,000 tasks on 100 high capacity compute node in about 70 hours at a cost of $6,302 

USD [15]. Zhang et al. [16] use Hadoop to develop a cloud application which processes 

sequences of microscopic images of live cells. They conclude that “Hadoop allows to speed
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up calculations by a factor that equals the number of compute nodes.” Vecchiola, Pandey, 

and Buyya use Aneka, a cloud computing solution, to classify gene expression and execute 

an fMRI brain imaging algorithm [17J. From their findings, they state: large high

performance applications can benefit from on-demand access and scalability of compute 

and storage resources provided by public Clouds.” Lu, Jackson, and Barga [14] seek 

implement the AzureBLAST, their parallel version of the Basic Local Alignment Search 

Tool (BLAST) algorithm, on Windows Azure. In regards to the scalability of their design, 

they report: “ ... the throughput of AzureBlast increases almost linearly when given more 

instances.” They also find that the read throughput of the Azure blob storage increases with 

the number of instances. Lastly, Gunarathne et al. deploy pleasingly parallel biomedical 

applications to the cloud environment [18]. They maintain that “cloud infrastructure based 

models as well as the Map Reduce based frameworks offered very good parallel efficiencies 

given sufficiently coarser grain task decompositions.”

From reviewing those above as well as others not presented here [19-21], we 

conclude that application-specific algorithmic development is a non-trivial task. Issues such 

as overall system architecture, job partitioning and allocation, inter-node communication, 

etc. must be addressed. The approach to these issues may vary significantly from one 

application to the next. Thus, developers should be well-versed and familiarized with the 

application itself and the inner-workings of the cloud environment, as naive implementa­

tions usually will not render impressive results.
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2.4 Web Farm-Inspired Framework

2.4.1 Assumptions

Before we go into the details of the system design, we feel it is appropriate to 

point out our assumptions. First, we take nodes to be representative of virtual machines 

(VMs); and we also take algorithms to be representative of computational kernels. We 

use these terms interchangeably. Second, users submit jobs asynchronously via some web 

application. However, when testing to find the limitations of the system, the worst case 

scenario is assumed - all users submit jobs simultaneously. Third, the system adopts a one 

master to many workers distributed paradigm, whereby the master ONLY distributes jobs 

to multiple worker nodes. Fourth, individual jobs are independent of each other, execute 

on one worker node, and do not need to be partitioned. Given this, there is no need for 

MapReduce. Fifth, the master uses some scheduling technique to distribute jobs, i.e., round- 

robin, least connections, source, etc. Sixth, we assume a NO SHARE architecture. This 

means that there is no inter-worker node communication or inter-worker node dependencies. 

Seventh, if a worker node receives new jobs while it is processing, it simply queues and 

processes them in a FIFO fashion (when available).

2.4.2 System-Level Components

As shown in Figure 2.1, the design contains the same basic components one would 

expect to find in a traditional web farm. Here, the master HAProxy (22] node distributes 

(load balance) jobs to worker nodes. Each worker contains a compute server which wraps 

some computational kernel. HAProxy provides a password protected web status page 

which allows system administrators to view how jobs are being distributed across the
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worker nodes. Monit [23] monitors (stop, start, restart) critical processes, files, devices, 

and remote systems. It also provides a password protected http interface which allows one 

to monitor the system(s) via a web browser. Node.js [24] presents a server-side framework 

which we use to build scalable networked compute servers. We discuss Node.js in detail 

later. ApacheBench [25] (not shown) benchmarks the system’s raw performance; and it 

generates a summary report which contains important measurements and statistics such as 

achieved throughput (requests/second) and total execution time.

COMPUTATIONAL HTTP REQUESTS

:o m p u t e
KERNEL

Figure 2.1: Web farm-inspired system design

As mentioned, there are multiple http services that need to be accessed: HAProxy’s 

status page, Monit’s system monitor, and the compute cluster itself. To only use one 

uniform resource locator (URL), we take advantage of HAProxy’s access control list (ACL) 

feature. This allows us to use HAProxy to make decisions based off of information ex­

tracted from the uniform resource name (URN). In particular, we define rules such that
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HAProxy routes requests to different server pools depending on the URN. Thus, a request 

can mean “fetch a status page” or “submit a job to the compute cluster.” In our setup, as 

shown in Figure 2.2, a request which ends in “/” is taken to be a job and is load balanced 

across the compute servers; “/haproxy-stats” is directed to the HAProxy web status page; 

and “/monit” is routed to the Monit http interface to view the health of the system. To 

improve the system’s fault tolerance, Heartbeat [26] and an additional backup HAProxy 

master node can be introduced for failover and failback. Since the Node.js server plays 

a crucial role in the system design, we now turn to: describe the framework in detail, 

elaborate on the properties which make the assignments to it more advantageous (when 

compared to more traditional servers), and explain its role in job processing.

•  Route to:
•Http Compute Servers

•Route to: 
•System Status

•Route to: 
•HAProxy Status

/ m o n i t

/h a p r o x y -
stats

Figure 2.2: HAProxy ACL

2.4.3 Node.js

Our design calls for a lightweight server-side framework which acts as a simple 

I/O wrapper - a middleman which sits between HAProxy (the request dispenser) and the 

computational kernel (the job to be performed). In particular, its role is to receive requests,
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parse them into inputs, and appropriate the inputs to the desired computational kernel. 

Though somewhat non-traditional, the focus here is to use a simple framework for I/O 

rather than employ a full stack web application framework. Node.js is an evented I/O 

server-side framework (built on top of Google’s V8 JavaScript Engine [27]) which runs a 

single thread in an evented loop. To keep the loop from blocking, it uses asynchronous 

callbacks for input/output (I/O).

There are three advantages to using Node.js. First, it adheres to our requirements. 

It a lightweight framework which specializes in I/O. Second, asynchronous callbacks allow 

nondependent operations (parallel-like sections) to execute while waiting for I/O events 

such as “fetching a file” or “writing a file to disk.” This is in direct contrast with the nature 

of traditional http servers (and serial programs in general) which execute commands in a 

linear, top-down, fashion. The main argument here is that CPU cycles are wasted, espe­

cially for I/O operations, because non-dependent commands do nothing since commands 

are executed sequentially. Third, is the difference in the number of threads used to handle 

multiple connections. Node.js is single threaded. However, it executes callbacks to accept 

and possibly service multiple requests in parallel. The caveat here is that one non-blocking 

service operation blocks all servicing operations from other requests. Traditional servers, 

on the other hand, create a new thread for each accepted request. Hence, they are called 

multi-threaded servers. In Section 2.5, we implement the web farm-inspired framework; 

then in Section 2.6 we observe and analyze the performance for both blocking and non- 

blocking operations. However, next, we discuss what a job is, how it is formed, and how it 

is handled once it is distributed to a compute server.



15

2.4.4 Job Submission & Processing

We take a job to be a request for some type of computational processing. To make 

a request, users will either select from existing algorithms in the database or upload a new 

custom algorithm (which will be added to the database). A custom algorithm must be 

written according to some agreed standard. The actual details of this standard is beyond 

the scope of this chapter. Nonetheless, users will also have to provide the necessary inputs 

which correspond to the selected algorithm. Once done, the request or “job” will be sent 

to a worker node via HAProxy. Algorithm 1 gives a general idea of how a compute server 

handles a job request. Each worker node has at least one compute server which listens for 

jobs on some specified port (line 9). Once a job arrives, the server immediately accepts it. 

When ready, the server begins to process the job by storing the input data to a local variable 

(line 3). Next, it parses that variable and passes the parameters to the execution function 

(lines 4-6). The execution function, as indicated by the constructor call (line 1), executes 

the request when given the necessary parameters (line 7). Once the request is fulfilled, the 

connection terminates (line 8).

Algorithm 1: Pseudocode for node.js compute server
1 execute -f— new job() ;
2 createSERVER
3 parameters <— receiveDATAQ ;
4 data <— stringTokenize(parameters) ;
5 input data [0] ;
6 algorithm <— data [ l j  ;

7 execute.run(algorithm, input) ;
8 end connection ;

9 listen (port, IP address) ;
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2.5 Cloud Description and Setup

To realize the web farm-inspired framework, we require the cloud infrastructure 

as a service (IaaS) paradigm. The model we use, in particular, is made accessible via 

the Eucalyptus [28] application program interface (API). This API grants the ability to 

provision, configure, manage, or deprovision VM instances - as needed. In terms of 

specifications, each VM uses CentOS 5.5 (version 2.6.32-5-amd64) [29], has 15 GB of 

memory and 19 GB of storage space, and is mounted with 42 TB of shared storage.

We now give a general overview on our approach toward implementing the web 

farm-inspired framework. The experiments we will run (in this chapter), at most, require 

11 VMs: one master node and up to 10 worker nodes. Instead of deploying all 11 nodes at 

once, we start by deploying one node and configuring its environment with all the necessary 

software components, i.e., HAProxy, Monit, Node.js, etc. Once done, we create an image 

of the running instance, and use the Eucalyptus API to bundle the image, upload the bundle, 

and register the image. Now that we have a base image, we deploy 10 additional VMs. 

Regardless the role, each VM uses the same image.

We use screen [30] to multiplex the terminal so that we can secure shell (ssh) [31 ] 

into each VM. Since we use a private cloud, each VM has a private internet protocol (IP) 

address which takes the form of 10.101.10.- -. We take the VM the lowest IP address 

to be the master node, and all the other nodes to be workers. We configure HAProxy 

on the master node and create a server pool consisting of the IPrPORT of each compute 

server which will run on the worker nodes. Next, we develop the both Node.js server and 

the computational function which executes the job and deploy them to the worker nodes 

(discussed in Section 2.6). We then start the compute servers on the ports as indicated in the
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HAProxy configuration file. All workers are now ready to receive and process jobs. Next, 

we start HAProxy on the master node, and now it is ready to receive requests and distribute 

them to the compute servers, which execute on their respective worker nodes.

2.6 Experiments and Preliminary Results

In this section, we do experiments to reveal preliminary results which showcase the 

framework’s functionality and scalability. Towards this end, our immediate objective is to 

implement the web farm-inspired framework and assess its overall performance for both 

blocking and nonblocking operations. We covered most o f the general framework imple­

mentation in the prior section. So, here (in addition to assessing performance) we devote 

some attention to discussing both the blocking and non-blocking jobs which execute within 

their respective Node.js servers. Also, we do not implement the front-end web application 

interface for end-users. To test this framework, we instead vary one of two parameters - 

either vary the number of job requests or the number of VMs. We use Apachebench to 

vary the number of concurrent requests - parameter one. As aforementioned, HAProxy 

receives the requests and distributes them to the worker nodes. We modify HAProxy’s 

configuration file to vary the number of VMs to which it routes requests - parameter two; 

and use HAProxy’s status page to confirm that Apachebench did send the desired amount 

of requests.

2.6.1 Non-Blocking Operation

For the non-blocking experiment, we imagine a scenario where users submit jobs 

which perform some I/O operation. Let’s say that the operation is to fetch large files, and the 

time required to fetch each file is 10 seconds. Given this, we want to observe the overall



18

task completion time given a certain amount of concurrent requests. So, for example, if 

we have 20 users that each submit a request simultaneously, we expect the overall task 

completion time to be about 200 seconds (at the very worst). A traditional single-threaded 

server which accepts requests, queues and fetches files in a FIFO fashion would mostly 

likely give these results. A natural question which comes to mind is: how do both the 

Node.js server and a traditional multi-threaded server fare in this situation?

To answer this question, we implement a Ruby Webrick server (adapted from [32]) 

and a Node.js (adapted from [33]). We use a 10 second timeout function to simulate 

the act of “fetching a file.” This means that for each request, each server waits for 10 

seconds and delivers a “job completed” message at the end of the waiting period. Though 

theoretically the same, each implementation is fundamentally different in approach. The 

Ruby Webrick approach, as shown in Algorithms 2, is straightforward. The server accepts 

requests, “fetches a file” (sleeps for 10 seconds), then responds.

Algorithm 2: Ruby webrick, fetch file
i class
2 Timeout ;
3 define
4 call(env);
5 sleep 10;
6 return {200, ; {Content-Type = >  text/plain},
7 {“The timeout function has completed” }} ;

8 run Timeout.new ;

The Node.js implementation (Algorithm 3), on the other hand, is not as intuitive. 

So let us describe this in a bit of detail. Node.js is evented. This means that a sequence of 

events direct the nature of the program. Thus, in lines 1-4, we write a sleep function such
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that it creates an event when the timeout expires. The function, in particular, ingests a status 

parameter and passes it to the callback function. Since we set the timeout value to 10000 

milliseconds, the callback function fires when the timeout value expires after 10 seconds. 

The server is implemented in lines 5-9. There is a listener, on line 9, which triggers lines 

6-9 every time a request is made. Lines 6-9 execute sequentially. Line 6 sends an “OK, 

request received” response. On line 7, we pass a “completed” status to the sleep function. 

After 10 seconds, an event fires and line 8 executes. Line 8, gives a “request completion” 

response and closes the connection. As for the order of events, when the server starts, 

the print statement on line 10 executes immediately. If we use Apachebench to send IV 

concurrent requests, the listener on line 9 detects N  requests. In response to this, all N  

requests are accepted. Next, the server executes line 6 in parallel for each request, then line 

7 (in parallel), and lastly line 8 (in parallel).

Algorithm 3: Node.js, fetch file
1 sleep
2 sleep <— function(data, callback);
3 var timeout <— 10000 ;
4 setTimeout(function(){callback(null, data)}, tim eout);

5 createSERVER
6 function(request, respond);
7 respond.writeHead(200, {Content-Type: text/plain }) ;
8 sleep(“completed”, function(err, data){ ;
9 respond.end(“The timeout function has: ” + data)}) ;

10 listen(3000, 127.0.0.1);
11 console.log(Server running at h ttp ://l27.0.0.1:3000/) ;

Using the web farm approach, we setup one worker node with one Node.js server. 

We then use Apachebench to vary the number of concurrent requests from 20 to 500, and

http://l27.0.0.1:3000/
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observe the performance. The results, shown in Figure 2.3, are as expected. The average 

total execution time 10.28 seconds. Next, we repeat the same experiment with one Webrick 

server. Again, the results are as expected. The Webrick server does not fare as well. The 

average execution time here is 21.74 seconds. This means that one Node.js sever is on 

average 2.11 times faster. We try to experiment again using two Webrick servers. The 

results improve slightly. This time the average execution time is 19.24 seconds. Thus, a 

single Node.js server is on average 1.88 faster than two Webrick servers. Notice that each 

experiment in Figure 2.3 follows a similar trend. The total execution time increases from 

20 to 100 concurrent requests, decreases from 100 to 200, and begins to increase again 

from 300 to 500.

30

.2  15

no ■Webrick, 1 Server 
Webrick, 2 Servers

-^-Node.js, 1 Server
0    - .........................................
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Number of Concurrent Requests

Figure 2.3: Single node.js outperforms multi-threaded webrick servers for non-blocking 
operations.

What happens if we actually replace the timeout function with an actual com­

putation? How would the overall system perform? If the computation is a blocking
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operation, can we increase the number of servers to improve performance? We entertain 

these questions next.

2.6.2 Blocking Operation

In this experiment, we build on the contrived example above by replacing the “wait 

statement” with an actual computation. Our goal is to determine whether adding worker 

nodes to the web farm-inspired compute cluster lead to improved performance for blocking 

computations. We decide to embed a normalized difference vegetation index (NDVI) 

algorithm within the Node.js compute server, as indicated in Algorithm 4. The flow of 

this program is similar to that described earlier (Algorithm 1). Thus, we will not go into as 

much detail.

Algorithm 4: Node.js, perform NDVI
1 var sys 4— require(sys) ;
2 var http require(http) ;
3 job  require(./job) ;
4 varrunJO B <— new  job .R untim eE ngine() ;
5 createSERVER
6

7

8 

9

10

11

12

13

(function(request, respond) ;
respond.writeHead(200, {Content-Type: text/plain}) ; 
respond.write(Please Wait) ;
runJOB.execute(“am sJlgm dvL png”, “AMS. 19nov09.16.3^47”, 0) ; 
runJOB.addListener(result, function(result)) ; 
foreach v a r  a ttr  in resu lt do 
L sys.puts(attr + “ : ” + result(attr));

respond.end(“Completed”) ;

14 listen(3000, 127.0.0.1) ;

Nonetheless, lines 1-4 include a few libraries. Line 4, in particular, is a custom 

built library which has functions related to job execution. The nature of the library itself is
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beyond the scope of this discussion. Lines 6-7 sends a response to the client once a request 

is detected in line 15. Line 8 accepts three parameters: the NDVI algorithm, the image, 

and a cache option. The cache option simply checks the database to determine whether 

or not the results already exist for this algorithm/image combination. Setting this value to 

one, turns the option on; and setting this value to zero, turns the option off. We want this 

option off for testing purposes; so we set the value to zero. Lines 10-13 listens for the 

result from each of the three image bands and outputs the result. Once done, line 14 sends 

a “completed status” and closes the connection. The main thing to note here is this is not an 

170 or non-blocking operation. Thus, the computation blocks all other computations from 

executing in parallel.

Since image processing, in general, can be computationally intensive, we determine 

that there should only be one compute server per worker node and that each worker node 

would have the same compute server. So, for example, 10 worker nodes mean 10 duplicate 

Node.js http servers. In order to establish some baseline for performance, we take all the 

jobs to be the same. This means that all jobs executes the same NDVI algorithm on the 

same image. Next, we use Apachebench to simulate an arbitrary number of concurrent 

computational job requests (we choose 20). HAProxy then receives and distributes the 

requests to worker nodes in a round-robin fashion. We form 10 test cases by varying the 

cluster size from one to 10 worker nodes and observe the overall system performance.

Again, this time, instead of waiting, each Node.js compute server responds to a 

request by executing the algorithm. In the previous example, each test case executed the 

concurrent requests (from 20 up to 500) in approximately 10 seconds, the time it took to 

execute one single request. This let us know that the concurrent requests were accepted and
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processed in parallel. The operations did not block the single Node.js thread. However, in 

this example, our initial observation is as expected. Node.js blocks while executing a single 

request, but instead of rejecting, each worker node queues subsequent requests if received 

while processing. Below, we indicate how we deduce this.

One computation takes approximately 5.51 seconds to complete. Instead o f taking 

close to 5.51 seconds to accept and execute 20 duplicate concurrent computational requests, 

it takes 88.94 seconds (for one worker node). This means that each computation takes about 

4.45 seconds (on average), and that each request blocks the evented thread and prevent 

other requests from being executed. To ensure that the thread is indeed blocked due to the 

computation (as opposed to the problem being the same jobs waiting for the same resources 

- not a blocked thread), we compose another simple function. If the function executes after 

the computation, this would indicate that the computation blocks the thread. If the function 

executes concurrently with the computation, this would indicate that the computation did 

not block the thread. The results indicate the former. The function did not execute until 

after the computation. The good news is, in spite of this, the compute servers accept and 

queue the requests and execute them in a FIFO manner.

Given that the computation blocks the thread, the only way to improve the overall 

performance is to increase the number of threads (or the number of Node.js servers). Since 

we limit each worker node to 1 compute server, we have to increase the number of worker 

nodes. By varying the number of worker nodes from one to 10, the overall performance 

does improve.

The results are shown in Figures 2.4 and 2.5. The total execution time decreases 

exponentially, and the number of requests/second increase linearly as the number of worker
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nodes increase. Also, in both Figures 2.4 and 2.5, notice that the results for test cases six 

and nine (number of virtual machines) deviate slightly from the trend, as suggested by 

the other test cases. The result for these two cases is slightly higher than what the trend 

suggests in Figure 2.4, and is slightly lower than what the trend suggests in Figure 2.5.
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Figure 2.4: For blocking operations, the total execution time decreases exponentially as the 
number of VMs increase.
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Figure 2.5: For blocking operations, the number of requests/second increases linearly as 
the number of VMs increase.
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2.7 Discussion

In the last section, we claim that the total execution time decreases exponentially 

and the requests/second increase linearly as the number of VMs (or worker nodes) increase. 

However, this conclusion is just an initial assessment based on the trend that the data 

suggests. To test our hypothesis, we make a scatter plot of the data, and fit an exponential 

and linear curve to their respective graphs. As shown in Figures 2.6 and 2.7, each curve 

fits well. The R2 for the exponential fit is 0.87. Notice, in Figure 2.6, that one VM has a 

total execution time of about 89 seconds, and two VMs have a total execution time of about 

44 seconds. Clearly, two VMs perform twice as good as one. However, the big disparity 

in these two results most likely explains why the R 2 value is slightly below 90%. The 

R2 value for the linear fit is 0.97. Thus, we can say that these results provide supporting 

evidence in favor of our hypothesis.
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Figure 2.6: Exponential curve fitting for the total execution time
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Figure 2.7: Linear curve fitting for the number of requests/second

Moving forward, we now discuss the inherent challenges associated with using 

the web farm-inspired framework for computational processing, and give suggestions re­

searchers should consider when mapping computational kernels using this approach. Web 

farms, and the tools associated with them, are designed to serve lightweight requests which 

can be executed on the order of milliseconds to seconds. Computational processing, on the 

other hand, can be compute and time intensive. Given this, developers should seek to min­

imize communication and the number of compute servers per worker node (servers/node). 

In regards to communication, the best thing to do is to follow the web farm approach: 

maintain uni-directional communication from master node to worker nodes and have NO 

communication among worker nodes. To ensure no inter-worker node communication, use 

problems which are pleasingly parallel.

The number of worker nodes and the server/node ratio together determine the num­

ber of requests the system can handle in parallel. To handle more concurrent blocking 

computational requests, simply add more worker nodes. Like a web farm, each worker node 

can support multiple compute servers; but since the computational kernel may command
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significant resources, researchers should look to keep the number of servers/node to a 

minimum. However, in general, the resource requirements of each computational request 

and the anticipated peak request traffic will be the determining factors in choosing the 

server/node ratio and the necessary number of worker nodes. Also, try to keep in mind 

that there is an inverse relationship between the number of servers/node and the number 

of worker nodes. A decrease in the server/node ratio means an increase in the number of 

worker nodes.

2.8 Conclusion

In this chapter, we proposed a web farm-inspired infrastructure for dynamic and 

concurrent computational processing in the cloud. We described this framework in detail 

and gave reasons as to why, and under what circumstances, it proves beneficial. We did 

experiments to reveal two preliminary results which showcased the framework’s function­

ality and scalability. The first result showed that, for non-blocking operations, worker 

nodes which use Node.js servers are significantly faster than those which use traditional 

servers; and from the second result we concluded that, increasing the number of worker 

nodes improves the overall system performance for blocking computational operations.

2.9 Using Proxies for Cloud Security

The framework presented in the this chapter mostly centered on the use of a proxy. 

One important property of proxies is the ability to maintain 1-to-?; mappings between 

clients and servers. In the next chapter, we couple the idea of proxies with the self­

organizing behavior of mussels to develop a cloud defense strategy. This strategy addresses 

a vulnerability which exploits a 1-to-l public to private IP mapping.



CHAPTER 3

MUSSELS, LEVY WALKS, AND CLOUD SECURITY

Recent research has provided evidence indicating how a malicious user could per­

form co-residence profiling and public to private IP mapping to target and exploit customers 

which share physical resources. The attacks rely on two steps: resource placement on the 

target’s physical machine and extraction. Our proposed solution, in part inspired by mussel 

self-organization, relies on user account and workload clustering to mitigate co-residence 

profiling. Users with similar preferences and workload characteristics are mapped to the 

same cluster. To obfuscate the public to private IP map, each cluster is managed and 

accessed by an account proxy. Each proxy uses one public IP address, which is shared by 

all clustered users when accessing their instances, and maintains the mapping to private IP 

addresses. We describe a set of capabilities and attack paths an attacker needs to execute for 

targeted co-residence, and present arguments to show how our approach disrupts the critical 

steps in the attack path for most cases. We then perform a risk assessment to determine the 

likelihood an individual user will be victimized, given that a successful non-directed exploit 

has occurred. Our results suggest that while possible, this event is highly unlikely.

3.1 Introduction

Equipped with the ability to leverage virtual resources on-demand, cloud computing 

systems have recently emerged as a viable low-cost alternative to traditional computing

28
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platforms. This has sparked widespread interest, adoption, and/or research initiatives from 

all institutions alike (e.g., academic, industrial, government, etc.), which in turn, has led 

to myriads of success stories [34-36] that give credence to its potential and effectiveness. 

Though promising, this technology suffers from the same fate as any other new develop­

ment in its infancy stage. It solves some problems while newly introducing unanticipated 

and not readily understood challenges [37]. At the core of these concerns lies privacy and 

security [38^-2]. Recent research [1] has shown that it is possible to identify and target a 

cloud user, launch malicious virtual machines (VMs) which perform co-residence checks, 

and possibly extract confidential information once co-residency with the victim has been 

established. An example such as this exposes the volatility of cloud security.

To gain insight on how to best solve this problem, we look towards nature - for 

research shows that social animals have the tendency to solve distributed problems (e.g., 

foraging, nest building, defense) optimally, robustly, and efficiently [43-47], Similar to 

how mussels form small clusters to decrease water stress and minimize the risk of preda­

tion [48-52], we hypothesize that cloud providers can strategically cluster users to mitigate 

the chance of targeted exploits via malicious co-resident users. The general idea of using 

clustering to address security vulnerabilities is expressed in various works [53-56]. How­

ever, these mostly use mix networks. We briefly consider one example. In [54], Reiter and 

Rubin create a system to conceal the identity of clients when performing web transactions. 

This system is based on the notion of crowd blending and “operates by grouping users into 

large and geographically diverse groups that collectively issues requests on behalf of its 

members.”
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In this work, we propose a framework where the cloud provider uses mussel behav­

ior to cluster users according to individual preferences, e.g., computational requirements 

(small, medium, or large VM), workflow duration (hours, days, weeks), or cluster size 

(small, medium, large). Each cluster contains members with similar preferences or work­

load types - subscribed in a best effort manner. This means that assignment to the cluster 

which exactly matches user preferences is not always guaranteed. To obfuscate the public to 

private IP map, each cluster is managed and accessed by an account proxy. Each proxy uses 

one public IP address, which is shared by all clustered users when accessing their instances, 

and maintains the mapping to private IP addresses. To prevent attacks aimed at users 

belonging to a particular proxy, clusters periodically dissolve. That is to say, on occasion, 

members are disbanded and are subscribed to new clusters. If an individual’s preferences 

have not changed, then the new cluster will be similar to the prior cluster. Otherwise, 

the new cluster will reflect the individual’s new interests. The period of updates is a user 

defined parameter. Thus, preference is used to determine how often clusters dissolve e.g. 

(hours, days, weeks).

The rest of this chapter is organized into seven sections. Section 3.2 gives the 

contributions of this chapter. Section 3.3 presents the system model, threat model, and 

the exploit description. Section 3.4 provides a brief background on mussel behavior, and 

details how we make mathematic and algorithmic modifications to a model which describes 

density-dependent interactions between individual mussels. Section 3.5 covers the techni­

cal aspects of our proposed solution. Section 3.6 performs a risk assessment to determine 

the likelihood an individual user will be victimized, given that a successful non-directed 

exploit has occurred; and lastly, Section 3.7 yields concluding remarks.
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3.2 Contributions

Ristenpart et al. conduct research which uncovers security vulnerabilities in the 

cloud. They use standard network probing tools to decode the 1 -to -1 public to private 

IP map, and use this map to identify and target other cloud users. Next, they conduct 

experiments and find that the private IP addresses are statically assigned according to 

launch parameters - availability zone and instance type. They then use the same launch 

parameters as that of the victim to maximize the chance of co-resident placement. Each VM 

performs co-residence checks to determine whether it shares the same physical machine as 

its victim. If not, it terminates. Otherwise, it proceeds with extraction - the next phase of 

the attack. This is the nature of the adversarial model we consider.

This chapter, on the other hand, firstly introduces a defensive mussel- inspired 

strategy to address cloud vulnerabilities. We obfuscate public to private IP mapping by 

having account proxies perform 1-to-n random mapping of public to private IP addresses. 

This decreases the risk of adversary targeting and significantly reduces the amount of 

public IP addresses needed for users to access their VM instances. By having clusters 

periodically dissolve, our strategy decreases the chances of directed attacks towards random 

users belonging to a particular account proxy. Lastly, our approach takes advantage of 

the cloud’s intrinsic features. VM instantiations are inherently transient. Even with co­

residency and a successful breach, the victimized VM can be terminated at any time, 

only to be redeployed later - possibly to another physical machine. This feature coupled 

with account proxies helps prevent a user from being consistently targeted, tracked, and 

victimized across multiple physical machines.
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3.3 System Model, Threat Model, and Exploit Description

Cloud computing systems provide innovative solutions while introducing new av­

enues for research direction. One aspect of cloud systems which serves in this capacity 

is hardware virtualization - the ability for multiple customers to share the same physical 

resources at the same time. Though providers benefit from resource consolidation, this 

feature poses new security challenges and possibly serves as a significant system vulner­

ability. Consider two competing organizations which both lease resources from the same 

cloud provider. It is foreseeable that one customer’s motive could consist of exploiting the 

shared nature of the cloud to identify, target, and victimize its competitor. Possible attacks 

could include: monitoring workflow patterns, extracting valuable information, conducting 

denial of service (DoS), distributed DoS (DDoS), or EDoS (Economic Denial of Service), 

where the victim’s bill causes a shock at the end of the accounting period because they have 

had to use more instances than planned. Given this, we consider customer VMs, data, and 

information to be assets.

3.3.1 System and Threat Model

From a system model perspective, we classify customers based on intent. Malicious 

users are those with malevolent intent - those who target other users and seek physical 

machine co-residence for unauthorized surveillance and/or data extraction of via certain 

exploits, i.e., side channel attacks. We consider these type of users to be threats which 

launch attacks comprised of two steps: virtual machine placement on the machine upon 

which the target resides and data extraction. Below, we identify four types of attackers and 

list the possible goals for each.
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1. Eavesdropping non-directed attacker  goal is to read data or find out about any target.

2. Malicious non-directed attacker  goal is to cause a DoS on any or all instances.

3. Eavesdropping directed attacker  goal is to get data from a specific competitor’s 

instance or learn about their workload pattern.

4. Malicious directed attacker  goal is to cause one of the following attacks on a partic­

ular target: DoS, DDos, or EDoS.

Honest users, on the contrary, are those that use cloud resources for their intended 

purposes. These users have sincere intent. They abide by the protocols, procedures, and 

regulations as outlined in the terms of service agreement. We would like to prevent these 

users from being identified and targeted by malicious users. A peer is simply one that 

shares the same physical resources - a co-resident user. A peer can either be a malicious or 

honest user. We assume the cloud provider to be trusted and honest - providing the services 

to its customers as outlined in the service license agreement.

3.3.2 Exploit Description

Since the inception of cloud services, the possibility of users being exploited by 

a rogue peer has always been a major issue of concern. However, the realization of 

these fears never quite materialized until researchers began to uncover the extent of cloud 

user vulnerability. The exploit we consider is described by Ristenpart et al. In [ 1J, they 

use Amazon’s EC2 [57J “ as a case study to demonstrate that careful empirical mapping 

can reveal how to launch VMs in a way that maximizes the likelihood of advantageous 

placement.” To investigate this notion, they assume a placement and extraction attack 

strategy. They use domain name system (DNS) resolution queries and traditional network
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tools, i.e., nmap, hping, wget, to determine the external name of an instance and to derive a 

map which exposes the correlation between the external public IP address and the internal 

private IP address of an instance. They additionally found that the internal IP addresses are 

statically assigned to physical machines according to availability zone and instance type. 

Thus, the map could be used to deduce the availability zone and instance type for any given 

target - effectively reducing both the search space for finding a target and the number of 

“probe instances” needed to be deployed before achieving co-residence. A probe instance 

is simply a malicious VM that performs a co-residence check to determine whether or not 

a target is a peer. If the target is a peer, it proceeds with data extraction - the next phase of 

the attack. Otherwise, it terminates.

Ristenpart et al. identify three different methods which could be used to determine 

co-residence, and present two strategies an attacker could use to exploit placement in EC2 

- brute-forcing placement and placement locality. The brute-forcing placement strategy 

deploys a large number of instances over time in same zone and of the same type as that of 

the instances belonging to a large target set. They conduct an experiment using this strategy 

and receive a success rate of 8.4%. This means that 8.4% of the probe instances actually 

achieved co-residence with instances of the target set. The placement locality strategy, 

on the other hand, assumes a smaller target set, and also presumes that the attacker can 

launch probe instance soon after a targeted victim’s instances are launched. They conduct 

another experiment, and find that this strategy yields a success rate of 40%. They make the 

following conclusions concerning Amazon’s VM placement algorithm.

1. N  parallel instantiations launched from a single account tend to result in placement 

on N  different machines.
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2. If a VM which runs on machine A is terminated and another VM is launched im­

mediately thereafter, then that new VM tends to be placed on machine A. This may 

explain why the brute-forcing strategy did not fare as well.

3. Two VMs launched around the same time, from two different accounts, tend to be 

assigned to the same machine.

4. There is a small inherent bias in assigning new VM instances to machines with light 

loads.

They later outline possible ways to extract information from target victims once co­

residence with the target is achieved. However, for the sake of space, we will not cover this 

here. One thing should be noted. Though the case study is specific to Amazon, Ristenpart et 

al. believe that modified variations of their technique can be extended to services supplied 

by other cloud providers.

3.3.3 Discussion

From the above conclusions it seems the placement algorithm may inadvertently 

assist miscreants in their mission to target and exploit other users. The first conclusion 

helps maximize the search space for a particular victim. A machine co-residence check 

only requires one probe instance. So ideally one VM, at most, should be assigned to 

each machine. Further, the first and third conclusions together ensures heterogeneous VM 

ownership per machine.

Two main problems form the central issue. The first - Amazon’s VM placement 

algorithm is predictable and manipulable. The second - VM instances are directly con­

nected to the Internet via port 80, and a DNS service, which translates public IPs to private
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IPs, is a major line of defense for preventing malicious users from targeting, locating, and 

exploiting honest users. Ristenpart et al. found a way to decode the map and presented the 

details of their findings. To address these issues, we propose a solution in part inspired by 

mussel self-organization. We describe the details of this behavior in the next section.

3.4 Mussel Behavior

It is forseeable that a combinatorial rise in the possible combinations of user pref­

erences could result in large computational overhead with deterministic or complete enu­

meration algorithms. Thus, the use of heuristic algorithms may prove to be beneficial. We 

extend the self-organization behavior of mussels to develop an algorithm to address such a 

problem.

3.4.1 Background

Interactions between organisms, themselves, and the environment in which they live 

leads to feedback which affects both the organisms and the environment. For mussels, the 

magnitude of this feedback varies with distance - a phenomenon known as scale-dependent 

feedback (SDF) [58]. There are two types of SDF: positive and negative. Mussels ex­

perience positive SDF over short-range distances with respect to peers. This leads to 

cooperation between individuals in the vicinity. If there is short-range density, or a certain 

number of peers per unit area in its immediate surroundings, an individual mussel tends 

settle, or maintain its current position. It then secretes byssal threads to attach itself to the 

shells of peers, rocks, or other various substrates. On the other hand, mussels experience 

negative SDF ver long-range distances with respect to peers. This leads to competition 

which restricts survival over long distances. If there is long-term density in its not so
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immediate surroundings, an individual mussel tends to move to a new location. The 

interplay between positive and negative SDF ultimately results in patches of optimal sized 

clusters - large enough to decrease the risk of predation and water stress yet small enough 

for the groups to withstand the risk of food depletion.

3.4.2 The Model

Our research takes interest in this natural phenomenon and, in part, builds on the 

work done by de Jager et al. In [59], they use empirical observations, theoretical and 

computer modeling to determine that the Levy walk (LW) best characterizes mussel move­

ment strategy. When compared to the Brownian walk or ballistic motion strategies, the LW 

provides the best tit to experimental step length data, minimizes the time needed for pattern 

formation, and is evolutionary stable to mussels differing in movement strategy.

To investigate the role of density dependence in pattern formation, de Jager et 

al. observe mussel movements under laboratory conditions and meticulously extract step 

length data. Mussels are evenly spread on a PVC sheet, and a webcam is positioned to 

record their activity. Over time, the individual mussels move around to search for nearby 

conspecifics. They use byssal threading to attach themselves to the bed when they find 

a position which best balances neighbors with food availability. This local clustering 

behavior ultimately leads to a global spatial pattering in the mussel bed.

A histogram of the step length data reveals a heavy-tailed probability distribution. 

This infers that when the step length data is plotted on a log-log scale, the general power- 

law function, shown in Equation 3.1, results in a straight line with slope -p,

p(l) = ci~»  . (3.1)
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The parameter p determines the movement strategy. When lim ^  » 1, the strategy is

ballistic (straight-line) motion; and the likelihood of taking a large step is equal to that of 

taking a small step [60]. When /i > 3, the movement approximates a Brownian walk; and 

when 1 < /i < 3, the strategy is taken to be a LW, where small steps are occasionally 

alternated with larger ones [59,60]. The LW most commonly found in nature is p 2 [59], 

For the LW, the normalization constant, C, is expressed by Equation 3.2 [61],

where Imhl, (0 <  lmin <  1), is a constraint which represents the minimum step length. An 

lmin value of 0.42 provides the best results when fitting the actual data to the Levy walk. 

For the truncated LW, the normalization constant C, is expressed by Equation 3.3,

where the steps, I, are only defined on the open interval lrnin < I < /,7)CJX. An lmin value of

0.42 and an lmax value of 58.84 provided the best results when fitting the actual data to the 

truncated LW. De Jager et al. use the Goodness-of-fit (G ) value, shown in Equation 3.4, 

to determine how well the frequency distributions of the movement strategies fit the actual 

data. A value closer to zero indicates a better fit,

Here, O is the inverse cumulative distribution of the actual data; and E  is the inverse 

cumulative distribution of the fitted movement strategies. Table 3.1 shows how well the 

strategy models fit the actual data. Notice, the Levy and truncated Levy strategies both

c = (n- i)C7, (3.2)

(3.4)
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yield comparable results, while the Brownian walk does not fare as well. In the end, the G 

value suggests the truncated Levy strategy provides the best fit.

Table 3.1: Fitting movement strategies to actual experimental data

Movement Strategy
Truncated Levy Walk Levy Walk Brownian Motion

G 22.45 47.22 -190.09
AIC weights 0.443 0.428 0.129
Adjusted R 2 0.997 0.997 0.837
Levy exponent 2.01 2.06 -

To investigate how the LW movement strategy effects the rate of pattern formation, 

de Jager et al. develop an individual-based model, where the density of conspecifics deter­

mines whether or not individual mussels decide to move. Towards this end, multivariate 

regression analysis of the experimental data reveals that mussels are more likely to stay if 

there is short-range density - mussel density within a 3.3 cm radius, and are more likely to 

move if there is long-range density - mussel density within a 22.5 cm radius. The linear 

expression, shown in Equation 3.5, relates the chance of movement ( P m )  to long (D L) 

and short-range (Ds ) densities. By performing linear regression on experimental data, it is 

determined that a = 0.63, b = 1.26, and c — 1.05. As indicated in Table 3.2, an individual 

decides to move when its chance of movement is greater than a random value drawn from 

a uniform distribution. Otherwise, it maintains its current position. If an individual mussel 

decides to move, it takes a LW. That is to say, its direction, 0, is drawn from a uniform 

distribution (depicted in Equation 3.6); and its step length, /, is drawn from a power law 

distribution (shown in Equation 3.7).
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Pm =  a — bDs +  cDL . (3.5)

e = 2ttw. w ~  £/((). 1) . (3.6)

I =  Xnun ! , u' ~  (7(0,1) . (3.7)
(1 —

Table 3.2: Mussel behavior in response to scale-dependent feedback

SDF Type Action Condition
Positive Settle Pm <  rand(0,1)
Negative Move Pm > rand{0,1)

Over time, local density dependent interactions between individual mussels and 

their peers lead to the emergence of a distinct global spatial patterning in the mussel bed. 

Figure 3.1 shows the state of the mussel bed before the computer model starts and just after 

it ends.

(a) B efore (b) After

Figure 3.1: Original mussel bed clustering computer model
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3.4.3 The Algorithm

We use the model which describes mussel behavior to develop a bio-inspired heuris­

tic clustering algorithm for multi-agent systems. We assume that agents make independent 

decisions based on local asynchronous interactions and have limited memory. Thus, they 

cannot remember past decisions or movements. Initially, agents with various basic abilities 

are randomly distributed throughout the interaction environment. As a result, agents must 

actively search for similiar agents and form specialized groups in order to be collectively 

effective. Agents with similar abilities are said to be homogeneous, and agents with dissim­

ilar abilities are said to be heterogeneous. The highlights of the algorithm are:

1. first bio-inspired algorithm based on mussel behavior

2. decentralized - no central control

3. scalable to large agent set

Figure 3.2 shows the high level logic flow diagram. Each mussel agent initially 

observes its surroundings and calculates the short and long range density which are, in turn, 

used to determine its chance of movement. If it does not decide to move, it simply maintains 

its current position for some time before re-observing its surroundings. On the other hand, 

if it decides to move it selects a new position. If the new position is currently occupied, 

it takes a truncated LW; otherwise, it takes a LW. The details are further explained in 

Algorithm 5. As shown in lines 1 -2, the onset is marked by setting the necessary parameters,

i.e, the number of mussel agents, agent attributes, sensing radii, etc., and initializing the 

agent set to random (A", Y)  positions. The main parameters of the mussel alogorithm 

are summarized in Table 3.3. Notice that each agent uses three different sensing radii to 

determine the density of: homogeneous agents within a short range, heterogenous agents
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within a medium range, and any agent within a long range. The following steps are repeated 

until the number of maximum steps is reached. Each mussel agent uses the Euclidean 

distance to determine the distance of all other agents - line 7; determines the positive SDF 

by counting only the number of homogeneous peers in its short range sensing radius - lines 

8-9; determines the negative SDF by counting both the number of hetergeneous peers in its 

medium range sensing radius and the number of any peer in its long range sensing radius 

- lines 10-11; uses the positve and negative SDF to determine the short and long range 

density - lines 12-13; calculates the chance of movement - line 14; selects new position if it 

decides to move - lines 15-19; takes a truncated LW if the new position is occupied - lines 

20-21; and takes a LW if the new position is not occupied - lines 23-25.

M ussel A gent |

No

M ove?

Yes

Yes No

N ew  position  
^occupied?^

Stay

Take Levy w alk

Select new  position

D eterm ine chance of 
m o v e m en t (PM)

Take tru n c a te d  Levy 
walk

C alcu late sh o r t (Ds) 
a n d  long range  (DL) 

density

Figure 3.2: Logic flow diagram
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Algorithm 5: Mussel agent clustering algorithm
1 set the necessary parameters ;
2

3
4

5
6

7

8 

9

10

11

12

13

14

15
16

17

18

19

20 

21 

22

23

24

25

initialize mussel (x. y) positions; 
repeat

foreach mussel i in 0 to \T\ do 
SDFpos < 0 . SD Fn<r/ <-(): 
foreach mussel j  in 0 to \T\ do

dt,j = \J{xt -  Xj)2 +  (y, -  y3)2 
if dij < Di A g(i) = g(j) then

SDFpos + +  ;
if D x < ditj < D2 V dij <  D3 A g{i) ±  g(j)  then 

SDFneg +  +  ;

Ds = (SDFpos ~  1 )/(*£>?) ; 
A  = (SDFneg -  l ) / ( 7tD\) ;
Pm A- according to Equation 3.5 ; 
if Pm > rand then

di A - according to Equation 3.6 ;
Li a- according to Equation 3.7 ; 
p x t =  x, +  c,os(0i) * Li ; 
py, =  Vi +  sin{6i) * Li ; 
if pxi ^  occupied  A pig F  occupied  then 
| xxriew A- pxi , y jn ew  A - py, ; 

else
Lmin A- calculate truncated step length ;
xxnew = x, +  cos(di) * A  * Lm in  ; 
yjnew  =  yi 4- sin(di) * L,- * Lm in  ;

26 until maxSteps;

Table 3.3: The main parameters of the mussel algorithm

T set of agents
9 set of agent attributes

Dx sensing radius used for short range density of homogeneous agents
d 2 sensing radius used for long range density of any agent
D3 sensing radius used for medium range density of heterogeneous agents

3  m i n minimum walking distance
exponent for Levy movement strategy
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3.4.4 Example Mussel Subscription

Now, suppose that we have 1800 users. Each of which is able can choose from two 

preferences: VM size and workflow duration. Further consider that each preference has 

two options. A VM ’s size can either be large or small, and the duration of workflows can 

either be based on hours or days. As shown in Table 3.4, users can belong to one of four 

categories. If a user intends to use a small VM for a few hours, then he/she will be placed in 

workload category I. The color red is used to identify those users in this category. Similarly, 

those users who prefer a large VM for a few hours will be placed in workload category II 

- denoted by the color blue; those who desire a small VM for a few days will be placed in 

workload category III - denoted by the color green; and those who wish to use a large VM 

for a few days will be placed in workload category IV - denoted by the color yellow.

Table 3.4: Assigning categories to user preferences

VM Size 
small large

—3
j:  £4 J
tsfic<D

I (red) 11(blue)

III (green) IV (yellow)

For this example, we assume that users are indifferent to the preferences. That is 

to say, the odds of being placed in any of the four categories are the same. Figure 3.3(a) 

shows the initial state of the logical field once each user is placed in a workload category 

based on preferences and assigned random (A", Y) coordinates. The system reaches steady 

state after some time, and gives rise to an emergent clustering pattern between users with
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like preferences - as shown in Figure 3.3(b). Notice the cells. Here, cells are analogous to 

accounts. Users are subscribed to the cell in which their indicator settles. After some time 

account membership dissolves - Figure 3.3(c); and users are subscribed to new accounts - 

Figure 3.3(d).

(a) B efore (b) A fter
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M u m m u
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(c) D isso lv e  (d) Regroup

Figure 3.3: Users cluster according to mussel behavior.

3.5 Proposed Framework

We now describe the technical analysis of the mussel-inspired self-organization 

approach towards reducing the risks of adversary exploitation as described by Ristenpart
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et al [1]. They conclude by stating cloud providers should obfuscate the internal structure 

of their services and placement policies in order to complicate the adversary’s attempts. 

However, obfuscation of topology and placement policy leads to additional computational 

overhead when doing VM placement, CPU load balancing, traffic shaping and workload 

migrations. They additionally state that such obfuscation techniques should be demanded 

only by customers with strong privacy requirements, but this additional differentiation 

in user classification and infrastructure configuration leads to more complex registration, 

preference analysis, and configuration options. We suggest defining a single user manage­

ment and placement solution that comes with low-computation placement and topology 

obfuscation inherently, without causing a change in the familiar interface exposed to cloud 

users. Figure 3.4 provides an overview of the integrated solution’s technical architecture.

DMZ Cloud Infrastructure

Host2

users Gateway

—  cius
Hestl

«• _H vm?~]

clusterl

ap#: account proxy
vm#: virtual machine
gp#:gatew ay interface with public IP
gr#: gateway inter face to private IP
cluster#: logical VM cluster from mussel algorithm
host#: physical host for VM creation

Muss«l-bas*d
Allocator/Controller

Figure 3.4: Technical architecture of the account proxies and mussel-based account 
allocation
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Here, each logical cluster (cluster#) is managed and accessed by the same account 

proxy (ap#). An account proxy has one public IP address, which is hence shared by all 

account owners in a cluster when accessing their instances, and the account proxy maintains 

the mapping to private IP addresses. There is hence no 1 -to -1 mapping of public to private 

IP addresses or dependence on a sequential allocation of private IP addresses. A l-to-7; 

mapping of public to private IP addresses is implemented by most modern Application- 

Level Gateways that include Network Address Translation (NAT) and traversal. The se­

quence of interactions of a typical user is as follows:

1. Subscription of user with the cloud infrastructure via an accessible gateway interface, 

gpO, with a static public IP address. The user provides a username, password and 

collection of preferences (duration, CPU, memory, availability zone), encrypted with 

the public key of the cloud infrastructure provider.

2. The user information is checked against subscription policies and forwarded to the 

Mussel-based Allocator/Controller, which is responsible for creating/dissolving groups 

and account proxies, as well as assigning users and VM instances to account proxies, 

groups, and physical hosts respectively. VMs with similar workload and access 

preferences are assigned to the same physical host when possible.

3. The Allocator/Controller creates a new account proxy (ap#) if necessary and assigns 

or adds the user to an existing account.

4. Asynchronously, the Allocator/Controller selects a host to create the requested VM 

instance and starts the VM instance assigning it a random IP address from a pool of 

unassigned private addresses.
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5. The public IP of the newly created VM is mapped to the private IP and returned to the 

user as a uniform resource identifier (URI) of form /{ip of gp#}/{userid}/{vmJd}.

6. The user uses URI to send requests to VM including start, stop, modify or ssh.

7. The account proxy translates URI into a private IP and forwards the requests to VM.

8. Responses from the VM are returned to the user as if the target was the public IP 

address of the account proxy.

We assume that each user and the cloud provider are able to generate and main­

tain non-compromised public-private key pairs (e.g. RSA [62]) and symmetric keys (e.g. 

AES [63]) such that the above interactions can be secured using protocols like transport 

layer security (TLS) [64]. This is among the current best practices from leading cloud 

providers such as Amazon [65], and is an effective approach for minimising cloud com­

munications risks such as man-in-the-middle, session high-jacking and replay attacks - as 

also denoted in [66-68] These types of attacks are hence not the focus of the solution as 

these are part of best practices in cloud security. On the other hand, we are interested in 

mitigating the impact co-resident placement and data extraction have on an attacker’s ability 

to carry out successful exploits against a given target set; or, said another way, we would 

like to determine the maximum amount of co-residence knowledge an attacker can infer 

when there is workload similarity amongst peers. Towards this end, we specify 3 breach 

impact levels: low, medium, and high. A low level breach impact means that an attacker 

cannot differentiate the workload owner and the workload type from that of other peers. A 

medium level breach impact means that the enumeration of workload owner and workload
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type is possible; and a high level breach impact means that an attacker can differentiate 

workload owner and type.

We now describe the set of capabilities and attack path an attacker needs to execute 

for targeted co-residence. As shown in Figure 3.5, we do not provide a solution to stopping 

step 1 - malicious VMs or scripts from being installed in the cloud infrastructure, as this de­

pends on the types of pre-installation scanning mechanisms the provider implements. Our 

solution aims to remove the usefulness of public-to-private IP address mappings observable 

by the attacker, which impacts on steps 2, 3, and 4 in the attack path shown in Figure 3.5. 

Mapping one public IP address to n randomly assigned private IP addresses reduces the 

specificity of knowledge gained by an attacker with the capability to do internal domain 

name resolution. The records of mappings will have collisions, which serve to impede 

targeted co-residence by introducing additional effort and cost for the attacker, in that more 

brute-force attempts and malicious instances need to be deployed.

1) Install VM with DNS lookup scripts
2) Probe w eb-servers externally to check

responsive public IPs
3) U se internal DNS lookup to m ap public

IPs to private IPs
4) R ecord unique public to private m appings
5) IF m ore GOTO 2. ELSE en d

/ S *  / S *  / st  ^

K  hard/indistinguishable ^  easy/distinguishable 

?  partial/enum erable

Figure 3.5: Attack capabilities and path to map public to private IPs
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Figure 3.6 shows that the critical step 5 in the attack path is disrupted by our 

approach, as there is no pattern used for private IP address assignment. The assignment 

of IP addresses by a dynamic host configuration protocol (DHCP) server will follow a 

predictable sequence by default, but this can be configured to randomly select from the pool 

o f available IP addresses. There is no need for an administrator to allocate IP addresses per 

availability zone as groups are assigned responsibility for specific IP addresses.

1) Install VM for IP assignmentrecording
2) Specify VM oftype x
3) Install VM oftype x in cloud
4) Record private IP of newly-installed VM
5) Infer IP ass ig n m en t pattern  for type x
6) IF try further GOTO 7, ELSE end
7) Vary type specification ofx. GOTO 2

) ) ) ) ) X > 1

< H

hard/indistinguishable /  easy/distinguishable 
' partial/enumerable

Figure 3.6: Attack path to determine mapping of VM types to IP ranges and availability 
zones

Notice Figures 3.7 and 3,8. In each case, step 5 is not explicitly addressed by our 

solution. It is still possible for the attacker to execute tracert on randomly selected private IP 

addresses and test for co-residence based on equivalent DomO addresses or relatively short 

round trip times. However, in both cases the attacker is forced to follow a random selection 

as opposed to following a sequence. Therefore a successful co-residence detection does 

not reveal knowledge about other IP addresses that are numerically close.
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1) InstallVM  with t r a c e d  scrip t
2) S e le c t private  IP o f  ta rg e t
3) D o tra ce rt on p rivate  IP o f ta rg e t
4) C h eck  first h o p  in trace rt a g a in s t la s t h o p  

of b e fo re  ta rg e t
5) IF first hop equals last hop infer share 

DomO => co-residence:
6) IF m o re  ta rg e ts  G O TO  2 e ls e  en d

Figure 3.7: Determination of co-residence using DomO equivalence check

1) InstallVM
2) S e le c t private  IP within num eric  ra n g e
3) Do ping  on  p rivate  IP o f ta rg e t
4) C h eck  ro u n d  trip tim e (rtt)
5) IF response and "short" rtt: Infer co- 

residence:
6) l£ m o re J a rg e ts G O T Q 2  e ls e  en d

Figure 3.8: Determination of co-residence using relative round trip time estimate

3.6 Risk Assessment

Up until this point, we have discussed how our solution provides measures to

prevent users from being targeted and exploited. However, it is quite possible for users to be

random victims of non-directed exploits. We now perform a risk assessment to determine

the likelihood of this event. With that said, suppose a malicious user decides to randomly

target users belonging to any account proxy. Let user A denote a particular user amongst

those which could be victimized; and let group B describe all users aside from user A.

Below, we list three events.
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Event A\. User A is not victimized 

Event A 2: Group B users are not victimized

Event B: A successful exploit occurs

Further,

P(Ai) = a P(Aft = 1 - a

P ( B \ A x) = ft P(B | A 2) = 1 - ft

Here, P(Ai) is the likelihood that user A is not victimized; P (A2) is the likelihood group B 

users are not victimized; P(B | A]) is the likelihood a successful exploit occurs, given that 

user A is not victimized; and P(i? | A 2) is the likelihood a successful exploit occurs, given 

that group B users are not victimized. We assume that events A\ and A2 are mutually 

exclusive. We now use Bayes ’ Theorem to determine the likelihood user A is NOT  

victimized, given that a successful exploit occurred.

P( A i)P(B  I Ai ) +  P(A2)P{B I a 2)
aft

(3.8)ft ft +  (1 — o ) ( l  — ft)

Further, suppose that all users each have a VM deployed, each account proxy has 

Mj members, and there are N  total account proxies. Further consider that each proxy 

has the same chance of being targeted, and that members assigned to each account have 

the same chance of being victimized. Then, the chance of user A being victimized is the 

likelihood that his particular account proxy is targeted, 1/N,  times the likelihood that user 

A will be randomly targeted, 1 /Mj.  This yields l /NMj .  Thus, the chance that user A will 

not be victimized is expressed in Equation 3.9. Notice, here, we use // to denote the product 

of N  and Mj. Moreover, as denoted in Equation 3.10, we say that the likelihood of user A
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being victimized is the same as the chance that users from group B are not victimized.

0 =  1
1 1

i - i
L^r ftfj .

■ r i1 - 1 -

ip p

(3.9)

(3.10)

Substituting Equations 3.9 and 3.10 into Equation 3.8, we receive

P(A,  | B) --
i  — i

i i
ft

' i - i
i i  _

, 8  + i

p .
( i - f t )

f t p - ft

11 flu-23+1 
I'

' p -  1
(3.11)

f t ~ l + n - 2  '

In a similar sense, we use Bayes ’  Theorem to determine the likelihood that users from  

group B are NOT victimized, given that a successful exploit occurred.

P(A2 \B)  =
P(A2)P(B  I a 2)

P(A\ )P(B  | Ai) + P(A2)P(B | A 2) 
< l - a ) ( l - / 3 )

aft  +  (1 — « ) ( 1  — 3) 

Substituting Equations 3.9 and 3.10 into Equation 3.12, we find

P(A2 \B)  =

(3.12)

i
[ 1 _

3 ]J! _ 1 J

f i - 1ii 3 + i
[ I - / ? ]
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I -  ft

ft(/i — 2) +  1

Given an exploit, events A\ and A 2 are equally likely when

P (A l | B) = P(A2 | B)

(3.13)



1 -  3
3~' + f i -  2 B{n -  2) +  1 

Setting e =  ft 3 and solving for n we receive

(// -  l)(c -  23 + 1) =  ( l - / 3 ) ( , 3 -1 + / 7 - 2 )  

//f -  2f — 1 =  . r 1 -  3
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(3.14)

f( / r  — 2) =  1 1 -  2

/T
— • (3.15)e

The parameters for Equations 3.11 3.13, and 3.15 are N,  Mj,  and /). To understand 

how the number of members (Mj) affect P(Aj\B)  and P(A2\B), we arbitrarily choose 

N  =  36, vary the values of parameters Mj  and fi, and plot the results. The interpretation 

of the graphs is quite intuitive. As shown in Figure 3.9, it is highly likely a user A will be 

NOT victimized, given a successful exploit has occurred.

36 Account Proxies, N

M. = 2
m 0.8 M. = 5l

M. = 10

M. = 15

 M. = 20

M. = 25
J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(3

Figure 3.9: P(A\\B),  The likelihood user A is not victimized.
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The chances increase both as the number of account proxy members and the number 

of account proxies increase. That is to say, if you had virtual resources in the cloud and 

a random non-directed exploit occurred, chances are someone else was affected. This 

likelihood increases as the number of members subscribed to your account proxy increases 

- especially for low ft values. In Figure 3.9, for instance, notice that having >  15 members 

ensures that you have a 90% chance of being unaffected when ft <  0.1. However, when 

ft >  0.5, these odds are >  90% regardless of proxy membership. The reverse is true for 

a member from group B. If an exploit occurred, one of the many users in group B is most 

likely the victim. As shown in Figure 3.10, the chances of a user from group B not being 

the victim decrease as ft increases.

36 Account Proxies, N
0.5

0.45
0.4

0.35
S' 0.3
~}* 0.25 <
c l  0 . 2  

0.15

 M = 2

=  10

=  20
= 25

0.05

P

Figure 3.10: P(A2\B), The likelihood that users from group B are not victimized.

Further, having more members subscribed to one’s respective proxy does little to 

alter these odds when ft >  0.5. For events A\ and A 2 to be equally likely, /j, the product of 

the number of members, Mj, and the number of proxies, N,  has to be an integer - since Mj
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and N  are both integers. This only occurs for a select values of Mj  and 3 when ,3 <  0.4 

- as shown in Figure 3.11. When 3 > 0.4, the events are equally likely when // =  2. The 

values of M3 are negligible in this case.

6 

5 

4
=2.

3 

2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

Figure 3.11: P(Ai\B ) = P (A 2\B), When events A\ and A2 are equally likely

To understand how the number of account proxies (N)  affect P(Ai \B)  and P {A 2\B), 

we arbitrarily choose N  values above and below 36, and use the same set of values for 

parameters Mj and [3. If N  is much lower than 36, we expect individuals to be more at risk 

of being randomly victimized for lower values of Mj (when compared to the case where 

N  =  36). The opposite is true for N  values much higher than 36. In this case, we expect 

individuals to be less at risk of being randomly victimized for lower values of Mj (when 

compared to the case where N  =  36). Figures 3.12 and 3.13 tend to support each of these 

claims. We do not present P{A2\B) for these graphs - as each decays exponentially (similar 

to the way that Figure 3.10 corresponds to Figure 3.9).

36 Account Proxies, N

M. = 2j
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 M. = 20

M =25
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Figure 3.12: P{A\\B) - The likelihood user A is NOT victimized.
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Figure 3.13: P(Ai \B)  - The likelihood user A is NOT victimized.
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3.7 Conclusion

In this chapter, we considered an exploit which targets cloud users - as outlined by 

Ristenpart et al [1], We proposed a solution which relies on mussel-inspired user account 

and workload clustering and account proxies to obfuscate the public to private IP map. We
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then presented arguments to show how our strategy increases the effort required for an 

adversary to carry out a directed attack against a target set. Further, we gave results from 

a risk assessment that suggest a reduced per-individual chance of being victimized given a 

non-directed attack.

3.8 From Cloud Security to Community Detection

The next objective involved extending the mussel algorithm to the community de­

tection domain. However, after conducting various experiments, we determined that the 

mussel algorithm was not flexible enough to handle network datasets of varying size. It 

worked well for large populations, where there was a lot of interacting individuals. How­

ever, it did not fare as well for small populations. Some social networks can have less than 

50 nodes. In such cases, the system never reaches steady state - as there are not enough 

peers to meet each individual’s short and long-term density thresholds. For this reason, 

we derived another algorithm to detect communities. We present our greedy heuristic for 

community detection in the next chapter.



CHAPTER 4

SCALE-FREE NETWORK CONNECTIVITIES AND 
COMMUNITY DETECTION

Recent research suggests that node connectivities in social networks follow a scale- 

free power-law distribution. On Twitter, for instance, large communities tend to form 

around popular celebrities. Some followers possess an avid interest, while others either 

preferentially attach or follow those who the majority of their peers follow. We propose a 

greedy community detection heuristic which exploits these characteristics. Like celebrities, 

we hypothesize that highly connected nodes, or hubs, form the basic building blocks of 

communities. We assume that each community has one global hub, and that nodes with 

lower degrees preferentially attach to hubs in their vicinity. We then frame community 

detection as a node to hub assignment problem. To show its effectiveness, we test our algo­

rithm on four commonly used real network data sets. We obtain the following modularity 

(Q) values for three data sets: karate network - Q = 0.3715, dolphin network - Q = 0.3735, 

and political books - Q = 0.4492. In each case, our algorithm consistently classifies nodes 

into communities which coincide with their respective known structures. We additionally 

receive Q = 0.4592 for the college football data set. Unlike other implementations, ours is 

computationally inexpensive, deterministic, and does not require apriori information.

59
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4.1 Introduction

Many complex networks have underlying community structures which could prove 

useful when attempting to understand the dynamics of within-group interactions. The 

potential benefits have broad impacts in a variety of fields, i.e., computer science, biology, 

marketing, sociology, etc. This has recently led to a strong demand for the develop­

ment of methods which are effective at detecting and/or discovering community structures. 

Towards this end, several community detection algorithms have been proposed [69-73]. 

Most of these, however, share similar disadvantages. Some algorithms require apriori 

information, such as threshold values or the desired number of communities, while others 

are impractical and computationally expensive [74]. A third category of algorithms suffer 

from a combination of the two.

Our objective is to develop a more intuitive and more practical method for commu­

nity detection. Recent research [75-77] has suggested that social networks tend to follow a 

heavy-tailed distribution - where a few nodes, called hubs, possess high connectivity, while 

the overwhelming majority of other nodes possess low connectivity. We hypothesize that 

hubs form the basic building blocks of communities, and thus are the key to community 

detection. A detection technique which exploits hubs and the scale-free properties of social 

networks remains largely unexplored throughout recent literature. This hence provides the 

necessary motivation for our work. We outline our contributions below.

1. Our algorithm is practical, deterministic, easy to implement, and scalable. It 

discovers community structures without the need of apriori information, i.e., thresh­

old values, community size restrictions, or the desired number of communities.
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2. In [78], the authors define modularity (Q) - a metric for measuring the strength 

of community structure that since has become well-known and commonly used. They 

state that in practice values “typically fall in the range from about 0.3 to 0.7.” We 

obtain the following modularity values for three datasets: Zachary’s Karate Net­

work [79] - Q = 0.3715, bottlenose dolphin network [80] - Q = 0.3735, and books 

about U.S. politics [81] - Q = 0.4492. In each case, our algorithm consistently clas­

sifies nodes into communities which coincide with their respective known structures. 

We also apply our method on the American college football data set, and receive Q = 

0.4592.

The rest of this chapter is divided into seven sections. Section 4.2 offers the nec­

essary background information (i.e., commonly used definitions for network, community, 

and modularity). Section 4.3 discusses previous work. Section 4.4 defines the problem, 

gives the approach, and presents our algorithm. Section 4.5 details the real-world network 

data we consider. Section 4.6 provides our results and compares them to those reported by 

other researchers. Section 4.7 covers a small discussion on various issues we encountered 

while validating our algorithm; and Section 4.8 yields concluding remarks.

4.2 Background

4.2.1 What is a Community?

For community detection, a network is typically represented by an undirected and 

unweighted graph. This graph, G = (V, E), is an ordered pair comprised of a set of vertices 

(sometimes referred as nodes), V, interconnected by a set of edges. The goal of community
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detection is to find a disjoint partition G =  C\ U C2 . . .  U Ck, where each Ck represents a 

community.

There are various definitions for what constitutes a community. However, a com­

monly used definition states that a community is a subset or group of nodes where the 

number of internal connections (between nodes within the group) are exceedingly dense 

and the number of external connections (to nodes outside the group) are exceedingly sparse. 

In [82], Radicchi et al. use the degrees of nodes inside and outside a group to define 

community - in terms of both a weak and strong sense. Assuming that d\n represents the 

degrees of node i inside its group Ck, and d°ut represents its degrees of node i outside group 

Ck, then group Ck is said to form a strong community if the internal degree is greater the 

external degree for all nodes ? in group Ck [83] - as shown in Equation 4.1.

On the other hand, group Ck is said to form a community in a weak sense if the sum of the 

internal degrees of all nodes in group Ck is greater than the sum of the external degrees of 

all nodes in group Ck [83] - as denoted in Equation 4.2.

4.2.2 Measuring the Strength of Community Structure

In [78], Newman and Girvan propose a metric for measuring the strength of com­

munity structure, which they call modularity (Q). The main idea behind this metric is that 

the fraction of within-community edges should be greater than the expected number of 

edges found in a random null model. This model preserves the order of the graph and

d? > d ^ l,yi e  c k (4.1)

(4.2)
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individual node degrees, but forms random connections between nodes without regard for 

community structures. If the number of within-community edges is no better than its 

random counterpart, then Q =  0. On the other hand, a modularity value closer to one 

denotes strong community structure. They define modularity to be

where e„ is the fraction of edges that fall within the same community and is the expected 

fraction of randomly distributed edges in that community. In [84J, Clauset et al. further 

expand on the definition of modularity and define Q to be

where m  is the number of edges, A vw is the adjacency matrix, kv and kw are the degrees 

of nodes v and w, respectively, and cv and cw are the communities to which nodes u 

and w belong, respectively. d(c„, cw) denotes whether node v and w belong in the same 

communities. If one then, they both belong to the same community. Otherwise, they each 

belong to different communities.

To date, several solutions have been proposed to address the community detection 

problem, i.e., Girvan-Newman algorithm [78,85], label propagation algorithm [71,83,86], 

modularity maximization [72, 87J, genetic algorithms [70, 88, 89], etc. Most of these, 

however, share similar disadvantages. Some algorithms require apriori information, such 

as threshold values or the desired number of communities, while others are impractical and 

computationally expensive [74]. A third category of algorithms suffer from a combination

(4.3)

(4.4)

4.3 Previous Work
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of the two. We give two examples of previous research. The first is a community detection 

method based on divisive hierarchical clustering; and the second is a detection method 

based on nearest neighbors interactions.

In [78], Newman and Girvan hypothesize that edges which lie between communities 

have the highest “betweenness” value. They derive three methods for calculating between­

ness scores (shortest path, resistor networks, random walk), separately incorporate each of 

these into a divisive method which removes the links with the highest value, and apply their 

algorithms to real-world network data. To determine how well their algorithms performed, 

they develop a metric (modularity) to denote the quality o f network partitions. The main 

drawbacks of the shortest path algorithm, the best of the three, is that it is computationally 

intensive and does not scale well. The time complexity for each iteration is 0(rn2n), where 

n is the number of nodes and rn is the number of edges.

The technique which most resembles ours is the label propagation algorithm (LPA). 

In [83], Raghaven et al. use this method to assign each node unique labels. Then, in an 

iterative fashion, nodes adopt the label which coincides with the majority of their neighbors. 

In the event there is a tie, nodes randomly choose among eligible candidates. The nodes 

with the same label are assigned to the same community when the maximum number of 

steps is reached. The authors state that their algorithm, “uses the network structure alone 

as its guide and requires neither optimization of a pre-defined objective function nor prior 

information about the communities.” Further, it runs near linear time and is thereby less 

computationally expensive. The downside with this method is that it invokes a stochastic 

process for breaking ties. This leads to non- deterministic results, i.e., different runs 

produce different community structures. To remedy this, the authors combine multiple
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results to form an aggregate solution. Our solution, on the other hand, comes with similar 

benefits, but yields consistent results.

4.4 Greedy Heuristic for Community Detection

4.4.1 Problem Definition

We describe community detection as a node assignment problem. Node to Hub 

Assignment Problem (N-HAP): Given an adjacency matrix, assign nodes to hubs such 

that each node belongs the closest hub with the maximum number o f connections, subject 

to the constraint that the majority o f each node ’s peers are members o f the same hub.

4.4.2 The Approach

To solve this problem, we first hypothesize that hubs, or highly connected nodes, 

form the basic building blocks of communities; and thus are key to community discovery. 

The notion that node degrees follow a scale-free power-law distribution for social networks 

was first proposed by Barabasi and Reka. In [77], they found that this distribution was the 

consequence of two primary mechanisms: continual network expansion by the addition of 

new nodes and preferential attachment of new nodes to highly connected nodes. In other 

words, for social networks, a “rich gets richer” effect leads to a handful of nodes having 

an unusually high number of connections and the majority of nodes having an unusually 

low number of connections. Given this, we assume that each community has a single hub, 

and that nodes with lower degrees preferentially attach to hubs in their vicinity. Hence, our 

approach for solving N-HAP is to have each hub start a community, and have nodes of lower 

degrees use their nearest neighbors to find and join their respective local communities.
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4.4.3 The Algorithm

Our algorithm can he divided in four phases. The first phase is initialization. In 

this phase, each node compares its degree with those of its nearest neighbors. If a node 

has the highest local degree, it declares itself as a hub. Otherwise, it joins its local hub. 

The second phase is oblivious bandwagoning. In the event a hub is connected to a node 

that is associated with a hub of a higher degree, it along with its followers join the com­

munity associated with that node. This is done to prevent local convergence - for not all 

local hubs end up being global hubs. The third phase is majority rules. Each node then 

verifies whether it belongs to the same community as the majority of its peers and changes 

membership in the event that this is not the case. The final phase is to repeat phase two - 

oblivious bandwagoning. This is done to propagate the changes (if any) invoked by phase 

three throughout the network. In phase one and two, each node carries out the objective 

- as denoted in Table 4.1; and in phase three and four, each node enforces the constraint - 

also denoted in Table 4.1.

Table 4.1: N-HAP from global and local perspective

input: Global adjacency matrix
objective: Local join closest hub with max connections
constraint: Local majority of peers are members of the same hub
output: Global assignment of nodes to a set of hubs

Our algorithm’s pseudocode is given in Algorithm 6. Phase one is implemented in 

the first for loop - lines 1 - 7. Based on the degree of self and the degree of peers, a node 

will either: declare itself as a hub, join the hub of a peer with equivalent degree, or join the 

hub of the peer with the maximum degree. Phase two is implemented in lines 8 - 14. There
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are three cases where a node will change hubs. Sometimes a node declares itself as a hub, 

but has little to no members. In this case, it joins the hub that coincides with the majority 

of its peers - line 10. There also may be a case where a node has peers whose memberships 

are equally divided between two or more hubs. Here, a node does a continual refresh each 

iteration to ensure it joins the hub that has the highest degree - line 12.

Algorithm 6: Greedy heuristic for community detection 
Input: Adjacency Matrix 
Output: Assignment of Nodes to a Set of Hubs

1 foreach node in i in 1 to \ V  | do
2 if degree of self > degree of peers then
3 | declare self as hub;
4 else if no max degree among peers then
5 | join hub of 1st tied peer (or take 1st peer as hub);
6 else
7 join hub of peer with max degree;

while at least 1 node changes hubs do
if hub A most peers belong to another hub then 
L join hub that coincides with majority of peers;

if peer membership divided between > 2 hubs then 
L join hub that has greatest degree;

if hub joins new hub then 
L join hub that former hub joined;

foreach node in i in 1 to \ V\ do
if majority of peers belong to another hub then 

store ID of node,; 
store ID of majority _hub,;
determine priority using max relative hub frequency;

20 use priority to sort nodes that need hub change;
21 use priority to sort new majority_hubs;
22 foreach node in i in 1 to | nodes Jo.change | do
23 node, joins new majorityJhub,;

24 Repeat steps 8 -1 7 ;

8
9

10

n
12

13

14

15

16

17

18 

19
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In the event, a hub joins another hub, its followers update their membership to 

reflect the new change - line 14. This phase continues until all nodes stop changing hubs. 

Phase three is denoted by lines 15 - 23. In the for loop, nodes determine whether they 

belong to the same hub as the majority of their peers. If this is not the case, they associate 

themselves with a ratio which will be used for prioritization. This ratio is simply the number 

of majority peers which belong to the same hub divided by the total number of peers. Next, 

according the priority, nodes change hubs to that which coincides with the majority of their 

peers. Here, prioritization is key - for the act of randomly reassigning nodes to hubs could 

lead to a misclassification ripple effect. We will cover this in detail in the discussion section. 

The last phase, shown in line 24, propagates the changes (if any) of hub reassignment due 

to majority rules.

There is one thing we should note. The constraint specified in N-HAP coincides 

with the definition of a community in the strong sense as outlined in Equation 4.1. However, 

there is one case which will prevent full compliance with this constraint - line 10 - a case 

where a node has the number of peers inside its group equal to the number o f peers outside 

its group. Typically this involves nodes that are situated between communities. A node 

which falls in this category will not be able to comply with the constraint - for majority 

rules is not applicable. We refer to this as deadlock. There is no best way to resolve 

this issue. In our algorithm, a node responds to deadlock by carrying out the objective 

and disregarding the constraint. In other words, the hub with the highest degree is the tie 

breaker. For example, if a node of degree six had three peers in one community and three in 

another, it would simply join the community of the peers which are associated with the hub 

of the highest degree. This is rather arbitrary, but tends to gamer good results. Nonetheless,
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given the special case of deadlock, we say that our algorithm creates strong communities 

in a best effort fashion.

As shown in Algorithm 6, our method contains: three for loops, two while loops, 

and two sorts. In the initialization phase, one of three basic statements execute per iteration. 

Assuming that \V\ = n, this requires T  = n time. In the oblivious bandwagoning phase, 

again, one of three basic statements execute per iteration. Given that there are less hubs 

than there are nodes, and that all nodes will not change hubs, this requires T  =  kn time - 

where k < n. For phase three, a for loop is used to determine the priority of node changes. 

Here, there are two basic store statements, and one statement which stores the maximum 

value of an array - T  =  2w +  X T 0̂ - Next, there are two sorts and another for loop. 

Assuming a quicksort method, this requires T  = 2 w * login +  w.  Since some nodes will 

already belong to the same hub as the majority of their peers, the time phase three requires 

is T  = 3w + XX” di +  2wlogw, where w < n. Phase four requires the same time as phase 

2 - T  = n. Hence, overall, our algorithm requires time

4.4.4 Detecting Community Structure for Complete Graphs

To demonstrate how our algorithm handles complete graphs (a case where there are 

no hubs), we present a AT, graph in Figure 4.1 Notice, there are five nodes, and every pair 

of nodes are connected by a unique edge. The labels denote each node’s ID. This graph has 

strong community structure - for the internal degree (4) is greater than the external degree 

(0) for all nodes. Thus, all nodes should be assigned to one community.

It*
(4.5)
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Figure 4.1: K5 complete graph

Following our algorithm, Algorithm 6 - line 2 does not hold for any node, thus no 

node would declare itself as hub. In this case, each node would follow line 3, and would 

take its first peer as hub. Table 4.2 presents the attributes for all nodes. Notice, node 2 is 

the first neighbor of node 1; and for all other nodes, node 1 is the first neighbor. So in the 

initialization phase, node 1 would declare node 2 as hub; and all other nodes would declare 

node 1 as hub. Next, in the oblivious bandwagoning phase, node 1 would notice that most 

of its peers belong to a different node, line 9, and would declare itself as hub - line 10. In 

this case, only lines 1-17 are required for community detection. Here, the algorithm’s total 

running time is O(n).

Table 4.2: Node attributes for K5 complete graph

Node ID Degree Neighbors Max Peer ID Join Hub
1 4 2,3,4,5 - 2
2 4 1,3,4,5 - 1
3 4 1,2,4,5 - 1
4 4 1,2,3,5 - 1
5 4 1,2,3,4 - 1
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4.5 Real-World Network Data Sets

In this section, we present three real-world network data sets commonly used in 

community detection literature: Zachary’s karate club [79], bottlenose dolphin network [80], 

and books on U.S. politics [81]. For each data set, we give a brief overview, show the known 

community structures (as discovered by our method), and display the histogram.

4.5.1 Zachary’s Karate Club

Zachary’s karate club data set describes a three year observation of social interac­

tions between members of a karate club. Towards the beginning, a dispute emerged between 

the club president and the karate instructor over the cost o f lessons. Over time, this dispute 

caused a rift between the club members. Some aligned themselves with the president, 

while others rallied support for the instructor. Thus, there are two known communities in 

this network. The graph of this network’s known structures, as discovered by our method, 

is shown in Figure 4.2. Notice, there are two nodes with high connectivity - node 1, which 

represents the instructor, and node 34 which represents the president. The other nodes 

have low connectivity and are connected directly or indirectly to either node 1 or node 34. 

The degree distribution is shown in Figure 4.3. As expected, the majority of nodes with 

low degrees appear with great frequency, while the nodes with high degrees appear great 

infrequency. This tends to support the idea that social networks have scale-free properties. 

Further, the fact that the club divided into two factions - each centered around the two most 

connected people tends to give credence to our initial hypothesis that communities tend to 

form around hubs - in this case nodes 1 and 34.
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Figure 4.2: Zachary’s karate network: known structure as discovered by our method

D egree  Distribution

N ode D egree

Figure 4.3: Zachary’s karate network degree distribution

This data set is extensively used in community detection literature. The network is 

small - consists of 34 nodes and 78 edges. Thus, the results from a community detection 

algorithm can easily be verified by hand. Methods which use this data set tend to mis- 

classify one node - typically either node 3 or 10. The authors in [78J misclassify node 3. 

They place it in the pink community instead of the green community. The authors in [90J
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misclassify node 10. Further, the authors in [74J consistently place 33 out of 34 nodes 

in the correct community. A question which naturally comes to mind is: why are these 

particular nodes hard to correctly classify? Notice nodes 3 and 10 in Figure 4.2. They are 

both deadlocked - as both have an equal number of neighbors in each community. Node 3 

has five neighbors in each community; and node 10 has one neighbor in each community. 

This poses a problem because it violates the quantitative definition for a community in the 

strong sense. For other algorithms, such as the LPA, a random selection may be used to 

select a community given these circumstances. In the discussion section, we explain how 

our algorithm handles this problem for this data set.

4.5.2 Bottlenose Dolphin Network

The bottlenose dolphin network data set describes a seven year observation of social 

interactions among dolphins in Doubtful Sound, New Zealand. Here, the school divided 

into two groups when the individuals connected at the boundaries of both groups suddenly 

disappeared. This network contains 62 nodes and 159 edges. The graph of the known 

community structures, as discovered by our method, is shown in Figure 4.4. Notice, the 

degree distribution in Figure 4.5. There seems to be a few nodes with degrees higher than 

expected. This may lead to local convergence/subgrouping - as we shall see. Though 

there are two known communities, many detection algorithms divide this data set into four 

communities [78,86-89].
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Figure 4.4: Bottlenose dolphin network: known structure as discovered by our method

D egree  Distribution

N ode D egree

Figure 4.5: Bottlenose dolphin network degree distribution

4.5.3 Books on U.S. Politics

This data set describes political books purchased on Amazon.com [91] during the 

2004 U.S. presidential election. Relationships between books represent books frequently 

purchased by the same buyers. As shown in Figure 4.6, the book communities divide along 

political preference and affiliation - i.e., liberal or conservative. The degree distribution 

is shown in Figure 4.7. Flere, the disparity between the frequency of nodes with low
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degree to that of nodes with high degree is quite noticeable. Though there are two known 

communities, researchers tend to detect anywhere from three to five groups in this data 

set [86-88],

Figure 4.6: Books on U.S. politics: known structure as discovered by our method
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Figure 4.7: Books on U.S. politics degree distribution
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4.6 Results

In this section, we present our results along with a host of others - as published by 

researchers for the same data set. We test our algorithm on the three data sets mentioned 

in the prior section and an additional data set - American college football. Further, we use 

Equation 4.4 to measure the strength of community structures - as detected by our method 

on these data sets.

In [78], the authors state that in practice modularity values “typically fall in the 

range from about 0.3 to 0.7.” We obtain the following modularity values for 3 datasets: 

Zachary’s Karate Network [79] - Q -  0.3715, bottlenose dolphin network [80] - Q = 0.3735, 

and books about U.S. politics [81] - Q = 0.4492. In each case, our algorithm consistently 

classifies nodes into communities which coincide with their respective known structures. 

Table 4.3 shows our method’s time complexity for each of these data sets according to 

Equation 4.5. Notice that our method executes in linear time for each data set. For the

Table 4.3: Our method’s time complexity for each data set

k w T { n )
Karate 2 3 An +  6 log 3 +  £?<*«■+ 9 =  O(n)

Dolphins 3 1 5 n +  dl +  3 =  0(n)
Books 3 1 5 n + di + 3 — 0(n)

fourth data set, American college football, we receive a Q value which indicates strong 

community structure - Q = 0.4592. However, our algorithm only detects four communities 

- where the number of known communities, for this data set, ranges anywhere from eight 

to 12. Figure 4.8 provides a possible explanation. The histogram for this data set is the 

complete opposite from what we have seen in the other cases. Nodes with high degrees are
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the majority. They appear with great frequency, while the nodes with low degrees appear 

with great infrequency. Despite this, the Q value we obtain is consistent with those reported 

by other researchers.

D egree Distribution

N ode D egree

Figure 4.8: American college football degree distribution

We present the properties for each data set and the community attributes as detected 

by our method and previously published methods in Table 4.4. Dashes in the table mean 

that we were unable to obtain the designated information for a given method. Cm in column 

two is the number of known communities for each data set; and #  Cm Detected in column 

five is the number of communities detected by each method. Notice that communities 

detected by different methods may or may not coincide with the known number of commu­

nities.



Table 4.4: Data set properties and community attributes as detected by our method and previously published methods.

Data Set # Nodes, Edges, Cm Method in Paper Apriori? # Cm Detected Q

Zachary’s Karate Club

34, 78, 2 SP betweenness [78J Yes 2 0.3500
Random Walks [92] No - 0.3710

Greedy Heuristic [this work] No 2 0.3715
Mod Maximization [93] - 2 0.3810
Label Propagation [86] - 2 0.4180

Extreme Optimization [94] - 4 0.4188
Eigenvector-based [95] - - 0.4190
Mod Maximization [87] - 4 0.4200

Bottlenose Dolphin

62. 159,2 Greedy Heuristic [this work] No 2 0.3735
Genetic Algorithm [88] - - 0.5050
Genetic Algorithm [89] - - 0.5070

SP betweenness [78] Yes 4 0.5200
Label Propagation [86] - - 0.5230
Mod maximization [87] - - 0.5290

Books on U.S. Politics

105, 441,2 Greedy Heuristic [this work] No 2 0.4492
Fast Algorithm [69] - - 0.5020

Genetic Algorithm [88] - - 0.5180
Label Propagation [86] - - 0.5270
Mod maximization [87] - 5 0.5272

American College Football

115, 663,8-12 Greedy Heuristic [this work] No 4 0.4592
Genetic Algorithm [88] - - 0.5150
Mod maximization [93] - 6 0.5460
Genetic Algorithm [89] - - 0.5770
Label Propagation [86] - - 0.6040
Mod maximization [87] - 10 0.6460
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Although we present our results alongside that of others, there are subtle differences 

which limit direct comparison. Two things should be noted. One, some of the Q values 

reported by other researchers are the results of averages or rounding, whereas the values we 

present are not. Our method is deterministic in nature. Therefore, multiple runs consistently 

yield the same results. Two, some of the methods require apriori information, whereas 

ours does not. Our method only uses the network structure, i.e., the adjacency matrix, 

as a guide. The common trend observed throughout literature is to generically compare Q 

values - with the basic assumption that a greater Q value denotes a more effective algorithm. 

We maintain that this type of brute force comparison can be slightly misleading - as more 

information may be needed. For instance, for the American college football network our 

method detected the four communities and obtained Q = 0.4592. How does this compare to 

an apriori method which detected less than the known number of communities it was given, 

but received a higher (averaged/rounded) Q value? Perhaps, the solution is to compare 

like methods - a priori with apriori methods and non-apriori with non-apriori methods. 

However, this is no easy task. Rarely do researchers clearly state how well the communities 

their method detected coincides with the known community structures - let alone whether 

their method require apriori information. This just goes to show the convoluted nature of 

establishing and executing a fair, direct, thorough result comparison.

The bottlenose dolphin network contains biggest disparity between the results we 

present and those reported by others. This is due to the fact that our method exactly detected 

the two known community structures, and the others most likely detected four communities. 

For instance, in [78], Newman and Girvan detect four groups and report Q = 0.52 ±  0.03; 

but they also give the Q value for the two known communities - Q = 0.38 ±  0.08. The latter
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coincides with the results we receive. Further, the fact that all other researchers received 

Q values in the range of the former, leads us to conclude that their methods detected four 

groups as well - though not explicitly stated.

Another thing to note is that the modularity maximization method, proposed by 

authors in [87J, yields the highest Q value for each data set. This is not happenstance - as 

the goal of the technique is to do just as its name suggests - find the community structures 

which maximize modularity for a given data set. This is done in hopes that the resulting 

group structures closely coincide with the known group structures. In [87], the number 

of community structures which maximized modularity is as follows: Zachary’s karate club, 

four, where the known number is two; books on U.S. politics, five, where the known number 

is two-three; bottlenose dolphin network - number not reported; American college football, 

10, where the known number is eight-12. The authors also report the Q value found by 

their method for the known structures of Zachary’s karate club. They state, “the bipartition 

found by the VP method has a modularity of 0.3718, whereas the partition corresponding 

to the actual factions in the club has a lower modularity of 0.3715.” Please note that this 

exactly coincides with the Q value we obtain using our method for this data set - Q = 0.3715. 

The authors go on to assert that the higher modularity value, “explains the misclassification 

of node 10, and also emphasizes that no clustering objective can be guaranteed to always 

recover the semantically correct community structure in a real network. The latter should 

be taken as a cautioning against accepting modularity-maximizing clusterings as ground 

truth.” Thus, a higher Q value does not always mean a better method for detecting known 

group structures, it simply may be the result of misclassifications.
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4.7 Discussion

Given that our method implements the objective (without regard for the constraint 

first), then adheres to the constraint after, some nodes end up displaced. The nature of 

the constraint itself is the reason we do this. It requires that nodes belong to the same 

community as the majority of their peers. Instead of deriving techniques to tackle the con­

straint directly (from the beginning), we assume that this implicitly mandates some basic 

pre-existing community structure - for once communities have already been established, 

this becomes a rudimentary exercise, i.e, it is easy to find where your friends are if they 

already are grouped together. It turns out that our oblivious bandwagoning technique is 

an effective way to establish basic community structures. In the cases we’ve seen, this 

alone defaultly places the majority of nodes in same communities as that of their peers. 

There may be a few exceptions. By actively invoking the majority rules constraint, we 

identify and resolve these exceptions. The process of exception resolution cannot be done 

haphazardly or it may lead the a misclassification ripple effect. Therefore, we derive a 

way to prioritize node changes to minimize the chance of this occurring. We present two 

examples we encountered while validating our algorithm. One deals with misclassification 

ripple effect; and the other deals with continual refreshing for deadlocked nodes. We also 

discuss measures we took to avoid local convergence.

4.7.1 Misclassification Ripple Effect

As mentioned earlier, some community detection algorithms tend to misplace a 

node for the Zachary’s karate club data set: either node 3 or node 10. Depending on how 

community structures are defined, both of these nodes could end up deadlocked. Since our
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method handles this case by implementing the objective only, we did not have a problem 

classifying node 10. It joined the community with the highest degree - and that coincided 

with the correct classification. However, after exercising oblivious bandwagoning, we 

noticed that three nodes were displaced - nodes 3, 14, and 20 (as shown in Figure 4.9).

Figure 4.9: The lack of prioritization may lead to misclassification ripple effect.

Further, we found that implementing majority rules in a haphazard fashion did not 

remedy the situation. Initially, the exception resolution happened by node ID in ascending 

order. So node 3 would invoke majority rules, then node 14, then node 20. W hat we 

noticed was a misclassification ripple effect - nodes initially misclassified via oblivious 

bandwagoning tend to propagate misclassification if resolved haphazardly. As shown in 

Figure 4.9, node 3 is connected to node 14; and node 14 is misclassified. Tf node 3 invokes 

majority rules first, it will end up deadlocked. In this case, it would join the community 

with the highest degree - which, in this case, would be the wrong classification. Node 14 

and node 20, on the other hand, can be resolved without issues - majority rules works just
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fine for these nodes. Thus, leaving things unaltered, we would end up with the same result 

as other researchers - one misclassification - node 3. The correct thing to do would be to 

resolve node 14 before node 3. In order to do this, we came up with a way to prioritize 

node changes based on the ratio of the number o f majority peers belonging to a single 

community to the total number of peers. This way, those nodes who do not in deadlock 

always invoke majority rules first. This is done in hopes to break the tie of a deadlocked 

node. Following this, node 20 changes first - its ratio is 2/3. Node 14 goes next. Even 

though, node 3 is misclassified its ratio is 3/5. Then, with a 1/2 ratio, node 20 goes last.

4.7.2 Continual Refreshing for Deadlocked Nodes

For the bottlenose dolphin network, we initially ended up with one misclassification, 

and this was due to the lack of continual refreshing. As shown in Figure 4.10, node 40 is 

deadlocked. Our rules state that node 40 should go to the hub with the highest connections. 

Since node 58 had a higher degree than node 37, node 40 joined node 58 or the hub node 

58 belonged to. Though it took time to propagate the changes, node 37 ultimate joined 

the hub associated with node 15. At this moment, node 40 was supposed to switch to the 

hub associated with node 37, because it had a higher number of connections than the hub 

associated with node 58; but this did not happen because node 40 did not observe both its 

peers after the initial observation. It joined node 58 and did whatever it (node 58) did. To 

resolve this, we simply created a rule to enforce continual refreshing. Nodes involved in 

deadlock should continuously observe peers to avoid potential misclassifications.
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4.7.3 Avoiding Local Convergence

Initially, for the bottlenose dolphin network, we received the same results as those 

presented in [78]: four communities. Each community centered around four highly con­

nected nodes - nodes 15, 46, 18, and 58. As shown in Figure 4.10, nodes 15 and 46 are 

subgroups which combine to form a larger community on the left half. The same goes for 

nodes 18 and 58 on the right half. To avoid local subgroup convergence, we added the rule 

that nodes which declare themselves as hubs should periodically observe their peers and 

join the hub associated with the majority of their peers. This ultimately resulted in two 

groups centered around nodes 15 and 18.

In this chapter, we framed community detection as a node to hub assignment prob­

lem and developed a greedy heuristic which exploits the scale-free nature of social networks 

to solve this problem. Our heuristic is practical, easy to implement, and deterministic. 

Further, it discovers community structures without the need of a priori information, i.e.,

Figure 4.10: A misclassified node due to the lack of continual refreshing.

4.8 Conclusion
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threshold values, community size restrictions, or the desired number of communities. The 

results are promising - as our method, in some cases, outperforms apriori algorithms when 

tested on the same data set. This tends to give credence to our initial hypothesis that hubs 

play a key role in community discovery.



CHAPTER 5 

CONCLUSION

The work contained in this dissertation sought to use power-law properties of social 

groups to answer two research questions.

1. From an insider’s perspective, in what ways do communities emerge? That is, what 

internal processes have to occur on the micro-level to have group formation emerge 

on the macro-scale? Can mussels and Levy walks be used to describe these pro­

cesses? How can this type of behavior be used as a defense strategy?

2. From an outsider’s perspective, how to detect communities once they have formed? 

Given each individual’s local connections only, is it possible to classify individuals 

into their respective known global communities? How can the scale-free properties 

of social networks help shed light on this problem?

To address the first research question, we presented a defense strategy, in part 

inspired by mussel self-organization, to address a security concern in cloud systems. The 

strategy obfuscated public to private IP mapping by having account proxies perform 1 — to­

il random mapping of public to private IP addresses. This decreased the risk of adversary 

targeting and significantly reduced the amount of public IP addresses needed for users to 

access their VM instances. By having clusters periodically dissolve, our strategy decreased

86
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the chances of directed attacks towards random users belonging to a particular account 

proxy.

To address the second research question, we used the scale-free properties of social 

networks to develop a greedy heuristic for community detection. We hypothesized that 

highly connected nodes, or hubs, formed the basic building blocks of communities; and 

assumed that each community had one global hub, and that nodes with lower degrees 

preferentially attached to hubs in their vicinity. We developed an algorithm based on this 

notion and tested it on commonly used real network data sets. In most cases, it classified 

nodes into communities which coincided with their respective known structures. Unlike 

other implementations, it did not required apriori information and detected communities in 

a computationally inexpensive and deterministic manner.

As for future directions, we look to: integrate the mussel algorithm as a functional 

part of the cloud and observe how well it performs in practice; conduct more extensive 

tests and use the community detection algorithm on large network data sets; and find other 

problem domains where the mussel algorithm will prove useful.
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