Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2013

Snoop—forge—re lay attack on continuous
verification with keystrokes

Khandaker Abir Rahman

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

b Part of the Computer Sciences Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages

SNOOP-FORGE-REPLAY ATTACK ON CONTINUQOUS
VERIFICATION WITH KEYSTROKES
by

Khandaker Abir Rahinan. B.Sc., NL.S., M.S.. AL.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISTIANA TECH UNIVERSITY

March 2013

UMI Number: 3570080

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Dissertation Publishing

UMI 3570080
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

November 15, 2012

Date

We hereby recommend that the dissertation prepared under our supervision
by Khandaker Abir Rahman

entitted

Snoop-forge-replay Attack on Continuous Verification with Keystrokes

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy

{/4—1 Vvv—wwob‘t’ f‘e ’A’E‘f\l__

uperyis fDi'ssenalion Research
Lk
74 B B

Head of Department
Computational Analysis and Modeling
Department

Recommendation concurred in:

A . N
/ﬁ lon)y

PExCer & Ay

L a
A%Z@Mm

Director of Graduate Studies

Advisory Committee

Dean of the Graduate School

Dean of the College ,ﬂ
GS Form 13a
(6/07)

ABSTRACT

We present a new attack called the snoop-forge-replay attack on the keystroke-
based continuous verification systems. We performed the attacks on two levels — 1)
feature-level and 2) sample-level.

(1) Feature-level attack targets specific keystroke-based continuous verification
method or system. In feature-level attacks, we performed a series of experiments using
keystroke data from 50 users who typed approximately 1200 to 2300 keystrokes of free
text during three different periods. The experiments consisted of two parts. In the first
part, we conducted zero-effort verification experiments with two verifiers (“R” and “S™)
and obtained Equal Error Rates (EERs) between 10% and 15% under various verifier
configurations. In the second part, we replayed 10,000 forged impostor attempts per
user and dernonstrated how the zero-effort impostor pass rates became meaningless
when impostor attempts were created using stolen keystroke timing information.

(2) Sample-level attack is not specific to any particular keystroke-based contin-
uous verification method or system. It can be launched with easily available keyloggers
and application programming interfaces (APIs) for keystroke synthesis. Our results
from 2640 experiments show that (i) the snoop-forge-replay attacks achieve alarmingly
high error rates compared to zero-effort impostor attacks, which have been the de
facto standard for evaluating keystroke-based continuous verification systems; (ii) four

state-of-the-art verification methods, three types of keystroke latencies, and eleven

i

i
matching-pair settings (—a key parameter in continuous verification with kevstrokes)
that we examined in this dissertation were susceptible to the attack: (iii) the attack is
effective even when as low as 20 to 100 keystrokes were snooped to create forgeries.

In light of our results, we question the security offered by the current keystroke-
based continuous verification systems. Additionally. in our experiments, we harnessed
virtualization technology to generate thousands of keystroke forgeries within a short

time span. We point out that virtualization setup such as the one used in our

experiments can also be exploited by an attacker to scale and speed up the attack.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to
reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood
that “proper request™ consists of the agreement, on the part of the requesting party, that said reproduction
is for his personal use and that subsequent reproduction will not occur without written approval of the
author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other
works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author Z‘M/éw W—«

Date 02// '/7://3

GS Form 14
(5/03)

DEDICATION

To my parents and wife for their never-ending support and for giving me the

ability to see this through to the end.

TABLE OF CONTENTS

ABS T RACT e ii
DEDICATION ..ttt et v
LIST OF TABLES ...ttt viii
LIST OF FIGURES. ... ittt ix
CHAPTER 1 INTRODUCTION ...oiiiiiiiii e 1
CHAPTER 2 BACKGROUND ...ttt 8
2.1 Continuous Verification with Keystrokesccool. 8
2.2 Related Research.............oooiii 12
2.2.1 Keystroke-based User Authentication Systems............co.ooiceveiiiin 12

2.2.2 Non-zero Effort Attacks on Keystroke-based User Authentication
11511 1= SO PRSP PP 15

2.2.3 Non-zero Effort Attacks on Other Behavioral Biometric Authen-

tICALION SYSEEINS .ouviiii i 18

CHAPTER 3 SNOOP-FORGE-REPLAY ATTACK METHODS....................... 19
3.1 Snooping Keystroke Timing Information.....................ccooooiii i, 19
3.2 Creating a Keystroke FOrgery ..o 20
3.2.1 Creating Forgeries in Feature-level Attackccccoovvvvviiiinnnnnnn.. 20

3.2.2 Creating Forgeries in Sample-level Attack............ccococoeeinnnn. 22

3.3 Replaying a Forgery of Victim Uiz e, 24
3.3.1 Replaying Forgeries in Feature-level Attackcccooccceiinnnnninan. 24

vi

vii

3.3.2 Replaying Forgeries in Sample-level Attack ... 25

3.4 Virtualization Set-up for Forging and Replaving Sample-level Attacks

on a Large Scale........ 29

3.5 Keystroke Data Collection ..., 30
3.6 Baseline (Zero-effort Impostor Attack) Experiments............................ 34
CHAPTER 4 RESULTS .o e e e e 37
4.1 Feature-level Attack Experiments..............coooooiiiiiiiiiiiii i 37
4.1.1 Baseline (Zero-effort Impostor Attack) Results................o 37

4.1.2 Snoop-forge-replay Attack Results and Analysis...................c...... 38

4.2 Sample-level Attack Experimentscccooooiiiiiiiii, 43
4.2.1 Baseline (Zero-effort Impostor Attack) Results and Analysis 43

4.2.2 Snoop-forge-replay Attack Parameters and Configurations........... 45

4.2.3 FEffectiveness of the Attacks............. 48

4.2.4 Performance Analysis of Attack Parametersnnnnn. 52

4.2.5 Analysis of Attacks Against the “R” Verifieroooe 35

4.2.6 Analysis of Attacks Against “S” and “A” Verifiers....................... 56

4.2.7 Analysis of Attacks Against the “F” Verifier ... 58
CHAPTER 5 CONCLUSIONS AND FUTURE WORK.....c.cccoooiiiiiii 60

APPENDIX A ADDRESSES OF WEB PAGES USED AS “DUMMY TEXT” ... 62

APPENDIX B EER PLOTS UNDER DIFFERENT ATTACK CONFIGURA-
TTONS L 64

BIBLIOGRAPHY ..o e 85

Table 3.1:

Table 3.2:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 4.9:

LIST OF TABLES

Characteristics of the “dummy text” file used in our experiments..... 23

A summary of keystroke data usage in our sample-level attack
EXPETITIIEIIES -1 oe ittt et et e et et e et e s e e et e e e 32

Total genuine attempts (#G), genuine attempts/user (G/U), and
impostor attempts/user (I/U) used in Figure 4.1 DETs.................... 38

IPRs of verifiers “R” and “S” for thresholds 7y and T5...................... 42

EERs generated for 150 users, with Set II as the training data and
Set III as the verification data. The lowest EERs in each verifier
group are marked in bold.................. 43

EERs generated for 200 users. Set II was used for training, Set 111
was used for generating genuine attempts, and Set IV for generating
IMPOSLOT AtLEIIPES...ciiiiii i e 43

“Tot. Impostor Attempts” and the “Tot. Genuine Attempts”
columns give the total number of impostor and genuine verification
attempts used to calculate EERs in Tables 4.3 and 4.4. “Avg.
Typing Time per Attempt” column gives the average time taken to
type a verification attempt (in seconds). “Avg. # of Keystrokes
per Attempt” column gives the average number of keystrokes in a
Veriflcation atteIMPl. ..o 45

Twenty-four attack configurations obtained with different parameter
SEELITIEZS ¢ttt e 47

Average number of snoop-forge-replay attacks generated per user... 48

Attack EERs of the top performing verifier settings in baseline
EXPETIINICIIES ...ttt ettt ettt e e e e a e ra s 54

Minimum to maximum percentage increase in attack EERs over
baseline EERs across all the matching pairs....................ccoooviiiiinee. 95

viil

Figure 2.1:

Figure 3.1:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

LIST OF FIGURES

Overview of continuous verification with kevstrokes. In the training
phase, keystroke latencies are extracted and outliers are removed.
Each “e” in the template represents a cell entry containing the
latency values (and their mean and standard deviation) of an English
digraph. In the verification phase, latencies are extracted as the
user types the verification text. After obtaining M matching pairs,
the verifier matches the latencies with the template and outputs
a score. A verification decision is computed by thresholding the
score. Based on the decision, the user is either allowed to continue
or an action is taken. The perforated box shows the continuous
Verifeation JOOP ..o 9

Snoop-Forge-Replay attack flowchart. Step (1)-snoop keystroke
timings. Steps (2)-(8)-create and replay a forged attempt................. 20

Baseline DET curves of “R” (a) & (b) and “S” (¢) & (d) verifiers
with M matching pairscooooiiiii e 39

(a,c, e, g): Percentage of successful forged attempts with threshold
Ty; (b,d, f,h): Comparison of EERs generated with zero-effort
impostors (baseline) and forged verification attempts generated by
estimating the means and standard deviations of snooped digraph
latencies (b, d), and by estimating the means of the top 10 frequent
snooped digraphs (7). ..o 40

Comparison of EERs of “R” verifier with forged verifications attempts
generated with 50 and 150 snooped keystroke when M = 500 41

False reject rate (Baseline FRR), zero-effort impostor pass rates
(Baseline IPRs) (highlighted by the smaller circles), and 24 snoop-
forge-replay attack IPR curves (highlighted by the large circles)
achieved with “R” (a), “S” (b), “A” (c¢) verifiers paired with KH,
KI, and KP templates respectively and “F” (d) verifier. In each
plot, the Baseline EERs (crossover points between Baseline FRR
and Baseline IPR curves) are marked by a box ... 50

X

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure B.1:

Figure B.2:

Maximum (“Max. Attack EER™ curves). average (“Avg. Attack
EER™ curves). minimum (“Min. Attack EER™ curves). and standard
deviations (Error bars) of attack EERs achieved from 24 snoop-
forge-replay attack configurations against "R™ (¢ ¢). *S™ (d f).

“A” (g - h) verifiers and KI, KP. and KH templates. Two Baseline

EER curves “Baseline EER (Set III)” and “Baseline EER (Set IV)~
represent EERs from Tables 4.3 and 4.4. (“Baseline EER (Set
)" and “Baseline EER (Set IV)" curves are overlapping in most

panels.) Legends are the same for panels (@) through (5).................

Maximum (“Max. Attack EER” curves), average (“Avg. Attack
EER” curves), minimum (“Min. Attack EER” curves), and standard
deviations (Error bars) of attack EERs achieved from 24 snoop-
forge-replay attack configurations against “A” (a) verifier and KH
template and “F” (b) verifier. Two Baseline EER curves “Baseline
EER (Set III)” and “Baseline EER (Set IV)” represent EERs from
Tables 4.3 and 4.4. (“Baseline EER (Set II1)” and “Baseline EER
(Set IV)” curves are overlapping in most panels.) Legends are the

same for panels (a) through (5) ...

Attack EERs under different attack configurations with “R” (a -
b), “S” (¢ - d), “A” (e - f), and “F” (g — h) verifiers. EERs are
computed using M = 750. Solid lines represent attack EERs when
the outliers are filtered and the dashed lines represent attack EERs

when the outliers are not filtered ...

Probability distribution of English digraphs. Probabilities were

computed from the digraph frequencies given in [44].........................

Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “R” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

40, plots ¢ and d correspond to M = 60........cccooiiiiiiieiiiieriiern.

Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “R” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

80, plots ¢ and d correspond to M = 100............ccoooiiiiiiiiiin,

Figure B.3:

Figure B.4:

Figure B.5:

Figure B.6:

Figure B.7:

Comparison of attack EERs using attack configurations 1-12 (plots

a. ¢) and attack configurations 13-24 (plots b. d) for "R verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to Af =

120. plots ¢ and d correspond to A = 150ccoooiiiiiiiii

Comparison of attack EERs using attack configurations 1-12 (plots

a. ¢) and attack configurations 13-24 (plots b, d) for “R” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to Af =

300, plots ¢ and d correspond to M = 350...........cccccoviiiiininiiiiinn.

Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “R” verifier. Refer

the Table 4.6 to sce the parameter values used in cach configuration.

The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent attack EERs when the outliers are

not filtered. Plots correspond to M =500cooocoiiiiiiniiiinn.

Comparison of attack EERs using attack configurations 1-12 (plots

a, ¢) and attack configurations 13-24 (plots b, d) for “S” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

40, plots ¢ and d correspond to M = 60...........cccooeeeeiiiiiiiiiii .

Comparison of attack EERs usiug attack configurations 1-12 (plots

a, ¢) and attack configurations 13-24 (plots b, d) for “S” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to Al =

80, plots ¢ and d correspond to M = 100..........cccooviiiiiiiiiiiiiin .

X1

Figure B.8: Comparison of attack EERs using attack configurations 1-12 (plots
a. ¢) and attack configurations 13-24 (plots b. d) for ~S” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outhiers are not filtered. Plots a and b correspond to M =
120. plots ¢ and d correspond to M = 150..............ccii

Figure B.9: Comparison of attack EERs using attack configurations 1-12 (plots
a. ¢) and attack configurations 13-24 (plots b, d) for ~S” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =
300. plots ¢ and d correspond to M = 350.......ccccooieiiiiiiiiiiiiii

Figure B.10: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “S” verifier. Refer
the Table 4.6 to see the parameter values used in cach configuration.
The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent attack EERs when the outliers are
not filtered. Plots correspond to M = 500cooooeeiiiiiiiiiii

Figure B.11: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “A” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =
40, plots ¢ and d correspond to M = 60..........cocveiiieiieiiiiiiiiieeeeeee

Figure B.12: Comparison of attack EERs using attack configurations 1-12 (plots
a, c¢) and attack configurations 13-24 (plots b, d) for “A” verifier.
Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =
80, plots ¢ and d correspond to M = 100............ccoceeiiviiiiiiiieeeeenennnnn,

X1l

Figure B.13:

Figure B.14:

Figure B.15:

Figure B.16:

Figure B.17:

Comparison of attack EERs using attack configurations 1-12 (plots
I g P

a. ¢) and attack configurations 13 24 (plots b. d) for “A” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots @ and b correspond to Al =

120, plots ¢ and d correspond to M = 150.......ccccooeeiiiiiii .

Comparison of attack EERs using attack configurations 1-12 (plots

a, c¢) and attack configurations 13-24 (plots b. d) for “A” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

300, plots ¢ and d correspond to A = 350.......c.ooviii

Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “A” verifier. Refer

the Table 4.6 to see the parameter values used in cach configuration.

The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent attack EERs when the outliers are

not filtered. Plots correspond to M = 500coooiiiiiiiiiiL

Comparison of attack EERs using attack configurations 1-12 (plots

a, ¢) and attack configurations 13-24 (plots b, d) for “F” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

40, plots ¢ and d correspond to M = 60..........cccocoeiiiiiiiini .

Comparison of attack EERs using attack configurations 1-12 (plots

a, ¢) and attack configurations 13-24 (plots b, d) for “F” verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M =

80, plots ¢ and d correspond to M = 100.................ooeiiieiiiiiiiee

X1l

Figure B.1%:

Figure B.19:

Figure B.20:

Comparison of attack EERs using attack configurations 1-12 (plots

a. ¢) and attack configurations 13 24 (plots b. d) for “F~ verifier.

Refer the Table 4.6 to see the parameter values used in cach
configuration. The solid lines represent attack EERs when the
outhers are filtered and the dashed lines represent attack EERs
when the ontliers are not filtered. Plots a and b correspond to Al =

120. plots ¢ and d correspond to M = 150 ...

Comparison of attack EERs using attack configurations 1-12 (plots

a. ¢) and attack configurations 13-24 (plots b, d) for “F" verifier.

Refer the Table 4.6 to see the parameter values used in each
configuration. The solid lines represent attack EERs when the
outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to Al =

300. plots ¢ and d correspond to M = 350................ooiiiiii .

Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “F” verifier. Refer

the Table 4.6 to see the parameter values used in cach configuration.

The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent attack EERs when the outliers are

not filtered. Plots correspond to M = 500ccccooooiviiiiiiiiiin

X1v

CHAPTER 1

INTRODUCTION

In login time verification, the identity of the user is verified “once” before
granting access to the computer. A drawback with login time verification is that
an unauthorized user can gain access to the computer by replacing a legitimate
user who is logged in, either through coercion (i.e., forcefully replacing the user) or
when the logged-in user leaves the computer without logging out. This vulnerability
of login time verification is a serious security risk because, after gaining access, the
unauthorized user can perform a broad range of malicious activities including installing
malware, spreading viruses, and (or) exfiltrating/destroying sensitive data. To deter
this kind of unauthorized access, several studies (e.g., [1 — 5] proposed biometric based
methods to continuously verify the identity of a logged-in user. A subset of these
studies used cyber-behavioral traits (e.g., keystroke dynamics [1 - 4}, [6 — 11]; mouse
dynamics [12 - 14]; and web usage patterns [15]) to continuously verify users. For
continuous verification, cyber-behavioral traits are appealing because they, 1) are non-
intrusive—they emerge naturally from a user’s interaction with the computer and user
intervention is not required when collecting them; 2) provide broader coverage—they
can be collected on almost all desktops, laptops, and mobile devices without requiring

any special hardware (e.g., fingerprint readers, cameras, or biometric scanners); and 3)

are available even when the user is physically away from the computer and is accessing
it remotely.

Among the cyber-behavioral traits, majority of the studies used keystroke
patterns for continuous verification. Two factors motivate the use of keystroke
patterns for continuous verification: 1) typing is one of the most common activities a
user performs on the computer and therefore, one could expect a reasonable supply
of keystrokes for performing continuous verification and 2) studies (e.g., [16, 17])
demonstrated that an individual’s typing behavior can be used as a unique “signature”
to identify the individual.

Almost all the studies in continuous user verification with keystrokes have
focused on developing methods to improve verification performance. The focus of
this research is different. We present a new attack called the “snoop-forge-replay”
attack on continuous user verification with keystrokes. The attack is executed in
three steps: 1) snoop (steal) a victim user’s keystroke timing information using a
keylogger, 2) forge a typing sample using the keystroke timing information stolen
from the victim user, and 3) replay the forged typing sample in such a way that the
continuous verification system thinks that it is the victim user who is typing. The goal
of the attack is to submit forged typing samples to the verifier so that an attacker can
access the computer without being detected. Salient features of the attack follow.

Effective: through a series of experiments conducted using keystroke data
from 350 users (150 genuine and 200 impostors), four state-of-the-art continuous
verification mecthods, and templates built with three types of keystroke latencies, we

show that the snoop-forge-replay attacks have alarmingly high error rates compared

to the error rates of zero-effort! impostor attacks tvpically used to evaluate keystroke-
based continuous verification systems.

Few words become deadly: the attack is surprisingly effective even when a
small amount of snooped latencies are used to build forgeries. With 20 characters (few
words of text) to 100 characters (less than two lines of texts typed in a typical email
textbox) of snooped information, we achieved high error rates against state-of-the-art
verification systems. (See Figure 4.7, Page 53 for the error rates of snoop-forge-replay

attacks launched with short snooped text).

Legacy keystroke samples remain a threat: because the snoop-forge-
replay attack uses forgeries built with stolen latencies of a user, the high attack success
rates can seem to be obvious and expected. However, we snoop the legacy keystrokes,
which are keystrokes of a user captured approximately siz months before collecting
his/her training (enrollment) samples. Given that behavioral traits such as keystroke
latencies have high intra-user variabilities and can change over time, it is interesting
to note that our attack achieves high success rates when forgeries are created using

legacy keystrokes.

Speed and scalability: by using short stolen samples, the attack can be
launched quickly as the attacker does not have to wait long to collect victims’ keystrokes.
By exploiting virtualization, we show that thousands of attacks can be launched to

stmultaneously attack hundreds of users in a short time span. Using a virtualization

Tn a zero-effort impostor attack, the “natural” typing patterns of one user are used as impostor
attempts against another and the impostor does not deliberately try to mimic a victim user.

setup. we created on average 5594.98 to 299.38 attacks per user in 24 hours. In Table
1.7 on Page 18. we give the average number of attacks per user.

Three factors make the attack feasible: 1) Many hardware and software
kevloggers that can steal an individual’'s keystroke timings are openly available on the
Internet for different platforins (e.g., MS Windows, GNU/Linux). 2) It is possible
to develop a “keystroke emulator” to replay forgeries. A keystroke emulator is a
software program that generates synthetic key press and release events using APIs like
SendInput [18] for MS Windows or programs like xsendkeycode [19] for X Windows
system. 3) In sample-level attack, the attacker deceives a verification system by
presenting fake key press and release events to the keystroke sensor. To launch
the attack, the attacker does not have to know the internal specifications of the
continuous verification system, such as what verification algorithm is being used,
verifier’s parameter settings, how the templates are constructed, and latencies being
used, all of which can be proprietary information.

Contributions of the dissertation are as follows:

In feature-level attack, we performed a series of experiments on keystroke
data collected from 50 users. We show that forgeries created from snooped keystroke
information have alarmingly high impostor pass rates. Our results show that at verifier
configurations yielding less than 0.1 zero-effort impostor pass rates (at < 0.15 false
reject rate), the success rates of forgery attempts is between 75% and 88%

In sample-level attack, we conducted 2640 attack experiments with 24 attack

configurations, 10 individual and fusion verifier configurations, 11 matching-pair

n

settings (24x10x11 = 2640} and achieved as high as 125.5 to 2915.62 percentage
mcrease in error rates compared to the error rates with bascline zero-effort impostor
attacks (sce Table 4.9. Page 55 and the discussion in Section 4.2.3, Page 48). Our
results reveal that there is a wide disparity in the error rates achieved with the zero-
effort impostor attacks and the error rates achieved with snoop-forge-replay attacks
(see plots in Figure 4.4, Page 50).

Implication: The high error rates with snoop-forge-replay attacks raise two
fundamental questions: 1) is it secure to use keystrokes to continuously authenticate
computer users? and 2) how can we redesign keystroke-based continuous authentication
systems that are resilient to forgery attacks?

We analyzed the effect of four attack parameters, i) number of snooped
keystrokes-we experimented with 20, 50, 100, 200, 600, and 1200 snooped keystrokes;
ii) filtering outliers in the snooped keystrokes—we experimented with and without
filtering outliers; iii) Gaussian perturbation of snooped latencies—we experimented
with and without perturbing latencies, and iv) frequency of occurrence of digraphs in
snooped text-we experimented with 1, 2, and 3 occurrences of digraphs.

Findings: Snooping more keystrokes from a victim user does not necessarily
result in better attacks. In fact, our results with two verifiers (“S” and “A”) showed
that snooping more keystrokes decreased the pass rates of the attacks. We analyzed
(in Section 4.2.6, Page 56) why snooping more keystrokes may have adversely effected
the attack performance. Our results also showed that filtering outliers in the snooped

keystrokes and considering digraphs that have occurred at least twice improved the

pass rates of the attack. Gaussian perturbation made the attack weak against “S”
and “A” verifiers and had the least effect on “R™ and ~“F7 verifiers.

To generate a sufficient number of snoop-forge-replay attacks for evaluation, we
emulated the typing activity of a victim user for 24 hours (i.e.. we executed a kevstroke
emulation program for 24 hours to generate a sufficient number of forgeries for each
victim). Because we experimented with 150 victim users and 24 attack configurations,
we would have to run the emulator for 150 (victims) x 24 (attack configurations) x
24 hours = 3600 days {or approximately 10 years). To perform emulation at this scale,
we set up a virtualization environment with 150 virtual machines. We dedicated one
virtual machine for cmulating a victimm. For cach attack configuration, we ran 150
emulators parallely on 150 virtual machines and reduced the emulation time to just
24 days. See Section 3.4, Page 29 for details on the virtualization environment.

An attacker can exploit virtualization: By parallely running 150 virtual ma-
chines, in 24 hours, we forged thousands of attacks against 150 users (see Table 4.7,
Page 48). The attacker, by exploiting virtualization, can further reduce the time to
forge the same number of attacks, say from 6 to 24 hours, by quadrupling the number
of virtual machines. By increasing the number of virtual machines, the attacker can
also generate a huge number of forgeries (e.g., in the order of millions) or scale the
attack to victimize thousands of users.

We collected keystroke data from 150 users, who gave their typing samples in
three phases, over a period of one year. To our knowledge, this is the longest time
span data used in continuous keystroke verification research. Using this data, we

demonstrate that it is possible to achieve high attack success rates with keystrokes

samples stolen sic months before the training/enrollment samples. Thus. our work
indicates that old stolen keystroke samples remain a threat and an attacker can
potentiallv exploit stolen keystrokes to launch forgery attacks over a prolonged period

of time.

CHAPTER 2

BACKGROUND

2.1 Continuous Verification with Keystrokes

In Figure 2.1. we illustrate continuous user verification with keystrokes. In
the training phase, keystroke latencies are extracted from the enrollment text and
processed, users’ keystroke templates (profiles) are created. and a verifier (imatching
algorithm) is configured. In the verification phase, keystroke latencies are extracted
from the verification text. A verifier matches the latencies against the user’s template
to generate a match score. In continuous verification, extracting latencies from
verification text and matching them against the user’s template is a continuous
process. Details follow.

Keystroke Latencies: Widely used latencies in the literature are: 1) key hold
latency—is the time between press and release of the same key, 2) key press latency—is
the time between press of a key and press of the next key, and 3) key interval latency—is
the time between the release of a key and press of the next key. We experimented
with key hold, key interval, and key press latencies.

Template: A template stores the keystroke signatures of a user. We used
a 26-by-26 matrix as the template. There are 676 cells in the template. Each cell

correspouds to an English alphabet pair: aa, ab, ac, -- -, zy, zz. In our experiments,

9

Training Phase

Latencies OQutliers

Q"‘ |
A - isc
(;MQ(B m ., Extract ___ Discard | = Template
i

Enroliment Text

Figure 2.1: Overview of continuous verification with kevstrokes. In the training

phase, keystroke latencies are extracted and outliers are removed. Each “e” in the

template represents a cell entry containing the latency values (and their mean and
standard deviation) of an English digraph. In the verification phase, latencies are
extracted as the user types the verification text. After obtaining M matching pairs,
the verifier matches the latencies with the template and outputs a score. A verification
decision is computed by thresholding the score. Based on the decision, the user
is either allowed to continue or an action is taken. The perforated box shows the
continuous verification loop.

when we used key press (or interval) latencies, each cell in the template stored key
press (or interval) latencies of a letter pair. For example, with key press latencies,
if cell “ab” has {(110,90, 100), yap = 100, 04, = 10}, it means that the user (during
enrolment) typed ab thrice with 110ms, 90ms, and 100ms delay between the press
of a and the press of b and the mean delay is 100ms with 10ms standard deviation.
Similarly, if it were key interval latencies, then 110ms, 90ms, and 100ms would be
the delays between the release of a and the press of b. Unlike key press and interval
latencies, a key hold latency by definition is associated with a letter (and not letter
pair). Because our template holds only letter pairs, when we used key hold latencies,
each cell stored the key hold latencies of the first letter of its letter pair (e.g., cell “ab”

stored key hold latencies of a only when the next letter typed is b). Our template

10

is homogencous. meaning it stores only one type of latencies (i.e.. either key hold.
imterval. or press). because the continuous kevstroke verifiers used in the dissertation
are not designed to operate with a template containing multiple types of latencies
(e.g., a mixture of both key hold and interval). Because our template does not store
information on “CAPS LOCK™ key, it does not distinguish between capital and small
letters (z.e., latencies of ab and AB are stored in the same cell “ab”).

Outlier Detection: Latency values that markedly deviate from the majority
of the latency values of a user can distort the typing profile of a user, especially if the
profile contains statistics sensitive to the outliers (e.g., mean). Outliers can occur, for
example. when users pause while typing to compose, recollect, or find information.
Several studies (e.g., [21, 22]) performed outlier detection and reported performance
gains. Therefore, we also included outlier detection in our experiments. We used a
distance based outlier detection method that worked well in an earlier work [22]. The
method performs two steps on each non-empty cell in our 26-by-26 template matrix—1)
for each latency value in a cell, count the neighbors, i.e., the number of latencies in
the cell that occur within a predefined neighborhood threshold (r) and 2) a latency
value is considered an outlier if the number of neighbors is less than a% of the total
number of latencies in the cell. The distance between a latency value and its neighbor
is calculated as the absolute difference in latencies. After performing trial experiments,
we set r as 100 and « as 68%. Additionally, we discarded all latency values greater
than 300ms.

Verifier: The majority of verifiers proposed in the KD litcraturc are password

or fixed-text based login time verifiers, i.e., verification is performed once when a

11

user enters a password or a predefined text of fixed length. However. in continuous
verification with KD. the text of the user is unconstrained (ie.. user is free to tvpe
anything) and the verifier should be able to base its decisions on any keystroke that
the user types.

Matching Pairs: Because there are no constraints on what a user types
during continuous verification. some keystrokes typed during the verification phase
may not have reference signatures in the template. For example, if the user types
“zen,” the cell in the template corresponding to the letter pair “ze” may be empty
(i.e., may not contain a latency value). This situation can arise because the letter
pair did not occur in the enrolment text used for building the template. This problem
can be resolved by performing verification using letter pairs that are common to the
template and the verification text. Following (1], we refer to these common letter pairs
as matching pairs. In our experiments, the number of matching pairs “*M” needed by
the verifier to output a match score is a configurable parameter.

Keystroke Verification Loop: A verification loop (dotted box in Figure 2.1)
repeats four steps: 1) when the user types, record keystroke events using a keylogger, 2)
extract keystroke latencies from the event timestamps and process (e.g., filter outliers),
3) perform verification after collecting A matching pairs from the text typed by the
user and obtain a match score, and 4) output the match score or make a verification
decision by comparing the score against a threshold (77). In a snoop-forge-replay
attack, instead of typing text (in Step 1), the attacker synthesizes keystrokes with an

emulator.

12

Performance Measures: Impostor Pass Rate (IPR) is the ratio of the number
of impostor attempts wrongly accepted as genuine over the total number of impostor
attempts. False Reject Rate (FRR) is the ratio of the number of genuine attempts
wrongly rejected over the total number of genuine attempts. Equal Error Rate (EER)
is the error rate at which IPR and FRR are equal. Detection Error Trade-off (DET)
curves show how IPRs and FARs vary with verification threshold. We evaluated the

snoop-forge-replay attacks using EERs and DET curves.

2.2 Related Research

2.2.1 Keystroke-based User Authentication Systems

Here, we briefly discuss related research in continuous authentication with KD.
Monrose and Rubin in [2] proposed a continuous identification method (i.e., a test
sample was matched against all the users’ templates to identify the closest user). Data
was collected from 41 users over a period of seven weeks. However, because of errors,
data from 31 users was used in the experiments. Each user typed from a few given
phrases and/or sentences of their choice. Participants took part in the typing sessions
at their convenience using their own computers. Details on sample sizes (i.e., the
number of characters typed by the users for enrolment and testing) is not mentioned.
A user’s template is comprised of means and standard deviations of key hold and key
interval latencies. Latencies with values greater than T standard deviations from their
means were treated as outliers and discarded from the template. After discarding
outlier latencies, the means and standard deviations were recomputed. Identification

was done by matching a test sample (with outliers removed) to the templates of

13

all users using: 1) the Euclidean distance measure. 2) the non-weighted probability
measure. and 3) the weighted probability. The test sample was identified as belonging
to the user with the minimum distance or maximum probability value. When free (7.¢.,
unstructured) text was used for enrolment and identification. the authors reported
very low (between 17.1% and 23.0%) identification accuracies. However, when text
from the given phrases was uscd, the authors reported 90% identification accuracy
with weighted probability measure.

Dowland et al. in [3] also proposed a continuous identification method. In
their method, the users typed free (unconstrained) text for enrolment and verification.
A user's template consisted of the means and standard deviations for key press
latencies. Only those latencies that occurred a minimum number of times were used to
build the template. Latencies outside 40ms and 750ms range were excluded. During
identification, a key press latency from the test sample was considered wvalid if its
value was within T'.w standard deviations from mean value in the template (w is a
weight factor). The user with the highest number of valid key press latencies was
considered as the owner of a given test sample. A total of 10 users participated in the
data collection, but only four users who gave a large number of samples were used in
the experiments. Dowland et al. in [3] reported that the best identification accuracy
of their method was 50%. In [3], the authors improved this method and reported close
to 60% accuracy.

Nisenson et al. in [23] proposed a continuous verification method. In their
method, each user was treated as an emitter of discrete symbols, i.e., the user emits

a sequence of key press events, key release events, and time differentials, which are

14

mapped to a finite svibol set. The template takes the form of a weighted phase tree
built using the Lempel-Ziv universal prediction algorithm on a user’s symbol sequences.
Verification score was determined by calculating the conditional probability that a
given sequence of svmbols originated from a user’s phase tree. A user was verified
as genuine if the probability estimate of the his/her symbol sequence was greater
than a threshold. Although this method achieved 96.77% accuracy, the accuracy was
estimated with only five users (and with data from a few sessions), which leads us to
question the reliability of the accuracy.

Gunetti and Picardi in [1] proposed a continuous authentication method. A
user’s template consisted of mean n-graph latencies. Authentication was performed
using two measures: 1) the relative measure and 2) the absolute measure. The
relative measure is the normalized rank disorder between n-graph latency pairs that
are common to the template and the test sample. In this dissertation, we implement
the relative measure as one of our baseline verifiers. In the absolute mecasure, a
similarity score is computed between an n-graph in the template and the test sample as
max(Dyemp, Diest)/ mMin(Diemp, Diest), where Dyey, and Dy, are the n-graph durations
in the template and the test sample, respectively. If the ratio is below a threshold,
the n-graph is considered valid. Then the absolute measure is computed as the
proportion of matching n-graphs that are also valid n-graphs. Gunetti and Picardi
performed experiments with 40 users (treated as genuine), who provided 15 typing
samples and 165 users (treated as impostors) provided one typing sample each. Best
result (IPR:0.044%, FRR:6.833%) was achieved when relative and absolute methods

were combined. However, in order to achieve these results, the method required

multiple sessions consisting of 700-900 kevstrokes. When the number of keystrokes
was reduced to 1/4 original length (approximately 200 kevstrokes). the accuracy
dropped dramatically (IPR:0.3951%. FRR:29.1667%).

2.2.2 Non-zero Effort Attacks on Keystroke-based User Authentication
Systems

To the best of our knowledge, this is the first work to propose non-zero
effort impostor attacks against keystroke-based continuous user verification. The key
difference between the feature-level attacks in [24] and the sample-level attacks is that,
sample-level attack is an automated attack (i.e., a computer program continuously
generates key press and release events as if they were being produced by a legitimate
user). On the other hand, a feature level attack requires the attacker to know what
features the verification system is using. Additionally, the attacker has to know how
to input the synthesized features directly into the verification algorithm, bypassing
keystroke data acquisition, feature extraction, and preprocessing modules. Because
the sample-level attack directly submits (fake) samples to the verification system, the
attacker does not have to know the internal details of the system. So the sample-level
attack is more practical and easier to launch compared to the feature-level.

Some previous studies in fixed-text (i.e., password) based keystroke verification
systems used non-zero effort impostor attacks generated by trained human subjects.
For example, [25] reported higher impostor pass rates when the impostor subjects
were allowed to observe how a genuine user typed his/her password. [26] conducted
experiments to examine how the amount of practice by the impostor, among other

factors, affected the performance of password based keystroke verification systems.

16

[26] concluded that impostor’s practice can be a “minor” threat to password based
kevstroke verification systems.

In the papers cited above. trained human impostors had to type short strings.
containing at most 8 to 12 characters. Therefore, it was possible for a human impostor
to practice and type like a genuine user. However, in continuous verification, the
impostor would have to type much more. For instance, in our experiments, to generate
one verification attempt with 20 matching pairs, a user typed on average 54 characters,
which took 14.83 seconds (see Table 4.5, Page 45). At this rate, if the impostor has
to continuously type for five minutes, he/she would end up typing more than 2000
characters. Typing so many characters with an intent to mimic a legitimate user is
not an easy task for a human impostor. Furthermore, this type of attack is not easily
scalable because of the human effort and resources involved. So, for keystroke-based
continuous verification systems, impostor attacks by trained humans do not pose
as much threat as automated forgery attacks, like the “snoop-forge-replay” attack
presented in this dissertation.

Therefore, there are at least two practical bottlenecks in using human impostors
against continuous keystroke verification systems: 1) how to train a human impostor
to consistently type like a legitimate user for long durations and 2) if at all such
training is possible. the resources (in time, effort, and monitory costs) needed to train
the impostors to launch attacks against larger victim populations can be prohibitive.

Recently, [27, 28] reported an automated impostor attack against short string
based keystroke verification. In [27] bots inject keystroke events on a client machine in a

client-server model. The keystroke latencies are statistically-generated and assumed to

17

follow Gaussian distribution which are computed by the latencies of a small population
of 20 users. [27] reported that these attacks were incffective.

In [28] the attack is a guessing attack that incrementally searches the feature
space of a large population of users until a feature vector that matches the target
user’s template 1s found. The master-kev is repeatedly submitted to the verification
algorithm, and every time it is submitted, one of its feature value is changed by one
standard deviation until the verification algorithm declares that the key has matched
the victim’s template. To speed-up the attack, instead of changing one feature value
at a time in the master-key, [28] identified conditionally dependent feature pairs and
changed two feature values at a time. The attack in [28] works against login-time
verification with short pass-phrases. However, the attack is not suitable against
continuous verification because: 1) the attack assumes that the text is fixed, i.e.,
the latencies from which the master-key is derived and the templates that are being
attacked come from typing the same text, an assumption clearly invalid in continuous
verification where the users are free to type any text; and 2) the attack performs a
“brute force” search in a feature space that grows exponentially with the length of
the pass-phrase. Consequently, with longer pass-phrases, the attack tends to make
more erroneous attempts (i.e., infertile guesses) before converging to a vector that
successfully passes verification. In continuous verification, a verification attempt has
more characters. For example, in our experiments, verification attempts had between
54 characters (with 20 matching pairs) and 2000 characters (with 750 matching pairs).

With so many characters, the attack in [28] would have made thousands of unsuccessful

18

attempts before producing a successful attempt. With so many unsuccessful attempts.
a continuous verification system could easily be alerted.

2.2.3 Non-zero Effort Attacks on Other Behavioral Biometric Authentica-
tion Systems

The work in this dissertation was motivated by the findings of two studies:
1) [29] studied the effect of forgery quality on handwriting biometric security and
showed that impostor pass rates of trained and generative (i.e., “algorithmic”) forgery
attacks outperformed naive forgeries and 2) [30] cvaluated spoofing attacks on gait
authentication and showed that attackers with knowledge of their closest person in
the database can significantly raise impostor pass rates. Below, we briefly discuss {29],
which is closer to our work in this dissertation.

[29] reported the effect of six types of forgery attack models on handwritten
signature based verification. One of them was the generative forgery model. which
involved algorithmically generating forgeries of a target writer by collecting a small set
of writing samples from 1) the target writer (these samples were referred as “parallel
corpus”) and 2) a set of different writers. Results in [29] showed that, compared to
trained human forgers, generative attacks had higher impostors pass rates for block
and cursive writers but had lower rates for mixed writers. A notable similarity between
the generative attacks in [29] and the snoop-forge-replay attack is that both require a

surprisingly low number of stolen samples to generate effective attacks.

CHAPTER 3

SNOOP-FORGE-REPLAY ATTACK METHQODS

The attack presented in this dissertation falls under the broader class of
generative attacks on behavioral biometric systems [29], but is tailored to attack
continuous keystroke-based verification systems. Below, we discuss the steps in

snoop-forge-replay attack.

3.1 Snooping Keystroke Timing Information

In this step, the attacker secretly steals a victim’s keystroke timing information.
For example, if the victim typed the text, “this is snooped text,” the attacker
records a series of timestamps—P, (time when t was pressed), R, (time when t was
released), Py, Ry, Pi, Ry, P, Rg, Pspace, Rspace, and so on.

An attacker can snoop a victim’s keystroke timing information using a hardware
keylogger or a software keylogger. Software keyloggers have become the most popular
forms of keyloggers because they can be easily developed, are easily available,! and
can be deployed from remote locations onto a victim’s machine (e.g., using trojans

and spyware).

TAttackers can access hundreds of software keyloggers from code-sharing websites like www.
SourceForge.net. Anti-Phishing Working Group (www.antiphishing.org) reported in [31] that
3121 websites hosted keyloggers in February 2007 alone.

19

http://www.antiphishing.org

1
Use a Keylagger To A ,,,2 - 3 Compute M 4 d
e — - Record Key Press and Extract Digraph " Filter Digraghs S?_mﬁg‘@‘fi
User / Release Times Latencies Fram T o-andarc Cevialion
‘ =m0 | digraph latency > for Digraphs
TygesText:‘, > Eg.Pressth) » Snooped Infarmation %,—ry\ 300ms, discard. lgnare //——» ‘ o)
~ Eg. hello | ‘ Release(h), Press(e). Eg. KPlihe)= | .. digraphs that appear . .g.(,hm)u E(' 0
R Releasel(e). Press(l). ; Press(e) - Press(h) ’ less than 2 times, sigma e(. T)‘u Bl
: Releasell). . Lo / SIgMatEL)...
B | W/ —
—] "/
Y
5 76 7 8
X ™
! ’ Reada “Aremeanand N Yes . -
: Replay Text File ! / : [Generate Gaussian | Submit forged
b .. __digraphfrom| " standard dev:atinn\ = iate for th L diranh latency t
+Afile Cantaining High Replay Text ~ avallableforthis T e loriie 'araph fatancy ta
t Frequency English Wards | Fle ' S digraph? 1 digraph the verifier
. e \\\ S

LW

1
|
i
§

Figure 3.1: Snoop-Forge-Replay attack flowchart. Step (1)-snoop keystroke timings.

Steps (2)-(8)-create and replay a forged attempt.

We used keystroke data collected from 150 participants during the period 13-21

October 2009 as snooped keystrokes (see Section 3.5 on Page 33 for details). This data

was collected using a software keylogger developed in C#. The snooped keystrokes

were used to attack templates that were built from keystrokes collected approximately

six months after the snooped keystrokes.

3.2 Creating a Keystroke Forgery

3.2.1 Creating Forgeries in Feature-level Attack

For creating a forged attempt at the feature-level, we assume that the attacker

has the following knowledge.

Knows how to compute keystroke features (i.e., hold, interval, and

digraph latencies): An attacker can acquire this information by reading keystroke

dynamics (KD) literature or can use kevlogger codes widely published on the Internet.
For instance. attackers can access hundreds of kevlogger codes from code-sharing
websites like SourceForge .net.

Knows how to synthesize a keystroke feature from a probability
distribution: Though we are not aware of any study that conclusively establishes
that kevstroke features follow Gaussian distribution, several KD authentication studies
have assumed Gaussianality of keystroke features. An attacker can either follow these
studies or explore distributions other than Gaussian. However, from an attacker’s
viewpoint, the Gaussian assumption is appealing because its parameters (i.e., mean
and standard deviation) are easy to compute and most programming languages provide
tools to generate Gaussian variates.

Knows how to handle extreme feature values: It is well known that the
mean is sensitive to extreme values. Based on this knowledge, an attacker can choose
to discard large feature values before computing the mean. On the other hand, an
attacker can choose to ignore this step.

For each user U, we create forgery attempts as follows. We extract digraph
latencies from U;’s snooped keystroke timings (see Step 2, Figure 3.1). We assume
that digraph latencies follow Gaussian distribution. We implement a simple filter that
discards digraph latencies greater than 300ms (Step 3, Figure 3.1). After filtering, we

compute the means and standard deviations of the digraphs (Step 4, Figure 3.1).

3.2.2 Creating Forgeries in Sample-level Attack

In this step. we create a keystroke forgery of a victim user U; at sample-level.
A forgery has two parts: 1) “dummy” text and 2) a series of latencies between the
press and release of letters in the dummy text. For example, a forgerv of U; can have
the dummy text. “this is dummy text.” The key hold and interval values for this
text come from the snooped keystroke latencies of U;.

Computing key hold and interval latencies from U,’s snooped keystrokes:
Let P, Ry, Py, Ri, Ps, Ry, Ps, Rs, Pspace. Rspace, Pi, Ry, and so on be the snooped
keystroke timestamps collected when U; typed the text, “this is snooped text.”
Using these snooped timestamps, the attacker computes kh,., = R; — P, (key hold
latency of t, when the next character pressed is h), ki.., = Py — R. (key interval
latency between t and h), khy.;, Kin. s, kby.q, Kij.s, and so on. If any latency occurs
more than once, we take the average. Next, we use the snooped “kh” and “ki” values
as the key hold and interval latencies of the letters in the dummy text. For example,
in the forgery containing the dummy text, “this is dummy text,” we use kh.., for
forging the key hold latency of the first “t” in the dummy text, and in the same
fashion, use ki,.p for forging the key interval latency of “th” in the dummy text.

What if there are letters in the dummy text for which snooped
latencies are not available?: Because our primary goal is to demonstrate how
forgeries based on snooped keystrokes can be used to evade detection, when preparing
a forgery, we ignored those letters in the dummy text for which corresponding snooped
latencies were not available. This somctimes could render the text gencrated by the

forgery linguistically meaningless, especially when forgery is created from limited

23

amounts of snooped text. However. note that current kevstroke-based continuous
verification systems. to the best of our knowledge. do not check the language generated
by the typist, and therefore, our attack in its present form straightforwardly exploits
this vulnerability.

If the attacker wants to forge specific words to execute a series of commands,
then the attacker can choose to fill the missing latencies with very large values, so
that they are filtered by the outlier detection method and thus are disregarded by
the continuous verifier. An alternate way is to fill the missing latency values using
latencies computed from a population of users (as done in [29] for spoofing handwritten
signatures).

Table 3.1: Characteristics of the “dumny text” file used in our experiments.

497,184 words from COCA corpus and
20 Wikipedia documents
Total # of unique letters 26
Total # of unique digraphs

Text Source

(letter pairs) 676
Total # of letters 5,021,665
Total # of digraphs 4,222,420
10 most frequent letters e, a,i,n, r,o, t,s1,d
10 least frequent letters 4, X, J,2, v, w, k y, f, b
10 most frequent digraphs in, er, an, on, re, ed, te, ar, en, es

10 least frequent digraphs qk, ja, qj, xk, jk, qy, gz, vq, qz, gh

Preparing a “dummy text” file: The “duminy text” file supplies text to
create a forgery. Technically. the file can contain any text, ranging from multiple
repetitions of a single letter (e.g., aaa...) to a large text corpus representative of
English language usage (e.g., Corpus of Contemporary American English (COCA)

[www.americancorpus.org]). For our experiments, we created a “dummy text” file

http://www.americancorpus.org

24

with 497.184 words from COCA? [32]. In addition. we added text from 20 Wikipedia
documents. (In Appendix A, we give the web addresses of the Wikipedia documents).

In Table 3.1 we summarize the characteristics of dummy text.

3.3 Replaying a Forgery of Victim U;:
3.3.1 Replaying Forgeries in Feature-level Attack

Replaying a forged attempt of a user U; involves generating keystroke timing
events as if U; was typing some text. Replaying involves two key components: 1)
a database containing text and 2) a “replayer” software, which reads the text in
the database and generates keystroke timing events. Below, we explain the two
components in detail.

Text Database: In feature-level attack, to supply text to the replayer we used
a file containing Fry’s Instant Word List [33], which is a list of 1,000 most common
words occurring in the English text, arranged in frequency order. Fry F[33] showed
that the first 300 words in this list make up 65% of all written material.

Replayer Software: A replayer can be implemented in two ways: 1) the
replayer emulates U;’s typing behavior by synthesizing actual key press and release
events for the text in the database and 2) the replayer reads the text and generates
feature values (e.g., digraph latencies) for user U; and submits it to the verifier.

Generating keystroke feature values: A replayer can replicate U;’s typing
behavior is by reading text from the database and directly supplying keystroke feature

values (digraph latencies in our case) to the continuous verification system. Again,

2COCA is a large, freely-accessible text corpus on the web. The corpus contains 410 million words
(20 million words each year from 1990 through 2010).

the feature values can be generated using a Gaussian random number generator, with
means and standard deviations calculated by snooping U;’s keystrokes.
3.3.2 Replaying Forgeries in Sample-level Attack

Keystroke Emulator: We developed a keystroke emulator that injects
svnthetic key press and release events. We programmed the emulator in Visual
C++ and used SendInput API. The goal of the emulator is to use the snooped
latencies to inject key press and release events for the dummy text in a way that the
verifier thinks that it is the victim U; who is typing the dummy text. The emulator
algorithm, referred to as “Algorithm 1,” gives the steps to forge and replay a victim
user U,;’s typing pattern.

The input to the algorithm is a dummy text file and a series of key hold and
interval latencies computed from U;’s snooped keystrokes. We initialize variables in
lines 2-9. The trap_counter variable is used when the program encounters a character
pair in the dummy text for which a snooped latency is not available. The trap_counter
variable counts the number of characters to be traversed in the dummy text, to find a
character pair for which a snooped latency is available.

In line 10, the while loop ensures that Algorithm 1 replays the dummy text for
at least 24 hours. In lines 11-26, we create and replay a forgery. The If condition in
Line 14 is executed when a letter pair from the dummy text (stored in first and second
variables) has corresponding snooped latencies. If snooped latencies are available,
Algorithm 1 calls the replay function in line 16 to generate key press and release

events. The else in Line 20 is executed if the letter pair (first, second) does not

w0

L NS

10

12
13

14

15

16

17

18
19
20
21
22
23
24
25
26
27

© WX SR e WN

10

IALGORITHM 1: Replay the forgery of user U7,

Input: Dummy text file containing 497,184 words from COCA and text from 20 Wikipedia pages. Key hold (e.g..
kha:y. khy:space. ete.) and key interval (e.g.. kin:y. kiy:space. etc.) latencies computed from U, s snooped
keystrokes. Here. “khy.y" denotes the snooped key hokd latency of x when the next character typed is y and
“kiy.y" denotes the snooped key interval latency between characters x and y.

Output: A replay of user U,’s keystroke forgery.

Initialization:

i« Number of characters in the dummy text file.

dummyTextArr [0:n — 1] « Copy each character in the dummy text file into the arrav: /*Each cell in the
dummyTextArr holds a character in the dummy text file*/

dummylndexr <« 0: /*Index to the first character in the dummyTextArr */

trap.counter « 0: /*Counter to ensure that character pairs in the dummy text that not do have corresponding
knooped latencies do not stagnate the replay. If the snooped latencies are not available even after traversing 500
characters in the dummy text, then character pair is reset to a random character in dummyTextArr (Line 25)*/
first « @: /*A variable to store first character.*/

lsecond « B; /*A variable to store second character.*/

Istart Time <+ System time at the start of the program:

lcurrent Time < Current system time;

while (currentTime startTime < P hours) /*We set P to 24.*/ do

first « dummyTertArr [dummylndex }:
second + first;
while dummylndex < n and trap.counter < 500 do
if (khjirsiisecond and Kigipa:gecond) is snooped /*checks if letter pair from the dummy text has
corresponding snooped latencies.*/ then
KHjir.sI.:sm:und At khﬁrc[:sﬂ‘nnd§ KIfzrsl:.wirmul « kiﬁr.s-t:.wr.'ond: /*Forge latencies. “KH” and “KI” denote
latencies in a forgery.*/

replay (first, KHp, ot v0conds Klpratisecond); /*Replay dummy text by generating key press and release
events of first when second is the next character*/

first « second: trap_counter <« 0;

end
else
[trap_counter < trap.counter +1;
end
dummylndexr + dummylndex +1;

second dummyTeztArr [dummylndex |,

end

dummylnder + Reset to a random cell of dummyTextArr;
current Time <« Current system time; trap_counter « 0;

end

IPROCEDURE 1: replay(char ¢, real hold.delay, real interval delay)
Input: The character ¢ to be replayed, key hold delay of the character, and key interval delay between the character
and the next consecutive character.

Output: Generate press and release events for character c.

INPUT xkey; /*Iniatialize key as the pointer to INPUT structure.*/

key = new INPUT,;

key —type = INPUT_KEYBOARD; /*Keyboard event. Use the “ki” structure of the INPUT.*/
key —ki.wVk = ¢; /*Assign character ¢ to the keyboard event.*/

key —ki.dwFlags = KEYEVENTF_KEYDOWN; /*The event is a key press event.*/

BendInput (1,key,sizeof (INPUT)); /*Press c.*/

sleep (hold_delay); /*Sleep for hold.delay milliseconds to generate key hold time.*/

key —ki.dwFlags = KEYEVENTF_KEYUP; /*The event is a key release event.*/

BendInput (1,key,sizeof (INPUT)): /*Release c.*/

sleep (interval_delay); /*Sleep for interval_delay milliseconds to generate interval time.*/

27

have corresponding snooped latencies. The trap_counter ensures that if the snooped
latencies kh firersecond and Kifirgpsecona are not available even after traversing 500 (an
arbitrarily chosen number) characters in the dummy text, then the first and second
are reset to a random character in the dummyText Arr (Line 25).

In Procedure 1, we outline the implementation of the replay function (Line 16
in Algorithm 1). The function takes three parameters: 1) ¢ is the character key that
has to be pressed and released, 2) hold_delay is the delay (in milliseconds) between
the press and release of ¢, and 3) interval_delay is the delay (in milliseconds) between
c and the subsequent character in the dummy text. To generate the key press and
release events, the replay function uses SendInput function (lines 7 and 10), which
is a part of Windows Application UI Development API [18]. The latencies between
press and release events are generated using the sleep function (lines 8 and 11).

Detailed explanation of lines 10-27 in Algorithm 1: We explain lines
10-27 with an example. Let the snooped text be “this is snooped text” and
the dummy text be “this is dummy text.” From line 3, dummyT ezt Arr[0] = t,
dummyTextArr[l] = h, dummyTextArr[2] = 1, dummyTextArr[3] = s, and so
on. From lines 11 and 12, first = second = t. Because dummylnder = 0 and
trap_counter = 0, the if condition in line 14 checks if kh,.. and ki,., are available
from the snooped keystrokes. Because they are not available (note “tt” is not present in
the snooped text) , lines 21 and 22 in else are executed, resulting in dummylndezr = 1,
second = h, and trap_counter = 1. In the next iteration, the if condition in line 14
checks to see if khyy and ki, are available. Because both kh,, and ki, are available

from “th” in the snooped text, (in Line 15) khy, is assigned to KH,, and ki, is

28

assigned to Klgy. Then, in Line 16. KHey. Kl and first (= t) are passed to the
replay () procedure. In lines 17 and 18. first = h. dummylnder = 2. trap_counter
is reset to zero. and second = i. In the subsequent iterations. first takes the values:
“i,7 “s” "SPACE.” *i,” “s.” “SPACE.” and correspondingly. second takes the values
“s,” “SPACE.” *i,” “s,” “SPACE,” and “D.” In the next iteration. first = SPACE and
second = D, lines 21 and 22 are executed because Khgpaeg.p and kigpacg.p are not
available from the snooped text. From lines 21 and 22, dummylndex = 9, second = u,
and trap_counter = 1. Because Khgpacg.w and Kigpacg., are also not available from the
snooped text, lines 21 and 22 are again executed, resulting in dummylndex = 10,
second = u, and trap.counter = 2. Lines 21 and 22 are executed in the next
few iterations, each time incrementing the trap_counter, until second = t. Because
khgpace:+ and Kigpace.+ are available from the snooped latencies, lines 15-18 are executed.
In this fashion, Algorithm 1 continues to execute for 24 hours. The final output of
Algorithm 1 is the replay text: this is text......

At this point, we emphasize that Algorithm 1 is one of the many possible ways
to generate snoop-forge-replay attacks. While maintaining the general idea of snooping
and replaying the keystrokes, the attacker can evolve Algorithm 1 in several ways. For
example, the attacker can devise heuristics to impute missing latency values or snoop

only selected latencies from a victim, to generate desired text or system commands.

29

3.4 Virtualization Set-up for Forging and Replaying Sample-level Attacks
on a Large Scale

To launch a large number of attacks on 150 victim users (see Contribution 3.
Page 2), we built a virtualization set-up at Louisiana Tech University’'s Cyber Security
Laboratory. The set-up had 150 virtual machines (VMs). Each VM ran a copyv of our
keystroke emulator program (i.e., Algorithm 1) to generate forgeries for one victim
user.

To create the virtualization set-up, we used a cluster of 8 Dell PowerEdge
MT710 Blade servers, each with 12 core Intel Xeon 3.33GHz processors. Each server
was equipped with 96GB main memory. Four Dell EquallLogic iSCSI storage arrays
provided 20TB secondary memory. We used VMware 4.1 vSphere Suite [34] to create
150 VMs. Each VM had Windows XP 32-bit operating system, 2GB main memory,
and 10GB secondary storage. In each VM, emulator and “notepad.exe” file (to create
an active Notepad window for SendInput API) were executed using Powershell 2.0
scripts. We used Condor 7.6.0 software [35] to schedule the execution of Powershell
scripts in 150 VMs, simultaneously.

The keystroke emulator takes snooped timing information and “dummy text”
file as input, injects key press and release events, and outputs a file containing replay
text. When the emulator was running, we used a software keylogger to record the
synthetic keystroke events generated by the emulator. The keylogger recorded the
keystroke events and stored them in “userNV.txt” files (where N = 1 to 150). A total
of four files were associated with each user: two input files, one containing snooped

keystroke timing information and another containing dummy text), and two output

30

files (i.e.. the text file generated by the emulator and “userV.txt” recorded by the
kevlogger). After running the emulator for 24 hours. the “userN.txt” (N = 1 to
150) files were collected from Condor server’s shared memory and passed through the

verifiers to generate verification scores.

3.5 Keystroke Data Collection

We used keystroke data collected from 350 participants at Louisiana Tech
University. Majority of the participants were students, but university faculty and
staff also participated. We used six Pentium IV desktop PCs to collect keystroke
data. The PCs were equipped with Windows XP OS, a QWERTY keyboard, and a
mouse. On each PC, we installed an interactive keystroke data collection software
developed in C#. Additionally, we used two laptops to register participants and collect
voluntary information (such as gender, ethnicity, typing experience, native language,
is the participant left- or right-handed, is the participant willing to participate in a
future data collection effort, and the participant’s university email address).

We collected data during three different periods: October 13-October 21, 2009;
April 4-April 30, 2010; and 25 October-9 November, 2010. On all days, we started
data collection at approximately 8:00 AM and concluded at 5:00 PM. Each participant
was required to register by presenting his/her university ID card. We recorded the
following information during registration: 1) first name, 2) last name, and 3) voluntary
information. We used two popular locations in the university to set up data collection

booths. At each location, we used three PCs for collecting keystroke samples. We

31

continued data collection during lunch hours (11:30 PM to 1:30 PM) as this was the
period of heightened student /faculty traffic.

After registration. we instructed each participant on how to use the data
collection software and asked the participant to type three types of text: 1) fired
text participant typed the phrase “I am an undergraduate student of Louisiana
Tech University” 15 times (12 times during October 2009); 2) copy text-each
participant typed several paragraphs of English text from a document provided
by us; and 3) self text-participant had to compose and type text. Unlike in fixed
text, where the participant had to type the predefined text ezactly, there were no
restrictions on typing copy and self texts. For example, the participants were allowed
to make spelling mistakes and typographical errors, and if they chose, they could
correct them using Backspace or Delete keys. In the experiments, we do not use fixed
text data, so we skip further details on it. For entering fixed text, the GUI included
three text boxes: one for entering username, one for entering campus-wide ID number,
and one for entering a common fixed phrase.

The keystroke data collection software provided GUI (e.g., text boxes, buttons,
and character counters) for typing copy and self texts. Each participant was required to
type at least 1800 characters (1200 during October 2009) of copy text. For typing copy
text, we provided paper copies of sample texts to the participants. We used five sample
texts: 1) Declaration of Independence [36], 2) a transcript of Richard Hamming’s
“You and Your Research” speech [37], 3) the first 2100 words in Chapter 1 of David
Copperfield [38]. 4) the first 2000 words in Chapter 1 of Samuel Johnson [39], and 5)

30

the first 1900 words in Chapter 1 of Walden [40]. A participant received one of the five

32

Table 3.2: A summary of kevstroke data usage in our sample-level attack experiments.

Patasct Set I Set 11 Set 11 Set IV
Name
Collection | 13 21 Oct., | 1 30 April. 25 Oct. 25 Oct.
Dates 2009 2010 9 Nov..2010 9 Nov. 2010
Snooped Building Generati_ng g(zr?nine Generating
Usage keystroke & zero-effort zero-effort
keystrokes . .
templates IMpstr. scores IMpstr. scores
of users 150 common users in sets L. 1. and 11 200 new
users

sample texts randomly. As the participant typed. the software displayed the number of
characters typed. Copy text data collection process ended when the participant typed
at least 1800 (1200 during October 2009) characters. After entering the copy text,
the participant was required to type about 300 characters of self text. After typing
the self text, the participant pressed the “Finish” button and ended his/her data
collection session. Self text was collected during April 2010 and October-November
2010 periods.

Copy vs. self text: When performing activities like writing emails, messaging,
and word-processing, users typically do compositional typing (i.e., text composition
and typing occur as an intertwined sequence of events). Thus, typing self text is a
closer representation of a user’s typing activity. However, we conducted pilot trials in
our laboratory before undertaking full-scale data collection and observed that typing
1200-1800 characters of self text took considerably more time than typing copy text
of the same length and in most cases fatigued participants. Because the majority of
the participants were students who participated between classes, time was a critical
factor for their participation. To achieve a trade-off between participation time and
obtaining realistic typing samples, we choose to collect a mixture of copy and self

texts.

33

Keystroke Data Usage in Our Experiments

1) For feature-level attack experiments: we used data from 50 users who
participated during three data collection periods. 7.e.. October 2009, April 2010, and
October-November 2010. We used keystroke events generated by typing free and
self texts during April 2010 for training (7.e., building keystroke templates). For
generating verification attempts, we used keystrokes from free and self texts collected
during October-November 2010. We used the keystroke events obtained from typing
free text during October 2009 as snooped keystroke data.

2) For sample-level attack experiments: we divided the keystroke data
into four sets (see Table 3.2). Set I has keystrokes collected from 150 users during
October 2009. For the same 150 users, Set Il has keystrokes collected during April
2010 and Set I1I has keystrokes collected during October-November 2010. We used
keystrokes in Set I as snooped keystrokes. We used keystrokes in Set II to build 150
user templates. We used keystrokes in Set 111 to gencerate genuine and zero-effort
impostor scores. To generate genuine scores, we matched each user’s template with
his/her own keystrokes in Set I1I. To generate zero-effort impostor scores, we matched
a user’s template with keystrokes of 149 remaining users in Set III.

Purpose of Set IV: Set IV contains keystroke samples from a new pool of
200 users who are not present in sets I, II, and III. We matched keystrokes in Set IV
against the user templates to generate additional zero-effort impostor scores. We did
this to compare the snoop-forge-replay attack scores with two baselines: 1) zero-effort
impostor scores generated with Set 111, and 2) zero-effort impostor scores generated

with Set 1V.

34

Note from the ~Collection Dates™ row in Table 3.2 that there is approximately
stz months time gap between snooped kevstrokes (Set I) and kevstroke used to build
templates (Set II). This manner of data usage is akin to a scenario in which the

attacker uses old “legacy” keystrokes to attack a victim user’s template.

3.6 Baseline (Zero-effort Impostor Attack) Experiments

For feature-level attack experiments: we experimented with two verifiers:
1) Relative (R) verifier [1], and 2) Similarity (S) verifier. We used one type of template:
TKP-template containing key press latencies.

For sample-level attack experiments: we experimented with four verifiers:
1) Relative (R) verifier [1], 2) Absolute (A) verifier [1], 3) Similarity (S) verifier [41],
and 4) Fusion (F) verifier. We used three types of templates: 1) TKH-template
containing key hold latencies, 2) TKI-template containing key interval latencies, and
3) TKP—tcmplate containing key press latencies. This resulted in nine verifier-teraplate
combinations i.e., (R, TKH), (R, TKI), (R, TKP), (A, TKH), (A, TKI), (A, TKP),
(S, TKH), (S, TKI), and (S, TKP). The ~F” verifier fuses the outputs from (R, TKH),
(R, TKI), (S, TKH), (S, TKI), and (A, TKP) using the weighted sum fusion rule [42].

Extracting verification attempts: From a user’s typing sample, we ex-
tracted verification attempts as follows: 1) read the text in the order it was typed and
extract latencies until A matching pairs are obtained; 2) present the M matching pairs
to the verifier to obtain a verification score (this constitutes one verification attempt);
3) read the text from the point where it was stopped in Step 2 until A matching

pairs are obtained; and 4) repeat Steps 2 and 3 until the text ends. This procedure

35

partitions the text into contiguous, non-overlapping. variable-length windows. each
containing exactly Al matching pairs. Each window corresponds to one verification
attempt. We experimented with M values: 20, 40. 60, 80. 100. 120. 150, 300, 350, 500,
and 750.

Relative (R) and Absolute (A) Verifiers [1]: Given a verification attempt,
“R7 verifier outputs a score as follows. Two arrays Agp4i, and Agegt are constructed.
A¢rain contains the matching pairs ranked in ascending order of their corresponding
mean latencies (in the template). Ategt contains the matching pairs ranked in
ascending order of their latencies in the verification attempt. The “R” measure
between At qin and Agegt is computed as the normalized array disorder between
Atrain and Agegt- The “R” measure lies between 0 and 1, 0 (or 1) indicates a perfect
match (or mismatch) between the verification attempt and the template.

The “A” measure verifier outputs a score as follows: for each matching pair,
two latency values are considered: 1) the average latency value stored in the template,
and 2) the average latency value in the verification attempt. The larger of the two
is divided by the smaller. A matching pair becomes valid if the ratio falls between 1
and a threshold (after some trial and error experiments, we choose 1.45 as threshold).
The “A” measure is given as

number of valid matching pairs

1-— . 3.1
total number of matching pairs (3-1)

The “A” measure of 0 (or 1) indicates a perfect match (or mismatch) between

the verification attempt and the template.

36

Similarity (S) Verifier [41]: The ~S” verifier outputs a verification score as
follows: each matching pair in the verification attempt is considered a wvalid matching
pair if it falls within 7(= 1) standard deviations from its corresponding mean in the
template. The similarity measure between the template and the verification attempt
is calculated using (3.1).

Fusion (“F”) Verifier: The verifier fuses outputs of five verifier-template
combinations, (R, TKH), (R, TKI), (S, TKH), (S, TKI), and (A, TKP), using the
weighted fusion rule. If sy, s9, s3, $4, and s5; are outputs of the five verifier-template
combinations, then by the weighted fusion rule, “F” outputs w;s; + wysy + wys3 +
w84 + wsSs, where 0.1 < w; < 0.6 and iwi = 1. We included weighted fusion
in our experiments because studies (e.g.,l:[zm, 43]) show that it performed well in
biometric authentication tasks. For fusion, we used five out of the nine available
verifier-template combinations because key press latencies are formed by adding key
hold and key interval latencies, so including (R, TKP) and (S, TKP) do not bring
new information when (R, TKH), (R, TKI), (S, TKH) and (S, TKI) are already
included in the fusion. The “A” verifier was primarily designed for key press latencies,
so we included only (A, TKP) in the fusion. Choosing weights: we experimented
with 126 weight combinations. Initially, we set w; = 0.1,i =1,--- .4 and ws = 0.6.

Then we incremented (or decremented) the weights in 0.1 units under the constraints:

0.1 <w; <06and 3, | w =1

CHAPTER 4

RESULTS

4.1 Feature-level Attack Experiments

4.1.1 Baseline (Zero-effort Impostor Attack) Results

We performed baseline experiments to find the optimal number of matching
pairs (M) that yicld the lowest FRR and IPR values. The DET curves of “R” verifier,
i.e., plots 4.1(a)-4.1(b) and “S” verifier, i.e., plots 4.1(c)-4.1(d) (in Figure 4.1) show
that lower FRR and IPR values are achieved with high M values (i.e., 300, 350,
500, and 750). However, a high M requires typing more keystrokes to generate a
verification attewpt, which ultimately increases the time to output a match score. In
our experiments, 1t took on an average of 49.36 keystrokes (14.305 seconds average
typing time) to obtain a verification attempt with 20 matching pairs and 1836.42
keystrokes (545.307 seconds average typing time) to obtain a verification attempt with
750 matching pairs. Therefore, a trade-off exists between the nuber of matching
pairs and the verification delay. DET curves for 20, 40. 60, and 80 matching pairs (not
shown due to space constraints) had higher EERs than the DET curves in Figure 4.1.

In Table 4.1, we give the number of genuine and impostor attempts used for
generating DET curves in Figure 4.1. In our test data, on an average there were 2100

keystrokes per user. So, for high A values like 750, 500, and 350, on average, we

37

38

Table 4.1: Total genuine attempts (#G), genuine attempts/user (G/U). and impostor
attempts/user (1/U) used in Figure 4.1 DETs.

M 100 120 150 300 350 1 500
#G | 570 473 371 175 141 94
G/U | 114 | 946 | 742 | 350 | 2.82 | 1.88
I/U | 555.3 | 456.8 | 360.8 | 168.6 | 140.1 | 90.3

needed 1836.42. 1212.42, and 853.69 kevstrokes respectively to generate a verification
attempt. For this reason, we had very few genuine attempts for each user when M
was high (Table 4.1, second row). However, we did not have this problem for impostor
attempts because, for each user, we used the keystroke data of the remaining 49 users

to generate impostor attempts.

4.1.2 Snoop-forge-replay Attack Results and Analysis

In this section, we demonstrate the success rates of forged verification attempts
created from snooping a user’s keystroke data. We choose to use M values with
baseline EERs less than 0.15. Figure 4.1 shows that this is achieved when A is 150,
300, 350, 500, and 750 for both verifiers. However, we excluded 750 matching pairs
because the average number of keystrokes it required to generate a verification attempt
(1836.42) was too high to be realistic. Verification threshold for each M value was
selected using two heuristics: 1) threshold 77 with the least /PR when FRR < 0.15
and 2) threshold 73 for which FRR + I PR is minimum (i.e., lowest point in the DET
curve) when FRR < 0.15. In Table 4.2, we give the baseline (zero-effort) IPRs for
verifiers “R” and “S” for thresholds 77 and T5.

The plots in Figure 4.2(a), 4.2(c), 4.2(e), and 4.2(g) show the percentage of

successful forgery attempts with threshold 77 (see Table 4.2). We considered two

39

YR Verfier o “R™Nenfier

[005 01 D015 02 025 03 035 04 045 0S5
Impostor Pass Rate Impostor Pass Ratc
(a) (b)
0.5{
0457)
"§” Verifier . "S" Verifier

- M=100 So3s |
M=120 T 03l
--M=150 Z I
‘2025
&
% 02
So15
L 01
Y T 005 7 s e
% o005 o1 o015 02 625 03 035 04 045 05 % 005 01 o0is 02 025 03 035 04 045 05
Empostor Pass Rate Impostor Pass Rate
(c) (d)

Figure 4.1: Baseline DET curves of “R” (a) & (b) and “S” (¢) & (d) verifiers with
M matching pairs.

factors: number of snooped keystrokes and filtering (no filtering) snooped digraph
latencies greater than 300ms. When forged attempts were created by estimating the
means and standard deviations of digraph latencies and replayed using a Gaussian
random number generator, we observe (in plots 4.2(a) and 4.2(e)) that filtering
increases the percentage of successful forged attempts. With “S” verifier, the maximum
percentage of successful forgeries with filtering was 87.58 (for M = 150 and 200 snooped
keystrokes) and 72.06% (for M = 150 and 150 snooped keystrokes) without filtering.
With R verifier, the maximum percentage of successful forgeries was 79.32 with filtering
(for M = 500 and 200 snooped keystrokes) and 72.73% (for M = 500 and 100 snooped
keystrokes) without filtering. For these M values, in plots 4.2(b) and 4.2(f), we

compare baseline DET curves obtained with zero-effort impostors and the DET curves

o]
@

“S" Venfier

D
(=]

~Filter, M- 150
= Filter. M=300
~=Filter. M=1350
~+Filter, M=500

. =*+No Filter, M=150
-&-No Filter, M=300
-+*No Filter. M=350
< No Filier. M=300

&
Q

%3
(=]

% of Sucessful Forgery Attempts

[}

(o] 200 400 600 800 1000 1200
of Keystrokes Snooped
(a)
100

"S" Verifier

M
80
"eedsis,

~Tilter,

60 - Filter. M =300
~Fler. M = 350
-Filter, M = 500
«e«No Filter. M = 150

S
o

+:No Filter. M = 37
4 No I’ikvrij\l = 500

200 400 600 800 1000 1200
of Keystrokes Snooped

(c)

% of Successful Forgery Attempts

»n
==

®
S
|
I
I

"R" Verifier

~
@

~-Filter. .

= Filter.

‘~—Filter. M =37 .
+Filter. M = 500
-e+No Filter. M = 150
-=-No Filter. Af
«eNo Filter. Af
4 No Filter, M = 500

8

% of Successful Forgery Attempts
o]
(=]

4% 200 400 600 800 1000 1200

of Keystrokes Snooped

(e)

~
[=]

LM =150
-« Filter. M = 300
~Filter. M =330
~Filter. Al = 500

~:No Fllter, M = 150
«wNo Filter. M = 300
«e-No Filter, M = 330
e No Filter. M = 500

=23
o

"R" Verifier

N
(=3

wm
(5

% of Successful Forgery Attempts

[44)
Ll
|

7400 600 800 1000 1200
of Keystrokes Snooped

(g)

o
[
S
(=3

40

S Vertfier ==Fuorgery (Fihier 200 Stoopeds

(Ne Fiter-200 Snooped »
==Basciine. M 500

- 0.6

H Sene,

z e,
204

; EER

e

o o
- N

01 02 0.4 06 08 1
Impeostor Pass Rate

(b)

Ty
"S" Veritier

0.8
&
2
~ 0.6
124
¥
=
"d
<
P 04 — Bascline, M-150
= «=sForgery (Filter+150 Snoopedy
1% = Forgery (No Filter+50 Snooped)

o o
=N

R

01 02 0.4 06 08 1
Impostor Pass Rate

(d)

1 - —
“"‘0..\ "R" Verifier —~Baseline, M- 500
~, =s«Forgery (Filter+200 Snooped)
0.8 + Forgery (No Filter+100 Snooped) -
@
2
=06
z
)
-9
2 0.4
3
=
0.2
0.t
% o1 02 o4 0.6 0.8 1

Impostor Pass Rate

(f)

—Bascline, M=500
s«»Forgery (Filter+1200 Snooped)
. Fm\[gg[y {No Fd!chXOO Snooped).

"R" Verifier
0.8

o
»

False Reject Rate

o o
- N

(w]

0 01 02 0.4 0.6 08 1
Impostor Pass Rate

(h)

Figure 4.2: (a,c,e.g): Percentage of successful forged attempts with threshold
Ty; (b,d, f, h): Comparison of EERs generated with zero-effort impostors (baseline)
and forged verification attempts generated by estimating the means and standard
deviations of snooped digraph latencies (b, d), and by estimating the means of the top
10 frequent snooped digraphs (f, k).

41

obtained with forged attempts (with 200 and 150 snooped keystrokes). The DET

curves clearly show that forged attempts considerably increase the baseline EERs.

~ . . B - “R" Verificr —Bascline, M=500
-, R* Verifier — Bascline. M=500 X < - Forgery (No Filter- 50 Snooped)
0.8 L. » Forgery 1P¥llcr*50 Snooped) 08 =++Forgery (No Filter~150 Snooped.
. e r++Forgery (Filter+150 Snooped) : :
= e, @
2 2
- 0.6 « 0.6
A W
>)
2 -
= x
204 304
& z
e e
0.2 0.2
0.1 0.1
0 . ; 0
0 0.1 0.2 0.4 0.6 0.8 1 0 0.1 02 0.4 0.6 0.8 1
Impostor Pass Rate Impostor Pass Rate
(a) (b)

Figure 4.3: Comparison of EERs of “R” verifier with forged verifications attempts
generated with 50 and 150 snooped keystroke when M = 500.

In “S” verifier, the percentage of successful forgeries increased as the number
of snooped keystrokes increased from 50 to 150 and then began to decrease from 200
to 1200. Though less pronounced, the same behavior was observed with “R.” The
observation that snooping more keystroke information makes the forgery attack less
effective is counter-intuitive. The reason behind this phenomenon is that the frequency
of occurrence of English digraphs follow heavy-tailed (Pareto-like) distributions,
implying that only a few digraphs occur most of the time. In fact, [33] showed
that 25 digraphs make about third of all printed English text. As more keystrokes are
snooped, the frequencies of only a few digraphs are sufficient enough to estimate the
mean/standard deviations, and for the remaining digraphs, the frequencies are too
low to estimate the means/standard deviations correctly. Therefore, increasing the
number of snooped keystrokes increases the number of badly estimated means/standard

deviations used to forge a sample. To support our argument, we created forged samples

42

Table 4.2: TPRs of verifiers “R” and “S” for thresholds T} and Ts.

:\[Tl “R” T2 “R” T] 6‘S” TZ “S”
150 | 0.118167 | 0.138081 | 0.152123 | 0.138153
300 | 0.109109 | 0.128045 | 0.124451 | 0.124451
350 | 0.115047 | 0.127630 | 0.080491 | 0.112174
500 | 0.102082 | 0.123187 | 0.085271 | 0.099889

using means estimated from the 10 most frequently occurring digraphs (and set the
standard deviation to zero, i.e., created the forgeries using only the mean digraph
latencies). Plots 4.2(c¢) and 4.2(g) show a clear improvement in the success rates of
forgery attempts when the number of snooped keystrokes increase from 200-1200.
We also compare the baseline DET curves obtained with zero-effort impostors when
M = 500 and the DET curves obtained with forged attempts created using only the
means of the top 10 most occurring snooped digraphs (with 1200 and 800) snooped
keystrokes. The DET curves clearly show that forged attempts considerably increase
the baseline EERs.

In Figure 4.3(a) we compare the baseline (zero-effort) EERs of “R” verifier
(M = 500) with EERs of forged impostor attempts created by estimating the means
and standard deviations of digraph latencies (plot 4.3(a)) and with forged attempts
created by estimating the means of the top 10 most frequent digraphs (plot 4.3(b)).
The plots confirm that forged attempts created by estimating the means of the top
10 most frequent digraphs have higher EERs. Additionally, we also plotted forgery
success rates with the threshold 73 (not shown due to space constraints). The plots

with T5 were similar to Figure 4.2 and offered no new insights.

43

Table 4.3: EERs generated for 150 users. with Set II as the training data and Set I11
as the verification data. The lowest EERs in each verifier group are marked in bold.

l Y R | S] A | Fusion (F)]
Y TR T KPP | KA | RIC[KPF [KO _| KI_ | KP | KH | Lowest EERp | Avg. EERE T STDE]
20 0235 0.2499 0.22 0.227 0.251% 0.345 0.336G 0.265 0.329 .149 0.169 0.0165
10 0.185 0.246 0.155 0.186 0.212 0.325 0.302 0.232 0.306 0.105 0.125 0.0189
60 0.16 0.2243 .143 0.165 0.191 0317 0.293 0.218 0.303 0.089 0.113 0.0196
B0 0.153 0.206 0.132 0.158 0.177 0.311 0.274 0.209 0.294 Q.08 0.105 0.0198
100 0.143 0.196 0.12 0.151 0.169 .31 €0.266 0.2 0.288 0.072 0.098 0.0217
120 0.141 U187 0.117 0.145 0.165 0.307 0.262 0.196 0.286 0.069 0.096 0.0216
150 0.131 0.171 0.11 0.137 0.156 0.306 0.252 0.195 0.285 0.067 0.092 0.0211
300 0.123 0.155 0.105 0.124 0.141 0.307 0.246 0.191 0.275 0.056 0.083 0.0209
350 0.117 0.160 0.104 0.131 0.131 0.308 0.248 0.192 0.273 0.043 0.069 0.0259
500 0.116 0.155 0.103 0.132 0.126 0.288 0.247 0.187 0.258 0.042 0.086 0.0277
750 0.124 0.135 0.105 0.132 0.139 0.282 0.234 0.206 0.264 0.032 0.084 0.0189

Table 4.4: EERs generated for 200 users. Set Il was used for training, Set IIT was
used for generating genuine attempts, and Set IV for generating impostor attempts.

1 AL T R | S 1 A [Fusion (F) }
‘ [KT T RKP J KH] KI [KP | KH | KI [KP T KH | Lowest EERp | Avg EEKRp | STDg |
20 0.232 0.296 0.2 0.218 0.239 0.34 0.331 0.255 0.315 0.141 0.169 0.0165
40 0.179 0.243 0.146 0.178 0.201 0.321 0.296 0.222 0.293 0.099 0.122 0.0186
GO 0.155 0.221 0.123 0.158 0.18 0.313 0.287 0.207 0.289 0.084 0.107 0.0194
80 0.147 0.203 0.113 0.15 0.166 0.307 0.267 0.2 0.279 0.076 0.099 0.0196
100 0.135 0.192 0.106 0.143 0.158 0.306 0.259 0.192 0.276 0.068 0.084 0.0212
120 0.133 0.184 0.101 0.137 0.156 0.303 0.255 0.189 0.276 0.067 0.092 0.0213
150 0.123 0.167 0.097 0.13 0.147 0.304 0.244 0.186 0.272 0.063 0.088 0.0209
300 0.115 0.149 0.088 0.116 0.134 0.302 0.236 0.183 0.263 0.048 0.076 0.0211
350 0.112 0.152 0.087 0.124 0.122 0.302 0.249 0.18 0.26 0.044 0.067 0.0248
500 0.112 0.148 0.096 0.121 0.123 0.288 0.237 0.179 (0.246 0.041 0.081 0.0268
750 0.116 0.128 0.1 0.12 0.125 0.279 0.223 0.195 0.253 0.03 0.08 0.0185

4.2 Sample-level Attack Experiments
4.2.1 Baseline (Zero-effort Impostor Attack) Results and Analysis
Table 4.3 shows the EERs! of the nine verifier-template combinations and the
EERs of “F” verifier. To generate EERs in Table 4.3, we used Set I to build the users
templates and Set III to obtain genuine and zero-effort impostor scores. In Table 4.3,
“I'" verifier has three columns: 1) “Lowest EERR” gives the lowest, 2) “Avg. EERp”
gives the average, and 3) “STDg” gives the standard deviation of EERs obtained

with 126 different weight combinations.

'Equal error rate (EER) or crossover error rate is the point where false reject rate (FRR) and
impostor pass rate (IPR) curves intersect. To plot the FRR and IPR curves, we calculated a series
of false reject rates and impostor pass rates by varying the verification threshold from 0 to 1 in
increments of 0.001.

44

Table 4.4 1s similar to Table 1.3 except we used Set IV instead of Set 11 to
generate impostor scores. (We used the same genuine scores to generate EERs in both
Table 4.3 and Table 4.14). Our observations follow.

Observation 1: For all A values, the fusion (“F7) verifier outperformed
individual ("R.” =S,” and “A") verifiers. See "Lowest EERp” and “Avg. EERE”
columns under “F7 verifier in Tables 4.3 and 4.4.

Observation 2: Irrespective of the verifier, lowest EERs were achieved at
higher M values (e.g., 300, 350, 500, and 750) and a trade-off exists between M and
EERs (i.e., as M increases, we can expect EERs to decline).

Observation 3: We computed the absolute difference between the EER in
each cell in Table 4.3 and the same cell in Table 4.4 (excluding cells of columns “Avg.
EERp” and “STDp"). The average of absolute differences between EERs in Table
4.3 and Table 4.4 is 0.00998. This means the EER, on average, changes by 0.00998 if
the impostors were from Set [V instead of Set III. This shows that EERs in Tables
4.8 and 4.4, though obtained from two different impostor populations, are not quite
different.

In Table 4.5, we give the total number of genuine and impostor verification
attempts extracted from Set IIl and Set IV to generate EERs in Tables 4.3 and 4.4.
In Table 4.5, we also give the average number of keystrokes in a verification attempt
(includes genuine and zero-effort impostor) and the average time in seconds taken by
the users to type a verification attempt.

Reason for not considering matching pairs beyond 750: Note from

Table 4.5 that it took 14.83 seconds of typing time to generate a verification attempt

Table 4.5: “Tot. Impostor Attempts™ and the “Tot. Genuine Attempts” columns
give the total number of impostor and genuine verification attemnpts used to calculate
EERs in Tables 4.3 and 4.4. “Avg. Tvping Time per Attempt™ column gives the
average time taken to type a verification attempt (in seconds). “Avg. # of Keystrokes
per Attempt” column gives the average number of keystrokes in a verification attempt.

Tot. Impostor | Tot. Genuine | Avg. Typing Avg. # of
M Attempts Attempts Time (in sec.) | Keystrokes
per Attempt | per Attempt
20 10950540 32630 14.83 54.65
40 5439610 16218 29.81 109.53
60 3596320 10715 44.65 163.98
80 2673265 7961 59.47 218.06
100 2119001 6320 74.27 272.03
120 1749125 5218 89.07 326.11
150 1379683 4114 111.24 406.72
300 640836 1918 221.11 805.63
350 530810 1579 257.62 937.49
500 342178 1018 364.24 1328.73
750 189141 564 547.56 2000.15

when M = 20 and 547.56 seconds when M = 750. Though all the verifiers achieved
lower EERs when M = 750, it is impractical for a continuous verification system to
use 750 matching pairs, because for cach verification attempt. the verifier would have
to wait for nearly 10 minutes. This is the reason why we did not consider beyond 750

matching pairs in our experiments.

4.2.2 Snoop-forge-replay Attack Parameters and Configurations

We considered four snoop-forge-replay attack parameters for sample-level
attacks. They are:

1) Length of Snooped Text: is the number of keystrokes for which the
attacker steals hold and interval latencies from a victim. Depending on various factors,

including attacker’s intent and victim’s availability, the attacker can steal few or many

46

kevstrokes. We experimented with snooped text of length 20. 50. 100. 200. 600. and
1200 to see how this parameter impacts the attack performance.

For extracting N snooped keystrokes from user U,. we used the first N characters
from U;’s typing sample in Set I. For example, when we snooped N = 100 characters
for user U;, we used the first 100 characters from U;’s sample in Set L.

2) Gaussian Perturbation of Snooped Latencies: Keystroke dynamics
is a behavioral trait, so it is highly unlikely that two latencies of the same key (for
example, two hold latencies of “a”) will be exactly equal, even if “a” was typed in
rapid succession. From the snooped keystrokes, assume an attacker learns that the
average key hold latency of “a” is 150ms. If the attacker creates a forgery that has
150ms for every occurrence of “a,” then this artifact alone can expose the forgery.

We solved the problem by adding Gaussian noise (zero mean and three standard
deviations) to perturb the latency values in a forgery. We chose Gaussian because its
parameters (mean and standard deviation) are easy to estimate and most programming
languages can generate a Gaussian variate. However, an attacker can also choose a
different perturbation model (e.g., adding noise from uniform distribution), as long as
the perturbation does not distort the latencies too much. We performed experiments
without and with Gaussian perturbation.

3) Filtering Outliers: From the snooped latencies, the attacker can choose
to remove outliers. We performed experiments with and without filtering outliers.
When we filtered outliers, we discarded any latency greater than or equal to 300

milliseconds.

47

Table 4.6: Twenty-four attack configurations obtained with different parameter

settings.
Configuration | Length of Gaussian Filtering | Min. Freq.
Number Snooped Perturbation Outliers of
Text Occurrence

1 20 YES YES 1
2 50 YES YES 1
3 100 YES YES 1
4 200 YES YES 1
5 600 YES YES 1
6 1200 YES YES 1
7 20 YES NO 1
8 50 YES NO 1
9 100 YES NO 1
10 200 YES NO 1
11 600 YES NO 1
12 1200 YES NO 1
13 20 NO YES 1
14 50 NO YES 1
15 100 NO YES 1
16 200 NO YES 1
17 600 NO YES 2
18 1200 NO YES 3
19 20 NO NO 1
20 50 NO NO 1
21 100 NO NO 1
22 200 NO NO 1
23 600 NO NO 2
24 1200 NO NO 3

4) Minimum Frequency of Digraphs in the Snooped Text: In the

snooped text, if a latency (e.g., key hold of “a”) appeared multiple times, we used

its average in the forgery. To improve the forgery, the attacker can choose to use the

snooped digraphs whose average latency was computed with at least k repeats. For

long snooped text lengths, i.e., 600 and 1200, we chose k to be 2 and 3, respectively.

However, for shorter lengths (20, 50, 100, and 200), we considered all the digraphs

regardless of how many times they repeated; otherwise, we were left with too few

digraphs to create a forgery.

Using the above attack parameters, we created 24 attack configurations. (In

Table 4.6, we list the 24 attack configurations with their parameter values.) We

48

Table 4.7: Average number of snoop-forge-replay attacks generated per user.

\/ Avg. No. of “Snoop-forge-replay” Attacks per User
) KI | KP | KH | F
20 | 5594.98 | 5451.27 | 5325.65 4528.12
40 | 3448.91 | 3377.06 | 3149.48 2599.54
60 | 3105.98 | 3080.52 | 2946.57 2438.02
80 | 2839.48 | 2674.07 | 2639.32 2235.75
100 | 2401.59 | 2261.081 | 2233.64 1916.44
120 | 2012.78 | 1895.34 | 1872.46 1603.36
150 | 1526.72 | 1517.16 | 1498.85 1284.11
300 | 805.31 758.38 | 749.21 651.23
350 | 690.19 | 649.92 | 642.07 549.93
500 | 483.01 454.82 | 449.35 381.67
750 | 321.85 | 303.05 | 299.38 254.53

experimmented with 24 attack configurations, 11 matching pairs, and 10 different
verifier-template pairs. This resulted in 24 x11x10 = 2640 attack experiments.

Table 4.7 gives the number of snoop-forge-replay attacks we generated against
each user. Values in Table 4.7 represent averages calculated from all attacks generated
by the 24 attack configurations and running Algorithm 1 for 24 hours.
4.2.3 Effectiveness of the Attacks

Comparison of attack and baseline using error rate plots: In Figure
4.4, we compare the baseline (zero-effort) impostor pass rates with snoop-forge-replay
attack pass rates. Panels (a), (b), (c), and (d) in Figure 4.4 show the error rate plots
for “R,” “S,” “A,” and “F” verifiers. In each panel, the two baseline IPR curves
correspond to zero-effort impostor attacks with Set III and Set IV, respectively. The
24 attack IPR curves correspond to 24 attack configurations.

Showing error rates for all verifier settings is not practical because we experi-

mented with 11 matching pairs and 10 verifier-template combinations, which gives 110

49

settings. So. we chose to show plots corresponding to the setting in which a verifier
had achieved its lowest baseline EER. (We highlighted the lowest baseline EERs in
bold in Table 4.3).

Table 4.8 gives the maximum, minimum, and average attack EERs and baseline
EERs corresponding to the panels (a)-(d) in Figure 4.4. Table 4.8 shows that the
attack IPRs (in Figure 4.4) markedly increased the EERs for verifiers which had the
lowest EERs in our baseline experiments. The results in Figure 4.4 and Table 4.8
also illustrate the wide discrepancy between the snoop-forge-replay attack EERs and
baseline EERs.

Comparison of attack and baseline using EER plots: Here we
summarize how the 24 attack configurations perform against 10 verifier-template
combinations and 11 matching pair settings. In Figures 4.5 and 4.6, panels correspond
to 10 verifier-template combinations. In each panel, we show the maximum. minimum,
average, and standard deviation (error bars) of attack EERs and baseline EERs for
11 matching pair (M) settings. The maximum, minimum, average, and standard
deviations of attack EERs were computed from EERs corresponding to 24 attack
configurations. From the panels, we observe the following:

1) The “Maximum Attack EER” curves are remarkably higher than zero-effort
“Baseline EER” curves (see Table 4.9 for percentage increase in attack EERs over the
baseline). This shows that all 11 matching pairs and 10 verifier-template combinations
were vulnerable to the snoop-forge-replay attack;

2) The fusion “F” verifier (see Figure 4.6, panel (b)), which had the lowest

EERs in our baseline experiments has the highest maximum, minimum, and average

r

50

R-KH verifier, M = 500 S—KI1 verifier, M = 300
i STRRRRRRRORN;

0.8

0.6 Attack IPRs

0.4 Baseline 1PRs

Baseline EERs

0.2 200
Baseline FRR i
! I 3
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 08 1
Threshoid Thresheold
(a) (b)

A—-KP verifier, M = 500 *F verifier, M = 750

0 0.2 0.4 0.6 0.8 1 (] 0.2
Threshold

0.4 0.6
Threshold

(c) (d)

Figure 4.4: False reject rate (Baseline FRR), zero-effort impostor pass rates (Baseline
IPRs) (highlighted by the smaller circles), and 24 snoop-forge-replay attack IPR curves
(highlighted by the large circles) achieved with “R” (a), “S” (b), “A” (c) verifiers
paired with KH, KI, and KP templates respectively and “F” (d) verifier. In each plot,
the Baseline EERs (crossover points between Baseline FRR and Baseline IPR curves)
are marked by a box.

attack EERs. This demonstrates that the best performing verifier under zero-effort
attacks could turn out to be the most vulnerable verifier under a non-zero effort attack;
3) The maximum and minimum attack EER curves and error bars indicate
that some attack configurations are more effective than the others. In Section 4.2.4,
we discuss which attack configurations are more effective; and
4) The “Minimum Attack EER” curves show that, even for the worst performing
attack configurations, the “R.7 “A.” and “F” verifiers had considerably high attack

EERs compared to their baseline EERs.

51

"R-KI" Verifier "R~KP" Verifier
1 1
3 -4
~ikiE-% 34— & ® 1T I I 1 7
08 FPITIT T T T b T 08
0.6 ~ - 0.6 oee & al
2" os T aMox AmakEER O =
= 0.4 ©Avy Auach EER - 0.4
M Auack EER
~=Baschine EER (Set 1)
02 N --Basehine EER (Set 1V 0.2
% s080 150 300350 500 750 % 1080 150 300 350 500 750
Matching Pair, M Matching Pair, ¥
(a) (b)
"R—KH" Verifier “*S$—KI" Verifier
1 1 .
» F3 - x N
o 8 0.8 A A . A N

. AL
x 0-6 = A Max A'IJK]CK EER x 06 fﬁ?‘ﬁ_‘f
i @ Avg Auack EER = }{h‘u I

——
—a—i
——t
[

0.4 M. Attack EER 0.4
—Bascline EER (Set 111)
0.2) ---Bascline EER (St V) 02 3“95\.»:&—; & o
1] U <) Z
0 40 80 150 300 350 . 500 750 0 40 8¢ 150 300 350 . 5600 750
Matching Pair, M Matching Pair, M

(c) (d)

"S—KP" Verifier "S—KH" Verifier

o8 A A4 V. SN A 4 0.8 AAA Dndd A &
.) :
#«Max. Attack EER
e 06 ©Avg. Attack EER o 06 } iHH } 1 I ’
E&l #Min. Attack EER S) hald B
0.4 —Bascline EER {Set HI) 0.4 :

---Basehne EER (Set IV)

0.2 Bs“s%'ﬁij_'f-—ﬁ— & = 0.2:

% 080 130 300350 500 T 70 % 4080 150 300 350 500) 750
Matching Pair, M Matching Pair, M

(e) (f)

“A-KI" Verifier "A-KP" Verifier

—_— F—

AL A A A

o8 S e 0.8 0a0sals e . -
V8. C. vt
HH! ! l I ©Min Atack EER ' e TH] 11 I]
0.6 —Bas o X
o Baseline EER (Set HI) <
s -=-Baseline EER (Set 1V) = : J. I .[l J_ B
0.4 Bpppas-o H—& bl 04 pgoopa-e——F® 2
\’M
0. 0.2 —
. o - 0 . . .
00 40 80 150 750 0 40 80 150 \1300'31.50 Pai ~5]00 750
Matching Pair,

300 350 500
Matching Pair, M
(8) (h)

Figure 4.5: Maximum (“Max. Attack EER” curves), average (“Avg. Attack EER”
curves), minimum (“Min. Attack EER” curves), and standard deviations (Error bars)
of attack EERs achieved from 24 snoop-forge-replay attack configurations against
“R” (a - ¢), “S” (d - f), “A” (g - h) verifiers and KI, KP, and KH templates. Two
Baseline EER curves “Baseline EER (Set III)” and “Baseline EER (Set IV)” represent
EERs from Tables 4.3 and 4.4. (“Baseline EER (Set II1)” and “Baseline EER (Set
IV)” curves are overlapping in most panels.) Legends are the same for panels (a)
through (j).

[y
o

"A-KH" Verifier "F" Verifier
1 - - i R
0.8 0.8 . :
%mi . . giﬁg \x/a\\ﬂi
x 06 t * % % % ~ 006 #Max Atack EFR
= Boesg . o P ©Avy Attack EER
0.4 e 0.4 & Min. Anack EER
AAAAAAAAAA ~—Bascline EER (Set 1)
T ey e 02 ---Baschne EER (Set 1V)
\\
% 4080 150 300350 500 750 % 4080 150 300350 500 750
Matching Pair, M Matching Pair, M
(a) (b)

Figure 4.6: Maximum (“Max. Attack EER” curves). average (“Avg. Attack EER"
curves), minimum (“Min. Attack EER” curves), and standard deviations (Error bars)
of attack EERs achieved from 24 snoop-forge-replay attack configurations against ~A”
(a) verifier and KH template and “F” (b) verifier. Two Baseline EER curves “Baseline
EER (Set I1I)” and “Baseline EER (Set 1V)” represent EERs from Tables 4.3 and 4.4.
(“Baseline EER (Set II1)” and “Baseline EER (Set IV)” curves are overlapping in
most panels.) Legends are the same for panels (a) through (j).

4.2.4 Performance Analysis of Attack Parameters

To observe the performance of attack parameters, in Figure 4.7, we give the
attack EERs of “R” (panels a and b), “S” (panels ¢ and d), “A” (panels e and f),
and “F” (panels g and h) verifiers configured with 750 matching pairs and different
attack parameters. The EERs with the remaining matching pairs (40, 60, 80, 100,
120, 150, 300, 350, and 500) behave the same way as the panels in Figure 4.7. See
Appendix B for the EER plots with the remaining matching pairs.

In Figure 4.7, panels a, ¢, e, and g, “Filtering + Gaussian” (solid lines)
correspond to configurations when the outliers were filtered, latencies were perturbed
with Gaussian, and all snooped latencies were used to compute forgeries, irrespective
of their frequency of occurrence. “No Filtering + Gaussian” (dashed lines) correspond
to similar settings except outliers were not filtered. In panels b, d, f, and h, “Filtering
+ Min. Frequency” (solid lines) correspond to configurations when the outliers were

filtered, latencies were not perturbed with Gaussian, and only the latencies that

"R" Verifier

©- —0

~—KI. Filtening ~ Gaussian
©KP, Filtening ~ Gaussian

| KH, Filtering » Gaussian
---Ki No Filtering + Gausstan
@ KP, No Fiftering + Gaussian
@ Kil. No Filiering + Gaussian_

00 160 200 600 1200
Snooped Text Length (in characters)

(a)
"S" Verifier
‘K], Filtering + Gaussian
VKP, Filiering + Gaussian
£ KH, Filiering + Gaussian
---K1, No Filtering + Gawssian

0.6 OKP, No Filtering + Gaussian
5 £ KH, No Filtering + Gaussian T
=04 e,
0z T v
o R P . JR—
8 100 200 600 | 1200
Snooped Text Length (in characters)
(c)
“A" Verifier
1 . R
0.8

o 0.6 B\s N
3, 7
S g e - G o
0.4 ©KP, Filtering + Gaussian =
B KH. Filtering + Gaussian
02 ---KI, No Filtering + Gaussian
) ‘OKP, No Filtering + Gaussian |
0 _ BKH, No Filtening + G ‘)
0 100 200 1200

o) .
Snooped Text Length (in characters)

(e)
"F" Verifier

—Filtering + Gaussian

0.6 ~No Filtering + Gaussian
x V- o o
8
0.4
0.2
0 I .
0 100 200 1200

600
Snooped Text Length (in characters)

(2)

"R" Verifier

1
80 0—o— o
08588 & s
~~Kl. Filtening + Mm. Frequency
x 0.6 ©KP. Filicring + Min. Frequency
= BV KH. Filtering + Min. Frequency
0.4 ---KL No Filtering + Min. Frequency
OKP, No Filtering - Min. Frequency
0.2 B KH. No Filtering - Min. Frequency
0 R
0 100 200 600 1200

Snooped Text Length (in characters)

(b)

"S" Verifier

= 0.6 - P .
& e IPRTES “"—KI, Filtering - Min. Frequency
= S -
04 SKP, Filtering + Min. Frequency ©
&KI, Filtering + Min. Frequency
0.2 -+-KI, No Fikering + Min. Frequency

©KP, No Filtering + Min. Frequency
0 @K, No Filtering + Min. Frequency
0 100 200 600 1200
Snooped Text Length (in characters)

(d)

"A" Verifier

x 0.6° B 3 .
‘Lg YT K, Filtering + Min. Froquency @
0.4: ©KP, Filtering + Min. Frequency -

BKH, Filtering + Min. Frequency
0.2 ---KJ, No Filtering + Min. Frequency
©KP, No Filiering + Min. Frequency
®KI], No Filtering + Min. Frequency

% w0200 600 o 1200
Snooped Text Length (in characters)
(f)
"F" Verifier
1 v SN - .
0.8 o o
—Filtering 4+ Min. Frequency
:E 0.6i --*No Filtering + Min. Frequency -
“o4 -
0.2:
0 B - -——
0 100 200 1200

. 500 _
Snooped Text Length (in characters)

(h)

Figure 4.7: Attack EERs under different attack configurations with “R” (a - b), “S”
(¢ —d), “A” (e - f), and “F” (g — h) verifiers. EERs are computed using M = 750.
Solid lines represent attack EERs when the outliers are filtered and the dashed lines
represent attack EERs when the outliers are not filtered.

54

Table 4.8: Attack EERs of the top performing verifier settings in baseline experiments.

Baseline Maximum | Minimum | Average

Verifier EERs Attack Attack Attack
(Set 11T & 1V) EER EER EER
R-KH. A/ =500 | 0.116. 0.096 0.837 0.673 0.81
S-KI, A = 300 0.124. 0.116 0.742 0.224 0.514
A-KP, A/ =500 | 0.187, 0.179 0.811 0.429 0.618
F, M = 750 0.032. 0.03 0.965 0.679 0.905

occurred more than once in the snooped text were used to compute forged latencies.
“No Filtering + Min. Frequency” (dashed lines) correspond to similar settings except
outliers were not filtered. Our observations follow.

1) Forgeries using short snooped text of 20 to 100 characters achieved very
high EERs ranging from lowest 0.43 (with “A-KH” in Figure 4.7(f)) to highest 0.92
(with “F” in Figure 4.7(h)). However, the limitation with short snooped text is
that it produces forgeries in which few characters repeat many times. Consequently,
the forged text may contain misspelled words, linguistically meaningless text, and
grammatical violations. However, given that current keystroke-based continuous
verification systems do not impose any checks on the text typed by the user, the
forgeries created with short snooped text are still effective.

In panels (¢) and (e) in Figure 4.7, note that as the snooped length increases,
the attacks become less effective against “S” and “A” verifiers. We explain why this
happens in Section 4.2.6.

2) Overall, we achieved higher attack EERs, ranging from lowest 0.43 (with
“A-KH” in Figure 4.7(f)) to highest 0.965 (with “F” in Figure 4.7(h)), when the outliers

in the snooped text were filtered, latencies were not perturbed with Gaussian noise,

99

Table 4.9: Minimum to maximum percentage increase in attack EERs over baseline
EERs across all the matching pairs.

Max. Attack | Avg. Attack | Min. Attack
EER EER EER
. 1255% to% | 69.33% to | 12.817 to
Baseline (Set IIT) | 70 0 = o0 9730.55 2075.41%
iy 128.8% to 71.89% to 18.51% to
Bascline (Set IV) | 516 6o 2019.26% 92290.44%

and only the latencies that occurred more than once in the snooped text were used to
compute forged latencies. Attack EERs corresponding to these parameters are shown
as solid curves in panels b, d, f, and h in Figure 4.7.

In comparison, we achieved lower attack EERs, ranging from the lowest 0.21
(with “S-KP” in Figure 4.7(c)) to highest 0.932 (with “F” in Figure 4.7(g)), when
the outliers were not filtered, latencies were perturbed with Gaussian, and all snooped
latencies were used to compute forgeries, irrespective of their frequency of occurrence.
Attack EERs corresponding to these parameters are shown as dashed curves in panels
a, ¢, e, and ¢ in Figure 4.7.
4.2.5 Analysis of Attacks Against the “R” Verifier

In the solid curves of Figure 4.7(a), note the drop in EERs when the snooped
text lengths are 20, 50, and 100. When we used, 1) 20, 50, and 100 snooped text
lengths, 2) Gaussian perturbation, and 3) outlier filtering, we achieved lower attack
EERs with “R” verifier. This occurred because the normalized disorder score (see “R”
verifier, Section 3.6, Page 34) is sensitive to the size of A4, and A,.;. We explain

with the following example.

26

Assume Ay and Ay contain five digraphs. If there is one mismatch between
Aprain and Ajey. it means 40% or two out of the five digraphs do not have the same
rank. This gives a normalized disorder score of 0.16667. Now, assume A;;4;, and Aeq
contain 20 digraphs. One mismatch between A;..;, and A, leads to having two out of
20 (or 10%) digraphs that do not have the same rank. This gives a normalized disorder
score of 0.01. So, even if A;,,;, and A,.,; have the same number of mismatches, the
normalized disorder between A,.;, and A, is higher when the array sizes are lower.

Filtering outliers from snooped texts of length 20, 50, and 100 decreased the
size of Agqin and Ageq arrays. Gaussian perturbation further increased the disorder
score. The two parameters together increased the normalized disorder score between
the template and the forgery and thus lowered the attack EERs. However, EERs for
snooped text of lengths 200, 600, and 1200 were high in spite of adding Gaussian
perturbation because the arrays were large even after outlier filtering.

When the outliers were not filtered, the size of the arrays were large for all
snooped text lengths. So the attack EERs were high for all snooped text lengths (see
dashed curves in Figures 4.7(a) and 4.7(b)). Therefore, except when we performed
both Gaussian perturbation and outlier filtering with snooped text of length 20, 50,

and 100, the attack EERs for “R” verifier were high for all configurations.
4.2.6 Analysis of Attacks Against “S” and “A” Verifiers

In Figures 4.7(c) and 4.7(e), we observe that the attack EERs decreased as the
snooped text length increased. The reason why EERs decreased when snooped text
length increased is related to the distribution of digraphs in English text. In Figure

4.8, we show the probability distribution of the digraphs. To plot the distribution,

o7

Probability of Digraphs

N M g W O N0 O =M
N NN - NN O NS W
N N NNO MmN 0N S T T 2

English Digraphs Ranked by Frequency of Occurence

Figure 4.8: Probability distribution of English digraphs. Probabilities were computed
from the digraph frequencies given in [44].

we used digraph frequencies in [44], which calculated the frequencies by considering
997,380 digraph instances. In Figure 4.8, notice that the first few digraphs cover a
major portion of the probability distribution compared with the rest of the digraphs.
In fact, the 40 most frequent digraphs account for 50.71% of all digraph instances.
So, when the snooped text is long (600 and 1200 characters), the majority of the
digraphs occur only once. For example, from the distribution shown in Figure 4.8,
if the snooped text has 600 digraphs, out of the 676 possible English digraphs, we
can expect only 94 digraphs to occur more than once in the snooped text and the
remaining 582 digraphs either occur once or do not occur at all.

For the digraphs that occurred only once in the snooped text, we used a single
snooped latency value in the forgery. This latency value could have been an inaccurate
estimate of the “true” latency value. During the attack, when we replayed single
latency values, the majority of the digraphs were considered “invalid” by the “S” and

“A” verifiers. This lowered the attack EERs.

58

We mitigated the problem by replaying only those digraph latencies that
occurred at least two or three times in the snooped text. This gave us a better
estimate of the mean of the victim user’s latencies. and as a result, the forgery had a
better chance of being considered as “valid.” In the right side panels (b, d. f. and h)
of Figure 4.7, with 600 characters snooped text, we used latencies of those digraphs
that occurred at least twice and with 1200 characters, we used digraphs that occurred
at least thrice. Consequently, from Figures 4.7(d) and 4.7(f), we see that the attack
EERs are high at 600 and 1200 snooped text lengths.

Attack EERs increased when we filtered the outliers in the snooped text. In
Figures 4.7(¢)—4.7(f), the solid curves (which represent filtering outliers) are above
their corresponding dashed curves (which represent no outlier filtering). By filtering
the outliers we were able to forge latencies that were closer to the victim user’s

latencies, and therefore, were able to increase the attack pass rates.

4.2.7 Analysis of Attacks Against the “F” Verifier

The “F” verifier, which had the lowest EERs against zero-effort impostor
attacks had surprisingly high attack EERs. From Figures 4.7(g) and 4.7(h), we
observe the following: as in “R,” the EERs for “F” verifier were high for all attack
configurations. A contributing factor for this is that the “R” verifier was weighted
more in the “F” verifier.

In Figures 4.7(g) and 4.7(h), the solid curves are over the dashed curves, which
shows that filtering the outliers increased the attack EERs. In Figure 4.7(g), at a few

points the dashed curves are over the solid curves when the snooped text length is

59

short. This indicates the influence of "R verifier. which had lower attack EERs for

short snooped text with Gaussian perturbation and outlier filtering.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented a new attack called “snoop-forge-replay”
attack that synthesizes keystroke forgeries using timing information stolen from
victim users. Our results from feature-level and 2640 sample-level attack experiments
(involving 150 users, four state-of-the-art continuous verifiers, three types of keystroke
latencies, and 24 attack configurations) reveal that snoop-forge-replay attacks are very
effective in increasing EERs. With 20 to 1200 snooped keystrokes, the average sample-
level snoop-forge-replay attack EERs were between 0.487 and 0.912. In comparison,
the bascline EERs with zero-cffort impostor attacks were between 0.03 and 0.285
(i.e., the attack increased EERs from between 69.33% to 2730.55%). Our results
additionally show that effective keystroke forgeries can be created with a) as low as
20 to 100 characters of snooped text and b) old legacy keystroke timing information.

The main reason for the success of snoop-forge-replay attack is that keystroke-
based continuous verification methods solely rely on users’ latency information, which
can be easily forged, as demonstrated in this dissertation. We opine that by integrating
text-based and language-based traits into the verification process such as — 1) the
rate at which a user misspells words or repeats letters, 2) type of words for which the

user has latency outliers, 3) how the user revises text i.e., revision pattern, and so

60

61

on. the impact of the attack can be mitigated. In our future work, we will pursue
the problem of designing keystroke based verification systems that are resilient to

snoop-forge-replay attacks.

APPENDIX A

ADDRESSES OF WEB PAGES USED AS “DUMMY TEXT”

62

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Web addresses of 20 Wikipedia pages used in our

. en.wikipedia.org/wiki/History_of United_States

en.wikipedia.org/wiki/World War_I1
en.wikipedia.org/wiki/Air_warfare_of . World_War_II
en.wikipedia.org/wiki/Effects_of World War_ 11
en.wikipedia.org/wiki/United_Nations
en.wikipedia.org/wiki/World_ War_I
en.wikipedia.org/wiki/Causes_of- World-War.1
en.wikipedia. org/wiki/Cold_War
en.wikipedia.org/wiki/Great_Pyramid_of Giza
en.wikipedia.org/wiki/Stonehenge
en.wikipedia.org/wiki/Colosseumn
en.wikipedia.org/wiki/Great. Wall_of-China
en.wikipedia.org/wiki/War_on_Terror
en.wikipedia. org/wiki/Gulf War
en.wikipedia.org/wiki/Vietnam_War
en.wikipedia. org/wiki/Grand_Canyon
en.wikipedia.org/wiki/Christopher_Columbus
en.wikipedia.org/wiki/Albert_Einstein
en.wikipedia. org/wiki/Isaac_Newton

en.wikipedia.org/wiki/NASA

63

“dummy text” file

APPENDIX B

EER PLOTS UNDER DIFFERENT ATTACK CONFIGURATIONS

64

"R" Verifier

1
0.8 Y
=KJ. Filtening + Gaussian
0.6 —KP. Filtering + Gaussian
E —KH. Filtermg - Gaussian
] ===Kl. No Filicring - Gaussian
0.4 ==KP. No Filtenng - Gaussian
-=sKH. No Filiering ~ Gaussian
0.2
0 ’ —
0 100 200 600 1200
Sneoped Text Length (in characters)
(a)
"R" Verifier
l ——— ——
e
0.8-
—KI. Filtering + Min Frequency
0.6 =KP. Filterng ~ Min Frequency
= e KH. Fib « M Fi cy
=) - Fillenng n Frequency
b} =K1, No Filtering - Min Frequency
0.4 ~++KP. No Filtesing ~ Min. Frequency
=K. No Filtering - Min. Frequency
0.2
0 . 1
0 100 200 600 1200
Snooped Text Length (in characters)
"R" Verifier
1 .
\ yd
0.8-¥ -
==Kl Filtering ~ Gaussian
==KP. Filtering + Gaussian
o~ 0.6 —KI4, Filtering - Gaussian
= ===KI. No Filtering + Gaussian
- 0.4 ==-KP. No Filtering ~ Gaussian
* _+==KH, No Filtering + Gaussian
0.2-
0 : .
¢ 100 200 600 1200
Snooped Text Length {(in characters)
(c)
"R" Verifier
| e e ey o
b o
0.8 &>
=KL Filering + Min. Frequency !
0.6 ~=KP, Filtermg - Min. Frequency §
-4 ==KH. Filtering + Min. Frequency |
s "===KI. No Filtering + Min. Frequency i
04 ==KP, No Filtering - Min. Frequency |
*~KH. No Filtering - Min. Frequency
0.2:
Q- -
0 100 200 1200

600
Snooped Text Length (in characters)

(d)

Figure B.1: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and & correspond to M = 40, plots ¢ and d

correspond to M = 60.

66

"R" Verifier
]

yd

% g
0.8 g
=K1 Litenng Gaissian
0.6 - KP Blicning Gaussian -

3 ~—KH hiltenng - Gawsstan
s} =K1 No {ilienng - Cisussian
0.4 =ek i, No Filiermg - Gawsssan
eRIL No iltermy | Gaussian
0.2-
0 :
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"R" Verifier
l Ty s et
spasans
0.8-& 3
=K1 Filtermg ~ Min Frequency
6 K P, Filtering - Min Lrequency
& o ==KH. Filtcring « Min. Frequency
5 ===K1. No Filtering + Min. Frequency
0.4 =+KP. No Filtersng ~ Min. Frequency
=e*KH. No Filterning - Min. Frequency
0.2
0 100 200 600 1200
Snooped Text Length (in characters)
"R" Verifier
1- ey
e Ve
0.8-
«wKl, Filtering - Gaussian
0.6- ~==KP. Filtermg - Gaussian
5 —KH. Filtering - Gaussian
= ===KI. No Filtering - Gaussian
04 ===KP. No Filtering 1 Gaussian
==K} No Mltening © Gaussian
0.2-
O PR P, - - -
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"R" Verifier
1 .
Spmasan
0.8 e~
“==KI. Filtorng - Min. Froquency
r:: 0.6 ~=KP_ Fillenng - Min, Frequency
=} K. Filtering - Min. Frequency
1= ===KI, No Filtering - Min. Frequency
0.4 »+=KP. No Filtening + Min. Frequency
==KH. No Filtering - Min Frequency
0.2
|
0 - i b
0 100 200 660 1200

Snocped Text Length (in characters)
(d)

Figure B.2: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs

when the outliers are not filtered. Plots a and b correspond to M = 80, plots ¢ and d
correspond to M = 100.

"R" Verifier

1
Ay 4
0.8
—KL Liltenng - Gavssian
0.6- ==K brltering - Canssica:
5 ==K, Filtenng - Causaan
= wesKL No Filienmg Caussian
0.4 sesKP. No Dilterng - Gaussian
K. No Filteong + Gaussian
0.2
(1]
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"R" Verifier
I -
preems
0.8-&~
- KI.T]K:m’vg M }'rcw;‘v‘c)
- ==KP. Filtering + Min. Frequency
0.6 eting + Min. Frequency
5 ~=KH. Filtering ~ Min Frequency
o ==«K}. No Filtering - Min Frequency
0.4 «=eKP. No Filtermg - Min Freguency
e=KH. No Filtering + Min Frequeney
0.2
0 . i
0 100 200 600 1200
Snooped Text Length (in characters)
"R" Verifier
1 T
1y 2,
0.8 el
=—KI. Filtenng - Gaussian
0.6- =—KP, Filtenng - Gausstan q
S ==KH, Filtering - Gaussian
] ===KI. No Filtering - Gaussian
0.4- ===KP. No Filtering + Gaussian
{***KH. No Filienng - Gaussian
0.2-
0o-- - - : .
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"R" Verifier
1 .
ppmennns
0.8 &~
waeK]. Filtering + Min. Frequency
0.6 ==K P, Filtering ¢+ Min. Frequency
5 e KH. Filtering - Min. Frequency
b we=KI. No Filtering - Min Frequencs
0.4 *++KP. No Filtering - Min. Frequency
=**KH. No Filtering + Min. Frequency
0.2
0 100 200 600 1200

Snooped Text Length (in characters)

(d)

Figure B.3: Comparison of attack EERs using attack configurations 1-12 (plots g,
¢) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to M = 120, plots ¢ and d

correspond to M = 150.

63

"R" Verifier

0.8 4
K Filtering -+ Craussian
0.6 P Filterng - (rawvaan

E‘ —=KH iltenny - Gaussian
= ekl No Fiherng - Gaussian
0.4 ~eeKP. No Falteting - Gausstan
===KH. N Filtering - Gaussian
0.2-
0
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"R" Verifier
1- ey
i
» .
0.8-¢ B
— K. Filterng - Min. Frequency |
0.6 =—KP_Filierng - Min Frequency
o ~=KH. Filtering - Min. Frequency
et ==+Ki. No Filierng - Min. Frequency
L 0.4 me=KP. No Filtenng ¢+ M. requency i
*++Kil. No Filtening - M. Frequency] ;
|
0.2 <‘
0 o S
0 100 200 600 1200
Snooped Text Length (in characters)
"R" Verifier
1
[2
0.8~
—;krilllcmg « Gaussian
0.6- —KP, f'}]lcrxng « Gaussian
x ~~KH. Filtering + Gaussian
;J *s=Ki No Fillering + Gaussian
0.4 tessKP. No Filtenng - Gaussian
p=*=KH. No Filtering * Gaussian
0.2-
0 - . S U
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"R” Verifier
1 : -
>
0.8 &
wsK1. Filtening ~ Min. Frequency
o 0.6 ==KP, Filtering + Min. Frequency
= ==KH. Filtering ~ Mm. Frequency
= ++=KI, No Filtering - Min. Frequency
0.4 ++«KP. No Filtering + Min. Frequency
+*=KI. No Filtering - Min. Frequency
0.2
0 . - ' -
0 100 200 600 1200

Snoeped Text Length (in characters)
(d)

Figure B.4: Comparison of attack EERs using attack configurations 1-12 (plots g,
¢) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when

the outliers are not filtered. Plots a and b correspond to M = 300, plots ¢ and d
correspond to M = 350.

69

"R" Verifier

0.8 ¢
KL Filiermg - Gaussian
0.6- =K, Fiiterng -+ Gaussian

—KH. Fihenng - Caussian

EER

seeKI No hiltering, + Gavssian
0.4 »++KP. No Iihenng - Gaussian
==KH No Fittermg - Gaussan

0.2
1) . i
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"R" Verifier
l -
panassane
0.8-& k!
K1,)illcring - Min. Frequency
0.6 K filtonng ¢ M Frequeney
= ~~KH. Filtering - Min Frequency
.f! ‘---KI.No Filtering - Min Frequency

0.4 Te==KP. No Filienng - Min Frequencs
eKH. No Filtenag © Min. Frequeney

0.2

% 100 200 600 1200
Snooped Text Length (in characters)

(b)

Figure B.5: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “R” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

70

"S" Verifier

1 J
KT Filienng - Gaussan |

K Liltenmg - Guussian

0.8- —KH. Filtenng + Guussian

===KL. No biftenng + CGanssian |
==<KP. No Fitering - Gaussian
ss<KH. No Biltermg - Gaussian §

e
b
I

0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"S" Verifier
1 v
0.8~
3
x 0.6 N \
= N va. o iseesaserzsman
- N 2 ba e venwradt SRESITIEIEIEREE, A a———— -
= 0.4 =K1 Filtering - M, Frequency
=KP. Filhering + Min. Frequency
~=KII. Filtering - Min Frequency
0.2 «==K1. No Filtering - Min. Frequency
=+KP, No Filterng + M. Freguency
. =*KH, No Filtcring ¢ Min. Frequency |

% 100 200 - 600 1200
Snooped Text Length (in characters)

(b)

"'S" Verifier

Lk T [e=KI. Filtering - Gaussian
==KP. Filtering -~ Ganssian
0.8- wee K H, Filtering ~ Gaussian
wesX]. No Filtering - Gaussian
==K’ No Fihenng - Gaussian
o 0.67 A =g ===KiL. No Filtering - Gaussian
& (T Auss
:} ETTRRRSe A eoseraon
0.4
0.2~
0 e - L — [
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"S" Verifier
1- - - R
0.8
3 = \
06 D=
= Ny, L csassissisianione it e e
= 0.4 ==KI. Filtering ~ Min.Frequency wed
=KP, Filtering - Min. Frequency
==KH. Filtering - M. Frequency
0.2 ==+KI. No Filtering ~ Min. Frequency
+==KP. No Filtering - Min. Frequency
0 . ..~=*KH. No Filtering - Min. Frequency
0 100 200 600 1200

Snooped Text Length (in characters)
(d)

Figure B.6: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots @ and b correspond to M = 40, plots ¢ and d
correspond to M = 60.

71

"S" Verifier

=K. Viltenng - Ganssan
—KP. Filtenng + Gausstan
0.8 —KH. bilicrmg Gaussian

=K. No Filtering - Ciaussian
»eeKP. No Filicring + Gaussian

o 0.6-0-3 TRl Nolenng e
= o=
* 0.4
02- T]
0 . !
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"S" Verifter
1

~ o>

25] RO o Aot |

= AT - g : :
0.4 =—KI. Filtermg - M Frequency -~

~=KP._ Filtering - M Frequency j
==KH. Filtcring + M Frequency :
0.2 ===K1. No Filtenng + Min. Frequency
==~KP.No Tiltering - Min. Frequency
0 "KM, No Filtering - Min. Frequency
0 100 200 600 1200
Snooped Text Length (in characters)

(b)

"S" Verifier

==KI. Filtering + Gausstan
«=KP. Filienny - Guussian
==KH, Filtering - Gaussian !
**+K]. No Filtering ~ Gaussian

==KP. No Filtering - Guussian
i=»*K11, No Filtering - Gaussian

rvm— —
0.2-

0 — — R

0 100 200 600 1200

Snooped Text Length (in characters)
(c)
"S" Verifier
1 — I Lo S R

HH
0.4 ‘[—KI. Filtering + Min. Frequency ™~
‘—KI’. faltening + Min. Frequency
|=—KH. Filtering - Min Frequency
0.2 ==+KI. No Filtering - Min Frequency
===KP. No Ialtering - Min. Frequency
L==KH, No Filiering « Min Frequency

% 100 200 600 1200
Sneoped Text Length (in characters)

(d)

Figure B.7: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 80, plots ¢ and d
correspond to M = 100.

"S" Verifier

Kl Filtermg - Guussian
—KP. Bilenme - Gaussian
0.8 K1, Filtering - Caussian

s~=Ki. No hhenng - Gaussan

«=KI'. No Fiherng - Guussian
~ 0.6~ ===KH No Filtenng - Ganssian
=
=
0.4
02 T

% 100 200 600 1200
Snooped Text Length (in characters)

(a)

"S" Verifier

Q

= Masans “~KI_Fuit Frequency)
=—KP, Filtering - Min Frequency
==KH. Filtenng - Min. Frequency)
0.2 =K1 No Filtering ¢ Min_ 'requeney |
==-KP. No Filtering + Min. Frequency
0 , KH. No Filtering - Min l'requm}z
0 100 200 600 1200
Snooped Text Length (in characters)

(b)

"'S" Verifier

1 T =Kl Filenng - Gaussin
—=KP. Filtering - Gaussian
0.8 —=KIL Filicring + Gaussian

*=»KI. No Fittering + Gaussian
«=+KP. No Filtering + Gaussian
o 0.6~ *=KH. No Filtering - Gaussian

2
0.4 “"“““MM
Rl TYTTIET
0.2-
0 S Y - . .
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"S" Verifier
1 - — - -
0.8
o 067~
= i - e,
= 0.4 P nasaia =K. Filtering - Min Frequency "™
«aKP. Filtering ~ Min Frequency
m=KH. Fillenng - Min. Frequency
0.2 ===Kl, No Filtering - M. Frequency
»+=KP. No Filtermg ~ Min. Frequency
0 *+*KH. No Filtering ~ Min. Frequency

0 100 200 © 600 1200
Snooped Text Length (in characters)

(d)

Figure B.8: Comparison of attack EERs using attack configurations 1-12 (plots g,
c¢) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when

the outliers are not filtered. Plots a and b correspond to M = 120, plots ¢ and d
correspond to A = 150.

73

"S" Verifier

! K Filtenng - Gaussan
—EP Litenng Gussiun
0.8 —KHK. hiltenme - Gaussaan

~==KI. No Filtenny + Gaussian
=»=KP. No Fihenng - Gaussian
x 0.6 =KL No Phienmg - Gaussian

= 04 \‘.".‘.‘M\"“‘“\Ml “
|
0.2 =
I
0 B
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"S" Verifier
‘ L - e e g o e -

" trnns.,.
0.4 ~KI. Fihenng + Min Frequency
~=KP. Filtenng * Min. Frequency
=KH. Filtering - M. Frequency

—

0.2 No Filtering - Min Frequeney
KP. No Filtening - Min. Frequency
0 . | **"KH. No Filtenny - Min. Frequency
0 100 200 600 1200
Snooped Text Length (in characters)
"S" Verifier
P - %-—Kl. Filtering - Gaussian
{==KP, Filtering - Gaussin
0.8- {w=KH. Filtering - Gaussian

{
{==KL No Filtenng - Gaussian

»=KP. No Filtering ~ Gaussian |

~ 0.6~ - +=*KH. No Filtenng ~ Gaussian’
)
= 0.4 ..-'-'-"'M\M
0.2- R
0 N . —— i . - —_—
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"S" Verifier
l . ce — —

0.4- =K. Filering + Min Froquency ™1
==KP. Filtenng ~ Min. Frequeney
==K, Filtering - Min. Frequency

0.2 *++Ki. No Filtering - M. Frequency
«++KP. No Filtering ~ Min. Frequency

, "rKII No Filiering - Min Frequency

% 100 200 600 1200
Snooped Text Length (in characters)

(d)

Figure B.9: Comparison of attack EERs using attack configurations 1-12 (plots a,
¢) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to M = 300, plots ¢ and d
correspond to M = 350.

"S" Verifier

1
—KI Fienne - Gamssian
e P Bihlenng © Guossian
0.8 kL Biltermg - Guussian

see K Nabitenng - Cansazn
vssKP. Noillenng Gaussian

~ 0.6 - wesKH. No billermg - Gausin
“ 04
0.2.,
[}) :
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"S" Verifier
‘ S -

0.4 wwK{, Filtering - Min. Frequency
==KP. Filtering - M Frequency
e KH. Filtering ¢+ Min Frequency
Kl No Filiering + Min Frequency
KP. No Fillenng ~ Min Froquenes
0 | *=*KH. No Filtering - Min. Frequency
0 100 200 600 1200
Snooped Text Length (in characters)

(b)

Figure B.10: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “S” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

A" Verifier

1
0.8-
x 0.6- " e
M e :
= 9.4 —KI hiltenng - Gaussian

—KP, Biltermg - Gausoian
—=KH. Filtering + Gaussian
0.2- ==*KI. No Filtening + Gaussian
~KP. No Filtenng + Gaussian
0 ==KH. No hiltermg - Gaussian |
0 100 200 600 1200
Snooped Text Length (in characters)

(a)

"A" Verifier

0.8~ 9

e S—

20N g —
R 0.4 =K1 Filtering + Min }:rcqucn\‘\

==KP. Filtering ~ Min. Frequency
==KH. Nhering - Min. I'requency
0.2 ===K1. No Filiering - Min. Frequency
===KP._No Filieting - Min. Frequeney
o . ===K1. No Filtering -~ Min Frequency
0 100 200 600 1200
Snooped Text Length (in characters)

(b)

"A" Verifier

O'&\\gz_a-\ﬁ
§
0,6 "\
SRSSESR AN toensonns,

0'4k ==KIi. Filtering - Gaussian

==KP, Fillening + Gaussian

«==KH. Filtering + Gaussian
0.2~ ===KI. No Filtering + Gaussian

*++KP. No Filtering + Gaussian
==KH. No Filtcring - Guussian |

% 100 200 600 1200

Snooped Text Length (in characters)

(c)

"A" Verifier

0.8

0.6

EER

e IO . semmvsss
0.4 =KI. Filterng - Min. Frequency
==KP, Filtering - M Frequency
=K. Filtering + Min. {'tequency
0.2 ===KI, No Filtenng - Min. Frequeney
=+KP", No Filteting - Min. Frequency
==~KH. No I'ilsering - Min. Freguency

00 100 200 600 1200
Snooped Text Length (in characters)

(d)

Figure B.11: Comparison of attack EERs using attack configurations 1-12 (plots
a. ¢) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 40, plots ¢ and d
correspond to M = 60.

76

"A" Verifier

=K1 Filtenng - Gaussian
=KP. Ficung - Gausstan
==XH. Filtermg - Gaussian
0.2- e~+K[. No Fihenng - Gaussian '
===KP. No Filtenng - Gausswan 1
g KR Nekenng - Gavsan o
0 100 200 600 1200
Snooped Text Length (in characters)

(a)
A" Verifier
1 -

O.B'M\ 4
. \

0.6-
5 \'::Z:
[

0.4 ==KI. Filtering -~ Min. Frequency
N ==KP. Filtering + Mm. Frequency
==KH. Filtenmg - Min. Frequency
0.2 ===KI. No Filtering + Min. Frequency
===KP. No Filtering - Min. Frequency
0 ~=*KH. No Filtering t Min. Frequency
. R . ! o B
0 100 200 600 1200
Snooped Text Length (in characters)
A" Verifier
1
0.8-\\‘
K ———
o 0.6 M—m";z"
=t
25

0.4 ==Kl Filtering - Gaussian
==KP. Filtering ~ Gaussian

—KH. Filtering - Gaussian

0.2- ==Kl No Filtering + Gaussian 1
e KP, No Filtering + Gaussian
--»-KH.‘N&FVmering - Gaussian

% “100 200 600 ' 1200
Snooped Text Length (in characters)
()
"A" Verifier
1 .- -t [

0.4 =XKL Filtering + Min. Frequency
===KP. Filtening - Mm. Frequeney
=—KH. Filtcring - Min_ Frequency

0.2 ==«K1. No Filtering -~ Min. Frequency

+++KP. No Filtering + Min. Frequency

*==Ki1, No Filtering © Min. Frequency

0 100 200 600 1200
Snooped Text Length (in characters)

(d)

Figure B.12: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs

when the outliers are not filtered. Plots a and b correspond to M = 80, plots ¢ and d
correspond to M = 100.

77

"A" Verifier

EER

—KI Bltering - Cagssran

=KP. Filtermg - Caussian
=KL Pilienng Gaussian
0.2- senKI No biltenme - Guussian
s KP. No britenne Gaussian {
0 =++Ki{. No Filrening - Gaussian i
0 100 200 600 1200
Snooped Text Length (in characters)

(a)

"A” Verifier

0.4 ==KI. Filenng - Min. Freguency
=—KP.Filtering ~ Min. Frequency
==K Filtering + Min. I'requency

0.2 +==KI. No Filtering - Min. Frequency
==+KP. Nao Filtering - Min. Freguency
==+KH. No Filtering - Min Frequency

% 100 200 600 1200
Snooped Text Length (in characters)

(b)

"A" Verifier

5 0.6- X: -
=

g4 Kl Ticring - Gaussan |
* = KP. Filtering - Gausstan

‘K. Filtermg ¢ Goussian :
0.2- *==KL No Filtering + Gaussian |
===KP. No Filtering ~ Gaussian |
==KH. No Filtering - Gavssian |

% 100 200

600 - 1200
Snooped Text Length (in characters)

(c)

"A" Verifier

~=KP. Filtering - Min. Frequency

~—KH. Filtening ~ Min. Frequency
0.2 K. No Filtening - Min Frequency
KP. No Filtenng - Min. Frequency
Kl

H. No Filtering - Min. Frequency

% 100 200 600 " 1200
Snooped Text Length (in characters)

(d)

Figure B.13: Comparison of attack EERs using attack configurations 1-12 (plots aq,
¢) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to M = 120, plots ¢ and d
correspond to M = 150.

78

"A" Verifier

0.6- *% 1

e -,
)

0.4 e K5, hiftenng ¢ Gaussian

e KP. hittenng - Gausstan

wwe KH. Filtering ~ Gaussian
0.2- =+KE No Filtering - Gaussian
*=*KP. No hiltening - Gaussin

P “eoKH. No hllening - Gaussian , !
0 100 200 600 1200

Snooped Text Length (in characters)

(a)

A" Verifier

0.4 =K1 Tiltering ~ Min Froquency i
| KP. Filtering + Min. | requency
‘—K!L Filtering - M Frequeney
0.2- 1K1 No Filtering - M Froquency
{==+KP. No Filtering - Mim_ Frequency
| 1===KiL, No Filtering + Min. Frequency

% 100 200 600 1200
Snooped Text Length (in characters)

(b)

"A" Verifier

0 4, =KL Piltcrmg ¢ Goussian ”"un-....._“.‘1

M = KP. Filtenng - Gaussian
==X 1. Filtering - Ciaussian

0.2- ===K1. No Filtering - Gaussian

KP. No Filtering - Gaussian

o ~KH. No Filiering + Gaussian

0 100 200 600

Snooped Text Length (in characters)
(c)

"A" Verifier
1 - — [

1200

EER

0.4- —Kl.rillicnng * Min. Frequeney
: ~=KP, Filicning - M Frequencs
==KH. Filtering ~ Min Frequency

0.2 ===KI. No Filtering - Min. Frequencs §
-==KP. No Filtenng + Min. Frequency |

0 . . L ""KH.No Filtening - Min. Freguencs |
0 100 200 600 1200
Snooped Text Length (in characters)

(d)

Figure B.14: Comparison of attack EERs using attack configurations 1-12 (plots a,
¢) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when

the outliers are not filtered. Plots a and b correspond to M = 300, plots ¢ and d
correspond to M = 350.

79

A" Verifier

1
0.8- -
0.6 ‘Zi
- 4hdd e —
= i ramsineneemesnarness
- 0.4 (==Kl Filtering - Gaussian —N‘"
=—KFP. Ditenng + Gaussian |
~—Kil tihtenng © Gaussian |
0.2 (=K1 No Filtermg - Ganssian - i
1e=-KP. No Filtermg - Gaussian i
o [+=+KH. No Hiltering » Gaussian i
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"A" Verifier
] i e - -

=K. Flering - M. Freguency
“~KP_Filtering - Min Frequency
=~=KI. Filtering + Min. Frequency
0.2 ===K1. Ne Filtenng + Min. I'requency
«=rKP.No Hilienng + M. Frequency
=*Kil. No Filtering - Min_ Frequency

% 100 200 600 1200
Snooped Text Length (in characters)

(b)

Figure B.15: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “A” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

80

"F" Verifier

V
= iliermg - Gaussian

eseNo fihering Gausan

= 0.6
-
~ 0.4
0.2
0 . .
0 100 200 600 1200
Snooped Text Lengih (in characters)
(a)
"F" Verifier
l M e e e e e ta e = s s & i+ s e ——————
0.8-
5 0.6- —Pllenng © Min Frequency
2 0.4 ===No Filtening « Min. Frequency
0.2
0 - . L -
0 100 200 600 1200
Snooped Text Length (in characters)
(b)

"F" Verifier

~—Filterng - Caussian
==No iltering + Gavswian

% 100200 600 1200
Snooped Text Length (in characters)

(c)

"F" Verifier

< 06 , _
= ~=liliering © Min. Frequency
] ==*No Filtermg - Min Frequeney
0.4
0.2

% 100 200 600 1200
Sneoped Text Length (in characters)

(d)

Figure B.16: Comparison of attack EERs using attack configurations 1-12 (plots
a, c¢) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 40, plots ¢ and d

correspond to M = 60.

81

"F" Verifier

E —TFihering - Gaussian
w 0.4 sweNo Filterng - Gaussian
0.2-
0 R . i
0 100 200 600 1200
Snooped Text Length (in characters)
(a)

"F" Verifier

e eneannn, cammvaneassnn
i, CRRPRERVPIRE S Lt

x —}‘;hcrmg + M. Frequency

3} .

) ===No hitening - Min Frequeney
0.4
0.2

% 100 200 ' 600 ' 1200
Snooped Text Length (in characters)
(b)

"F" Verifier

-

e vamasensemnoenITaETTT

==Filtering + Gaussian
««=No Filtesing - Gaussian

0.2- J
0 - R Y
0 100 200 600 1200
Snooped Text Length (in characters)
(c)
"F" Verifier
l —_ . JE— -y JE— - -
[N Lo RS L »e
038 f - F————
: 0.6 '-;Fll!cnng - M. Frequency
P *»=No Filtering + Min. Frequency
= - ing qu
0.2:
0 - — 1 — -
0 100 200 600 1200
Snooped Text Length (in characters)
(d)

Figure B.17: Comparison of attack EERs using attack configurations 1-12 (plots
a, ¢) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table
4.6 to see the parameter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 80, plots ¢ and d
correspond to M = 100.

82

"F" Verifier

et iftering ¢ Gaussian
»e=No Filtoning Gaussian

% 100 200 600 1200
Snooped Text Length (in characters)

(a)

"F" Verifier

x emFiltering - Min Frequency
E‘J ==*No Filtermg - Mm l*'rcql;c(xc\
= I2No Kiltermg - M Frequeney.
0.2
0 . . 1 - [
0 100 200 600 1200
Snooped Text Length (in characters)
(b)
"F" Verifier

1 -+

0.6- R
-4 ==Filtering + Gaussim
: »=No Filtering + Gaussian

% 100200 600 B 1200
Snooped Text Length (in characters)

(c)
“F" Verifier
1 E— I N J—

'—Flllcnné - Min‘,‘hcqucmv\'
===No Filtering + Min. Frequency

EER

% 100200 600 1200
Snooped Text Length {in characters)

(d)

Figure B.18: Comparison of attack EERs using attack configurations 1-12 (plots a,
¢) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to M = 120, plots ¢ and d

correspond to M = 150.

33

"F" Verifier

1
.
<]
0.8- [, e
—=Tiliermg - Gaussian .
=*=No Filtenng -~ Gaussian
o 0.6
“ 04 :
0.2- i
i
0 i
0 100 200 600 1200
Snoaped Text Length (in characters)
(a)
"F" Verifier
‘ J—
0.8-
z‘ 0.6 —l'lltér{ug + M Frequency 7
= =+=No Filtering - Min_ Frequency
0.4
0.2
0 . -
0 160 200 600 1200

Snoeped Text Length (in characters)

(b)

“F" Verifier

x 0.6- . _
s} =Filterng - Gaussian
w 0.4 ==+No Fiftering - Gaussian
0.2- 1
o - - e [R o
0 100 200 600 1200

Snooped Text Length (in characters)

(c)

"F" Verifier

0.8 ,\// T——
0.6
: -—;ﬂw’:rilng - Minh;’re(;yenc)‘
”. ===No Filtcnng ~ M. Frequency
=g Filtenng pacncy.
0.2
0, - [
0 100 200 600 1200
Snooped Text Length (in characters)
(d)

Figure B.19: Comparison of attack EERs using attack configurations 1-12 (plots a,
¢) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to M = 300, plots ¢ and d
correspond to M = 350.

84

"F" Verifier

=} llermg CGaussin

s=No liltenng Gaussian
x 0.6
=
“ 04
0.2 -
0 100 200 600 1200
Snooped Text Length (in characters)
(a)
"F'" Verifier
0.8
f‘ 0.6- wliltenng Min Frequency
;_‘3 =+No Filiering - Min. Frequency
0.4
0.2 ‘
o . L |
0 100 200 600 1200

Snooped Text Length (in characters)
(b)

Figure B.20: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “F” verifier. Refer the Table 4.6 to
see the parameter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

1

BIBLIOGRAPHY

D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM Trans. Inf.
Syst. Secur., vol. 8. no. 3, pp. 312-347, Aug. 2005.

F. Monrose and A. Rubin, “Authentication via keystroke dynamics,” in Proc. of
the 4th ACM Conf. on Computer and Commun. Security, 1997, pp. 48-56.

P. Dowland, H. Singh, and S. Furnell, “A preliminary investigation of user
authentication using continuous keystroke analysis,” in Proc. of the 8th IFIP
Cont. on Infor. Security Mgmt. and Small Sys. Security, Nevada, USA, 2001.

T. Shimshon, R. Moskovitch, L. Rokach, and Y. Elovici, “Continuous verification
using keystroke dynamics,” in Intl. Conf. on Computational Intel. and Security,
Los Alamitos, CA, 2010, pp. 411-415.

Niinuma, K., Unsang Park, and Jain, A.K., “Soft Biometric Traits for Continuous
User Authentication,” in IEEE Trans. on Information Forensics and Security,
2010, vol. 5, no. 4, pp. 771-780.

R. S. Zack, C. C. Tappert, and S.-H. Cha, “Performance of a long-textinput
keystroke biometric authentication system using an improved knearest-neighbor
classification method,” in 2010 Fourth IEEE Intl. Conf. on Theory Applications
and Systems (BTAS), 2010, pp. 1-6.

A. Messerman, T. Mustafic, S. A. Camtepe, and S. Albayrak, “Continuous and
non-intrusive identity verification in real-time environments based on free-text
keystroke dynamics,” in IEEE Int. Joint Conf. on Biometrics, 2011.

Yong Sheng, Vir V. Phoha, and S. M. Rovnyak, ” A parallel decision tree-based
method for user authentication based on keystroke patterns,” in IEEE Trans. on
SMC Part B: Cybernetics, vol. 35, no. 4, 2005, pp. 826-833.

E. Yu and S. Cho, “GA-SVM Wrapper Approach for Feature Subset Selection
in Keystroke Dynamics Identity Verification,” in Intl. Joint Conf. on Neu. Nets,
2003, pp. 2253-2257.

85

[10]

1]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

86

B. Francesco. D. Gunetti. and C. Picardi. “User authentication through kevstroke
dynamics.” in ACM Trans. Inf. Syst. Secur. 2002. vol. 5. no. 4. pp. 367-397.

D. Hosseinzade and S. Krishnan. “Gaussian Mixture Modeling of Keystroke
Patterns for Biometric Applications.” in I[EEE Trans. on Systems. Man. and
Cybernetics Part C*, 2008, vol. 38, no. 6. pp. 816-826.

C. Shen, Z. Cai, X. Guan. and J. Cai, “A hypo-optimum feature selection strategy
for mouse dynamics in continuous identity authentication and monitoring,” in
IEEE Intl. Conf. on Infor. Theory and Infor. Secur, 2010, pp. 349-353.

M. Pusara and C.E. Brodley, “User Re-Authentication via Mouse Movements.”
in Proc. ACM Workshop Visualization and Data Mining for Computer Security
(VizSec/DMSEC 04), 2004. pp. 1-8.

Ahmed, A A E. and Traore, 1., “A New Biometric Technology Based on Mouse
Dynamics,” in IEEE Trans. on Dependable and Secure Computing, 2007, vol. 4,
no. 3, pp. 165-179.

Y. C. Yang, “Web user behavioral profiling for user identification,” in Decision
Support Sys. 49, 3, 2010, pp. 261-271.

R. Gaines, W. Lisowski, S. Press, and N. Shapiro, “Authentication by keystroke
timing: Some preliminary results,” Tech. Rep. R-256-NSF, Rand corporation,
Santa Monica, CA. May, 1980.

D. Umphress and G. Williams, “Identity verification through keyboard char-
acteristics,” International Journal of Man-Machine Studies 23, 3, pp. 263-273,
1985.

SendInput [Online]. Available: msdn.microsoft.com.

xsendkeycode [Online]. Available: http://manpages.ubuntu.com/manpages/gutsy
/man8/xsendkeycode.8.html.

U. Uludag and A. K. Jain, “Attacks on biometric systems: a case study in
fingerprints,” in SPIE Security. Steganography and Watermarking of Multimedia
Contents VI, vol. 5306, January 2004, pp. 622-633.

http://manpages.ubuntu.com/manpages/gutsy

21]

24]

[25]

[26]

[27]

28]

87

R. Maxion and K. Killourhy. “Keystroke biometrics with number-pad input,” in
2010 IEEE/IFIP International Conference on Dependable Svstems and Networks
(DSN). 28 2010-july 1 2010. pp. 201-210.

S. Joshi. *Naive bayes and similarity based methods for identifying computer
users using keystroke patterns,” Ph.D. dissertation. Louisiana Tech University,
Ruston, Louisiana, 2009.

M. Nisenson, I. Yariv, R. El-Yaniv, and R. Meir, “Towards Behaviometric Security
Systems: Learning to Identify a Typist,” in Knowledge Discovery in Databases:
PKDD 2003, volume 2838 of LNCS, pages 363374. 2003.

K. A. Rahman, K. S. Balagani, and V. V. Phoha, “Making impostor pass
rates meaningless: A case of snoop-forge-replay attack on continuous cyber-
behavioral verification with keystrokes,” in 2011 IEEE Computer Vision and
Pattern Recognition Workshops (CVPRW), Colorado, USA, June 2011, pp. 31-38.

L. C. F. Araujo, L. H. R. Sucupira, M. Lizarraga, L. Ling, and J. B. T. Yabu-uti,

“User authentication through typing biometrics features,” IEEE Trans. on Signal

Processing, vol. 53, pp. 851-855, 2005.

K. Killourhy and R. Maxion, “Why did my detector do that?!: Predicting
keystroke-dynamics error rates,” in Recent Adv. in Intrusion Detection, Canada,
2010, pp. 256276.

D. Stefan, X. Shu, and D. Yao, “Robustness of keystroke-dynamics based
biometrics against synthetic forgeries,” Computers and Security, vol. 31, no.
1, pp. 109-121, February 2012.

A. Serwadda, V. V. Phoha, and A. Kiremire, “Using global knowledge of users
typing traits to attack keystroke biometrics templates,” in Proceedings of the
thirteenth ACM Workshop on Multimedia and Security, USA, 2011, pp. 51-60.

L. Ballard, D. Lopresti, and ¥. Monrose, “Forgery quality and its implications for
behavioral biometric security,” IEEE Trans. on Systems, Man, and Cybernetics-
Part B, vol. 37, no. 5, pp. 1107-1118, 2007.

D. Gafurov, E. Snekkenes, and P. Bours, “Spoof attacks on gait authentication
system,” [EEE Trans. on Information Forensics and Security, vol. 2, no. 3, pp.
491-502, 2007.

31]

32]

88

Anti-Phishing Working Group. “Phishing Activity Trends Report for the Month
of February, 20077 www.antiphishing.org/reports/apwg report february 2007.pdf,
February 2007.

Mark Davies, “Word frequency data from the Corpus of Contemporary American
English (COCA).” http://www.wordfrequency.info. Last accessed on 15 May
2011.. February 2008.

E. Fry, “Developing a Word List,” Elementary English, 34 (7), pp. 456-458, 2007.
[Online]. Available: www.vinware.com/products/vsphere.

[Online]. Available: http://research.cs.wisc.edu/condor.

[Online|. Available: www.ushistory.org/declaration/document,/.

[Online]. Available: www.cs.virginia.edu/ robins/YouAndYourResearch.html.
Charles Dickens, “David Copperfield,” Penguin Classics, 1850.

Leslie Stephen, “Samuel Johnson,” Harper and Brothers, 1879.

Henry David Thoreau, “Leslie Stephen,” Houghton, Mifflin, and Company, 1854.

V. Phoha and S. Joshi, “Methods of identifying users based on text entered on
keyboard,” Patent Pending, 2010.

Y. Wang, T. Tan, and A. Jain, “Combining face and iris biometrics for identity
verification,” in Proceedings of Fourth International Conference on AVBPA, 2003,
pp- 805-813.

A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal
biometric systems,” Pattern Recognition, vol. 38, no. 12, pp. 2270-2285, 2005.

D. R. Ridley and M. Lively, “English letter frequencies and their applications:
Part iidigraph frequencies,” Psychological Reports, vol. 95, no. 3, pp. 787-794,
July 2004.

http://www.wordfrequency.info
http://www.vrnware.com/products/vsphere
http://research.cs.wisc.edu/condor
http://www.ushistory.org/declaration/document/
http://www.cs.virginia.edu/

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 2013

	Snoop-forge-replay attack on continuous verification with keystrokes
	Khandaker Abir Rahman

	00001.tif

