
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2013

Snoop-forge-replay attack on continuous
verification with keystrokes
Khandaker Abir Rahman

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages

S N O O P -F O R G E -R E P L A Y A T T A C K O N C O N T IN U O U S

V E R IF IC A T IO N W IT H K E Y S T R O K E S

by

Khandaker Abir Rahm an. B.Sc., M.S., M.S.. M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirem ents for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

M arch 2013

UMI Number: 3570080

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3570080
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LO U ISIA N A TECH U N IV ER SITY

THE GRADUATE SCHOOL

November 15, 2012
Date

W e hereby recom m end that the dissertation prepared under our supervision

, Khandaker Abir Rahman
by__...

entitled __ __

Snoop-forge-replay Attack on Continuous Verification with Keystrokes

be accepted in partial fulfillm ent o f the requirem ents for the D egree o f

Doctor of Philosophy

{ / - r (/ - T - r w v o i v

a r - - —
(-J Head o f Department

Computational Analysis and Modeling
Department

R ecom m endation concurred in:

- 7 ^ C h ' ^ J _________

A dvisory Com m ittee

Approved.

Director o f Graduate Studies Dean o f tne Graduate School

Dean o f the College
GS Form 13a

(6/07)

A B S T R A C T

We present a new attack called the snoop-forge-replay attack on the keystroke-

based continuous verification systems. We perform ed th e attacks 011 two levels - 1)

feature-level and 2) sample-level.

(1) Feature-level attack targets specific keystroke-based continuous verification

m ethod or system. In feature-level attacks, we performed a series of experiments using

keystroke da ta from 50 users who typed approxim ately 1200 to 2300 keystrokes of free

text during three different periods. The experiments consisted of two parts. In the first

part, we conducted zero-effort verification experiments with two verifiers (“R” and "S”)

and obtained Equal Error Rates (EERs) between 10% and 15% under various verifier

configurations. In the second part, we replayed 10,000 forged im postor a ttem pts per

user and dem onstrated how the zero-effort im postor pass rates becam e meaningless

when im postor a ttem pts were created using stolen keystroke tim ing information.

(2) Sample-level attack is not specific* to any particular keystroke-based contin

uous verification method or system. It can be launched w ith easily available keyloggers

and application program m ing interfaces (APIs) for keystroke synthesis. O ur results

from 2640 experiments show th a t (i) the snoop-forge-replay attacks achieve alarmingly

high error ra tes com pared to zero-effort im postor attacks, which have been the de

facto standard for evaluating keystroke-based continuous verification systems; (ii) four

state-of-the-art verification m ethods, three types of keystroke latencies, and eleven

inatd iing-pair settings (-a key param eter in continuous verification w ith keystrokes)

that we examined in this dissertation were susceptible to the attack; (iii) the attack is

effective' even when as low as 20 to 100 keystrokes were snooped to create forgeries.

In light of our results, we question the security offered by the current keystroke-

based continuous verification systems. Additionally, in our experiments, we harnessed

virtualization technology to generate thousands of keystroke forgeries w ithin a short

tim e span. We point out th a t v irtualization setup such as the one used in our

experiments can also be exploited by an attacker to scale and speed up the attack.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott M emorial Library o f Louisiana Tech U niversity the right to

reproduce, by appropriate m ethods, upon request, any or all portions o f this D issertation. It is understood

that “proper request" consists o f the agreem ent, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction w ill not occur w ithout w ritten approval o f the

author o f this D issertation. Further, any portions o f the D issertation used in book s, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this D issertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this D issertation.

Author

OS Form 14
(5/03)

DEDICATION

To my parents and wife for the ir never-ending support and for giving me the

ability to see th is through to the end.

v

TABLE OF CONTENTS

A B ST R A C T ... ii

D ED ICA TIO N .. v

LIST OF TABLES... viii

LIST OF FIG U R ES.. ix

C H A PTER 1 IN T R O D U C TIO N ... 1

C H A PTER 2 BACKGROUND... 8

2.1 Continuous Verification w ith K eystrokes.. 8

2.2 Related Research... 12

2.2.1 Keystroke-based User A uthentication System s..................................... 12

2.2.2 Non-zero Effort Attacks on Keystroke-based User Authentication
System s... 15

2.2.3 Non-zero Effort Attacks on O ther Behavioral Biometric A uthen
tication S ystem s.. 18

C H A PTER 3 SN O OP-FORGE-REPLAY ATTACK M E T H O D S............................ 19

3.1 Snooping Keystroke Timing In fo rm ation ... 19

3.2 Creating a Keystroke Forgery ... 20

3.2.1 Creating Forgeries in Feature-level A tta c k .. 20

3.2.2 Creating Forgeries in Sample-level A ttack ... 22

3.3 Replaying a Forgery of Victim U p ... 24

3.3.1 Replaying Forgeries in Feature-level A tta c k .. 24

vi

vii

3.3.2 Replaying Forgeries in Sample-level A ttack .. 25

3.4 V irtualization Set-up for Forging and Replaying Sample-level A ttacks
on a Large Scale.. 29

3.5 Keystroke D ata C ollection.. 30

3.6 Baseline (Zero-effort Im postor A ttack) E xperim en ts....................................... 34

C H A PTER 4 R ESU LTS... 37

4.1 Feature-level A ttack E xperim ents.. 37

4.1.1 Baseline (Zero-effort Im postor A ttack) R esu lts 37

4.1.2 Snoop-forge-replay A ttack Results and A nalysis................................. 38

4.2 Sample-level A ttack E x p erim en ts .. 43

4.2.1 Baseline (Zero-effort Im postor A ttack) Results and A n a ly sis 43

4.2.2 Snoop-forge-replay A ttack Param eters and C onfigurations............. 45

4.2.3 Effectiveness of the A ttacks.. 48

4.2.4 Performance Analysis of A ttack P a ra m e te rs 52

4.2.5 Analysis of Attacks Against the “R” V erifier...................................... 55

4.2.6 Analysis of Attacks Against “S” and “A ” Verifiers........................... 56

4.2.7 Analysis of A ttacks Against the “F ” V erifier...................................... 58

C H A PTE R 5 CONCLUSIONS AND FU T U R E W O R K ... 60

A PPEN D IX A ADDRESSES OF W EB PAGES USED AS “DUMMY T E X T ” ... 62

A PPEN D IX B EER PLOTS UNDER D IFFE R EN T ATTACK CO NFIG U RA
T IO N S .. 64

B IBLIO G RA PH Y ... 85

LIST OF TABLES

Table 3.1: Characteristics of the “dummy text" file used in our experim en ts 23

Table 3.2: A sum m ary of keystroke d a ta usage in our sample-level a ttack
experim ents... 32

Table 4.1: Total genuine a ttem p ts (# G), genuine a ttem p ts/u se r (G j U), and
impostor a ttem p ts/u se r (I jU) used in Figure 4.1 D E T s 38

Table 4.2: IPRs of verifiers “R” and "S” for thresholds T\ and T 2 42

Table 4.3: EERs generated for 150 users, with Set II as the training data and
Set III as the verification da ta . T he lowest EERs in each verifier
group are marked in b o ld ... 43

Table 4.4: EERs generated for 200 users. Set II was used for training, Set III
was used for generating genuine attem pts, and Set IV for generating
impostor a ttem p ts ... 43

Table 4.5: “Tot. Im postor A ttem pts” and th e “Tot. Genuine A ttem p ts”
columns give the total number of impostor and genuine verification
a ttem pts used to calculate EE R s in Tables 4.3 and 4.4. “Avg.
Typing Time per A ttem pt” column gives the average tim e taken to
type a verification a ttem p t (in seconds). “Avg. # of Keystrokes
per A ttem pt” column gives the average number of keystrokes in a
verification a tte m p t... 45

Table 4.6: Twenty-four attack configurations obtained with different param eter
settings.. 47

Table 4.7: Average num ber of snoop-forge-replay attacks generated p er u ser ... 48

Table 4.8: A ttack EERs of the top perform ing verifier settings in baseline
experim ents... 54

Table 4.9: Minimum to m axim um percentage increase in a ttack EE R s over
baseline EERs across all the m atching pa irs .. 55

LIST OF FIG U R E S

Figure 2.1: Overview of continuous verification with keystrokes. In the training
phase, keystroke latencies are ex tracted and outliers are removed.
Each in the tem pla te represents a cell entry contain ing the
latency values (and their mean and standard deviation) of an English
digraph. In the verification phase, latencies are ex trac ted as the
user types the verification text. After obtaining M m atching pairs,
the verifier m atches the latencies w ith the tem plate and o u tp u ts
a score. A verification decision is com puted by threshold ing the
score. Based on the decision, the user is either allowed to continue
or an action is taken. T he perforated box shows th e continuous
verification lo o p ... 9

Figure 3.1: Snoop-Forge-Replay a ttack flowchart. Step (l)-sn o o p keystroke
timings. Steps (2)-(8)-create and replay a forged a t te m p t.................... 20

Figure 4.1: Baseline D ET curves of “R” (a) & (b) and “S” (c) & (d) verifiers
with M m atching p a irs ... 39

Figure 4.2: (a ,c ,e ,g): Percentage of successful forged attem pts w ith threshold
T\; (b, d. / , h): Com parison of EE R s generated w ith zero-effort
impostors (baseline) and forged verification attem pts generated by
estim ating the means and standard deviations of snooped digraph
latencies (b,d), and by estim ating the means of the top 10 frequent
snooped digraphs (f , h) ... 40

Figure 4.3: Comparison of EERs of “R” verifier with forged verifications attem pts
generated with 50 and 150 snooped keystroke when M = 5 0 0 41

Figure 4.4: False reject ra te (Baseline FR R), zero-effort im postor pass ra tes
(Baseline IPRs) (highlighted by the smaller circles), and 24 snoop-
forge-replay a ttack IP R curves (highlighted by the large circles)
achieved w ith :‘R ” (a), “S” (b), “A” (c) verifiers paired w ith KH,
KI, and K P tem plates respectively and “F ” (d) verifier. In each
plot, the Baseline EER s (crossover points between Baseline F R R
and Baseline IP R curves) are m arked by a b o x .. 50

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure B .l:

Figure B.2:

M axim um ("M ax. A ttack EER" curves), average ("Avg. A ttack
EER" curves), minimum ("Min. Attack EER" curves), and standard
deviations (E rror bars) of a ttack EER s achieved from 24 snoop-
forge-replay attack configurations against. ”R" (a c). "S“ (d f) .
“A” (g h) verifiers and KI, KP. and KH templates. Two Baseline
EER curves "Baseline EER (Set HI)’’ and "Baseline EER (Set IV)"
represent EERs from Tables 4.3 and 4.4. (“Baseline E E R (Set
III) " and “Baseline EE R (Set IV)" curves are overlapping in most
panels.) Legends are the same for panels (a) through (j) 51

M axim um (“Max. A ttack EER" curves), average ("Avg. A ttack
EER” curves), minimum (“Min. A ttack EER” curves), and standard
deviations (Error bars) of a ttack EER s achieved from 24 snoop-
forge-replay attack configurations against “A” (a) verifier and KH
tem plate and “F” (b) verifier. Two Baseline EER curves "Baseline
EER (Set III)” and “Baseline EER (Set IV)” represent EERs from
Tables 4.3 and 4.4. (“Baseline EER (Set I I I) ” and “Baseline EER
(Set I V) ” curves are overlapping in most panels.) Legends are the
same for panels (a) through (j) .. 52

A ttack EERs under different attack configurations w ith “R ” (a -
b), “S” (c - d), “A” (e - /) , and “F ” (g - h) verifiers. EE R s are
computed using M = 750. Solid lines represent attack EERs when
the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not f il tered ... 53

P robability d istribu tion of English digraphs. P robabilities were
com puted from the digraph frequencies given in [44]............................... 57

Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “R" verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent a ttack EER s w hen the
outliers are filtered and the dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M =
40, plots c and d correspond to M = 60... 65

Comparison of attack E E R using attack configurations 1-12 (plots
a, c) and attack configurations 13-24 (plots b. d) for “R" verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. The solid lines represent a ttack EER s w hen the
outliers are filtered and the dashed lines represent a ttack E E R
when the outliers are not filtered. Plots a and b correspond to M =
80, plots c and d correspond to M = 100... 66

Figure B.3:

Figure B.4:

Figure B.5:

Figure B.6:

Figure B.7:

Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and attack configurations 13-24 (plots b. d) for "R" verifier.
Refer tint Table 1.6 to see the param eter values used in each
configuration. The solid lint's represent a ttack EERs when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
120. plots c and d correspond to M = 150...

Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and attack configurations 13-24 (plots b, d) for l R" verifier.
Refer the Table 4.6 to see th e param eter values used in each
configuration. The solid lines represent a ttack EERs when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
300, plots c and d correspond to M = 350...

Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for ‘R ” verifier. Refer
the Table 4.6 to see the param eter values used in each configuration.
The solid lines represent a ttack EERs when the outliers are filtered
and the dashed lines represent attack EERs when the outliers are
not filtered. Plots correspond to M = 500 ...

Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for "S” verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. Tin; solid lines represent a ttack EER s when the
outliers are filtered and the dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M =
40, plots c and d correspond to M = 60..

Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “S'’ verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent a ttack EER s when the
outliers are filtered and the dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M =
80, plots c and d correspond to M = 100..

xii

Figure B.8: Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and a ttack configurations 13-24 (plots b. d) for "S" verifier.
Refer the Table 4.6 to see th e param eter values used in each
configuration. The solid lines represent a ttack EE R s when the
outliers are filtered and the dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M =
120. plots c and d correspond to M = 150.. 72

Figure B.9: Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and a ttack configurations 13-24 (plots b, d) for ' S” verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. The solid lines represent a ttack EE R s when the
outliers are filtered and th e dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M —
300. plots c and d correspond to M = 350.. 73

Figure B. 10: Comparison of attack EERs using attack configurations 1-12 (plots
a) and a ttack configurations 13-24 (plots b) for "S" verifier. Refer
the Tabic 4.6 to see the param eter values used in each configuration.
The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent a ttack EERs when the outliers are
not filtered. Plots correspond to M = 500 ... 74

Figure B. 11: Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “A” verifier.
Refer the Table 4.6 to see th e param eter values used in each
configuration. The solid lines represent a ttack E E R s w hen the
outliers are filtered and th e dashed lines represent a ttack EER s
when the outliers are not filtered. Plots a and b correspond to M —
40, plots c and d correspond to M = 60.. 75

Figure B .12: Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “A” verifier.
Refer the Table 4.6 to see th e param eter values used in each
configuration. The solid lines represent a ttack E E R s when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
80, plots c and d correspond to M = 100.. 76

X l l l

Figure B. 13: Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and a ttack configurations 13 24 (plots b. d) for "A" verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent a ttack EE R s when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
120. plots c and d correspond to M = 150.. 77

Figure B. 14: Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b. d) for "A:’ verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent a ttack E E R s when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
300, plots c and d correspond to M = 350... 78

Figure B. 15: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “A” verifier. Refer
the Table 4.6 to see the param eter values used in each configuration.
The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent a ttack EERs when the outliers are
not filtered. Plots correspond to M = 500 ... 79

Figure B. 16: Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “F ” verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. Tin; solid lines represent a ttack EER s when tin;
outliers are filtered and the dashed lines represent a tta ck EERs
when the outliers are not filtered. Plots a and b correspond to M =
40, plots c and d correspond to M = 60.. 80

Figure B. 17: Comparison of attack EERs using attack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “F ” verifier.
Refer the Table 4.6 to see th e param eter values used in each
configuration. T he solid lines represent a ttack E E R s when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
80, plots c and d correspond to M = 100... 81

XIV

Figure B. 18: Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and a ttack configurations 13 24 (plots b. d) for "F" verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent attack EE R s when the
outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M =
120. plots c and d correspond to M = 150... 82

Figure B. 19: Comparison of attack EERs using attack configurations 1-12 (plots
a. c) and attack configurations 13-24 (plots b. d) for "F" verifier.
Refer the Table 4.6 to see the param eter values used in each
configuration. T he solid lines represent attack EE R s when the
outliers are filtered and the dashed lines represent a tta ck EERs
when the outliers are not filtered. Plots a and b correspond to M =
300. plots c and d correspond to M = 350... 83

Figure B .20: Comparison of attack EERs using attack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “F ” verifier. Refer
the Table 4.6 to see the param eter values used in each configuration.
The solid lines represent attack EERs when the outliers are filtered
and the dashed lines represent a ttack EERs when the outliers are
not filtered. P lots correspond to M = 500 ... 84

C H A PTER 1

IN T R O D U C T IO N

In login tim e verification, the iden tity of the user is verified uonce" before

granting access to the com puter. A draw back with login tim e verification is th a t

an unauthorized user can gain access to the com puter by replacing a legitim ate

user who is logged in, either through coercion (i.e., forcefully replacing the user) or

when the logged-in user leaves the com puter w ithout logging out. This vulnerability

of login tim e verification is a serious security risk because, after gaining access, the

unauthorized user can perform a broad range of malicious activities including installing

malware, spreading viruses, and (or) exfiltrating/destroying sensitive data. To deter

this kind of unauthorized access, several studies (e.g., [1 - 5] proposed biometric based

m ethods to continuously verify the identity of a logged-in user. A subset of these

studies used cyber-behavioral tra its (e.g., keystroke dynamics [1 - 4], [6 - 11]; mouse

dynam ics [12 14]; and web usage p a tte rn s [15]) to continuously verify users. For

continuous verification, cyber-behavioral tra its are appealing because they. 1) are non-

intrusive-they emerge naturally from a user’s interaction with the computer and user

intervention is not required when collecting them ; 2) provide broader coverage- th e y

can be collected on almost all desktops, laptops, and mobile devices without requiring

any special hardware (e.g.. fingerprint readers, cameras, or biometric scanners); and 3)

1

arc available even when the user is physically away from the computer and is accessing

it remotely.

Among the cyber-behavioral tra its , m ajority of the studies used keystroke

p a tte rn s for continuous verification. Two factors m otivate the use of keystroke

patterns for continuous verification: 1) typing is one of the most common activities a

user perform s on the com puter and therefore, one could expect a reasonable supply

of keystrokes for perform ing continuous verification and 2) studies {e.g., [16, 17])

dem onstrated tha t an individual’s typing behavior can be used as a unique “signature”

t.o identify the individual.

Almost all the studies in continuous user verification w ith keystrokes have

focused on developing m ethods to im prove verification perform ance. The focus of

this research is different. We present a new a ttack called the “snoop-forge-replay”

a ttack on continuous user verification w ith keystrokes. The a ttack is executed in

th ree steps: 1) snoop (steal) a victim user’s keystroke tim ing inform ation using a

keylogger, 2) forge a typing sam ple using the keystroke tim ing inform ation stolen

from the victim user, and 3) replay the forged typing sample in such a way th a t the

continuous verification system thinks th a t it is the victim user who is typing. The goal

of the attack is to submit forged typing samples to the verifier so th a t an attacker can

access the com puter w ithout being detected. Salient features of the a ttack follow.

Effective: th rough a series of experim ents conducted using keystroke d a ta

from 350 users (150 genuine and 200 im postors), four state-of-the-art continuous

verification methods, and tem plates built w ith three types of keystroke latencies, we

show th a t the snoop-forge-replay attacks have alarmingly high error rates com pared

3

to the error rates of zero-effort1 impostor attacks typically used to evaluate keystroke-

based continuous verification systems.

Few words become deadly: the attack is surprisingly effective even when a

small amount of snooped latencies are used to build forgeries. W ith 20 characters (few

words of tex t) to 100 characters (less than two lines of texts typed in a typical email

textbox) of snooped information, we achieved high error rates against state-of-the-art

verification systems. (See Figure 4.7, Page 53 for the error rates of snoop-forge-replay

attacks launched with short snooped text).

Legacy keystroke sam ples rem ain a threat: because th e snoop-forge-

replay attack uses forgeries built with stolen latencies of a user, the high attack success

rates can seem to be obvious and expected. However, we snoop the legacy keystrokes,

which are keystrokes of a user captured approxim ately six months before collecting

h is/her training (enrollment) samples. Given th a t behavioral tra its such as keystroke

latencies have high intra-user variabilities and can change over tim e, it is interesting

to note th a t our attack achieves high success ra tes when forgeries are created using

legacy keystrokes.

Speed and scalability: by using short stolen samples, the a ttack can be

launched quickly as the attacker does not have to wait long to collect victim s’ keystrokes.

By exploiting virtualization, we show th a t thousands of a ttacks can be launched to

simultaneously attack hundreds of users in a short tim e span. Using a v irtualization

Bn a zero-effort impostor attack, the “natural" typing patterns of one user are used as im postor
a ttem pts against another and the im postor does not deliberately try to mimic a victim user.

4

setup, we created on average 5594.98 to 299.38 attacks per user in 24 hours. In Table

4.7 on Page 48. we give the average number of attacks per user.

Three factors make the a ttack feasible: 1) M any hardw are and software

keyloggers th a t can steal an individual’s keystroke timings are openly available on the

Internet for different platform s (e.g., MS W indows, G N U /Linux). 2) It is possible

to develop a "keystroke em ulator” to replay forgeries. A keystroke em ulator is a

software program that generates synthetic key press and release events using APIs like

S end lnpu t [18] for MS Windows or programs like xsendkeycode [19] for X Windows

system. 3) In sample-level a ttack , the a ttacker deceives a verification system by

presenting fake key press and release events to the keystroke sensor. To launch

the attack , the attacker does not have to know the internal specifications of the

continuous verification system , such as w hat verification algorithm is being used,

verifier’s param eter settings, how the tem plates are constructed, and latencies being

used, all of which can be proprietary information.

Contributions of the dissertation are as follows:

In feature-level attack, we perform ed a series of experim ents on keystroke

data collected from 50 users. We show th a t forgeries created from snooped keystroke

information have alarmingly high impostor pass rates. Our results show th a t a t verifier

configurations yielding less than 0.1 zero-effort im postor pass ra tes (at < 0.15 false

reject rate), the success rates of forgery a ttem p ts is between 75% and 88%

In sample-level attack, we conducted 2640 a ttack experiments w ith 24 attack

configurations, 10 individual and fusion verifier configurations, 11 m atching-pair

settings (24x10x11 = 2040) and achieved as high as 125.5 to 2915.62 percentage

increase in error rates compared to the error rates with baseline zero-effort im postor

attacks (see Table 4.9. Page 55 and the discussion in Section 4.2.3. Page 48). Our

results reveal th a t there is a wide disparity in the error rates achieved w ith the zero-

effort im postor attacks and the error rates achieved w ith snoop-forge-replay attacks

(see plots in Figure 4.4, Page 50).

Implication: The high error rates with snoop-forge-replay a ttack s raise two

fundam ental questions: 1) is it secure to use keystrokes to continuously authenticate

computer users? and 2) how can we redesign keystroke-based continuous authentication

systems that are resilient to forgery attacks?

We analyzed the effect of four attack param eters, i) num ber of snooped

keystrokes-we experimented with 20, 50, 100, 200, 600, and 1200 snooped keystrokes;

ii) filtering outliers in the snooped keystrokes-w e experim ented w ith and w ithout

filtering outliers; iii) G aussian pertu rb a tio n of snooped lateneies-w e experim ented

with and w ithout perturbing latencies, and iv) frequency of occurrence of digraphs in

snooped tex t-w e experim ented w ith 1, 2, and 3 occurrences of digraphs.

Findings: Snooping m ore keystrokes from a v ictim user does not necessarily

result in be tter attacks. In fact, our results with two verifiers (“S” and “A”) showed

th a t snooping more keystrokes decreased the pass rates of the attacks. We analyzed

(in Section 4.2.6, Page 56) why snooping more keystrokes may have adversely effected

the attack performance. Our results also showed th a t filtering outliers in the snooped

keystrokes and considering digraphs th a t have occurred a t least twice im proved the

6

pass rates of the attack. G aussian pertu rba tion m ade th e attack weak against "S"

and "A" verifiers and had the least effect on TT and " F ' verifiers.

To generate a sufficient number of snoop-forge-replav attacks for evaluation, we

emulated the typing activity of a victim user for 24 hours {i.e.. we executed a keystroke

emulation program for 24 hours to generate a sufficient num ber of forgeries for each

victim). Because we experimented with 150 victim users and 24 attack configurations,

we would have to run the em ulator for 150 (victims) x 24 (attack configurations) x

24 hours = 3600 days (or approximately 10 years). To perform emulation a t this scale,

we set up a virtualization environm ent w ith 150 virtual machines. We dedicated one

v irtual machine for em ulating a victim . For each a ttack configuration, we ran 150

em ulators parallely on 150 virtual machines and reduced the em ulation tim e to just

24 days. See Section 3.4, Page 29 for details on the virtualization environment.

A n attacker can exploit virtualization: By parallely running 150 v irtu a l ma

chines. in 24 hours, we forged thousands of a ttacks against 150 users (see Table 4.7,

Page 48). The attacker, by exploiting virtualization, can further reduce the tim e to

forge the same number of attacks, say from 6 to 24 hours, by quadrupling the number

of v irtual machines. By increasing the num ber of v irtual machines, the a ttacker can

also generate a huge num ber of forgeries {e.g.. in the o rder of millions) or scale the

attack to victimize thousands of users.

We collected keystroke da ta from 150 users, who gave their typing samples in

three phases, over a period of one year. To our knowledge, this is the longest tim e

span d a ta used in continuous keystroke verification research. Using th is d a ta , we

dem onstrate th a t it is possible to achieve high a ttack success ra tes w ith keystrokes

7

sam ples stolen six months before the tra in ing /enro llm ent samples. Tims, our work

indicates th a t old stolen keystroke sam ples rem ain a th rea t and an a ttacker can

potentially exploit stolen keystrokes to launch forgery attacks over a prolonged period

of time.

C H A P T E R 2

B A C K G R O U N D

2.1 C on tin u ou s V erification w ith K ey stro k es

In Figure 2.1. we illustra te continuous user verification w ith keystrokes. In

the train ing phase, keystroke latencies are ex tracted from the enrollm ent tex t and

processed, users' keystroke* tem plates (profiles) are created, and a verifier (m atching

algorithm) is configured. In the verification phase, keystroke latencies are ex tracted

from the verification text. A verifier matches the latencies against the user’s tem plate

to generate a m atch score. In continuous verification, ex tracting latencies from

verification tex t and m atching them against th e user’s tem plate is a continuous

process. Details follow.

K eystrok e L atencies: Widely used latencies in th e literature are: 1) key hold

latency-is the time between press and release of the same key, 2) key press latency-is

the tim e between press of a key and press of the next key, and 3) key interval latency-is

the tim e between the release of a key and press of the next key. We experim ented

with key hold, key interval, and key press latencies.

T em plate: A tem plate stores the keystroke signatures of a user. We used

a 26-by-26 m atrix as the tem plate. There are 676 cells in the tem plate. Each cell

corresponds to an English alphabet pair: aa, ab, ac, • • •, zy, zz. In our experiments,

8

9

cl*-

F ig u re 2.1: Overview of continuous verification w ith keystrokes. In th e train ing
phase, keystroke latencies are ex tracted and outliers are removed. Each in the
tem plate represents a cell entry containing the latency values (and th e ir m ean and
standard deviation) of an English digraph. In th e verification phase, latencies are
extracted as the user types the verification text. A fter obtaining M m atching pairs,
the verifier matches the latencies with the tem plate and outputs a score. A verification
decision is com puted by thresholding the score. Based on the decision, the user
is either allowed to continue or an action is taken. T he perforated box shows the
continuous verification loop.

when we used key press (or interval) latencies, each cell in the tem p la te stored key

press (or interval) latencies of a le tte r pair. For exam ple, with key press latencies,

if cell “ab” has {(110,90,100), /iab = 100, crab = 10}, it means th a t the user (during

enrolm ent) typed ab thrice w ith 110ms, 90ms, an d 100ms delay betw een the press

of a and the press of b and the mean delay is 100ms w ith 10ms s tan d a rd deviation.

Similarly, if it were key interval latencies, then 110ms, 90ms, and 100ms would be

the delays between the release of a and the press of b. Unlike key press and interval

latencies, a key hold latency by definition is associated w ith a le tte r (and not le tter

pair). Because our tem plate holds only letter pairs, when we used key hold latencies,

each cell stored the key hold latencies of the first le tter of its letter pair {e.g.. cell “ab”

stored key hold latencies of a only when the nex t le tte r typed is b). O ur tem plate

Training Phase

D i sen rd
O u tlie rs

E x tract
L a tencies

T em pla te

E n ro llm e n t Text

Continuous Verification Phase

E x trac t
L a ten c ies

Verify

V erification Text

D ecision ScoreA ction

x y z

1 0

is homogeneous, m eaning it stores only one type of latencies (i.e.. e ither key hold,

interval, or press), because the continuous keystroke verifiers used in the dissertation

are not designed to operate w ith a tem plate containing m ultiple types of latencies

(e.g.. a m ixture of both key hold and interval). Because our tem plate does not store

information on ’'CAPS LOCK’' key, it does not distinguish between capital and small

letters (i.e., latencies of ab and AB are stored in th e same cell “ab”).

O u tlier D etectio n : Latency values th a t m arkedly deviate from the m ajority

of the latency values of a user can distort the typing profile of a user, especially if the

profile contains statistics sensitive to the outliers (e.g., mean). Outliers can occur, for

example, when users pause while typing to compose, recollect, or find inform ation.

Several studies (e.g., [21, 22]) performed outlier detection and reported perform ance

gains. Therefore, we also included outlier detection in our experim ents. We used a

distance based outlier detection m ethod th a t worked well in an earlier work [22]. The

method performs two steps on each non-empty cell in our 26-by-26 tem plate m atrix-1)

for each latency value in a cell, count the neighbors, i.e., the num ber of latencies in

the cell th a t occur w ithin a predefined neighborhood threshold (r) and 2) a latency

value is considered an outlier if the number of neighbors is less th an a% of the to ta l

number of latencies in the cell. The distance between a latency value and its neighbor

is calculated as the absolute difference in latencies. After performing trial experiments,

we set r as 100 and a as 68%. Additionally, we discarded all la tency values greater

than 300ms.

Verifier: The m ajority of verifiers proposed in the KD literature are password

or fixed-text based login time verifiers, i.e., verification is perform ed once when a

11

user enters a password or a predefined tex t of fixed length. However, in continuous

verification with KD. the text of the user is unconstrained (i.e.. user is free to type

anything) and the verifier should be able to base its decisions on any keystroke tha t

the user types.

M a tc h in g P a irs : Because there are no constrain ts on w hat a user types

during continuous verification, some keystrokes typed during the verification phase

may not have reference signatures in the tem plate. For example, if the user types

“zen ,” the cell in the tem plate corresponding to th e le tte r pair “ze” m ay be em pty

(i.e., may not contain a latency value). This s itua tion can arise because the le tte r

pair did not occur in the enrolment tex t used for building the template. This problem

can be resolved by performing verification using le tte r pairs that are common to the

tem plate and the verification text. Following [1], we refer to these common letter pairs

as matching pairs. In our experiments, the number of matching pairs "‘M ” needed by

the verifier to ou tpu t a m atch score is a configurable param eter.

K e y s tro k e V e rif ic a tio n L o o p : A verification loop (dotted box in Figure 2.1)

repeats four steps: 1) when the user types, record keystroke events using a keylogger, 2)

extract keystroke latencies from the event tim estam ps and process (e.g., filter outliers),

3) perform verification after collecting M m atching pairs from the tex t typed by the

user and obtain a match score, and 4) ou tput the m atch score or make a verification

decision by com paring the score against a threshold (T). In a snoop-forge-replay

attack, instead of typing text (in Step 1), the attacker synthesizes keystrokes with an

emulator.

12

P e r fo rm a n c e M ea su re s : Impostor Pass Rate (IPR) is the ratio of the number

of impostor attem pts wrongly accepted as genuine over the total num ber of im postor

a ttem p ts. False Reject R ate (FR R) is the ratio of the num ber of genuine a ttem p ts

wrongly rejected over the total number of genuine attem pts. Equal Error R ate (EER)

is the error rate at which IPR and FR R are equal. Detection Error Trade-off (DET)

curves show how IPR s and FARs vary w ith verification threshold. We evaluated the

snoop-forge-replay attacks using EERs and DET curves.

2 . 2 R e la te d R e se a rc h

2 .2 . 1 K e y s tro k e -b a s e d U se r A u th e n t ic a t io n S y s te m s

Here, we briefly discuss related research in continuous authentication with KD.

Monrose and R ubin in [2] proposed a continuous identification m ethod (i.e., a test

sample was matched against all the users’ tem plates to identify the closest user). D ata

was collected from 41 users over a period of seven weeks. However, because of errors,

d a ta from 31 users was used in the experim ents. Each user typed from a few given

phrases and /or sentences of their choice. Participants took part in the typing sessions

a t their convenience using their own com puters. D etails on sam ple sizes (i.e., the

number of characters typed by the users for enrolment and testing) is not mentioned.

A user’s tem plate is comprised of means and standard deviations of key hold and key

interval latencies. Latencies with values greater than T standard deviations from their

m eans were trea ted as outliers and discarded from the tem plate. A fter discarding

outlier latencies, the means and standard deviations were recomputed. Identification

was done by m atching a test sam ple (w ith outliers removed) to the tem plates of

13

all users using: 1) the Euclidean distance m easure. 2) th e non-weighted probability

measure, and 3) the weighted probability. The test sample was identified as belonging

to the user with the minimum distance or maximum probability value. When free (i.e.,

unstructured) tex t was used for enrolm ent and identification, th e au thors reported

very low (between 17.1% and 23.0%) identification accuracies. However, when tex t

from the given phrases was used, the au thors reported 90% identification accuracy

with weighted probability measure.

Dowland et al. in [3] also proposed a continuous identification m ethod. In

their method, the users typed free (unconstrained) text for enrolment and verification.

A user’s tem plate consisted of the m eans and s tan d ard deviations for key press

latencies. Only those latencies th a t occurred a minimum number of times were used to

build the tem plate. Latencies outside 40ms and 750ms range were excluded. During

identification, a key press latency from th e te st sam ple was considered valid if its

value was w ithin T .uj s tandard deviations from m ean value in th e tem pla te (ui is a

weight factor). T he user w ith the highest num ber of valid key press latencies was

considered as the owner of a given test sample. A total of 10 users participated in the

d a ta collection, b u t only four users who gave a large number of samples were used in

the experiments. Dowland et al. in [3] reported th a t the best identification accuracy

of their method was 50%. In [3], the authors improved this method and reported close

to 60% accuracy.

Nisenson et al. in [23] proposed a continuous verification m ethod. In the ir

m ethod, each user was trea ted as an em itter of discrete symbols, i.e., the user em its

a sequence of key press events, key release events, and tim e differentials, which are

14

m apped to a finite symbol set. The tem plate takes the form of a weighted phase tree

built using the Lempel-Ziv universal prediction algorithm on a user's symbol sequences.

Verification score was determ ined by calculating the conditional p robability th a t a

given sequence of sym bols originated from a user's phase tree. A user was verified

as genuine if the probability estim ate of the h is /h e r symbol sequence was greater

than a threshold. Although this m ethod achieved 96.77% accuracy, the accuracy was

estim ated with only five users (and with d a ta from a few sessions), which leads us to

question the reliability of the accuracy.

G unetti and P icard i in [1] proposed a continuous au then tica tion m ethod. A

user’s tem plate consisted of m ean n-graph latencies. A uthentication was perform ed

using two measures: 1) the relative m easure and 2) th e absolute m easure. The

relative measure is the normalized rank disorder between n-graph latency pairs th a t

are common to the tem plate and the test sample. In this dissertation, we implement

the relative measure' as one of our baseline verifiers. In the absolute m easure, a

similarity score is computed between an n-graph in the tem plate and the test sample as

m ax(D teJnp, D test) / m in(D temp, D test), where D temp and D test are the n-graph durations

in the tem plate and the test sample, respectively. If the ratio is below a threshold,

the n-graph is considered valid. Then the absolute m easure is com puted as the

proportion of m atching n-graphs th a t are also valid n-graphs. G u n e tti and P icardi

perform ed experim ents w ith 40 users (trea ted as genuine), who provided 15 typing

samples and 165 users (treated as impostors) provided one typing sam ple each. Best

result (IPR:0.044%, FRR:6.833%) was achieved when relative and absolute m ethods

were combined. However, in order to achieve these results, th e m ethod required

15

m ultiple sessions consisting of 700-900 keystrokes. W hen the num ber of keystrokes

was reduced to l / 4 ,;' original length (approxim ately 2 0 0 keystrokes), the accuracy

dropped dram atically (IPR:0.3951%. FRR:29.1667%).

2.2 .2 N o n -zero Effort A tta ck s on K ey stro k e-b a sed U ser A u th en tic a tio n
S y stem s

To the best of our knowledge, th is is the first work to propose non-zero

effort impostor attacks against keystroke-based continuous user verification. The key

difference between the feature-level att acks in [24] and the sample-level attacks is that,

sample-level attack is an au tom ated attack (i.e., a com puter program continuously

generates key press and release events as if they were being produced by a legitimate

user). On the other hand, a feature level a ttack recptires the a ttacker to know w hat

features the verification system is using. Additionally, the attacker has to know how

to input the synthesized features directly into th e verification algorithm , bypassing

keystroke d a ta acquisition, feature extraction, and preprocessing m odules. Because

the sample-level attack directly submits (fake) samples to the verification system, the

attacker does not have to know the internal details of the system. So the sample-level

attack is more practical and easier to launch com pared to the feature-level.

Some previous studies in fixed-text (i.e., password) based keystroke verification

systems used non-zero effort im postor attacks generated by trained human subjects.

For example, [25] reported higher im postor pass ra tes when the im postor subjects

were allowed to observe how a genuine user typed h is /h e r password. [26] conducted

experim ents to examine how the am ount of practice by the im postor, am ong other

factors, affected the perform ance of password based keystroke verification system s.

1 6

[26] concluded th a t im postor's practice can be a "minor" th reat to passw ord based

keystroke verification systems.

In the papers cited above, trained human im postors had to type short strings,

containing at most 8 to 12 characters. Therefore, it was possible for a hum an impostor

to practice and type like a genuine user. However, in continuous verification, the

impostor would have to type much more. For instance, in our experiments, to generate

one verification attem pt with 20 matching pairs, a user typed on average 54 characters,

which took 14.83 seconds (see Table 4.5, Page 45). At th is rate, if the im postor has

to continuously type for five m inutes, he/she would end up typing m ore th an 2 0 0 0

characters. Typing so m any characters w ith an in ten t to mimic a legitim ate user is

not an easy task for a human impostor. Furthermore, this type of attack is not easily

scalable because of the hum an effort and resources involved. So, for keystroke-based

continuous verification system s, im postor a ttacks by tra ined hum ans do not pose

as much th rea t as automated forgery attacks, like the “snoop-forge-replay” a ttack

presented in this dissertation.

Therefore, there are at least two practical bottlenecks in using human impostors

against continuous keystroke verification systems: 1) how to train a hum an im postor

to consistently type like a legitim ate user for long durations and 2) if a t all such

training is possible, the resources (in time, effort, and monitory costs) needed to train

the impostors to launch attacks against larger victim populations can be prohibitive.

Recently, [27, 28] reported an autom ated im postor attack against short string

based keystroke verification. In [27] bots inject keystroke events on a client machine in a

client-server model. The keystroke latencies are statistically-generated and assumed to

17

follow Gaussian distribution which are computed by the latencies of a small population

of 20 users. [27] reported tha t these attacks were ineffective.

In [28] the attack is a guessing attack that, increm entally searches the feature

space of a large population of users until a feature vector th a t m atches the ta rge t

user’s tem plate is found. The m aster-key is repeatedly subm itted to the verification

algorithm, and every tim e it is subm itted, one of its feature value is changed by one

standard deviation until the verification algorithm declares that the key has m atched

the victim ’s tem plate. To speed-up the attack, instead of changing one feature value

a t a time in the master-key, [28] identified conditionally dependent feature pairs and

changed two feature values a t a tim e. T he attack in [28] works against login-tim e

verification w ith short pass-phrases. However, the a ttack is not su itab le against

continuous verification because: 1) the a ttack assum es th a t the tex t is fixed, i.e.,

the latencies from which the m aster-key is derived and the tem plates th a t are being

attacked come from typing the same text, an assumption clearly invalid in continuous

verification where the users are free to type any text; and 2) the a ttack perform s a

“b ru te force” search in a feature space th a t grows exponentially w ith the length of

the pass-phrase. Consequently, w ith longer pass-phrases, the a ttack tends to m ake

more erroneous a ttem p ts (i.e., infertile guesses) before converging to a vector th a t

successfully passes verification. In continuous verification, a verification a ttem p t has

more characters. For example, in our experiments, verification attem pts had between

54 characters (with 20 matching pairs) and 2000 characters (with 750 m atching pairs).

W ith so many characters, the attack in [28] would have m ade thousands of unsuccessful

18

attem pts before producing a successful attem pt. W ith so many unsuccessful attem pts,

a continuous verification system could easily be alerted.

2 .2 .3 N o n -zero E ffort A ttack s on O th er B eh av iora l B io m etr ic A u th en tic a
tio n S y stem s

The work in th is dissertation was m otivated by the findings of two studies:

1) [29] studied the effect of forgery quality on handw riting biom etric security and

showed tha t impostor pass rates of trained and generative {i.e., “algorithmic5') forgery

a ttacks outperform ed naive forgeries and 2) [30] evaluated spoofing attacks on gait

au thentication and showed th a t a ttackers w ith knowledge of their closest person in

the database can significantly raise impostor pass rates. Below, we briefly discuss [29],

which is closer to our work in this dissertation.

[29] reported the effect of six types of forgery a ttack models on handw ritten

signature based verification. One of them was the generative forgery model, which

involved algorithmically generating forgeries of a target writer by collecting a small set

of writing samples from 1) the target w riter (these samples were referred as “parallel

corpus55) and 2) a set of different writers. Results in [29] showed th a t, com pared to

trained hum an forgers, generative a ttacks had higher im postors pass rates for block

and cursive writers but had lower rates for mixed writers. A notable similarity between

the generative attacks in [29] and the snoop-forge-replay attack is th a t both require a

surprisingly low num ber of stolen samples to generate effective a tt acks.

CH A PTER 3

S N O O P -F O R G E -R E P L A Y A T T A C K M E T H O D S

T he attack presented in th is d isserta tion falls under the broader class of

generative attacks on behavioral biom etric system s [29], but is tailored to a ttack

continuous keystroke-based verification system s. Below, we discuss the steps in

snoop-forge-replay attack.

3.1 S n o o p in g K ey stro k e T im in g In form ation

In this step, the attacker secretly steals a victim ’s keystroke tim ing information.

For example, if the victim typed the tex t, “t h i s i s snooped t e x t , ” the a ttacker

records a series of tim estam p s-P t (tim e when t was pressed), R t (tim e when t was

released), Ph, Rh, P i5 Ri; P s, Rs , P SPAce, Rspace, and so on.

An attacker can snoop a victim ’s keystroke tim ing information using a hardware

keylogger or a software keylogger. Software keyloggers have become the most popular

forms of keyloggers because they can be easily developed, are easily available , 1 and

can be deployed from rem ote locations onto a v ic tim ’s machine (e.g., using tro jan s

and spyware).

'A ttackers can access hundreds of software keyloggers from code-sharing websites like www.
S o u rceF o rg e .n e t. A nti-Phishing W orking G roup (w w w .an tip h ish in g .o rg) reported in [31] th a t
3121 websites hosted keyloggers in February 2007 alone.

19

http://www.antiphishing.org

20

U ser U ;
Types Text j

Eg., hello j

1

Use a KevloQQerTo
Record Key P re s s and

Release Times

E.g.. P ress(h),
Release(h). P ress(e) .
Release(e). P ress(l) .

R e leased),...

Extract Digraph
L atencies From

. Snooped Inform ation

E.g.. KPL(he) =
P r e s s (e) - P ress(h)

, 'r.,. n- , Com pute Mean and- E ilter U iqraphs ^— .— —-- - - - - - -
S ta n d ard Deviation

If d ig raph la tency > for D igraphs i

3D 0m s, d iscard . Ignore . j

. d ig rap h s tha t a p p e a r / i
le s s than 2 t i m e s / sig m a(h e . m u(el) '

/ sigm atel),...

| Replay Text Pile

I A File Containing High r
; Frequency English Words

Read a
d ig raph from
Replay Text

File

/ Are m ean and \
s ta n d ard deviation

' available for this
\ d ig raph? /

Yes G enera te Gaussian Submit forged
v a r ia te fo r the digraph la tency to

digraph the verifie r

No

F igure 3.1: Snoop-Forge-Roplay attack flowchart.. St,(tp (l)-snoop keystroke timings.
Steps (2)-(8)-create and replay a forged a ttem pt.

We used keystroke d a ta collected from 150 participants during the period 13-21

October 2009 as snooped keystrokes (see Section 3.5 on Page 33 for details). This d a ta

was collected using a software keylogger developed in C # . The snooped keystrokes

were used to attack tem plates that, were built from keystrokes collected approxim ately

six months after the snooped keystrokes.

3.2 C rea tin g a K ey stro k e Forgery

3.2 .1 C reatin g Forgeries in F eatu re-level A tta ck

For creating a forged attem pt at the feature-level, we assume tha t the attacker

has the following knowledge.

K now s how to co m p u te keystrok e fea tu res (i .e . , h o ld , in terva l, and

digraph la ten cies): An attacker can acquire th is information by reading keystroke

21

dynamics (KD) literature or can use keylogger codes widely published on the Internet.

For instance, attackers can access hundreds of keylogger codes from code-sharing

websites like S o u rce F o rg e .n e t.

K n ow s how to sy n th es ize a k eystrok e featu re from a p ro b a b ility

d istr ib u tion : Though we are not aware of any s tudy th a t conclusively establishes

that keystroke features follow Gaussian distribution, several KD authentication studies

have assumed Gaussianality of keystroke features. An attacker can either follow these

studies or explore distributions o ther than Gaussian. Flowever, from an a ttack e r’s

viewpoint, the Gaussian assum ption is appealing because its param eters (i.e., mean

and standard deviation) are easy to compute and m ost programming languages provide

tools to generate Gaussian variates.

K n ow s how to h an d le ex trem e fea tu re values: It is well known th a t the

mean is sensitive to extreme values. Based on this knowledge, an attacker can choose

to discard large feature values before com puting the m ean. On the o ther hand, an

attacker can choose to ignore this step.

For each user £/*, we create forgery a ttem p ts as follows. We ex trac t digraph

latencies from TVs snooped keystroke tim ings (see Step 2, Figure 3.1). We assume

that digraph latencies follow Gaussian distribution. We implement a simple filter that

discards digraph latencies greater than 300ms (Step 3, Figure 3.1). After filtering, we

compute the means and standard deviations of th e digraphs (Step 4, Figure 3.1).

22

3 .2 .2 C reatin g Forgeries in S a m p le-lev el A tta ck

In this step, we create a keystroke forgery of a victim user U, at sample-level.

A forgery has two parts: 1) '■dummy'’ tex t and 2) a series of latencies betw een the

press and release of letters in the dummy text. For example, a forgery of Ut can have

the dum m y tex t, ’‘t h i s i s dummy t e x t s ' The key hold and interval values for this

text come from the snooped keystroke latencies of Ut.

C o m p u tin g key h o ld a n d in te rv a l la te n c ie s f ro m 17,’s s n o o p e d k e y s tro k e s :

Let P t , Rt , Ph, Rh, P i i Ri, P s , Rs, P s p a c e , R s p a c e , P i , Ri, and so on be th e snooped

keystroke tim estam ps collected when Ui typed th e tex t, “t h i s i s snooped t e x t . ”

Using these snooped tim estam ps, the a ttacker com putes kh t:h = Rt — P t (key hold

latency of t , when the next character pressed is h), kit;h = P h — Rt (key interval

latency between t and h), khh:i, kih :i, k h i ;s , kii ; s , and so on. If any latency occurs

more than once, we take the average. Next, we use the snooped “kh” and “ki” values

as the key hold and interval latencies of the letters in the dummy text. For example,

in the forgery containing the dum m y text, “t h i s i s dummy t e x t , ” we use kht:h for

forging the key hold latency of the first “t ” in th e dum m y text, and in the same

fashion, use kit:h for forging the key interval latency of “t h ” in the dum m y text.

W h a t if th ere are le tte r s in th e d u m m y te x t for w h ich sn o o p ed

la ten cies are n o t available?: Because our prim ary goal is to dem onstrate how

forgeries based on snooped keystrokes can be used to evade detection, when preparing

a forgery, we ignored those letters in the dummy tex t for which corresponding snooped

latencies were not available. This sometimes could render the tex t generated by the

forgery linguistically meaningless, especially when forgery is created from lim ited

am ounts of snooped tex t. However, note tha t current keystroke-based continuous

verification systems, to the best of our knowledge, do not cheek the language generated

by the typist, and therefore, our a ttack in its present form straightforwardly exploits

this vulnerability.

If the attacker wants to forge specific words to execute a series of com m ands,

then the attacker can choose* to fill the missing latencies with very large value's, so

th a t they are filtered by the outlier detection methoel and thus are disregarded by

the continuous verifier. An a lternate way is to fill the missing latency values using

latencies computed from a population of users (as done in [29] for spoofing handw ritten

signatures).

T able 3.1: Characteristics of the “dummy te x t” file used in our experim ents.

Text Source 497,184 words from COCA corpus and
20 W ikipedia documents

Total # of unique letters 26
Total # of unique digraphs

(letter pairs) 676

Total # of letters 5,021,665
Total # of digraphs 4,222,420

1 0 most frequent letters e, a, i, n, r, o, t, s, 1, d
1 0 least frequent letters q, x, j, z, v, w, k, y, f, b

1 0 most frequent digraphs in, er, an, on, re, ed, te, ar, en, es
1 0 least frequent digraphs qk, jq, qj, xk, jk, qy, qz, vq, qz, qh

P r e p a r in g a “du m m y t e x t ” file: The “dum m y tex t” file supplies te x t to

create a forgery. Technically, the file can contain any tex t, ranging from m ultiple

repetitions of a single le tte r (e.g.. a a a . ..) to a large te x t corpus representative of

English language usage (e.g., Corpus of C ontem porary Am erican English (COCA)

[w w w .am ericancorpus.org]). For our experim ents, we created a “dum m y te x t” file

http://www.americancorpus.org

24

with 497.184 words from COCA 2 [32], In addition, we added text from 20 W ikipedia

documents. (In Appendix A, we give the web addresses of the W ikipedia documents).

In Table 3.1 we sum m arize the characteristics of dummy text.

3.3 R ep la y in g a Forgery o f V ic tim t/p

3 .3 .1 R ep lay in g F orgeries in F ea tu re-level A tta ck

Replaying a forged a ttem p t of a user Ut involves generating keystroke tim ing

events as if U% was typing some tex t. Replaying involves two key com ponents: 1)

a database containing tex t and 2) a “replayer” software, which reads the te x t in

the database and generates keystroke tim ing events. Below, we explain th e two

components in detail.

T ext D atab ase: In feature-level attack, to supply text to the replayer we used

a file containing F ry’s In stan t W ord List [33], which is a list of 1,000 m ost common

words occurring in the English tex t, arranged in frequency order. Fry F[33] showed

th a t the first 300 words in this list make up 65% of all w ritten m aterial.

R ep layer Softw are: A replayer can be im plem ented in two ways: 1) the

replayer emulates U fs typing behavior by synthesizing actual key press and release

events for the tex t in the database and 2) the replayer reads the tex t and generates

feature values (e.g., digraph latencies) for user Ux and subm its it to the verifier.

Generating keystroke feature values: A replayer can replicate U f s typing

behavior is by reading tex t from the database and directly supplying keystroke feature

values (digraph latencies in our case) to th e continuous verification system. Again,

2COCA is a large, freely-accessible text corpus on the web. The corpus contains 410 million words
(20 million words each year from 1990 through 2010).

25

the feature values can he generated using a Gaussian random number generator, with

means and standard deviations calculated by snooping Ufa keystrokes.

3 .3 .2 R ep la y in g F orgeries in S a m p le-lev el A tta ck

K ey stro k e E m ulator: We developed a keystroke em ulator th a t injects

synthetic key press and release events. We program m ed the em ulator in Visual

C + + and used S en d ln p u t API. The goal of th e em ulator is to use the snooped

latencies to inject key press and release events for the dummy tex t in a way th a t the

verifier thinks th a t it is the victim Ut who is typ ing the dum m y tex t. T he em ulator

algorithm , referred to as “Algorithm 1 ,” gives th e steps to forge and replay a victim

user U js typing pattern.

The input to the algorithm is a dum m y tex t file and a series of key hold and

interval latencies com puted from U js snooped keystrokes. We initialize variables in

lines 2-9. The trap-counter variable is used when the program encounters a character

pair in the dummy text for which a snooped latency is not available. The trap_counter

variable counts the number of characters to be traversed in the dummy text, to find a

character pair for which a snooped latency is available.

In line 10, the w h ile loop ensures th a t Algorithm 1 replays the dummy tex t for

a t least 24 hours. In lines 11-26, we create and replay a forgery. The I f condition in

Line 14 is executed when a letter pair from the dummy tex t (stored in first and second

variables) has corresponding snooped latencies. If snooped latencies are available,

A lgorithm 1 calls the r e p la y function in line 16 to generate key press and release

events. The e lse in Line 20 is executed if th e le tte r pair (first, second) does not

1

2

3

4

5

6
7

8

9

10

1 1

12

13

14

15

16

17

18

19

20

2 1

22

23

24

25

26

27

1

2

3

4

5

6

7

8
9

10

11

26

A L G O R I T H M 1: Replay th e forgery of user (',.

In p u t : D um m y text file contain ing -497.184 words from C O C A an d tex t from 20 W ikipedia pages. Key hold (e.g.,
Khn:y . kfly;s p a c e * etc.) and key in terval (e.g.. kim:y. kiy:s p a c e - etc.) latencies com puted from U / s snooped
keystrokes. Hen*. *‘khx:y’‘ deno tes th e snooped key hold la ten cy of x w hen the nex t ch a ra c te r ty p ed is y and
"kiX;y deno tes th e snooped key in terval latency betw een c h arac te rs x and y.

O u tp u t : A replay of user (V s keystroke forgery.

In i t i a l i z a t io n :
n «— N um ber of characters in the dum m y tex t file.
d u m m yT ex tA rr [0:n — 1] «— Copy each ch arac te r in th e dum m y tex t file in to th e array: /* E a c h cell in the
dum m y Text A rr holds a character in the d u m m y te x t file* /
dum m y Index <— 0: /* Jn d ex to the first character in the d u m m y T e x tA rr * /
trap-counter 4— 0: /* C o u n te r to ensure th a t character pairs in th e d u m m y te x t tha t not do have corresponding
snooped la tencies do no t s ta g n a te th e replay. I f th e snooped la tenc ies are not available even a fte r traversing 500
characters in th e d u m m y tex t, then ch a ra c te r p a ir is reset to a random character in d u m m y T e x tA r r (L ine 2 5)* /
first «— 0: /* A variable to store first character.* /
second 4~ 0; /* A variable to store second ch aracter.* /
s ta rtT im e 4— System tim e a t th e s ta r t of th e program :
currentT irne 4— C u rren t system tim e;

w h ile (curren tT irne s ta r tT im e < P ho u rs) /* W e se t P to 2 4 -* / d o

fir s t 4— d u m m yT ex tA rr [dum m yIndex]:
second 4— f ir s t ;
w h i le d u m m yln d ex < n and trap-coun ter < 500 d o

if (khy;rAt;iSP,.,m,j and kiyt7 s/. s.,,rm„i) is snooped /^checks if le tte r p a ir from the dum m y te x t has
co rresponding snooped la tencies .* / t h e n

E dyjrxt..second ̂ k h y ^ . sr.cond i E 1 fust--xncorui * kifirst:src.ond' / Forge latencies. K H a n d K I den o te
latencies in a fo rg ery .* /

r e p la y (first, KHy„.st;.,eron</, K lf t1!>t:A(;Condh / * R ep la y d u m m y te x t by g en era tin g k ey press and release
even ts o f f i r s t when second is the n e x t ch a ra c ter* /

fir s t 4— second: tra p .coun ter 4— 0;

e n d
e ls e

| trap-counter 4— trap .co u n ter +1;
e n d
d u m m yln d ex c— d u m m yln d ex + 1 ;

second 4- d u m m yT ex tA rr [d u m m yln d ex];
e n d
d u m m yln d ex Reset to a random cell of d u m m y T e x tA rr ;
curren tT irne 4— C urren t system tim e; trap-counter <— 0;

end

P R O C E D U R E 1: r e p la y (c h a r c , r e a l ho ld -delay , r e a l in te rv a L d e la y)
I n p u t : T h e ch arac te r c to be replayed, key hold delay of th e c h arac te r, an d key interval delay betw een th e character

and th e next consecutive charac te r.
O u tp u t : G en era te press and release even ts for ch aracte r c.

I N P U T *key; /* fn ia tia lize key as the p o in te r to I N P U T s tru c tu re .* /
key = n e w I N P U T :
key -H y p e = IN P U T -E E Y B O A R D : / * K eyb o a rd event. Use th e “k i” s tru c tu re o f the I N P U T .* /
key —̂ ki.wVk — c; / * Assign ch arac te r c to th e keyboard e v e n t.* /
key —>ki.dwFlags = K E Y E V E N T F .E E Y D O W N ; /* T h e even t is a key press e ve n t.* /

Sendlnput (l,& ey ,s iz eo f (I N P U T)) ; /* P ress c .* /
s le ep (hold.delay): /* S Ieep for hold-delay m illiseconds to genera te k e y hold t im e .* /
key -^k i.dw F lags = K E Y E V E N T F .K E Y U P ; /* T h e event is a k ey release e v e n t.* /
Sendlnput (l,fce?/,sizeof (I N P U T)) ; /* R e lea se c .* /
s le ep (in terva L d e la y); /* S leep for in tervaLdelay m illiseconds to g enera te in terva l tim e .* /

27

have corresponding snooped latencies. The trap.counter ensures th a t if the snooped

latencies klifirst:»econd and k i/;>.s, j are not available even after traversing 500 (an

arbitrarily chosen number) characters in the dummy text, then the f i r s t and second

are reset to a random character in the d u m m y T e x tA rr (Line 25).

In Procedure 1, we outline the implementation of the re p la y function (Line 16

in Algorithm 1). The function takes three param eters: 1) c is the character key th a t

has to be pressed and released, 2) hold.del ay is the delay (in milliseconds) between

the press and release of c, and 3) in tervaLdelay is the delay (in milliseconds) between

c and the subsequent character in the dum m y tex t. To generate the key press and

release events, the re p la y function uses S en d ln p u t function (lines 7 and 10), which

is a part of W indows Application UI Development A PI [18]. The latencies between

press and release events are generated using the sleep function (lines 8 and 1 1).

D e ta ile d ex p lan ation o f lin es 10-27 in A lgorith m 1: We explain lines

10-27 w ith an example. Let the snooped tex t be “t h i s i s snooped t e x t ” and

the dum m y tex t be “t h is i s dummy t e x t .” From line 3, d u m m yT ex tA rr [0] = t,

dum rnyTextA rr[1] = h, d u m m y T e x tA r r [2] — i , d u m m yT ex tA rr[3] — s, and so

on. From lines 11 and 12, f i r s t = second = t . Because d u m m y ln d e x = 0 and

trap-counter = 0, the if condition in line 14 checks if k h t:t and kit ; t are available

from the snooped keystrokes. Because they are not available (note “t t ” is not present in

the snooped text) , lines 2 1 and 2 2 in e lse are executed, resulting in d u m m y ln d e x — 1,

second — h, and trap-counter = 1. In the next ite ra tion , the if condition in line 14

checks to see if khth and kith are available. Because both khth and kith are available

from “th ” in th e snooped tex t, (in Line 15) khth is assigned to KHth and kith is

28

assigned to KIth. Then, in Line 16. KHth. KIth. and f i r s t (= t) are passed to the

r e p la y () procedure. In lines 17 and 18. f i r s t = h. dununylridcx = 2. trap.counter

is reset to zero, and second = i . In the subsequent iterations, f i r s t takes the values:

“i , ” “s .” "SPACE." ui , ” “s .” “SPACE,” and correspondingly, second takes the values

“s ,” “SPACE.” “i , ” “s ,” “SPACE,” and “D.” In the next iteration, f irst = SPACE and

second = D, lines 21 and 22 are executed because khSPACE:D and kiSPACE;D are not

available from the snooped text. From lines 21 and 22, d u m m y ln d e x — 9, second = u,

and trap.counter = 1. Because khSPACE:u and kiSPACE:u are also not available from the

snooped tex t, lines 2 1 and 2 2 are again executed, resulting in d u m m y ln d e x = 1 0 ,

second = u, and trap.counter = 2. Lines 21 and 22 are executed in the next

few iterations, each tim e increm enting the trap .counter , until second = t . Because

khSPACE:t and kiSPACE:t are available from the snooped latencies, lines 15-18 are executed.

In this fashion, A lgorithm 1 continues to execute for 24 hours. The final o u tp u t of

Algorithm 1 is the replay text: t h i s i s t e x t

At this point, we emphasize th a t Algorithm 1 is one of the many possible ways

to generate snoop-forge-replay attacks. While maintaining the general idea of snooping

and replaying the keystrokes, the attacker can evolve Algorithm 1 in several ways. For

example, the attacker can devise heuristics to im pute missing latency values or snoop

only selected latencies from a victim, to generate desired tex t or system commands.

29

3 .4 V ir tu a liza tio n S et-u p for Forging and R ep la y in g S am p le-level A tta ck s
on a L arge Scale

To launch a large number of a ttacks on 150 victim users (see C ontribution 3.

Page 2). we built a virtualization set-up a t Louisiana Tech University's Cyber Security

Laboratory. The set-up had 150 virtual machines (VMs). Each VM ran a copy of our

keystroke em ulator program (i.e.. A lgorithm 1) to generate forgeries for one victim

user.

To create th e v irtualization set-up, we used a cluster of 8 Dell PowerEdge

M710 Blade servers, each w ith 12 core Intel Xeon 3.33GHz processors. Each server

was equipped w ith 96GB main memory. Four Dell EqualLogic iSCSI storage arrays

provided 20TB secondary memory. We used VMware 4.1 vSphere Suite [34] to create

150 VMs. Each VM had W indows X P 32-bit operating system, 2GB m ain memory,

and 10GB secondary storage. In each VM, emulator and “notepad.exe” file (to create

an active N otepad window for S end lnpu t A PI) were executed using Powershell 2.0

scripts. We used Condor 7.6.0 software [35] to schedule th e execution of Powershell

scripts in 150 VMs, simultaneously.

The keystroke em ulator takes snooped tim ing information and “dum m y te x t”

file as input, injects key press and release events, and outputs a file containing replay

tex t. W hen the em ulator was running, we used a software keylogger to record the

synthetic keystroke events generated by the em ulator. T he keylogger recorded the

keystroke events and stored them in “useriV .txt” files (where N = 1 to 150). A to ta l

of four files were associated w ith each user: two input files, one containing snooped

keystroke tim ing inform ation and another containing dum m y tex t), and two output

30

files (i.e.. the text file generated by the em ulator and "user.V .txt" recorded by the

keylogger). A fter running the em ulator for 24 hours, the "userA ktxt” (N = 1 to

150) files were collected from Condor server's shared memory and passed through the

verifiers to generate verification scores.

3.5 K eystrok e D a ta C o llec tio n

We used keystroke d a ta collected from 350 partic ipan ts a t Louisiana Tech

University. M ajority of th e partic ipan ts were studen ts, bu t university faculty and

staff also partic ipated . We used six Pen tium IV desktop PC s to collect keystroke

data. The PC s were equipped with W indows X P OS, a Q W ERTY keyboard, and a

mouse. On each PC , we installed an in teractive keystroke d a ta collection software

developed in C # . Additionally, we used two laptops to register participants and collect

voluntary inform ation (such as gender, ethnicity, typing experience, native language,

is the participant left- or right-handed, is the partic ipan t willing to partic ipa te in a

future d a ta collection effort, and the p a rtic ipan t’s university email address).

We collected data during three different periods: October 13-October 21, 2009;

April 4-April 30, 2010; and 25 October-9 November, 2010. On all days, we sta rted

da ta collection at approximately 8:00 AM and concluded at 5:00 PM. Each participant

was required to register by presenting h is /h e r university ID card. We recorded the

following information during registration: 1) first name, 2) last name, and 3) voluntary

information. We used two popular locations in the university to set up d a ta collection

booths. At each location, we used three PC s for collecting keystroke samples. We

31

continued da ta collection during lunch hours (11:30 PM to 1:30 PM) as this was the

period of heightened studen t/facu lty traffic.

A fter registration, we instructed each p artic ipan t on how to use the d a ta

collection software and asked the partic ipan t to type three types of tex t: 1) fixed

text participant typed the phrase “I am an u n d e rg ra d u a te s tu d e n t o f L o u is ia n a

Tech U n iv e r s i ty ” 15 tim es (12 tim es during O ctober 2009); 2) copy text-each

partic ipan t typed several paragraphs of English tex t from a docum ent provided

by us; and 3) self text-partic ipan t had to com pose and type tex t. Unlike in fixed

tex t, where the partic ipan t had to type th e predefined tex t exactly, there were no

restrictions on typing copy and self texts. For example, the participants were allowed

to make spelling m istakes and typographical errors, and if they chose, they could

correct them using Backspace or Delete keys. In the experiments, we do not use fixed

tex t data, so we skip further details on it. For entering fixed tex t, the GUI included

three text boxes: one for entering username, one for entering campus-wide ID number,

and one for entering a common fixed phrase.

The keystroke d a ta collection software provided GUI (e.g., tex t boxes, buttons,

and character counters) for typing copy and self texts. Each participant was required to

type at least 1800 characters (1200 during October 2009) of copy text. For typing copy

text, we provided paper copies of sample tex ts to the participants. We used five sample

texts: 1) D eclaration of Independence [36], 2) a transcrip t of R ichard H am m ing’s

“You and Your Research” speech [37], 3) th e first 2100 words in C hap ter 1 of David

Copperfield [38], 4) the first 2000 words in C hapter 1 of Samuel Johnson [39], and 5)

the first 1900 words in C hapter 1 of Walden [40]. A participant received one of the five

32

T ab le 3 .2 : A summary of keystroke data usage in our sample-level a ttack experiments.

DaUuset
Nam e S e t I S e t I I S e t I I I S e t IV

C ollection
D ates

13 21 O ct.,
2009

4 30 A pril.
2010

25 O ct.
9 N ov..2010

25 O ct.
9 N ov..2010

Usage Snooped
keystrokes

B uilding
keystroke
tem p la tes

G en era tin g genuine
V zero-effort

im pstr. scores

G en era tin g
zero-effort

im pstr. scores

of users 150 com m on users in se ts I. 11. an d III 200 new
users

sample texts randomly. As the participant typed, the software displayed the num ber of

characters typed. Copy text d a ta collection process ended when the participant typed

a t least 1800 (1200 during O ctober 2009) characters. A fter entering the copy tex t,

the partic ipan t was required to type abou t 300 characters of self tex t. A fter typing

the self tex t, the participant pressed the “Finish” b u tto n and ended h is /h e r d a ta

collection session. Self tex t was collected during April 2010 and O ctober-N ovem ber

2 0 1 0 periods.

Copy vs. self text: W hen perform ing activities like writing emails, messaging,

and word-processing, users typically do com positional typing (i.e., tex t composition

and typing occur as an intertw ined sequence of events). Thus, typ ing self tex t is a

closer representation of a user’s typing activity. However, we conducted pilot trials in

our laboratory before undertaking full-scale d a ta collection and observed th a t typing

1200-1800 characters of self tex t took considerably more time th an typing copy text

of the same length and in most cases fatigued participants. Because the m ajority of

the partic ipants were students who partic ipated between classes, tim e was a critical

factor for their participation. To achieve a trade-off between partic ipa tion tim e and

obtaining realistic typing samples, we choose to collect a m ixture of copy and self

texts.

33

K e y s tro k e D a ta U sag e in O u r E x p e r im e n ts

1) F o r fe a tu re - le v e l a t t a c k e x p e r im e n ts : we used data from 50 users who

participated during three data collection periods, i.e.. October 2009, April 2010, and

O ctober-Novernber 2010. We used keystroke events generated by typ ing free and

self tex ts during April 2010 for tra in ing (i.e., building keystroke tem plates). For

generating verification attem pts, we used keystrokes from free and self tex ts collected

during October-November 2010. We used the keystroke events obtained from typing

free text during O ctober 2009 as snooped keystroke data.

2) F o r sam p le -lev e l a t t a c k e x p e r im e n ts : we divided the keystroke d a ta

into four sets (see Table 3.2). Set I has keystrokes collected from 150 users during

O ctober 2009. For the same 150 users, Set II has keystrokes collected during April

2010 and Set III has keystrokes collected during O ctober November 2010. We used

keystrokes in Set I as snooped keystrokes. We used keystrokes in Set II to build 150

user tem plates. We used keystrokes in Set III to generate genuine and zero-effort

im postor scores. To generate genuine scores, we m atched each user’s tem p la te w ith

h is/her own keystrokes in Set III. To generate zero-effort impostor scores, we matched

a user’s tem plate with keystrokes of 149 rem aining users in Set III.

P u r p o s e o f S e t IV : Set IV contains keystroke samples from a new pool of

200 users who are not present in sets I, II, and III. We matched keystrokes in Set IV

against the user tem plates to generate additional zero-effort impostor scores. We did

this to compare the snoop-forge-replay attack scores with two baselines: 1) zero-effort

impostor scores generated w ith Set III, and 2) zero-effort impostor scores generated

with Set IV.

34

Note from the "Collection Dates" row in Table 3.2 that there is approximately

six months time gap between snooped keystrokes (Set I) and keystroke used to build

tem plates (Set II). T his m anner of d a ta usage is akin to a scenario in which the

attacker uses old ‘‘legacy'" keystrokes to attack a victim user's tem plate.

3.6 B a se lin e (Z ero-effort Im p o sto r A tta ck) E x p erim en ts

For fea tu re-lev el a ttack ex p er im en ts: we experimented with two verifiers:

1) Relative (R) verifier [l], and 2) Similarity (S) verifier. We used one type of tem plate:

T K P -tem pla te containing key press latencies.

For sa m p le-lev e l a ttack ex p erim en ts: we experimented with four verifiers:

1) Relative (R) verifier [1], 2) Absolute (A) verifier [1], 3) Similarity (S) verifier [41],

and 4) Fusion (F) verifier. We used three types of tem plates: 1) T K H -tem p la te

containing key hold latencies, 2) T K I-tem plate containing key interval latencies, and

3) T K P -tem plate containing key press latencies. This resulted in nine verifier-template

combinations i.e., (R, TKH), (R. TK I), (R, T K P), (A, TK H), (A, TK I), (A, T K P),

(S, TKH), (S, TKI), and (S, TKP). The "F” verifier fuses the outputs from (R, TKH),

(R, TKI), (S, TKH), (S, TKI), and (A, T K P) using the weighted sum fusion rule [42],

E x tra ctin g verification a ttem p ts: From a u ser’s typing sam ple, we ex

tracted verification attem pts as follows: 1) read the text in the order it was typed and

extract latencies until M matching pairs are obtained; 2) present the Al m atching pairs

to the verifier to obtain a verification score (this constitutes one verification attem pt);

3) read the tex t from the point where it was stopped in Step 2 until Al m atching

pairs are obtained; and 4) repeat Steps 2 and 3 until the text ends. This procedure

35

partitions the tex t into contiguous, non-overlapping, variable-length windows, each

containing exactly M m atching pairs. Each window corresponds to one? verification

attem pt. We experimented with M values: 20, 40. 60. 80. 100. 120. 150, 300, 350, 500,

and 750.

R e la tiv e (R) a n d A b so lu te (A) V e rif ie rs [1]: Given a verification attem pt,

‘R ': verifier outputs a score as follows. Two arrays Atra jn and are constructed,

^ tra in cont ains the m atching pairs ranked in ascending order of their corresponding

m ean latencies (in the tem plate). A^est contains the m atching pairs ranked in

ascending order of their latencies in the verification a ttem p t. T he "R” m easure

between A^rajn and is com puted as the norm alized array disorder between

^ tra in an< ̂ ^ te s t- The “R ” measure lies between 0 and 1 , 0 (or 1) indicates a perfect

m atch (or mismatch) between the verification a ttem p t and the tem plate.

T he “A ” m easure verifier ou tp u ts a score as follows: for each m atching pair,

two latency values are considered: 1) the average latency value stored in the tem plate,

and 2) the average latency value in the verification a ttem p t. T he larger of the two

is divided by the smaller. A m atching pair becomes valid, if the ratio falls between 1

and a threshold (after some trial and error experiments, we choose 1.45 as threshold).

The “A” measure is given as

 ̂ number of valid m atching pairs
to tal num ber of m atching pairs

The “A” measure of 0 (or 1) indicates a perfect match (or mismatch) between

the verification a ttem pt and the tem plate.

36

S im ila r ity (S) V e rifie r [41]: The "S’: verifier outputs a verification score as

follows: each matching pair in the verification attem pt is considered a valid m atching

pair if it falls within T (= 1) s tandard deviations from its corresponding mean in the

tem plate. The similarity measure between the tem plate and the verification a ttem pt

is calculated using (3.1).

F u s io n (“F ”) V erifie r: The1 verifier fuses ou tpu ts of five verifier-tem plate

com binations, (R, TK H), (R, TK I), (S, T K H), (S, TK I), and (A, T K P), using the

weighted fusion rule. If s2, s4, and s 5 are ou tpu ts of the five verifier-tem plate

com binations, then by the weighted fusion rule, “F ” ou tpu ts cuiSi T- U2 S2 + CU3 S3 +
5

CO4 S4 -I- CU5 S5 , where 0.1 < Ui < 0.6 and = 1. We included weighted fusion
1 = 1

in our experim ents because studies (e.g., [42, 43]) show th a t it perform ed well in

biom etric au then tication tasks. For fusion, we used five out of th e nine available

verifier-tem plate com binations because key press latencies are formed by adding key

hold and key interval latencies, so including (R, T K P) and (S, T K P) do not bring

new inform ation when (R, T K H), (R, T K I), (S, TK H) and (S, T K I) are already

included in the fusion. The “A” verifier was prim arily designed for key press latencies,

so we included only (A, T K P) in the fusion. Choosing weights: we experim ented

w ith 126 weight com binations. Initially, we set cu* = 0.1, i = 1, • • • ,4 and u 5 = 0.6.

Then we incremented (or decremented) the weights in 0.1 units under the constraints:

0 . 1 < ujx < 0 . 6 and Yli=i = 1 -

C H A PTER 4

R E SU L T S

4.1 F ea tu re-leve l A tta ck E x p erim en ts

4 .1 .1 B a se lin e (Zero-efFort Im p o sto r A tta ck) R esu lts

We perform ed baseline experim ents to find the optim al num ber of m atching

pairs (M) th a t yield the lowest FRR and IPR values. The DET curves of "R” verifier,

i.e., plots 4.1(a)-4.1(b) and ;‘S" verifier, i.e., plots 4.1(c)-4.1(d) (in Figure 4.1) show

th a t lower F R R and IP R values are achieved w ith high M values (i.e., 300, 350,

500, and 750). However, a high M requires typ ing m ore keystrokes to generate a

verification attem pt, which ultim ately increases th e time, to output a m atch score. In

our experim ents, it took on an average of 49.36 keystrokes (14.305 seconds average

typing tim e) to obtain a verification a ttem p t w ith 20 m atching pairs and 1836.42

keystrokes (545.307 seconds average typing time) to obtain a verification a ttem pt with

750 m atching pairs. Therefore, a trade-off exists betw een the num ber of m atching

pairs and the verification delay. DET curves for 20, 40. 60, and 80 m atching pairs (not

shown due to space constraints) had higher EERs than the DET curves in Figure 4.1.

In Table 4.1, we give the num ber of genuine and im postor a tte m p ts used for

generating DET curves in Figure 4.1. In our test data, on an average there were 2100

keystrokes per user. So, for high M values like 750, 500, and 350, on average, we

37

38

Table 4.1: Total genuine a ttem pts (#G). genuine a ttem pts/user (G / U). and impostor
a ttem pts/u ser (I /U) used in Figure 4.1 DETs.

M 100 120 150 300 350 500
G 570 473 371 175 141 94
G /U 11.4 9.46 7.42 3.50 2.82 1.88
I /U 555.3 456.8 360.8 168.6 140.1 90.3

needed 183(1.42. 1212.42, and 853.69 keystrokes respectively to generate a verification

a ttem pt. For th is reason, we had very few genuine a ttem p ts for each user when M

was high (Table 4.1, second row). However, we did not have this problem for impostor

attem pts because, for each user, we used the keystroke d a ta of the rem aining 49 users

to generate im postor attem pts.

4.1 .2 S n oop -forge-rep lay A tta ck R esu lts an d A n a ly sis

In this section, we dem onstrate the success rates of forged verification attem pts

created from snooping a user’s keystroke data. We choose to use M values w ith

baseline EERs less than 0.15. Figure 4.1 shows th a t th is is achieved w hen M is 150,

300, 350, 500, and 750 for bo th verifiers. However, we excluded 750 m atching pairs

because the average number of keystrokes it required to generate a verification attem pt

(1836.42) was too high to be realistic. Verification threshold for each M value was

selected using two heuristics: 1) threshold T) w ith the least I P R when F R R < 0.15

and 2) threshold T2 for which F R R + I P R is minimum (i.e., lowest point in the DET

curve) when F R R < 0.15. In Table 4.2, we give th e baseline (zero-effort) IP R s for

verifiers “R” and “S” for thresholds T\ and T2.

T he plots in Figure 4.2(a), 4.2(c), 4.2(e), and 4.2(g) show the percentage of

successful forgery a ttem p ts w ith threshold T\ (see Table 4.2). We considered two

39

"R " \ crificr• R" V erifie r
0.4

^ 0.35
“ 0.3

•̂ -0.25X
u 0 .2

■1 0.15

F F R
1.05

0.05 0.5
Im postor Pass R ateIm posto r Pass R ate

(a) (b)

0 45!
"5" V erifie r

— M=750
•••M»500

M=350
M=300

■2 o 15 ■2 0 .15
eer\

.5
Im posto r Pass R ate Im postor Pass Rate

(c) (d)

F igure 4.1: Baseline DET curves of “R" (a) & (b) and “S” (c) & (d) verifiers w ith
M matching pairs.

factors: num ber of snooped keystrokes and filtering (no filtering) snooped digraph

latencies greater than 300ms. W hen forged a ttem p ts were created by estim ating the

means and s tan d ard deviations of digraph latencies and replayed using a G aussian

random num ber generator, we observe (in p lots 4.2(a) and 4.2(e)) th a t filtering

increases the percentage of successful forged attem pts. W ith “S” verifier, the maximum

percentage of successful forgeries w ith filtering was 87.58 (for M = 150 and 200 snooped

keystrokes) and 72.06% (for M = 150 and 150 snooped keystrokes) w ithout filtering.

W ith R verifier, the maximum percentage of successful forgeries was 79.32 w ith filtering

(for M = 500 and 200 snooped keystrokes) and 72.73% (for M = 500 and 100 snooped

keystrokes) w ithout filtering. For these M values, in plots 4.2(b) and 4.2(f), we

compare baseline DET curves obtained with zero-effort impostors and the D ET curves

200 4 00 600 800 1000
o f Keystrokes Snooped

1200

(a)

0.1 0 .2 0.4 0 6
impostor Pass Rate

0 8

(b)
100

"S" V e rif ie r

80

• F i l te r . A / - 150
• F i l te r . A / — 3 0 0
• F i l te r . M ~ 3 5 0
• F i l te r . M = 5<tu

i-N o F i l te r . A / = 3 0 0
••N o F i l te r . A / — 3 5 0

2Cb
►No F i l te r . M

~ 200 400 600 800 1000
o f Keystrokes Snooped

1200

(c)

" S ” V e rif ie r

0.6
V

— Baseline. M - I 5 0
• “ Forgery ! F ilter*-150 Snooped!
■ Forgery (N o Filter-’-SO Snooped)

0.2

0.60.4
Impostor Pass Rate

0.8

(d)

R V e rif ie r

50

- F i l t e r . M = 150
♦ F i l te r . A / = 3 0 0
'— F i l t e r . M = 351)
- • - F i l te r . A/ = 5 0 0
■••N o F i l te r . A / = 150
. . . N o F i l te r . M = 3 0 0
. . . N o F i l te r . M - 3 5 0
«**No F i l te r . M = 5 0 0

200 4 0 0 ” 600
o f Keystrokes Snooped

(e)

1000 1200

•Baseline. M -5 0 0
'Forgery (Filter-*-200 Snooped)
Forgery (N o Filter+100 S nooped) •

” R '' V e rif ie r

0.6

HER
u.

0.2

0.2 0.4
Impostor Pass Rate

0.6
Rate

0.8

(f)

R " V e rif ie r

“ .★

♦ F i l te r . M = 1 5 0
♦ F i l te r . M - 3 0 0
♦ F i l t e r . A / = 350
♦ F i l te r . M - 500
••■No F i l t e r . A / - 150
■••No F i l t e r . M - 3 0 0
— N o F i l t e r . A / - 3 5 0
«*>No F i l t e r . A / = 5(X)

200 400 600 800 1000
of Keystrokes Snooped

1200

— B aseline. M -5 0 0
Forgery (Filter-*-1200 Snooped)

* Forgery (N o F iIter+800 S nooped),

” R " V e rifier

0.6

EER

0.2

0.4 0.6
Impostor Pass Rate

0.8

(g) (h)

F igu re 4.2: (a ,c ,e ,g): Percentage of successful forged a ttem pts w ith threshold
T\; (b , d , f , h): Com parison of EERs generated w ith zero-effort im postors (baseline)
and forged verification a ttem p ts generated by estim ating the m eans and s tan d ard
deviations of snooped digraph latencies (b, d), and by estim ating the means of the top
10 frequent snooped digraphs (f . h).

41

obtained w ith forged a ttem p ts (with 200 and 150 snooped keystrokes). The D ET

curves clearly show th a t forged a ttem pts considerably increase the baseline EERs.

"R " V e r i f ie r — B a se lin e , M - 5 0 0

• F o rg e ry (F ilte r* -5 0 S n o o p e d)
■ ••F o rg e ry (F ilter-*-150 S n o o p e d)

0.8

n
X 0.6

E E R31

0.2

0.6
Rate

0.2 0.4
Impostor Pass Rate

— B a s e lin e . M - 5 0 0

■ F o rg e ry (N o F ille r* 5 0 S n o o p e d)
■ ••F o rg e ry (N o F ille r* 150 S n o o p e d)

■’R " V e r if ie r

0.8

S3
X 0.6

a

0.2

0.4
Impostor Pass Rate

0.6 0.8
Rate

(a) (b)

F igu re 4.3: Com parison of EERs of “R” verifier with forged verifications a ttem p ts
generated w ith 50 and 150 snooped keystroke when M = 500.

In “S” verifier, the percentage of successful forgeries increased as the num ber

of snooped keystrokes increased from 50 to 150 and then began to decrease from 200

to 1200. Though less pronounced, the sam e behavior was observed w ith “R .” The

observation th a t snooping more keystroke inform ation makes the forgery a ttack less

effective is counter-intuitive. The reason behind th is phenomenon is th a t the frequency

of occurrence of English digraphs follow' heavy-tailed (Pareto-like) distributions,

im plying th a t only a few digraphs occur m ost of the time. In fact, [33] showed

th a t 25 digraphs make about third of all printed English text. As more keystrokes are

snooped, the frequencies of only a few digraphs are sufficient enough to estim ate the

m ean /s tan d a rd deviations, and for the rem aining digraphs, the frequencies are too

low to estim ate the m ean s/s tan d ard deviations correctly. Therefore, increasing the

number of snooped keystrokes increases the number of badly estimated m eans/standard

deviations used to forge a sample. To support our argument, we created forged samples

42

T a b le 4 .2: IPRs of verifiers ;R ' and "S" for thresholds 7) and T2.

M Ti “R ” T2 “R ” Ti «g» T -2 “S”
150 0.118167 0.138081 0.152123 0.138153
300 0.109109 0.128045 0.124451 0.124451
350 0.115047 0.127630 0.080491 0.112174
500 0.102082 0.123187 0.085271 0.099889

using means estim ated from the 10 most frequently occurring digraphs (and set the

s tandard deviation to zero, i.e., created the forgeries using only the m ean digraph

latencies). P lo ts 4.2(c) and 4.2(g) show a clear im provem ent in th e success ra tes of

forgery a ttem p ts when the num ber of snooped keystrokes increase from 200-1200.

We also compare the baseline D ET curves obtained w ith zero-effort im postors when

M = 500 and the D ET curves obtained w ith forged a ttem pts created using only the

means of the top 10 m ost occurring snooped digraphs (with 1200 and 800) snooped

keystrokes. The D ET curves clearly show th a t forged attem pts considerably increase

the baseline EERs.

In Figure 4.3(a) we com pare the baseline (zero-effort) EE R s of “R ” verifier

(M = 500) w ith EERs of forged im postor a ttem p ts created by estim ating the means

and standard deviations of digraph latencies (p lo t 4.3(a)) and w ith forged a ttem p ts

created by estim ating the m eans of the top 10 m ost frequent d igraphs (plot 4.3(b)).

The plots confirm th a t forged a ttem p ts created by estim ating th e m eans of the top

10 m ost frequent digraphs have higher EERs. Additionally, we also p lo tted forgery

success ra tes w ith the threshold T2 (not shown due to space constrain ts). T he plots

w ith T) were similar to Figure 4.2 and offered no new insights.

43

T ab le 4 .3: EERs generated for 150 users, with Set II as the training d a ta and Set III
as the verification data. The lowest EERs in each verifier group are m arked in b o ld .

M R S A F u s i o n (F)
KI K P j KH KI K P K H KI | K P K H L o w e s t E E R p - A v g . E e R f S T D p

20 0 2 3 5 0 . 2 0 9 0 .22 0 . 2 2 7 0 .251 0 . 3 4 5 0 . 3 3 0 0 . 2 6 5 0 . 3 2 9 0 .1 4 9 0 . 1 6 9 0 . 0 1 6 5
40 0 . 1 8 5 0 . 2 4 0 0 .1 5 5 0 . 1 8 0 0 . 2 1 2 0 . 3 2 5 0 . 3 0 2 0 . 2 3 2 0 . 3 0 0 0 .1 0 5 0 . 1 2 5 0 . 0 1 8 9
0 0 0 .1 0 0 . 2 2 4 0 . 1 4 3 0 . 1 0 5 0 .191 0 3 1 7 0 . 2 9 3 0 . 2 1 8 0 . 3 0 3 0 .0 8 9 0 . 1 1 3 0 . 0 1 9 6
80 0.1 53 0 . 2 0 0 0 . 1 3 2 0 . 1 5 8 0 . 1 7 7 0 .31 1 0 . 2 7 4 0 . 2 0 9 0 . 2 9 4 0 .08 0 . 1 0 5 0 . 0 1 9 8
100 0 143 0 . 1 9 0 0 .12 0 .1 5 1 0 . 1 0 9 0 .31 0 . 2 0 0 0 .2 0 . 2 8 8 0 .0 7 2 0 . 0 9 8 0 . 0 2 1 7
120 0 .141 0 . 1 8 7 0 . 1 1 7 0 . 1 4 5 0 . 1 0 5 0 . 3 0 7 0 . 2 6 2 0 . 1 9 6 0 . 2 8 6 0 .0 6 9 0 . 0 9 6 0 . 0 2 1 6
150 0 .131 0 .1 7 1 0.11 0 . 1 3 7 0 . 1 5 0 0 . 3 0 0 0 . 2 5 2 0 . 1 9 5 0 . 2 8 5 0 .0 6 7 0 . 0 9 2 0 . 0 2 1 1
30 0 0 123 0 . 1 5 5 0 .1 0 5 0 . 1 2 4 0 .1 4 1 0 . 3 0 7 0 . 2 4 6 0 .1 9 1 0 . 2 7 5 0 . 0 5 6 0 . 0 8 3 0 . 0 2 0 9
3 5 0 0 . 1 1 7 0 . 1 0 0 0 .1 0 4 0 .1 3 1 0 .131 0 . 3 0 8 0 . 2 4 8 0 . 1 9 2 0 . 2 7 3 0 .0 4 3 0 . 0 6 9 0 . 0 2 5 9
50 0 0 . 1 1 0 0 . 1 5 5 0 . 1 0 3 0 . 1 3 2 0 . 1 2 0 0 . 2 8 8 0 . 2 4 7 0 . 1 8 7 0 . 2 5 8 0 .0 4 2 0 . 0 8 6 0 . 0 2 7 7
75 0 0 .1 2 4 0 . 1 3 5 0 .1 0 5 0 . 1 3 2 0 . 1 3 9 0 . 2 8 2 0 . 2 3 4 0 . 2 0 6 0 . 2 6 4 0 . 0 3 2 0 . 0 8 4 0 . 0 1 8 9

T a b le 4 .4 : EERs generated for 200 users. Set II was used for tra in ing , Set III was
used for generating genuine a ttem pts, and Set IV for generating im postor a ttem pts.

M R S A F u s i o n (F)
K I K P K H KI K P K H K I K P K H L o w e s t E E R p A v g . E E R F S T D p

20 0 . 2 3 2 0 . 2 9 6 0.2 0 . 2 1 8 0 . 2 3 9 0 . 3 4 0 .3 3 1 0 . 2 5 5 0 . 3 1 5 0.141 0 . 1 6 9 0 . 0 1 6 5
4 0 0 . 1 7 9 0 . 2 4 3 0 . 1 4 6 0 . 1 7 8 0 .2 0 1 0 .3 2 1 0 . 2 9 6 0 . 2 2 2 0 . 2 9 3 0 .0 9 9 0 . 1 2 2 0 . 0 1 8 6
6 0 0 . 1 5 5 0 .2 2 1 0 .1 2 3 0 . 1 5 8 0 . 1 8 0 . 3 1 3 0 . 2 8 7 0 . 2 0 7 0 . 2 8 9 0 .0 8 4 0 . 1 0 7 0 . 0 1 9 4
8 0 0 . 1 4 7 0 . 2 0 3 0 . 1 1 3 0 . 1 5 0 . 1 6 6 0 . 3 0 7 0 . 2 6 7 0 .2 0 . 2 7 9 0 .0 7 6 0 . 0 9 9 0 . 0 1 9 6
100 0 .1 3 5 0 . 1 9 2 0 . 1 0 6 0 . 1 4 3 0 . 1 5 8 0 . 3 0 6 0 . 2 5 9 0 . 1 9 2 0 . 2 7 6 0 .0 6 8 0 . 0 9 4 0 . 0 2 1 2
120 0 .1 3 3 0 . 1 8 4 0 .101 0 . 1 3 7 0 . 1 5 6 0 . 3 0 3 0 . 2 5 5 0 . 1 8 9 0 . 2 7 6 0 .0 6 7 0 . 0 9 2 0 . 0 2 1 3
150 0 . 1 2 3 0 . 1 6 7 0 . 0 9 7 0 . 1 3 0 . 1 4 7 0 . 3 0 4 0 . 2 4 4 0 . 1 8 6 0 . 2 7 2 0 .0 6 3 0 . 0 8 8 0 . 0 2 0 9
3 0 0 0 . 1 1 5 0 . 1 4 9 0 . 0 8 8 0 . 1 1 6 0 . 1 3 4 0 . 3 0 2 0 . 2 3 6 0 . 1 8 3 0 . 2 6 3 0 .0 4 8 0 . 0 7 6 0 . 0 2 1 1
3 5 0 0 .1 1 2 0 . 1 5 2 0 . 0 8 7 0 . 1 2 4 0 . 1 2 2 0 . 3 0 2 0 . 2 4 9 0 . 1 8 0 .2 6 0 .0 4 4 0 . 0 6 7 0 . 0 2 4 8
5 0 0 0 .1 1 2 0 . 1 4 8 0 . 0 9 6 0 .1 2 1 0 . 1 2 3 0 . 2 8 8 0 . 2 3 7 0 . 1 7 9 0 . 2 4 6 0.041 0 . 0 8 1 0 . 0 2 6 8
7 5 0 0 .1 1 6 0 . 1 2 8 0.1 0 . 1 2 0 . 1 2 5 0 . 2 7 9 0 . 2 2 3 0 . 1 9 5 0 . 2 5 3 0 .03 0 . 0 8 0 . 0 1 8 5

4.2 S a m p le-lev el A tta ck E x p erim en ts

4 .2 .1 B a se lin e (Z ero-effort Im p o sto r A tta ck) R esu lts and A n a ly s is

Table 4.3 shows the EER s1 of the nine verifier-template com binations and the

EERs of “F ” verifier. To generate EERs in Table 4.3, we used Set II to build the users

tem plates and Set III to obtain genuine and zero-effort impostor scores. In Table 4.3,

“F" verifier has three columns: 1) “Lowest E E R p ” gives the lowest, 2) “Avg. E E R p ”

gives the average, and 3) “S T D p ” gives the s tan d ard deviation of E E R s obtained

with 126 different weight combinations.

1 Equal error ra te (EER) or crossover error ra te is the point where false reject ra te (FR R) and
impostor pass rate (IPR) curves intersect. To plot the F R R and IP R curves, we calculated a series
of false reject rates and im postor pass rates by varying the verification threshold from 0 to 1 in
increments of 0.001.

44

Table 4.4 is similar to Table 4.3 except we used Set IV instead of Set III to

generate impostor scores. (We used the same genuine scores to generate EERs in both

Table 4.3 and Table 4.4). Our observations follow.

O b s e r v a t io n 1: For all M values, the fusion ("F ") verifier outperform ed

individual ("R ,” "S,” and "A”) verifiers. See 'Low est E E R p ” and "Avg. E E R p ”

columns under "F” verifier in Tables 4.3 and 4.4.

O b s e r v a t io n 2: Irrespective of the verifier, lowest EERs were achieved at

higher M values (e.g., 300, 350, 500, and 750) and a trade-off exists between M and

EERs (i.e., as M increases, we can expect EERs to decline).

O b s e r v a t io n 3: We com puted the absolute difference between the EER in

each cell in Table 4.3 and the same cell in Table 4.4 (excluding cells of columns “Avg.

E E R p ” and “S T D p ”). The average of absolute differences between EE R s in Table

4.3 and Table 4.4 is 0.00998. This means the EER, on average, changes by 0.00998 if

the im postors were from Set IV instead of Set III. This shows that E E R s in Tables

4-3 and 4-4, though obtained from two different impostor populations, are not quite

different.

In Table 4.5, eve give the to ta l num ber of genuine and im postor verification

a ttem p ts ex tracted from Set III and Set IV to generate EERs in Tables 4.3 and 4.4.

In Table 4.5, we also give the average number of keystrokes in a verification a ttem pt

(includes genuine and zero-effort impostor) and the average time in seconds taken by

the users to type a verification a ttem pt.

R eason for not con sid erin g m atch in g pairs b eyon d 750: N ote from

Table 4.5 th a t it took 14.83 seconds of typing time to generate a verification attem pt

T able 4.5: "Tot. Im postor A tte m p ts ’ and the "Tot. Genuine A ttem pts" colum ns
give the total number of impostor and genuine verification attem pts used to calculate
EERs in Tables 4.3 and 4.4. "Avg. Typing Tim e per A ttem pt" colum n gives the
average time taken to type a verification attem pt (in seconds). "Avg. # of Keystrokes
per Attempt" column gives the average number of keystrokes in a verification attem pt.

M
Tot. Impostor

A ttem pts
Tot. Genuine

A ttem pts
Avg. Typing

Time (in sec.)
per A ttem pt

Avg. # of
Keystrokes

per A ttem pt
20 10950540 32630 14.83 54.65
40 5439610 16218 29.81 109.53
60 3596320 10715 44.65 163.98
80 2673265 7961 59.47 218.06
100 2119001 6320 74.27 272.03
120 1749125 5218 89.07 326.11
150 1379683 4114 111.24 406.72
300 640836 1918 221.11 805.63
350 530810 1579 257.62 937.49
500 342178 1018 364.24 1328.73
750 189141 564 547.56 2000.15

when M = 20 and 547.56 seconds when M = 750. Though all the verifiers achieved

lower EERs wdien M = 750, it is im practical for a continuous verification system to

use 750 matching pairs, because for each verification attem pt, the verifier would have

to wait for nearly 10 minutes. This is the reason why we did not consider beyond 750

matching pairs in our experiments.

4 .2 .2 Snoop-forge-rep lay A ttack P a ra m eters and C on figu ration s

We considered four snoop-forge-replay a ttack param eters for sample-level

attacks. They are:

1) L en gth o f S n oop ed T ext: is the num ber of keystrokes for which the

attacker steals hold and interval latencies from a victim. Depending on various factors,

including attacker’s intent and victim ’s availability, the attacker can steal few or many

46

keystrokes. We experim ented with snooped text of length 20. 50. 100. 200. 600. and

1200 to see how this param eter impacts the attack performance.

For extracting N snooped keystrokes from user U,. we used the first N characters

from U is typing sample in Set I. For example, when we snooped N = 100 characters

for user Uu we used the first 100 characters from U2's sample in Set I.

2) G aussian P ertu rb a tio n o f S n o o p ed L atencies: K eystroke dynam ics

is a behavioral tra it, so it is highly unlikely th a t two latencies of the sam e key (for

example, two hold latencies of “a”) will be exactly equal, even if aa" was typed in

rapid succession. From the snooped keystrokes, assum e an a ttacker learns th a t the

average key hold latency of “a” is 150ms. If the a ttacker creates a forgery th a t has

150ms for every occurrence of “a,” then th is artifact alone can expose the forgery.

We solved the problem by adding Gaussian noise (zero mean and three standard

deviations) to pertu rb the latency values in a forgery. We chose Gaussian because its

param eters (mean and standard deviation) are easy to estim ate and most programming

languages can generate a Gaussian variate. However, an attacker can also choose a

different perturbation model {e.g., adding noise from uniform distribution), as long as

the perturbation does not distort the latencies too much. We performed experim ents

w ithout and with Gaussian perturbation.

3) F ilter in g O utliers: From the snooped latencies, the attacker can choose

to remove outliers. We perform ed experim ents w ith and w ithout filtering outliers.

W hen we filtered outliers, we discarded any latency greater th an or equal to 300

milliseconds.

47

T a b le 4 .6 : Tw enty-four a ttack configurations obtained with different param eter
settings.

C on figuration
N u m b er

L ength o f
S nooped

T ext

G au ssian
P ertu rb a tio n

F ilter in g
O utliers

M in. Freq.
o f

O ccurren ce
1 20 YES YES 1
2 50 YES YES 1
3 100 YES YES 1
4 200 YES YES 1
5 600 YES YES 1
6 1200 YES YES 1
7 20 YES NO 1
8 50 YES NO 1
9 100 YES NO 1
10 200 YES NO 1
11 600 YES NO 1
12 1200 YES NO 1
13 20 NO YES 1
14 50 NO YES 1
15 100 NO YES 1
16 200 NO YES 1
17 600 NO YES
18 1200 NO YES
19 20 NO NO 1
20 50 NO NO 1
21 100 NO NO 1
22 200 NO NO 1
23 600 NO NO 2
24 1200 NO NO 3

4) M in im u m F requency o f D ig ra p h s in th e S n o o p ed T ext: In the

snooped tex t, if a latency (e.g., key hold of “a”) appeared m ultiple tim es, we used

its average in the forgery. To improve the forgery, the attacker can choose to use the

snooped digraphs whose average latency was com puted w ith a t least k repeats. For

long snooped tex t lengths, i.e., 600 and 1200, we chose A; to be 2 and 3, respectively.

However, for shorter lengths (20, 50, 100, and 200), we considered all the digraphs

regardless of how m any tim es they repeated; otherwise, we were left w ith too few

digraphs to create a forgery.

Using the above a ttack param eters, we created 24 attack configurations. (In

Table 4.6, we list the 24 a ttack configurations w ith their param eter values.) We

48

T able 4.7: Average number of snoop-forge-replay attacks generated per user.

M A v g . N o . o f “S n o o p -fo rg e-rep la y ” A ttack s p er U ser
KI K P K H F

20 5594.98 5451.27 5325.65 4528.12
40 3448.91 3377.06 3149.48 2599.54
60 3105.98 3080.52 2946.57 2438.02
80 2839.48 2674.07 2639.32 2235.75
100 2401.59 2261.081 2233.64 1916.44
120 2012.78 1895.34 1872.46 1603.36
150 1526.72 1517.16 1498.85 1284.11
300 805.31 758.38 749.21 651.23
350 690.19 649.92 642.07 549.93
500 483.01 454.82 449.35 381.67
750 321.85 303.05 299.38 254.53

experim ented w ith 24 a ttack configurations, 11 m atching pairs, and 10 different

verifier-template pairs. This resulted in 2 4 x 1 1 x 1 0 = 2640 attack experim ents.

Table 4.7 gives the number of snoop-forge-replay attacks we generated against

each user. Values in Table 4.7 represent averages calculated from all attacks generated

by the 24 attack configurations and running A lgorithm 1 for 24 hours.

4 .2 .3 E ffectiven ess o f th e A ttack s

C om parison o f a ttack and baseline using error ra te p lo ts: In Figure

4.4, we compare the baseline (zero-effort) im postor pass rates with snoop-forge-replay

attack pass rates. Panels (a), (b), (c), and (d) in Figure 4.4 show the error rate plots

for “R,” “S,” “A ,” and “F” verifiers. In each panel, th e two baseline IP R curves

correspond to zero-effort im postor attacks w ith Set III and Set IV, respectively. The

24 attack IPR curves correspond to 24 a ttack configurations.

Showing error rates for all verifier settings is not practical because we experi

mented with 11 matching pairs and 10 verifier-template combinations, which gives 110

49

settings. So. we chose to show plots corresponding to tlie setting in which a verifier

had achieved its lowest baseline EER. (We highlighted th e lowest baseline EE R s in

b o ld in Table 4.3).

Table 4.8 gives the maximum, minimum, and average attack EERs and baseline

EERs corresponding to the panels (a)-(cl) in F igure 4.4. Table 4.8 shows th a t the

attack IPR s (in Figure 4.4) markedly increased the EERs for verifiers which had the

lowest EER s in our baseline experim ents. The results in Figure 4.4 and Table 4.8

also illustrate the unde discrepancy between the snoop-forge-replay a ttack EERs and

baseline EERs.

C o m p a r i s o n o f a t ta c k a n d b a se l in e u s in g E E R p lo ts : Here we

sum m arize how the 24 a ttack configurations perform against 10 verifier-tem plate

combinations and 11 matching pair settings. In Figures 4.5 and 4.6, panels correspond

to 10 verifier-template combinations. In each panel, we show the maximum, minimum,

average, and s tandard deviation (error bars) of a ttack EER s and baseline EER s for

11 m atching pair (M) settings. The m axim um , m inim um , average, and standard

deviations of a ttack EERs were com puted from EERs corresponding to 24 a ttack

configurations. From the panels, we observe the following:

1) The “Maximum Attack EER” curves are remarkably higher than zero-effort

“Baseline EER ” curves (see Table 4.9 for percentage increase in attack EERs over the

baseline). This shows tha t all 11 matching pairs and 10 verifier-template combinations

were vulnerable to the snoop-forge-replay attack;

2) T he fusion “F ” verifier (see Figure 4.6, panel (b)), which had th e lowest

EERs in our baseline experiments has the highest maximum, minimum, and average

50

R -K H verifier, M - 500 S -K l verifier, M - 300

0.8

0.6 Attack IPRs

Baseline IPRs0.4

Baseline EERs
-Baseline FRR

0.2

0.2 0.4 0.6 0.8
threshold

0.8 Attack IPRs

0.6

Baseline IPRs
0.4

Baseline EERs
0.2

Baseline FRR

0.4
Threshold

0.6 0.8

(a) (b)
A -K P verifier, M = 500 *F’ verifier, M = 750

0.8
-Attack IPRs

0.6 Baseline IPRs

0.4
-Baseline FRR

0.2
Baseline EERs

0.2 0.60.4 0.8
threshold

-Attack IPRs

0.6 - Baseline IPRs

0.4' -Baseline EERs

Baseline FRR

0.2 0.4 0.6 0.8
threshold

(c) (d)

F ig u re 4 .4 : False reject rate (Baseline FRR), zero-effort, impostor pass rates (Baseline
IPRs) (highlighted by the smaller circles), and 24 snoop-forge-replay attack IP R curves
(highlighted by the large circles) achieved w ith “R ” (a), “S” (b), “A” (c) verifiers
paired with KH, KI, and KP tem plates respectively and “F ” (d) verifier. In each plot,
the Baseline EERs (crossover points between Baseline FR R and Baseline IP R curves)
are marked by a box.

attack EERs. This dem onstrates th a t the best perform ing verifier under zero-effort

attacks could turn out to be the most vulnerable verifier under a non-zero effort attack;

3) The m axim um and m inim um a ttack E E R curves and error bars indicate

th a t some attack configurations are more effective than the others. In Section 4.2.4,

we discuss which attack configurations are more effective; and

4) The “Minimum Attack EER ,; curves show that, even for the worst performing

attack configurations, the “R .” “A ,” and “F ” verifiers had considerably high attack

EERs compared to their baseline EERs.

51

0 40 80 150

0.6

0.4

0.2

1
0.8

, 0.6

0.4

o.2

0 40 1

AAAAAA a -

" R -K P V erifier

 ”' t f f

A M ax AiUickF.ER
© A \ g A itack EER
■ aM in A ttack LFR
— B asc iinc EER (Set 111)
•••Ba.selinc F.ER (Set IV)

300 350 500
M atching Fair, M

(a)
"R -K H " V erifier

=r ^ =— r
A M ax A ttack EFR
■©■Avg A ttack EER
© M m . A ttack EER
— B ase line E E R (Set III)
-- -B ase line E E R (Set IV)

300 350 500
M atching Pair, M

(c)
" S-K P " Verifier

AMax A ttack EER
-■©■Avg. A ttack EER ~

■©Min. A ttack EER
— B ase line E E R (Set 111)
•••B aseline EER (Set IV)

300 350 500
M atching Pair, M

(e)
" A -K P V erifier

AMax. A ttack EER
■©Avg. A ttack EF.R
©Min A ttack EER

“ — B ase line EER (Set I I I) -
- B ase line EER (Set IV)

0.4

0.2

0 40 80 150

1
0.8

, 0.6

f t

0 40 80 150

0.8 a a A / iAA A

0.6 < f

ill U1

’'R -K P " Verifier

==H === f =

300 350 500
M atching Pair, M

(b)
" S -K P V erifier

300 350 500
M atching Pair, M

(d)
”S -K H " Verifier

300 350 500
M atching Pair, M

(f)
" A -K P" V erifier

0 40 80 150 300 350 500
M atching Pair, M

750 0 40 80 150

(g)

300 350 500
M atching Pair, M

(h)

F ig u re 4.5: Maximum (“Max. A ttack E E R ” curves), average (“Avg. A ttack E E R ”
curves), minimum (“Min. Attack EER” curves), and standard deviations (Error bars)
of attack EERs achieved from 24 snoop-forge-replay a ttack configurations against
“R ” (a - c), “S” (d - f) , “A” (g - h) verifiers and KI, K P, and KH tem plates. Two
Baseline EER curves “Baseline EER (Set III)” and “Baseline EER (Set IV)” represent
EERs from Tables 4.3 and 4.4. (“Baseline E E R (Set I I I) ” and “Baseline E E R (Set
I V) ” curves are overlapping in most panels.) Legends are the sam e for panels (a)
through (j).

" A -K H ” V erifier "F" N erifler

A M a x A ttack EFR
A ttack EER

S M m A ttack EER
B ase line E FR (Set MI)

• B ase line EE R (S e t !V>

°0 40 80 150 300 350 500 750 °0 40 80 150 300 350 500 750
M atching Pair, M M atching Pair, M

(a) (b)

F igure 4.6: Maximum (“Max. A ttack E E R ” curves), average (“Avg. A ttack E E R ”
curves), minimum (“Min. Attack EER” curves), and standard deviations (Error bars)
of attack EERs achieved from 24 snoop-forge-replay attack configurations against "A”
(a) verifier and KH tem plate and “F ” (b) verifier. Two Baseline EER curves “Baseline
EER (Set III)” and “Baseline EER (Set IV)” represent EERs from Tables 4.3 and 4.4.
(“Baseline E E R (Set I I I) ” and “Baseline E E R (Set I V) ” curves are overlapping in
most panels.) Legends are the same for panels (a) through (j).

4 .2 .4 P erform ance A n a ly sis o f A tta ck P aram eters

To observe the perform ance of a ttack param eters, in Figure 4.7, we give the

a ttack EER s of “R” (panels a and b), “S” (panels c and d), “A” (panels e and /) ,

and “F ” (panels g and h) verifiers configured w ith 750 m atching pairs and different

a ttack param eters. T he EER s w ith the rem aining m atching pairs (40, 60, 80, 100,

120, 150, 300, 350, and 500) behave the sam e way as th e panels in F igure 4.7. See

Appendix B for the EE R plots with the rem aining matching pairs.

In Figure 4.7, panels a, c, e, and g, “Filtering + G aussian” (solid lines)

correspond to configurations when the outliers were filtered, latencies were perturbed

with Gaussian, and all snooped latencies were used to compute forgeries, irrespective

of their frequency of occurrence. “No Filtering + Gaussian” (dashed lines) correspond

to similar settings except outliers were not filtered. In panels b, d, fi and h, “Filtering

+ Min. Frequency” (solid lines) correspond to configurations when the outliers were

filtered, latencies were not perturbed w ith G aussian, and only the latencies th a t

"R" Verifier "R" Verifier

— K I. F iltering * G aussian
© K P . F iltering * G aussian
© K J I . F iltering *- G aussian
-■•KI. N o F ilten n g + G aussian
© K P , N o F ilte ring + G aussian
© K H . N o F ilte ring +• G aussian

I
ao-a—

0.8 #8=®”
x 0.6
'Jm
“ 0.4

0.2

=#=

— K I. F ilte ring M m F requency
© K P . F ilte ring + M m . F requency
© K H . F ilte ring + M in. F requency
•••K I. N o F ilte ring M in F requency
© K P . N o F ilte ring - M in F requency
© K H . N o F ilte ring M in . Frequency

0 100 200 600
Snooped Text Length (in characters)

1200

— K l, F ilte ring + G aussian
•© K P. F ilte ring + G aussian
S K I ! . F ilten n g + G aussian
--•K I. N o F ilte ring •* G aussian
© K P , N o F ilte ring + G aussian
EFKH. N o F ilte ring + G a u ss ia n “ §

100 200 600
Snooped Text Length (in characters)

1200

1
0 .8<

0.6 g

0.4

0.2

1
0.8

0.6

0.4

(c)
"A" V erifier

— K I. F ilte ring + G aussian
© K P. F ilte ring + G aussian
© K H . F ilte ring + G aussian
--•K I, No F ilte n n g + G aussian
© K P , N o Filtering + G aussian
© K H , N o F ilten n g + G au ssian

100 200 600
Snooped Text Length (in characters)

1200

(e)
"F" V erifier

-F il te r in g G au ssian
-•No F ilte rin g + G au ssian

0.2

0 100 200 600
Snooped Text Length (in characters)

1200

(g)

0,
0 100 200 600

Snooped Text Length (in characters)

(b)
"S" Verifier

1200

cn'u

"•©

0 100 200

* — K I. F ilte ring * M in. F requency
© K P , F ilte n n g + M in. F requency
© K H , F ilte rin g M in. F requency
•••K I. N o F ilte ring + M in . F requency
© K P , N o F ilte ring + M in . F requency
O K I ! , N o F ilte ring + M m . F requency

600 1200
Snooped Text Length (in characters)

(d)
"A" Verifier

0 100 200

— K I, F ilte rin g + M in. F requency '•'•©
© K P , F ilte rin g + M m. F requency
© K H , F ilte ring + M in. F requency
•••K I, N o F ilte ring + M in . F requency
© K P , N o F ilte ring + M in . F requency
© K H , N o F ilte ring + M in . F requency

600 1200
Snooped Text Length (in characters)

(f)
"F" V erifier

0 .8 -

0.6

0.4

- F il te r in g M in. F req u en cy
- N o F ilte rin g + M in . F req u en cy

0.2

0 100 200 600
Snooped Text Length (in characters)

1200

(h)

F ig u re 4 .7 : A ttack EERs under different attack configurations w ith “R ” (a - 6), “S”
(c - d), “A” (e - /) , and “F ” (g - h) verifiers. EERs are com puted using M = 750.
Solid lines represent a ttack EERs when the outliers are filtered and the dashed lines
represent attack EERs when the outliers are not filtered.

54

T ab le 4 .8 : A tt nek EERs of the top performing verifier settings in baseline experiments.

Verifier
Baseline

EERs
(Set III & IV)

M aximum
A ttack
EER

Minimum
Attack
EER

Average
A ttack
EER

R KH. M = 500 0.116. 0.096 0.837 0.673 0.81
S KI. M = 300 0.124. 0.116 0.742 0.224 0.514
A KP, M = 500 0.187. 0.179 0.811 0.429 0.618

F, M = 750 0.032. 0.03 0.965 0.679 0.905

occurred more than once in the snooped tex t were used to compute forged latencies.

“No Filtering -f Min. Frequency’" (dashed lines) correspond to similar settings except

outliers were not filtered. O ur observations follow.

1) Forgeries using short snooped te x t of 20 to 100 characters achieved very

high EERs ranging from lowest 0.43 (with “A-KH” in Figure 4 .7(f)) to highest 0.92

(with “F ” in Figure 4.7(h)). However, th e lim itation w ith short snooped tex t is

th a t it produces forgeries in which few characters repeat many tim es. Consequently,

the forged tex t m ay contain misspelled words, linguistically m eaningless tex t, and

gram m atical violations. However, given th a t cu rren t keystroke-based continuous

verification system s do not im pose any checks on the te x t typed by the user, the

forgeries created with short snooped text are still effective.

In panels (c) and (e) in Figure 4.7, note th a t as the snooped length increases,

the attacks become less effective against "S” and “A” verifiers. We explain why this

happens in Section 4.2.6.

2) Overall, we achieved higher a ttack EER s, ranging from lowest 0.43 (w ith

“A-KH” in Figure 4.7(f)) to highest 0.965 (with “F” in Figure 4.7(h)), when the outliers

in the snooped tex t were filtered, latencies were not perturbed w ith G aussian noise,

55

T a b le 4 .9 : Minimum to maximum percentage increa.se in attack EERs over baseline
EERs across all the matching pairs.

Max. A ttack
EER

Avg. A ttack
EER

Min. A ttack
EER

Baseline (Set III) 125.5% to%
2915.62%

69.33% to
2730.55

12.84% to
2075.41%

Baseline (Set IV) 128.8% to
3116.67%.

71.89% to
2919.26%

18.51% to
2220.44%

and only the latencies tha t occurred more than once in the snooped tex t were used to

compute forged latencies. A ttack EERs corresponding to these param eters are shown

as solid curves in panels b, d, f, and h in Figure 4.7.

In comparison, we achieved lower attack EERs, ranging from the lowest 0.21

(w ith “S-K P” in Figure 4.7(c)) to highest 0.932 (w ith “F ” in F igure 4.7(g)), when

the outliers were not filtered, latencies were perturbed w ith Gaussian, and all snooped

latencies were used to compute forgeries, irrespective of their frequency of occurrence.

A ttack EERs corresponding to these param eters are shown as dashed curves in panels

a, c, e, and g in Figure 4.7.

4 .2 .5 A n a ly s is o f A ttacks A g a in st th e “R ” V erifier

In the solid curves of Figure 4.7(a), note the drop in EERs when the snooped

tex t lengths are 20, 50, and 100. W hen we used, 1) 20, 50, and 100 snooped tex t

lengths, 2) Gaussian perturbation , and 3) outlier filtering, we achieved lower attack

EERs with :tR” verifier. This occurred because the normalized disorder score (see :‘R"

verifier, Section 3.6, Page 34) is sensitive to the size of A train and A test. We explain

w ith the following example.

56

Assume A tr(un and A tf st contain five digraphs. If there is one mismatch between

A tl,nn and A ttst. it means 40% or two out of the five digraphs do not have the same

rank. This gives a normalized disorder score of 0.166C7. Now, assume A train and A test

contain 20 digraphs. One mismatch between A train and A test leads to having two out of

20 (or 10%) digraphs that do not have the same rank. This gives a normalized disorder

score of 0.01. So, even if A train and A test have the sam e num ber of m ism atches, the

normalized disorder between A train and A test is higher when the array sizes are lower.

Filtering outliers from snooped tex ts of length 20, 50, and 100 decreased the

size of A train and A test arrays. G aussian pertu rbation fu rther increased the disorder

score. The two param eters together increased the normalized disorder score between

the tem plate and the forgery and thus lowered the attack EERs. However, EERs for

snooped tex t of lengths 200, 600, and 1200 were high in spite of adding G aussian

perturbation because the arrays were large even after outlier filtering.

W hen the outliers were not filtered, the size of th e arrays were large for all

snooped text lengths. So the attack EERs were high for all snooped text lengths (see

dashed curves in Figures 4.7(a) and 4.7(b)). Therefore, except when we perform ed

both Gaussian pertu rbation and outlier filtering w ith snooped tex t of length 20, 50,

and 100, the attack EERs for “R” verifier were high for all configurations.

4 .2 .6 A n a lysis o f A ttack s A g a in st “S ” and “A ” V erifiers

In Figures 4.7(c) and 4.7(e), we observe tha t the attack EERs decreased as the

snooped tex t length increased. The reason why EERs decreased when snooped text

length increased is related to the d istribu tion of digraphs in English tex t. In Figure

4.8, we show the probability d is tribu tion of the digraphs. To plot the d istribution ,

57

0.045</>
-C
a. 0.04 T ---- - - ------
2

,00
Q

0.035
0.03

««—
o 0.025
>

15
0.02 |

0.015
TO

.a 0.01
oi_
a. 0.005 !

n -lkl.1 .ilil [Lilli 1.11 IJiIi.LIiill.Ii
t - i f M m ^ i n ^ r ^ G O o O H f N j m ^ t f c n ^ r ^ o o a ^ O t H r J r o

c M ^ w & c o o r j ^ v o c % r H f n i n r ^ a > T - i f n u ^ r s O < M ^ * i D
H H H H H N N N N N r t r t r t f O ^ ^ ^ ^

English Digraphs Ranked by Frequency of O ccurence

F ig u re 4 .8 : Probability distribution of English digraphs. Probabilities were computed
from the digraph frequencies given in [44],

we used digraph frequencies in [44], which calculated the frequencies by considering

997,380 digraph instances. In Figure 4.8, notice th a t the first few digraphs cover a

m ajor portion of the probability distribution compared w ith the rest of the digraphs.

In fact, the 40 most frequent digraphs account for 50.71% of all digraph instances.

So, when the snooped tex t is long (600 and 1200 characters), th e m ajority of the

digraphs occur only once. For example, from the d istribution shown in Figure 4.8,

if the snooped tex t has 600 digraphs, out of the 676 possible English digraphs, we

can expect only 94 digraphs to occur m ore th an once in the snooped tex t and the

rem aining 582 digraphs either occur once or do not occur at all.

For the digraphs that, occurred only once in the snooped tex t, we used a single

snooped latency value in the forgery. This latency value could have been an inaccurate

estim ate of the “tru e” latency value. D uring the attack , when we replayed single

latency values, the majority of the digraphs were considered “invalid” by the “S” and

“A” verifiers. This lowered the attack EERs.

58

We m itigated the problem by replaying only those* digraph latencies th a t

occurred a t least two or three times in the snooped tex t. This gave us a b e tte r

estim ate of the mean of the victim user's latencies, and as a result, the forgery had a

be tte r chance of being considered as “valid.” In the right side panels (b. d. /. and h)

of F igure 4.7, with 600 characters snooped tex t, we used latencies of those digraphs

th a t occurred a t least twice and with 1200 characters, we used digraphs tha t occurred

a t least thrice. Consequently, from Figures 4.7(d) and 4.7(f), we see th a t the attack

EERs are high a t 600 and 1200 snooped tex t lengths.

A ttack EERs increased when we filtered the outliers in the snooped tex t. In

Figures 4 .7(e)-4.7(f), the solid curve's (which represent filtering outliers) an* above

their corresponding dashed curves (which represent no outlier filtering). By filtering

the outliers we were able to forge latencies th a t were closer to th e victim user’s

latencies, and therefore, were able to increase the a ttack pass rates.

4 .2 .7 A n a ly sis o f A tta ck s A g a in st th e “F ” V erifier

The “F ” verifier, which had the lowest EERs against zero-effort im postor

a ttacks had surprisingly high a ttack EERs. From Figures 4.7(g) and 4.7(h), we

observe the following: as in “R ,” the EE R s for “F ” verifier were high for all a ttack

configurations. A contributing factor for th is is th a t the “R” verifier was weighted

more in the t;F” verifier.

In Figures 4.7(g) and 4.7(h), the solid curves are over the dashed curves, which

shows th a t filtering the outliers increased the a ttack EERs. In Figure 4.7(g), at a few

points the dashed curves are over the solid curves when the snooped tex t length is

59

sh o rt. This indicates the influence of "IT' verifier, which had lower a ttack EERs for

short snooped text with Gaussian perturbation and outlier filtering.

C H A P T E R 5

C O N C L U S IO N S A N D F U T U R E W O R K

In th is d issertation, we presented a new a ttack called “snoop-forge-replay”

attack th a t synthesizes keystroke forgeries using tim ing inform ation stolen from

victim users. Our results from feature-level and 2640 sample-level attack experiments

(involving 150 users, four state-of-the-art continuous verifiers, three types of keystroke

latencies, and 24 attack configurations) reveal th a t snoop-forge-replay attacks are very

effective in increasing EERs. W ith 20 to 1200 snooped keystrokes, the average sample-

level snoop-forge-replay a ttack EER s were between 0.487 and 0.912. In comparison,

the baseline EERs w ith zero-effort im postor a ttacks were between 0.03 and 0.285

(i.e., the a ttack increased EE R s from between 69.33% to 2730.55%). O ur results

additionally show th a t effective keystroke forgeries can be created w ith a) as low as

20 to 100 characters of snooped tex t and b) old legacy keystroke tim ing information.

The main reason for the success of snoop-forge-replay attack is th a t keystroke-

based continuous verification m ethods solely rely on users' latency information, which

can be easily forged, as dem onstrated in this dissertation. We opine th a t by integrating

text-based and language-based tra its into the verification process such as - 1) the

rate at which a user misspells words or repeats letters, 2) type of words for which the

user has latency outliers, 3) how the user revises tex t i.e., revision p a tte rn , and so

60

6 1

on. the im pact of the attack can be m itigated. In our fu ture work, we will pursue

the problem of designing keystroke based verification system s tha t are resilient to

snoop-forge-replay attacks.

A P P E N D IX A

A D D R E S S E S O F W E B P A G E S U S E D A S “D U M M Y T E X T ”

62

63

W eb ad d resses o f 20 W ik ip ed ia pages used in our "dum m y te x t” file

1. en. Wikipedia. org/wiki/Htstory_of- Um tedStates

2. en. Wikipedia. org/wiki/World- W a rJ I

3. en.wikipedia.org/wiki/Air-warfare-of- World- War-II

4. en. wikipedia.org/wiki/Effects-of- World- W a r J I

5. en. wikipedia. org/wiki/ United-Nations

6. en.wikipedia.org/wiki/World- W a r J

7. en.wikipedia.org/wiki/ Causes-of1 World_ War A

8. en.wikipedia. org/wiki/Cold_ War

9. en. wikipedia. org/wiki/Great-Pyramid-oj1 Giza

10. en. wikipedia. org/wiki/Stonehenge

11. en. wikipedia. org/wiki/Colosseum

12. en.wikipedia.org/wiki/Great_ WalLof-China

13. en.wikipedia.org/wiki/War-on-Terror

14. en. wikipedia. org/wiki/Gulf1 War

15. en.wikipedia.org/wiki/Vietnam- War

16. en.wikipedia.org/wiki/Grand-Canyon

17. en. wikipedia. org /w iki/ Christopher-Columbus

18. en.wikipedia.org/wiki/Albert-Einstein

19. en.wikipedia.org/wiki/Isaac-Newton

20. en.wikipedia.org/wiki/NASA

A P P E N D IX B

E E R P L O T S U N D E R D IF F E R E N T A T T A C K C O N F IG U R A T IO N S

64

65

"R" V erifier

, 0.6
' 0.4

0.2

— Kl. Filtering • (jaussian
1 7 — KP. Filtering G aussian

— KM. Filtering • G aussian
•••K l. N o Filtering • G aussian
***KP. N o Filtering ■ Gaussian

N o Filtering * Gaussian

0 100 200 600
Snooped T ext Length (in c h a rac te rs)

(a)
" R " V erifier

1200

i***—0.8
, 0.6

j04
0.2

— Kl. Filtering * Min Frcqucncv
■“ KP. F iltering - M in Frequency
■“ KM. Filtering • Mtn Frequency
•■•Kl, N o Filtering • M in Frcqucncv
•••K P . N o Filtering - M tn Frcqucncv
■■•KH. N o Filtcnng - Min. Frcqucncv

0 100 200 600
Snooped T ext Length (in c h a ra c te rs)

(b)
" R " V erifier

1200

0.4

0.2

^ K l . F iltering - Gaussian

w — KP. F iltering » G aussianV “ ■KM. Filtering • Gaussian
•••K I. N o Filtering ♦ Gaussian
•••K P . N o Filtering - Gaussian

■

•••K H . N o Filtering i G aussian

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

(c)
" R " V erifier

1200

— KI. Filtering * Min Frequency

0.6 — KP, Filtering • Mm Frequency
■“ K H , F iltering * M in Frequency
• ••K I, N o Filtering * M in Frequency

0.4 •••K P , N o Filtering - Min. Frequency
•**KH. N o Filtcnng - M m Frequency

0.2

0
0 100 200 600 11200

Snooped T ext Length (in ch a ra c te rs)

(d)

F ig u re B . l : Com parison of a ttack EER s using a ttack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for "R” verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent a ttack EERs
when the outliers are not filtered. Plots a and b correspond to M = 40, plots c and d
correspond to M = 60.

66

’R" Verifier

• " K l . I lilenne Gauxyian
• " K l ' . h ltc n n g GaU'Man
“" K H Filtering - Gaussian
• “•Kl N o 1 ilkrini; • G aussian
•••KH. N o Filtering - G aussian
• ••K l!. N o I iltcnnu Gaussian

°o 100 200 600
Snooped T ext Length (in ch a rac te rs)

(a)
" R ” V erifier

1200

0.8-jP"”
. 0.6
i
1 0.4

0.2

" • K l . Filtering - Mitt Frequency
" •K l* . Filtering • Min Frequency
^ K I L Filtering • Min Frequency
•••K l. No 1 altering •+ Mm. Frequency
■••KP. N o Filtering - Min. Frequency
•••KM . No Filtering Mtn Frequency

0 100 200 600
Snooped T ext Length (in c h a rac te rs)

(b)
" R " V erifier

1200

V
• “ Kl. Filtering • Gaussian

V •“ •K P . Filtering - Gaussian
" “ KH. Filtcrinu • G aussian
■•■KI, N o Filtering - Gaussian
•••K P . Ni> Filtering ' G aussian
•••K I i. N o Filtering • Gaussian

0 100 200 600
Snooped Text Length (in c h a rac te rs)

(c)
"R " V erifier

1200

1 ,

0.8
“ “ KI. Filtering - Min Frequency

as 0.6 " “ Kl*. Filtering - M in Frequency
" • K I I . Filtering - Min. Frequency

a 0.4

0.2

— KI. N o Filtering • Min. Frequency
•••Kl*. No Filtering * Mm. Frequency
— KH N o Filtering - Min Frequency

100 200 600
Snooped T ext Length (in c h a rac te rs)

1200

(d)

F ig u re B .2 : Comparison of a ttack EER s using a ttack configurations 1-12 (plots
a. c) and a ttack configurations 13-24 (plots b, d) for "R" verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 80. plots c and d
correspond to M = 100.

67

"R " Verifier
1

KI. I illcnng (iuusMan
KJ'. Filtering - G;ms»Ku:
KH. filtering - Gauscinn
Ki. N o Filtering G au ^ ia ii
Kf‘. N o Tillering Gaussian
KH. N o Filtering • Gaussum

0.2
0
0 100 200 600 1200

Snooped T ext Length (in ch arac te rs)

(a)
"R " V erifier

— KI. Filtering - Min Frequency i
•""'K P. Fiilciing * Min Frequency j
— KH. Filtering - Min Frequency I
•••K l. N o Filtering - Mm Frequents
•••K i1. No Filtering - Mu» Frequcncs [
•••K H . No Filtering ' Min Frequency |

o 10 100 200 600 1200
Snooped T ext L ength (in ch arac te rs)

(b)
" R " V erifier

“ KI. Filtering • Gaussian
“ KP. Filtering • (iausstan
“ KH. Filtering • Gaussian
••KI. N o Filtering • Gaussian
••KP. N o Filtering - G aussian
‘•K H . N o Filtering - Gaussian

°0 100 200 600 1200
Snooped T ext L ength (in ch arac te rs)

(c)
” R ” V erifier

0.8
K 0.6
W 0.4

0.2

°0 100 200 600 1200
Snooped T ext Length (in ch arac te rs)

(d)

F ig u re B .3 : Comparison of attack EERs using attack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lots a and b correspond to M = 120, p lots c and d
correspond to M = 150.

— K l. Filtering + Mm. Frequency
“ “ KP. Filtering * Min. Frequency
“ “ KH. Filtering - Mm Frequency
"••K l. N o Filtering • Mm Frequence
• ••K P . N o Filtering • Min Frequency
•••K H . No Filtering * Min Frequency

l
0.8 <£*•*“
0.6
0.4

68

"R ” Verifier
1

0.8
*0.6
-0.4

0.2

“ “ Kl. Filtering ' Gaus\i;in
•“ KP Filienng - Gaussian
““ KH I illcnng Gaussian
“ •K i. N o Filleting - Gaussian
• ••K P N o i illermu • Gaussian
■■•KH. N o Filtering - Gans-.inr»

°o

i

100 200 600
Snooped T ext L ength (in ch a rac te rs)

(a)
" R " V erifier

1200

0.8
0.6
0.4

0.2

^ K l . Filtering - Min Frequency
““ KP. Filleting • Mm Frequency
- “ KH. Filtering - Min Frequency,
•••K l. Nn Filtering - Mm Frequence
•■•KP. N o Filtering * Min I requency
•••K H . No Filtenng - Mm Frequency

°o 100 200 600 1200
Snooped T ext Length (in ch a rac te rs)

(b)
»*r »* V erifie r

■“ Kl. Filtering • Gaussian
— KP. Filtering • Gaussian
“ “ KH. Filtenng + G aussian
• ••K l. No Filtering • Gaussian

’ •••K P . N o Filtenng • Gaussian
: ••■KH. N o Filtenng • G aussian

100 200 600
Snooped T ext Length (in ch arac te rs)

1200

(c)
"R ” V erifier

0.8

0.6

0.4

0.2

°0 100

“ KI. Filtenng — Min. Frequency
“ KP. Filtenng * Mm Frequency
“ KH. Filtering - Min. Frequency
’•K I, No Filtenng • Min Frequency
••KP. No Filtenng t Min. Frequency
••KH. N o F iltering - Min Frequency

600 1200
Snooped Text L eng th (in ch arac te rs)

(d)

F ig u re B .4 : Comparison of attack EERs using attack configurations 1—12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots a and b correspond to AI = 300, plots c and d
correspond to M = 350.

69

0.2

’R" Verifier

• ~ K I . i iitc r.n g OjusM an
" “ KP. Filtering <_t;nosian
^ K H . FitTofuiL - (’laii'.sian
•••K l. N i' Filtering ! (jau\s»an
•••K P . N o Filtering • (lau^aian
•**KH No Filtering -< iausstan

°0 100 200 600 1200
Snooped T ext Length (in ch a rac te rs)

(a)
"R " V erifier

0.8
■—Kl. I altering • Min Frequents

(0,6" —“ K l\ Filtering * Mitt FrequencyOS
— K i. N o Tillering • Mm Frequency
- “ KH. Filtering • Min Frequency

0.4' ’•••K P . N o Filtenng • Min Frcqucr
. • ••K H . N o f il te ring • Mtn Frequency

0.2

°0 100 200 600 1200
Snooped Text Length (in ch arac te rs)

(b)

F ig u re B .5 : Com parison of a ttack EERs using a ttack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for "R.” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lots correspond to M = 500.

70

"S" Verifier
" K l. F ik c rn g - G aussian

0.8 ■KH. I- ihenng • tra iissian
■Kl. N o filtering • Gaussi,
KP. N o Filtering • G aiisv

“ 0.4

0.2

12000 100 200 600
Snooped Text Length (in c h a ra c te rs)

(a)
"S " V erifier

°0

— KI. Filtering - Mm. Frequency -
“ KP. Filtering < M tn Frequency
“ " K I I . F iltering - Min Frequency
• " K I . N o Filtering Mm Frequency
•••K i’. N o Filtering • Mui Frequency
* "K H , No Filtering ♦ Mm. Frequency

100 200 600
Snooped Text Length (in ch a ra c te rs)

(b)
"S ” V erifier

1200

0,

“ ■K i. F iltenng * Gaussian
“ KP. Filtering • Gaussian
“ KH. F iltering - G aussian
“ ■KI. N o Filtering • G aussian
••■KP. N o Filtering - G aussian

—— •••K II. N o Filtering • G aussian

0 100 200 600
Snooped Text Length (in ch a ra c te rs)

(C)
"S" V erifier

1200

H t w i i i H f ^ K I . Filtering - M in Frequency- ■

— KP. Filtering - M in Frequency
“ “ KII. F iltering - Min. Frequency
•••K I. N o Filtering - Min Frequency
•••K P . N o Filtering • Min Frequency
•••K H . N o Filtering • Min Frequency

100 200 600 1200
Snooped Text L ength (in ch a ra c te rs)

(d)

F ig u re B .6 : Com parison of a ttack EERs using a ttack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 40, plots c and d
correspond to M = 60.

71

"S" Verifier
Kl. 1 iltcnng G a tiw a n
KP. Iillcn n g • Cijussiun
KH. 1 illcruig G aussian
K!. N o Filtering - Gaussi;
KP. N o 1 ihcrmg G auss
K H . N o 1 iltenng • G aussian

100 200 600
Snooped T ext Length (in c h a ra c te rs)

1200

(a)
"S" V erifier

0 . 6 - . .

°0

— KI. Filtering - Min Frequency
""“ KP. F iltering Min Frcqucncv
"“ KH. Tillering - Mm Frequency
•■■Kl. No Filtenng * Mm I requencs
■••KP. N o F iltenng Min Frequency
•■•KH. N o Filtering • Mm Frequency

100 200 600
Snooped T ext Length (in c h a ra c te rs)

(b)
”S" V erifier

1200

“ *KI. F iltering + G aussian
““ KP. F ilicnng -G aussian
“ "K II . Filtering G aussian
**"K1. N o Filtering - G aussian
•••K P . N o Filtering • G aussian

KH. N o Filtering - G aussian

0.2-

100 200 600
Snooped T ext Length (in ch a ra c te rs)

(c)
"S " V erifier

1200

0.8
0.6

Kl. Filtering * Min Frequency 1
KP. Filtering * Min. Frequency
KH, F iltering - Min Frequvnev
KI. N o Filtering • Min Frequency
KP. N o Filtering • Min Frequency
KH. N o Filtering • Mm. Frequency

100 200 600
Snooped Text Length (in ch a ra c te rs)

1200

(d)

F ig u re B .7 : Com parison of a ttack EERs using a ttack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 80, plots c and d
correspond to M = 100.

72

"S" Verifier
“ “ Kl. filtcrm g • G uuxmuii
^ K J \ Filtering G:iu>sian

0.8 ■KII Filtering - G a u w a n
“K l, N o Filtering • G aussian
■Ki*. N o I ilienng Gauv»ian0.6

0.2

°0 100 200 600 1200
Snooped T ext Length (in c h a rac te rs)

(a)
"S " V erifier

1------------------------- ■------------------------- i

■KI. F iltenng - Mm Frequency
■KP, Filtering Mm Frequency
•KII. F iltenng • Mtn Frequency

0.2 — Kl. No Filtering ’ Min Frequency
— KP. N o Filtering * Min. Frequency
— KH. N o Filtering • Min Frequency

0 100 200 600 1200
Snooped T ext Length (in ch a ra c te rs)

(b)
" S ” V erifier

— Kl. F iltenng • G aussian
““ KP. F iltering ■ Gaussian

■KH. Filtering + G aussian
■Kl. N o Filtenng * G aussian
•KP. N o Filtering + G aussian
•KH. N o Filtering • G aussian

0.2-

°0 100 200 600 1200
Snooped T ext Length (in c h a rac te rs)

(C)
"S " V erifier

1

'"•••"•■•“’•KiSiiatitu.._
■KI. Filtering - M in Frequency
•KP. Filtering — M in Frcqucncv
•KH. F iltenng • Mtn. Frequency

0.2 ■“•KI. N o Filtering • Mui. Frequency
•••K P. N o Filtering - Mm Frequency
•••K H . N o Filtering - Min. Frequency

0 100 200 600 1200
Snooped Text Length (in ch a ra c te rs)

(d)

F ig u re B .8 : Comparison of attack EERs using a ttack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lots a and b correspond to M = 120, p lo ts c and d
correspond to M = 150.

73

"S" Verifier
“ ~KI. I ihenng (ii

0.8 “ “ KH. F ihcnnu - Oauv&iari
•**KI. N o F iltennir • G aussian
•••K P. No Iilionng • GaussianX 0.6

0.2

°0 100 200 600
Snooped Text Length (in ch arac te rs)

(a)
” SM V erifier

1200

“ “ KI F ihenng +• Min Frequency *
“ “ KI*. Filtering • Min Frequency
“ KH. Filtering • Min Frequency
•••K l. N o tille rin g • Mm Frequency
••♦KP. No Filtering • Min. Frequency
•••K H . N o Filtenng - Mm. Frequence

100 200 600 1200
Snooped t ext Length (in ch arac te rs)

(b)
"S " V erifier

■“ Kl. Filtering - Gaussian
“ “ KP, Filtering Gaussian
“ “ KH. Filtering G aussian
•••K I. N o Filtenng - G aussian
•••K P . N o Filtering - G aussian j
•••K H . N o Fillenntt - G aussian;

100 200 600
Snooped T ext Length (in ch arac te rs)

(c)
" S " V erifier

1200

s*toi na*8SSS“ ‘: : **"‘*

°0

■ •■ ■ •H illiu .*
Kl. Filtering ' Min Frequency

“ KP. Filtenng - Min Frequency
■“ KII. Filtering - Mm F requents
•••K l. N o Filtering - Mm Frcqucncv
•••K P . N o Filtering - Mm Frcqucncv
•••K II. N o Filtenng - Min Frcqucncv

100 200 600 1200
Snooped Text L ength (in charac te rs)

(d)

F ig u re B .9 : Comparison of a ttack EERs using attack configurations 1—12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lots a and b correspond to M = 300, p lots c and d
correspond to M = 350.

74

"S " V erifier

— KI Fihcfine • G.-ni-si.'.n

0.8
‘K I1. N o f ilierjnc fin
•KH. S o ! ilicnng < <i0.6

0.2

°0 100 200 600 1200
Snooped Text Length (in ch a rac te rs)

(a)
"S " V erifier

I-- i

‘Kl. Filtering - Min Frequency
— KP. F iltenng - Mm Frequence
■“ •K H . Filtering * Min Frequenc\

0 . 2 ••■KI. N o Tillering • Mm Frequence
- —KP. N o Filtering - Mm Frequence
•••K H . N o Filtering - Min Frequence

0 100 200 600 1200
Snooped Text Length (in ch a rac te rs)

(b)

F ig u re B .10 : Com parison of a ttack EE R s using a ttack configurations 1-12 (plots
a) and attack configurations 13-24 (plots b) for “S” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

75

"A" Verifier

1 q ^ — Kl. Filtering - Guussian
“ *KP. Filtering G auvuan

KH. Filtering * Gaussian
0 . 2 " •**KI. N'i> Filtenng * Gaussuin

*-*KP. N o Filtering • Gaussian
•••K H . No Filtering • Gaussian

0 1 0 0 2 0 0 6 0 0
Snooped Text l ength (in ch a ra c te rs)

1200

(a)
"A ” V erifie r

•■“ KI. F iltering ' Min Frcqucncv ;
■"■KP. Filtering - Min rrequencv
— •K II, Filtering - M m Frequency
• ••K l. N o Filtering - Min Frequence
• ••K P . N o Filleting - Mm Frequents
• ••K H . N o Filtenng - Min Frequency

100 200 600 1200
Snooped Text Length (in ch a ra c te rs)

(b)
"A " V erifier

°0

— K l. Filtern
•"■ K P. Filtenng • Gaussian
■“ K H . Filtering ♦ Gaussian
• ••K I. N o Filtering t Gaussian
• ••K P . N o Filtering ♦ Gaussian
• ••K H . N o Filtenng • Gaussian

100 200 600
Snooped Text Length (in ch a ra c te rs)

1200

(c)
"A " V erifie r

°0

..

" K l . Filtering • Min. Frcqucncv
■"•KP. Filtcrine - Min Frcqucncv
^ “ K H . F iltering ♦ Vim. Frequence
■■•Kl. N o F iltenng • Min. Frcqucncv
•••K P . N o Filtenng • Min Frcqucncv
••■KH. N o Filtering - Min Frequency

100 200 600
Snooped Text Length (in ch a ra c te rs)

1200

(d)

F ig u re B . l l : Com parison of attack EERs using a ttack configurations 1-12 (plots
a, c,) and a ttack configurations 13-24 (plots b, d) for “A” verifier. Refer th e Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M — 40, plots c and d
correspond to M = 60.

76

"A " Verifier

0.2

°0

— Kl. I itii
“ •KP. tille rin g • Guussian
-■"KH Filtering - Gaussian
•“•KI. N o Filtering • Gaussian
•••K P . N o Filtering • Gaussian
• ••K H . N o Filtering C'raussian

100 200 600
Snooped T ext Length (in ch a ra c te rs)

1200

(a)
"A*’ V erifier

0

^ K I , Filtering • Min Frequency
•“ KP. F iltering * Mm [requeues
■“ KH. F iltenng - Min Frequency
•••K I. N o Filtenng • Min Frequency
•••K P . N o Filtering - Min Frequency
*“*KH. N o Filtering ♦ Min. Frequency

o 100 200 600 1200
Snooped T ext Length (in ch a ra c te rs)

(b)
” A M V erifier

0.2-

°0

^ K I . Filtering • G aussian
~ K P . Filtering - Gaussian
^"K E f, Filtenng - Gaussian
•••K l, N o Filtering * Gaussian
• ••K P , N o Filtering > Gaussian
•**KH. N o Filtering - Gaussian

1(H) 200 600
Snooped T ext Length (in c h a rac te rs)

1200

(c)
"A ” V erifier

°0

■“ Kl. Filtering 4 M in Frequency
“ ■KP. Filtering - Mm. Frequency
“ ■KH. F iltering • Mtn Frequency
•••K l. N o Filtering - Min. Frequency
***KP. N o Filtering (Min Frequency
*“*KH. N o F iltenng • Mm. Frequent)

100 200 600
Snooped Text Length (in ch a rac te rs)

1200

(d)

F ig u re B .1 2 : Comparison of a tta ck EER s using a ttack configurations 1-12 (plots
a, c,) and a ttack configurations 13-24 (plots b, d) for “A” verifier. Refer th e Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. P lots a and b correspond to M = 80, plots c and d
correspond to M = 100.

77

"A" Verifier

x 0 6

0.4

0.2

^ ” KI. tillering • (itiusMoil **“• * • • • • • • .“*■
“ " K P . Filtering - Gaussian
“ “ KII. I illermg Gaussian
• • ‘ KI. N o Filteruiu Gaussian
•••K P. N o Filtering Gaussian
•••K H N o Filtering - Gaussian

100 200 600
Snooped Text Length (in ch a rac te rs)

(a)
"A ” V erifier

1200

“ " K l . Filtering - Min Frequency
—“ KP Filtering - Mm Frequency
“ " K H . Filtering * Min Frequency
•••K I. N o Filtering - Min Frequency
•**KP. N o Filtering - Mitt Frequency
•••K H N o Filtering - Min Frequency

100 200 600 1200
Snooped Text Length (in ch a rac te rs)

(b)
*AM V erifier

«— K l.F iltc i
" “ K P. Filtering • Gaussian
“ " K H . F iltenng • G aussian
• ••K l. N o F iltenng +• Gaussian
•••K P . N o F iltenng - Gaussian
• ••K H . N o Filtering - Gaussian

100 200 600
Snooped T ext Length (in c h a rac te rs)

1200

(c)
"A ” V erifier

KI. Filtering * M in Frequency
KP. Filtering • Min Frequency

“ " K H . F iltenng - Min Frequency
KI. N o Filtenng * Mtn Frequency
KP. N o F iltenng - Mm. Frequency
’KH. N o Filtenng • M in Frequency

100 200 600
Snooped T ext Length (in ch a rac te rs)

1200

(d)

F ig u re B .1 3 : Comparison of attack EERs using attack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lo ts a and b correspond to M = 120, p lots c and d
correspond to M = 150.

78

"A " Verifier

0.2

“ “ Kl Filtering * Gausvian
Filtering - Oaususui

“ “ KH. Filtering - Gaus.viar
•••K l. N o I illcnng (iaussian
■••KP. No f iltering Gaussian
•••K H . N o F iltering - Gaussian

100 200 600
Snooped T ext Length (in ch a rac te rs)

1200

(a)
"A " V erifier

•Ta'ViAMWwWH
“ “ Kl. Filtering ' Min Frcquencv j
“ “ KP. F iltenng t Mm. i requertev :
■“ K l!. Filtering Min Frcquencv |
•■•KI. No Filtering - Mm Frcqucncv I

: ***KP. N o Filtering - Min Frcqucncv :
[■••KH. No Filtenng * Min. F requents

100 200 600 1200
Snooped T ext Length (in ch arac te rs)

(b)
"A " V erifier

0.8
0.6
0.4

0.2

V

“ Kl. Filtenng ' G aussian
~ “ KP. F iltenng • Gaussian
“ “ K II. Filtering - Gaussian
••■Ki. N o Filtering • Gaussian
***KJ\ N o Filtenng - Gaussian
• " K H . N o Filtenng - Gaussian

100 200 600
Snooped Text Length (in ch a rac te rs)

1200

(c)
■’A ” V erifier

“ “ KI. F iltenng • Min. Frcqucncv
"“ KP, Filtering • Mui Frequence
“ “ KH, Filtering * Min Frcqucncv
•••K I. N o Filtering • Min Frcqucncv
•”*KP. N o Filtering t Mm. Frcqucncv
•••K H . N o F iltering - Mm. PrequeiK v i

100 200 600
Snooped T ext Length (in ch arac te rs)

1200

(d)

F ig u re B .14 : Comparison of attack EERs using attack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lo ts a and b correspond to M = 300, plots c and d
correspond to M = 350.

79

"A " Verifier
1

0.8
. 0.6
1 0.4

0.2

°0

K!. Filtering - Gaussijir
““ KI*. Filtering 1 Gaussian
"“ KH. f ilien rg • G aussian

^ •■ k ! No Filtering - G aussian 1
'■■■KP N o Filtering - G aussian '
J“**K11. No Filtenng • G aussian

100 200 600
Snooped T ext Length (in ch arac te rs)

1200

(a)
"A " V erifier

0.8

”“ K i. Filtering • Mtn. Frequency
“~ K P . Filtering - Min Frequencs
““ KII. Filtering * Min. Frequency
•■•Kl. N o Filtenng * Min Frequency
••■KP N o Filtenng ' Mm Frequency
• ••K II N o Filtenng - Min Frequency

100 200 600 1200
Snooped T ext Length (in ch a rac te rs)

(b)

F ig u re B .15 : Com parison of a ttack E E R s using a ttack configurations 1-12 (plots
a) and a ttack configurations 13-24 (plots b) for “A” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

80

"F" Verifier
1

0.8
* 0.6

“ (1.4

0.2

°0

1
0.8
0.6

0.4

0.2

•— ! ilicrmu (lauiM-in
•■•N o I iltenm: (iau.sM

100 200 600
Snooped Text l.eng th (in ch a rac te rs)

(a)
* ' F " V erifier

1200

°0

^ f i l l c n n g • Mtn frcquciKv
• • “No i tllcnng ' Mtn. frcquencv

100 200 600
Snooped Text Length (in ch a ra c te rs)

1200

(b)
"F" V erifier

0.8

0.6

0.4

0.2

0 100 200 600
Snooped Text Length (in c h a rac te rs)

1200

(c)
"F " V erifie r

1
0.8

0.6

0.4

0.2

•—- ! iltenng • Min. frcquencv
•••N o filtering • Mm frequency

100 200 600
Snooped Text Length (in ch a rac te rs)

1200

(d)

F ig u re B .16 : Com parison of a ttack EERs using a ttack configurations 1-12 (plots
a, c) and attack configurations 13-24 (plots b. d) for “F" verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 40, plots c and d
correspond to M — 60.

81

'F M Verifier
1

0.8

, 0.6

! 0.4

0.2

Fihcnno - ('■nos.-.
• • •N o I lltcftni! - (i;

100 200 600
Snooped Text Length (in ch a ra c te rs)

(a)
" F " V erifie r

1200

1
0.8

0.6

0.4

0.2

■“ Filtering • Min. F requeno
•••N o Filtering • Min F requeues

100 200 600 1200
Snooped Text Length (in ch a rac te rs)

(b)
" F ” V erifier

. A --------

^ F i l t e r in g "-Gaussian

-
•••N o Filtering - G aussian

- -
0 100 200 600

Snooped Text Length (in ch a rac te rs)

(C)
" F " V erifier

1200

I

o.8 / \~
0.6

0.4

0.2

0 100 200 600
Snooped Text Length (in ch a rac te rs)

"F ilte rin g - Mm Frequence
••N o Filtering + Min. Frequency

1200

(d)

F ig u re B .1 7 : Com parison of a ttack EER s using a ttack configurations 1-12 (plots
a, c) and a ttack configurations 13-24 (plots b, d) for “F :: verifier. Refer the Table
4.6 to see the param eter values used in each configuration. The solid lines represent
attack EERs when the outliers are filtered and the dashed lines represent attack EERs
when the outliers are not filtered. Plots a and b correspond to M = 80, plots c and d
correspond to M = 100.

82

"F " Verifier

. 0.6

1 0.4

0.2

- l i lU n n g ' Gaussian
■•No hiltcrim: Gaussian

l-
o,-
0.6

0.4

0.2

100 200 600
Snooped Text Length (in ch a ra c te rs)

(a)
" F " V erifie r

“ Filtering - Min Frequency
••N o Filtering • Mm_ Frcqucncv

1200

100 200 600
Snooped Text Length (in ch a ra c te rs)

1200

(b)
"F " V erifier

1
0.8

0.6

0.4

0.2

°0

1
0.8

0.6

0.4

0.2

°0

"F ilte r in g • G aussian J
“ N o Filtering * G aussian]

100 200 600
Snooped T ext Length (in c h a rac te rs)

(c)
” F ” V erifier

1200

■“ Filtering - Min. Frequency
•••N o Filtering < Min. Frequency

100 200 600
Snooped Text Length (in c h a rac te rs)

1200

(d)

F ig u re B .1 8 : Comparison of attack EERs using attack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “F ” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lo ts a and b correspond to M = 120, p lo ts c and d
correspond to M = 150.

83

" F " V erifier

0.8

~ 0.6

0.4

0.2

“ filtering • G aussian
■•No Filtering • fiau ss ia

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

(a)
" I " V erifier

1200

1
0.8

, 0.6

1 0.4

0.2

“ •F iltering • Mm Frequency
•••N o Filtering - M in. Frcqucncv

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

1200

(b)
'F " V erifier

Filtering - G aussian
N o Filtering • G aussian

0.4

0.2

V 100 200 600
Snooped T ext Length (in ch a ra c te rs)

(c)
" F " V erifier

1200

— Filtering - M in Frequency
•••N o F iltenng - Mm. Frequency

0.2

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

1200

(d)

F ig u re B .19 : Comparison of attack EERs using attack configurations 1-12 (plots a,
c) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table 4.6 to
see the param eter values used in each configuration. T he solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. P lo ts a and b correspond to M = 300, p lots c and d
correspond to M = 350.

84

*K" V erifier

:1icrmt> (iau^ssun
— N o I ilnm ng (

' 0.4

0.2

0
0 100 200 600 1200

Snooped Text Length (in ch a rac te rs)

(a)
" F " V erifier

■ww i— b iiij i h o n . ’. i m n U . . . I I IH1H1
0.8

0.6
“T illering • Min Trequene\

r . i — No Tillering • Min. FrequeiK \
0.4

0.2

°0 100 200 600 1200
Snooped Text Length (in ch a rac te rs)

(b)

F ig u re B .20 : Com parison of attack E E R s using a ttack configurations 1—12 (plots
a) and attack configurations 13-24 (plots b) for “F ” verifier. Refer the Table 4.G to
see the param eter values used in each configuration. The solid lines represent attack
EERs when the outliers are filtered and the dashed lines represent attack EERs when
the outliers are not filtered. Plots correspond to M = 500.

B IB L IO G R A P H Y

[1] D. Gunct.ti and C. P icardi, '‘Keystroke analysis of free te x t,’- ACM Trans. Inf.
Syst. Secur., vol. 8. no. 3. pp. 312-347, Aug. 2005.

[2] F. Monrose and A. Rubin, “A uthentication via keystroke dynam ics,” in Proc. of
the 4th ACM Conf. on Com puter and Commun. Security, 1997, pp. 48-56.

[3] P. Dowland, H. Singh, and S. Furnell, “A prelim inary investigation of user
au thentication using continuous keystroke analysis,” in Proc. of the 8th IF IP
Conf. on Infor. Security Mgmt. and Small Sys. Security, Nevada, USA, 2001.

[4] T. Shimshon, R. Moskovitch, L. Rokach, and Y. Elovici, “Continuous verification
using keystroke dynam ics,” in Intl. Conf. on C om putational Intel, and Security,
Los Alarnitos, CA, 2010, pp. 411-415.

[5] Niinuma, K., Unsang Park, and Jain, A.K., “Soft Biometric Traits for Continuous
User A uthentication ,” in IE EE Trans, on Inform ation Forensics and Security,
2010, vol. 5, no. 4, pp. 771-780.

[6] R. S. Zack, C. C. T appert, and S.-H. C ha, “Perform ance of a long-tex tinpu t
keystroke biometric authentication system using an improved knearest-neighbor
classification m ethod,” in 2010 Fourth IEEE Intl. Conf. on Theory Applications
and Systems (BTAS), 2010, pp. 1-6.

[7] A. Messerman, T. M ustafic, S. A. Cam tepe, and S. Albayrak, “Continuous and
non-intrusive identity verification in real-tim e environm ents based on free-text
keystroke dynam ics,” in IEEE Int. Jo int Conf. on Biometrics, 2011.

[8] Yong Sheng, Vir V. Phoha, and S. M. Rovnyak, ”A parallel decision tree-based
m ethod for user authentication based on keystroke patterns,” in IEEE Trans, on
SMC Part B: Cybernetics, vol. 35, no. 4, 2005, pp. 826-833.

[9] E. Yu and S. Cho, “GA-SVM W rapper A pproach for Feature Subset Selection
in Keystroke Dynamics Identity Verification,” in Intl. Joint Conf. on Neu. Nets,
2003, pp. 2253-2257.

85

86

[10] B. Francesco, D. G unetti, and C. Picardi. "User authentication through keystroke
dynamics." in ACM Trans. Inf. Syst. Secur. 2002. vol. 5. no. 4. pp. 367-397.

[11] D. Hosseinzade and S. K rishnan. "G aussian M ixture M odeling of K eystroke
P a tte rn s for B iom etric Applications." in IE E E Trans, on System s. Man. and
Cybernetics P art C ‘, 2008, vol. 38. no. 6. pp. 816-826.

[12] C. Shen. Z. Cai, X. Guan, and J. Cai, “A hypo-optimum feature selection strategy
for mouse dynamics in continuous identity au then tication and m onitoring." in
IEEE Intl. Conf. on Infor. Theory and Infor. Secur, 2010, pp. 349-353.

[13] M. P usara and C.E. Brodley, “User R e-A uthentication via Mouse M ovements,”
in Proc. ACM W orkshop Visualization and D ata Mining for C om puter Security
(VizSec/DM SEC 04), 2004. pp. 1-8.

[14] Ahmed, A.A.E. and Traore, I., “A New Biom etric Technology Based on Mouse
Dynamics,” in IEEE Trans, on Dependable and Secure Com puting, 2007, vol. 4,
no. 3, pp. 165-179.

[15] Y. C. Yang, “Web user behavioral profiling for user identification,” in Decision
Support Sys. 49, 3, 2010, pp. 261-271.

[16] R. Gaines, W. Lisowski, S. Press, and N. Shapiro, “Authentication by keystroke
tim ing: Some prelim inary results,” Tech. Rep. R-256-NSF, R and corporation,
Santa Monica, CA. May, 1980.

[17] D. Umphress and G. W illiams, “Identity verification th rough keyboard char
acteristics,” In ternational Journal of M an-M achine Studies 23, 3, pp. 263-273,
1985.

[18] Sendlnput [Online]. Available: msdn.microsoft.com.

[19] xsendkeycode [Online]. Available: h ttp ://m anpages.ubuntu .com /m anpages/gutsy
/m an8/xsendkeycode. 8.html.

[20] U. Uludag and A. K. Jain , “A ttacks on biom etric systems: a case study in
fingerprints,” in SPIE Security. Steganography and W atermarking of M ultimedia
Contents VI, vol. 5306, January 2004, pp. 622-633.

http://manpages.ubuntu.com/manpages/gutsy

87

[21] R. Maxion and K. Killourhv. "Keystroke biometrics with num ber-pad input." in
2010 IE E E /IF IP International Conference on Dependable Systems and Networks
(DSN). 28 2010-july 1 2010. pp. 201-210.

[22] S. Joshi. "Naive bayes and sim ilarity based m ethods for identifying com puter
users using keystroke p a tte rn s .” Ph.D . d issertation . Louisiana Tech University,
Ruston, Louisiana, 2009.

[23] M. Nisenson, I. Yariv, R. El-Yaniv, and R. Meir, "Towards Behaviornetric Security
Systems: Learning to Identify a T ypist,” in Knowledge Discovery in Databases:
PK D D 2003, volume 2838 of LNCS, pages 363374. 2003.

[24] K. A. R ahm an, K. S. Balagani, and V. V. Phoha, “M aking im postor pass
ra tes meaningless: A case of snoop-forge-replay a ttack on continuous cyber-
behavioral verification w ith keystrokes,” in 2011 IE EE C om puter Vision and
P attern Recognition Workshops (CVPRW), Colorado, USA, June 2011, pp. 31-38.

[25] L. C. F. Araujo, L. H. R. Sucupira, M. Lizarraga, L. Ling, and J. B. T. Yabu-uti,
“User authentication through typing biometrics features,” IEEE Trans, on Signal
Processing, vol. 53, pp. 851-855, 2005.

[26] K. K illourhy and R. M axion, “W hy did my detector do that?!: P redicting
keystroke-dynamics error ra tes,” in Recent Adv. in Intrusion Detection, Canada,
2010, pp. 256276.

[27] D. Stefan, X. Shu, and D. Yao, “R obustness of keystroke-dynam ics based
biom etrics against synthetic forgeries,” C om puters and Security, vol. 31, no.
1, pp. 109-121, February 2012.

[28] A. Serwadda, V. V. Phoha, and A. Kiremire, “Using global knowledge of users
typing tra its to a ttack keystroke biom etrics tem pla tes ,” in Proceedings of the
th irteen th ACM W orkshop on M ultimedia and Security, USA, 2011, pp. 51-60.

[29] L. Ballard, D. Lopresti, and F. Monrose, “Forgery quality and its implications for
behavioral biometric security,” IEEE Trans, on Systems, Man, and Cybernetics-
P a rt B, vol. 37, no. 5, pp. 1107-1118, 2007.

[30] D. Gafurov, E. Snekkenes, and P. Bours, “Spoof attacks on gait au thentication
system ,” IE E E Trans, on Inform ation Forensics and Security, vol. 2, no. 3, pp.
491-502, 2007.

88

[31] Anti-Phishing Working Group. ''Phishing Activity Trends R eport for the M onth
of February. 2007" \vw\v.antiphishing.org/reports/apvvg report february 2007.pdf,
February 2007.

[32] Mark Davies, “Word frequency d a ta from the Corpus of Contem porary American
English (COCA)," h ttp ://w w w .w ordfrequency.info . Last accessed on 15 May
2011.. February 2008.

[33] E. Fry, “Developing a Word List.,” Elementary English, 34 (7), pp. 456-458, 2007.

[34] [Online], Available: w w w .vrnw are.com /products/vsphere.

[35] [Online]. Available: h ttp ://research .cs.w isc .edu /condor.

[36] [Online], Available: w w w .ushistory .org /declaration/docum ent/.

[37] [Online], Available: w w w .cs.virginia.edu/ robins/Y ou And YourResearch.htm l.

[38] Charles Dickens, “David Copperfield,” Penguin Classics, 1850.

[39] Leslie Stephen, “Samuel Johnson,’’ H arper and Brothers, 1879.

[40] Henry David Thoreau, “Leslie S tephen,” Houghton, Mifflin, and Company, 1854.

[41] V. P hoha and S. Joshi, “M ethods of identifying users based on tex t entered on
keyboard,” P aten t Pending, 2010.

[42] Y. Wang, T. Tan, and A. Jain , “Combining face and iris biom etrics for identity
verification," in Proceedings of Fourth International Conference on AVBPA, 2003,
pp. 805-813.

[43] A. Jain , K. N andakum ar, and A. Ross, “Score norm alization in m ultim odal
biometric system s,” P a tte rn Recognition, vol. 38, no. 12, pp. 2270-2285, 2005.

[44] D. R. Ridley and M. Lively, “English le tte r frequencies and the ir applications:
P art iidigraph frequencies,” Psychological R eports, vol. 95, no. 3, pp. 787-794,
July 2004.

http://www.wordfrequency.info
http://www.vrnware.com/products/vsphere
http://research.cs.wisc.edu/condor
http://www.ushistory.org/declaration/document/
http://www.cs.virginia.edu/

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 2013

	Snoop-forge-replay attack on continuous verification with keystrokes
	Khandaker Abir Rahman

	00001.tif

