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A B S T R A C T

We present a new attack  called the snoop-forge-replay attack on the keystroke- 

based continuous verification systems. We perform ed th e  attacks 011 two levels -  1) 

feature-level and 2) sample-level.

(1) Feature-level attack targets specific keystroke-based continuous verification 

m ethod or system. In feature-level attacks, we performed a series of experiments using 

keystroke da ta  from 50 users who typed approxim ately 1200 to 2300 keystrokes of free 

text during three different periods. The experiments consisted of two parts. In the first 

part, we conducted zero-effort verification experiments with two verifiers ( “R” and "S”) 

and obtained Equal Error Rates (EERs) between 10% and 15% under various verifier 

configurations. In the second part, we replayed 10,000 forged im postor a ttem pts per 

user and dem onstrated how the  zero-effort im postor pass rates becam e meaningless 

when im postor a ttem pts were created using stolen keystroke tim ing information.

(2) Sample-level attack is not specific* to any particular keystroke-based contin­

uous verification method or system. It can be launched w ith easily available keyloggers 

and application program m ing interfaces (APIs) for keystroke synthesis. O ur results 

from 2640 experiments show th a t (i) the snoop-forge-replay attacks achieve alarmingly 

high error ra tes com pared to  zero-effort im postor attacks, which have been the  de 

facto standard for evaluating keystroke-based continuous verification systems; (ii) four 

state-of-the-art verification m ethods, three types of keystroke latencies, and eleven



inatd iing-pair settings (-a  key param eter in continuous verification w ith  keystrokes) 

that we examined in this dissertation were susceptible to the attack; (iii) the attack is 

effective' even when as low as 20 to 100 keystrokes were snooped to  create forgeries.

In light of our results, we question the security offered by the current keystroke- 

based continuous verification systems. Additionally, in our experiments, we harnessed 

virtualization technology to generate thousands of keystroke forgeries w ithin a short 

tim e span. We point out th a t  v irtualization  setup  such as the  one used in our 

experiments can also be exploited by an attacker to  scale and speed up the attack.
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C H A PTER  1

IN T R O D U C T IO N

In login tim e verification, the  iden tity  of the user is verified uonce" before 

granting access to  the  com puter. A draw back with login tim e verification is th a t 

an unauthorized user can gain access to  the  com puter by replacing a  legitim ate 

user who is logged in, either through coercion (i.e., forcefully replacing the  user) or 

when the logged-in user leaves the com puter w ithout logging out. This vulnerability 

of login tim e verification is a serious security  risk because, after gaining access, the 

unauthorized user can perform a broad range of malicious activities including installing 

malware, spreading viruses, and (or) exfiltrating/destroying sensitive data. To deter 

this kind of unauthorized access, several studies (e.g., [1 -  5] proposed biometric based 

m ethods to  continuously verify the  identity  of a  logged-in user. A subset of these 

studies used cyber-behavioral tra its (e.g., keystroke dynamics [1 -  4], [6 -  11]; mouse 

dynam ics [12 14]; and web usage p a tte rn s  [15]) to continuously verify users. For

continuous verification, cyber-behavioral tra its  are appealing because they. 1) are non- 

intrusive-they  emerge naturally from a user’s interaction with the computer and user 

intervention is not required when collecting them ; 2) provide broader coverage- th e y  

can be collected on almost all desktops, laptops, and mobile devices without requiring 

any special hardware (e.g.. fingerprint readers, cameras, or biometric scanners); and 3)

1



arc available even when the user is physically away from the computer and is accessing 

it remotely.

Among the  cyber-behavioral tra its , m ajority  of the  studies used keystroke 

p a tte rn s  for continuous verification. Two factors m otivate the  use of keystroke 

patterns for continuous verification: 1) typing is one of the most common activities a 

user perform s on the com puter and therefore, one could expect a  reasonable supply 

of keystrokes for perform ing continuous verification and 2) studies {e.g., [16, 17]) 

dem onstrated tha t an individual’s typing behavior can be used as a unique “signature” 

t.o identify the individual.

Almost all the  studies in continuous user verification w ith keystrokes have 

focused on developing m ethods to  im prove verification perform ance. The focus of 

this research is different. We present a new a ttack  called the “snoop-forge-replay” 

a ttack  on continuous user verification w ith  keystrokes. The a ttack  is executed in 

th ree steps: 1) snoop (steal) a  victim  user’s keystroke tim ing inform ation using a 

keylogger, 2) forge a  typing sam ple using the  keystroke tim ing inform ation stolen 

from the  victim user, and 3) replay the forged typing sample in such a way th a t  the 

continuous verification system thinks th a t it is the victim user who is typing. The goal 

of the attack is to submit forged typing samples to  the verifier so th a t an attacker can 

access the com puter w ithout being detected. Salient features of the  a ttack  follow.

Effective: th rough a  series of experim ents conducted using keystroke d a ta  

from 350 users (150 genuine and 200 im postors), four state-of-the-art continuous 

verification methods, and tem plates built w ith three types of keystroke latencies, we 

show th a t the snoop-forge-replay attacks have alarmingly high error rates com pared
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to the error rates of zero-effort1 impostor attacks typically used to evaluate keystroke- 

based continuous verification systems.

Few words become deadly: the attack is surprisingly effective even when a 

small amount of snooped latencies are used to  build forgeries. W ith 20 characters (few 

words of tex t) to 100 characters (less than  two lines of texts typed in a typical email 

textbox) of snooped information, we achieved high error rates against state-of-the-art 

verification systems. (See Figure 4.7, Page 53 for the error rates of snoop-forge-replay 

attacks launched with short snooped text).

Legacy keystroke sam ples rem ain  a threat: because th e  snoop-forge- 

replay attack uses forgeries built with stolen latencies of a user, the high attack success 

rates can seem to be obvious and expected. However, we snoop the legacy keystrokes, 

which are keystrokes of a  user captured approxim ately  six months  before collecting 

h is/her training (enrollment) samples. Given th a t behavioral tra its  such as keystroke 

latencies have high intra-user variabilities and can change over tim e, it is interesting 

to note th a t our attack  achieves high success ra tes when forgeries are created using 

legacy keystrokes.

Speed and scalability: by using short stolen samples, the  a ttack  can be 

launched quickly as the attacker does not have to wait long to  collect victim s’ keystrokes. 

By exploiting virtualization, we show th a t thousands of a ttacks can be launched to

simultaneously attack hundreds of users in a short tim e span. Using a  v irtualization

Bn a zero-effort impostor attack, the “natural" typing patterns of one user are used as im postor 
a ttem pts against another and the im postor does not deliberately try  to mimic a victim  user.
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setup, we created on average 5594.98 to 299.38 attacks per user in 24 hours. In Table

4.7 on Page 48. we give the average number of attacks per user.

Three factors make the a ttack  feasible: 1) M any hardw are and software 

keyloggers th a t can steal an individual’s keystroke timings are openly available on the 

Internet for different platform s (e.g., MS W indows, G N U /Linux). 2) It is possible 

to develop a "keystroke em ulator” to  replay forgeries. A keystroke em ulator is a 

software program that generates synthetic key press and release events using APIs like 

S end lnpu t [18] for MS Windows or programs like xsendkeycode [19] for X Windows 

system. 3) In sample-level a ttack , the  a ttacker deceives a verification system  by 

presenting fake key press and release events to  the keystroke sensor. To launch 

the attack , the  attacker does not have to  know the internal specifications of the 

continuous verification system , such as w hat verification algorithm  is being used, 

verifier’s param eter settings, how the tem plates are constructed, and latencies being 

used, all of which can be proprietary information.

Contributions of the dissertation are as follows:

In feature-level attack, we perform ed a  series of experim ents on keystroke 

data  collected from 50 users. We show th a t forgeries created from snooped keystroke 

information have alarmingly high impostor pass rates. Our results show th a t a t verifier 

configurations yielding less than  0.1 zero-effort im postor pass ra tes (at <  0.15 false 

reject rate), the success rates of forgery a ttem p ts  is between 75% and 88%

In sample-level attack, we conducted 2640 a ttack  experiments w ith 24 attack  

configurations, 10 individual and fusion verifier configurations, 11 m atching-pair



settings (24x10x11  =  2040) and achieved as high as 125.5 to 2915.62 percentage 

increase in error rates compared to the error rates with baseline zero-effort im postor 

attacks (see Table 4.9. Page 55 and the discussion in Section 4.2.3. Page 48). Our 

results reveal th a t there is a wide disparity in the error rates achieved w ith the zero- 

effort im postor attacks and the  error rates achieved w ith snoop-forge-replay attacks 

(see plots in Figure 4.4, Page 50).

Implication: The high error rates with snoop-forge-replay a ttack s  raise two 

fundam ental questions: 1) is it secure to use keystrokes to continuously authenticate 

computer users? and 2) how can we redesign keystroke-based continuous authentication 

systems that are resilient to forgery attacks?

We analyzed the  effect of four attack  param eters, i) num ber of snooped 

keystrokes-we experimented with 20, 50, 100, 200, 600, and 1200 snooped keystrokes; 

ii) filtering outliers in the  snooped keystrokes-w e experim ented w ith  and  w ithout 

filtering outliers; iii) G aussian pertu rb a tio n  of snooped lateneies-w e experim ented 

with and w ithout perturbing latencies, and iv) frequency of occurrence of digraphs in 

snooped tex t-w e experim ented w ith 1, 2, and 3 occurrences of digraphs.

Findings: Snooping m ore keystrokes from a v ictim  user does not necessarily 

result in be tter attacks. In fact, our results with two verifiers ( “S” and “A” ) showed 

th a t snooping more keystrokes decreased the pass rates of the attacks. We analyzed 

(in Section 4.2.6, Page 56) why snooping more keystrokes may have adversely effected 

the attack performance. Our results also showed th a t filtering outliers in the snooped 

keystrokes and considering digraphs th a t have occurred a t least twice im proved the
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pass rates of the attack. G aussian pertu rba tion  m ade th e  attack  weak against "S" 

and "A" verifiers and had the least effect on TT and " F ' verifiers.

To generate a sufficient number of snoop-forge-replav attacks for evaluation, we 

emulated the typing activity of a victim user for 24 hours {i.e.. we executed a  keystroke 

emulation program  for 24 hours to generate a sufficient num ber of forgeries for each 

victim). Because we experimented with 150 victim users and 24 attack configurations, 

we would have to run the em ulator for 150 (victims) x 24 (attack configurations) x 

24 hours =  3600 days (or approximately 10 years). To perform emulation a t this scale, 

we set up a virtualization environm ent w ith 150 virtual machines. We dedicated one 

v irtual machine for em ulating a victim . For each a ttack  configuration, we ran  150 

em ulators parallely on 150 virtual machines and reduced the em ulation tim e to  just 

24 days. See Section 3.4, Page 29 for details on the  virtualization environment.

A n  attacker can exploit virtualization: By parallely  running 150 v irtu a l ma­

chines. in 24 hours, we forged thousands of a ttacks against 150 users (see Table 4.7, 

Page 48). The attacker, by exploiting virtualization, can further reduce the  tim e to 

forge the same number of attacks, say from 6 to 24 hours, by quadrupling the  number 

of v irtual machines. By increasing the num ber of v irtual machines, the a ttacker can 

also generate a  huge num ber of forgeries {e.g.. in the o rder of millions) or scale the 

attack  to  victimize thousands of users.

We collected keystroke da ta  from 150 users, who gave their typing samples in 

three phases, over a  period of one year. To our knowledge, this is the  longest tim e 

span d a ta  used in continuous keystroke verification research. Using th is  d a ta , we 

dem onstrate th a t  it is possible to  achieve high a ttack  success ra tes w ith keystrokes
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sam ples stolen six months  before the  tra in ing /enro llm ent samples. Tims, our work 

indicates th a t old stolen keystroke sam ples rem ain a  th rea t and an a ttacker can 

potentially exploit stolen keystrokes to  launch forgery attacks over a prolonged period 

of time.



C H A P T E R  2 

B A C K G R O U N D

2.1 C on tin u ou s V erification  w ith  K ey stro k es

In Figure 2.1. we illustra te  continuous user verification w ith  keystrokes. In 

the train ing phase, keystroke latencies are ex tracted  from the enrollm ent tex t and 

processed, users' keystroke* tem plates (profiles) are created, and a verifier (m atching 

algorithm ) is configured. In the verification phase, keystroke latencies are ex tracted  

from the verification text. A verifier matches the latencies against the user’s tem plate 

to  generate a m atch score. In continuous verification, ex tracting  latencies from 

verification tex t and m atching them  against th e  user’s tem plate  is a continuous 

process. Details follow.

K eystrok e  L atencies: Widely used latencies in th e  literature are: 1) key hold 

latency-is the time between press and release of the same key, 2) key press latency-is 

the tim e between press of a key and press of the next key, and 3) key interval latency-is 

the tim e between the  release of a key and press of the next key. We experim ented 

with key hold, key interval, and key press latencies.

T em plate: A tem plate  stores the  keystroke signatures of a  user. We used 

a 26-by-26 m atrix  as the  tem plate. There are 676 cells in the tem plate. Each cell 

corresponds to an English alphabet pair: aa, ab, ac, • • •, zy, zz. In our experiments,

8
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cl*-

F ig u re  2.1: Overview of continuous verification w ith keystrokes. In th e  train ing 
phase, keystroke latencies are ex tracted  and outliers are removed. Each in the 
tem plate  represents a cell entry  containing the latency values (and  th e ir m ean and 
standard  deviation) of an English digraph. In th e  verification phase, latencies are 
extracted  as the user types the  verification text. A fter obtaining M  m atching pairs, 
the verifier matches the latencies with the tem plate and outputs a score. A verification 
decision is com puted by thresholding the  score. Based on the  decision, the  user 
is either allowed to  continue or an action is taken. T he perforated  box shows the 
continuous verification loop.

when we used key press (or interval) latencies, each cell in the tem p la te  stored key 

press (or interval) latencies of a le tte r pair. For exam ple, with key press latencies, 

if cell “ab” has {(110,90,100), /iab =  100, crab =  10}, it means th a t  the  user (during 

enrolm ent) typed ab thrice w ith 110ms, 90ms, an d  100ms delay betw een the  press 

of a and the  press of b and the  mean delay is 100ms w ith 10ms s tan d a rd  deviation. 

Similarly, if it were key interval latencies, then  110ms, 90ms, and  100ms would be 

the delays between the release of a and the press of b. Unlike key press and interval 

latencies, a key hold latency by definition is associated w ith a le tte r (and not le tter 

pair). Because our tem plate holds only letter pairs, when we used key hold latencies, 

each cell stored the key hold latencies of the first le tter of its letter pair {e.g.. cell “ab” 

stored key hold latencies of a  only when the  nex t le tte r typed is b). O ur tem plate

Training Phase
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L a tencies

T em pla te

E n ro llm e n t Text

Continuous Verification Phase

E x trac t
L a ten c ies
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is homogeneous, m eaning it stores only one type of latencies (i.e.. e ither key hold, 

interval, or press), because the continuous keystroke verifiers used in the dissertation 

are not designed to  operate w ith a tem plate containing m ultiple types of latencies 

(e.g.. a m ixture of both  key hold and interval). Because our tem plate does not store 

information on ’'CAPS LOCK’' key, it does not distinguish between capital and small 

letters (i.e., latencies of ab and AB are stored in th e  same cell “ab” ).

O u tlier  D etectio n : Latency values th a t m arkedly deviate from the m ajority 

of the latency values of a user can distort the typing profile of a user, especially if the 

profile contains statistics sensitive to the outliers (e.g., mean). Outliers can occur, for 

example, when users pause while typing to  compose, recollect, or find inform ation. 

Several studies (e.g., [21, 22]) performed outlier detection and reported perform ance 

gains. Therefore, we also included outlier detection in our experim ents. We used a 

distance based outlier detection m ethod th a t worked well in an earlier work [22]. The 

method performs two steps on each non-empty cell in our 26-by-26 tem plate m atrix-1) 

for each latency value in a cell, count the neighbors, i.e., the num ber of latencies in 

the cell th a t occur w ithin a predefined neighborhood threshold (r ) and 2) a  latency 

value is considered an outlier if the  number of neighbors is less th an  a%  of the  to ta l 

number of latencies in the cell. The distance between a  latency value and its neighbor 

is calculated as the absolute difference in latencies. After performing trial experiments, 

we set r  as 100 and a  as 68%. Additionally, we discarded all la tency values greater 

than  300ms.

Verifier: The m ajority of verifiers proposed in the KD literature are password 

or fixed-text based login time  verifiers, i.e., verification is perform ed once when a
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user enters a password or a predefined tex t of fixed length. However, in continuous 

verification with KD. the text of the  user is unconstrained (i.e.. user is free to  type 

anything) and the verifier should be able to  base its decisions on any keystroke tha t 

the user types.

M a tc h in g  P a irs : Because there  are no constrain ts on w hat a  user types 

during continuous verification, some keystrokes typed  during the verification phase 

may not have reference signatures in the tem plate. For example, if the  user types 

“zen ,” the cell in the  tem plate corresponding to th e  le tte r pair “ze” m ay be em pty 

(i.e., may not contain a latency value). This s itua tion  can arise because the  le tte r 

pair did not occur in the enrolment tex t used for building the template. This problem 

can be resolved by performing verification using le tte r pairs that are common to  the 

tem plate and the verification text. Following [1], we refer to  these common letter pairs 

as matching pairs. In our experiments, the number of matching pairs "‘M ” needed by 

the verifier to  ou tpu t a m atch score is a configurable param eter.

K e y s tro k e  V e rif ic a tio n  L o o p : A verification loop (dotted box in Figure 2.1) 

repeats four steps: 1 ) when the user types, record keystroke events using a keylogger, 2 ) 

extract keystroke latencies from the event tim estam ps and process (e.g., filter outliers), 

3) perform verification after collecting M  m atching pairs from the tex t typed by the 

user and obtain a match score, and 4) ou tput the m atch score or make a verification 

decision by com paring the score against a  threshold (T). In a snoop-forge-replay 

attack, instead of typing text (in Step 1 ), the attacker synthesizes keystrokes with an 

emulator.
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P e r fo rm a n c e  M ea su re s : Impostor Pass Rate (IPR) is the ratio of the number 

of impostor attem pts wrongly accepted as genuine over the  total num ber of im postor 

a ttem p ts. False Reject R ate (FR R ) is the  ratio  of the num ber of genuine a ttem p ts  

wrongly rejected over the total number of genuine attem pts. Equal Error R ate (EER) 

is the error rate at which IPR and FR R  are equal. Detection Error Trade-off (DET) 

curves show how IPR s and FARs vary w ith verification threshold. We evaluated the 

snoop-forge-replay attacks using EERs and DET curves.

2 . 2  R e la te d  R e se a rc h

2 .2 . 1  K e y s tro k e -b a s e d  U se r  A u th e n t ic a t io n  S y s te m s

Here, we briefly discuss related research in continuous authentication with KD. 

Monrose and R ubin in [2] proposed a continuous identification m ethod  (i.e., a  test 

sample was matched against all the users’ tem plates to identify the closest user). D ata  

was collected from 41 users over a period of seven weeks. However, because of errors, 

d a ta  from 31 users was used in the  experim ents. Each user typed from a few given 

phrases and /or sentences of their choice. Participants took part in the typing sessions 

a t their convenience using their own com puters. D etails on sam ple sizes (i.e., the 

number of characters typed by the users for enrolment and testing) is not mentioned. 

A user’s tem plate is comprised of means and standard deviations of key hold and key 

interval latencies. Latencies with values greater than T  standard deviations from their 

m eans were trea ted  as outliers and  discarded from the tem plate. A fter discarding 

outlier latencies, the means and standard  deviations were recomputed. Identification 

was done by m atching a  test sam ple (w ith outliers removed) to  the  tem plates of
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all users using: 1) the Euclidean distance m easure. 2) th e  non-weighted probability  

measure, and 3) the weighted probability. The test sample was identified as belonging 

to the user with the minimum distance or maximum probability value. When free (i.e., 

unstructured) tex t was used for enrolm ent and identification, th e  au thors reported  

very low (between 17.1% and 23.0%) identification accuracies. However, when tex t 

from the  given phrases was used, the  au thors reported  90% identification accuracy 

with weighted probability measure.

Dowland et al. in [3] also proposed a continuous identification m ethod. In 

their method, the users typed free (unconstrained) text for enrolment and verification. 

A user’s tem plate  consisted of the  m eans and s tan d ard  deviations for key press 

latencies. Only those latencies th a t occurred a minimum number of times were used to 

build the  tem plate. Latencies outside 40ms and 750ms range were excluded. During 

identification, a key press latency from th e  te st sam ple was considered valid if its 

value was w ithin T .uj s tandard  deviations from m ean value in th e  tem pla te  (ui is a 

weight factor). T he user w ith the highest num ber of valid key press latencies was 

considered as the owner of a given test sample. A total of 10 users participated in the 

d a ta  collection, b u t only four users who gave a large number of samples were used in 

the experiments. Dowland et al. in [3] reported th a t the best identification accuracy 

of their method was 50%. In [3], the authors improved this method and reported close 

to  60% accuracy.

Nisenson et al. in [23] proposed a  continuous verification m ethod. In the ir 

m ethod, each user was trea ted  as an em itter of discrete symbols, i.e., the user em its 

a sequence of key press events, key release events, and tim e differentials, which are
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m apped to a finite symbol set. The tem plate takes the form of a weighted phase tree 

built using the Lempel-Ziv universal prediction algorithm on a user's symbol sequences. 

Verification score was determ ined by calculating the  conditional p robability  th a t  a 

given sequence of sym bols originated from a user's  phase tree. A user was verified 

as genuine if the  probability  estim ate of the  h is /h e r  symbol sequence was greater 

than  a threshold. Although this m ethod achieved 96.77% accuracy, the  accuracy was 

estim ated with only five users (and with d a ta  from a few sessions), which leads us to 

question the reliability of the accuracy.

G unetti and P icard i in [1] proposed a  continuous au then tica tion  m ethod. A 

user’s tem plate consisted of m ean n-graph latencies. A uthentication  was perform ed 

using two measures: 1) the  relative m easure and  2) th e  absolute m easure. The 

relative measure is the normalized rank disorder between n-graph latency pairs th a t 

are common to the tem plate and the test sample. In this dissertation, we implement 

the  relative measure' as one of our baseline verifiers. In the absolute m easure, a 

similarity score is computed between an n-graph in the tem plate and the test sample as 

m ax(D teJnp, D test) / m in(D temp, D test), where D temp and D test are the n-graph durations 

in the tem plate and the  test sample, respectively. If the  ratio  is below a  threshold, 

the n-graph is considered valid. Then the  absolute m easure is com puted as the 

proportion of m atching n-graphs th a t are also valid n-graphs. G u n e tti and P icardi 

perform ed experim ents w ith 40 users (trea ted  as genuine), who provided 15 typing 

samples and 165 users (treated  as impostors) provided one typing sam ple each. Best 

result (IPR:0.044%, FRR:6.833%) was achieved when relative and absolute m ethods 

were combined. However, in order to  achieve these results, th e  m ethod  required
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m ultiple sessions consisting of 700-900 keystrokes. W hen the num ber of keystrokes 

was reduced to l / 4 ,;' original length (approxim ately 2 0 0  keystrokes), the  accuracy 

dropped dram atically (IPR:0.3951%. FRR:29.1667%).

2.2 .2  N o n -zero  Effort A tta ck s on K ey stro k e-b a sed  U ser A u th en tic a tio n
S y stem s

To the  best of our knowledge, th is is the  first work to  propose non-zero 

effort impostor attacks against keystroke-based continuous user verification. The key 

difference between the feature-level att acks in [24] and the sample-level attacks is that, 

sample-level attack  is an au tom ated  attack  (i.e., a  com puter program  continuously 

generates key press and release events as if they were being produced by a legitimate 

user). On the other hand, a  feature level a ttack  recptires the a ttacker to  know w hat 

features the verification system  is using. Additionally, the attacker has to  know how 

to  input the  synthesized features directly into th e  verification algorithm , bypassing 

keystroke d a ta  acquisition, feature extraction, and  preprocessing m odules. Because 

the sample-level attack directly submits (fake) samples to  the verification system, the 

attacker does not have to know the internal details of the  system. So the sample-level 

attack  is more practical and easier to  launch com pared to the feature-level.

Some previous studies in fixed-text (i.e., password) based keystroke verification 

systems used non-zero effort im postor attacks generated by trained human  subjects. 

For example, [25] reported higher im postor pass ra tes  when the  im postor subjects 

were allowed to  observe how a genuine user typed  h is /h e r password. [26] conducted 

experim ents to examine how the  am ount of practice by the  im postor, am ong other 

factors, affected the perform ance of password based keystroke verification system s.
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[26] concluded th a t im postor's practice can be a "minor" th reat to  passw ord based 

keystroke verification systems.

In the papers cited above, trained human im postors had to type short strings, 

containing at most 8  to 12 characters. Therefore, it was possible for a hum an impostor 

to  practice and type like a genuine user. However, in continuous verification, the 

impostor would have to type much more. For instance, in our experiments, to  generate 

one verification attem pt with 20 matching pairs, a user typed on average 54 characters, 

which took 14.83 seconds (see Table 4.5, Page 45). At th is  rate, if the  im postor has 

to  continuously type for five m inutes, he/she would end up typing m ore th an  2 0 0 0  

characters. Typing so m any characters w ith an in ten t to  mimic a  legitim ate user is 

not an easy task for a human impostor. Furthermore, this type of attack is not easily 

scalable because of the hum an effort and resources involved. So, for keystroke-based 

continuous verification system s, im postor a ttacks by tra ined  hum ans do not pose 

as much th rea t as automated forgery attacks, like the  “snoop-forge-replay” a ttack  

presented in this dissertation.

Therefore, there are at least two practical bottlenecks in using human impostors 

against continuous keystroke verification systems: 1 ) how to  train a hum an im postor 

to  consistently type like a legitim ate user for long durations and 2 ) if a t all such 

training is possible, the resources (in time, effort, and monitory costs) needed to train 

the impostors to  launch attacks against larger victim  populations can be prohibitive.

Recently, [27, 28] reported an autom ated im postor attack against short string 

based keystroke verification. In [27] bots inject keystroke events on a client machine in a 

client-server model. The keystroke latencies are statistically-generated and assumed to
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follow Gaussian distribution which are computed by the latencies of a small population 

of 20 users. [27] reported tha t these attacks were ineffective.

In [28] the attack is a guessing attack  that, increm entally searches the feature 

space of a large population of users until a  feature vector th a t m atches the  ta rge t 

user’s tem plate is found. The m aster-key is repeatedly subm itted  to the verification 

algorithm, and every tim e it is subm itted, one of its feature value is changed by one 

standard deviation until the verification algorithm declares that the key has m atched 

the victim ’s tem plate. To speed-up the  attack, instead of changing one feature value 

a t a  time in the master-key, [28] identified conditionally dependent feature pairs and 

changed two feature values a t a  tim e. T he attack  in [28] works against login-tim e 

verification w ith short pass-phrases. However, the  a ttack  is not su itab le  against 

continuous verification because: 1 ) the  a ttack  assum es th a t the tex t is fixed, i.e., 

the  latencies from which the m aster-key is derived and the  tem plates th a t are being 

attacked come from typing the same text, an assumption clearly invalid in continuous 

verification where the users are free to  type any text; and  2 ) the  a ttack  perform s a 

“b ru te  force” search in a  feature space th a t  grows exponentially w ith the  length  of 

the  pass-phrase. Consequently, w ith longer pass-phrases, the a ttack  tends to  m ake 

more erroneous a ttem p ts  (i.e., infertile guesses) before converging to  a  vector th a t 

successfully passes verification. In continuous verification, a verification a ttem p t has 

more characters. For example, in our experiments, verification attem pts had between 

54 characters (with 20 matching pairs) and 2000 characters (with 750 m atching pairs). 

W ith so many characters, the attack in [28] would have m ade thousands of unsuccessful
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attem pts before producing a successful attem pt. W ith so many unsuccessful attem pts, 

a continuous verification system could easily be alerted.

2 .2 .3  N o n -zero  E ffort A ttack s on  O th er  B eh av iora l B io m etr ic  A u th en tic a ­
tio n  S y stem s

The work in th is dissertation was m otivated by the  findings of two studies:

1) [29] studied the  effect of forgery quality  on handw riting  biom etric security and 

showed tha t impostor pass rates of trained and generative {i.e., “algorithmic5') forgery 

a ttacks outperform ed naive forgeries and 2) [30] evaluated spoofing attacks on gait 

au thentication  and showed th a t a ttackers w ith knowledge of their closest person in 

the database can significantly raise impostor pass rates. Below, we briefly discuss [29], 

which is closer to our work in this dissertation.

[29] reported the  effect of six types of forgery a ttack  models on handw ritten  

signature based verification. One of them  was the  generative forgery model, which 

involved algorithmically generating forgeries of a target writer by collecting a small set 

of writing samples from 1 ) the  target w riter (these samples were referred as “parallel 

corpus55) and 2) a set of different writers. Results in [29] showed th a t, com pared to  

trained  hum an forgers, generative a ttacks had higher im postors pass rates for block 

and cursive writers but had lower rates for mixed writers. A notable similarity between 

the generative attacks in [29] and the snoop-forge-replay attack is th a t both  require a 

surprisingly low num ber of stolen samples to  generate effective a tt acks.



CH A PTER  3

S N O O P -F O R G E -R E P L A Y  A T T A C K  M E T H O D S

T he attack  presented in th is d isserta tion  falls under the  broader class of 

generative attacks on behavioral biom etric system s [29], but is tailored to  a ttack  

continuous keystroke-based verification system s. Below, we discuss the  steps in 

snoop-forge-replay attack.

3.1 S n o o p in g  K ey stro k e  T im in g  In form ation

In this step, the attacker secretly steals a victim ’s keystroke tim ing information. 

For example, if the  victim  typed the tex t, “t h i s  i s  snooped t e x t , ” the  a ttacker 

records a series of tim estam p s-P t (tim e when t  was pressed), R t (tim e when t  was 

released), Ph, Rh, P i5 Ri; P s, Rs , P SPAce, Rspace, and so on.

An attacker can snoop a victim ’s keystroke tim ing information using a hardware 

keylogger or a software keylogger. Software keyloggers have become the most popular 

forms of keyloggers because they  can be easily developed, are easily available , 1 and 

can be deployed from rem ote locations onto a  v ic tim ’s machine (e.g., using tro jan s  

and spyware).

'A ttackers can access hundreds of software keyloggers from code-sharing websites like www. 
S o u rceF o rg e .n e t. A nti-Phishing W orking G roup (w w w .an tip h ish in g .o rg ) reported  in [31] th a t 
3121 websites hosted keyloggers in February 2007 alone.
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F igure 3.1: Snoop-Forge-Roplay attack flowchart.. St,(tp (l)-snoop keystroke timings. 
Steps (2)-(8)-create and replay a forged a ttem pt.

We used keystroke d a ta  collected from 150 participants during the period 13-21 

October 2009 as snooped keystrokes (see Section 3.5 on Page 33 for details). This d a ta  

was collected using a software keylogger developed in C # .  The snooped keystrokes 

were used to attack tem plates that, were built from keystrokes collected approxim ately 

six months after the snooped keystrokes.

3.2  C rea tin g  a K ey stro k e  Forgery

3.2 .1  C reatin g  Forgeries in F eatu re-level A tta ck

For creating a forged attem pt at the feature-level, we assume tha t the attacker

has the following knowledge.

K now s how  to  co m p u te  keystrok e fea tu res  ( i .e . ,  h o ld , in terva l, and  

digraph  la ten cies): An attacker can acquire th is  information by reading keystroke
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dynamics (KD) literature or can use keylogger codes widely published on the Internet. 

For instance, attackers can access hundreds of keylogger codes from code-sharing 

websites like S o u rce F o rg e .n e t.

K n ow s how  to  sy n th es ize  a k eystrok e  featu re from  a p ro b a b ility  

d istr ib u tion : Though we are not aware of any s tudy  th a t conclusively establishes 

that keystroke features follow Gaussian distribution, several KD authentication studies 

have assumed Gaussianality of keystroke features. An attacker can either follow these 

studies or explore distributions o ther than  Gaussian. Flowever, from an a ttack e r’s 

viewpoint, the  Gaussian assum ption is appealing because its param eters (i.e., mean 

and standard deviation) are easy to  compute and m ost programming languages provide 

tools to generate Gaussian variates.

K n ow s how  to  h an d le  ex trem e  fea tu re  values: It is well known th a t the 

mean is sensitive to extreme values. Based on this knowledge, an attacker can choose 

to  discard large feature values before com puting the  m ean. On the  o ther hand, an 

attacker can choose to ignore this step.

For each user £/*, we create forgery a ttem p ts  as follows. We ex trac t digraph 

latencies from TVs snooped keystroke tim ings (see Step 2, Figure 3.1). We assume 

that digraph latencies follow Gaussian distribution. We implement a simple filter that 

discards digraph latencies greater than 300ms (Step 3, Figure 3.1). After filtering, we 

compute the means and standard  deviations of th e  digraphs (Step 4, Figure 3.1).



22

3 .2 .2  C reatin g  Forgeries in S a m p le-lev el A tta ck

In this step, we create a keystroke forgery of a victim  user U, at sample-level.

A forgery has two parts: 1 ) '■dummy'’ tex t and 2) a series of latencies betw een the 

press and release of letters in the dummy text. For example, a forgery of Ut can have 

the dum m y tex t, ’‘t h i s  i s  dummy t e x t s ' The key hold and interval values for this 

text come from the  snooped keystroke latencies of Ut.

C o m p u tin g  key  h o ld  a n d  in te rv a l  la te n c ie s  f ro m  17,’s s n o o p e d  k e y s tro k e s : 

Let P t , Rt , Ph, Rh, P i i  Ri,  P s ,  Rs, P s p a c e ,  R s p a c e ,  P i ,  Ri,  and so on be th e  snooped 

keystroke tim estam ps collected when Ui typed  th e  tex t, “t h i s  i s  snooped t e x t . ” 

Using these snooped tim estam ps, the  a ttacker com putes kh t:h =  Rt — P t (key hold 

latency of t ,  when the next character pressed is h), kit;h =  P h — Rt (key interval 

latency between t  and h), khh:i, kih :i, k h i ;s , kii ; s , and so on. If any latency  occurs 

more than once, we take the average. Next, we use the snooped “kh” and “ki” values 

as the key hold and interval latencies of the letters in the dummy text. For example, 

in the forgery containing the dum m y text, “t h i s  i s  dummy t e x t , ” we use kht:h for 

forging the key hold latency of the  first “t ” in th e  dum m y text, and in the  same 

fashion, use kit:h for forging the key interval latency of “t h ” in the dum m y text.

W h a t if  th ere  are le tte r s  in th e  d u m m y te x t  for w h ich  sn o o p ed  

la ten cies are n o t available?: Because our prim ary goal is to  dem onstrate  how 

forgeries based on snooped keystrokes can be used to  evade detection, when preparing 

a forgery, we ignored those letters in the dummy tex t for which corresponding snooped 

latencies were not available. This sometimes could render the tex t generated by the 

forgery linguistically meaningless, especially when forgery is created from  lim ited



am ounts of snooped tex t. However, note tha t current keystroke-based continuous 

verification systems, to the best of our knowledge, do not cheek the language generated 

by the typist, and therefore, our a ttack  in its present form straightforwardly exploits 

this vulnerability.

If the  attacker wants to forge specific words to execute a series of com m ands, 

then  the attacker can choose* to  fill the  missing latencies with very large value's, so 

th a t they are filtered by the outlier detection methoel and  thus are disregarded by 

the continuous verifier. An a lternate  way is to  fill the missing latency values using 

latencies computed from a population of users (as done in [29] for spoofing handw ritten 

signatures).

T able 3.1: Characteristics of the “dummy te x t” file used in our experim ents.

Text Source 497,184 words from COCA corpus and 
20 W ikipedia documents

Total #  of unique letters 26
Total #  of unique digraphs 

(letter pairs) 676

Total #  of letters 5,021,665
Total #  of digraphs 4,222,420

1 0  most frequent letters e, a, i, n, r, o, t, s, 1, d
1 0  least frequent letters q, x, j, z, v, w, k, y, f, b

1 0  most frequent digraphs in, er, an, on, re, ed, te, ar, en, es
1 0  least frequent digraphs qk, jq, qj, xk, jk, qy, qz, vq, qz, qh

P r e p a r in g  a  “du m m y t e x t ” file: The “dum m y tex t” file supplies te x t to 

create a forgery. Technically, the  file can contain any tex t, ranging from m ultiple 

repetitions of a single le tte r (e.g.. a a a . ..)  to  a  large te x t corpus representative of 

English language usage (e.g., Corpus of C ontem porary  Am erican English (COCA) 

[w w w .am ericancorpus.org]). For our experim ents, we created a  “dum m y te x t” file

http://www.americancorpus.org
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with 497.184 words from COCA 2 [32], In addition, we added text from 20 W ikipedia 

documents. (In Appendix A, we give the web addresses of the W ikipedia documents). 

In Table 3.1 we sum m arize the characteristics of dummy text.

3.3  R ep la y in g  a Forgery o f  V ic tim  t/p

3 .3 .1  R ep lay in g  F orgeries in F ea tu re-level A tta ck

Replaying a forged a ttem p t of a user Ut involves generating keystroke tim ing 

events as if U% was typing some tex t. Replaying involves two key com ponents: 1 ) 

a  database containing tex t and 2 ) a “replayer” software, which reads the  te x t in 

the  database and generates keystroke tim ing events. Below, we explain th e  two 

components in detail.

T ext D atab ase: In feature-level attack, to  supply text to the replayer we used 

a file containing F ry’s In stan t W ord List [33], which is a  list of 1,000 m ost common 

words occurring in the  English tex t, arranged in frequency order. Fry F[33] showed 

th a t the first 300 words in this list make up 65% of all w ritten m aterial.

R ep layer  Softw are: A replayer can be im plem ented in two ways: 1) the 

replayer emulates U fs  typing behavior by synthesizing actual key press and release 

events for the tex t in the  database and 2 ) the replayer reads the  tex t and generates 

feature values (e.g., digraph latencies) for user Ux and subm its it to  the verifier.

Generating keystroke feature values: A replayer can replicate U f  s typing 

behavior is by reading tex t from the database and directly supplying keystroke feature

values (digraph latencies in our case) to  th e  continuous verification system. Again,

2COCA is a large, freely-accessible text corpus on the web. The corpus contains 410 million words 
(20 million words each year from 1990 through 2010).
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the feature values can he generated using a Gaussian random  number generator, with 

means and standard  deviations calculated by snooping Ufa  keystrokes.

3 .3 .2  R ep la y in g  F orgeries in S a m p le-lev el A tta ck

K ey stro k e  E m ulator: We developed a  keystroke em ulator th a t  injects 

synthetic key press and release events. We program m ed the em ulator in Visual 

C + +  and used S en d ln p u t API. The goal of th e  em ulator is to  use the  snooped 

latencies to inject key press and release events for the dummy tex t in a way th a t the 

verifier thinks th a t it is the  victim  Ut who is typ ing  the  dum m y tex t. T he em ulator 

algorithm , referred to as “Algorithm 1 ,” gives th e  steps to  forge and replay a victim 

user U js typing pattern.

The input to the  algorithm  is a dum m y tex t file and a series of key hold and 

interval latencies com puted from U js snooped keystrokes. We initialize variables in 

lines 2-9. The trap-counter  variable is used when the program encounters a character 

pair in the dummy text for which a snooped latency is not available. The trap_counter 

variable counts the number of characters to be traversed in the dummy text, to find a 

character pair for which a  snooped latency is available.

In line 10, the w h ile  loop ensures th a t Algorithm 1 replays the dummy tex t for 

a t least 24 hours. In lines 11-26, we create and replay a forgery. The I f  condition in 

Line 14 is executed when a letter pair from the dummy tex t (stored in first and second 

variables) has corresponding snooped latencies. If snooped latencies are available, 

A lgorithm  1 calls the r e p la y  function in line 16 to  generate key press and release 

events. The e lse  in Line 20 is executed if th e  le tte r pair (first, second) does not
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A L G O R I T H M  1: Replay th e  forgery of user ( ',.

In p u t :  D um m y text file contain ing -497.184 words from C O C A  an d  tex t from  20 W ikipedia pages. Key hold (e.g.,
Khn:y . kfly;s p a c e * etc.) and key in terval (e.g.. kim:y. kiy:s p a c e - etc.) latencies com puted  from  U / s snooped 
keystrokes. Hen*. *‘khx:y’‘ deno tes th e  snooped key hold la ten cy  of x w hen the  nex t ch a ra c te r  ty p ed  is y and 
"kiX;y deno tes th e  snooped key in terval latency betw een c h arac te rs  x and  y.

O u tp u t :  A replay  of user ( V s keystroke forgery.

In i t i a l i z a t io n :
n «— N um ber of characters in the  dum m y tex t file.
d u m m yT ex tA rr  [0:n — 1] «— Copy each ch arac te r  in th e  dum m y tex t file in to  th e  array: /* E a c h  cell in the
dum m y Text A rr  holds a character in the  d u m m y  te x t file* /
dum m y Index <— 0: /* Jn d ex  to  the  first character in the  d u m m y T e x tA rr  * /
trap-counter 4— 0: /* C o u n te r  to  ensure th a t character pairs in th e  d u m m y  te x t tha t not do have corresponding
snooped  la tencies do no t s ta g n a te  th e  replay. I f  th e  snooped  la tenc ies are not available even a fte r  traversing  500
characters in th e  d u m m y  tex t, then  ch a ra c te r  p a ir  is reset to  a  random  character in d u m m y T e x tA r r  (L ine  2 5 )* /
first «— 0: /* A  variable to  store  first character.* /
second 4~ 0; /* A  variable to  store second ch aracter.* /
s ta rtT im e  4— System  tim e a t th e  s ta r t  of th e  program :
currentT irne 4— C u rren t system  tim e;

w h ile  ( curren tT irne s ta r tT im e  <  P  ho u rs) /* W e  se t P  to 2 4 -* /  d o

fir s t 4— d u m m yT ex tA rr  [dum m yIndex  ]: 
second 4— f ir s t ;
w h i le  d u m m yln d ex  <  n  and trap-coun ter  <  500 d o

if  (khy;rAt;iSP,.,m,j and kiyt7 s/. s.,,rm„i) is snooped  /^checks if le tte r  p a ir from  the  dum m y te x t has 
co rresponding  snooped la tencies .* / t h e n

E  dyjrxt..second  ̂ k h y ^ . sr.cond i E 1 fust--xncorui * kifirst:src.ond' /  Forge latencies. K H  a n d  K I  den o te  
latencies in a  fo rg ery .* /

r e p la y  (first, KHy„.st;.,eron</, K lf t1!>t:A(;Condh / * R ep la y  d u m m y  te x t  by  g en era tin g  k ey  press and  release 
even ts o f  f i r s t  when second  is the  n e x t ch a ra c ter* /

fir s t  4— second: tra p .coun ter 4— 0;

e n d
e ls e

| trap-counter 4— trap .co u n ter  +1; 
e n d
d u m m yln d ex  c— d u m m yln d ex  + 1 ; 

second 4- d u m m yT ex tA rr  [d u m m yln d ex  ];
e n d
d u m m yln d ex  Reset to  a  random  cell of d u m m y T e x tA rr ; 
curren tT irne 4— C urren t system  tim e; trap-counter <— 0;

end

P R O C E D U R E  1: r e p la y ( c h a r  c , r e a l  ho ld -delay , r e a l  in te rv a L d e la y )
I n p u t :  T h e  ch arac te r c to  be replayed, key hold delay of th e  c h arac te r, an d  key interval delay  betw een th e  character 

and th e  next consecutive charac te r.
O u tp u t :  G en era te  press and release even ts for ch aracte r c.

I N P U T  *key; /* fn ia tia lize  key as the  p o in te r  to  I N P U T  s tru c tu re .* /  
key =  n e w  I N P U T :
key -H y p e  =  IN P U T -E E Y B O A R D : / * K eyb o a rd  event. Use th e  “k i” s tru c tu re  o f the I N P U T .* /
key —̂ ki.wVk — c; / * Assign  ch arac te r c to  th e  keyboard  e v e n t.* /
key —>ki.dwFlags =  K E Y E V E N T F .E E Y D O W N ; /* T h e  even t is a  key  press e ve n t.* /

Sendlnput (l,& ey ,s iz eo f ( I N P U T ) ) ;  /* P ress  c .* /
s le ep  (hold.delay): /* S Ieep  for hold-delay m illiseconds to genera te  k e y  hold t im e .* /  
key -^k i.dw F lags =  K E Y E V E N T F .K E Y U P ; /* T h e  event is a  k ey  release e v e n t.* /
Sendlnput (l,fce?/,sizeof ( I N P U T ) ) ;  /* R e lea se  c .* /
s le ep  ( in terva L d e la y ); /* S leep  for in tervaLdelay  m illiseconds to g enera te  in terva l tim e .* /
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have corresponding snooped latencies. The trap.counter  ensures th a t if the snooped 

latencies klifirst:»econd and k i/;>.s, j  are not available even after traversing 500 (an 

arbitrarily chosen number) characters in the dummy text, then the f i r s t  and second 

are reset to  a random  character in the d u m m y T e x tA rr  (Line 25).

In Procedure 1, we outline the implementation of the re p la y  function (Line 16 

in Algorithm 1). The function takes three param eters: 1) c is the character key th a t 

has to be pressed and released, 2 ) hold.del ay is the  delay (in milliseconds) between 

the press and release of c, and 3) in tervaLdelay  is the delay (in milliseconds) between 

c and the  subsequent character in the  dum m y tex t. To generate the  key press and 

release events, the  re p la y  function uses S en d ln p u t function (lines 7 and 10), which 

is a part of W indows Application UI Development A PI [18]. The latencies between 

press and release events are generated using the sleep function (lines 8  and 1 1 ).

D e ta ile d  ex p lan ation  o f  lin es 10-27 in  A lgorith m  1: We explain lines 

10-27 w ith an example. Let the  snooped tex t be “t h i s  i s  snooped t e x t ” and 

the dum m y tex t be “t h is  i s  dummy t e x t .” From  line 3, d u m m yT ex tA rr [0] =  t, 

dum rnyTextA rr[  1] =  h, d u m m y T e x tA r r [2] — i ,  d u m m yT ex tA rr[3] — s, and so 

on. From lines 11 and 12, f i r s t  = second = t .  Because d u m m y ln d e x  =  0 and 

trap-counter  =  0, the if  condition in line 14 checks if k h t:t  and kit ; t  are available 

from the snooped keystrokes. Because they are not available (note “t t ” is not present in 

the snooped text) , lines 2 1  and 2 2  in e lse  are executed, resulting in d u m m y ln d e x  —  1, 

second — h, and trap-counter =  1. In the  next ite ra tion , the if  condition in line 14 

checks to  see if khth and kith are available. Because both  khth and kith are available 

from “th ” in th e  snooped tex t, (in Line 15) khth is assigned to  KHth and  kith is
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assigned to KIth. Then, in Line 16. KHth. KIth. and f i r s t  (=  t )  are passed to  the 

r e p la y () procedure. In lines 17 and 18. f i r s t  =  h. dununylridcx  = 2. trap.counter  

is reset to zero, and second =  i .  In the subsequent iterations, f i r s t  takes the values: 

“i , ” “s .” "SPACE." ui , ” “s .” “SPACE,” and correspondingly, second takes the  values 

“s ,” “SPACE.” “i , ” “s ,” “SPACE,” and “D.” In the  next iteration, f  irst  =  SPACE and 

second = D, lines 21 and 22 are executed because khSPACE:D and kiSPACE;D are not 

available from the snooped text. From lines 21 and 22, d u m m y ln d e x  — 9, second =  u, 

and trap.counter  =  1. Because khSPACE:u and kiSPACE:u are also not available from the 

snooped tex t, lines 2 1  and 2 2  are again executed, resulting in d u m m y ln d e x  =  1 0 , 

second = u, and trap.counter  =  2. Lines 21 and 22 are executed in the  next 

few iterations, each tim e increm enting the  trap .counter , until second  =  t .  Because 

khSPACE:t and kiSPACE:t are available from the snooped latencies, lines 15-18 are executed. 

In this fashion, A lgorithm  1 continues to  execute for 24 hours. The final o u tp u t of

Algorithm 1 is the replay text: t h i s  i s  t e x t ............

At this point, we emphasize th a t Algorithm 1 is one of the many  possible ways 

to generate snoop-forge-replay attacks. While maintaining the general idea of snooping 

and replaying the keystrokes, the attacker can evolve Algorithm 1 in several ways. For 

example, the attacker can devise heuristics to im pute missing latency values or snoop 

only selected latencies from a victim, to generate desired tex t or system  commands.
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3 .4  V ir tu a liza tio n  S et-u p  for Forging and  R ep la y in g  S am p le-level A tta ck s
on a L arge Scale

To launch a large number of a ttacks on 150 victim users (see C ontribution 3. 

Page 2). we built a virtualization set-up a t Louisiana Tech University's Cyber Security 

Laboratory. The set-up had 150 virtual machines (VMs). Each VM ran a  copy of our 

keystroke em ulator program  (i.e.. A lgorithm  1) to  generate forgeries for one victim  

user.

To create th e  v irtualization set-up, we used a  cluster of 8  Dell PowerEdge 

M710 Blade servers, each w ith 12 core Intel Xeon 3.33GHz processors. Each server 

was equipped w ith 96GB main memory. Four Dell EqualLogic iSCSI storage arrays 

provided 20TB secondary memory. We used VMware 4.1 vSphere Suite [34] to create 

150 VMs. Each VM had W indows X P 32-bit operating system, 2GB m ain memory, 

and 10GB secondary storage. In each VM, emulator and “notepad.exe” file (to create 

an  active N otepad window for S end lnpu t A PI) were executed using Powershell 2.0 

scripts. We used Condor 7.6.0 software [35] to  schedule th e  execution of Powershell 

scripts in 150 VMs, simultaneously.

The keystroke em ulator takes snooped tim ing information and “dum m y te x t” 

file as input, injects key press and release events, and outputs a file containing replay 

tex t. W hen the em ulator was running, we used a software keylogger to  record the 

synthetic keystroke events generated by the  em ulator. T he keylogger recorded the 

keystroke events and stored them  in “useriV .txt” files (where N  = 1 to 150). A to ta l 

of four files were associated w ith each user: two input files, one containing snooped 

keystroke tim ing inform ation and another containing dum m y tex t), and two output
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files (i.e.. the text file generated by the em ulator and "user.V .txt" recorded by the 

keylogger). A fter running the  em ulator for 24 hours, the  "userA ktxt” (N  =  1 to 

150) files were collected from Condor server's shared memory and passed through the 

verifiers to generate verification scores.

3.5 K eystrok e  D a ta  C o llec tio n

We used keystroke d a ta  collected from 350 partic ipan ts a t Louisiana Tech 

University. M ajority  of th e  partic ipan ts were studen ts, bu t university faculty and 

staff also partic ipated . We used six Pen tium  IV desktop PC s to  collect keystroke 

data. The PC s were equipped with W indows X P OS, a Q W ERTY  keyboard, and a 

mouse. On each PC , we installed an in teractive keystroke d a ta  collection software 

developed in C # . Additionally, we used two laptops to register participants and collect 

voluntary inform ation (such as gender, ethnicity, typing experience, native language, 

is the  participant left- or right-handed, is the  partic ipan t willing to  partic ipa te  in a 

future d a ta  collection effort, and the p a rtic ipan t’s university email address).

We collected data during three different periods: October 13-October 21, 2009; 

April 4-April 30, 2010; and 25 October-9 November, 2010. On all days, we sta rted  

da ta  collection at approximately 8:00 AM and concluded at 5:00 PM. Each participant 

was required to  register by presenting h is /h e r university ID card. We recorded the 

following information during registration: 1) first name, 2) last name, and 3) voluntary 

information. We used two popular locations in the university to set up d a ta  collection 

booths. At each location, we used three PC s for collecting keystroke samples. We
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continued da ta  collection during lunch hours (11:30 PM to  1:30 PM ) as this was the 

period of heightened studen t/facu lty  traffic.

A fter registration, we instructed  each p artic ipan t on how to  use the  d a ta  

collection software and asked the  partic ipan t to  type three types of tex t: 1 ) fixed 

text participant typed the phrase “I am an u n d e rg ra d u a te  s tu d e n t  o f L o u is ia n a  

Tech U n iv e r s i ty ” 15 tim es (12 tim es during O ctober 2009); 2) copy text-each 

partic ipan t typed several paragraphs of English tex t from a docum ent provided 

by us; and 3) self text-partic ipan t had to  com pose and type tex t. Unlike in fixed 

tex t, where the partic ipan t had to  type th e  predefined tex t exactly, there  were no 

restrictions on typing copy and self texts. For example, the participants were allowed 

to  make spelling m istakes and typographical errors, and if they chose, they  could 

correct them  using Backspace or Delete keys. In the experiments, we do not use fixed 

tex t data, so we skip further details on it. For entering fixed tex t, the  GUI included 

three text boxes: one for entering username, one for entering campus-wide ID number, 

and one for entering a common fixed phrase.

The keystroke d a ta  collection software provided GUI (e.g., tex t boxes, buttons, 

and character counters) for typing copy and self texts. Each participant was required to 

type at least 1800 characters (1200 during October 2009) of copy text. For typing copy 

text, we provided paper copies of sample tex ts to the  participants. We used five sample 

texts: 1 ) D eclaration of Independence [36], 2) a  transcrip t of R ichard  H am m ing’s 

“You and Your Research” speech [37], 3) th e  first 2100 words in C hap ter 1 of David 

Copperfield [38], 4) the first 2000 words in C hapter 1 of Samuel Johnson [39], and 5) 

the first 1900 words in C hapter 1 of Walden [40]. A participant received one of the five
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T ab le  3 .2 : A summary of keystroke data usage in our sample-level a ttack  experiments.

DaUuset
Nam e S e t  I S e t  I I S e t  I I I S e t  IV

C ollection
D ates

13 21 O ct., 
2009

4 30 A pril. 
2010

25 O ct.
9 N ov..2010

25 O ct.
9 N ov..2010

Usage Snooped
keystrokes

B uilding
keystroke
tem p la tes

G en era tin g  genuine 
V zero-effort 

im pstr. scores

G en era tin g  
zero-effort 

im pstr. scores

#  of users 150 com m on users in se ts  I. 11. an d  III 200 new 
users

sample texts randomly. As the participant typed, the software displayed the num ber of 

characters typed. Copy text d a ta  collection process ended when the participant typed 

a t least 1800 (1200 during O ctober 2009) characters. A fter entering the  copy tex t, 

the partic ipan t was required to  type abou t 300 characters of self tex t. A fter typing 

the self tex t, the  participant pressed the  “Finish” b u tto n  and ended h is /h e r d a ta  

collection session. Self tex t was collected during April 2010 and O ctober-N ovem ber 

2 0 1 0  periods.

Copy vs. self text: W hen perform ing activities like writing emails, messaging, 

and word-processing, users typically do com positional typing (i.e., tex t composition 

and typing occur as an intertw ined sequence of events). Thus, typ ing  self tex t is a 

closer representation of a  user’s typing activity. However, we conducted pilot trials in 

our laboratory before undertaking full-scale d a ta  collection and observed th a t typing 

1200-1800 characters of self tex t took considerably more time th an  typing copy text 

of the same length and in most cases fatigued participants. Because the  m ajority  of 

the partic ipants were students who partic ipated  between classes, tim e was a critical 

factor for their participation. To achieve a trade-off between partic ipa tion  tim e and 

obtaining realistic typing samples, we choose to  collect a m ixture of copy and self 

texts.
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K e y s tro k e  D a ta  U sag e  in  O u r  E x p e r im e n ts

1) F o r fe a tu re - le v e l a t t a c k  e x p e r im e n ts :  we used data from 50 users who 

participated during three data  collection periods, i.e.. October 2009, April 2010, and 

O ctober-Novernber 2010. We used keystroke events generated by typ ing  free and 

self tex ts during April 2010 for tra in ing  (i.e., building keystroke tem plates). For 

generating verification attem pts, we used keystrokes from free and self tex ts collected 

during October-November 2010. We used the keystroke events obtained from typing 

free text during O ctober 2009 as snooped keystroke data.

2) F o r sam p le -lev e l a t t a c k  e x p e r im e n ts :  we divided the  keystroke d a ta  

into four sets (see Table 3.2). Set I has keystrokes collected from 150 users during 

O ctober 2009. For the  same 150 users, Set II has keystrokes collected during  April 

2010 and Set III has keystrokes collected during O ctober November 2010. We used 

keystrokes in Set I as snooped keystrokes. We used keystrokes in Set II to  build 150 

user tem plates. We used keystrokes in Set III to  generate  genuine and zero-effort 

im postor scores. To generate genuine scores, we m atched each user’s tem p la te  w ith 

h is/her own keystrokes in Set III. To generate zero-effort impostor scores, we matched 

a user’s tem plate with keystrokes of 149 rem aining users in Set III.

P u r p o s e  o f  S e t IV : Set IV contains keystroke samples from a  new pool of 

200 users who are not present in sets I, II, and III. We matched keystrokes in Set IV 

against the user tem plates to generate additional zero-effort impostor scores. We did 

this to compare the snoop-forge-replay attack scores with two baselines: 1 ) zero-effort 

impostor scores generated w ith Set III, and 2 ) zero-effort impostor scores generated 

with Set IV.



34

Note from the "Collection Dates" row in Table 3.2 that there is approximately 

six months time gap between snooped keystrokes (Set I) and keystroke used to  build 

tem plates (Set II). T his m anner of d a ta  usage is akin to  a scenario in which the 

attacker uses old ‘‘legacy'" keystrokes to attack  a  victim user's tem plate.

3.6 B a se lin e  (Z ero-effort Im p o sto r  A tta ck ) E x p erim en ts  

For fea tu re-lev el a ttack  ex p er im en ts: we experimented with two verifiers: 

1) Relative (R) verifier [l], and 2 ) Similarity (S) verifier. We used one type of tem plate: 

T K P -tem pla te  containing key press latencies.

For sa m p le-lev e l a ttack  ex p erim en ts: we experimented with four  verifiers: 

1) Relative (R) verifier [1], 2 ) Absolute (A) verifier [1 ], 3) Similarity (S) verifier [41], 

and 4) Fusion (F) verifier. We used three types of tem plates: 1) T K H -tem p la te  

containing key hold latencies, 2) T K I-tem plate  containing key interval latencies, and 

3) T K P -tem plate  containing key press latencies. This resulted in nine verifier-template 

combinations i.e., (R, TKH), (R. TK I), (R, T K P ), (A, TK H ), (A, TK I), (A, T K P ), 

(S, TKH), (S, TKI), and (S, TKP). The "F” verifier fuses the outputs from (R, TKH), 

(R, TKI), (S, TKH), (S, TKI), and (A, T K P) using the weighted sum fusion rule [42], 

E x tra ctin g  verification  a ttem p ts: From  a u ser’s typing sam ple, we ex­

tracted verification attem pts as follows: 1 ) read the text in the order it was typed and 

extract latencies until M  matching pairs are obtained; 2) present the Al  m atching pairs 

to the verifier to obtain a verification score (this constitutes one verification attem pt);

3) read the  tex t from the point where it was stopped in Step 2 until Al  m atching 

pairs are obtained; and 4) repeat Steps 2 and 3 until the  text ends. This procedure
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partitions the tex t into contiguous, non-overlapping, variable-length windows, each 

containing exactly M  m atching pairs. Each window corresponds to one? verification 

attem pt. We experimented with M  values: 20, 40. 60. 80. 100. 120. 150, 300, 350, 500, 

and 750.

R e la tiv e  (R ) a n d  A b so lu te  (A ) V e rif ie rs  [1]: Given a verification attem pt, 

‘R ': verifier outputs a score as follows. Two arrays Atra jn and are constructed,

^ tra in  cont ains the m atching pairs ranked in ascending order of their corresponding 

m ean latencies (in the tem plate). A^est contains the  m atching pairs ranked in 

ascending order of their latencies in the  verification a ttem p t. T he "R” m easure 

between A^rajn and is com puted as the norm alized array disorder between

^ tra in  an<  ̂ ^ te s t-  The “R ” measure lies between 0 and 1 , 0 (or 1 ) indicates a  perfect 

m atch (or mismatch) between the verification a ttem p t and the tem plate.

T he “A ” m easure verifier ou tp u ts  a score as follows: for each m atching pair, 

two latency values are considered: 1 ) the average latency value stored in the tem plate, 

and 2) the  average latency value in the  verification a ttem p t. T he larger of the  two 

is divided by the smaller. A m atching pair becomes valid, if the ratio  falls between 1 

and a threshold (after some trial and error experiments, we choose 1.45 as threshold). 

The “A” measure is given as

 ̂ number of valid m atching pairs 
to tal num ber of m atching pairs

The “A” measure of 0 (or 1 ) indicates a perfect match (or mismatch) between

the verification a ttem pt and the tem plate.
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S im ila r ity  (S) V e rifie r [41]: The "S’: verifier outputs a verification score as

follows: each matching pair in the verification attem pt is considered a valid m atching

pair if it falls within T (=  1) s tandard  deviations from its corresponding mean in the

tem plate. The similarity measure between the  tem plate and the verification a ttem pt

is calculated using (3.1).

F u s io n  ( “F ” ) V erifie r: The1 verifier fuses ou tpu ts  of five verifier-tem plate

com binations, (R, TK H ), (R, TK I), (S, T K H ), (S, TK I), and (A, T K P ), using the

weighted fusion rule. If s2, s4, and s 5 are ou tpu ts of the five verifier-tem plate

com binations, then  by the  weighted fusion rule, “F ” ou tpu ts cuiSi T- U2 S2  +  CU3 S3 +
5

CO4 S4  -I- CU5 S5 , where 0.1 < Ui < 0.6 and =  1. We included weighted fusion
1 = 1

in our experim ents because studies (e.g., [42, 43]) show th a t it perform ed well in 

biom etric au then tication  tasks. For fusion, we used five out of th e  nine available 

verifier-tem plate com binations because key press latencies are formed by adding key 

hold and key interval latencies, so including (R, T K P ) and (S, T K P ) do not bring 

new inform ation when (R, T K H ), (R, T K I), (S, TK H ) and (S, T K I) are already 

included in the fusion. The “A” verifier was prim arily designed for key press latencies, 

so we included only (A, T K P ) in the  fusion. Choosing weights: we experim ented 

w ith 126 weight com binations. Initially, we set cu* =  0.1, i = 1, • • • ,4  and u 5  = 0.6. 

Then we incremented (or decremented) the weights in 0.1 units under the constraints:

0 . 1  <  ujx <  0 . 6  and Yli=i =  1 -



C H A PTER  4

R E SU L T S

4.1 F ea tu re-leve l A tta ck  E x p erim en ts

4 .1 .1  B a se lin e  (Zero-efFort Im p o sto r  A tta ck ) R esu lts

We perform ed baseline experim ents to  find the  optim al num ber of m atching 

pairs (M )  th a t yield the lowest FRR and IPR  values. The DET curves of "R” verifier,

i.e., plots 4.1(a)-4.1(b) and ;‘S" verifier, i.e., plots 4.1(c)-4.1(d) (in Figure 4.1) show 

th a t lower F R R  and IP R  values are achieved w ith high M  values (i.e., 300, 350, 

500, and 750). However, a high M  requires typ ing  m ore keystrokes to  generate a 

verification attem pt, which ultim ately increases th e  time, to  output a m atch score. In 

our experim ents, it took on an average of 49.36 keystrokes (14.305 seconds average 

typing tim e) to  obtain  a verification a ttem p t w ith  20 m atching pairs  and 1836.42 

keystrokes (545.307 seconds average typing time) to  obtain a verification a ttem pt with 

750 m atching pairs. Therefore, a trade-off exists betw een the num ber of m atching 

pairs and the verification delay. DET curves for 20, 40. 60, and 80 m atching pairs (not 

shown due to space constraints) had higher EERs than  the DET curves in Figure 4.1.

In Table 4.1, we give the  num ber of genuine and im postor a tte m p ts  used for 

generating DET curves in Figure 4.1. In our test data, on an average there were 2100 

keystrokes per user. So, for high M  values like 750, 500, and 350, on average, we

37
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Table 4.1: Total genuine a ttem pts (#G ). genuine a ttem pts/user (G / U ). and impostor 
a ttem pts/u ser ( I /U )  used in Figure 4.1 DETs.

M 100 120 150 300 350 500
# G 570 473 371 175 141 94
G /U 11.4 9.46 7.42 3.50 2.82 1.88
I /U 555.3 456.8 360.8 168.6 140.1 90.3

needed 183(1.42. 1212.42, and 853.69 keystrokes respectively to generate a verification 

a ttem pt. For th is  reason, we had very few genuine a ttem p ts  for each user when M  

was high (Table 4.1, second row). However, we did not have this problem for impostor 

attem pts because, for each user, we used the keystroke d a ta  of the rem aining 49 users 

to generate im postor attem pts.

4.1 .2  S n oop -forge-rep lay  A tta ck  R esu lts  an d  A n a ly sis

In this section, we dem onstrate the success rates of forged verification attem pts 

created from snooping a user’s keystroke data. We choose to  use M  values w ith 

baseline EERs less than  0.15. Figure 4.1 shows th a t  th is is achieved w hen M  is 150, 

300, 350, 500, and 750 for bo th  verifiers. However, we excluded 750 m atching  pairs 

because the average number of keystrokes it required to generate a verification attem pt 

(1836.42) was too  high to  be realistic. Verification threshold for each M  value was 

selected using two heuristics: 1) threshold T) w ith the least I P R  when F R R  <  0.15 

and 2) threshold T2 for which F R R  + I P R  is minimum (i.e., lowest point in the DET 

curve) when F R R  <  0.15. In Table 4.2, we give th e  baseline (zero-effort) IP R s for 

verifiers “R” and “S” for thresholds T\ and T2.

T he plots in Figure 4.2(a), 4.2(c), 4.2(e), and 4.2(g) show the  percentage of 

successful forgery a ttem p ts  w ith threshold T\ (see Table 4.2). We considered two



39

"R " \  crificr• R" V erifie r
0.4 

^  0.35 
“  0.3

•̂ -0.25X
u  0 .2

■1 0.15

F F R
1.05

0.05 0.5
Im postor Pass R ateIm posto r Pass R ate

(a )  (b)

0 45!
"5"  V erifie r

—  M=750 
•••M»500 

M=350 
M=300

■2 o 15 ■2 0 .15
eer\

.5
Im posto r Pass R ate Im postor Pass Rate

(c)  (d)

F igure 4.1: Baseline DET curves of “R" (a) & (b) and “S” (c) & (d ) verifiers w ith 
M  matching pairs.

factors: num ber of snooped keystrokes and filtering (no filtering) snooped digraph 

latencies greater than  300ms. W hen forged a ttem p ts  were created by estim ating  the 

means and s tan d ard  deviations of digraph latencies and  replayed using a  G aussian 

random  num ber generator, we observe (in p lots 4.2(a) and 4.2(e)) th a t  filtering 

increases the percentage of successful forged attem pts. W ith “S” verifier, the maximum 

percentage of successful forgeries w ith filtering was 87.58 (for M =  150 and 200 snooped 

keystrokes) and 72.06% (for M  = 150 and 150 snooped keystrokes) w ithout filtering. 

W ith R verifier, the maximum percentage of successful forgeries was 79.32 w ith filtering 

(for M  = 500 and 200 snooped keystrokes) and 72.73% (for M  =  500 and 100 snooped 

keystrokes) w ithout filtering. For these  M  values, in plots 4.2(b) and 4.2(f), we 

compare baseline DET curves obtained with zero-effort impostors and the D ET curves
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F igu re 4.2: (a ,c ,e ,g ):  Percentage of successful forged a ttem pts w ith  threshold  
T\; (b , d , f , h ): Com parison of EERs generated  w ith  zero-effort im postors (baseline) 
and forged verification a ttem p ts  generated  by estim ating  the m eans and  s tan d ard  
deviations of snooped digraph latencies (b, d ), and by estim ating the means of the top 
10 frequent snooped digraphs (f . h ).
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obtained  w ith forged a ttem p ts  (with 200 and 150 snooped keystrokes). The D ET 

curves clearly show th a t forged a ttem pts considerably increase the  baseline EERs.

"R "  V e r i f ie r — B a se lin e , M - 5 0 0  

• F o rg e ry  (F ilte r* -5 0  S n o o p e d )  
■ ••F o rg e ry  (F ilter-*-150  S n o o p e d )

0.8

n
X 0.6

E E R31

0.2

0.6
Rate

0.2 0.4
Impostor Pass Rate

— B a s e lin e .  M - 5 0 0  

■ F o rg e ry  (N o  F ille r*  5 0  S n o o p e d )  
■ ••F o rg e ry  (N o  F ille r*  150 S n o o p e d )

■’R " V e r if ie r

0.8

S3
X 0.6

a

0.2

0.4
Impostor Pass Rate

0.6 0.8
Rate

(a) (b)

F igu re 4.3: Com parison of EERs of “R” verifier with forged verifications a ttem p ts 
generated w ith 50 and 150 snooped keystroke when M  =  500.

In “S” verifier, the  percentage of successful forgeries increased as the  num ber 

of snooped keystrokes increased from 50 to  150 and then began to decrease from 200 

to  1200. Though less pronounced, the sam e behavior was observed w ith “R .” The 

observation th a t snooping more keystroke inform ation makes the  forgery a ttack  less 

effective is counter-intuitive. The reason behind th is phenomenon is th a t the frequency 

of occurrence of English digraphs follow' heavy-tailed (Pareto-like) distributions, 

im plying th a t only a  few digraphs occur m ost of the time. In fact, [33] showed 

th a t 25 digraphs make about third of all printed English text. As more keystrokes are 

snooped, the frequencies of only a few digraphs are sufficient enough to  estim ate the 

m ean /s tan d a rd  deviations, and for the rem aining digraphs, the  frequencies are too 

low to  estim ate the  m ean s/s tan d ard  deviations correctly. Therefore, increasing the 

number of snooped keystrokes increases the number of badly estimated m eans/standard  

deviations used to forge a sample. To support our argument, we created forged samples
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T a b le  4 .2: IPRs of verifiers ;R ' and "S" for thresholds 7) and T2.

M Ti “R ” T2 “R ” Ti «g» T -2 “S”
150 0.118167 0.138081 0.152123 0.138153
300 0.109109 0.128045 0.124451 0.124451
350 0.115047 0.127630 0.080491 0.112174
500 0.102082 0.123187 0.085271 0.099889

using means estim ated from the 10 most frequently occurring digraphs (and set the 

s tandard  deviation to  zero, i.e., created the  forgeries using only the  m ean digraph 

latencies). P lo ts 4.2(c) and 4.2(g) show a clear im provem ent in th e  success ra tes of 

forgery a ttem p ts  when the  num ber of snooped keystrokes increase from 200-1200. 

We also compare the baseline D ET curves obtained  w ith zero-effort im postors when 

M  =  500 and the D ET curves obtained w ith forged a ttem pts created using only the 

means of the top 10 m ost occurring snooped digraphs (with 1200 and  800) snooped 

keystrokes. The D ET curves clearly show th a t forged attem pts considerably increase 

the baseline EERs.

In Figure 4.3(a) we com pare the  baseline (zero-effort) EE R s of “R ” verifier 

(M  =  500) w ith EERs of forged im postor a ttem p ts  created by estim ating  the means 

and standard  deviations of digraph latencies (p lo t 4.3(a)) and w ith forged a ttem p ts  

created by estim ating the  m eans of the  top  10 m ost frequent d igraphs (plot 4.3(b)). 

The plots confirm th a t forged a ttem p ts  created  by estim ating th e  m eans of the  top 

10 m ost frequent digraphs have higher EERs. Additionally, we also p lo tted  forgery 

success ra tes w ith the threshold T2 (not shown due to space constrain ts). T he plots 

w ith T) were similar to  Figure 4.2 and offered no new insights.
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T ab le  4 .3: EERs generated for 150 users, with Set II as the training d a ta  and Set III 
as the verification data. The lowest EERs in each verifier group are m arked in b o ld .

M R S A F u s i o n  ( F )
KI K P  j KH KI K P K H KI | K P K H L o w e s t  E E R p - A v g .  E e R f S T D p

20 0  2 3 5 0 . 2 0 9 0 .22 0 . 2 2 7 0 .251 0 . 3 4 5 0 . 3 3 0 0 . 2 6 5 0 . 3 2 9 0 .1 4 9 0 . 1 6 9 0 . 0 1 6 5
40 0 . 1 8 5 0 . 2 4 0 0 .1 5 5 0 . 1 8 0 0 . 2 1 2 0 . 3 2 5 0 . 3 0 2 0 . 2 3 2 0 . 3 0 0 0 .1 0 5 0 . 1 2 5 0 . 0 1 8 9
0 0 0 .1 0 0 . 2 2 4 0 . 1 4 3 0 . 1 0 5 0 .191 0 3 1 7 0 . 2 9 3 0 . 2 1 8 0 . 3 0 3 0 .0 8 9 0 . 1 1 3 0 . 0 1 9 6
80 0.1 53 0 . 2 0 0 0 . 1 3 2 0 . 1 5 8 0 . 1 7 7 0 .31  1 0 . 2 7 4 0 . 2 0 9 0 . 2 9 4 0 .08 0 . 1 0 5 0 . 0 1 9 8
100 0  143 0 . 1 9 0 0 .12 0 .1 5 1 0 . 1 0 9 0 .31 0 . 2 0 0 0 .2 0 . 2 8 8 0 .0 7 2 0 . 0 9 8 0 . 0 2 1 7
120 0 .141 0 . 1 8 7 0 . 1 1 7 0 . 1 4 5 0 . 1 0 5 0 . 3 0 7 0 . 2 6 2 0 . 1 9 6 0 . 2 8 6 0 .0 6 9 0 . 0 9 6 0 . 0 2 1 6
150 0 .131 0 .1 7 1 0.11 0 . 1 3 7 0 . 1 5 0 0 . 3 0 0 0 . 2 5 2 0 . 1 9 5 0 . 2 8 5 0 .0 6 7 0 . 0 9 2 0 . 0 2 1 1
30 0 0  123 0 . 1 5 5 0 .1 0 5 0 . 1 2 4 0 .1 4 1 0 . 3 0 7 0 . 2 4 6 0 .1 9 1 0 . 2 7 5 0 . 0 5 6 0 . 0 8 3 0 . 0 2 0 9
3 5 0 0 . 1 1 7 0 . 1 0 0 0 .1 0 4 0 .1 3 1 0 .131 0 . 3 0 8 0 . 2 4 8 0 . 1 9 2 0 . 2 7 3 0 .0 4 3 0 . 0 6 9 0 . 0 2 5 9
50 0 0 . 1 1 0 0 . 1 5 5 0 . 1 0 3 0 . 1 3 2 0 . 1 2 0 0 . 2 8 8 0 . 2 4 7 0 . 1 8 7 0 . 2 5 8 0 .0 4 2 0 . 0 8 6 0 . 0 2 7 7
75 0 0 .1 2 4 0 . 1 3 5 0 .1 0 5 0 . 1 3 2 0 . 1 3 9 0 . 2 8 2 0 . 2 3 4 0 . 2 0 6 0 . 2 6 4 0 . 0 3 2 0 . 0 8 4 0 . 0 1 8 9

T a b le  4 .4 : EERs generated for 200 users. Set II was used for tra in ing , Set III was 
used for generating genuine a ttem pts, and Set IV for generating im postor a ttem pts.

M R S A F u s i o n  ( F )
K I K P K H KI K P K H K I K P K H L o w e s t  E E R p A v g .  E E R F S T D p

20 0 . 2 3 2 0 . 2 9 6 0.2 0 . 2 1 8 0 . 2 3 9 0 . 3 4 0 .3 3 1 0 . 2 5 5 0 . 3 1 5 0.141 0 . 1 6 9 0 . 0 1 6 5
4 0 0 . 1 7 9 0 . 2 4 3 0 . 1 4 6 0 . 1 7 8 0 .2 0 1 0 .3 2 1 0 . 2 9 6 0 . 2 2 2 0 . 2 9 3 0 .0 9 9 0 . 1 2 2 0 . 0 1 8 6
6 0 0 . 1 5 5 0 .2 2 1 0 .1 2 3 0 . 1 5 8 0 . 1 8 0 . 3 1 3 0 . 2 8 7 0 . 2 0 7 0 . 2 8 9 0 .0 8 4 0 . 1 0 7 0 . 0 1 9 4
8 0 0 . 1 4 7 0 . 2 0 3 0 . 1 1 3 0 . 1 5 0 . 1 6 6 0 . 3 0 7 0 . 2 6 7 0 .2 0 . 2 7 9 0 .0 7 6 0 . 0 9 9 0 . 0 1 9 6
100 0 .1 3 5 0 . 1 9 2 0 . 1 0 6 0 . 1 4 3 0 . 1 5 8 0 . 3 0 6 0 . 2 5 9 0 . 1 9 2 0 . 2 7 6 0 .0 6 8 0 . 0 9 4 0 . 0 2 1 2
120 0 .1 3 3 0 . 1 8 4 0 .101 0 . 1 3 7 0 . 1 5 6 0 . 3 0 3 0 . 2 5 5 0 . 1 8 9 0 . 2 7 6 0 .0 6 7 0 . 0 9 2 0 . 0 2 1 3
150 0 . 1 2 3 0 . 1 6 7 0 . 0 9 7 0 . 1 3 0 . 1 4 7 0 . 3 0 4 0 . 2 4 4 0 . 1 8 6 0 . 2 7 2 0 .0 6 3 0 . 0 8 8 0 . 0 2 0 9
3 0 0 0 . 1 1 5 0 . 1 4 9 0 . 0 8 8 0 . 1 1 6 0 . 1 3 4 0 . 3 0 2 0 . 2 3 6 0 . 1 8 3 0 . 2 6 3 0 .0 4 8 0 . 0 7 6 0 . 0 2 1 1
3 5 0 0 .1 1 2 0 . 1 5 2 0 . 0 8 7 0 . 1 2 4 0 . 1 2 2 0 . 3 0 2 0 . 2 4 9 0 . 1 8 0 .2 6 0 .0 4 4 0 . 0 6 7 0 . 0 2 4 8
5 0 0 0 .1 1 2 0 . 1 4 8 0 . 0 9 6 0 .1 2 1 0 . 1 2 3 0 . 2 8 8 0 . 2 3 7 0 . 1 7 9 0 . 2 4 6 0.041 0 . 0 8 1 0 . 0 2 6 8
7 5 0 0 .1 1 6 0 . 1 2 8 0.1 0 . 1 2 0 . 1 2 5 0 . 2 7 9 0 . 2 2 3 0 . 1 9 5 0 . 2 5 3 0 .03 0 . 0 8 0 . 0 1 8 5

4.2 S a m p le-lev el A tta ck  E x p erim en ts

4 .2 .1  B a se lin e  (Z ero-effort Im p o sto r  A tta ck ) R esu lts  and A n a ly s is

Table 4.3 shows the EER s1 of the nine verifier-template com binations and the 

EERs of “F ” verifier. To generate EERs in Table 4.3, we used Set II to  build the users 

tem plates and Set III to obtain genuine and zero-effort impostor scores. In Table 4.3, 

“F" verifier has three columns: 1) “Lowest E E R p ” gives the lowest, 2) “Avg. E E R p ” 

gives the average, and 3) “S T D p ” gives the  s tan d ard  deviation of E E R s obtained

with 126 different weight combinations.

1 Equal error ra te  (EER) or crossover error ra te  is the  point where false reject ra te  (FR R ) and 
impostor pass rate (IPR) curves intersect. To plot the F R R  and IP R  curves, we calculated a series 
of false reject rates and im postor pass rates by varying the  verification threshold  from 0 to  1 in 
increments of 0.001.
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Table 4.4 is similar to Table 4.3 except we used Set IV instead of Set III to 

generate impostor scores. (We used the same genuine scores to generate EERs in both 

Table 4.3 and Table 4.4). Our observations follow.

O b s e r v a t io n  1: For all M  values, the fusion ("F ") verifier outperform ed 

individual ("R ,” "S,” and "A” ) verifiers. See 'Low est E E R p ” and  "Avg. E E R p ” 

columns under "F” verifier in Tables 4.3 and 4.4.

O b s e r v a t io n  2: Irrespective of the  verifier, lowest EERs were achieved at 

higher M  values (e.g., 300, 350, 500, and 750) and a trade-off exists between M  and 

EERs (i.e., as M  increases, we can expect EERs to  decline).

O b s e r v a t io n  3: We com puted the  absolute difference between the  EER in 

each cell in Table 4.3 and the same cell in Table 4.4 (excluding cells of columns “Avg. 

E E R p ” and “S T D p ”). The average of absolute differences between EE R s in Table

4.3 and Table 4.4 is 0.00998. This means the EER, on average, changes by 0.00998 if 

the  im postors were from Set IV instead of Set III. This shows that E E R s  in Tables 

4-3 and 4-4, though obtained from  two different impostor populations, are not quite 

different.

In Table 4.5, eve give the to ta l num ber of genuine and im postor verification 

a ttem p ts  ex tracted  from Set III and Set IV to generate EERs in Tables 4.3 and  4.4. 

In Table 4.5, we also give the average number of keystrokes in a verification a ttem pt 

(includes genuine and zero-effort impostor) and the average time in seconds taken by 

the users to type a verification a ttem pt.

R eason  for not con sid erin g  m atch in g  pairs b eyon d  750: N ote from 

Table 4.5 th a t it took 14.83 seconds of typing time to generate a verification attem pt



T able 4.5: "Tot. Im postor A tte m p ts ’ and the  "Tot. Genuine A ttem pts" colum ns 
give the total number of impostor and genuine verification attem pts used to calculate 
EERs in Tables 4.3 and 4.4. "Avg. Typing Tim e per A ttem pt" colum n gives the 
average time taken to type a verification attem pt (in seconds). "Avg. #  of Keystrokes 
per Attempt" column gives the average number of keystrokes in a verification attem pt.

M
Tot. Impostor 

A ttem pts
Tot. Genuine 

A ttem pts
Avg. Typing 

Time (in sec.) 
per A ttem pt

Avg. #  of 
Keystrokes 

per A ttem pt
20 10950540 32630 14.83 54.65
40 5439610 16218 29.81 109.53
60 3596320 10715 44.65 163.98
80 2673265 7961 59.47 218.06
100 2119001 6320 74.27 272.03
120 1749125 5218 89.07 326.11
150 1379683 4114 111.24 406.72
300 640836 1918 221.11 805.63
350 530810 1579 257.62 937.49
500 342178 1018 364.24 1328.73
750 189141 564 547.56 2000.15

when M  =  20 and 547.56 seconds when M  = 750. Though all the  verifiers achieved 

lower EERs wdien M  =  750, it is im practical for a continuous verification system  to 

use 750 matching pairs, because for each verification attem pt, the verifier would have 

to wait for nearly 10 minutes. This is the reason why we did not consider beyond 750 

matching pairs in our experiments.

4 .2 .2  Snoop-forge-rep lay  A ttack  P a ra m eters  and  C on figu ration s

We considered four snoop-forge-replay a ttack  param eters for sample-level 

attacks. They are:

1) L en gth  o f  S n oop ed  T ext: is the  num ber of keystrokes for which the 

attacker steals hold and interval latencies from a victim. Depending on various factors, 

including attacker’s intent and victim ’s availability, the attacker can steal few or many
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keystrokes. We experim ented with snooped text of length 20. 50. 100. 200. 600. and 

1200 to see how this param eter impacts the  attack  performance.

For extracting N  snooped keystrokes from user U,. we used the first N  characters 

from U is typing sample in Set I. For example, when we snooped N  =  100 characters 

for user Uu we used the first 100 characters from U2's sample in Set I.

2) G aussian  P ertu rb a tio n  o f  S n o o p ed  L atencies: K eystroke dynam ics 

is a  behavioral tra it, so it is highly unlikely th a t two latencies of the  sam e key (for 

example, two hold latencies of “a” ) will be exactly equal, even if aa" was typed  in 

rapid  succession. From the  snooped keystrokes, assum e an a ttacker learns th a t the 

average key hold latency of “a” is 150ms. If the a ttacker creates a  forgery th a t has 

150ms for every occurrence of “a,” then th is artifact alone can expose the  forgery.

We solved the problem by adding Gaussian noise (zero mean and three standard  

deviations) to pertu rb  the latency values in a forgery. We chose Gaussian because its 

param eters (mean and standard deviation) are easy to estim ate and most programming 

languages can generate a  Gaussian variate. However, an attacker can also choose a 

different perturbation model {e.g., adding noise from uniform distribution), as long as 

the perturbation does not distort the latencies too much. We performed experim ents 

w ithout and with Gaussian perturbation.

3) F ilter in g  O utliers: From the snooped latencies, the attacker can choose 

to  remove outliers. We perform ed experim ents w ith and w ithout filtering outliers. 

W hen we filtered outliers, we discarded any latency greater th an  or equal to  300 

milliseconds.
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T a b le  4 .6 : Tw enty-four a ttack  configurations obtained with different param eter 
settings.

C on figuration
N u m b er

L ength  o f  
S nooped  

T ext

G au ssian
P ertu rb a tio n

F ilter in g
O utliers

M in. Freq. 
o f

O ccurren ce
1 20 YES YES 1
2 50 YES YES 1
3 100 YES YES 1
4 200 YES YES 1
5 600 YES YES 1
6 1200 YES YES 1
7 20 YES NO 1
8 50 YES NO 1
9 100 YES NO 1
10 200 YES NO 1
11 600 YES NO 1
12 1200 YES NO 1
13 20 NO YES 1
14 50 NO YES 1
15 100 NO YES 1
16 200 NO YES 1
17 600 NO YES
18 1200 NO YES
19 20 NO NO 1
20 50 NO NO 1
21 100 NO NO 1
22 200 NO NO 1
23 600 NO NO 2
24 1200 NO NO 3

4) M in im u m  F requency o f  D ig ra p h s in th e  S n o o p ed  T ext: In the

snooped tex t, if a latency (e.g., key hold of “a” ) appeared m ultiple tim es, we used 

its average in the forgery. To improve the forgery, the attacker can choose to use the 

snooped digraphs whose average latency was com puted w ith a t least k  repeats. For 

long snooped tex t lengths, i.e., 600 and 1200, we chose A; to be 2 and 3, respectively. 

However, for shorter lengths (20, 50, 100, and 200), we considered all the  digraphs 

regardless of how m any tim es they repeated; otherwise, we were left w ith too few 

digraphs to create a forgery.

Using the  above a ttack  param eters, we created  24 attack  configurations. (In 

Table 4.6, we list the  24 a ttack  configurations w ith their param eter values.) We
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T able 4.7: Average number of snoop-forge-replay attacks generated per user.

M A v g . N o . o f  “S n o o p -fo rg e-rep la y ” A ttack s p er  U ser
KI K P K H F

20 5594.98 5451.27 5325.65 4528.12
40 3448.91 3377.06 3149.48 2599.54
60 3105.98 3080.52 2946.57 2438.02
80 2839.48 2674.07 2639.32 2235.75
100 2401.59 2261.081 2233.64 1916.44
120 2012.78 1895.34 1872.46 1603.36
150 1526.72 1517.16 1498.85 1284.11
300 805.31 758.38 749.21 651.23
350 690.19 649.92 642.07 549.93
500 483.01 454.82 449.35 381.67
750 321.85 303.05 299.38 254.53

experim ented w ith  24 a ttack  configurations, 11 m atching pairs, and 10 different 

verifier-template pairs. This resulted in 2 4 x 1 1 x 1 0  =  2640 attack experim ents.

Table 4.7 gives the number of snoop-forge-replay attacks we generated against 

each user. Values in Table 4.7 represent averages calculated from all attacks generated 

by the 24 attack configurations and running A lgorithm  1 for 24 hours.

4 .2 .3  E ffectiven ess o f  th e  A ttack s

C om parison  o f a ttack  and baseline using error ra te p lo ts:  In Figure 

4.4, we compare the baseline (zero-effort) im postor pass rates with snoop-forge-replay 

attack pass rates. Panels (a), (b), (c), and (d) in Figure 4.4 show the error rate plots 

for “R,” “S,” “A ,” and “F” verifiers. In each panel, th e  two baseline IP R  curves 

correspond to zero-effort im postor attacks w ith Set III and Set IV, respectively. The 

24 attack  IPR  curves correspond to 24 a ttack  configurations.

Showing error rates for all verifier settings is not practical because we experi­

mented with 11 matching pairs and 10 verifier-template combinations, which gives 110
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settings. So. we chose to show plots corresponding to tlie setting in which a verifier 

had achieved its lowest baseline EER. (We highlighted th e  lowest baseline EE R s in 

b o ld  in Table 4.3).

Table 4.8 gives the maximum, minimum, and average attack EERs and baseline 

EERs corresponding to  the panels (a)-(cl) in F igure 4.4. Table 4.8 shows th a t the 

attack IPR s (in Figure 4.4) markedly increased the  EERs for verifiers which had the 

lowest EER s in our baseline experim ents. The results in Figure 4.4 and  Table 4.8 

also illustrate the unde discrepancy between the snoop-forge-replay a ttack  EERs and 

baseline EERs.

C o m p a r i s o n  o f  a t ta c k  a n d  b a se l in e  u s in g  E E R  p lo ts :  Here we

sum m arize how the  24 a ttack  configurations perform  against 10 verifier-tem plate 

combinations and 11 matching pair settings. In Figures 4.5 and 4.6, panels correspond 

to 10 verifier-template combinations. In each panel, we show the maximum, minimum, 

average, and s tandard  deviation (error bars) of a ttack  EER s and baseline EER s for 

11 m atching pair (M ) settings. The m axim um , m inim um , average, and  standard  

deviations of a ttack  EERs were com puted from EERs corresponding to  24 a ttack  

configurations. From the panels, we observe the following:

1) The “Maximum Attack EER” curves are remarkably higher than  zero-effort 

“Baseline EER ” curves (see Table 4.9 for percentage increase in attack  EERs over the 

baseline). This shows tha t all 11 matching pairs and 10 verifier-template combinations 

were vulnerable to the snoop-forge-replay attack;

2) T he fusion “F ” verifier (see Figure 4.6, panel (b)), which had  th e  lowest 

EERs in our baseline experiments has the highest maximum, minimum, and average
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R -K H  verifier, M -  500 S -K l verifier, M -  300

0.8

0.6 Attack IPRs

Baseline IPRs0.4

Baseline EERs 
-Baseline FRR

0.2

0.2 0.4 0.6 0.8
threshold

0.8 Attack IPRs

0.6

Baseline IPRs
0.4

Baseline EERs
0.2

Baseline FRR

0.4
Threshold

0.6 0.8

(a) (b)
A -K P  verifier, M = 500 *F’ verifier, M = 750

0.8
-Attack IPRs

0.6 Baseline IPRs

0.4
-Baseline FRR

0.2
Baseline EERs

0.2 0.60.4 0.8
threshold

-Attack IPRs

0.6 - Baseline IPRs

0.4' -Baseline EERs

Baseline FRR

0.2 0.4 0.6 0.8
threshold

(c ) (d)

F ig u re  4 .4 : False reject rate (Baseline FRR), zero-effort, impostor pass rates (Baseline 
IPRs) (highlighted by the smaller circles), and 24 snoop-forge-replay attack  IP R  curves 
(highlighted by the large circles) achieved w ith “R ” (a), “S” (b), “A” (c) verifiers 
paired with KH, KI, and KP tem plates respectively and “F ” (d) verifier. In each plot, 
the Baseline EERs (crossover points between Baseline FR R  and Baseline IP R  curves) 
are marked by a box.

attack  EERs. This dem onstrates th a t the  best perform ing verifier under zero-effort 

attacks could turn  out to be the most vulnerable verifier under a non-zero effort attack;

3) The m axim um  and m inim um  a ttack  E E R  curves and error bars indicate 

th a t some attack  configurations are more effective than  the  others. In Section 4.2.4, 

we discuss which attack configurations are more effective; and

4) The “Minimum Attack EER ,; curves show that, even for the worst performing 

attack configurations, the “R .” “A ,” and “F ” verifiers had considerably high attack

EERs compared to  their baseline EERs.
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F ig u re  4.5: Maximum ( “Max. A ttack E E R ” curves), average ( “Avg. A ttack E E R ” 
curves), minimum ( “Min. Attack EER” curves), and standard deviations (Error bars) 
of attack  EERs achieved from 24 snoop-forge-replay a ttack  configurations against 
“R ” (a -  c), “S” (d -  f ) ,  “A” (g - h) verifiers and KI, K P, and KH tem plates. Two 
Baseline EER curves “Baseline EER (Set III)” and “Baseline EER (Set IV)” represent 
EERs from Tables 4.3 and 4.4. ( “Baseline E E R  (Set I I I ) ” and “Baseline E E R  (Set 
I V ) ” curves are overlapping in most panels.) Legends are the  sam e for panels (a) 
through (j).
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F igure 4.6: Maximum ( “Max. A ttack E E R ” curves), average ( “Avg. A ttack E E R ” 
curves), minimum ( “Min. Attack EER” curves), and standard deviations (Error bars) 
of attack EERs achieved from 24 snoop-forge-replay attack configurations against "A” 
(a) verifier and KH tem plate and “F ” (b) verifier. Two Baseline EER curves “Baseline 
EER (Set III)” and “Baseline EER (Set IV)” represent EERs from Tables 4.3 and 4.4. 
( “Baseline E E R (Set I I I ) ” and “Baseline E E R  (Set I V ) ” curves are overlapping in 
most panels.) Legends are the same for panels (a) through (j).

4 .2 .4  P erform ance A n a ly sis  o f  A tta ck  P aram eters

To observe the  perform ance of a ttack  param eters, in Figure 4.7, we give the 

a ttack  EER s of “R” (panels a and b), “S” (panels c and d), “A” (panels e and / ) ,  

and “F ” (panels g and h) verifiers configured w ith  750 m atching pairs and different 

a ttack  param eters. T he EER s w ith the  rem aining m atching pairs (40, 60, 80, 100, 

120, 150, 300, 350, and 500) behave the sam e way as th e  panels in F igure 4.7. See 

Appendix B for the EE R  plots with the rem aining matching pairs.

In Figure 4.7, panels a, c, e, and g, “Filtering +  G aussian” (solid lines) 

correspond to configurations when the outliers were filtered, latencies were perturbed 

with Gaussian, and all snooped latencies were used to compute forgeries, irrespective 

of their frequency of occurrence. “No Filtering +  Gaussian” (dashed lines) correspond 

to similar settings except outliers were not filtered. In panels b, d, fi and h, “Filtering 

+  Min. Frequency” (solid lines) correspond to  configurations when the outliers were 

filtered, latencies were not perturbed w ith  G aussian, and only the  latencies th a t
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F ig u re  4 .7 : A ttack EERs under different attack configurations w ith “R ” (a -  6), “S” 
(c -  d), “A” (e -  / ) ,  and “F ” (g -  h) verifiers. EERs are com puted using M  =  750. 
Solid lines represent a ttack  EERs when the  outliers are filtered and the  dashed lines 
represent attack  EERs when the  outliers are not filtered.
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T ab le  4 .8 : A tt nek EERs of the top performing verifier settings in baseline experiments.

Verifier
Baseline 

EERs 
(Set III & IV)

M aximum
A ttack
EER

Minimum
Attack
EER

Average
A ttack
EER

R KH. M  = 500 0.116. 0.096 0.837 0.673 0.81
S KI. M  =  300 0.124. 0.116 0.742 0.224 0.514
A KP, M  =  500 0.187. 0.179 0.811 0.429 0.618

F, M  =  750 0.032. 0.03 0.965 0.679 0.905

occurred more than once in the  snooped tex t were used to  compute forged latencies. 

“No Filtering -f Min. Frequency’" (dashed lines) correspond to similar settings except 

outliers were not filtered. O ur observations follow.

1) Forgeries using short snooped te x t of 20 to  100 characters achieved very 

high EERs ranging from lowest 0.43 (with “A-KH” in Figure 4 .7(f))  to  highest 0.92 

(with “F ” in Figure 4.7(h)). However, th e  lim itation  w ith short snooped tex t is 

th a t it produces forgeries in which few characters repeat many tim es. Consequently, 

the forged tex t m ay contain misspelled words, linguistically m eaningless tex t, and 

gram m atical violations. However, given th a t  cu rren t keystroke-based continuous 

verification system s do not im pose any checks on the  te x t typed by the  user, the 

forgeries created with short snooped text are still effective.

In panels (c) and (e) in Figure 4.7, note th a t as the  snooped length increases, 

the attacks become less effective against "S” and “A” verifiers. We explain why this 

happens in Section 4.2.6.

2) Overall, we achieved higher a ttack  EER s, ranging from lowest 0.43 (w ith 

“A-KH” in Figure 4.7(f)) to  highest 0.965 (with “F” in Figure 4.7(h)), when the outliers 

in the snooped tex t were filtered, latencies were not perturbed w ith  G aussian noise,
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T a b le  4 .9 : Minimum to maximum percentage increa.se in attack EERs over baseline 
EERs across all the matching pairs.

Max. A ttack 
EER

Avg. A ttack 
EER

Min. A ttack 
EER

Baseline (Set III) 125.5% to% 
2915.62%

69.33% to  
2730.55

12.84% to 
2075.41%

Baseline (Set IV) 128.8% to 
3116.67%.

71.89% to  
2919.26%

18.51% to 
2220.44%

and only the latencies tha t occurred more than once in the  snooped tex t were used to 

compute forged latencies. A ttack EERs corresponding to these param eters are shown 

as solid curves in panels b, d, f, and h in Figure 4.7.

In comparison, we achieved lower attack  EERs, ranging from the  lowest 0.21 

(w ith “S-K P” in Figure 4.7(c)) to  highest 0.932 (w ith “F ” in F igure 4.7(g)), when 

the outliers were not filtered, latencies were perturbed w ith Gaussian, and all snooped 

latencies were used to compute forgeries, irrespective of their frequency of occurrence. 

A ttack EERs corresponding to these param eters are shown as dashed curves in panels 

a, c, e, and g in Figure 4.7.

4 .2 .5  A n a ly s is  o f  A ttacks A g a in st th e  “R ” V erifier

In the solid curves of Figure 4.7(a), note the  drop in EERs when the  snooped 

tex t lengths are 20, 50, and 100. W hen we used, 1) 20, 50, and 100 snooped tex t 

lengths, 2) Gaussian perturbation , and 3) outlier filtering, we achieved lower attack  

EERs with :tR” verifier. This occurred because the normalized disorder score (see :‘R" 

verifier, Section 3.6, Page 34) is sensitive to  the size of A train and A test. We explain 

w ith the following example.
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Assume A tr(un and A tf st contain five digraphs. If there is one mismatch between 

A tl,nn and A ttst. it means 40% or two out of the  five digraphs do not have the same 

rank. This gives a normalized disorder score of 0.166C7. Now, assume A train and A test 

contain 20 digraphs. One mismatch between A train and A test leads to having two out of 

20 (or 10%) digraphs that do not have the same rank. This gives a normalized disorder 

score of 0.01. So, even if A train and A test have the sam e num ber of m ism atches, the 

normalized disorder between A train and A test is higher when the array sizes are lower.

Filtering outliers from snooped tex ts of length 20, 50, and 100 decreased the 

size of A train and A test arrays. G aussian pertu rbation  fu rther increased the  disorder 

score. The two param eters together increased the normalized disorder score between 

the tem plate and the forgery and thus lowered the attack  EERs. However, EERs for 

snooped tex t of lengths 200, 600, and 1200 were high in spite of adding G aussian 

perturbation because the arrays were large even after outlier filtering.

W hen the  outliers were not filtered, the size of th e  arrays were large for all

snooped text lengths. So the attack EERs were high for all snooped text lengths (see

dashed curves in Figures 4.7(a) and 4.7(b)). Therefore, except when we perform ed

both  Gaussian pertu rbation  and outlier filtering w ith snooped tex t of length 20, 50,

and 100, the attack EERs for “R” verifier were high for all configurations.

4 .2 .6  A n a lysis  o f  A ttack s A g a in st “S ” and “A ” V erifiers

In Figures 4.7(c) and 4.7(e), we observe tha t the attack EERs decreased as the 

snooped tex t length increased. The reason why EERs decreased when snooped text 

length increased is related to  the d istribu tion  of digraphs in English tex t. In Figure 

4.8, we show the  probability d is tribu tion  of the  digraphs. To plot the  d istribution ,
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English Digraphs Ranked by Frequency of O ccurence

F ig u re  4 .8 : Probability distribution of English digraphs. Probabilities were computed 
from the digraph frequencies given in [44],

we used digraph frequencies in [44], which calculated the  frequencies by considering 

997,380 digraph instances. In Figure 4.8, notice th a t the  first few digraphs cover a 

m ajor portion of the probability distribution compared w ith the rest of the digraphs. 

In fact, the  40 most frequent digraphs account for 50.71% of all digraph instances. 

So, when the snooped tex t is long (600 and  1200 characters), th e  m ajority  of the 

digraphs occur only once. For example, from the  d istribution  shown in Figure 4.8, 

if the snooped tex t has 600 digraphs, out of the  676 possible English digraphs, we 

can expect only 94 digraphs to occur m ore th an  once in the snooped tex t and the 

rem aining 582 digraphs either occur once or do not occur at all.

For the digraphs that, occurred only once in the snooped tex t, we used a  single 

snooped latency value in the forgery. This latency value could have been an inaccurate 

estim ate of the “tru e” latency value. D uring the  attack , when we replayed single 

latency values, the majority of the digraphs were considered “invalid” by the “S” and 

“A” verifiers. This lowered the attack EERs.
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We m itigated the  problem  by replaying only those* digraph latencies th a t 

occurred a t least two or three times in the  snooped tex t. This gave us a b e tte r 

estim ate of the mean of the victim user's latencies, and as a result, the forgery had a 

be tte r chance of being considered as “valid.” In the  right side panels (b. d. /. and h) 

of F igure 4.7, with 600 characters snooped tex t, we used latencies of those digraphs 

th a t occurred a t least twice and with 1200 characters, we used digraphs tha t occurred 

a t least thrice. Consequently, from Figures 4.7(d) and 4.7(f), we see th a t the attack  

EERs are high a t 600 and 1200 snooped tex t lengths.

A ttack EERs increased when we filtered the  outliers in the  snooped tex t. In

Figures 4 .7(e)-4.7(f), the  solid curve's (which represent filtering outliers) an* above

their corresponding dashed curves (which represent no outlier filtering). By filtering

the  outliers we were able to  forge latencies th a t  were closer to  th e  victim  user’s

latencies, and therefore, were able to increase the  a ttack  pass rates.

4 .2 .7  A n a ly sis  o f A tta ck s A g a in st th e  “F ” V erifier

The “F ” verifier, which had the  lowest EERs against zero-effort im postor 

a ttacks had surprisingly high a ttack  EERs. From Figures 4.7(g) and 4.7(h), we 

observe the  following: as in “R ,” the  EE R s for “F ” verifier were high for all a ttack  

configurations. A contributing  factor for th is is th a t  the  “R” verifier was weighted 

more in the t;F” verifier.

In Figures 4.7(g) and 4.7(h), the solid curves are over the dashed curves, which 

shows th a t filtering the outliers increased the a ttack  EERs. In Figure 4.7(g), at a few 

points the  dashed curves are over the  solid curves when the snooped tex t length is
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sh o rt. This indicates the influence of "IT' verifier, which had lower a ttack  EERs for 

short snooped text with Gaussian perturbation  and outlier filtering.



C H A P T E R  5 

C O N C L U S IO N S  A N D  F U T U R E  W O R K

In th is d issertation, we presented a  new a ttack  called “snoop-forge-replay” 

attack  th a t synthesizes keystroke forgeries using tim ing inform ation stolen from 

victim users. Our results from feature-level and 2640 sample-level attack  experiments 

(involving 150 users, four state-of-the-art continuous verifiers, three types of keystroke 

latencies, and 24 attack configurations) reveal th a t snoop-forge-replay attacks are very 

effective in increasing EERs. W ith 20 to 1200 snooped keystrokes, the average sample- 

level snoop-forge-replay a ttack  EER s were between 0.487 and 0.912. In comparison, 

the baseline EERs w ith zero-effort im postor a ttacks were between 0.03 and 0.285 

(i.e., the  a ttack  increased EE R s from between 69.33% to  2730.55%). O ur results 

additionally show th a t effective keystroke forgeries can be created w ith  a) as low as 

20 to 100 characters of snooped tex t and b) old legacy keystroke tim ing information.

The main reason for the success of snoop-forge-replay attack is th a t keystroke- 

based continuous verification m ethods solely rely on users' latency information, which 

can be easily forged, as dem onstrated in this dissertation. We opine th a t by integrating 

text-based and language-based tra its  into the verification process such as -  1) the 

rate at which a  user misspells words or repeats letters, 2) type of words for which the 

user has latency outliers, 3) how the  user revises tex t i.e., revision p a tte rn , and so

60
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on. the im pact of the attack  can be m itigated. In our fu ture work, we will pursue 

the problem of designing keystroke based verification system s tha t are resilient to 

snoop-forge-replay attacks.



A P P E N D IX  A

A D D R E S S E S  O F W E B  P A G E S  U S E D  A S “D U M M Y  T E X T ”
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W eb ad d resses o f  20 W ik ip ed ia  pages used  in our "dum m y te x t” file

1. en. Wikipedia. org/wiki/Htstory_of- Um tedStates

2. en. Wikipedia. org/wiki/World- W a rJ I

3. en.wikipedia.org/wiki/Air-warfare-of- World- War-II

4. en. wikipedia.org/wiki/Effects-of- World- W a r J I

5. en. wikipedia. org/wiki/ United-Nations

6. en.wikipedia.org/wiki/World- W a r J

7. en.wikipedia.org/wiki/ Causes-of1 World_ War A

8. en.wikipedia. org/wiki/Cold_ War

9. en. wikipedia. org/wiki/Great-Pyramid-oj1 Giza

10. en. wikipedia. org/wiki/Stonehenge

11. en. wikipedia. org/wiki/Colosseum

12. en.wikipedia.org/wiki/Great_ WalLof-China

13. en.wikipedia.org/wiki/War-on-Terror

14. en. wikipedia. org/wiki/Gulf1 War

15. en.wikipedia.org/wiki/Vietnam- War

16. en.wikipedia.org/wiki/Grand-Canyon

17. en. wikipedia. org /w iki/  Christopher-Columbus

18. en.wikipedia.org/wiki/Albert-Einstein

19. en.wikipedia.org/wiki/Isaac-Newton

20. en.wikipedia.org/wiki/NASA



A P P E N D IX  B

E E R  P L O T S U N D E R  D IF F E R E N T  A T T A C K  C O N F IG U R A T IO N S
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F ig u re  B . l :  Com parison of a ttack  EER s using a ttack  configurations 1-12 (plots 
a, c) and a ttack  configurations 13-24 (plots b, d) for "R” verifier. Refer the  Table
4.6 to see the param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent a ttack  EERs 
when the outliers are not filtered. Plots a and b correspond to M  =  40, plots c and d 
correspond to  M  = 60.
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F ig u re  B .2 : Comparison of a ttack  EER s using a ttack  configurations 1-12 (plots 
a. c) and a ttack  configurations 13-24 (plots b, d) for "R" verifier. Refer the  Table
4.6 to  see the param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack  EERs 
when the outliers are not filtered. Plots a and b correspond to M  =  80. plots c and d 
correspond to M  =  100.
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F ig u re  B .3 : Comparison of attack  EERs using attack  configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d ) for “R” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. P lots a and b correspond to  M  = 120, p lots c and  d 
correspond to M  = 150.
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F ig u re  B .4 : Comparison of attack EERs using attack  configurations 1—12 (plots a, 
c) and attack configurations 13-24 (plots b, d) for “R” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. Plots a and b correspond to  AI =  300, plots c and  d 
correspond to M  =  350.
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F ig u re  B .5 : Com parison of a ttack  EERs using a ttack  configurations 1-12 (plots 
a) and attack  configurations 13-24 (plots b) for "R.” verifier. Refer the Table 4.6 to 
see the  param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. P lots correspond to M  =  500.
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(d)

F ig u re  B .6 : Com parison of a ttack  EERs using a ttack  configurations 1-12 (plots 
a, c) and a ttack  configurations 13-24 (plots b, d) for “S” verifier. Refer the  Table
4.6 to  see the param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. Plots a and b correspond to M  =  40, plots c and d 
correspond to  M  = 60.
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(d)

F ig u re  B .7 : Com parison of a ttack  EERs using a ttack  configurations 1-12 (plots 
a, c) and a ttack  configurations 13-24 (plots b, d ) for “S” verifier. Refer the  Table
4.6 to see the param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. Plots a and b correspond to M  =  80, plots c and d 
correspond to  M  = 100.
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F ig u re  B .8 : Comparison of attack  EERs using a ttack  configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. P lots a and b correspond to  M  =  120, p lo ts c and  d 
correspond to M  =  150.
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F ig u re  B .9 : Comparison of a ttack  EERs using attack  configurations 1—12 (plots a, 
c) and attack configurations 13-24 (plots b, d) for “S” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. P lots a and b correspond to  M  =  300, p lots c and  d 
correspond to M  =  350.
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(b)

F ig u re  B .10 : Com parison of a ttack  EE R s using a ttack  configurations 1-12 (plots 
a) and attack  configurations 13-24 (plots b) for “S” verifier. Refer the  Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. Plots correspond to  M  =  500.
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(d)

F ig u re  B . l l :  Com parison of attack  EERs using a ttack  configurations 1-12 (plots 
a, c,) and a ttack  configurations 13-24 (plots b, d) for “A” verifier. Refer th e  Table
4.6 to  see the  param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. Plots a and b correspond to M  — 40, plots c and d 
correspond to  M  =  60.
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F ig u re  B .1 2 : Comparison of a tta ck  EER s using a ttack  configurations 1-12 (plots 
a, c,) and a ttack  configurations 13-24 (plots b, d ) for “A” verifier. Refer th e  Table
4.6 to  see the  param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. P lots a and b correspond to M  =  80, plots c and d 
correspond to  M  = 100.
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(d)

F ig u re  B .1 3 : Comparison of attack EERs using attack configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d) for “A” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. P lo ts a and b correspond to  M  =  120, p lots c and d 
correspond to  M  = 150.



78

"A " Verifier

0.2

“ “ Kl Filtering * Gausvian 
Filtering - Oaususui 

“ “ KH. Filtering -  Gaus.viar 
•••K l. N o I illcnng (iaussian 
■••KP. No f iltering Gaussian 
•••K H . N o F iltering - Gaussian

100 200 600
Snooped T ext Length (in ch a rac te rs)

1200

(a )
"A " V erifier

•Ta'ViAMWwWH
“ “ Kl. Filtering '  Min Frcquencv j
“ “ KP. F iltenng t Mm. i requertev :
■“ K l!. Filtering Min Frcquencv |
•■•KI. No Filtering - Mm Frcqucncv I

: ***KP. N o  Filtering -  Min Frcqucncv :
[■••KH. No Filtenng * Min. F requents

100 200 600 1200 
Snooped T ext Length (in ch arac te rs)

(b)
"A " V erifier

0.8
0.6 ......................................... ...
0.4

0.2

V

“ Kl. Filtenng '  G aussian 
~ “ KP. F iltenng • Gaussian 
“ “ K II. Filtering -  Gaussian 
••■Ki. N o Filtering • Gaussian 
***KJ\ N o Filtenng - Gaussian 
• " K H .  N o Filtenng - Gaussian

100 200 600
Snooped Text Length (in ch a rac te rs)

1200

(c)
■’A ” V erifier

“ “ KI. F iltenng • Min. Frcqucncv 
"“ KP, Filtering • Mui Frequence 
“ “ KH, Filtering * Min Frcqucncv 
•••K I. N o Filtering • Min Frcqucncv 
•”*KP. N o Filtering t Mm. Frcqucncv 
•••K H . N o  F iltering - Mm. PrequeiK v i

100 200 600
Snooped T ext Length (in ch arac te rs)

1200

(d)

F ig u re  B .14 : Comparison of attack EERs using attack configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d ) for “A” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. P lo ts a and b correspond to  M  =  300, plots c and  d 
correspond to  M  =  350.
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F ig u re  B .15 : Com parison of a ttack  E E R s using a ttack  configurations 1-12 (plots 
a) and a ttack  configurations 13-24 (plots b) for “A” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. Plots correspond to M  = 500.
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(d)

F ig u re  B .16 : Com parison of a ttack  EERs using a ttack  configurations 1-12 (plots 
a, c) and attack  configurations 13-24 (plots b. d ) for “F" verifier. Refer the  Table
4.6 to  see the  param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. Plots a and b correspond to M  = 40, plots c and d 
correspond to  M  — 60.
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(d)

F ig u re  B .1 7 : Com parison of a ttack  EER s using a ttack  configurations 1-12 (plots 
a, c) and  a ttack  configurations 13-24 (plots b, d) for “F :: verifier. Refer the  Table
4.6 to  see the  param eter values used in each configuration. The solid lines represent 
attack EERs when the outliers are filtered and the dashed lines represent attack EERs 
when the outliers are not filtered. Plots a and b correspond to M  = 80, plots c and d 
correspond to  M  = 100.
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(d)

F ig u re  B .1 8 : Comparison of attack EERs using attack configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d ) for “F ” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. The solid lines represent attack 
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the  outliers are not filtered. P lo ts a and b correspond to  M  =  120, p lo ts  c and d 
correspond to  M  = 150.



83

" F "  V erifier

0.8

~  0.6

0.4

0.2

“ filtering  • G aussian 
■•No Filtering • fiau ss ia

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

(a )
" I "  V erifier

1200

1
0.8 

, 0.6 

1 0.4 

0.2

“ •F iltering  • Mm Frequency 
•••N o  Filtering - M in. Frcqucncv

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

1200

(b)
'F "  V erifier

Filtering - G aussian 
N o Filtering • G aussian

0.4

0.2

V 100 200 600
Snooped T ext Length (in ch a ra c te rs)

(c )
" F "  V erifier

1200

— Filtering - M in Frequency 
•••N o  F iltenng  -  Mm. Frequency

0.2

0 100 200 600
Snooped T ext Length (in ch a ra c te rs)

1200

(d)

F ig u re  B .19 : Comparison of attack EERs using attack configurations 1-12 (plots a, 
c) and attack configurations 13-24 (plots b, d) for “F” verifier. Refer the Table 4.6 to 
see the param eter values used in each configuration. T he solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. P lo ts a and b correspond to  M  =  300, p lots c and  d 
correspond to  M  = 350.
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F ig u re  B .20 : Com parison of attack  E E R s using a ttack  configurations 1—12 (plots 
a) and attack  configurations 13-24 (plots b) for “F ” verifier. Refer the  Table 4.G to  
see the param eter values used in each configuration. The solid lines represent attack  
EERs when the outliers are filtered and the dashed lines represent attack EERs when 
the outliers are not filtered. Plots correspond to M  =  500.
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