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ABSTRACT

Epileptic seizures affect as many as 50 million people and often occur with

out warning or apparent provocation. We explore the applicability of noise-assisted 

Ensemble Empirical Mode Decomposition (EEMD) for patient-specific seizure antic

ipation synchronization measures as applied to the EEMD intrinsic mode function 

(IMF) output. Intracranial EEG data were obtained from pre-surgical monitoring 

at the Epilepsy Center of the University Hospital of Freiburg. Data from twenty 

patients were analyzed. For each recorded channel, non-overlapping time windows 

were submitted to the EEMD algorithm, producing twelve levels of IMFs. IMF syn

chronization measures (mean and maximum coherence, mean and maximum cross

correlation, correlation coefficient and synchronized phase-locking value) for channel 

pairs were computed and smoothed with a 20-point moving average, producing IMF- 

x data. Statistical distributions of IMF-x synchronization data were determined for 

three hours of interictal training data. Three hours of interictal validation data were 

used to determine the smallest zero-false-positive threshold (multiples of 0.5 standard 

deviations of IMF-a; data) for each channel pair and IMF level. These patient-, IMF 

level-, and channel pair-specific IMF-z thresholds were compared against periictal (60 

minutes preictal with 15 minutes ictal/postictal) IMF-rr data for each seizure. Our 

study shows that while not all channel pairs are able to detect every ictal event, low 

IMF levels containing frequency components greater than ~1 Hz can discriminate



between interictal and periictal activities. The anticipation window for channel pairs 

detecting all ictal events frequently ranged from 30 to 53 minutes prior to clinical 

manifestation. We propose an anticipation optimality index for a joint indicator of 

sensitivity and earliest anticipation times useful for selection of relevant channel pairs 

and IMF levels. Generalization of the analyzed synchronization measures may be 

appropriate for some patients, while other patients may require preferential selection 

of these measures. For the majority of patients, the electrode pairing type holds 

some relevance to performance assessment values. A strong indication of IMF-level 

dependence of anticipation performance data was shown, suggesting seizure dynamics 

in the patient-specific scenario manifest within certain frequency bandwidths. The 

patients with a hippocampal seizure origin show better sensitivity with our algorithm 

than patients with neocortical seizure origin.
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PREFACE

The inability to forecast or recognize an upcoming seizure is one of the most 

debilitating aspects of epilepsy. The work of this study explores the potential for early 

anticipation of seizure events using signal processing, machine learning, and statistical 

techniques. The intermediate goal of this work is to develop a warning system for 

upcoming seizures. The ultimate goal of this work is to extend this warning system 

to one that can provide effective interventional therapy, such that the brain dynamics 

of an upcoming seizure can be redirected to a normal state.
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CHAPTER 1

INTRODUCTION

Since the advent of the electroencephalogram (EEG), clinicians and researchers 

have sought the electrophysiological markers throughout seizure events. Identification 

of impending seizures has been an area of interest for the past several decades. 

With the advent and ubiquity of computing resources, researchers have investigated 

biopotential recordings leading to seizure activity in a highly quantitative way using 

signal processing, statistical, machine-learning and modeling techniques. The current 

knowledge of precursorial and generative biopotential activities that lead to seizures, 

however, still remains limited.

1.1 Epilepsy

Ranked as the third most common neurological disorder worldwide, epilepsy 

affects between 0.6% and 0.8% of the world’s population [1]. Of this approximate 50 

million people with epilepsy, about 3 million cases are found in the United States alone 

[2]. Additionally, the discovery rate of new epilepsy cases is increasing as low-income 

countries are gaining access to better medical diagnostic resources [2].

Seizures occur as a result of various acute or chronic problems, including 

infection, stroke, metabolic disorder, traumatic brain injury, dementia, Alzheimer’s, 

illicit drug use, or other idiopathic or unknown causes. However, generally speaking,
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epilepsy is a neurological disorder whose hallmark symptom is the recurrence of seizure 

episodes. Seizures manifest in a myriad of ways, ranging from subtle, short-lived 

absence seizures to the more overt, convulsive tonic-clonic seizures. Likewise, seizures 

may originate from an epileptogenic focus, a particular neuron or localized group 

of neurons that promote seizure activity, or from a less-defined cause or dispersed 

anatomical region. [3]

One of the most debilitating aspects of epilepsy is the suddenness by which 

a seizure can occur. While some epileptics (more prevalently for those with mesial 

temporal lobe epilepsy) experience a premonition, or aura, prior to a seizure event, 

many epileptics are unaware of an upcoming seizure [4-7]. The ramifications of this 

unpredictability can be severe for the patient’s overall quality of life and psychological 

well-being. This disorder can vastly limit the epileptic’s ability to perform typically 

routine activities found in both daily and work life, including examples such as driving 

and childcare. Further, it can lead to depression, confidence and other self-image 

issues, and even increased risk of injury or untimely death. [8- 12]

1.2 In te rven tiona l T herap ies an d  T h e ir Side Effects 

Currently, a number of interventional therapies may functionally limit or 

suppress seizure events. The primary clinical intervention by which epilepsy is most 

often managed is through the use of pharmacology. Antiepileptic drugs (AEDs), or 

antiseizure medication, have been shown to reduce or completely suppress seizure 

episodes for up to 65% of new-onset epileptic sufferers [3]. In some cases, ideal 

medication and dosage may not be adequately determined, leading to intractability
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[13]. In other cases, the use of an AED may initially reduce seizures, but eventually 

lose its effectiveness due to increased patient tolerance [3]. Further, since the AEDs 

must be consistently present in the bloodstream in order to suppress seizures, their 

chronic use is subject to patient-compliance issues, particularly if the patient continues 

to have seizure episodes even if at a much reduced rate [14]. While AEDs are the 

most prevalent clinical therapy, researchers have shown several mild to even severe 

side effects associated with their chronic use. These side effects may manifest in a very 

broad array of general and idiosyncratic effects for each AED. Often seen side effects 

for many AEDs include dizziness, fatigue, insomnia, depression, reduced cognition 

speed, lowered IQ, limited memory, aggressiveness, and neuronal apoptosis [15-21].

In pharmacologically-intractable cases, surgical resection of focal regions is 

often a viable alternative. Seizures that consistently originate from a similar brain 

region (or epileptogenic focus) can be abolished by removing the seizure-generating 

tissue. While this intervention is only possible for well-defined foci found away from 

critical cognitive and speech brain regions, the potential risk involved in the highly 

invasive nature of these types of procedures is often regarded as a higher-tier measure. 

Surgical resection of epileptic foci can successfully eliminate seizures up to 60-70% of 

the time (with or without supplemental AED administration) [3]. Despite the relative 

success of surgical intervention, patients with concerns of surgical complications may 

be hesitant to pursue such therapy [22],

Yet another alternative for seizure suppression includes electrical stimulation 

therapies such as vagal nerve stimulation (VNS), deep-brain stimulation (DBS), elec- 

troconvulsive therapy (ECT), and subdural cortical stimulation. Although VNS and



DBS can reduce seizure frequency ranging from 50% to complete control in approxi

mately half of the patients, these approaches have an open-loop, chronic stimulation 

frequency [22-24], This blind stimulation is not designed to be responsive to real-time 

brain activities, and thus is poorly targeted toward addressing seizure-generative brain 

dynamics. Additionally, these treatment paradigms are often coupled with continued 

AED administration, so relief from chronic side effects of antiseizure medications 

is limited. Further, in some cases, the mere implantation of electrodes can have 

placebo effects on reduced seizure frequency, calling into question the efficacy of these 

open-loop electrical stimulation treatments [22]. The use of electroconvulsive therapy 

(ECT), previously known as electroshock therapy, has also been attempted as an 

additional method for simultaneously suppressing seizures and combating depression 

[25, 26]. Although effective in some cases, ECT itself imposes a type of seizure 

upon the patient and, thus, may simply be a measure for replacing a natural seizure 

event with an artificial one. Further, many people consider this treatment to be 

barbaric. These open-loop systems are inherently limited, by simply periodically 

stimulating brain tissue at a defined rate. Although in some systems the stimulations 

can be addended by an external control device by the patient, responsive stimulation 

based on seizure-generative brain dynamics is not employed. However, recently, 

an advanced acute electrical stimulation system that actuates an adaptive response 

neurostimulation has been developed. The system from NeuroPace, Inc. (Mountain 

View, CA), is currently in clinical trials. While the system has shown some promise, 

it relies on the early detection of a seizure event, rather than employing a preemptive 

stimulation prior to a seizure episode. Nonetheless, the system from NeuroPace, Inc.,
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is currently the state of the art in acute electrical stimulation for the treatment of 

epilepsy.

1.3 General Nom enclature in Epileptic Seizures

Traditionally, people suffering from epileptic seizures have undergone clinical 

diagnosis from medical doctors and epileptologists by EEG analysis. The diagnoses 

of seizure onset, duration, and end by these medical professionals are considered by 

researchers as the “gold standard.” The accepted nomenclature describing the brain 

activity of an electroencephalographic recording during a seizure episode is known as 

ictal activity. The brain dynamics during the time just prior to the seizure onset, or 

ictal event, is referred to as the preictal (sometimes written as pre-ictal) time period. 

The time period just following a seizure, or ictal event, is considered postictal, or 

post-ictal. For the purposes of this paper, we use the term periictal to indicate the 

combination of preictal and ictal time periods, and, in some cases, the addition of the 

postictal time period, though the postictal period holds less importance in the work 

shown here. In epilepsy, brain activity shown in electroencephalographic recordings 

during the time between seizures that does not include the preictal, ictal, and postical 

periods can be described as interictal (Figure 1.1).



periictal

interictalinterictal preictal postictal

Figure 1.1: The nomenclature of a seizure event. In an electroencephalographic recording, the seizure episode itself (shaded red) 
is known as the ictal period. A postictal period occurs directly after the seizure, and a preictal period (shaded yellow) occurs 
before the ictal event. The preictal period is difficult to determine and may extend from seconds to hours before a seizure. 
The combination of the preictal, ictal, and postictal periods can be collectively referred to as the periictal period. For epilepsy 
patients, the time periods between periictal periods are known as interictal. The preictal period is of key interest for researchers 
attempting to anticipate or predict upcoming seizures.

05
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While the ictal event is relatively well-defined time-wise by the assessment of 

the clinician, the preictal and postictal lengths are less certain and may vary from 

patient to patient as well as seizure to seizure. In particular, a great deal of research 

has been undertaken by others in an attem pt to identify the existence and extent of 

the preictal brain state, but with only limited success and highly-varied estimates, 

ranging from seconds to hours. Additionally, characteristic brain activity that may 

indicate a preictal progression toward a seizure state may be intermittent or short

lived, further complicating the delineation between the interictal and preictal periods. 

Some researchers have suggested that in some seizure episodes no preictal period 

exists, and the seizure spontaneously initiates. Therefore, discernment of EEG brain 

activity that leads to a seizure episode is inherently challenging. [27]

1.4 Tim ing of Seizure Identification

Seizure identification can be accomplished through a number of scenarios, 

effectively related to the timing of the identification (Figure 1.2). In both post-seizure 

analysis and detection of a seizure episode, the electroencephalographic recordings at 

many electrode locations show a distinct, large amplitude, rhythmic activity. In these 

cases, the identification of an ictal event is relatively straightforward. Unfortunately, 

identification of a seizure after its end or during the event itself does not provide 

sufficient warning for any action to be made prior to the seizure onset, though there 

may be benefits for early detection that could lead to an intervention that shortens 

the duration of an active seizure.
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Figure 1.2: The timeline of seizure identification. The difficulty in identification of 
seizure activity depends on the timing at which the identification is made. In this 
chart, difficulty increases as researchers move to the right. For the current research 
presented, seizure anticipation is emphasized.

The main interest in the current research, however, is to identify an upcoming 

seizure before its onset, with the ultimate future goal to not simply shorten a seizure, 

but to eradicate it completely. To do so, knowledge of an upcoming seizure is necessary 

prior to the seizure onset, thus the anticipation or the prediction of a seizure is 

required. Although the idea of anticipation and prediction are relatively similar with 

regard to the timing at which a seizure is identified (i.e., before the seizure onset), 

the difference between the two terms is based on the estimation of knowing when 

the actual seizure would occur based on the anticipated or predicted identification. 

Perfect seizure prediction will identify the seizure onset time exactly, but in practice 

an acceptable seizure prediction produces an estimate that a seizure event will fall 

within a so-called seizure occurrence period (SOP) as described by Winterhalder et al. 

[28] (Figure 1.3). With the overarching intent of preseizure knowledge to be useful as a 

warning system or initiation of an interventional therapy, a seizure prediction horizon 

(SPH) has also been incorporated in Winterhalder et al.'s approach [28]. Seizure 

anticipation, however, holds less-stringent, more general forecasting that a seizure 

will occur in the “near future,” but implies more uncertainty of the actual time of the 

seizure activity onset and less concern for the SPH. The research proposed herein can
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more accurately be described as seizure anticipation, rather than seizure prediction, 

by emphasizing the identification of an upcoming seizure within a relatively longer 

time frame (up to one hour before a seizure) without attempting to estimate a narrow 

seizure occurrence period. While the two can be considered to be relatively similar 

given the arbitrary lengths of SOPs, we feel that the phrase “seizure anticipation” is 

more appropriate in the context of this research.

alarm

t
se izure  predic t ion  

hor izon

seizure onset
t

se izu re  o c c u r r e n c e  per iod

time

Figure 1.3: Seizure prediction parameters. A graphic indicating the method by which 
seizure prediction parameters are considered. According to Winterhalder et al., an 
alarm must be initiated early enough (the seizure prediction horizon, or SPH) for the 
action of an intervention to drive the system away from a seizure state which would 
normally occur during a given time (the seizure occurrence period, or SOP). In their 
case, they evaluated an assummed fast-acting intervention such that the SPH was 5 
seconds and maintained a SOP of 30 minutes (Note: This image is not shown at scale 
for their assertion). Image adapted from [28].

1.5 Purpose of Early Seizure Identification

Unfortunately, no interventional therapy at present has been found to be 

effective for all epileptic sufferers, and up to 25% eventually have medically intractable 

epilepsy, meaning that the patient’s disorder is not responsive to treatment [3]. Such 

individuals have little recourse in the management of seizures. As previously discussed, 

the ability to infer forecasted knowledge of an impending seizure from preictal EEG
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activity could greatly enhance the quality of life for many epilepsy patients. In the 

simplest scenario, it could empower the individual by reducing the surprise of a sudden 

seizure episode, which could dramatically enhance the epileptic’s sense of self within 

a social context. Not only would preconceived knowledge of an upcoming seizure 

aid in the reduction of the negative psychological effects of this disease, it could 

also enable the epilepsy patient to take precautions prior to a seizure, by moving to 

a safer environment or stopping activities that could be dangerous during a seizure 

occurrence. In such cases, a simple warning system could make a significant difference 

in the daily lives of epileptics.

For patients who respond well to treatments, a seizure warning system could 

also be employed in conjunction with acute interventional therapy in order to min

imize the side effects of long-term, chronic use. This could circumvent problems 

associated with increased tolerance of medications, limitations on cognitive abilities 

and open-loop overstimulation. Depending on the lead time between alarm and 

seizure, administration of an AED, actuation of electrical stimulation, and/or use 

of other interventions are feasible as real-time treatments given an early enough 

anticipation.

1.6 Similarity and Synchronization as a Preictal M easure

A typical epileptic seizure results from an atypical, rhythmic hypersynchro- 

nization of regional or global neuronal masses. Since brain regions are entrained 

during a seizure, it may be possible to exploit an enhanced network connectivity 

in the time leading up to a seizure event for use in seizure anticipation. Similarity
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and synchronization between different regions of the brain during the preictal period 

is a direct way of evaluating abnormal neuronal connectivity. Given that there are 

numerous signal pathways throughout the brain, dynamic activities can propagate 

to other regions as if through a black box with nonlinear filtering influences. We 

evaluate measures of similarity and synchronization as an early indicator of neuronal 

entrainment. Although similarity and synchronization are not the same, they can 

be considered analogous. Therefore, we will loosely refer to all of the measures 

investigated in this work as synchronization measures. In this work, we evaluate 

bivariate measures of coherence, cross-correlation, correlation coefficient and phase- 

locking synchrony.

1.7 Scope o f the Research

The research work presented here provides a comparison between the preictal 

and interictal bivariate measures of synchronization for pairs of intracranial electro

encephalogram recordings from epilepsy patients using an online seizure database. 

Extracted by the Ensemble Empirical Mode Decomposition algorithm, intrinsic mode 

functions of each electrode recording are evaluated in pairs for synchronization differ

ences during “normal,” non-seizure brain activity and one hour of preseizure brain 

activity leading to a seizure event. Identification of appropriate parameters indicating 

increased preictal synchronization, without false positive identifications during inter

ictal activity, is considered to be beneficial for use in seizure anticipation approaches.
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1.7.1 H ypothesis

The signature of a seizure event is an abnormal hypersynchronization of re

gional or global neuronal tissue. We postulate that initial preseizure synchroniza

tion^) occurs prior to the event itself. In order to identify the existence of this 

preictal synchronization, we evaluate spatial-temporal-frequency features of bivariate 

measures that relate the similarity and synchronization of electrode recordings. Our 

main hypothesis is:

•  a seizure event is preceded by a notable increase (greater than two standard 

deviations) in preictal synchronization measures between spatial regions as 

compared to synchronization measures during interictal periods.

Our assumptions for this work are listed below.

• In the context of seizure progression, preictal dynamics are not required to 

constantly maintain a higher than normal level of synchronization, but may 

instead show intermittent increases. Therefore, the preictal period may contain 

a combination of both preictal and interictal dynamics.

•  Increased abnormal synchronization between a particular pair of electrodes 

during the preictal period is useful as a measure for seizure anticipation given 

a relatively long time window so as not to be associated with cognitive task- 

related synchronizations.

•  Increased synchronization can occur in clusters across electrode pairs (i.e., across 

spatial regions) individually, or simultaneously, as a  preseizure state may prop

agate to numerous or different brain regions as time progresses.
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• The use of Ensemble Empirical Mode Decomposition results in intrinsic mode 

functions that are more representative of the true underlying regional intracran

ial electroencephalogram (IEEG) signals in comparison to the original IEEG 

signals recorded at the electrode sites.

1.8 Organization of Work Presented

This research work is directed toward the ability to anticipate an upcoming 

seizure event from preictal electroencephalographic recordings. The primary goal of 

this work is to identify changes in synchronization between pairs of electrodes during 

the preseizure period, which could intimate an increased likelihood of an upcoming 

seizure event. A literature review is presented in Chapter 2 describing others’ work 

that has been accomplished in the area of preictal brain dynamics synchronization. 

Chapter 3 illustrates the methods used in this study, along with the motivation for 

choosing the Ensemble Empirical Mode Decomposition algorithm. Chapter 4 shows 

the results of the computational analyses of the synchronization measures of interest. 

Chapter 5 discusses results, along with any limitations in the process. Chapter 6 offers 

insight gained from this research and areas of potential future work. Appendices are 

provided to provide a more thorough presentation of intermediate results as well as 

a portion of the M a t l a b  code developed and used for this project.



CHAPTER 2 

BACKGROUND

The ability to forecast upcoming seizures has long been an area of active 

research in neuroscience. Coincident with the advancing state of mathematical tech

niques and robust computational platforms, numerous researchers and clinicians have 

actively investigated the preictal period for indications of changes in brain dynamics 

resulting in a seizure-progressive state. To this point, however, the mechanisms and 

markers associated with seizure-progenerative dynamics remain unclear.

2.1 Existence of a Preictal State

Epileptic seizures can occur in a wide variety of ways, and may manifest 

differently from patient to patient as well as seizure to seizure, owing to the multitude 

of epilepsy pathologies that can contribute to the vast differences in ictogenesis [3]. 

Based on efforts to identify preictal changes by a significant number of researchers 

over the past several decades, Lopes da Silva et al. [29] have theorized scenarios within 

which epileptic seizures may occur that include both spontaneous seizure generation 

and progressive changes in brain dynamics that lead to seizures. In the first case, 

they hypothesize that the seizure onset is identified as a sudden transition, such that 

the ability to predict a seizure is considered to be a fruitless effort. These types 

of abrupt, spontaneous dynamical changes have been theorized to be more likely

14
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associated with absence-type or primary generalized (non-focal) seizures. However, 

for the latter case, they believe that progressive changes in brain dynamics leading 

up to a seizure could be detectable in the time before a seizure event. These slower 

changes in the brain state are more often considered to  be associated with focal 

epilepsy, as the focal region would gradually entrain neighboring areas or produce 

clusters resulting in a seizure state [27, 30]. While often considered to be relegated 

to focus-originating seizures, preictal changes may not be limited to these cases only, 

as shown in recent studies [31, 32]. Further, some researchers hypothesize that the 

seizure itself is merely the culmination of events in preictal synchronization in an 

effort to “reset” the normal system dynamics [33-35]. Other studies [36, 37] using 

a measurement of neuronal excitability have indicated that the seizure onset itself 

may be unpredictable, though there may be an observable increased probability of 

ictogenesis. An increased excitability may, in effect, bridge the gap between the 

theories described above.

Currently, the existence of a preictal state is generally well-accepted for most 

seizure types [38-43], though the ability to precisely identify the preictal state is 

still limited. A portion of this shortcoming can be associated with the individuality 

of the pathology for the epileptic patient and the variation in seizure presentation. 

Herein lies a major challenge for researchers in the field of seizure prediction: the 

variability of seizure genesis. Although the idea of the existence of the preictal 

state hinges on some level of constancy across patients, it is not contradictory to 

consider that the preictal state may be represented in various ways across patients. As 

such, researchers have moved toward patient-specific analyses for seizure-predictive
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approaches. There is an inherent limitation of determining global measures that 

adequately anticipate upcoming seizure events for all seizures across a multipatient 

data set [27, 38]. Rather, selective, patient-specific measures may produce higher 

prediction performance results. However, researchers have shown seizure-to-seizure 

correlations and lack thereof [44], so the challenges also extend to the intrapatient 

scenario.

Supporting evidence from clinical studies of preseizure physiological changes 

in heart rate, cerebral blood flow, and oxygen levels also suggest a broader, more 

global impact of the preictal period on the individual [45-49]. These physiological 

changes indicate the likelihood of detectable signs of a seizure-progenerative, or, at 

a minimum, a seizure-premonitory, preictal state. Further, some epileptic patients 

with temporal lobe epilepsy (a focal epilepsy) experience a preseizure “aura” [50]. 

Beyond patients experiencing auras, it has been shown that some epileptics in cases 

of focal or generalized seizures also may anticipate upcoming seizures [6, 7]. Thus, 

there is additional compelling evidence toward the potential of distinguishing preictal 

dynamics from interictal activities that falls outside of the context of quantitative 

EEG analysis.

It should be noted that the epileptic brain may inherently hold some subtle 

differences in dynamics in comparison to the normal brain. Some foundational studies 

using synchronization measures have been performed to localize the seizure focal 

region during interictal time periods. Bialonski and Lehnertz [30] used a multivariate 

approach for analysis of synchronization clusters. While their objective was seizure 

focus localization rather than seizure prediction, their clustering method elucidated an



increased synchronization in interictal dynamics precisely where the focal region was 

determined to be by independent presurgical analysis. Additionally, Osterhage et al. 

[51] were able to correctly lateralize the focal region for all of the synchronization 

measures they tested during the interictal period. Others have observed similar 

enhanced interictal synchronization [52, 53]. It is uncertain whether or not these 

studies simply denoted a pervasive difference in the interictal dynamics of epilepsy 

patients or, perhaps, “happened upon” long-duration preictal dynamical changes that 

were assigned to be interictal in nature. While these discoveries do not disprove the 

idea of a preictal period and subsequently indicate a basic differentiation between 

epileptic and normal brains, further evaluation of the preictal period’s existence is 

needed.

2.1.1 Testing Null H ypotheses

While knowledge of a distinct preictal state would be beneficial, many re

searchers have approached this uncertainty in a different way. In one such effort to 

explore a method to discount the possibility of a preseizure state, Andrzejak et al. [54] 

tested the null hypothesis of the absence of the preictal state. They were unable to 

reject the null hypothesis, but their work was only exploratory, using a single-patient 

analysis with only one measure (degree of nonlinear determinism). In many cases, 

the practical, straightforward approach for determining a clinically-viable method of 

seizure prediction is simply based on the sensitivity of the measure coupled with an 

“acceptable” false positive rate [28, 55]. While, generally speaking, a false positive 

rate (FPR) of 0.15 false positives per hour is a commonly accepted number based



on the maximum average seizure frequency [56], these rates may become inflated or 

deflated based on the individual’s seizure frequency and effectiveness of the seizure- 

control therapy [57]. Winterhalder et al. [28, 58] used a method of comparision 

of measures with a random predictor based on a nominal false positive rate. They 

showed that certain measures and electrode combinations were capable of successfully 

performing better than chance. Others [38, 43, 59-65] have also made comparisons 

of their seizure prediction methods to random predictors with similar success and 

expectation of preictal changes. Andrzejak et al. [66], however, suggests that while 

these studies may be promising for the end goal of detecting preictal changes, the 

ability to truly reject the null hypothesis is questionable since distinct null hypotheses 

in these studies may not be appropriately devised. In the end, the true test of seizure 

prediction schemes must fall to relevance in the clinical setting and acceptance by the 

patient population [67].

2.1.2 Duration of the Presum ed Preictal
Period

While generally-accepted, but not explicitly proven, the preictal state is conjec

tured to occur somewhere within a broad range of durations (from seconds to hours), 

based on researchers’ results from seizure predictive measures. As early as the 1980’s, 

Rogowski et al. [68] used an autoregressive analysis and found changes seconds before 

the seizure onset. Others [69] have also observed preictal differences seconds before 

seizure onset. An inherent problem with preseizure anticipation, however, is the 

time frame of potential interventions. While knowledge of a seizure only seconds 

before onset could be useful for certain therapies (e.g., electrical stimulation such as
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employed by the NeuroPace system), other intervention types are not feasible. In 

fact, electrographical changes that are identifiable a few seconds before clinical signs 

of a seizure are exhibited may simply indicate that these short-term changes are a 

subclinical start of the seizure episode and can be considered to be seizure detection, 

rather than seizure anticipation.

Longer-term preictal analysis has thus been evaluated to enable a broader 

range of feasible interventional therapies as well as eliminate questions regarding 

seizure prediction versus seizure detection. Litt et al. [70] found indicators of seizure 

behavior as much as seven hours prior to seizure and observed accumulated energy 

measure differences nearly one hour before ictal onset. Iasemidis et al. [71] observed 

preictal changes of their T-index from the maximum short term Lyapunov exponent 

as far as three hours in advance of seizure events. Through their work, Morman 

et al. [38] analyzed data from four time durations of preictal data, derived from 

the original studies of many of the measures they reevaluated. They found that 

several measures showed more distinct separation between interictal and preictal 

phenomena for longer preictal time frames, often observing the best performance for 

a 240-minute preictal period of bivariate analysis, while well-performing univariate 

measures typically ranged from 5-30 minutes.

2.1.3 Long-Duration Preictal Periods

One might conclude that the changes of measures during a long preictal 

duration is linked to an increased propensity for a seizure event over the course 

of larger time scales. In some ways, this can be considered to be more akin to
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seizure anticipation, rather than seizure prediction. To be sure, however, the effects 

of antiepileptic drug concentration tapering, the state of vigilance, or the influence of 

circadian rhythms may have some influence in this observation of long-term nonsta- 

tionarity and the preictal state, as suggested by many researchers [38, 61, 72-74], As 

a result, researchers can adopt an adaptive baseline (threshold) approach or maintain 

a constant baseline when identifying differences between interictal and preictal mea

sures. In their comparison study, Mormann et al. [38] investigated both scenarios 

and observed a notably better performance when the baseline was maintained as 

a constant as compared to an adaptive one. While the parameters governing the 

“adaptability” of the measure can hold significant influence on the outcome, it is 

possible that the changing baseline itself may carry important information regarding 

a change in the probability of ictogenesis.

2.2 Role of Hypersynchrony in Seizure Anticipation

In the 1950’s, Penfield and Jasper promoted the idea that seizures are mani

fested as abnormal hypersynchronous activities of brain tissue [75]. Although some 

recent studies have shown seizures themselves hold more complex changes in syn

chronization than previously thought [76-82], Penfield and Jasper’s classical theory 

holds insight into the nature of seizure events. By extension, many researchers 

have sought to identify the elusive features indicative of a preictal state by using 

measures of synchronization and interdependency across brain regions in the time 

leading up to a seizure. Given that the seizure state involves enhanced synchrony, 

an effort to determine precursorial, subclinical synchrony holds promise in better
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understanding the mechanism of seizure progression and in the ability to employ 

warning or interventional therapy systems.

2.3 Bivariate M easures of Synchronization

While the use of univariate measures of EEG patterns prior to seizure has been 

studied extensively, in more recent years, interest has been directed toward bivariate 

preictal data analysis. Early work by Mormann et al. [83] promoted the potential 

benefits of bivariate analyses. They evaluated mean phase coherence as a measure 

of phase synchronization. They observed synchronization changes minutes to hours 

before the seizure event. Later work by the same group [60, 84] showed similar results 

between mean phase coherence and two other adaptations of phase synchronization: 

a Shannon entropy-based index and a conditional probability-based index stemming 

from work by Tass et al. [85]. Finally, Mormann et al. [38] used over 30 univariate 

and bivariate measures to compare interictal and preictal EEG signals. Their findings 

suggest an advantage of bivariate measures over univariate measures. They observed 

better performance for bivariate analyses when a patient-individualized, channel- 

specific scheme was used. Their results imply that certain channel combinations may 

indicate synchronization changes across brain regions, while others may not indicate 

similar changes. In other words, a global (patient-generic) analysis scheme may have 

less relevance when detecting preictal changes. Mormann et aVs work has provided 

a springboard for researchers’ expansion into the use of bivariate measures.

Winterhalder et al. [58] have also shown benefits of bivariate measures with 

their analyses of phase synchronization and lag synchronization. Through their work,



they analyzed various durations for the seizure prediction horizon (SPH) and seizure 

occurrence period (SOP) (refer to Figure 1.3). Evaluating preictal differences for 

both decrease and increase in these measures in comparison to a random prediction 

scheme, they observed a highly patient-dependent capability of one or both of these 

measures to exceed critical sensitivity values based on a nominal false prediction rate. 

Their approach showed success for approximately half of the patients tested. They 

found that the lag synchronization measure was most sensitive when used with a focal- 

extrafocal paired combination of electrodes. They conjecture that the synchronization 

delay across these regions pertains to the increasing global synchronization during the 

preictal period.

In their study to determine ictal and interictal differences of phase synchro

nization, Gupta et al. [34] observed potential indicators of phase synchronization 

value changes during the preictal period. Although their dataset was limited, they 

saw a typically seizure-coincident cyclical pattern in a relative feature composed of 

two frequency bands’ phase synchronization measures. They conjecture that these 

cyclical changes relate to a set-reset type of mechanism of synchrony for preseizure 

and seizure dynamics, respectively. Additionally, they observe that the measure’s 

interictal trend is “pulled away” from normal at times leading up to a seizure event.

Mirowski et al. [86, 87] used a pattern recognition method with six bivariate 

measures (and three classification schemes) over multiple time frames. They found 

that frequency-based bivariate features, such as wavelet coherence and synchronized 

phase locking value, performed better on average. They also showed success with a 

nonlinear interdependence measure. The success for certain measures was observed
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in the case of certain patients’ data while other measures proved to be much more 

appropriate for other patients’ data. This notable difference provides insight into 

the highly variable nature of seizure pathologies and correct identification of patient- 

specific measures.

In 2009, Myers and Kozma [88] investigated a synchronized phase-locking value 

(PLV or SPLV) for potential incorporation into a VNS implant control scheme. They 

found that the increased levels of synchronization (i.e., a high PLV) effectively identi

fied seizure events. Additionally, they observed higher than normal synchronization 

values at times during the preictal period as well. A limitation of their study is 

their use of a priori knowledge, by developing a threshold value for each patient that 

satisfied both seizure predictive and identifying constraints retrospectively. They 

relied on the PLV measure to first identify the seizure, then slowly lowered their 

threshold to still include some predictive high-synchrony value, rather than basing 

their measure simply on using interictal synchrony values for the threshold value 

selection. Nevertheless, the use of a synchronized phase-locking value showed promise 

from their study.

Feldwisch-Dentrup et al.'s [89] work with combined univariate and bivariate 

measures indicates the potential benefit of multi-feature approaches. They inves

tigated alarms for both mean phase coherence and dynamic similarity index in a 

Boolean “AND” operation within a limited time period. They found that the speci

ficity and performance were better than a random prediction scheme upon application 

of this requirement. This multi-feature method may be the optimum pathway to 

provide a clinically-relevant tool for use of synchronization measures, particularly in



24

the context of limitations due to electrode placement, and is further supported by 

later work from the same group [90].

Recently, bivariate synchronization features have been derived from wavelet 

transform data from EEG signals as an additional means of extracting important and, 

perhaps, subtle information beneficial to the differentiation between preictal and ictal 

dynamics. Nesaei and Nesaei [91] applied a discrete wavelet transform and determined 

a measure of phase synchronization for three IEEG focal electrodes across different 

frequency bands below 32 Hertz. They predicted seizure events at times ranging from 

seconds to nearly an hour in advance of the onset, based on a drop below threshold 

for their synchronization measure. They reported two of the three combinations of 

focal electrodes that performed well, with relatively high sensitivities and specificities. 

They did not see a particular optimum in performance for any particular level of 

frequencies across the global dataset for either of the electrode combinations. Such 

an optimum might have been observed at the patient-specific level, however. In 

an animal study, Suarez et al. [92] performed cross-correlation analysis on wavelet 

coefficients of Pilocarpine-induced seizures with notably high sensitivity (> 90%).

2.3.1 Contraindications for the U se o f Bivariate
Synchronization M easures

Not all bivariate measures of synchronization have produced desired results. 

Jouny et aVs [93] use of a complexity measure (Gabor Atom Density) and a syn

chrony measure (known as measure S ) failed to  correctly detect preictal changes, 

though these measures were able to identify ictal and postictal dynamics. Jerger 

et al. [94] did not see good performance in their one-patient study using a linear



discriminator for cross-correlation and phase synchronization. However, they trained 

their discriminator on ictal and interictal data for testing of the preictal data. By 

doing so, they are essentially requiring that the measures during the preictal state 

resemble that of the ictal state, which likely understates the subtleties of preseizure 

dynamics. In their modeling study of coupled oscillators, O’Sullivan-Greene et al. 

[95, 96] question the observability of synchronization, however they acknowledge that 

local sychrony may provide enhanced capability. They have shown some potential of 

synchrony measures in the context of input stimulation response of their models.

2.3.2 Predisposition of Synchronization
Measures

Morman et al. [38] suggest that there is no essential difference in presupposing 

directionality of synchronization (increasing or decreasing). Based on their results, 

they often observed increased synchronization in one region coupled with a correspond

ing decreased synchronization in an adjacent region. They hypothesize that a region 

of excitable brain tissue is entrained by an ever-growing cluster, while simultaneously 

separating its dynamics from a previous interaction with a different brain region 

from an opposing direction [83, 84]. Similar results of directionality were observed 

by Aarabi et al. [31] in their analysis of preictal dynamics for absence seizures. 

Winterhalder et al. [58] draw from their own work support for the arbitrary nature of 

increasing versus decreasing synchronization assigning relevance of the directionality 

as based on intracranial electrode placement to nearby anatomical structures. While 

knowledge of directionality in synchronization could enhance seizure anticipation
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schemes, there is limited evidence to compel researchers to incorporate directionality 

in their approaches at this point.

2.4 Empirical M ode D ecom position in Seizure A nticipation

Neuroscientists have often separated EEG signals into frequency bands for sub

sequent analysis using techniques such as the fast Fourier transform and the wavelet 

transform. A relatively new approach, known as Empirical Mode Decomposition 

(EMD) [97], provides an analytical analogue to this often applied technique. Recently, 

a few researchers have explored the potential for this new decomposition method in 

quantitative EEG analysis. Tafreshi et al. [98] used the EMD technique to obtain 

intrinsic mode functions (IMFs) from which an autoregressive (AR) model could be 

used to extract features in a seizure prediction approach. The AR coefficients were 

submitted to a self-organizing map clustering approach for classification purposes. 

The authors determined that their classification was more accurate when the AR 

model was applied to the IMF components than it was when the AR model or 

IMF features were used individually. Tianqiao et al. [99] have also shown the 

potential benefit of EMD. They evaluated the preictal period using a univariate 

complexity measure derived from the IMFs along with an artificial neural network for 

classification. With this method, they obtained a reasonably high accuracy (75%), 

but it may not be suitable for the clinical scenario due to a relatively poor sensitivity 

(67%). Orosco et al. [100] and Oweis and Abdulhay [101] have also used EMD to 

investigate descriptive statistics at the IMF component-level with good success for 

seizure detection.



CHAPTER 3

METHODS

3.1 Com putational Platform  and Software

Data for this study were analyzed on 32-bit Microsoft Windows XP and Vista 

operating systems. M a t l a b  versions R2008a and R2009a (The MathWorks, Inc., 

Natick, Massachusetts) were used for computational analysis. Custom M a t l a b  codes 

were written by the author for this work. Additionally, some available toolboxes were 

used.

3.2 Intracranial Electroencephalogram  D ata Set

Intracranial electroencephalogram (IEEG) data from intracranial grid, strip 

and depth electrodes were obtained through a publicly-available database of invasive 

pre-surgical epilepsy monitoring at the Epilepsy Center of the University Hospital of 

Freiburg. Data from a total of twenty-one patients are available (Table 3.1). The 

database includes a minimum of twenty-four hours of interictal data for each patient, 

either from 24 hours of continuous recording (13 patients) or from a combination 

of non-continuous interictal recordings (8 patients). Between two and five seizure 

episodes for each patient are available. Patients included both female and male 

subjects, ranging in ages of 14 to 50 years old. Patients experienced simple partial

27
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(SP), complex partial (CP), and/or generalized tonic-clonic (GTC) seizure types 

originating from either the hippocampus or neocortex.

Table 3.1: University Hospital of Freiburg Epilepsy Center Patient Database.
Abbreviations used in the table are as follows: SP =  simple partial, CP =  complex 
partial, GTC =  generalized clonic-tonic, NC =  neocortex, H =  hippocampus, d =  
depth, g =  grid, s =  strip.

Patient Sex Age Seizure Type H/NC Origin Electrodes Seizures

001 f 15 SP,CP NC Frontal g,s 4

002 m 38 SP,CP,GTC H Temporal d 3

003 m 14 SP,CP NC Frontal g,s 5

004 f 26 SP,CP,GTC H Temporal d,g,s 5

005 f 16 SP,CP,GTC NC Frontal g»s 5

006 f 31 CP,GTC H Temporal/Occipital d,g,s 3

007 f 42 SP,CP,GTC H Temporal d 3

008 f 32 SP,CP NC Frontal g,s 2

009 m 44 CP,GTC NC Temporal/Occipital g,s 5

010 m 47 SP,CP,GTC H Temporal d 5

011 f 10 SP,CP,GTC NC Parietal g,s 4

012 f 42 SP,CP,GTC H Temporal d,g,s 4

013 f 22 SP,CP,GTC H Temporal/Occipital d,s 2

014 f 41 CP,GTC H,NC Frontal/Temporal d,s 4

015 m 31 SP,CP,GTC H,NC Temporal d,s 4

016 f 50 SP,CP,GTC H Temporal d,s 5

017 m 28 SP,CP,GTC NC Temporal s 5

018 f 25 SP,CP NC Frontal s 5

019 f 28 SP,CP,GTC NC Frontal s 4

020 m 33 SP,CP,GTC NC Temporal/Parietal d,g,s 5

021 m 13 SP,CP NC Temporal g,s 5

Data were acquired at the Epilepsy Center of the University Hospital of Frei

burg, Germany, with a 128-channel Neurofile NT digital video electroencephalograph 

(EEG) system. Data were digitized using a 16-bit analog-to-digital converter. Using



the video EEG system, a certified epileptologist has identified interictal and ictal 

activities. Database files are downloadable as either interictal or ictal sets of tarred 

and zipped compressed archive files for each patient. Once uncompressed, files are 

ASCII-type and include a single column of voltage recordings in the scale of millivolts. 

The files are presented typically as one-hour datablocks, except in specific cases 

where the data were lost due to data acquisition difficulties (e.g., electrode box 

disconnections and other technical difficulties). Throughout the dataset, a period 

of less than three seconds of data was omitted between these one-hour datablocks 

due to technical and computing resource reasons. Each filename is unique (e.g., 

010403ba_0006_l.asc), including an identifier based on recording start date, patient 

initials, sequential datablock numbering, and channel number, respectively. No notch 

or bandpass filtering was performed by the Epilepsy Center on the IEEG data; 

thus, electrode disconnection and 50 Hertz (Hz) power line noise were present in 

the available database recordings. It should be noted that any movement artifacts 

are inherently limited due to the intracranial placement of electrodes. IEEG data 

were acquired at 256 Hz for all but one patient (512 Hz for patient 012, the data 

for which was omitted from this analysis). As of this writing, the data can be 

accessed following approval of the registered user from the website administrators 

of the Seizure Prediction Project Freiburg (https://epilepsy.uni-freiburg.de/freiburg- 

seizure-prediction-proj ect /  eeg-database).

For each patient, a schematic representation of the intracranial grid, strip, and 

depth electrode locations are provided (see example in Figure 3.1). Although multiple 

electrode sites were recorded, the epileptologist selected three recording sites (i.e.,

https://epilepsy.uni-freiburg.de/freiburg-


channels or electrodes) found to be involved in the early stages of the seizure activities 

observed. These channels (named CH1-CH3) were deemed as in-focus, or focal, 

electrodes. Similarly, the epileptologist selected another three channels considered 

to not be involved in the early onset of the patient’s seizures. These channels (CH4- 

CH6) were identified as out-of-focus, or extrafocal, electrode sites. The available 

dataset for each patient, therefore, contains recordings for both interictal and ictal 

activities from the six concurrently recorded channels as identified above. Seizure 

event onsets and ends, as identified by certified epileptologist post-seizure analysis 

of the video EEG record, were determined at the University Hospital of Freiburg. 

For each patient’s seizure events, data sample numbers indicating the onset and end 

within particular database files are supplied.
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Figure 3.1: A schematic representation of intracranial electroencephalogram electrode 
types (Patient 4). Intracranial depth (a), subdural strip (b) and subdural grid 
(c) electrodes were used to collect brain activity recordings from epilepsy patients 
undergoing monitoring at the Epilepsy Center of the University Hospital of Freiburg. 
Note: IEEG electrode types and placement locations varied from patient to patient 
based on the monitoring needs of the clinicians.



32

3.3 D ata Preparation, Partitioning, and Preprocessing

Custom code was used to read the ASCII data into the M a t l a b  environment, 

and the data structures composed of multiple matrices were saved in the native *.mat 

format. For interictal data, a 60-minute block of data was saved, following the data 

organization structure of the Epilepsy Center Patient Database files. For periictal 

data, 60 minutes of preictal and 15 minutes of ictal/postictal data  were combined 

to create a 75-minute datablock. In assembling the periictal datablock, the data 

acquisition gap of less than three seconds was ignored during concatenation of data 

from sequential files.

IEEG recordings for each of the six channels were partitioned into non-overlap

ping 16-second time windows. The 60-minute interictal datablock was, therefore, 

divided into 225 time windows, while the 75-minute periictal datablock has 281 time 

windows. Sampled at 256 Hz, each 16-second time window included N  samples, 

such that N  — 4096. The division points for these time windows were temporally- 

coincident across the six available channels (i.e., the relative start and end time of 

each partitioned window was maintained consistently across all concurrent channel 

recordings). Sample data for each time window were normalized to have a zero mean 

(fj, = 0) and unit standard deviation (a = 1), for later introduction to the Ensemble 

Empirical Mode Decomposition (EEMD) algorithm.

To determine the zero-mean normalization of the sample time window m, the 

arithmetic mean /i (Equation 3.1) is removed from the original time series signal, 

where i is the index value of a set of N  samples for m th window of the kth channel,



or electrode. The resulting zero-mean time series of the mth time window can be 

denoted as yik,m ( Equation 3.2).

S ”" = (3.i)
i =  1

Vik'm = V i~ H  (3-2)

The standard deviation o of the zero-mean time series for time window m  and 

channel k is determined by the square root of the mean squared error (Equation 3.3). 

The subsequent normalization of the data to unit standard deviation (also referred 

to as the 2-score) is accomplished by dividing the zero-mean samples of a given time 

window by the standard deviation (Equation 3.4).

a k ’m  =

\ (3-3)
N  ■ ,l~l

z km =  Vi (3.4)

3.4 D ata D ecom position

3.4.1 Empirical M ode Decom position

Empirical Mode Decomposition (EMD), first introduced by Huang et al. in 

1998, is a useful technique for decomposing non-stationary and non-linear time series 

data [97]. The analyzed data are decomposed into a relatively small number of intrin

sic mode functions (IMFs) using a sifting process with stopping criteria. The EMD 

method itself is an adaptive, data driven approach which decomposes a signal x(t)
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into IMF components Cj and a residual rn following n extracted IMFs (Equation 3.5).

Huang et al. have adopted the name intrinsic mode function “because it represents 

the oscillation mode imbedded in the data” and have provided a strong argument 

for its use in their original paper [97]. An IMF captures the physically meaningful, 

local instantaneous frequency, unlike the more general and global Hilbert transform, 

thereby enabling application to non-stationary data (i.e., data with more than one 

oscillatory mode). Each intrinsic mode function has two conditions that must be 

met. The first condition requires that the number of local extrema and the number 

of zero crossings in IMF time-frequency space cannot be different by more than 

one. This condition provides for an analogous representation of narrow bandwidth 

requirements typically used with stationary data. The second condition requires that 

the mean value of the envelope of the local maxima and envelope of the local minima 

is zero. Each upper or lower envelope is defined by a cubic spline of the respective 

extrema (along the local maxima or along the local minima), rather than using a 

local instantaneous mean. Forcing the envelope mean, rather than the local mean, of 

the data to be zero circumvents difficulties with determining the local averaging time 

scale, particularly with non-stationary data.

3.4.2 The EM D Sifting Process

In order to decompose complicated data into its IMFs and residual, a sifting 

process is employed. The upper and lower envelopes’ mean m x is determined and

n

(3.5)
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removed from the original data x(t) (Equation 3.6).

x(t) — m i  =  hi (3.6)

In an ideal case, hi would be the first IMF, however, in more complicated 

data with wide bandwidth, subsequent sifting processes are typically necessary. A 

second sifting process would then be accomplished (Equation 3.7), where hi would be 

treated as the data, m u  would be the mean of the upper and lower envelopes from 

the extrema of hi, and hu  would be the evaluated to determine if it is in fact an IMF.

h i  —  TTin  —  h u  ( 3 .7 s)

The process is repeated k times following

/fr(fc-i) -  m ik = hik, (3.8)

until h ^  is a true IMF and can be designated as the first IMF component ci of the 

data, such that

ci =  hik, (3.9)

once the riding waves have been eliminated and uneven amplitudes smoothed. In 

order for these stopping criteria to be assessed for the sifting process, the size of the 

standard deviation Oh can be set to be between 0.2 and 0.3 for consecutive sifting 

results k and (k — 1) following

-  I”\{hi(k-i){t) -  hik(t) ) |2]T

t = 0 ^l(fc-l)W

The first IMF ci (also referred to as IMF1 in the following text) contains the 

smallest scale (highest frequency) information of the signal. IMF1 can be removed
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from the original data by

x(t) -  C l  =  r i (3.11)

producing a residue r\. This residue which may contain lower frequency components 

is further decomposed using the sifting process described above to obtain subsequent 

n  IMF components and a residue rn by

The final stopping criteria of the analytical decomposition is when the final IMF 

component Cn or the residue rn is appropriately small enough to have inconsequential 

effect on the data (selected in the decomposition parameters) or when the residue rn 

is a monotonic function (i.e., trend data without local extrema).

Recall Equation 3.5, indicating that the simple linear superposition of the n 

IMFs and the residue provide the original data sequence:

The EMD method separates scales of the original data during the sifting pro

cess and results in a relatively small number of intrinsic mode functions representative 

of the signal itself. However, there are limitations to the EMD algorithm for complex 

natural systems, including EEG brain dynamics. The most notable drawback of the 

EMD algorithm is its tendency toward mode mixing, particularly for signals with poor 

scale separability such as EEG recordings. Mode mixing occurs as a result of signal 

intermittency and can manifest in two distinct ways. In the first case, a single IMF 

may include signal information that is more appropriately partitioned into several

ri — c2 =  r 2, . . . ,  r ra_i - c n = rn. (3.12)

n

(3.5)
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IMFs due to a wide variation in the time-frequency representation, or scale. In 

the other case, a portion of the signal having a similar scale, which presumably 

would be represented in a single IMF, may be spread across a number of IMFs. 

Another limitation of the EMD algorithm relates more to the signal itself and how the 

algorithm decomposes the data. In a natural system like the human brain, the EEG 

recording may not accurately represent the actual underlying signal. Inherently, EEG 

and IEEG recordings are influenced by the local and regional effects of the surrounding 

neuronal tissue, resulting in a weighted summation of biopotential activities of nearby 

neuronal masses. Thus, the electrode recording represents multiple action potentials 

and ion movements from numerous cells, with the end result as a measure of local field 

potential. This local field potential is heavily influenced by the timing of neighboring 

neuronal activities, and is, therefore, laden with broadband noise. The resulting IMFs 

from the EMD algorithm may erroneously represent the true nature of the system 

dynamics in the presence of this broadband noise.

3.4.3 Ensemble Empirical M ode 
Decom position

In order to more appropriately represent the true, or natural, underlying signal 

of the electrode region, it is beneficial to employ a noise-assisted data analysis (NADA) 

approach. The data analysis accomplished in this study uses this noise-assisted 

extension of the EMD computational technique by determining the ensemble means 

of the identified intrinsic mode functions of noise-added input signals. This method 

is known as Ensemble Empirical Mode Decomposition (EEMD) and was developed 

by Wu and Huang [102]. By superimposing finite white noise onto a signal prior to
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submission to the decomposition algorithm, variants of each IMF are obtained. If this 

process is repeated with different white noise sequences over an adequate number of 

trials, the noisy background from neighboring regional activity influencing the local 

field potential can, in effect, be canceled out by obtaining the ensemble mean of these 

IMF variants. This follows the statistical definition of error across multiple trials of 

added white noise shown by

ep =  ~^pi (3.13)

where e is the amplitude of the white noise, P  is the number of trials and ep is the 

standard deviation of error between the signal and IMF. The NADA EEMD algorithm 

essentially behaves as a dyadic filter bank [103]. In doing so, mode mixing is effectively 

eliminated. Therefore, the EEMD method offers the advantage of a more robust and 

true representation of the actual underlying signal based on the ensemble mean.

Figure 3.2 illustrates the methodology for data preparation and decomposition 

using the EEMD approach, a straightforward NADA extension of the original EMD 

method. Following the data preparation in Section 3.3, a white noise sequence w(t) 

with a small variance (a2 = 0.1) is introduced to the preprocessed time window data 

sequence Zp'm(t) and is determined using

=  + Wp{t) (3.14)

for the pth trial of the kth channel and m lh time window. The data are

decomposed with the EMD sifting process until each IMF is extracted. Twelve levels 

of IMFs were obtained from the decomposition of the data. An ensemble mean at 

each IMF level was calculated from the P  trials’ results. These IMF ensemble means
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were considered the fundamental oscillating modes of the data and were used in the 

subsequent analysis of the sychronization measures of interest.

Electrode
recording

D ata pa rtitio n in g  in to  16s
non-overlapp ing  w indow s■■ ‘ 'i M M  '" '

N orm aliza tionof w indow s 
(dem ean  & 2-score)

W hite  no ise

EMD sifting 
process

D ecom position  
to  n  IMFs

W hite  noise

J  D ecom position  
to n  IMFs

EMD sifting 
process

W hite  no ise

EMD sifting 
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to n  IMFs

1IMF71

IMF12

Figure 3.2: Data preprocessing and decomposition block diagram. This block diagram 
shows the steps taken for initial IEEG electrode recording data preprocessing and 
data decomposition. The first three blocks in the upper left relate to information in 
Section 3.3. Ensemble Empirical Mode Decomposition is an extension of the EMD 
method and is performed by the repetitive (P  trials) addition of white noise to the 
preprocessed data prior to EMD sifting. A set of n  IMF levels is determined for each 
trial (n =  12 levels of separated IMFs for the IEEG data analyzed herein). (Notice 
that the first IMF level, IMF1, contains the highest frequency information, with the 
time scale of the signal increasing as the IMF level increases.) A more true, underlying 
representation of the IEEG signal is identified by taking the ensemble means of each 
IMF level across the P  trials. For the analysis in this research work, the superimposed 
white noise was set to a variance of 0.1 and the number of trials P  was 50.
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3.4.4 EEM D Com putation Tim e  
Lim itations

The EEMD algorithm requires multiple trials of decomposition to obtain 

the ensemble means. The computational resources (described above in Section 3.1) 

provide very modest capability for the combination of the algorithm and large size of 

the IEEG data files. Completion of EEMD on a single hour of IEEG data routinely 

required in excess of ~10 hours. Due to the relatively large number of patients to be 

analyzed (20 patients, recall that patient 012 was omitted from analysis), only the first 

six hours of interictal data was submitted to the EEMD algorithm. Additionally, each 

patient’s periictal dataset contains a 75-minute block of information, thus increasing 

the computation time in those cases. The computation time alone for the EEMD 

algorithm of this limited data set is roughly three months.

3.5 M easures of Synchronization

The signature of a seizure event is an abnormal hypersynchronization of re

gional or global neuronal tissue. We postulate that initial preseizure synchroniza

tion^) occurs prior to the event itself. In order to identify the existence of this 

preictal synchronization, we evaluate spatial-temporal-frequency components between 

the decomposed data of electrode recording pairs at similar IMF levels. The research 

presented here investigates bivariate measures that relate the similarity and synchro

nization of signals, such as coherence, cross-correlation, correlation coefficient, and 

phase-locking synchrony.
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The preprocessed and decomposed data time windows of the six electrode 

(channel) recordings were used to calculate each sychronization measure. Channel 

pairings were developed from the six available electrodes, providing fifteen (15) chan

nel pair combinations (Table 3.2). For each channel pair, IMFs at the same level were 

used to compute each measure. Only concurrent time windows were evaluated in the 

bivariate computation.

Table 3.2: Associated channel pairings with channel pair ID number. Channel 
pairings with channel pair ID number indicate the 15 channel pairings of the 6 
electrodes from the Freiburg Epilepsy Center Database (f =  focal electrode, e = 
extrafocal electrode).

Channel Pair ID Channel A Channel B Pair Type

1 1 2 f-f

2 1 3 f-f

3 1 4 f-e

4 1 5 f-e

5 1 6 f-e

6 2 3 f-f

7 2 4 f-e

8 2 5 f-e

9 2 6 f-e

10 3 4 f-e

11 3 5 f-e

12 3 6 f-e

13 4 5 e-e

14 4 6 e-e

15 5 6 e-e
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3.5.1 Coherence

Coherence is a measure of similarity between two signals. Coherence has a 

bounded value of [0, 1], where a perfect correlation of the two signals at all frequencies 

holds a value of 1. This work uses magnitude-squared coherence and can be described 

by

1 P * y { f ) f
Pxx(f)Pyv(fV

Cxy{f)  =  (3.15)

where Pxx and Pyy are the autospectral density functions for x and y, respectively, 

and Pxy is the cross-spectral density function. As functions of frequency ( /) , the mag

nitude squared coherence (Cxy), i.e. the real portion of the coherence, provides what 

can be considered to be a frequency-varying cross-correlation measure representing 

the linear relationship of the two signals. The M a t l a b  command ms c o h e r e  was used 

for determining the magnitude-squared coherence.

The coherence was analyzed to determine the coherence of concurrent time 

windows for each channel pair at each IMF level (Figure 3.3). An overall, mean 

coherence and a maximum coherence was determined across all

frequencies and recorded as the mean (maximum) coherence value for a particular 

time window m, IMF level j ,  and channel pair q. This coherence value is therefore 

representative of the coherence between a particular channel pair at a specific IMF 

level for one 16-second time window.
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Figure 3.3: Time-windowed representation of mean IMF coherence data, (a) A 
single IMF level for four consecutive time windows is shown for a pair of electrode 
recording channels. Vertical dashed lines indicate the start/end of each 16-second 
time window, (b) Concurrent IMF time windows are used to determine a channel 
pairs mean coherence, each producing a single, time-windowed representation of mean 
IMF coherence information.



3.5.2 C ross-C orre la tion

The cross-correlation can appropriately provide an indication of time-shifted 

features of similarity between two signals. The normalized cross-correlation (pxy{ j )) 

is bounded as [—1, 1] and is shown by

t  ) =  (3.16)
axoy

where 7xy is the cross-covariance of x(t) and y(t) such that

f̂xy — E  [(̂ £{ px) E  {jjt , (3.17)

and a represents the standard deviation and r  represents the time-lag. For the 

purposes of this study and to limit the influence of significant time delay which 

may cause inappropriate associations of neuronal activity between spatial regions, 

the maximum lag evaluated for the signals was five. Since the cross-correlation can 

fall within [—1, 1] and the directionality of the signals is not of interest, \pxy\ was used 

to determine the mean and maximum cross-correlation data for each 16-second time 

window. The M a t l a b  command used to determine the normalized cross-correlation 

was xcorr with the ' coef f  ’ option enabled.

3.5.3 C orre la tion  Coefficient

The correlation coefficient (rxy) is a summarizing value of linear dependence 

between x  and y based on the zeroth lag cross-correlation, and is similar to Equa

tion 3.16 as shown by
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Like the cross-correlation, the correlation coefficient is a bounded value within [—1,1]. 

The output from the M a tla b  command corrcoef is a symmetric 2 x 2  matrix 

(including the autocorrelation coefficients of x  and y on the diagonal) providing the 

correlation coefficient of x  and y in the off-diagonal.

3.5.4 Synchronized Phase-Locking Value

Phase-locking synchrony, or synchronized phase-locking value (SPLV), uses 

the Hilbert transform to determine the instantaneous phase of the signal contained in 

the 16-second time window at a particular IMF level. Following the scale separation 

by the EEMD algorithm, the Hilbert transform of the decomposed data for each 

intrinsic mode function is much better behaved. The sychronized phase-locking value 

is determined by

S P L V
71— 1

(3.19)

where N  is the number of data points and <j>\ and 02 are the instantaneous phases for 

each signal as determined from the Hilbert transform result. The SPLV value range 

is [0, 1], where a value of 0 indicates signals with completely independent phases and 

a value of 1 indicates signals with a constant phase-lag.

3.6 M easure D ata Sm oothing

Following the computations for the measures as described above, a 20-point 

running average was used to produce a smoothed data window of 5 minutes 20 seconds 

(i.e., 20 data points times the 16-second length of each time window). A 5-minute time 

window is consistent with the extensive review of numerous measures by Mormann



et al. [38] as well as the enhanced feature separation between preictal and interictal 

dynamics as discussed by Mirowski et a l [87] and Netoff et al. [104]. This rectangular 

smoothing window provides a robust approach for minimizing transient influences of 

local oscillations and for representing more noteworthy general, though still short

term, effects or trends. While a rectangular smoothing window may introduce ripples, 

these ripples should not affect subsequent analyses. The smoothed data for each of the 

measures is hereafter referred to as indicated by Table 3.3, using a generic reference 

to any of the measures as IMF-a;. A sample representation of the relation between 

IMF coherence data and IMF-Coh is shown (Figure 3.4).

Table 3.3: Naming convention for smoothed 20-point moving average data based on 
each synchronization measure.

Measure Name of Smoothed Measure Data

Coherence

mean IMF-Coh

maximum IMF-Cohmaa;

Cross- Correlation

mean IMF-XCor

maximum IMF-XCormaa;

Correlation Coefficient IMF-CCoef

Synchronized Phase-Locking Value IMF-SPLV



47

(!)

■1 0.5 
>
a)0 c
1  0.4
<DJZo
O
•o
2 0.3
(0

®  0.2 
■aZJ

20 30 40 50 60100
Time (min)

Figure 3.4: Moving average smoothing of mean IMF coherence data. This plot is an 
illustrative example of the mean IMF coherence data (blue thin line) smoothing using 
a 5 minute 20 second window to produce the IMF-Coh data (red thick line). The 
IMF-Coh data are used in the thresholding analyses detailed in Section 3.7. Note that 
the first 19 samples of the IMF-Coh data are zero and subsequently disregarded in the 
analyses. (One hour of preictal data is shown from patient 001, seizure 1, CH1-CH3 
pair, IMF3.)
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3.7 Threshold Analyses

Our hypothesis promotes that the spatial similarity, or synchronization, of 

brain dynamics increases during the time leading up to a seizure episode (i.e., during 

the preictal period). It is unclear if the state changes progressively toward seizure 

activity or, possibly, intermittently transitions between preictal and interictal dy

namics prior to a seizure event. Using a straightforward threshold approach relaxes 

the requirements for identification of an upcoming seizure when applied to a more 

strict “progression” scenario and, thus, becomes inclusive of the “intermittent” case. 

With the relatively large smoothing window, a single preictal IMF-z value exceeding 

the threshold derived from interictal IMF-re data is considered here to be important 

within the context of seizure identifying dynamics. This less-constraining approach 

may prove to be a beneficial way of viewing and identifying seizure development, 

considering the number of epilepsy types and origins as well as broad variety in 

seizure manifestation of interpatient and intrapatient episodes.

3.7.1 Statistical Training, Validation, and
Testing

A statistical training, validation and testing method using threshold analysis 

was employed to identify differences in the IMF-rr between interictal and periictal 

data. The first six (6) hours of interictal data for each patient were used for the 

statistical training and validation. The training data set consisted of alternating 

30-minute blocks (three hours total) of the interictal IMF-z information from each 

patient. The standard deviation (cr) of the IMF-rr training data at each IMF level 

was calculated and used as the basis for determining the IMF-a; thresholds. The



appropriate IMF-a: thresholds, which were allowed to range from 2 to 5 (in steps of 

0.5) times cr, were identified using the validation set consisting of the remaining three 

hours of IMF-a; data. The criterion to determine a minimum threshold is referred to 

as a zero-false-positive (zero-FP) threshold method, wherein the false positive rate 

of seizure detection in the validation set is forced to be zero (i.e., all of the IMF-a; 

data in the validation set is below the threshold). Patient-specific IMF-a; information 

containing 60-minute preictal and 15-minute ictal/postictal (i.e., periictal) data were 

used as the test set. Seizure events were considered to be correctly detected when 

its IMF-a; value first exceeded the lowest validation threshold meeting the zero-FP 

criterion (Figure 3.5). The sensitivity, or true positive (TP) rate, for each patient’s 

test set was calculated from the ratio of correctly identified seizures to total number 

of tested seizures. The seizure anticipation time (maximum of 54 minutes 40 seconds, 

due to the smoothing parameter) was noted for each detected seizure.
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Figure 3.5: Statistical threshold training and testing. IMF-Coh data for a single 
channel pair is shown for a subset of interictal validation data (a) and for one set 
of periictal test data containing a single seizure event (b). The threshold (dot-dash 
lines) in the validation and test data subplots illustrates zero false positives and 
seizure anticipation nearly an hour before onset, respectively.
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3.7.2 Performance Assessm ent

An optimality index [105] was modified to assess the performance of our 

anticipation algorithm for the IMF-a; data for each channel pair. We define our 

anticipation optimality index (aO) as

a 0 = T P + { i - F P ) + T
*  ± d

where FP is forced to be zero by the threshold selection method, Td is the time 

of smoothed preictal data available (here, 54 minutes 40 seconds), and Ta is the 

average anticipation time of seizures that were identified (positive if prior to the 

seizure onset, negative if after). For IMF-level/channel-pair cases in which no seizure 

was detected, Ta was set to be zero. In this analysis, the possible range for the 

anticipation optimality measure is 0.23 < aO < 2, where higher aO values indicate 

better sensitivity and earlier detection anticipation.



CHAPTER 4

RESULTS

4.1 Selection o f Critical Intrinsic M ode Functions

The frequencies of interest in this study are considered to be greater than 1 Hz, 

as these contain the majority of the frequency information of the signal. Because we 

have used a z-score transformation on zero-meaned data, very low (offset) frequencies 

may not accurately represent the signal information, in any case. By selection of 

IMF levels 1 to 6, we can effectively eliminate very low frequencies as if by high pass 

filtering, but without the introduction of time delays to the data being investigated. 

Only a slight overlap of frequency content can be seen between pairs of IMF levels, 

indicating that a relatively well-attenuated amount of mode mixing is occurring 

(Figure 4.1).

52
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Figure 4.1: Frequency spectra of IMF levels. An example frequency analysis of the 
information contained at IMF levels 1 to 6 following EEMD of interictal data is 
shown. As IMF level increases, corresponding frequencies associated with the IMF 
level decrease. IMF 6 is the largest IMF level used in subsequent analyses. Example 
plots are generated from channel pair/16-second epoch for Patient 21 interictal data.



To gain a better understanding of the response of these synchronization mea

sures for each patient across the IMF levels during normal interictal dynamics, the 

averages of the IMF measure data were calculated across all 15 channel pairs. A 

sample image map (Figure 4.2a) is shown for the average mean coherence interictal 

training information for all patients. Data for each of the patients (vertical axis) and 

each IMF level (horizontal axis) are shown. Blue regions represent low IMF-a; values, 

and red regions represent high IMF-a; values. The standard deviation of the average 

mean coherence measure is provided for additional information (Figure 4.26). Similar 

images for the remaining measures can be found in Appendix A. Synchronization mea

sures at the higher IMF levels (lower frequencies) appear to show relative consistency 

(i.e., limited variation) and, as expected, offer little to the analyses of this study. As 

such, we will not use these higher IMF levels in our subsequent analyses. We will 

restrict the analyses to IMF levels 1-6 which contain the frequency information of 

which we are most interested (i.e., > ~1 Hz),



Standard Deviation of Average M ean Coherence (Interictal Training}Average M ean Coherence (Interictal Training}

IMF Level

Figure 4.2: Average mean coherence and standard deviation of average mean coherence of interictal training data. Statistical 
information for interictal training data for one measure (mean coherence) of the six synchronization measures is evaluated, (a) 
The image map shows each patient’s average (across the 15 channel combinations) of the mean coherence at each IMF level. 
Note the increased coherence measure near the higher IMF levels. Higher IMF levels represent very low frequency (< ~1 Hz) 
and are subsequently disregarded in the analytical approach, (b) The image map shows the standard deviation of each patient’s 
average (across the 15 channel combinations) of the mean coherence at each IMF level.

Cnd
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4.2 Statistical Threshold o f Synchronization M easures

The zero-FP validation approach (Section 3.7.1) was accomplished by auto

mated selection of appropriate multiples of a  for each channel-pair/IMF-level combi

nation in the patient’s interictal validation set of IMF-a: data (Figure 4.3). Shaded 

boxes in the figure indicate that the threshold at the given multiple of a  of the channel- 

pair/IMF-level combination was exceeded. A statistical threshold is determined 

for each channel-pair/IMF-level combination at the first multiple of a without a 

false positive. Following these automated selections, the periictal IMF-a; data were 

compared against the thresholds to determine successful identification (true positive, 

or TP) of a seizure event.
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Figure 4.3: Determination of statistical thresholds using the zero-FP approach on the validation set. Shaded boxes indicate 
that the threshold at the given multiple of a of the channel-pair/IMF-level combination was exceeded. A statistical threshold 
is determined for each channel-pair/IMF-level combination. The minimum thresholds for seizure testing in the case above are 
subsequently determined to be 3.0<r and 3.5er for (a) and (b), respectively. For visualization purposes, the data shown has been 
preferentially selected to illustrate the method and has been truncated to 30 minutes of the 3 total hours of validation data for 
the patient. The figures are representative of typical IMF-a: interictal data used for developing the validation thresholds. (Data 
are shown for IMF-Coh for patient 015, (a) CH1-CH5 pair for IMF4 and (b) CH2-CH3 pair for IMF1.)
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4.3 Channel Pair C onnectivity Maps

Connectivity maps were developed to indicate true positives of periictal seizure 

testing for channel pairings at each IMF level and for each measure (Figure 4.4 and 

Appendices B through G). Lines connecting representative electrodes (numbered dots, 

where electrodes 1, 2, and 3 in red are considered focal electrodes and electrodes 4, 5, 

and 6 in blue are considered extrafocal electrodes) indicate that the channel pair was 

successful in identifying a seizure event. Line weight indicates the TP ratio of the 

seizures tested (thicker lines for higher ratios). Channel pairs without connections 

did not identify a seizure event. The connectivity maps do not represent the time at 

which a tested seizure was identified as a TP, only whether or not the threshold value 

was exceeded.
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Figure 4.4: Connectivity maps for IMF-Coh measure, Patients 1 to 6. Sample 
connectivity maps for IMF-Coh thresholded data are shown for Patients 1 to 6 across 
the first six IMF levels. Focal electrodes (red) and extra-focal electrodes (blue) show 
channel pair success rate in seizure anticipation. The TP ratio for each patient is 
represented by the weight of the line connecting channel pairs. Information regarding 
anticipation time is not included in the plots. (A complete set of connectivity maps 
can be found in Appendices B through G).



Our results indicate that IMF-a; data from some channel pairs distinguished 

between interictal and periictal dynamics. IMF-a: analyses of some channel pairs 

anticipated none of the tested seizure events (no connectivity shown), while many 

others correctly identified some or all test cases. Channels and/or channel pairs 

associated with successful seizure anticipation at one particular IMF level did not 

always support presupposition of success at other IMF levels, evincing that increased 

levels in IMF-a; measures between channels result from narrow-band preictal frequency 

information not present in the interictal validation data.

The connectivity maps do not show trends tha t can be generalized for all 

patients. For example, whereas IMF-1 was highly successful in Patient 4, it was 

generally unsuccessful in Patients 1 and 2. As such, comparison of TP ratios between 

measures in a patient-specific scenario may provide benefits to better understand 

the similarities and differences in use of these measures for individuals (Figure 4.5). 

Throughout the dataset, analysis for some patients (e.g., Figure 4.5) showed relatively 

high connectivity in all six IMF levels suggesting the potential presence of broad

band information inherent to the patient-specific manifestations of the seizure events. 

These results indicate applicability of these IMF-a; measures should be evaluated on 

a patient-specific basis, though specific channel pairs may be sufficient to provide 

good sensitivity. Similarly, consistencies amongst the IMF-a; measures also imply a 

generalization in anticipation measures and further support the directive for patient- 

specific analysis.
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Figure 4.5: Connectivity maps for IMF-a; measures (Patient 5). Connectivity maps 
for IMF-a; thresholded data are shown for Patient 5 across the first six IMF levels. 
Focal electrodes (red) and extrafocal electrodes (blue) show channel pair success rate 
in seizure anticipation. TP ratio for each patient is represented by the weight of the 
line connecting channel pairs. Information regarding anticipation time is not included 
in the plots.
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4.3.1 Ratio o f IMF-a: D ata Above 
Threshold

The connectivity maps above (Section 4.3) require only a single, smoothed, 

IMF-re data point to exceed the threshold in order to be considered to be a TP. 

While the data preprocessing, smoothing, and coarse delineation of multiples of a 

is intended to squelch transient signal and IMF-a; measure noise, the connectivity 

maps may not adequately represent the efficacy of a single-point threshold method 

(Figure 4.6). To evaluate this limitation, a ratio of IMF-a; data above threshold (raT) 

has been produced from the threshold testing algorithm (Figure 4.7). The highest 

mean raT are found within the highest frequency IMF levels (low IMF number). This 

observation indicates the potential benefit of IMF-level selection in the anticipation 

algorithm. However, relatively low channel pair mean raT  values do not necessarily 

indicate poor performance if the benefits of more isolated high-impact channel pairs 

are considered. In some cases, a patient may have a limited number of high-impact 

channel-pair/IMF-level combinations (Figure 4.8), while another patient may have 

several (Figure 4.9). Furthermore, it has been shown to be difficult to ascertain 

whether preictal dynamics manifest themselves in a continued progression toward 

seizure state or by intermittent “forays” toward seizure dynamics (Section 2.1). Thus, 

the relative weight of the ratio above threshold (raT) values may hold limited value.
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Figure 4.6: True positive ratio (channel pair mean). The true positive ratio for each patient and IMF level representing the
mean TP ratio for all 15 channel pairs.
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Figure 4.7: Ratio of IMF-a: data above threshold (channel pair mean). Ratio of IMF-a; data above threshold (raT) are shown
for all patients at each IMF level. The raT mean for all channel pairs is shown.
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Figure 4.8: Ratio of IMF-x data above threshold (Patient 5). Ratio of IMF-x data above threshold (raT) are shown for Patient
5 at each channel-pair/IMF-level combination.
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Figure 4.9: Ratio of IMF-a; data above threshold (Patient 10). Ratio of IMF-a; data above threshold (raT) are shown for Patient
10 at each channel-pair/IMF-level combination.
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4.4 Anticipation O ptim ality Index

The TP ratio and raT data above do not incorporate the timing of the seizure 

identification in their representations. In order to better identify successful and early 

seizure anticipation, an anticipation optimality (aO) index is offered (Section 3.7.2). 

While the aO index shares a somewhat similar pattern to the TP ratio due to its 

reliance on the ratio in its calculation, the separating factor is the inclusion of the 

anticipation time. The aO index provides a unified indicator of the sensitivity and 

anticipation window available for IMF-a; testing and was used to obtain a general esti

mation of performance (Figure 4.10), in addition to identifying high-impact pairings 

of channels (Figure 4.11).
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Figure 4.10: Anticipation optimality index (channel pair mean). The mean anticipation optimality (aO) indices for all channel
pairs are shown at each IMF level for each patient’s IMF-a; measure.
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Figure 4.11: Anticipation optimality index (Patient 5). Anticipation optimality (aO) indices for Patient 5 are shown for each
channel-pair/IMF-level combination in their respective IMF-a; measure.
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We found long anticipation times for the majority of the correctly detected 

seizure events. Channel pairs showing perfect TP rates had earliest anticipation 

times ranging within 30 to 53 minutes prior to seizure onset almost exclusively. While 

certain cases had shortened anticipation times, they often remained on the order of 

several minutes prior to the seizure onset. For the patient data providing higher 

anticipation performance, the aO index values are often considerably high for many 

channel-pair/IMF-level combinations (Figure 4.12). In several cases, the maximum 

aO index value was exhibited by multiple channel pairs at the same IMF level.
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Figure 4.12: Anticipation optimality index (Patient 10). Anticipation optimality (aO) indices for Patient 10 are
channel-pair/IMF-level combination in their respective IMF-a: measure.



72

4.5 Generalization Based on Focal Origin

Seizure anticipation algorithms have typically been used in a patient-specific 

scenario. However, in certain scenarios, particular types of focal epilepsies lend toward 

potential generalizations of algorithms. The University Hospital of Freiburg Epilepsy 

Center Patient Database (Table 3.1) includes patients with focal epilepsies having 

hippocampal (H) origin, neocortical (NC) origin, or a combined (H/NC) origin. An 

analysis across the patient database was used to determine if the TP ratio and the 

aO indices show a statistical difference based on seizure origin. A Kruskal-Wallis (K- 

W) test (k ru sk a lw allis  in M a t l a b ) was used to produce notched box and whisker 

plots, as well as p values, for the different categories of seizure origin (Figure 4.13). 

The results of the K-W test indicate that, indeed, there is a statistical difference in 

the successful identification of seizure events by the algorithm when seizure origin is 

considered. The proposed algorithm and methodology shows the highest sensitivity 

for the anticipation of seizure events of hippocampal origin.
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Figure 4.13: True positive ratio and anticipation optimality index versus seizure 
origin type. Kruskal-Wallis categorical test was used to generate notched box and 
whisker plots of the TP ratio (a) and the aO index (b) versus the seizure origin. The 
hippocampal (H) category was determined to be statistically different (p < 0.01) by 
the K-W test and showed significantly higher mean rank than the other two categories 
in both performance assessments (a) and (b). Implications of this statistical difference 
encourage the use of the proposed seizure anticipation algorithm in selective epilepsies. 
(NC =  Neocortical, H =  Hippocampal, H/NC =  Hippocampal/Neocortical)
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4.6 Patient-Specific Generalizations

Since seizures often manifest differently from patient to patient, a patient- 

specific approach is appropriate and more meaningful than broader generalizations 

across the patient database. As such, comparisons related to the IMF-a; measure, 

channel pair type and IMF level are analyzed using the Kruskal-Wallis categorical test 

to determine the influence of these variables at the individual patient level. While it is 

not expected that all patients will exhibit similar statistical characteristics, potential 

trends may be elucidated.

4.6.1 IMF-a: Measure

Statistical differences in the mean ranks of the TP Ratio and a O index for 

each IMF-a; measure evaluated are examined. For some patients, no significant 

difference was found in the seizure anticipation capability of the six IMF-a; measures 

(Figure 4.14), while for others, at least one measure’s performance was statistically 

significant (Figure 4.15). Although large p-values indicate a lack of statistical dif

ference, the overall generalization of whether or not particular IMF-a; measures are 

most appropriately applied for a specific patient may be skewed by an overall poor 

anticipation performance. The K-W test only seeks one category with a significant 

difference as compared to the other categories, so even in the instance of small p- 

values, a majority of IMF-a; measures may perform similarly. Given the trend across 

the patient performance results (Figure 4.15), a coarse assessment may be made 

that the choice of IMF-a; measure holds less importance in the seizure anticipation 

algorithm.
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Figure 4.14: True positive ratio and anticipation optimality index versus IMF-a; 
measures (Patient 5). Kruskal-Wallis categorical test was used to generate notched 
box and whisker plots of the TP ratio (a) and the aO index (b) against the IMF- 
x measures evaluated in this study for Patient 5. No category of the six measures 
evaluated induces a statistically different mean rank in either case {(a) or (b)) for 
this patient (p-value can be referenced in Figure 4.15).



K-W Test p-values for True Positive Ratio/aO Index vs. IMF-x Measure (Patient-Specific)
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Figure 4.15: Kruskal-Wallis categorical test for IMF-a: measures. Kruskal-Wallis test was used to compare the TP ratio and the 
aO index against the IMF-x measures evaluated in this study. The p-values for each patient’s pair of K-W tests is shown. The 
red (dotted) line indicates a statistical level of 0.01, while the blue (dash-dot) line indicates the statistical level of 0.05. Plotted 
p-values greater than a given statistical level indicate a lack of statistical difference in the mean ranks of all IMF-x measures 
tested.
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4.6.2 IM F Level

A comparison between the influence of IMF levels on the TP Ratio and 

aO index was made with the K-W test in the patient-specific case (Figure 4.16). 

Sample results from patients 5 and 10 are also shown (Figure 4.17) to illustrate 

the relatively large variations in the scope of the performance data while statistical 

difference is maintained for at least one IMF level. Despite the performance data 

variation amongst patients, the K-W test results indicate that the underlying signals 

represented by performance results within the context of each IMF level should be con

sidered in a patient-specific manner. IMF levels may directly relate to patient-specific, 

limited-bandwidth, preseizure dynamics associated with particular manifestations of 

the seizure type and evolution.
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Figure 4.16: Kruskal-Wallis categorical test for IMF levels. Kruskal-Wallis test was used to compare the TP ratio and (aO) 
index against the first six IMF levels. The p-values for each patient’s pair of K-W tests is shown. The red (dotted) line indicates 
a statistical level of 0.01, while the blue (dash-dot) line indicates the statistical level of 0.05. Plotted p-values smaller than a 
given statistical level indicate a statistical difference in the mean ranks of at least one of the six IMF level’s performance data. 
Each patient, except for Patient 9 where no TP was identified, showed at least one statistical difference when comparing the 
six IMF levels.
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Figure 4.17: Anticipation optimality index versus IMF level (Patients 5 and 10). 
Kruskal-Wallis categorical test was used to generate notched box and whisker plots 
of the aO index against IMF levels 1 to 6 for Patients 5 (a) and 10 (b). Results of 
the K-W test indicate at least one statistically different IMF level (p < 0.01) for both 
patients.
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4.6.3 Channel Pair Type

Connectivity maps suggest the presence of high-impact channel pairs for use in 

anticipation algorithms. However, generalization of channel pairings by grouping the 

electrode pairs into three types, focal-focal (f-f), focal-extrafocal (f-e), and extrafocal- 

extrafocal (e-e), could provide information for preferential selection and/or surgical 

placement of channel pairs. Using the Kruskal-Wallis test, the three channel pair types 

were analyzed against performance results (Figure 4.18). In over half of the patients, 

performance data were statistically different for at least one channel pair type. No 

noteworthy, identifying characteristics in the electrodes’ form (grid, strip, or depth), 

placement, or spatial interrelation were found for the patients with statistically similar 

(p > 0.01) performance results.



K-W Test p-values for True Positive Ratio/aO Index vs. Channel Pair Type (Patient-Specific)
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Figure 4.18: Kruskal-Wallis categorical test for channel pair type. Kruskal-Wallis test was used to compare the TP ratio and 
(aO) index against the electrode pairing type: focal-focal, focal-extrafocal, and extrafocal-extrafocal. The p-values for each 
patient’s pair of K-W tests is shown. The red (dotted) line indicates a statistical level of 0.01, while the blue (dash-dot) line 
indicates the statistical level of 0.05. In over half of the patients, performance data was statistically different for at least one 
channel pair type.



CHAPTER 5

DISCUSSION

Our results suggest that intrinsic mode function synchronization measures 

(IMF-x measures) may provide a useful approach for patient-specific seizure antic

ipation. In many cases, periictal dynamics were successfully identified by one or 

more channel-pair/IMF-level combination(s) using the zero-FP threshold outlined 

earlier (Section 3.7.1). High-impact channel-pair/IMF-level combinations may pro

vide benefit in patient-specific algorithms when preferentially selected. A modified 

anticipation optimality (aO) index is proposed as a relevant measure jointly repre

senting sensitivity and anticipation information for comparisons in the performance 

of this algorithm. Statistical analyses for generalizations of anticipation performance 

were accomplished to identify relevant distinctions between seizure origin, IMF-x 

synchronization measures, IMF levels and focal/extrafocal electrode pairing type. 

Patients with a hippocampal seizure origin showed a higher success rate in early 

anticipation of seizure events in the context of our algorithm. In the patient-specific 

scenario, the IMF level appeared to hold the most significant categorical relation to 

our performance measure, indicating that the frequency bands of periictal dynamics 

holds highly relevant information. Similarly, the electrode pairing type showed dis

tinctive differences in a majority of patients. We also found that for a slight majority

82



83

of patients, the synchronization measures used could be generalized such tha t the 

selection of a particular measure is not significantly important as a distinguishing 

factor for performance assessment.

Noise-assisted Ensemble Empirical Mode Decomposition (EEMD) was used 

in this exploratory analysis. This method was selected in order to better represent 

the true dynamics underlying the recorded intracranial electroencephalogram (IEEG) 

signals. Though twelve intrinsic mode function (IMF) levels were produced, we chose 

the first six IMFs for analysis since they contained the majority of the IEEG signal 

content (frequency information greater than ~1 Hz). Selection of these IMF levels 

is consistent with noted frequencies relevant to preictal dynamics as discussed in the 

literature [40, 101, 106, 107]. This frequency constraint does not preclude possible 

benefits in dynamical analysis of the very low frequency components associated with 

higher IMF levels. However, the potential of minor variations in the DC bias of 

electrode recordings could have severe effects on the resulting synchronization mea

sures at higher IMFs. As illustrated in Figure 4.2, high IMF levels (at or above IMF8) 

generally have large synchronization measures and limited variation. To eliminate the 

potential concerns of using extreme values, we chose to disregard the upper half of the 

IMF levels. With a presumably more accurate representation of the true underlying 

signals through EEMD and retention of the majority of the information present in 

the signals, we believe that synchronization measures were appropriately applied.

Generalization of the IMF measure information by reduction to a single mean 

value for each time window, and subsequent smoothing across several time windows, 

allows for a meaningful comparison of trends between interictal and periictal activities.
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The approximate 5-minute sliding average we have employed appears to adequately 

represent feature differences in IMF-a: measures between normal and abnormal al

gorithm input data. While a wide array of lengths for moving averages have been 

implemented by researchers [38], our choice of an approximately 5-minute window 

was motivated by the enhanced feature separation observed by Mirowski et al. [87] 

and Netoff et al. [104]. The smoothing helps to squelch transient noise induced by 

cognitive tasks, but appears to retain adequate detail to identify major transitions in 

preictal dynamics.

We intentionally constrained the IMF-a; thresholds to produce a zero FP rate. 

The reasons for this choice are twofold. Firstly, our preliminary analysis is limited 

to only about one quarter of the available interictal data for each patient. Requiring 

higher expectations for FP rate may offset variations in the resulting analysis of the 

remaining interictal data which may lead to higher FP rates in general. Future work 

should include training and validation of the statistical distributions for all available 

interictal data for each patient in order to evaluate this consideration. Secondly, use 

of a zero FP rate IMF-a; threshold can help to circumvent potential negative effects 

in acute interventional therapy. By forcing a zero FP rate, the detection rates and 

anticipation times of ictal events may be reduced. We also utilized relatively coarse 

threshold steps in our analysis, which could result in underestimation of sensitivity. 

However, threshold tuning could be adapted to allow for higher sensitivity, though 

potentially at the expense of lower specificity. In a patient application, the thresholds 

could be easily adjusted to more accurately reflect the particular patient’s seizure 

occurrence rate.



In recent years, some researchers have proposed the use of random predictor 

comparisons [27, 28, 58] to seizure prediction methods. A limitation of our zero-FP 

approach is in the inability to adequately compare our algorithm’s results against 

a meaningful random predictor since we have required a false positive rate (FPR) 

of zero. A potential shortcoming in this exploratory study relates to the method of 

selection and amount of interictal (training and validation) data used. Our selection of 

the first six disconnection-free hours of interictal data may influence the overall FPR 

of the interictal validation data. The computationally expensive EEMD algorithm 

limited the data analyzed. This omission may result in the inclusion or exclusion of 

pharmacological, vigilance-state, and/or immune response influences when compared 

to the overall set of interictal data. These influences could skew the validation IMF-a: 

threshold values we have determined and thus promote higher or lower sensitivity and 

specificity. Further validation and testing of interictal data  would be appropriate and 

may help poise the method for a comparison with a random predictor, but is beyond 

the scope of this exploratory study. With regard to the computational expense of the 

EEMD algorithm in practical applications, we expect th a t a real-time application is 

possible through analysis of intermittent, short-time blocks (~5 minutes) of data.

Our results as shown by the connectivity maps (Figures 4.4 and 4.5 and 

Appendices B through G) are relatively consistent with the sensitivities determined by 

Winterhalder et al. [58] and Mirowski et al. [87]. In general, the level of interconnec

tivity for all IMF levels may provide a rough estimate of the applicability of intrinsic 

mode function synchronization measures for patient monitoring. However, even 

poorly interconnected plots could include high-sensitivity channel pairs which may



prove adequate in seizure anticipation analysis. Based on our statistical analysis of the 

relation of IMF levels to performance assessment, it may be more appropriate to view 

these high-impact channel pairs as coupled with particular IMF levels. If multiple, ap

propriately sensitive channel-pair/IMF-level combinations are present for the patient- 

specific level, the development of preferentially-designed anticipation algorithms is 

feasible. In such a scenario, an extrapolation of the patient-specific channel-pair/IMF- 

level high-impact combinations could employ algorithmic fine-tuning by requiring two 

or more true positives to be identified by these high-impact combinations. Further 

tuning is possible by use of weighted votes by the committee of channel-pair/IMF-level 

combinations. The possibilities of patient customization are far-reaching and could 

afford the clinician a wide variety of approaches for setting the balance of sensitivity 

and specificity. Certainly, the use of specified, high-impact channel-pair/IMF-level 

combinations would be highly individualized, and thus potentially difficult to manage, 

but given the current state of limited practical seizure predictive methods, it could 

prove beneficial to pursue.

Anticipation optimality aO indices appear useful and may aid in distinction of 

high-impact channel-pair/IMF-level combinations. During the trial stage of patient 

implementation, the aO could produce beneficial criteria from which interventional 

therapies or simple warning systems are selected. Further, if a particular channel- 

pair/IMF-level combination has data that has exceeded the threshold, matching the 

a 0  value with the alarm combination could inform the patient of a general seizure 

horizon, as well as a loose estimation of confidence in an impending seizure occurrence. 

Results from Schulze-Bonhage et al. [108] indicate overwhelmingly that patients



surveyed would prefer a seizure prediction device to indicate impending seizures only 

up to one hour prior to a seizure event. Empowering the patient with the aO measure 

related to the combination that has exceeded the threshold could perhaps make them 

more open to longer anticipation times than reported preferences from the survey. For 

instance, if a relatively high a 0 -valued channel-pair/IMF-level combination exceeds 

threshold, the patient may recognize and more willingly accept tha t a seizure is highly 

likely to occur sometime over a longer horizon. For a low-value aO index combination, 

the patient may regard an upcoming seizure to likely occur within a shorter time 

period, but may have less confidence in the likelihood of the seizure occurring at 

all. From the same study, the majority of patients are willing to forgo individualized 

seizure predictions and would be satisfied with an impending seizure probability type 

of feedback framework. Within the scope of these considerations, the aO index could 

be directly applicable as a long-running measure of seizure probability. Even a simple 

sum of the aO index values associated with multiple combinations above threshold at 

any given time could provide user feedback for an estimation of seizure probability. If 

this running sum of aO values was further compared with perhaps a minimum value, 

it could aid in limiting false positives (similar to the committee method above) as 

well as provide information of horizon time.

Patients with hippocampal seizure origins held a statistically significant (p < 

0.01) higher aO index than patients with neocortical origins in our intrinsic mode 

function sychronization measure method. This higher predictability was also found 

by Winterhalder et al. [58] when they used other preprocessing and synchronization 

methods. While the group of individual patients selected for the dataset may be



the reason for this notable difference in performance between seizure origins, the 

focal origin may provide researchers with selection criteria for potential application 

of our seizure anticipation method. The population of the patient set undergoing the 

presurgical monitoring may experience exaggerated effects from seizure and preseizure 

activities as compared to other patients who have been able to control seizures with 

pharmacological or other interventions short of surgical resection. It is uncertain if 

the dataset analyzed can truly represent the “average” epilepsy sufferer. However, it 

is in these same non-surgically intractable patient cases that a warning system would 

likely be highly sought after.

At the patient-specific level, we observed that the IMF-x measures for a 

majority of patients did not vary in a statistically significant manner. For the patients 

with Kruskal-Wallis categorical test p-values less than 0.01, one or more of the six 

measures was statistically different from the others. It is possible that, in many of 

those cases, only one of the six measures was statistically different from the other 

five while still maintaining a very low p-value. Given th a t possibility and the limited 

number of patients with low p-values, it appears that, in general, IMF-x bivariate 

synchronization measures hold less importance in exhibiting distinctions in algorithm 

performance. This concept is fairly well-supported in the literature [27, 58].

Consideration of the channel pair types of focal-focal, focal-extrafocal, or 

extrafocal-extrafocal indicates that for over half of the patients there is a distinction 

between these pair groupings’ capability in seizure anticipation performance. Intu

itively, focal-focal pairs may be expected to hold higher synchronization values than 

other pair types, but this is not always the case [58]. If one considers the seizure



progenerative dynamics to approximate seizure dynamics, one would expect higher 

synchronization between focal and extrafocal regions during the preictal state. It is 

still unclear what effect electrode pair type may have on seizure anticipation, but 

our results suggest that it may have at least some relevance in the patient-specific 

scenario.

The most significant difference in our categorical statistical tests appears to 

be the distinctions between IMF levels for seizure anticipation performance. These 

results are consistent with the general consensus of the importance of frequency 

bandwidth in the successful separation between interictal and preictal dynamics. 

Because of the highly individual nature of epilepsies and seizure manifestations, it 

is reasonable to expect that these seizure-pertinent frequency ranges may vary from 

patient to patient, and possibly seizure to seizure. When coupled with high-sensitivity 

channel pairs, this information may allow for a robust, yet selectively focused, patient- 

specific seizure anticipation algorithm.



CHAPTER 6

CONCLUSIONS

In this exploratory analysis, we used noise-assisted Ensemble Empirical Mode 

Decomposition (EEMD) of intracranial electroencephalogram data of twenty presur- 

gical epilepsy patients as a preprocessing platform upon which to evaluate intrinsic 

mode function (IMF) bivariate measures for potential application in seizure anticipa

tion. Synchronization measures of coherence, correlation coefficient, cross-correlation 

and synchronized phase-locking value were determined from decomposed patient data 

for each IMF level and electrode pair. Using training and validation interictal IMF- 

x data for the development of patient-specific, channel-pair/IMF-level combination 

thresholds, we compared periictal IMF-x data to the determined thresholds for iden

tification of preictal and ictal dynamics. A true positive ratio of correctly identified 

periictal dynamics, along with a proposed anticipation optimality index incorporating 

both sensitivity and anticipation time, were evaluated. Statistical analyses were ac

complished to identify generalizations relating the anticipation algorithm’s successful 

performance with considerations of seizure origin, IMF-x measure, IMF level and 

channel pair type.
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The approach outlined in this paper may be useful in the development of a 

seizure anticipation algorithm. It appears that certain high-impact channel-pair/IMF- 

level combinations can provide adequate seizure anticipation, but should be prefer

entially selected in a patient-specific manner. The proposed anticipation optimality 

index appears useful for determination of periictal-relevant intrinsic mode function 

levels and channel pairings, and may also provide selection criteria if evaluating 

patient candidacy for implementations of seizure anticipation techniques. Of the 

synchronization measures analyzed, it appears that generalization of these measures 

is appropriate for some patients, while others may require preferential selection. 

For the majority of patients, the electrode pairing type does hold some relevance 

to performance assessment values. A strong indication of IMF level dependence 

of anticipation performance data was shown, suggesting seizure dynamics manifest 

within certain frequency bandwidths. The patients with a hippocampal seizure origin 

show better sensitivity with our algorithm than patients with neocortical seizure
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Average Mean Coherence (Interictal Training)
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Figure A.l: Average mean coherence indicating statistical information for mean 
coherence measure of interictal training data. The image map shows each patient’s 
average (across the 15 channel pairs) of mean coherence at each IMF level. Note the 
increasing coherence measure at the higher IMF levels. Higher IMF levels represent 
very low frequency (< ~1 Hz) and are subsequently disregarded.
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Figure A.2: Standard deviation of average mean coherence indicating statistical 
information for the mean coherence measure of interictal training data. The image 
map shows each patient’s standard deviation of the average (across the 15 channel 
pairs) of the mean coherence at each IMF level.
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Figure A.3: Average maximum coherence indicating statistical information for 
maximum coherence measure of interictal training data. The image map shows each 
patient’s average (across the 15 channel pairs) of maximum coherence at each IMF 
level.
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Figure A.4: Standard deviation of average maximum coherence indicating statistical 
information for the maximum coherence measure of interictal training data. The 
image map shows each patient’s standard deviation of the average (across the 15 
channel pairs) of the maximum coherence at each IMF level.
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Average Mean Cross-Correlation (Interictal Training)
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Figure A.5: Average mean cross-correlation indicating statistical information for 
mean cross-correlation measure of interictal training data. The image map shows 
each patient’s average (across the 15 channel pairs) of mean cross-correlation at each 
IMF level.
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Figure A.6: Standard deviation of average mean cross-correlation indicating statistical 
information for the mean cross-correlation measure of interictal training data. The 
image map shows each patient’s standard deviation of the average (across the 15 
channel pairs) of the mean cross-correlation at each IMF level.
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Figure A.7: Average maximum cross-correlation indicating statistical information for 
maximum cross-correlation measure of interictal training data. The image map shows 
each patient’s average (across the 15 channel pairs) of maximum cross-correlation at 
each IMF level.
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Figure A.8: Standard deviation of average maximum cross-correlation indicating 
statistical information for maximum cross-correlation measure of interictal training 
data. The image map shows each patient’s average (across the 15 channel pairs) of 
maximum cross-correlation at each IMF level.
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Figure A.9: Average correlation coefficient indicating statistical information for 
correlation coefficient measure of interictal training data. The image map shows 
each patient’s average (across the 15 channel pairs) of correlation coefficient at each 
IMF level.
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Std. Dev. of Average Correlation Coefficient (Interictal Training)

IMF Level

Figure A. 10: Standard deviation of average correlation coefficient indicating statis
tical information for correlation coefficient measure of interictal training data. The 
image map shows each patient’s average (across the 15 channel pairs) of correlation 
coefficient at each IMF level.
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Average Synchronized Phase Locking Value (Interictal Training)

IMF Level

Figure A. 11: Average synchronized phase locking value indicating statistical informa
tion for synchronized phase locking value measure of interictal training data. The 
image map shows each patient’s average (across the 15 channel pairs) of synchronized 
phase locking value at each IMF level.
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Std. Dev. of Average Synchronized Phase Locking Value (Interictal Training)
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Figure A.12: Standard deviation of average synchronized phase locking value 
indicating statistical information for synchronized phase locking value measure of 
interictal training data. The image map shows each patient’s average (across the 15 
channel pairs) of synchronized phase locking value at each IMF level.
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Figure B.l: IMF-Coh connectivity plots for statistical threshold testing (Patients 1 
to 6). IMF-Coh connectivity plots of channel pairs for Patients 1 through 6 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure B.2: IMF-Coh connectivity plots for statistical threshold testing (Patients 7 
to 13). IMF-Coh connectivity plots of channel pairs for Patients 7 through 13 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure B.3: IMF-Coh connectivity plots for statistical threshold testing (Patients 14 
to 19). IMF-Coh connectivity plots of channel pairs for Patients 14 through 19 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure B.4: IMF-Coh connectivity plots for statistical threshold testing (Patients 20 
to 21). IMF-Coh connectivity plots of channel pairs for Patients 20 through 21 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure C.l: IMF-Cohmaa; connectivity plots for statistical threshold testing (Patients 
1 to 6). IMF-Cohmai connectivity plots of channel pairs for Patients 1 through 6 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure C.2: IMF-Cohmax connectivity plots for statistical threshold testing (Patients 
7 to 13). IMF-Cohmax connectivity plots of channel pairs for Patients 7 through 13 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure C.3: IMF-Cohmaa; connectivity plots for statistical threshold testing (Patients 
14 to 19). IMF-Cohma;c connectivity plots of channel pairs for Patients 14 through 19 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) axe identified as focal electrodes, while channels 4-6 (blue nodes) axe 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure C.4: IMF-Coh.
20 to 21). IMF-Coh
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure D.l: IMF-CCoef connectivity plots for statistical threshold testing (Patients 
1 to 6). IMF-CCoef connectivity plots of channel pairs for Patients 1 through 6 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure D.2: IMF-CCoef connectivity plots for statistical threshold testing (Patients 7 
to 13). IMF-CCoef connectivity plots of channel pairs for Patients 7 through 13 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure D.3: IMF-CCoef connectivity plots for statistical threshold testing (Patients 
14 to 19). IMF-CCoef connectivity plots of channel pairs for Patients 14 through 19 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure D.4: IMF-CCoef connectivity plots for statistical threshold testing (Patients 
20 to 21). IMF-CCoef connectivity plots of channel pairs for Patients 20 through 21 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure E.l: IMF-SPLV connectivity plots for statistical threshold testing (Patients 1 
to 6). IMF-SPLV connectivity plots of channel pairs for Patients 1 through 6 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure E.2: IMF-SPLV connectivity plots for statistical threshold testing (Patients 7 
to 13). IMF-SPLV connectivity plots of channel pairs for Patients 7 through 13 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure E.3: IMF-SPLV connectivity plots for statistical threshold testing (Patients 14 
to 19). IMF-SPLV connectivity plots of channel pairs for Patients 14 through 19 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure E.4: IMF-SPLV connectivity plots for statistical threshold testing (Patients 20 
to 21). IMF-SPLV connectivity plots of channel pairs for Patients 20 through 21 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure F .l: IMF-XCor connectivity plots for statistical threshold testing (Patients 1 
to 6). IMF-XCor connectivity plots of channel pairs for Patients 1 through 6 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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a » â as a as ana ®*'ae « V̂ a.

t » a>

WFB MF7 IMFB

a a<
a

a at
a as

a  at
a as

a  at
a as

a  at 
a a
a as

» a
a  as

a  at 
> a
a as

a at 
> a
a as

IMFB IMF3 IMF5 MF7 IMFB

ir«F6 MF7

a  at
a-as

IMFB IMF6 MF7 IMFB

a at
* •}
a as
IMF11

#  SC* ^
a at 

a a
a as
IMF11

a  at 
» a
a as
IMF11

a  at
a a] 
a as
IMF11

a *
IMF12

Figure F.2: IMF-XCor connectivity plots for statistical threshold testing (Patients 7 
to 13). IMF-XCor connectivity plots of channel pairs for Patients 7 through 13 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure F.3: IMF-XCor connectivity plots for statistical threshold testing (Patients 14 
to 19). IMF-XCor connectivity plots of channel pairs for Patients 14 through 19 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure F.4: IMF-XCor connectivity plots for statistical threshold testing (Patients 20 
to 21). IMF-XCor connectivity plots of channel pairs for Patients 20 through 21 show 
correct detection of periictal dynamics for statistical threshold testing. Channels 1- 
3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure G.l: IMF-XCormaa; connectivity plots for statistical threshold testing (Patients 
1 to 6). IMF-XCormax connectivity plots of channel pairs for Patients 1 through 6 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure G.2: IMF-XCormax connectivity plots for statistical threshold testing (Patients 
7 to 13). IMF-XCorma;r connectivity plots of channel pairs for Patients 7 through 13 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure G.3: IMF-XCormax connectivity plots for statistical threshold testing (Patients 
14 to 19). IMF-XCormaa; connectivity plots of channel pairs for Patients 14 through 19 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) axe 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.
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Figure G.4: IMF-XCormax connectivity plots for statistical threshold testing (Patients 
20 to 21). IMF-XCormax connectivity plots of channel pairs for Patients 20 through 21 
show correct detection of periictal dynamics for statistical threshold testing. Channels 
1-3 (red nodes) are identified as focal electrodes, while channels 4-6 (blue nodes) are 
extrafocal electrodes. The line width is proportional to the true positive (TP) rate. 
Information regarding anticipation time is not included in the plots.



APPEN D IX  H 

MATLAB CODE

The following are sample code listings representing a portion of the M a t l a b  

code used in this study. Some code was developed by the author of this disserta

tion, while some code was obtained from other sources. Included sample listings of 

M a t l a b  code in Appendix H are as follows:

• coh_ch_viz.m

• eemd.m

• feat_caselist2.m

• freiburg.m

• freiburg_dataprep.m

• full_emd_coh_func.m

• mcoh.m

• patSelectinfo.m
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H .l coh_ch_viz.m

% C O H . C H . V I Z
% T h i s  p r o g r a m ,  p e r f o r m s  a n a l y s i s  f o r  F r e i b u r g  d a t a b a s e  e e g  r e c o r d i n g s  i n  
% s e a r c h  o f  s e p a r a b l e  f e a t u r e s  u s i n g  EEMD.  D a t a  i s  f i r s t  r u n  t h r u  
%  e e m d .  a n a l y z e  . m ,  t h e n  e e m d . c o h . m ,  g i v i n g  a  * . c o h . m a t  f i l e  t h a t  h a s  
%  c o h e r e n c e  v a l u e s  b e t w e e n  p a i r s  o f  c h a n n e l s  f o r  e a c h  o f  t h e  E EMD I M F ' s .
%  T h i s  c o h e r e n c e  d a t a  i s  p a r t i t i o n e d  a n d  u s e d  t o  f i n d  a n  a v e r a g e  a n d  
%  s t a n d a r d  d e v i a t i o n  a p p r o p r i a t e  f o r  i n t e r i c t a l  a c t i v i t y  . T h e  i c t a l  ( a n d  
%  s o m e  i n t e r i c t a l )  d a t a  i s  t e s t e d  a g a i n s t  t h e  i d e n t i f i e d  s t a t i s t i c s  i n  
%  o r d e r  t o  d e t e r m i n e  s e i z u r e  a n t i c i p a t i o n  t i m e s  a n d  f a l s e  p o s i t i v e s  .
%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% D a n i e l  M o l l e r
% P h D  P r o g r a m  G r a d u a t e  S t u d e n t  i n  B i o m e d i c a l  E n g i n e e r i n g  
% L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d w m 0 2 1 @ l a t e c h . e d u
%   ------------------------------------------------------------
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  c o h . c h . v i z  . m  V e r s i o n :  1 . 0 . 0 0
%  O r i g i n a l  D a t e :  3 / 2 1 / 1 1  
%
%  F u n c t i o n  c a l l s  :
%  n o n e  
%
%  F u n c t i o n  c a l l e d  b y  :
%  n o n e  
%
%  R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r ,  d a t e  a n d  d e s c r i p t i o n )

1 . 0 . 0  ( O r i g )  D .  M o l l e r  3 / 2 1 / 1 1

% N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%% C l e a r  w o r k s p a c e  a n d  c l o s e  o p e n  f i g u r e s  
c l e a r  a l l ;  c l c  ; c l o s e  a l l ;  warn ing  o f f ;
[comp, pathname ] =  chkcomp ;
pa th n a m e . d a ta  =  ' 1 Rese ar ch  \SRC_DATA\ F r e i b u r g _ D a t a \ m a t \  1 
t i c

W o  E n t e r  d a t a  t o  b e  a n a l y z e d  
avgwin =  20;  
p l o t p a t s  =  6; 
twindow =  16;
modes t ar t  =  1; modeend =  6;
s t d . s t a r t  =  2; s t d . s t e p  =  0 . 5 ;  s t d . e n d  =  5;
th r e s h  =  s t d - s t a r t  : s t d . s t e p  : s t d_ en d  ;
%  p a t S e l e c t { l } =  ' 0 0 3 ' ;

% A L L  H  &  N C
p a t S e l e c t  =  { ' 0 0 1 '  ' 0 0 2 '  ' 0 0 3 '  ' 0 0 4 '  ' 0 0 5 '  ' 0 0 6 '  ' 0 0 7 '  ' 0 0 8 '  ' 0 0 9 '  . . .

' 010 '  ' 0 1 1 '  ' 0 1 3 '  ' 0 1 4 '  ' 0 1 5 '  ' 0 1 6 '  ' 0 1 7 '  ' 0 1 8 '  ' 0 1 9 ' . . .
' 0 2 0 ' '0 2 1  ' } ;  % ' 0 1 2  '

%  %  % H i p p o c a m p a l / N e o c o r t i c a l  ( H / N C )
%  p a t S e l e c t  =  { ' 0 1 4 '  ' 0 1 5 ' } ;

%  H i p p o c a m p a l  ( H )
% p a t S e l e c t  =  { ' 0 0 2 '  ' 0 0 4 '  ' 0 0 6 '  ' 0 0 7 '  ' 0 1 0 '  ' 0 1 3 '  ' 0 1 6 ' } ;  % ' 0 1 2 '

%  %  N e o c o r t i c a l  ( N C )
%  p a t S e l e c t  =  { ’0 0 1  ' ' 0 0 3 '  ' 0 0 5 '  ' 0 0 8 '  ' 0 0 9 '  ' 0 1 1 '  ' 0 1 1 '  ' 0 1 8 '  ' 0 1 9 '  ' 0 2 0 '  ' 0 2 1 ' } ;

mailto:dwm021@latech.edu
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s c r s z  =  g e t ( 0 , ' S c r e e n S i z e 1);
% p x v  =  1 ;  p y v  =  1 ;  p x d v  =  7 0 0 ;  p y d v  =  1 5 0 0 ;  
pxv =  0 .0 ;  pyv =  0 . 0 ;  pxdv  =  0 . 4 ;  pydv =  1 .6 ;

f i g u r e  ( ' U n i t s  1 N o r m a l i z e d P o s i t i o n  1 , [pxv pyv pxdv p y d v ] )  
spno =  0;
f o r  pa tno  =  1: l e n g t h  ( p a t  S e l e c t  )

W o  c l e a r  r e p e a t e d  d a t a
c l e a r  x l s  fpr  fp m a i i . t r a i n  m a i i - t e s t  m a s z - t e s t  i i - t e s t  l i n e w i d t h d a t
c l e a r  mno s z _ t e s t
W o  G e t  d a t a  f r o m ,  s a v e d  f i l e s
p a t l d { l }  =  p a t S e l e c t { p a t n o  };
[ fnames]  =  p a t  S e l e c t  in f o  ( p a t l d  , twindow ) ;
[ n r , n c ]  =  s i z e  ( fnames  ) ; 
n u m f i l e s  =  0; 
n o i i  =  0; 
nosz  =  0;

W o  L o a d  d a t a  a n d  p r e p a r e  
%  —c o m p u t e  a v g w i n —p t  m o v i n g  a v e r a g e  
%  —k e e p  t r a c k  o f  n u m b e r  o f  f i l e s  f o r  e a c h  t y p e
%  — i n t e r i c t a l  t r a i n i n g  : 1 s t  h a l f  ( 3 0 m i n )  o f  e a c h  i n t e r i c t a l  f i l e
% — i n t e r i c t a l  t e s t i n g  : 2 n d  h a l f  ( 3 0 m i n )  o f  e a c h  i n t e r i c t a l  f i l e
%  —s e i z u r e  t e s t i n g  : p r e i c t a l / i c t a l / p o s t i c t a l
f o r  i =  1: nr

f o r  j =  l : n c
i f  i s e m p t y  ( f i n d s t r  ( fnames{  i , j } , ' ? ' )  ) && ~ i s e m p t y (  fnames { i , j } )  

l o a d  ( fnames { i , j } , ' c o h p a i r  ' , ' t v c p a i r  ' ) ;
[ i m f s ,  ep o ch s ]  =  s i z e  ( c o h p a i r  ( 1 ) .  c o h ) ;
[dummy, t v c p a i r n o  ] =  s i z e  ( c o h p a i r  ) ; 
n u m f i l e s  =  n u m f i l e s  +  1; 
s w i t c h  i

c a se  1
n o i i  =  n o i i + 1 ;  
f o r  p a i r n o  =  l : t v c p a i r n o  

f o r  k =  1: imfs
fo r  j =  avgwin  : f l o o r  ( e p o c h s / 2 )

m a i i - t r a i n ( n o i i  , pa i rno  , k , j )  =  . . .
mean(  c o h p a i r ( p a i r n o )  . c o h ( k , j  — (avgwin — 1)

>
end

end
f o r  k =  1: imfs

fo r  j =  a v g w i n + f l o o r  ( e p o c h s / 2 ) + l : e p o c h s
m a i i - t e s t  ( n o i i  , p a i r no  , k , j  —f l o o r  ( e p o c h s / 2 ) )  =

mean(  c o h p a i r ( p a i r n o )  . coh (k , j —(avgwin —1)

end
end

end
c a se  2

nosz  =  nosz  +  1; 
f o r  pa i rno  =  l : t v c p a i r n o  

f o r  k =  1: imfs
fo r  j =  a v g w i n : ep och s

m a s z _ t e s t  ( nosz  , pa i rno  , k , j ) =  . . .
mean(  c o h p a i r ( p a i r n o )  . c o h ( k , j  —(avgwin — 1)

J
end

end
end

end
end
c l e a r  c o h p a i r  t v c p a i r

end
end

: j ) ) ^

SE

■i))^



W o  I n t e r i c t a l  T r a i n i n g
%  —f i n d  a v e r a g e  &  s t d e v
c l e a r  n o f i l e s  t v c p a i r n o  imfs  e p o c h s
[ n o f i l e s , t v c p a i r n o , i m f s , e p o c h s ]  =  s i z e ( m a i i . t r a i n ) ;  
temp =  [] ; 
f o r  j =  1 : t v c p a i r n o  

f o r  k =  1: imfs
fo r  i =  1: n o f i l e s

e p o c h s t e p  =  e p o c h s —avgwin +  1;
t emp( j  , k , (  i —X)* e p o c h s t e p  +  X: i * e p o c h s t e p  ) =  . . .  

m a i i _ t r a i n ( i  , j  , k ,  avg win  : e p oc hs  ) ;
end
m a i i . t r a i n f o ( j , k , X )  =  mean]  temp ( j , k , : ) ) ; 
m a i i - t r a i n f o  ( j , k , 2 ) =  s t d  ( t emp(  j , k ,: ) ) ;

end
end
m a i i _ t r a i n f o _ p e r p a t ( p a t  n o , =  m a i i . t r a i n f o ;

%% I n t e r i c t a l  T e s t i n g
%  — f i n d  F a l s e  P o s i t i v e s
c l e a r  n o f i l e s  t v c p a i r n o  imfs  e p o c h s  temp
[ n o f i l e s , t v c p a i r n o , i m f s , e p o c h s ]  =  s i z e (  m a i i - t e s t ) ;
fo r  i =  1: n o f i l e s

fo r  j =  1 : t v c p a i r n o  
f o r  k =  1: imfs  

mno =  0;
fo r  m =  s t d . s t a r t  : s t d . s t e p  : s t d . e n d  

mno =  mno+X;
i i _ t e s t  ( i , j , k , mno, : )  =  z e r o s ( 1 , e p o c h s );  
i i - t e s t  ( i  , j  , k ,  mno , . . .

f i n d  ( m a i  i . t e s t  ( i , j , k ,: ) >  . . .
ma i  i - t r a i n f o  (j , k , X )4m* m a i i - t r a i n f o  (j , k , 2 ) )  ) =  1;

end
end

end
end

%% C o m p u t e  F P R
c l e a r  n o f i l e s  t v c p a i r n o  imfs  ep oc h s
[ n o f i l e s , t v c p a i r n o , i m f s , n o t h r e s h , e p o c h s ]  =  s i z e ( i i . t e s t ) ;  
f or  j =  1: t v c p a i r n o  

f o r  k =  1: imfs
f o r  m =  l i n o t h r e s h  

fp ( j , k ,m)  =  0; 
f o r  i =  1: n o f i l e s

fo r  e =  1 : epochs  —1
i f  ( i i .  t e s  t  ( i , j , k ,m, e + X ) = X  i i _t e s t ( i , j , k ,m, e )

fp ( j , k ,m) =  fp ( j , k ,m) +1;
end

end
end
fpr (j , k ,m)  =  . . .

f p ( j  , k , m ) / ( n o f i l e s * (  epoch s  —(avgwin — X)) *t window / 3 6 0 0 )  ;
end

end
end

W o  I d e n t i f y  S e i z u r e  d a t a  l a r g e r  t h a n  I I  A v e r a g e + S t D e v  
clear n o f i l e s  t v c p a i r n o  imfs  epoch s  
[ n o f i l e s , t v c p a i r n o , i m f s , e p o c h s ]  =  s i z e ( m a s z . t e s t ) ;  
for i =  X: n o f i l e s

for j =  X : t v c p a i rn o  
for k =  X: imfs  

mno =  0;
for m =  s t d . s t a r t  : s t d . s t e p  : s t d . e n d  

mno =  mno+X;
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end

s z . t e s t  ( i , j , k , mno , : )  =  z e r o s ( 1 , e p o c h s ) ;  
s z _ t e s t ( i  , j , k ,  mno , . .  .

f i n d ( m a s z _ t e s t ( i , j , k , : )  >  . . .
m a i i . t r a i n f o  (j  , k , l )  4m* m a i i _ t r a i n f o ( j , k , 2 ) ) )  =  1;

end
end

end

W o  S e i z u r e  T e s t i n g
%  — f i n d  n u m b e r  o f  s e i z u r e s  d e t e c t e d
%  ( m o s t  i s  1 o u t  o f  1 f o r  e a c h  s e i z u r e )
%  — f i n d  h o r i z o n  ( a n t i c i p a t i o n )  t i m e  i n  m i n  f o r  e a c h  s e i z u r e  
%  — f i n d  h o r i z o n  t i m e  a v e r a g e  &  s t d e v
c l e a r  n o f i l e s  t v c p a i r n o  imfs  ep och s  p r e d i c t f l a g  p r e d i c t t i m e  
[ n o f i l e s ,  t v c p a i r n o ,  imfs  , no th  re s h ,  e p o c h s ]  =  s i z e ( s z . t e s t ) ;  
f or  k =  1: imfs

fo r  j =  1: t v c p a i r n o
for  m =  l : n o t h r e s h

f o r  i =  1: n o f i l e s
p r e d i c t f l a g  ( i ) =  0; 
p r e d i c t t i m e  ( i ) =  0; 
f o r  e =  1 : epochs  —1

i f  ( sz  _t e s  t ( i , j , k ,m, e 4 - l ) = l  &fc s z  _t e s t  ( i , j , k ,m, e ) = 0  . . .  
&fc p r e d i c t f l a g  ( i ) =  0)  

p r e d i c t f l a g ( i ) =  1;
%  p r e s u m e  a l l  s e i z u r e  f i l e s  h a v e  1 5 m i n  
% i c t a l / p o s t i c t a l  r e g a r d l e s s  o f  t o t a l  l e n g t h  
p r e d i c t t i m e  ( i ) =  . . .

( r ou n d (  epo chs  —1 5 * 6 0 / t w i n d o w ) *twindow — . . .  
( e4 - l ) * t w i n d o w )  / 6 0 ;  

x l s  (k )  . sz  ( i ) .  h o r i z o n  (j  ,m) =  . . .
( r ou n d )  epo chs  —15 *60 / t w indow ) * twindow — . . .
( e 4 - l ) * t w in d o w ) / 6 0 ;

%  x l s  ( k )  . s z  ( i  ) .  h o r i z o n  ( j  , m )
( 3 6 0 0 — ( e  +  1) * t w i n d o w )  / 6 0 ;

end
end

end
x l s  (k )  . s z d e t  ( j ,m) =  sum( p r e d i c t f l a g  ( : )  ) ;
x l s ( k ) . h o r i z o n _ a v g ( j , m )  =  sum( p r e d i c t t i m e ) / x l s ( k )  . s z d e t ( j  ,m) ; 
x l s ( k ) . h o r i z o n _ s t d ( j , m )  =  s t d  ( p r e d i c t t i m e )  f i nd  ( p r e d i c t f l a g  ( : )  = =

x l s p a t ( p a t n o ) . x l s ( k ) . s z d e t ( j  , m ) = x l s ( k ) . s z d e t ( j  ,m);  
x l s p a t  ( p a t n o )  . x l s  (k )  . h o r i z o n . a v g  ( j  , m ) = x l s ( k ) .  h o r i z o n  . a  v g ( j  ,m);  
x l s p a t ( p a t n o ) . x l s ( k ) . h o r i z o n . s t d ( j  , m ) = x l s ( k ) . h o r i z o n . s t d ( j  ,m) ; 
x l s p a t  ( p a t n o )  . n o s z = n o f i l e s  ;
x l s p a t ( p a t n o ) . x l s ( k ) . s z ( j  , m ) . s z t e s t = s q u e e z e ( s z _ t e s t  (: , j  , k , m , : )  )

end
end

end

O u t p u t  c h a n n e l  v i s u a l i z a t i o n

s e t  u p  l o c a t i o n s  o f  c h a n n e l  p o i n t s  f o r  g r a p h  
[ c o s ( d e g 2 r a d ( 1 2 0 ) )  s i n ( d e g 2 r a d ( 1 2 0 ) )  ] 
[ c o s ( d e g 2 r a d ( 1 8 0 ) )  s i n ( d e g 2 r a d ( 1 8 0 ) )  ]
[ c o s ( d e g 2 r a d ( 2 4 0 ) )  s i n ( d e g 2 r a d ( 2 4 0 ) )  ]
[ c o s ( d e g 2 r a d ( 6 0 ) )  s i n ( d e g 2 r a d ( 6 0 ) ) ] ;
[ c o s ( d e g 2 r a d ( 0 ) )  s i n ( d e g 2 r a d ( 0 ) ) ] ;
[ c o s ( d e g 2 r a d ( 3 0 0 ) )  s i n (  d e g 2 r a d ( 3 0 0 ) ) ]  ;

%  s e t u p
ch (1 , ) =
ch ( 2 , ) =
ch ( 3 , ) =
ch (4  , ) =
ch (5  , ) =
ch (6  , ) =

i n f o k u s  = [ 1 2  3];  
o u t f o k u s  = [ 4  5 6);
%  n o s u b p l o t s  =  4 * ( m o d e e n d — m o d e s t a r t  +  1 )  
f or  k =  1: imfs

i f  k > =  m o d es t  art  && k < =  modeend 
spno =  spno4- l ;

=

1)))^
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end
f o r  j =  1: t v c p a i r n o

f i r s t f p r . f l a g  =  0; 
l i n e w i d t h d a t  (k , j ) =  0; 
f o r  m =  l : n o t h r e s h

[ c h a n n e l s ]  =  t v c p a i r g e t  ( j ) ; 
i f  fpr (j , k ,m)  =  0 && f i r s  t f  p r _f 1 a g  =  0 

f i r s t f p r . f l a g  =  1; 
x l s p a t ( p a t n o ) . f i r s t f p r ( j , k)=m;  

d i s p  ( n o s z )
d i s p  ( x l s  ( k )  . s z d e t  ( j  , m ) )  

l i n e w i d t h d a t ( k , j ) =  x l s ( k ) . s z d e t ( j ,m) / n o s z * 2 . 5  ;
%  x l s  ( k )  . h o r i z o n . a v g  ( j  , m )  =  s u m ( p r e d i c t t i m e  ) / x l s  ( k ) < - ^

. s z d e t ( j , m )  ;
%  x l s  ( k )  . h o r i z o n - s t d  ( j  , m )  =  s t d  ( p r e d i c t t i m e  ( f i n d

p r e d i c t f l a g  ( : )  = = 1 ) )  )  ;
end

end
i f  k > =  mode s t  art && k < =  modeend

i f  spno =  (modeend—m o d e s t a r t + 1 ) *  p l o t p a t s + 1  k =  m o d e s t a r t  
spno =  1;
f i g u r e  ( ' P o s i t i o n  1 , [pxv  pyv  pxdv  p yd v] )

end
s u b p l o t  ( p l o t p a t s  , ( modeend—m o d e s t a r t  +  1) , spno )

%  s u b p l o t  ( l e n g t h  (  p a t S e l e c t )  , (  m o d e e n d —m o d e s t a r t  +  1)  , k *  p a t n o  )
h o ld  o n ;

%  a x i s  o f f ;
a x i s  equ a l  
box o n ;
a x i s  ([ — 1.4 1 .4  - 1 . 4  1 . 4 ] )  ; 
x l a b e l  ([  'IMF 1 n u m 2 s t r ( k )  ] ) ; 
i f  k =  mo d es ta r t

y l a b e l ([  ' Pat  1 b l a n k s ( l )  p a t S e l e c t { p a t n o } (2  : 3 ) ] )  ;
end
f o r  i =  1:3

p l o t  ( c h ( i  , 1 )  , c h ( i  , 2 )  , ' o '  , 'M a r k e r S i z e '  , 1 0  , . . .
1 MarkerEdgeColor  1 , 1 r ' , ' MarkerFaceCo lor  1 , 1 r ' )

h o l d  on ;
t e x t  ( c h ( i  , 1 )  — 0.3  ,ch ( i , 2 )  , n u m 2s tr  ( i ) ) ; 
p l o t ( c h ( i + 3 , l )  , c h (  i + 3 , 2 )  , ' o '  , 'M ar ker S iz e  ' , 1 0  , . . .

' MarkerEdgeCo lor  ' , ' b ' , 'MarkerFaceColor  ' , ' b ' ) 
t e x t ( c h ( i + 3 , l ) + 0 . 2 , c h ( i + 3 , 2 )  ,n u m 2 s tr  ( i +3 ) )  ;

end
h o ld  o n ;
i f  l i n e w i d t h d a t  (k , j ) ~= 0

xdat  =  [ ch ( c h a n n e l s  ( 1 ) ,  1) ch ( c h a n n e l s  ( 2 )  , 1 ) ]  ; 
ydat  =  [ch ( c h a n n e l s  (1 )  , 2 )  ch ( c h a n n e l s  ( 2 )  ,2) ); 
i f  (~ i s e m p t y (  f i n d  ( c h a n n e l s  ( 1 )  =  i n f o k u s ) )  &fc . . .

~ i s e m p t y (  f i n d  ( c h a n n e l s  (2 )  =  i n f o k u s ) ) )  
p l o t  ( xdat  , yda t  , ' r ' , ' Line W idt h  ' , l i n e w i d t h d a t ( k , j ) )  

e l s e i f  (~ i s e m p t y  ( f i n d  ( c h a n n e l s  (1 )  =  i n f o k u s ) )  . . .
' i s e m p t y  ( f i n d  ( c h a n n e l s  (2 )  =  o u t f o k u s ) ) )  | |  . . .
( '  i s e m p t y  ( f i n d  ( c h a n n e l s  (1 )  =  o u t f o k u s ) )  &&: . . .
' i s e m p t y  ( f i n d  ( c h a n n e l s  ( 2 )  =  i n f o k u s ) ) )  

p l o t  ( xdat  , yda t  , 1 Co lo r  1 , [ 0 . 5  0 0 .  5] , 1 L ineWidth  ’ ,«-» 
l i n e w i d t h d a t ( k , j ) )

e l s e
p l o t  ( xda t  , yda t  , 'b ' , ' L ineWidth ' , l i n e w i d t h d a t ( k , j ) )

end
% p l o t  ( x d a t , y d a t  , ' L i n e W i d t h l i n e w i d t h d a t  ( k , j  )  )

h o ld  on ;
end
s e t  ( g c a  , ' XTick ' , [] , 'YTick '  , [ ] )

end
end

end
end
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s a v e  ( ' x l s p a t \ c o h - x l s p a t  . m a t x l s p a t ' ) ;

%  % %  I n t e r i c t a l  T e s t i n g  — O u t p u t  F P R  t o  E x c e l  
%  p a t l d  =  p a t S e l e c t { l }
%  r u n i n f o l  =  d a t e s t r  ( n o w ,  ' y y m m d d ' ) ;
%  r u n i n f o S  =  d a t e s t r  ( n o w ,  ' HHMM' )  ;
%  r u n i n f o  =  s t r c a t ( r u n i n f o l , ' , r u n i n f o S ) ;
%
%  f n a m e x c e l  =  [ p a t l d  ' . r e s u l t s .  ' n u m S s t r  ( t w i n d o w )  ' . '  r u n i n f o ] ;
%  %  t v c p a i r o r d e r  =  [ 1  2  6  3  4  5  7  8  9  1 0  1 1  I S  1 3  1 4  1 5 ] ;
%  t v c p a i r  =  [ 1  2 ;  1 3 ;  1 4 ;  1 5 ;  1 6 ;  2  3 ;  2  4 ;  2  5 ;  2  6 ;  3  4 ;  3  5 ;  3  6 ; . . .
%  4 5 ;  4  6 ;  5  6 ] ;
%  f o r  k  =  1 :  i m f s
%  s h e e t  =  [ ' I M F '  n u m S s t r  ( k )  ] ;
%  h e a d n a m e  — { [ ' F a l s e  P o s i t i v e  R a t e  o f  I n t e r i c t a l  T e s t  D a t a :  I M F '  n u m 2 s t r ( k )  ] } ;
%  f o r  j  =  1 : t v c p a i r n o
%  f o r  m =  l . n o t h r e s h
%  x l s  ( k )  . f p r  ( j  , m )  =  f p r ( j , k , m ) ;
%  e n d
%  e n d
%  x l s w r i t e  ( f n a m e x c e l  , h e a d n a m e  , s h e e t  , ' A t ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , { ' M u l t i p l e s  o f  S t D e v  ( f r o m  I I  t e s t i n g  d a t a )
%  s h e e t ,  ' C 2 ' ) ;
%  x l s w r i t e  ( f n a m e x c e l  , t h r e s h  , s h e e t  , ' C 3  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , {  ' C H A '  ' C H B ' }  , s h e e t  , ' A 3 ' ) ;
%  x l s w r i t e  ( f n a m e x c e l  , t v c p a i r  , s h e e t  , ’A 4  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l  , x l s  ( k )  . f p r  , s h e e t  , ' C 4  ' )  !
%  i f  r e m ( k  , 2 )  = = 0
%  f p r i n t f  ( ' F P R :  M o d e  % i  c o m p l e t e  a t  % 5 . 2 f \ n ' , k , t o c )
%  e n d
%  e n d

%  %% S e i z u r e  T e s t i n g  — O u t p u t  t o  E x c e l  
%  f o r  k  =  1 :  i m f s
% s h e e t  =  [ ' I M F '  n u m 2 s t r ( k )  ] ;
% h e a d n a m e  — . . .
% { [ ' M E A N  H o r i z o n  T i m e  ( m i n )  o f  S e i z u r e  T e s t i n g  D a t a :  I M F '  . . .
% n u m 2 s t r  ( k )  ] }  ;
% %  f o r  j  =  1 : l e n g t h ( t v c p a i r o r d e r )
% %  f o r  m  =  1:  n o t h r e s h
% %  x l s ( k ) . ( t v c p a i r o r d e r ( j ) , m )  =  f p r ( t v c p a i r o r d e r ( j ) , k , m )  ;
%  %  e n d
%  %  e n d
%  x l s w r i t e  ( f n a m e x c e l , h e a d n a m e  , s h e e t  , ' A 2 0  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , { '  M u l t i p l e s  o f  S t D e v  ( f r o m  I I  t e s t i n g  d a t a )  ' } , . . .
%  s h e e t  , ' C 2 1  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l  , t h r e s h  , s h e e t  , ' C 2 2  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , {  ' C H A '  ' C H B ' }  , s h e e t  , ' A 2 2 ' ) ;
%  x l s w r i t e  ( f n a m e x c e l  , t v c p a i r  , s h e e t  , 'A 2 3  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l  , x l s  ( k )  . h o r i z o n . a v g  , s h e e t  , ' C 2 3  ' )  ;
%
%  h e a d n a m e  =  . . .
% { [ ' #  ° f  S e i z u r e s  D e t e c t e d  o u t  o f '  b l a n k s  ( 1 )  n u m 2 s t r (  n o f i l e s ) . .  .
%  ' :  I M F '  n u m 2 s t r  ( k )  ] }  ;
%  x l s w r i t e  ( f n a m e x c e l , h e a d n a m e , s h e e t  , ' A 4 0  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , {  ' M u l t i p l e s  o f  S t D e v  ( f r o m  I I  t e s t i n g  d a t a )  '} , . . .
%  s h e e t  , ' C 4 1 ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , t h r e s h  , s h e e t  , ' C4% ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , {  ' C H A '  ' C H B ' }  , s h e e t  , ' A 4 S ' ) ;
%  x l s w r i t e  ( f n a m e x c e l , t v c p a i r  , s h e e t  , ' A 4 3  ' )  ;
% x l s w r i t e  ( f n a m e x c e l , x l s  ( k )  . s z d e t  , s h e e t  , ' C 4 S  ' )  ;
%
% h e a d n a m e  =  . . .
% { [ ' S T D E V  H o r i z o n  T i m e  ( m i n )  o f  S e i z u r e  T e s t i n g  D a t a :  I M F '  . . .
% n u m 2 s t r  ( k )  ] }  ;
%  x l s w r i t e  ( f n a m e x c e l , h e a d n a m e , s h e e t  , 'A 6 0  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , { '  M u l t i p l e s  o f  S t D e v  ( f r o m  I I  t e s t i n g  d a t a )
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%  s h e e t  ,  ' C 6 1 ' )  ;
% x l s w r i t e  ( f n a m e x c e l  , t h r e s h  , s h e e t  , ' C B S  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , {  ' C H A '  ' C H B ' }  , s h e e t  , ' A 6 S ' )  ;
%  x l s w r i t e  ( f n a m e x c e l , t v c p a i r  , s h e e t  , 'A 6 3  ' )  ;
%  x l s w r i t e  ( f n a m e x c e l  , x l s  ( k )  . h o r i z o n - s t d  , s h e e t  , ' C 6 3  ' )  ;
%
%  i f  r e m ( k , 2 ) = = 0
%  f p r i n t f  (  ' H O R I Z O N :  M o d e  % i  c o m p l e t e  a t  % 5 . 2 f \ n ' , k , t o c )
%  e n d
%  e n d  
%
%  s a v e  ( f n a m e x c e l  , ' x l s  ' ,  ' i i - t e s t  ' ,  ' s z - t e s t  ' )
%
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H.2 eem d.m

%  T h i s  i s  a n  E M D /E E M D  p r o g r a m  
%
%  f u n c t i o n  a l l m o d e = e e m d ( Y ,  N s t d  , N E )
%
%  I N P U T :
%  Y :  I n p u t t e d  d a t a ;
%  N s t d :  r a t i o  o f  t h e  s t a n d a r d  d e v i a t i o n  o f  t h e  a d d e d  n o i s e  a n d  t h a t  o f  Y ;
%  N E :  E n s e m b l e  n u m b e r  f o r  t h e  EEM D
%  O U T P U T :
%  A  m a t r i x  o f  N * ( m + 1 )  m a t r i x ,  w h e r e  N  i s  t h e  l e n g t h  o f  t h e  i n p u t
%  d a t a  Y ,  a n d  m = f i x ( l o g S ( N ) )  — l .  C o lu m n  1 i s  t h e  o r i g i n a l  d a t a ,  c o l u m n s  2 ,  3 ,

%  m  a r e  t h e  I M F s  f r o m  h i g h  t o  l o w  f r e q u e n c y  , a n d  c o m lu m n  ( m + 1 )  i s  t h e
%  r e s i d u a l  ( o v e r  a l l  t r e n d ) .
%
% N O T E :
% I t  s h o u l d  b e  n o t e d  t h a t  w h e n  N s t d  i s  s e t  t o  z e r o  a n d  N E  i s  s e t  t o  1 ,  t h e
% p r o g r a m  d e g e n e r a t e s  t o  a  E M D  p r o g r a m .
%
% R e f e r e n c e s  c a n  b e  f o u n d  i n  t h e  ’’ R e f e r e n c e ” s e c t i o n .
%
%  T h e  c o d e  i s  p r e p a r e d  b y  Z h a o h u a  W u. F o r  q u e s t i o n s  , p l e a s e  r e a d  t h e  ”Q & A ” s e c t i o n  /-> 

o r
%  c o n t a c t
%  z h w u @ c o l a . i g e s . o r g  
%

f u n c t i o n  a l lmode=eemd (Y, Nstd ,NE) 
x s i z e = l e n g t h ( Y )  ; 
dd =  l : l :  x s i z e  ;
Y s t d = s t d  (Y) ;
Y=Y/Ys td  ;

TNM=fix ( l o g 2  ( x s i z e ) ) —1;
TNM2=I!vM+2; 
f o r  kk =  l : l :TNM2,

fo r  i i =1 :1 :  x s i z e  ,
a l l m o d e ( i i  , k k ) = 0 . 0 ;

end
end

f o r  i i i = 1 : 1  :NE,
fo r  i =1:  x s i z e  ,

t emp=randn  ( 1 , 1 )  * Nstd ;
XI ( i )=Y( i )+temp ;

end

fo r  jj  =1 :1 :  x s i z e  ,
mode( j j , 1 )  =  Y ( j j  ) ;

end

x o r i g i n  =  X I ; 
xend =  x o r i g i n  ;

nmode =  1; 
w h i l e  nmode < — TNM, 

x s t a r t  =  xend;  
i t e r  =  1;

w h i l e  i t e r  <=10 ,
[spmax,  spmin , f l a g ]  =  e x tr e m a (  x s t a r t ) ; 
up p er=  s p l i n e  (spmax (: , 1)  , spmax (: , 2 )  ,dd )  ; 
l o w e r =  s p l i n e ( s p m i n ( :  , 1 )  , spmin ( : , 2)  , dd )  ; 
me an .u l  =  (upp er  +  l o w e r )  / 2 ;
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x s t a r t  =  x s t a r t  — m e a n . u l ; 
i t e r  =  i t e r  +1;

end
xend =  xend — x s t a r t ;

nmode=nmode+l;

fo r  j j = 1 :1 :  x s i z e  ,
mode ( j j  , nmode) =  x s t a r t  ( j j )

end
end

f o r  jj  = 1 :1 :  x s i z e  ,
mode( j j  , nmode+ l )=x end  ( j j ) ;

end

al lmode=a l lmode -t -mode ;

end

a l l m o d e = a l lm o d e  /NE;  
a l l m o d e = a l I m o d e * Ystd ;



H.3 feat_caselist2.m

f u n c t i o n  [ c a s e l i s t ]  =  f e a t  . c a s e l i s  t 2 ( t t S e t  , Fs , i i s  t  a r t  , i i s t o p  , i ine wna me )
%  F E A  T -C A  S E L I S T  -
%  T h i s  p r o g r a m  u s e s  p a t l d  t o  s u p p l y  c a s e  — s p  e c i f i c  i n f o r m a t i o n  t o  t h e  h m m  
%  c o d e .
%
% ******************************* ******************************************
%  D a n i e l  M o l l e r
%  P h D  P r o g r a m  G r a d u a t e  S t u d e n t  i n  B i o m e d i c a l  E n g i n e e r i n g  
%  L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d w m 0 2 7 @ l a t e c h . e d u
%       -------------------------------------------
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  h m m . c a s e l i s t  . m  V e r s i o n :  1 . 0 . 0 0
%  O r i g i n a l  D a t e :  7 / 1 4 / 1 0  
%
%  F u n c t i o n  c a l l s :
%
%  F u n c t i o n  c a l l e d  b y :
%
%  R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r ,  d a t e  a n d  d e s c r i p t i o n )
%          =  =■■= - -    =
%  1 . 0 . 0 0  < o r i g >  D .  M o l l e r  7 / 1 4 / 1 0  
%  c o p i e d  f r o m  h m m - f r e i b u r g  . m  ( v l . 0 . 0 1 )
%
%  N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

%  F o r  d o c u m e n t a t i o n  p u r p o s e s  , c o p y  t h e  p a t h n a m e s  a n d  f i l e n a m e s  f o r  w h i c h  
%  t h e  c h a n n e l  d a t a  i s  a s s o c i a t e d  f r o m  t h e  b s i d e v a m . m  f i l e .
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c a s e l i s t  =  s t r u c t (  'pname 1 , ' fnameex t  ' , []  , ' f u l l n a m e '  ,[]  , ' t s t a r t  ' , [ ]
' t s t o p '  , [] , 1 s zon  ' ,[] , ' s z o f f '  , [ ] )  ;

[comp, pa th x ]  =  chkcomp ; 
i f  s t r cm p(c om p , ' ddzmrover  ' )

pname =  ' C : \ U s e r s \ D a n i e l  M ol l e r \L A . T e c h \ M a t l a b W o r k \  ' ; 
e l s e i f  s t r c m p (c o m p ,  ' c a l O l  ') 

pname =  'X: \  Mat labWork\  ' ;
end
x l s p o t  =  [pname 11 R e s e a r c h \ S R C _ D A T A \ F r e i b u r g . D a t a \ f r e i b u r g . i n f o  . x l s x  ' ] ; 
pname =  [pname ' 1 R e s e a r c h \ s r c _ D A T A \ F r e i b u r g _ D a t a \ m a t \ ' ] ;

%% C r e a t e  l i s t  o f  s e i z u r e  n a m e s  
nrnn =  1; 
f o r  m =  1:21

i f  m<10; temp =  [ ' 0 0 '  num2s tr (m)  ] ; e l s e ;  temp =  [ 'O '  num2s tr(m)  ] ; en d  
f o r  mm =  1:5

temp2 =  [ temp num2str(mm) ] ;
l i s t o f s z f i l e s  {raim} =  temp2 ; 

nrnm =  mrrm+1;
end

end

I d e n t i f y  s t a r t  a n d  e n d  t i m e s  
f o r  i =  1 : l e n g t h ( t t S e t ) 

p a t l d  =  t t S e t { i }; 
s w i t c h  p a t l d

ca se  l i s t o f s z f i l e s
d =  d i r  ( [pname p a t l d ( l : 3 )  ' _ s * ' ) ) ;
j = i;
[num, tx t ]  =  x l s r e a d ( x l s p o t  , [  ' p a t  ' p a t l d ( l : 3 )  ] , 'A3: F7 ' ) ; 
f i l e f l a g  =  0;
s z n o  =  s t r2n um (  p a t l d  ( l e n g t h  ( p a t l d  ) )  ) 
w h i l e  (j  < =  l e n g t h ( d )  && f i l e f l a g  =  0)  

c l e a r  fnames
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l o a d  ( [pname d(  j ) .  name] , 1 fnames  1 ) 
l o a d  ( [pname d ( j ) .  name] , 'CHOI' ) 
i f  l e n g t h  ( C H O I) /2 56 /3 60 0  *=  l e n g t h  ( f n a m e s ) 

d i s p (  'Watch ou t  for  f i l e  l e n g t h ! ' )
end
fo r  k =  1: l e n g t h  ( fnames  )

i f  s t r cm p  ( t x t  ( s zno ,: ) , fn am es {k  } ( 1 :  l e n g t h  ( fnames { k } ) —6) ) 
t s t a r t  =  round(num(  szno , 1 ) / F s )  + ( k —2)*3600  
i f  t s t a r t  <  0

t s t a r t o v e r l a p  =  a b s ( t s t a r t ) ;  t s t a r t  =  0;
e l s e

t s t a r t o v e r l a p  =  0;
end
t s t o p  =  rou nd (n u m (sz n o  , 1 ) / F s ) + ( k  —1)*3600+900  

%  t s t o p  =  t s t a r t + 4 5 0 0 ;
i f  t s t o p  >  l e n g t h  (CHOI)/256  

t s t o p  =  l e n g t h  (CHOI)/256
end
szon =  3600 — t s t a r t o v e r l a p  ;
s z o f f  =  s zon  +  round(num(  s zno  , 5 ) ) ;
fnameex t  =  d ( j ) . n a m e ;
f u l ln a m e  =  s t r c a t  (pname , fn am ee x t  ) ;
f i l e f l a g  =  1;

end
en d
j =  j + i ;

end
i f  f i l e f l a g  =  0

e r r o r ( [ ' N o  s e i z u r e  d a ta  f o r '  b l a n k s ( l )  p a t l d  ' ! ' ] )
end

o t h e r w i s e
f p r i n t f ( ' Th i s  i s  n o n s e i z u r e ,  i n t e r i c t a l  d a t a \ n  ')
fn am eex t  =  p a t l d ( l : 5 ) ;
fu l ln a m e  =  s t r c a t  (pname , f n a m e e x t ) ;
t s t a r t  =  3 6 0 0 * i i s t a r t  ; t s t o p  =  3 6 0 0 * i i s t o p ;
szon =  1; s z o f f  =  1;
d =  d i r  ( [pname p a t l d  ( 1 : 3 )  ' - ' ] ) ;

end

c a s e l i s t  ( i ) .pname =  pname;  
c a s e l i s t  ( i ) .  fnam eex t  =  fn am ee x t ;  
c a s e l i s t  ( i ) .  fu l ln a m e  =  f u l l n a m e ;  
c a s e 1i s t ( i ) . t s t a r t  =  t s t a r t ;  
c a s e l i s t ( i ) . t s t o p  =  t s t o p ;  
c a s e l i s t ( i ) . s zon  =  s z o n ;  
c a s e l i s t ( i ) . s z o f f  =  s z o f f ;

end



H.4 freiburg.m

m  F R E IB U R G  -
%  T h i s  p r o g r a m  p r e p a r e s  t h e  F r e i b u r g  d a t a  f o r  s u b m i s s i o n  t o  t h e  E V A M  
%  p r o g r a m .
%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%  D a n i e l  M o l l e r
%  P h D  C a n d i d a t e  , B i o m e d i c a l  E n g i n e e r i n g  
%  L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d w m 0 2 7 @ l a t e c h . e d u
%     ___
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  f r e i b u r g  . m  V e r s i o n : 1 . 0 . 0 2
%  O r i g i n a l  D a t e :  4 / 1 4 / 0 9  
%
%  F u n c t i o n  c a l l s :
%  n o n e  
%
%  F u n c t i o n  c a l l e d  b y :
%
%

R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r , d a t e  a n d  d e s c r i p t i o n )
% •

% 1 . 0 . 0 0  ( O r i g )  D .  M o l l e r  4 / 1 4 / 0 9  
%  U s e  F r e i b u r g  D a t a  t o  r u n  o n  E V A M  
%  1 . 0 . 0 1  D .  M o l l e r  4 / 1 / 1 0  
% a d d e d  m o r e  s e i z u r e s  t o  l i s t  
% 1 . 0 . 0 2  D .  M o l l e r  5 / 4 / 1 0  
% i n c l u d e d  i n t e r i c t a l  b l o c k s  
%
% N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

%
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c l e a r  a l l  
c l o s e  a l l

S e t  u p  F i l e n a m e s  &  C h o o s e  P a t i e n t / B l o c k s / o t h e r  
r u n i n f o l  =  d a t e s t r  (no w, 'yymmdd')  ; 
ru n i n f o 2  =  d a t e s t r  (now , 'HHMM') ; 
ru n in fo  =  s t r c a t ( r u n i n f o l ,  ' , r u n i n f o 2 ) ;
% e n t e r  < p a t i e n t  I D > - < s e i z u r e  n u m b e r >  a s  t e x t  
p a t l d c e l l { l }  =  ' 0 0 4 . a ' ;
% p a t l d c e l l { 2 } =  ' 0 1 6 - 2  
% p a t  I  d c  e l l  { 8 }  =  ' 0 1 6 . 3 ' ;
%  p a t l d c e l l  { 4 }  =  ' 0 1 6 - 4  ' ;
%  p a t l d c e l l { 5 }  =  ' 0 1 6 . 5  ' ;

pname =  'X : \ M a t la b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g .D a t a \m a t ' ;  
Fs =  256;

98% L o a d  t h e  D a t a  
f or  i =  1: l e n g t h ( p a t I d c e l l ) 

p a t l d  =  p a t l d c e l l { i }  
s w i t c h  p a t ld

ca se  ' 0 1 8 - 1  ' %  P a t i e n t  0 1 8  — s e i z u r e  1
% b l o c k N o :  n u m b e r  o f  * . a s c  b l o c k s  n e e d e d  t o  h a v e  6 0 m i n  p r e i c t a l  a n d  
% 1 5 m i n  i c t a l / p o s t i c t a l  
blockNo  =  2;
f r e i P a t h  =  ' X : \ M a t la b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g - D a t a \p a t 0 1 8  ' ; 
f r e i P a t h l a  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a - 0 0 1 0 _ l  . a s c  ' ] ;
f r e i P a t h l b  =  [ f r e i P a t h  ' \ p a t O  1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 1-1 . a s c  ' ] ;
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a - 0 0 1 0 - 2 . a s c ' ] ;
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a - 0 0 1 1-2  . a s c  1 ] ;
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£ r e i P a t h 3 a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 0 . 3  . asc
f r e i P a t h 3 b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . O O l1 .3  . a sc
f r e i P a t h 4 a  =  [ f r e i P a t h  ' \ p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 0 . 4  . a sc
f r e i P a t h 4 b  =  [ f r e i P a t h  ' \ p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 1 . 4  . a sc
f r e i P a t h 5 a  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 0 . 5 . asc
f r e i P a t h 5 b  =  [ f r e i P a t h  ' \  patO 1 8 I k t  a l \ 0 2 0 2 0 7 a a . 0 0 1 1 - 5  . a sc
f r e i P a t h 6 a  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 0 - 6 . asc
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 1 . 6 . asc

c a s e  ' 0 1 8 - 2 '  %  P a t i e n t  0 1 8  — s e i z u r e  2  
blockNo =  2;
f r e i P a t h  =  'X : \ Ma t la bW ork \ l R ese ar ch \ SR C _D A T A\ Fre ib ur g
f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 6 a  =

f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 12 .1  
f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 3 _ l .  
f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 2 . 2 .  
f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 3 _ 2 .  
f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 2 _ 3 .  
f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 3 _ 3 .  
f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 2 . 4 . 
f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 3 . 4  . 
f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 2 . 5 . 
f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 3 . 5 .  
f r e i P a t h  ' \ p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 2 . 6 .  
f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 3 . 6 .  

s e i z u r e  3
f r e i P a t h 6 b  =  

ca se  ' 0 1 8 . 3 '  %  P a t i e n t  0 1 8  
blockNo =  2;
f r e i P a t h  =  'X: \ M a t la b W o rk \ l R es ea rc h \S RC -D AT A\ F r e i b u rg  
f r e i P a t h l a  =  [ f r e i P a t h  ' \  p a t O l  8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 8 _ l  . 
f r e i P a t h l b  =  [ f r e i P a t h  ' \  p a t  0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 9 . 1  . 
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 8 . 2 . 
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 9 . 2 . 
f r e i P a t h 3 a  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 8 . 3  . 
f r e i P a t h 3 b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 9 . 3 .  
f r e i P a t h 4 a  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 0 1 8 _ 4 . 
f r e i P a t h 4 b  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 9 . 4 .  
f r e i P a t h 5 a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 8 . 5 . 
f r e i P a t h 5 b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 0 1 9 . 5 . 
f r e i P a t h 6 a  =  [ f r e i P a t h  ' \  p a t  0 1 8 I k t a l \ 0 2 0 2 0 7  a a . 0 0 1 8 . 6  . 
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l  \ 0 2 0 2 0 7 a a . 0 0 1 9 . 6  . 

c a se  ' 0 1 8 . 4 '  %  P a t i e n t  0 1 8  — s e i z u r e  4  
blockNo =  2;
f r e i P a t h  =  'X : \ Ma t la bW or k \ lRe sea rch \S RC_ DAT A\ Fre ib ur g  
f r e i P a t h l a  =  [ f r e i P a t h  ' \  p a t O l  8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 7 . 1  . 
f r e i P a t h l b  =  [ f r e i P a t h  ' \  p a t O l  8 I k t a l \ 0 2 0 2 0 7  a a _0 10 8_ l  . 
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \  patO 18 I k t a l \ 0 2 0 2 0 7  a a . 0 1 0 7 . 2  . 
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \  p a t  0 1 8 I k t a l \ 0 2 0 2 0 7  a a . 0 1 0 8 . 2  . 
f r e i P a t h 3 a  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 7 . 3 . 
f r e i P a t h 3 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 8 . 3 . 
f r e i P a t h 4 a  =  [ f r e i P a t h  ' \ p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 7 . 4  . 
f r e i P a t h 4 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 0 7 a a _ 0 1 0 8 _ 4 . 
f r e i P a t h 5 a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 7 . 5 . 
f r e i P a t h 5 b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 8 . 5 .  
f r e i P a t h 6 a  =  [ f r e i P a t h  ' \  patO 1 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 7 . 6  . 
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 0 7 a a . 0 1 0 8 . 6 . 

ca se  ' 0 1 8 . 5 '  %  P a t i e n t  0 1 8  — s e i z u r e  5  
blockNo  =  2;
f r e i P a t h  =  'X : \ M a t l a b W o rk \ lR e se a rc h \ S R C J lA T A \F re i b u r g  
f r e i P a t h l a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 1 .  
f r e i P a t h l b  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 1 . 
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 2 . 
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 2 . 
f r e i P a t h 3 a  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 3 . 
f r e i P a t h 3 b  =  [ f r e i P a t h  ' \ p a t O 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 3 . 
f r e i P a t h 4 a  =  [ f r e i P a t h  ' \  p a t O 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 4 . 
f r e i P a t h 4 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 4 . 
f r e i P a t h 5 a  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 5 . 
f r e i P a t h 5 b  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 5 . 
f r e i P a t h 6 a  =  [ f r e i P a t h  ' \  p a t O l 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 3 . 6 . 
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \  p a t 0 1 8 I k t a l \ 0 2 0 2 1 3 a a . 0 0 1 4 . 6 .
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P A T I E N T  0 1 6  
c a se  ' 0 1 6 .1  ' %  P a t i e n t  0 1 6  — s e i z u r e  1 

blockNo  =  2;
f r e i P a t h  =  'X : \ M at la b W or k \ l R es ea rc h \S R C -D A T A \F re ib ur g
f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 1 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 8 . 1 . 
f r e i P a t h  ' \ p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 2 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 8 . 2 .  
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 3 . 
f r e i P a t h  1\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 8 . 3 . 
f r e i P a t h  1 \ p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 4 . 
f r e i P a t h  1\ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 8 . 4 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 5 . 
f r e i P a t h  ' \  p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 8 . 5 . 
f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 6 .

' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 8 . 6 .f r e i P a t h
ca se  ' 0 1 6 . 2  ' %  P a t i e n t  0 1 6  — s e i z u r e  2  

blockNo  =  2;
f r e i P a t h  =  'X : \ Ma t la bW ork \ l R ese ar ch \ SR C _D A T A\ Fre ib ur g
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_ D a t a \ p a t 0 1 6  '
f r e i P a t h l a  =  [ f r e i P a t h  ' \ p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 1  . a s c  
f r e i P a t h l b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 1 . a sc  
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 2 . a sc  
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 2 7 _ 2 . a sc  
f r e i P a t h 3 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 3 . a sc  
f r e i P a t h 3 b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 3 . a sc  
f r e i P a t h 4 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 2 6 . 4 . a sc  
f r e i P a t h 4 b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 4 . a sc  
f r e i P a t h 5 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 5 . a sc  
f r e i P a t h 5 b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 5 . a sc  
f r e i P a t h 6 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 6 . a sc  
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \ p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 6 . a sc  

s ' 0 1 6 . 3 '  %  P a t i e n t  0 1 6  — s e i z u r e  3  
blockNo =  2;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 1 6  '

[ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 0 . 1 . a sc  
[ f r e i P a t h  ' \ p a t  0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 1 . 1 . a sc  
[ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 4 0 . 2 . a sc  
[ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 1 . 2 . a sc  

= [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 0 . 3 . a sc  
= [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 1 . 3 . a sc  
= [ f r e i P a t h  ' \  p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 0 . 4 . asc  
= [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 1 . 4 . asc  
= [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 0 . 5 . a sc  
= [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 1 . 5 . asc  
= [ f r e i P a t h  ' \  p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 0 . 6 . asc  
= [ f r e i P a t h  ' \  p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 1 . 6 . asc  
P a t i e n t  0 1 6  — s e i z u r e  4  

blockNo  =  2;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 1 6  1

f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =  

cas e  ' 0 1 6 . 4  '

f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =  

ca se  ' 0 1 6 . 5 '

f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 1 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 1 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 2 . 
f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 2 . 
f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 3 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 3 .  
f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 4 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 4 8 . 4 .  
f r e i P a t h  ' \  p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 5 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 5 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 7 . 6 . 
f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 6 .  

P a t i e n t  0 1 6  — s e i z u r e  5
blockNo  =  2;
f r e i P a t h  =  'X: \M at l ab Wo rk \ l Re sea rch \S RC JDA TA\ Fre ib ur g  
f r e i P a t h l a  =  [ f r e i P a t h  ' \  p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 8 2 . 1 . 
f r e i P a t h l b  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 8 3 . 1 .  
f r e i P a t h 2 a  =  [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 8 2 . 2 .  
f r e i P a t h 2 b  =  [ f r e i P a t h  ' \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 8 3 . 2 .

a sc
asc
asc
asc
asc
asc
asc
asc
asc
asc
asc
asc

. D a t a \ p a t 0 1 6  ' 
asc  ' ’ 
asc  ' 
asc  ' 
asc  '
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f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

\ p a t O 1 
\ p a t O l  
\ p a t O 1 
\ p a t O 1 
\ p a t O 1 
\ p a t O 1 
\ p a t O 1 
\ p a t O 1

6 I k t a l  
6 I k t a l  
6 I k t a l  
6 I k t a l  
61k ta l  
6 I k t a l  
6 I k t a l  
6 I k t a l

\ 0 1 0 8 2 3  ab.  
\ 0 1 0 8 2 3  ab.  
\ 0 1 0 8 2 3  ab.  
\ 0 1 0 8 2 3 a b .  
\ 0 1 0 8 2 3  ab.  
\ 0 1 0 8 2 3  ab.  
\ 0 1 0 8 2 3 a b .  
\ 0 1 0 8 2 3  ab.

0 0 8 2 . 3 .
0 0 8 3 . 3 .
0 0 8 2 . 4 .
0 0 8 3 . 4 .
0 0 8 2 . 5 .
0 0 8 3 . 5 .
0 0 8 2 . 6 .  
0 0 8 3 . 6 .

a sc
asc
asc
asc
asc
asc
asc
asc

ca se  ' 016 _a p a t i e n t  0 1 6  — i n t e r i c t a l  +  s z  1
blockNo  =  
f r e i P a t h  =

7;
'X: \  Mat la bW ork \ l  Re

f r e i P a t h l a — f r e i P a t h \  patO
f r e i P a t h l b = f r e i P a t h \  patO
f r e i P a t h l c = f r e i P a t h \  patO
f r e i P a t h l d = f r e i P a t h \  patO
f r e i P a t h l e = f r e i P a t h \  patO
f r e i P a t h  1 f = f r e i P a t h \  patO
f r e i P a t h l g = f r e i P a t h \  patO

f r e i P a t h 2 a = f r e i P a t h \  patO
f r e i P a t h 2 b = f r e i P a t h \  patO
f r e i P a t h 2 c = f r e i P a t h \  patO
f r e i P a t h 2 d = f r e i P a t h \  patO
f r e i P a t h 2 e = f r e i P a t h \  patO
f r e i P a t h 2 f = f r e i P a t h \  patO
f r e i P a t h 2 g = f r e i P a t h \  patO

f r e i P a t h 3 a = f r e i P a t h \  patO
f r e i P a t h 3 b = f r e i P a t h \  patO
f r e i P a t h 3 c = f r e i P a t h \  patO
f r e i P a t h 3 d = f r e i P a t h \  patO
f r e i P a t h 3 e = f r e i P a t h \  patO
f r e i P a t h 3 f = f r e i P a t h \  patO
f r e i P a t h 3 g = f r e i P a t h \  patO

fre iP  at  h4a = f r e i P a t h \  patO
f r e i P a t h 4 b = fr ei  P at  h \  patO
f r e i P a t h 4 c = f r e i P a t h \  patO
f r e i P a t h 4 d = f r e i P a t  h \  patO
f r e i P a t h 4 e = f r e i P a t h \  patO
f r e i P a t h 4 f = f r e i P a t h \  patO
f r e i P a t h 4 g = f r e i P a t h \  patO

f r e i P a t h 5 a f r e i P a t h \ p a t O
f r e i P a t h 5 b - f r e i P a t h \  patO
f r e i P a t h 5 c = f r e i P a t h \ p a t O
f r e i P a t h 5 d = f r e i P a t h \  patO
f r e i P a t h 5 e = f r e i P a t h \  patO
f r e i P a t h 5 f ■ = f r e i P a t h \  patO
f r e i P a t h 5 g = f r e i P a t h \  patO

f r e i P a t h 6 a = f r e i P a t h \  patO
f r e i P a t h 6 b = f r e i P a t h \  patO
f r e i P a t h 6 c = f r e i P a t h \  patO
f r e i P a t h 6 d = f r e i P a t h \  patO
f r e i P a t h 6 e = f r e i P a t h \  p a t  0
f r e i P a t h 6 f = f r e i P a t h \  patO
f r e i P a t h 6 g = f r e i P a t h \  patO

6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 7 _ l  . a s c ' 
6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 8 . 1 . a s c '
6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 9 . 1 . a s c ' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 0 _ l . a s c  ' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 1 _ l . a s c ' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b . 0 0 1 2 . 1 . a s c ' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 3 . 1 . a sc  ' '

6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 7 . 2 . a s c ' 
6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 8 . 2 . a s c 1 
6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 9 . 2 . a s c 1' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b _ 0 0 1 0 _ 2 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab . OO l1 . 2 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b _ 0 0 1 2 _ 2 . 
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab .OOl3 - 2 .

6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 7 . 3 . a s c ' 
6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 8 . 3 . a sc  1 ' 
6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 9 - 3 . a s c 1 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 0 . 3 ' 
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab . OO l1 . 3 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab .OOl2 . 3 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b . 0 0 1 3 . 3 .

6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 7 _ 4 . a sc  ' 
6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 8 . 4 . a s c ' : 
6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 9 _ 4 . a s c ' : 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 0 _ 4 ! 
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab .OOl1 . 4 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b . 0 0 1 2 . 4 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b . 0 0 1 3 _ 4 .

6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 7 . 5 . a s c 1' 
6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 0 8 _ 5 . a s c  1 ' 
6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 9 - 5 . a s c ' | 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 0 . 5 . 
6 1 n t e r i k t a l  \ 0 1 0 8 2 3 ab .O O l1 . 5 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab .OO l2 . 5 .  
6 1 n t e r i k t a l \ 0 1 0 8 2 3 ab .OOl3 . 5 .

6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 0 7 . 6 . a s c ' 
6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 0 8 . 6 . a s c '; 
6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 0 9 . 6 . a s c '
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 0 . 6 . 
6 I n t e r i k t a l \ 0 1 0 8 2 3 ab .O O l1 . 6 .  
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b . 0 0 1 2 . 6 . 
6 I n t e r i k t a l \ 0 1 0 8 2 3 a b - 0 0 1 3 _ 6 .

asc  
asc  ' 
asc  ' 
as c  '

a sc
asc
asc
asc

asc  
asc  ' 
asc  1 
asc  '

a sc
asc
asc
asc

asc
asc
asc
asc

ca se  ' 0 1 6 - b '  %  p a t i e n t  0 1 6  — i c t a l  : s e i z u r e  2  , +  1 h o u r
blockNo — 2;
f r e i P a t h  =  'X : \ M a t la b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t 0 1 6 '  ;

f r e i P a t h l a  =  [ f r e i P a t h  ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 2 6 . 1  . a s c 1 ]; 
f r e i P a t h l b  =  [ f r e i P a t h  ' \ p a t O 16 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 7 . 1 . a s c 1 ];
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f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
f r e i P a t h

\  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 - 2 . a sc  
\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 2 7 - 2 . a sc

\  p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 3 . a sc  
\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 2 7 _ 3 . a sc

\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 2 6 - 4 . a sc  
\  p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b -0 0 2  7 - 4 . a sc

\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 - 5 . a sc  
\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 2  7 _ 5 . a sc

\  p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 2 6 . 6 . a sc  
\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 2  7 . 6 . a sc

c a s e  ' 0 1 6 - c '  % p a t i e n t  0 1 6  — i c t a l : s e i z u r e  S ,  + 2  h o u r s  
blockNo =  3;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 1 6  1 ;

f r e i P a t h l a
f r e i P a t h l b
f r e i P a t h l c

f r e i P a t h 2 a
f r e i P a t h 2 b
f r e i P a t h 2 c

f r e i P a t h 3 a
f r e i P a t h 3 b
f r e i P a t h 3 c

f r e i P a t h 4 a  
f r e i P a t h 4 b  
f r e i P a t  h4c

f r e i P a t h 5 a  
f r e i P a t h 5 b  
f r e i P a t  h5c

f r e i P a t h 6 a
f r e i P a t h 6 b
f r e i P a t h 6 c

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 0 - 1 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 1 _ l . a s c  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 2 _ l . a s c

p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 0 . 2 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 1 - 2 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 2 - 2 . a sc

p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 0 - 3 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 1 _ 3 . a s c  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 2 - 3 . a s c

p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 0 - 4 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 1 _ 4 . a s c  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 2 _ 4 . a sc

p a t  0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 0 _ 5 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 1 _ 5 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 2 - 5 . a sc

p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 0 - 6 . a sc  
p a t O l 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 1 _ 6 . a sc  
p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 2 _ 6 . a sc

ca se  ' 0 1 6 - d '  %  p a t i e n t  0 1 6  — i n t e r i c t a l  
blockNo =  7;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C J D A T A \ F r e i b u r g _ D a t a \p a t0 1 6  ' ;

f r e i P a t h l a
f r e i P a t h l b
f r e i P a t h l c
f r e i P a t h l d
f r e i P a t h l e
f r e i P a t h l f
f r e i P a t h l g

f r e i P a t h 2 a
f r e i P a t h 2 b
f r e i P a t h 2 c
f r e i P a t h 2 d
f r e i P a t h 2 e
f r e i P a t h 2 f
f r e i P a t h 2 g

f r e i P a t h 3 a
f r e i P a t h 3 b
f r e i P a t h 3 c
f r e i P a t h 3 d
f r e i P a t h 3 e

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 0 _ l . a sc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 1 _ l . a sc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 2 _ l . a sc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 3 - l . a s c  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 4 _ l . a sc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a - 0 0 1 5 _ l . a sc  
p a t O l 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 6 _ l . asc

p a t O 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 0 - 2  . as c  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 1 - 2 .  asc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 aa .O O l2 . 2 .  asc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a - 0 0 1 3 _ 2 . asc  
p a t O l 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 4 - 2 . asc  
p a t O l 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a - 0 0 1 5 - 2 . asc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 6 - 2 . a s c

p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 0 _ 3 . a s c  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 1 _ 3 . asc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 2 _ 3 . a sc  
p a t O 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 3 _ 3 .  asc  
p a t 0 1 6 I n t e r i k t a l \ 0 1 0 8 2 7 a a _ 0 0 1 4 _ 3 .  asc
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f r e i P a t h 3 f = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l \
f r e i P a t h 3 g = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l  \

f r e i P a t h 4 a = [ f r e i P a t h \ p a t O : 6 I n t e r i k t a l \
f r e i P a t h 4 b = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 4 c = [ f r e i P a t h \  patO 6 I n t e r i k t a l  \
f r e i P a t h 4 d = [ f r e i P a t h \  patO 6 I n t e r i k t a l  \
f r e i P a t h 4 e = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 4 f = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l \
f r e i P a t h 4 g = [ f r e i P a t h \  patO 6 I n t e r i k t a l \

f r e i P a t h 5 a = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 5 b = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 5 c = [ f r e i P a t h \ p a t O : 6 I n t e r i k t a l \
f r e i P a t h 5 d = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 5 e = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 5 f = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 5 g = [ f r e i P a t h \  patO 6 I n t e r i k t a l \

f r e i P a t h 6 a = [ f r e i P a t h \  p a t  o : 6 I n t e r i k t a l \
f r e i P a t h 6 b = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 6 c = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 6 d = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l \
f r e i P a t h 6 e = [ f r e i P a t h \  patO 6 I n t e r i k t a l \
f r e i P a t h 6 f = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l \
f r e i P a t h 6 g = [ f r e i P a t h \ p a t O 6 I n t e r i k t a l \

0 1 0 8 2 7 a a . 0 0 1 5 - 3 . asc  
0 1 0 8 2 7 a a . 0 0 1 6 - 3 . asc

0 1 0 8 2 7 a a _ 0 0 1 0 . 4 . asc  
0 1 0 8 2 7 a a . 0 0 1 1 . 4 . asc  
0 1 0 8 2 7 a a . 0 0 1 2 - 4 . asc  
0 1 0 8 2 7 a a . 0 0 1 3 - 4 . asc  
0 1 0 8 2 7 a a . 0 0 1 4 _ 4 . asc  
0 1 0 8 2 7 a a - 0 0 1 5 - 4 . asc  
0 1 0 8 2 7 a a _ 0 0 1 6 - 4 . asc

0 1 0 8 2 7 a a - 0 0 1 0 _ 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 1 - 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 2 _ 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 3 - 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 4 - 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 5 - 5 . asc  
0 1 0 8 2 7 a a _ 0 0 1 6 _ 5 . asc

0 1 0 8 2 7 a a - 0 0 1 0 - 6 . asc  
0 1 0 8 2 7 a a .O O l1 - 6 . asc  
0 1 0 8 2 7 a a _ 0 0 1 2 - 6 . asc  
0 1 0 8 2 7 a a . 0 0 1 3 - 6 . asc  
0 1 0 8 2 7 a a - 0 0 1 4 _ 6 . asc  
0 1 0 8 2 7 a a _ 0 0 1 5 - 6 . asc  
0 1 0 8 2 7 a a _ 0 0 1 6 - 6 . asc

ca se  ' 0 1 6 - e '  %  p a t i e n t  0 1 6 ,  s z  4
blockNo  =  2;
f r e i P a t h  =  'X: \  Mat lab Work \1  Research\SRC_DATA\ F r e i b u r g _ D a t a \ p a t 0 1 6

f r e i P a t h l a  = f r e i P a t h \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 7 - 1 . a s c 1];
f r e i P a t h l b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b . 0 0 4 8 . 1 . a s c 1];

f r e i P a t h 2 a  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 7 . 2 . a s c 1 ];
f r e i P a t h 2 b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 8 _ 2 . a s c ' ] ;

f r e i P a t h 3 a  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 7 - 3 . a s c 1 ];
f r e i P a t h 3 b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b - 0 0 4 8 - 3 . a s c ' j ;

f r e i P a t h 4 a  = f r e i P a t h \  p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 7 - 4 . a s c 1 ];
f r e i P a t h 4 b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 8 - 4 . a s c ' j ;

f r e i P a t h 5 a  = frei  P at  h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 4 7 - 5 . a s c 1 ];
f r e i P a t h 5 b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 8 - 5 . a s c ' ] ;

f r e i P a t h 6 a  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 7 - 6 . a s c 1 ];
f r e i P a t h 6 b  = f r e i P a t h \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 4 8 - 6 . a s c 1 j ;

ca se  '016 _f ' %  p a t i e n t  0 1 6 ,  s z  4
blockNo  =  2;
f r e i P a t h  =  'X : \  Mat labWork \ l  Research\SRCJDATA\ F r e i b u r g _ D a t a \ p a t 0 1 6

f r e i P a t h l a  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 8 2 . 1 . a s c ' ] ;
f r e i P a t h l b  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b - 0 0 8 3 - 1 . a s c 1 ];

f r e i P a t h 2 a  = f r e i P a t h 1\ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 8 2 . 2 . a s c ' ] ;
f r e i P a t h 2 b  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 8 3 _ 2  . a s c ' ]  ;

f r e i P a t h 3 a  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 8 2 . 3 . a s c ' ] ;
f r e i P a t h 3 b  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 8 3 . 3 . a s c ' j ;

f r e i P a t h 4 a  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 ab_0082_4  . a s c ' ]  ;
f r e i P a t h 4 b  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3 a b _ 0 0 8 3 - 4  . a s c ' j ;

f r e i P a t h 5 a  = f r e i P a t h ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  a b - 0 0 8 2 - 5 . a s c ' ] ;
frei  P a t  h5b  = f r e i P a t h ' \ p a t O 1 6 I k t a l \ 0 1 0 8 2 3 a b - 0 0 8 3 - 5 . a s c ' ] ;
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f r e i P a t h 6 a  =  [ f r e i P a t h  ' \ p a t 0 1 6 I k t a l \ 0 1 0 8 2 3  ab_0082_6  . a sc  
f r e i P a t h 6 b  =  [ f r e i P a t h  ' \  p a t O l  6 I k t a l \ 0 1 0 8 2 3  a b . 0 0 8 3 . 6  . a sc

%  * * * * * * * * * *  P A T I E N T  0 0 4  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
ca se  ' 0 0 4 . 1  1 %  P a t i e n t  0 0 4  — s e i z u r e  1 

blockNo  =  2;
f r e i P a t h  =  'X : \ M a t l a b W o r k \ l R e s e a r c h \ S R C J D A T A \ F r e i b u r g .D a t a \ p a t 0 0 4  ' ;
f r e i P a t h l a  =  
f r e i P a t h l b  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
f r e i P a t h

\  p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 2 0 6 . 1 . asc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 2 0 7 . 1  . as c

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b  . 0 2 0 6 . 2 . asc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b  . 0 2 0 7 . 2 . a sc

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 2 0 6 . 3  . a s c  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 2 0 7 _ 3  . a sc

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 2 0 6 . 4  . a s c  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 2 0 7 . 4  . a s c

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 2 0 6 . 5  , a s c  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 2 0 7 - 5 . a sc

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 2 0 6 - 6  . a s c  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 bb_0207-6  . as c

ca se  ' 0 0 4 . 3 '  %  P a t i e n t  0 0 4  — s e i z u r e  1 
blockNo  =  2;
f r e i P a t h  =  ' X : \ M a t la b W o r k \ lR e s e a r c h \ S R C - D A T A \ F r e ib u r g _ D a t a \p a t 0 0 4  ' :
f r e i P a t h l a  =  
f r e i P a t h l b  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

’ f r e i P a t h  
j  f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ fre i  P a t  h 
[ f r e i P a t h

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 1 6 . 1 . a sc  
\  p a t 0  0 4 I k t a l \ 0 1 0 5 2 5 bb  . 0 3 1 7 . 1 . a sc

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 1 6 - 2 . a sc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 1 7 . 2 . a sc

\  p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 1 6 . 3 . a sc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 bb  . 0 3 1 7 . 3 . a sc

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 bb  . 0 3 1 6 . 4 . a sc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 1 7 . 4  . a s c

\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 1 6 . 5 . a sc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 1 7 . 5 . a sc

\  p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 1 6 - 6 . a sc  
\ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 1 7 _ 6  . a sc

cas e  ' 0 0 4 . 4 '  %  P a t i e n t  0 0 4  — s e i z u r e  4 
blockNo  =  2;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 0 4  1
f r e i P a t h l a  =  
f r e i P a t h l b  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

’ f r e i P a t h  
’ f r e i P a t h

' f r e i P a t h  
j  f r e i P a t h

’ f r e i P a t h  
[ f r e i P a t h

: f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
[ f r e i P a t h

[ f r e i P a t h  
f r e i P a t h

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 3 2 2 . 1 . a sc  
p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 3 . 1 . a sc

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 2 . 2 . a s c  
p a t 0 0 4 1 k t a l \ 0 1 0 5 2 5 b b - 0 3 2 3 . 2 . a sc

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 3 2 2 _ 3 . a sc  
p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 3 . 3 . a sc

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 2 _ 4 . a sc  
p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 3 . 4  . a s c

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 2 . 5 . a sc  
p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 3 . 5 . a sc

p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 bb_0322_6 . asc  
p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 3 . 6 . a sc

ca se  ' 0 0 4 - 5 '  %  P a t i e n t  0 0 4  — s e i z u r e  5
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blockNo  =  2;
f r e i P a t h  =  'X \  Ma t labWork \ l  Rese arc h  \SRC_DATA\ F r e i b u r g . D a t  a \  p a t 004
f r e i P a t h l a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 7 . 1 . a s c ' ] ;
f r e i P a t h l b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 8 . 1 . a s c ’ ];

f r e i P a t h 2 a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 7 . 2 . a s c ' ] ;
f r e i P a t h 2 b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 8 _ 2 .  a sc  ' ] ;

f r e i P a t h 3 a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 7 _ 3 . a s c ' ] ;
f r e i P a t h 3 b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 3 2 8 - 3 . a s c  ' ];

f r e i P a t h 4 a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 3 2 7 _ 4 . a sc  ' ];
f r e i P a t h 4 b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 8 . 4 . a s c  ' ];

f r e i P a t h 5 a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b - 0 3 2 7 . 5 . a s c ' ] ;
f r e i P a t h 5 b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 8 _ 5 . a s c  ' ];

f r e i P a t h 6 a  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b _ 0 3 2 7 _ 6 . a s c  ' ];
f r e i P a t h 6 b  = f r e i P a t h ' \ p a t 0 0 4 I k t a l \ 0 1 0 5 2 5 b b . 0 3 2 8 . 6 . a s c ' ] ;

ca se  ' 0 0 4 _ a '  %  P a t i e n t  0 0 4  — 6  h o u r s  i n t e r i c t a l  
blockNo  =  6;
f r e i P a t h  =  'X : \ M a t l a b W o r k \ l  R e s e a r c h \S R C - D A T A \F r e i b u r g _ D a t a \p a t0 0 4  1
f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h l c  =  
f r e i P a t h l d  =  
f r e i P a t h l e  =  
f r e i P a t h l f  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 2 c  =  
f r e i P a t h 2 d  =  
f r e i P a t h 2 e  =  
f r e i P a t h 2 f  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 3 c  =  
f r e i P a t h 3 d  =  
f r e i P a t h 3 e  =  
f r e i P a t h 3 f  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 4 c  =  
f r e i P a t h 4 d  =  
f r e i P a t h 4 e  =  
f r e i P a t h 4 f  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 5 c  =  
f r e i P a t h 5 d  =  
f r e i P a t h 5 e  =  
f r e i P a t h 5 f  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =  
f r e i P a t h 6 c  =  
f r e i P a t h 6 d  =  
f r e i P a t h 6 e  =  
f r e i P a t h 6 f  =

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h
f r e i P a t h

p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 6 _ l . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 7 _ l . a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a . 0 0 1 8 . 1 .  asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 - l . a s c  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a . 0 0 2 0 _ l . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 2 1 _ l . asc

p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a . 0 0 1 6 - 2 . a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 7 _ 2 .  a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 8 _ 2 . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 _ 2 .  a sc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 0 - 2 . a sc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 1 - 2 . asc

p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 6 _ 3 .  a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a . 0 0 1 7 . 3 .  asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 8 _ 3 . a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 _ 3 .  a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 0 _ 3 . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 1 _ 3 . asc

p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 6 . 4 .  asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 7 - 4 .  a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 8 . 4 .  asc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 - 4 . asc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 0 - 4 . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 1 _ 4 . asc

p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 6 _ 5 . asc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 7 - 5 . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 8 _ 5 . a s c  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 - 5 . asc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a . 0 0 2 0 - 5 . a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a _ 0 0 2 1 _ 5 . asc

p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 6 - 6 . a sc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 7 _ 6 . asc  
p a t 0 0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 1 8 . 6 . a s c  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a _ 0 0 1 9 - 6 . asc  
p a t 0 0 4 I n t e r I k t a l \ 0 1 0 5 1 6 b a - 0 0 2 0 _ 6 . asc  
p a t 0  0 4 1 n t e r l k t a l \ 0 1 0 5 1 6 b a - 0 0 2 1 _ 6 . a sc

%  * * * * * * * * * *  P A T I E N T  0 1 2  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
ca se  ' 0 1 2 . 2 '  % P a t i e n t  0 1 2  — s e i z u r e  2



149

ca se

c a se

b lockNo  =  2;
f r e i P a t h  =  'X : \ M at la b W o rk \ l  R e s e a r c h \S R C J D A T A \F r e ib u r g - D a t a \p a t0 1 2  '
f r e i P a t h l a  =  
f r e i P a t h l b  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h

\  p a t O l 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 4 - 1 . a sc  
\  p a t O l 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 0 5 - l . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 4 . 2 . a sc  
\  p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 0 5 - 2 . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 4 . 3 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 0 5 . 3 . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 0 4 _ 4 . a s c
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 5 . 4 . a s c

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 4 - 5 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 l e a - 0 0 0 5 - 5 . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 0 4 - 6 . asc  
\  p a t O 12 I k t a l \ 0 1 1 2 1 1 e a . 0 0 0 5 - 6 . a sc

' 0 1 2 - 3 '  % P a t i e n t  0 1 2  — s e i z u r e  3  
blockNo  =  3;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 1 2  ' ;
f r e i P a t h l a  =  
f r e i P a t h l b  =  
f r e i P a t h l c  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =  
f r e i P a t h 2 c  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =  
f r e i P a t h 3 c  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =  
f r e i P a t h 4 c  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =  
f r e i P a t h 5 c  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =  
f r e i P a t h 6 c  =

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

f r e i P a t h
f r e i P a t h
f r e i P a t h

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 6 _ l . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 7 _ l . asc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 8 - 1 . asc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 6 - 2 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 1 7 - 2 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 - 2 . a sc

\  p a t O 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 6 - 3 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 7 - 3 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 _ 3 . a sc

\  p a t O 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 6 - 4 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 7 _ 4 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 1 8 - 4 . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 6 _ 5 . a sc  
\  p a t 0 1 2 I k t a l \ 0 1 121 l e a - 0 0 1 7 . 5 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 l e a . O O 1 8 - 5 . a sc

\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 6 - 6 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 7 _ 6 . a sc  
\ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 - 6 . a sc

' 0 1 2 . 4 '  % P a t i e n t  0 1 2  — s e i z u r e  4  
blockNo  =  2;
f r e i P a t h  =  ' X : \ M a t l a b W o r k \ lR e s e a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \p a t0 1 2  ' :
f r e i P a t h l a  =  
f r e i P a t h l b  =

f r e i P a t h 2 a  =  
f r e i P a t h 2 b  =

f r e i P a t h 3 a  =  
f r e i P a t h 3 b  =

f r e i P a t h 4 a  =  
f r e i P a t h 4 b  =

f r e i P a t h 5 a  =  
f r e i P a t h 5 b  =

f r e i P a t h 6 a  =  
f r e i P a t h 6 b  =

f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 8 - l .  as c  
f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 1 9 - l .  a s c

f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 - 2 .  a sc  
f r e i P a t h  ' \  p a t O 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 1 9 . 2 . a sc

f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 - 3 .  asc  
f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 9 _ 3 . asc

f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 8 - 4 .  asc  
f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a - 0 0 1 9 - 4 .  a sc

f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 l i 2 1 1 e a _ 0 0 1 8 - 5 .  a sc  
f r e i P a t h  ' \ p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 9 _ 5 .  asc

f r e i P a t h  ' \  p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a _ 0 0 1 8 - 6 .  asc  
f r e i P a t h  ' \  p a t 0 1 2 I k t a l \ 0 1 1 2 1 1 e a . 0 0 1 9 - 6 .  asc
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c a s e  ' 0 1 2 . a '  % P a t i e n t  012 —6 ho u rs  o f  i n t e r i c t a l
blockNo  =  6;
f r e i P a t h  =  'X : \ M a t l a b W o r k \ l R e
f r e i P a t h l a  = f r e i P a t h \ p a t 0
f r e i P a t h l b  = f r e i P a t h \  patO
f r e i P a t h l c  = f r e i P a t h \  patO
f r e i P a t h l d  = f r e i P a t h \  patO
f r e i P a t h l e  = f r e i P a t h \  patO
f r e i P a t h l f  = f r e i P a t h \  patO

f r e i P a t h 2 a  = f r e i P a t h \  patO
f r e i P a t h 2 b  = f r e i P a t h \  patO
f r e i P a t h 2 c  = f r e i P a t h \  patO
f r e i P a t h 2 d  = f r e i P a t h \  patO
f r e i P a t h 2 e  = f r e i P a t h \  patO
f r e i P a t h 2 f  = f r e i P a t h \  patO

f r e i P a t h 3 a  = f r e i P a t h \  patO
f r e i P a t h 3 b  = f r e i P a t h \  patO
f r e i P a t h 3 c  = f r e i P a t h \  patO
f r e i P a t h 3 d  = f r e i P a t h \  patO
f r e i P a t h 3 e  = f r e i P a t h \  patO
f r e i P a t h 3 f  = f r e i P a t h \  patO

f r e i P a t h 4 a  = f r e i P a t h \ p a t O
f r e i P a t h 4 b  = f r e i P a t h \ p a t O
f r e i P a t h 4 c  = fr e i P  at  h \  patO
f r e i P a t h 4 d  = f r e i P a t h \  patO
f r e i P a t h 4 e  = f r e i P a t h \  patO
f r e i P a t h 4 f  = f r e i P a t h \  patO

f r e i P a t h 5 a  = f r e i P a t h \  patO
f r e i P a t h 5 b  = f r e i P a t h \  patO
f r e i P a t h 5 c  = f r e i P a t h \  patO
f r e i P a t h 5 d  = f r e i P a t h \  patO
f r e i P a t h 5 e  = f r e i P a t h \  patO
f r e i P a t h 5 f  = f r e i P a t h \  patO

fr e i P a t h6 a .  = f r e i P a t h \ p a t O
f r e i P a t h 6 b  = f r e i P a t h \ p a t O
f r e i P a t h 6 c  = f r e i P a t h \ p a t O
f r e i P a t h 6 d  = f r e i P a t h \ p a t O
f r e i P a t h 6 e  = f r e i P a t h \  patO
f r e i P a t h 6 f  = f r e i P a t h \  patO

2 I n t e r I k t a l \ 0 1 1 2 0 5 e a . 0 0 2 1 . 1 . a s c  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 2 . 1 .  a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 3 - l . a s c  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a - 0 0 2 4 - 1 . a sc  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 5 . 1 . a s c  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a - 0 0 2 6 _ l . a s c

2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 1 - 2 . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 2 _ 2 . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 3 - 2 .  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 4 _ 2 . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 5 _ 2 .  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 6 _ 2 .

2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a - 0 0 2 1 . 3  . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a . 0 0 2 2 - 3 . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 3 - 3 . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 4 _ 3 . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 ea _ 002 5_3  . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 6 - 3 .

2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 1 . 4 . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 2 - 4  . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 3 . 4  . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 4 - 4  . 
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 5 _ 4  . 
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a . 0 0 2 6 - 4 .

a sc
asc
asc
asc
asc
asc

asc
asc
asc
a sc
asc
a sc

asc
asc
asc
asc
asc
asc

2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 1 _ 5 . asc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 2 - 5 . asc  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 3 - 5 . a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a . 0 0 2 4 - 5 . a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a - 0 0 2 5 - 5 . a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 6 - 5 . a s c

2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 1 _ 6 . a s c  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 2 - 6 . a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 3 - 6 . a sc  
2 I n t e r I k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 4 - 6 . a sc  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a . 0 0 2 5 . 6 .  a sc  
2 1 n t e r l k t a l \ 0 1 1 2 0 5 e a _ 0 0 2 6 - 6 .  a sc

end

CHOI =  [ ] ; CH02 =  [ ] ; CH03 =  [ ] ; CH04 =  [ ] ; CH05 =  [ ] ; CH06 =  [ ] ;

s w i t c h  b lockNo  
ca se  2

d a t a . a  =  l o a d  ( f r e i P a t h  l a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h l b  ) ;
CH01 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b  
d a t a . a  =  l o a d  ( f r e i P a t h 2 a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 2 b  ) ;
CH02 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b  
d a t a . a  =  l o a d  ( f r e i P a t h 3 a  ) ; 
d a t a . b  =  l oa d  ( f r e i P a t h 3 b  ) ;
CH03 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b  
d a t a . a  =  l o a d  ( f r e i P a t h 4 a  ) ; 
d a t a . b  =  l oa d  ( f r e i P a t h 4 b  ) ;
CH04 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b
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d a t a . a  =  l o a d  ( f r e i P a t h 5 a ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 5 b  ) ;
CH05 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b  
d a t a . a  =  l o a d  ( f r e i P a t h 6 a ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 6 b  ) ;
CH06 =  [ d a t a . a ;  d a t a . b ] ;  
c l e a r  d a t a . a  d a t a . b

ca se  3
d a t a . a  =  l o a d  ( f r e i P a t h l a )  ; 
d a t a . b  =  l o a d  ( f r e i P a t h l b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h l c  ) ;
CHOI =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d  ( f r e i P a t h 2 a ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 2 b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h 2 c  ) ;
CH02 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d  ( f r e i P a t h 3 a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 3 b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h 3 c  ) ;
CH03 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d  ( f r e i P a t h 4 a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 4 b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h 4 c  ) ;
CH04 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d  ( f r e i P a t h 5 a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 5 b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h 5 c  ) ;
CH05 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d  ( f r e i P a t h 6 a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 6 b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h 6 c  ) ;
CH06 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c

ca se  4
d a t a . a  =  l o a d  ( f r e i P a t h l a  ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h l b  ) ; 
d a t a . c  =  l o a d  ( f r e i P a t h l c  ) ; 
d a t a . d  =  l o a d  ( f r e i P a t h l d  ) ;
CHOI =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 2 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 2 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 2 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 2 d  ) ;
CH02 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 3 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 3 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 3 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 3 d  ) ;
CH03 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ) ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 4 a  ) ;
d a t a . b  =  l o a d (  f r e i P a t h 4 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 4 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 4 d  ) ;
CH04 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c  
d a t a . a  =  l o a d ( f r e i P a t h 5 a ) ; 
d a t a . b  =  l o a d  ( f r e i P a t h 5 b  ) ;
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d a t a . c  =  load ( f r e i P a t h 5 c  ) ; 
d a t a . d  =  load ( f r e i P a t h 5 d  ) ;
CH05 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 6 a  ) ;
d a t a . b  =  load ( f r e i P a t h 6 b  ) ;
d a t a . c  =  load ( f r e i P a t h 6 c  ) ;
d a t a . d  =  load ( f r e i P a t h 6 d  ) ;
CH06 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ) ;  
clear d a t a . a  d a t a . b  d a t a . c

c a se  6
d a t a . a  =  load ( f r e i P a t h l a  ) ; 
d a t a . b  =  load ( f r e i P a t h l b  ) ; 
d a t a . c  =  load ( f r e i P a t h l c  ) ; 
d a t a . d  =  load ( f r e i P a t h l d  ) ; 
d a t a . e  =  load ( f r e i P a t h l e  ) ; 
d a t a . f  =  load ( f r e i P a t h  1 f ) ;
CHOI =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 2 a  ) ;
d a t a . b  =  load ( f r e i P a t h 2 b  ) ;
d a t a . c  =  load ( f r e i P a t h 2 c  ) ;
d a t a . d  =  load ( f r e i P a t h 2 d  ) ;
d a t a . e  =  load ( f r e i P a t h 2 e  ) ;
d a t a . f  =  load ( f r e i P a t h 2 f  ) ;
CH02 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 3 a  ) ;
d a t a . b  =  load ( f r e i P a t h 3 b  ) ;
d a t a . c  =  load ( f r e i P a t h 3 c  ) ;
d a t a . d  =  load ( f r e i P a t h 3 d  ) ;
d a t a . e  =  load ( f r e i P a t h 3 e  ) ;
d a t a . f  =  load ( f r e i P a t h 3 f  ) ;
CH03 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 4 a  ) ;
d a t a . b  =  load ( f r e i P a t h 4 b  ) ;
d a t a . c  =  load ( f r e i P a t h 4 c  ) ;
d a t a . d  =  load ( f r e i P a t h 4 d  ) ;
d a t a . e  =  load ( f r e i P a t h 4 e  ) ;
d a t a . f  =  load ( f r e i P a t h 4 f  ) ;
CH04 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 5 a  ) ;
d a t a . b  =  load ( f r e i P a t h 5 b  ) ;
d a t a . c  =  load ( f r e i P a t h 5 c  ) ;
d a t a . d  =  load ( f r e i P a t h 5 d  ) ;
d a t a . e  =  load ( f r e i P a t h 5 e  ) ;
d a t a . f  =  load ( f r e i P a t h 5 f ) ;
CH05 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;
clear d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  load ( f r e i P a t h 6 a  ) ;
d a t a . b  =  load ( f r e i P a t h 6 b  ) ;
d a t a . c  =  load ( f r e i P a t h 6 c  ) ;
d a t a . d  =  load ( f r e i P a t h 6 d  ) ;
d a t a . e  =  load ( f r e i P a t h 6 e  ) ;
d a t a . f  =  load ( f r e i P a t  h 6 f  ) ;
CH06 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ) ;  
clear d a t a . a  d a t a . b  d a t a . c

ca se  7
d a t a . a  =  load ( f r e i P a t h l a ) ; 
d a t a . b  =  load ( f r e i P a t h l b  ) ; 
d a t a . c  =  load ( f r e i P a t h l c  ) ; 
d a t a . d  =  load ( f r e i P a t h l d  ) ; 
d a t a . e  =  load ( f r e i P a t h l e  ) ; 
d a t a . f  =  load ( f r e i P a t h l  f ) ;



153

d a t a . g  =  l o a d  ( f r e i P a t h l g  ) ;
CHOI =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 2 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 2 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 2 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 2 d  ) ;
d a t a . e  =  l o a d  ( f r e i P a t h 2 e  ) ;
d a t a . f  =  l o a d  ( f r e i P a t h 2 f ) ;
d a t a . g  =  l o a d  ( f r e i P a t h 2 g  ) ;
CH02 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 3 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 3 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 3 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 3 d  ) ;
d a t a . e  =  l o a d  ( f r e i P a t h 3 e  ) ;
d a t a . f  =  l o a d ( f r e i P a t h 3 f );
d a t a . g  =  l o a d  ( f r e i P a t h 3 g  ) ;
CH03 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 4 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 4 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 4 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 4 d  ) ;
d a t a . e  =  l o a d  ( f r e i P a t h 4 e  ) ;
d a t a . f  =  l o a d  ( f r e i P a t h 4 f ) ;
d a t a . g  =  l o a d  ( f r e i P a t h 4 g  ) ;
CH04 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 5 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 5 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 5 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 5 d  ) ;
d a t a . e  =  l o a d  ( f r e i P a t h 5 e  ) ;
d a t a . f  =  l o a d  ( f r e i P a t h 5 f  ) ;
d a t a . g  =  l o a d  ( f r e i P a t h 5 g  ) ;
CH05 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;
c l e a r  d a t a . a  d a t a . b  d a t a . c
d a t a . a  =  l o a d  ( f r e i P a t h 6 a  ) ;
d a t a . b  =  l o a d  ( f r e i P a t h 6 b  ) ;
d a t a . c  =  l o a d  ( f r e i P a t h 6 c  ) ;
d a t a . d  =  l o a d  ( f r e i P a t h 6 d  ) ;
d a t a . e  =  l o a d  ( f r e i P a t h 6 e  ) ;
d a t a . f  =  l o a d  ( f r e i P a t h 6 f ) ;
d a t a . g  =  l o a d  ( f r e i P a t h 6 g  ) ;
CH06 =  [ d a t a . a ;  d a t a . b ;  d a t a . c ;  d a t a . d ;  d a t a . e ;  d a t a . f ;  d a t a . g ] ;  
c l e a r  d a t a . a  d a t a . b  d a t a . c

end
S a v e  a s s e m b l e d  d a t a  

s =  [ ' s a v e '  b l a n k s ( l )  pname ' \  ' p a t l d  ' . '  r u n i n f o ]; 
e v a l  ( s ) ; 
c l e a r  s

end



H.5 freiburg_dataprep.m

m  F R E I B U R G - D A  T A P R E P  -
%  T h i s  p r o g r a m  p r e p a r e s  t h e  F r e i b u r g  d a t a  f o r  s u b m i s s i o n  t o  t h e  E V A M  
%  p r o g r a m .
%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%  D a n i e l  M o l l e r
%  P h D  C a n d i d a t e  , B i o m e d i c a l  E n g i n e e r i n g  
%  L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d w m 0 2 7 @ l a t e c h . e d u
%   -------------------------------------------------------------------
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  f r e i b u r g  . m  V e r s i o n :  1 . 0 . 0 0
%  O r i g i n a l  D a t e :  2 / 8 / 1 1  
%
%  F u n c t i o n  c a l l s  :
%  n o n e  
%
%  F u n c t i o n  c a l l e d  b y :
%
%
%  R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r ,  d a t e  a n d  d e s c r i p t i o n )

1 . 0 . 0 0  ( O r i g )  D .  M o l l e r  2 / 8 / 1 1  
c o p i e d  f r o m  f r e i b u r g  . m

%  N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

clear a l l ; close all

W o  S e t  u p  F i l e n a m e s  &  C h o o s e  P a t i e n t / B l o c k s / o t h e r
r u n i n f o l  =  d a t e s t r  (now , 'yymmdd' ) ;
r u n in f o 2  =  d a t e s t r  (now,  'HHMM1) ;
r u n i n f o  =  s t r c a t ( r u n i n f o l  , 1 , r u n i n f o 2 )
pname =  'X : \ M a t l a b W o r k \ lR e se a r c h \ S R C _ D A T A \ F r e i b u r g _ D a t a \m a t ' ;  
Fs =  256;

%  e n t e r  < p a t i e n t  I D > . < s e i z u r e  n u m b e r >  a s  t e x t  
%  p a t l d c e l l { l } =  '0 0 4 - a  
%  p a t l d c e l l { 2 }  =  ' 0 1 6 . 2  
%  p a t l d c e l l { 3 }  =  ' 0 1 6 . 3  ' ;
%  p a t l d c e l l { 4 }  =  ' 0 1 6 . 4  
%  p a t l d c e l l { 5 }  =  ' 0 1 6 . 5  ' ;

[ f . s ] =  f i l e s e l e c t ;
[ l i s t i n g ]  =  Is ( f . s  ( 1 ) .  pname) ;
[ n o f i l e s  ,dummy] =  size ( 1 is t i n g  ) ;
n o f i l e s  =  n o f i l e s —2; %  g e t  r i d  o f  . a n d  . .

f o r  i =  1:6:  n o f i l e s  
f o r  j =  0:5

t em pf{  i+ j  } =  l i s t i n g  ( i + j + 2  ,:) ;
end

end

[ p a t i n d e x ]  =  s t  r f i  nd ( f . s  ( 1 ) .  pname , 1 p a t ') ;
p a t l d  =  f - S  ( 1) . pname( pa t  in de x  (1 )  +3 :  p a t i n d e x  (1 )  + 5 )

[ e e g i n d e x ]  =  s t r f i n d ( f . s ( l ) .  pname I n t e r  ' )  ; 
i f  " i s em pty  ( e e g i n d e x  ) 

e e g t y p e f l a g  =  0;
e l s e
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e e g t y p e f l a g  =  1;
end
c l e a r  l i s t i n g  p a t i n d e x  e e g i n d e x  
noch =  6; 
maxblocks  =  10;

for i =  1: noch : n o f i l e s  
for j =  Otnoch—1

if ~strcmp( t e m p f{  i } ( 1 :  length ( t e m p f{  i } )  —5)
tem pf  { i+ j  } (1: length ( t em pf{  i+ j  } )  — 5))  

e r r o r ( ' d a t a  f i l e s  m i s s i n g ' )
end

end
if i =  1

s w i t c h  e e g t y p e f l a g  
c a s e  0

p a t l d  =  [ p a t l d  1 . a  ' ] 
c a s e  1

sznum =  1;
p a t l d  =  [ p a t l d  ' . s '  num2str ( s znum)  ] 
sznum =  sznum+1;

end
c o n s e c b l o c k s  =  1;
fnam es{  c o n s e c b l o c k s  } =  t e m p f { i } ;
CHOI =  [ ] ; CH02 =  [ ] ; CH03 =
CH04 =  [ ] ; CH05 =  [ ] ; CH06 =  [ ]

else
oId  f i l e  =  . . .

s t r2 n u m (  t e m p f  { i — noch } ( l e n g t h  ( t e m p f  { i —noch } )  —9: l e n g t h  ( t e m p f { i —noch } )  — 6) )■< 
>

n e w f i l e  =  . . .
s t r2 nu m (  t e m p f  { i } ( l e n g t h ( t e m p f { i } )  —9: l e n g t h  ( t e m p f  { i } ) — 6 ))  ; 

i f  ( (  n e w f i l e  — o l d f i  l e  ~= 1) [| . . .
~ s t r cmp (  t em pf  { i — noch } (1: l e n g t h  ( t e m p f { i —noch }) —10) , .  . . 
t e m p f  { i } ( 1 :  l e n g t h  ( t e m p f  { i } ) —10) ) ) | |  . . .
c o n s e c b l o c k s  =  maxblocks  +  1; 

s a v e f i l e  =  [pname ' \  1 p a t l d ] ;
s a v e  ( s a v e f  i le  , 'CH* ' , 'F s '  , ' r u n i n f o  ' , ' p a t l d  ' , ' f  names ' ) ; 
s w i t c h  e e g t y p e f l a g  

case  0
n e w l e t t e r  =  i n c r e m e n t  . l e t t e r  ( p a t l d  ( l e n g t h  ( p a t l d  ) ) )  ; 
p a t l d  =  [ p a t l d  (1 :  l e n g t h  ( p a t l d  ) —1) n e w l e t t e r ]  

ca se  1
p a t l d  =  [ p a t l d  (1 :  l e n g t h  ( p a t l d  ) —1) n u m 2 s t r ( s znu m) ] 
sznum =  sznum +  1;

end
c o n s e c b l o c k s  =  1; c l e a r  fnames  
CHOI =  [ ] ; CH02 =  [ ] ; CH03 =  [ ] ;
CH04 =  [ ] ; CH05 =  [ ] ; CH06 =  [ j ;

end
end
d a t a . t e m p l  =  l o a d  ([  f . s  ( 1 ) .  pname t e m p f { i } ] ) ;

f . s  ( 1 ) . pname t e m p f { i + l } ] )  
f . s  ( 1 ) .  pname t e m p f { i + 2 } [ )  
f . s  ( 1 ) .  pname t e m p f { i + 3 } ] )  
f . s  (1)  . pname t e m p f { i + 4 } ] )  
f . s ( l ) . p n a m e  t e m p f { i + 5 } ] )

d a ta . t e m p 2  =  l o a d  ( 
d a t a . t e m p 3  =  l o a d  ( 
data_ temp4  =  l o a d  ( 
data_ temp5  =  l o a d  ( 
data_ temp6  =  l o a d  (

CHOI =  [CHOI; d a t a . t e m p l ]
CH02 =  [CH02; d a t a . t e m p 2  ]
CH03 =  [CH03; d a t a . t e m p 3  ]
CH04 =  [CH04; d a t a . t e m p 4  ]
CH05 =  [CH05; d a t a . t e m p 5  j 
CH06 =  [CH06; d a t a . t e m p 6  j 
fnames{  c o n s e c b l o c k s  } =  t e m p f { i } ;  
c o n s e c b l o c k s  =  c o n s e c b l o c k s +1;



i+noch >  n o f i l e s
s a v e f i l e  =  [pname ' \ '  p a t l d ] ;
s a v e )  s a v e f i l e  , 'CH* ' , ' Fs ' , 1 run in f o  ' , 1 p a t l d  ' , ' fnames  ' ) ;
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H.6 fulLemd_coh_func.m

f u n c t i o n  f u l l _ e m d . c o h . f u n c  ( p a t l d  , i i s t a r t  , i i s t o p  , i inewname  ) 
m  F U L L - E E M D - C O H - F U N C T  -
%  T h i s  p r o g r a m  a n a l y z e s  t h e  F r i e b u r g  d a t a s e t  i n  a n  a u t o m a t e d  f a s h i o n .
%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * $ * * * * * * * * * * * *

%  D a n i e l  M o l l e r
%  P h D  C a n d i d a t e  , B i o m e d i c a l  E n g i n e e r i n g  
%  L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d v j m 0 2 7 @ l a t e c h . e d u
%       _____
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  f u l l - e e m d . c o h  . m  V e r s i o n : 1 . 0 . 0 0
%  O r i g i n a l  D a t e :  2 / 1 5 / 1 1  
%
%  F u n c t i o n  c a l l s :
%  n o n e  
%
% F u n c t i o n  c a l l e d  b y :
%
%
%  R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r , d a t e  a n d  d e s c r i p t i o n )

%  1 . 0 . 0 0  ( O r i g )  D .  M o l l e r  2 / 1 5 / 1 1  
%
%  N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

%
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * m

i f  n a r g in  =  1
i i s t a r t  =  0; i i s t o p  =  0; i inewname  =  1 1 ;

end
d i s p  ( i i n e w n a m e )

%  C l e a r  w o r k s p a c e  a n d  c l o s e  o p e n  f i g u r e s  
c i c  ; c l o s e  a l l ;  warn ing  o f f ;
[comp , pathname ] =  chkcomp ;
p a th n a m e .d a ta  =  ' 1 R e s e ar ch \S R C - D A T A \F re ib u rg _D at a \m a t \  ' 
t i c

d a t a S e t { l }  =  p a t l d

%% S e t  u p  F i l e n a m e s  &  C h o o s e  P a t i e n t / B l o c k s / o t h e r
r u n i n f o l  =  d a t e s t r  (now , 'yymmdd')  ;
r u n in f o 2  =  d a t e s t r  (now , 'HHMM') ;
r u n in f o  =  s t r c a t ( r u n i n f o l r u n i n f o 2 )
pname =  ' X : \ M a t la b W o r k \ lR e s e a r c h \ S R C -D A T A \ F r e ib u r g _ D a ta \m a t ' ;  
Fs =  256;

W o  T r a i n i n g  P a r a m e t e r s  
p r e p r o c e s s f l a g  =  1; 
emdf lag  =  1;
f i l t p l a n  =  ' 0 0 0 ' ;  %  b a n d s t o p  ( 4 9 . 5  — 5 0 . 5 )  , l o w p a s s  ( 1 2 0 )  , h i g h p a s s  ( 5 )
twindow =  16;  
n o i s e l e v  =  0 .1 ;  
t r i a l s  =  50;

%  c o v . t y p e  =  ' f u l l  
%  p c a f l a g  =  0 ;
%  s p i v f l a g  =  0 ;
%  w a v f l a g  =  1 ;  %  o b t a i n s  w a v e l e t  c o e f f i c i e n t s  f o r  s i g n a l  d a t a
%  c o h f l a g  =  0 ;  %  o b t a i n s  c o h e r e n c e  v a l u e s  f o r  s i g n a l  d a t a
%  w a v c o h f l a g  =  0 ;  %  o b t a i n s  w a v e l e t  c o h e r e n c e  v a l u e s
%  w a v d e r f l a g  — 0 ;
%  p l o t f l a g  =  0 ;  %  p l o t  ( 1 )  o r  d o n ' t  p l o t  ( 0 )
%  f i g f l a g  — 0 ;  %  s a v e  f i g u r e s  a s  - f i g  ( 1 ) ,  a s  . j p g  ( 0 )
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%  s h u f f l e  =  0 ;

98% S e l e c t  d a t a  s e t :  s e i z u r e s  &  c h a n n e l s
%  f o r  n a m i n g  r e a s o n s ,  o r d e r  t h e s e  w i t h  s m a l l e s t  p a t l d  a n d  e a r l i e s t  s z r
c h a n { 1 , 1 }  =  'CHOI' 
chan { 1 , 2 }  =  ’CH021 
c h a n { 1 , 3 }  =  'CH031 
chan { 1 , 4 }  =  'CH04' 
c h a n { 1 , 5 }  =  'CH05' 
chan { 1 , 6 }  =  'CH06'

M o d i f y  o r d e r  o f  t r a i n i n g  
%  i f  s h u f f l e  =  1
%  r  =  r a n d ( 1 , l e n g t h ( d a t a S e t ) )  ;
% r  =  [ r ; 1 : l e n g t h ( d a t a S e t ) ] ;
%  r  =  r  ' ;
%  r  — s o r t r o w s ( r ) ;
%  f o r  i  =  1 : l e n g t h ( d a t a S e t ) ;
%  t e m p S e t { i }  =  d a t a S e t { r  ( i  , 2 )  } ;
%  e n d
%  r  =  r  ( :  , 2 )  ;
%  n o t r a i n  =  l e n g t h ( r ) ;
%  d S e t  =  t e m p S e t ;
%  c l e a r  s h u f f l e  t e m p S e t
%  e l s e
%  n o c a s e s  =  l e n g t h ( d a t a S e t ) ;
%  r  =  [  1 :  n o c a s e s  ]
%  d S e t  =  d a t a S e t ;
%  e n d

n o c a s e s  =  l e n g t h  ( d a t a S e t ) ; 
r =  [ 1 : n o c a s e s ] ' ; 
dSe t  =  d a t a S e t ;

%%> T i m e s t a m p
r u n i n f o l  =  d a t e s t r  (no w, 'yymmdd ' )  ; 
r u n i n f o 2  =  d a t e s t r  (now,  'HHMM') ; 
r u n i n f o  =  s t r c a t ( r u n i n f o l  , ' , r u n i n f o 2 ) ;

[ c a s e l i s t ]  =  f e a t - c a s e l i s t  2 ( d a ta S e t  , Fs , i i s t  a r t  , i i s t o p ) ;

f o r  s zr  =  1 : n o c a s e s  
98% L o a d  d a t a  
c h d a ta  =  [ ] ;
[dummy, nochan ] =  s i z e  ( c h a n ) ;  
f o r  k =  1: nochan

%  p a t l d  =  t r a i n S e t { r ( s z r ) } ;
c ha n ne l  =  c h a n { r ( s z r ) , k } ; 
emdinput  ( szr , k , 1 ) .  c h a n n e l  — c h a n n e l ;  
l o a d  ( c a s e l i s t ( s z r ) . f u l l n a m e ,  ' F s ' )  
l o a d  ( c a s e l i s t ( s z r ) . f u l l n a m e  , c h a n n e l )

%  a s s i g n i n  ( '  c a l l e r  ' ,  c h a n n e l  , e v a l  ( c h a n n e l ) )
%  a s s i g n i n  ( ' c a l l e r  ' c h a n t e x t  c l e a r  ( '  c h a n n e l  ' ' ' '  ' )  ' ] )
%  t e m p c h d a t a  =  e v a l i n  ( ' c a l l e r  c h a n n e l )  ;
%  e v a l i n  ( ' c a l l e r  c h a n t e x t )
%  c l e a r ( c h a n n e l )  ;

t empchdata  =  e v a l  ( c h a n n e l ) ;
%  f i g u r e ;
%  s u b p l o t  ( 1  , 2  , 1 ) ;  p l o t  ( t e m p c h d a t a )  ; h o l d  o n ;  s u b p l o t  ( 1 , 2  , 2 )  ; p l o t  ( C H O I )
% c a s e l i s t ( s z r ) .  t s t a r t  
% c a s e l i s t  ( s z r ) .  t s t o p  
%  w h o s
%  p a u s e
%  c h d a t a

c h d a t a ( k , : )  =  . . .
[ t empchdata  ( c a s e l i s t  ( s z r )  . t s t a r t *  Fs +  l : c a s e l i s t  ( s z r )  . t s t o p *  Fs )  ] ; 

c l e a r  t empchdata  
t t = t o c ;
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f p r i n t f  ( 1 Loaded Channe l  %i a t  %5 .1f  m i n u t e s \ n  1 , k , t t / 6 0 )  ;
%  p a u s e

end
f p r i n t f ( ' \ n  1 )
ep oc h s  =  f l o o r  ( l e n g t h  ( c h d a ta  ) / (  Fs * tw indow)  ) ;

98% P r e p r o c e s s  D a t a  
f o r  k =  1 : nochan

fo r  i =  1 : epochs
tem pd ata  =  c h d a t a  (k , (  i —1) *( Fs* twindow ) +1:  i * (F s* t wi n do w  ) )  ;
[ emdinput  ( szr  , k | i ) . ppdata  ] =  p r e p r o c e s s . f r e  i ( t empdata  , Fs , f i  It p l a n  , 1 , 1 ) ;  
c l e a r  t em pd ata

end
t t = t o c ;
f p r i n t f  ( ' P r e p r o c e s s e d  Channel  %i at  %5.1f  m i n u t e s \ n  ' ,k , t t / 6 0 )  ;

end
f p r i n t f ( ' \ n ' )

m  E E MD  
i f  emdf lag  =  1

f p r i n t f ( 'STARTING EMD\n 1) 
f o r  k =  1: nochan

j =  i ;
f o r  i =  1 : e p oc h s

tem pdata  =  emdinput  ( szr , k , i ) .  p p d a ta  ;
emdinput  ( szr  , k , i ) . al l  mode  =  eemd ( t em pd ata  , n o i s e l e v  , t r i a l s  ) ; 
c l e a r  t e m pd a ta ;  
i f  rem ( j , 5)  = 0  

t t = t o c ;
f p r i n t f (  1 EMD CH %i , epoch %i @ %5.4 f min \n  ' , k , i  , t t / 6 0 )

en d
j =  j + i ;

end  
t t = t o c ;
f p r i n t f (  'EMD A n a l y s i s  o f  Channel  %i c o m p l e t e  a t  %5.4f  m i n u t e s \ n  ' , k , t t  •(—’ 

/ 6 0 ) ;
end

end
end
for  i =  1: l e n g t h  ( d a t a S e t  )

savename  =  [ d a t a S e t { i }  ' - ' ] ;  
i f  l e n g t h  ( i i n ew n a m e ) ~= 0

savename  =  [ i inewname  ' -  ' ] ;
end

%  f o r  j  =  1 : l e n g t h ( c h a n )
%  s a v e n a m e  =  [ s a v e n a m e  c h a n { j } [ ;
%  e n d

savename =  [ savename  ' C H l t o 6 - ' ] ;
end
savename =  [savename  n u m 2 s t r ( tw in d o w ) ' . m a t ' ] ;
s a v e  ( savename , ' emdinput  ' , ' F s ' , ' f i l t p l a n ' , '  twindow ' , ' r u n i n f o  ')

%% A n a l y z e  C o h e r e n c e
[dummy, nochan , ep oc h s  ] =  s i z e  ( e m d i n p u t ) ;
k = l ;
for i =  1: nochan —1

for j =  i + l : n o c h a n
t v c p a i r ( k , : ) =  [ i j ]; 
k =  k+1;

end
end
[ pa i rno  ,dummy] =  s i z e  ( t v c p a i r  ) ;
for i =  l : p a i r n o

for j =  1 : epoch s
[dummy, m o d e s p l u s l  ] =  s i z e  ( emdinput  (1 ,1 , 1 ) .  a l l m o d e  ) ; 
nomodes =  m o d e s p lu s l  — 1; 
for m =  1: nomodes
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t e m p d a t a l  =  . . .
emdinput  ( l , t v c p a i r ( i  , 1 )  , j ) . a l l m o d e ( :  ,m +l )  ; 

t emp da ta2  =  . . .
emdinput  ( l , t v c p a i r ( i  , 2 )  , j ) . a l l m o d e ( :  ,m+X) ;

%  [ c o h p a i r Z ( i ) . c o h ( m ,  j ) , f r e q ( m ,  j ) j  =  . . .
%  m s c o h e r e  ( t e m p d a t a l  , t e m p d a t a Z  , [ } , { ) ,  F s ) ;

c o h p a i r  ( i ) . coh (m, j ) =  . . .
mean( mscohere  ( t e m p d a ta l  , t em pd ata 2  , [ ]  , []  , F s ) ) ;  

c o h p a i r s t d  ( i ) . coh (m, j ) =  . . .
s t d  ( mscohere  ( t em p d at a l  , t em pdata2  , [ ] , [ ] , Fs  ) ) ; 

c l e a r  t e m p d a t a l  t empdata2
end

end
d i s p  ( i ) 
t o e

end
% f o r  i  — 1 : p a i r n o
%  f o r  j  — 1 : e p o c h s
%  s c f t r  =  ( l e n g t h ( c o h p a i r ( i ) .  c o h )  — 1 ) / ( F s / Z ) ;
%  f o r  k  =  n e x t p o w Z  ( F s )  — 1 1 : 1
%  c o h p a i r ( i  , m )  . c o h d a t a ( k , j )  =  . . .
%  m e a n (  c o h p a i r  ( i )  . c o h  (  ( Z ~  ( k —1 ) )  * s  c f t r  + Z : ( s ~ k )  * s c f t r  + 1  , j  )  )  ;
%  e n d
%  c o h p a i r ( i ) . c o h d a t a ( 1 , j )  =  m e a n ( c o h p a i r ( i ) .  c o h ( 1 :  s c f t r + 1 , j ) ) ;
%  e n d
%  e n d
savename  =  [ savename  (1:  l e n g t h  ( savename ) —4) ' . c o h  . m a t 1 ] ;

s a v e  ( savename  , ' c o h p a ir  ' , ' c o h p a i r s t d  ' , ' t v c p a i r  1 )
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H .7 m coh.m

f u n c t i o n  [mcohdat]  =  mcoh( fname , f o l d e r  )
%  m c o h  —
%  m a x i m u m  c o h e r e n c e  v a l u e  
%
%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% D a n i e l  M o l l e r
%  P h D  P r o g r a m  G r a d u a t e  S t u d e n t  i n  B i o m e d i c a l  E n g i n e e r i n g  
%  L o u i s i a n a  T e c h  U n i v e r s i t y  
%  d u i m 0 2 7 @ l a t e c h . e d u
%   ____________________________________________
%  A u t h o r :  D a n i e l  M o l l e r
%  P r o g r a m :  m c o h . m  V e r s i o n :  1 . 0 . 0 0
%  O r i g i n a l  D a t e :  7 / 1 8 / 1 0  
%
%  F u n c t i o n  c a l l s :
%
%  F u n c t i o n  c a l l e d  b y :
%
%  R e v i s i o n  H i s t o r y  ( i n c l u d e  v e r s i o n  , p r o g r a m m e r , d a t e  a n d  d e s c r i p t i o n )

%  1 . 0 . 0 0  < o r i g >  D .  M o l l e r  7 / 1 8 / 1 0  
%
%  N o t e s  
%  * * * * * * * * * * * * * * * * * * * *

%  f o r  j = l : 2 ;
%  f o r  i  =  2 : 1 3 ;
%  d a t  =  e m d i n p u t  ( 1  , j  , 1 ) .  a l l m o d e  ( : ,  i  )  ;
% x ( j , : )  — a n g l e  (  h i l b  e r t  ( d a t ) )  ;
%  [ f f t f r e q  f f t d a t a }  =  s  s f f t  ( d a t , 2 5 6 )  ;
%  f i g u r e  ; s u b p l o t ( 2 , 1 , 1 ) ;
%  p l o t  ( f f t f r e q  , f f t d a t a  )  ;
%  s u b p l o t ( 2 , 1 , 2 ) ;
% p l o t  ( x ( j  , : )  )  ;
% c l e a r  f f t f r e q  f f t d a t a ;
% e n d
% e n d
% c o m m a n d  l i n e  t e s t i n g :
% c l o s e  a l l ;  f o r  j = l : 2 ;  f o r  i = 2 : 1 3 ;  d a t  =  e m d i n p u t  ( 1 ,  j  , 1 ) .  a l l m o d e  ( : ,  i )  ; x ( j , : )  =  «->

a n g l e  (  h i l b  e r t  (  d a t ) )  ; [ f f t f r e q  f f t d a t a ]  =  s  s f f t  (  d a t  , 2 5 6 )  ; f i g u r e ;  s u b p l o t  ( 2  , 1  , 1  )*- *
; p l o t  ( f f t f r e q  , f f t d a t a  )  ; s u b p l o t  ( 2 , 1  , 2 )  ; p l o t  ( x  ( j  , : )  )  ; c l e a r  f f t f r e q  f f t d a t a ;  •f-J 
e n d ;  e n d

%  f o r  j  =  1 : 1 5 ;  f o r  i  =  2 0 :  l e n g t h  ( m c o h d a t  ( j  )  . m c o h  ( 1  , : ) )  ; m c o h d a t  ( j  ) .  a v e m c o h  ( : ,  i  ) =  «-> 
m e a n ] m c o h d a t  ( j )  , m c o h ( : , i  — 1 9 :  i  )  , 2 )  ; e n d ;  e n d  

%  f o r  j  =  1 : 1 5 ;  f i g u r e ;  f o r  i  =  1 : 1 2 ;  s u b p l o t  ( 6 , 2 ,  i ) ;  t i t l e  ( [ ' C H  P a i r  N u m b e r : '
n u m 2 s t r  ( j  )  j  )  ; h o l d  o n ;  y l a b  e l  ( [  ' I M F '  n u m 2 s t r  (  i  )  ]  )  ; h o l d  o n ;  p l o t  ( m c o h d a t  ( j  ) .  «-> 
a v e m c o h  ( i  , : ) )  ; h o l d  o n ;  p l o t  ( [ 2 2 5  2 2 5 ] , [ 0  1 ]  , ' r ' )  ; e n d ; e n d  

%  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
t i c
Fs =  256;

i f  n a r g i n  =  1
f o l d e r  =  1. ' ;

end

i f  " i s em p ty  ( f i n d s t r  ( fname , ' . mat ')  )
savename =  [ f o l d e r  ' / '  fname (1:  l e n g t h  ( f n a m e ) —4) ' . m c o h . m a t ' ]  
fname =  [ f o l d e r  ' / '  fname];

e l s e
savename =  [ f o l d e r  ' / '  fname ' .mcoh . mat ' ] 
fname =  [ f o l d e r  ' / '  fname ' . m a t ' ] ;

end
no imfs  =  12;

lo a d  ( fname , ' emdinput  ' )

mailto:duim027@latech.edu
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[dummy, nochan | ep och s  ] =  s i z e  ( e m d in p u t )  ; 
ind =  1;
fo r  i =  1: nochan—1

fo r  j =  i+ 1 :  nochan
p a ir n o  ( ind , 1)  =  i ;  
p a ir n o  ( ind , 2 )  =  j ;  
ind =  in d + 1 ;

end
end
nop a ir  =  i n d —1;

f o r  j — 1: nopa ir
for  i =  l r n o i m f s

f o r  k =  1 : epoch s
tem pi  =  emdinput  ( l , p a i r n o ( j  , 1 )  , k ) . a l l m o d e ( :  , i + l ) ;
temp2 =  emdinput  ( l , p a i r n o ( j  , 2 )  , k ) . a l l m o d e ( :  , i + 1 ) ;
temp3 =  mscohere  ( t em p i  , temp2 , [  ] , [ )  , F s ) ;
mcohdat  ( j ) .  mcoh( i , k)  =  . . .

max(  a bs  ( t e m p3 ) )  ; 
c l e a r  t em pi  temp2 temp3

end
end
t t  =  t o e ;

%  f p r i n t f  ( '  C h a n n e l  p a i r # : % i  a t  t i m e  % 5 . 2 f \ n ’ , j , t t )  
end

c l e a r  emdinput
s a v e ( savename , ' m c o h d a t ' ) ;



H.8 patSelectinfo.m

m  F U N C T IO N  f o r  p a t S e l e c t i n f o
f u n c t i o n  [ fnames ]  =  p a t  S e l e c t  in f o  ( p a t S e l e c t  , twindow , t y p e )  ;

i f  n a r g i n  =  2
t y p e  =  ' coh 1 ;

end

f o r  i =  1: l e n g t h  ( p a t  S e l e c t ) 
p a t l d  =  p a t S e l e c t { i }
%  N O T E  f n a m e s { 2 , x }  =  s e i z u r e  f i l e  
%  f n a m e { l  , x }  =  i n t e r i c t a l  f i l e
s w i t c h  p a t l d

c a s e  ' 001 '
i f  twindow =  16

f n a m e s { 2 , l }  =  ' 001 _ l _ C H l t o 6 - 1 6 -  1 
fnames  {2 , 2 }  =  ' 001 _ 2 . C H l t o 6 . 1 6 .  ' 
f n a m e s { 2 , 3 }  =  ' 0 0 1 - 3 - C H l t o 6 _ 1 6 - ' 
f n a m e s { 2 , 4 }  =  ' 001 _ 4 . C H l t o 6 _ 1 6 _  '

f n a m e s { l , l }  =  1 001 - i i O t o l - C H  1 t o 6 _l  6 _ 
f n a m e s { l , 2 }  =  ' 001 _ii 1 t o 2 _ C H  1 to 6_ 16_  
fnames  { 1 , 3 }  =  ' 0 0 1 - i i 2 t o 3 - C H l t o 6 - 1 6 .  
f n a m e s { l , 4 }  =  ' 0 0 1 - i i 3 t o 4 _ C H  1 t o 6 _l  6 .  
f n a m e s { l , 5 }  =  ' 0 0 1 - i i 4 t o 5 - C H l t o 6 _ 1 6 -  
f n a m e s { l , 6 } =  1 001 _ i i 5 t o 6 . C H l t o 6 - . 1 6 _

end
c a s e  ' 00 2  1

i f  twindow =  16
f n a m e s { 2 , l }  =  ' 002 _ l _ C H l t o 6 _ 1 6 .  
fnames { 2 , 2 }  =  1 0 0 2 - 2 . C H l t o 6 . 1 6 .  
fnames { 2 , 3 }  =  ' 002 . 3 . C H l t o 6 . 1 6 .

fnames { 1 , 1 }  =  
fnames { 1 , 2 }  =  
fnames {1 ,3}  =  
fnames {1 ,4}  =  
f n a m e s { l  ,5}  =  
fnames  { 1 , 6 }  =

end
c a se  1003 '

i f  twindow =  16 
f n a m e s { 2 , l }  =  
f n a m e s { 2 , 2 }  =  
fn a m e s { 2 , 3 }  =  
fn a m e s { 2 , 4 }  =  
f n a m e s { 2 , 5 }  =

fnames { 1 , 1 }  =  
fnames { 1 , 2 }  =  
fnames {1 ,3}  =  
f n a m e s { l  ,4}  =  
fnames  { 1 , 5 }  =  
fnames { 1 , 6 }  =

end

' 002 . i i O t o l . C H I 1 0 6 . 1 6 .  
, 0 0 2 - i i l t o 2 . C H l t o 6 _ 1 6 -  
l 0 0 2 - i i 2 t o 3 - C H l t o 6 - 1 6 .  
' 0 0 2 . i i 3 t o 4 . C H l t o 6 . 1 6 -  
' 0 0 2 - i i 4 t o 5 . C H l t o 6 . 1 6 .  
' 0 0 2 - i i 5 t o 6 - C H I 1 0 6 - I 6 -

' 0 0 3 _ l . C H l t o 6 . 1 6 -  ' ; 
' 0 0 3 - 2 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 3 . 3 - C H l t o 6 . 1 6 .  ' ; 
' 0 0 3 - 4 . C H l t o 6 . 1 6 -  ' ; 
' 0 0 3 - 5 . C H l t o 6 . 1 6 -  ' ;

' 0 0 3 - i i 0 t o l . C H l t o 6 . 1 6 -
' 0 0 3 - i i l t o 2 . C H l t o 6 . 1 6 -
' 0 0 3 _ i i 2 t o 3 _ C H l t o 6 . 1 6 -
' 0 0 3 - i i 3 t o 4 - C H l t o 6 _ 1 6 .
' 0 0 3 - i i 4 t o 5 . C H l t o 6 . 1 6 -
' 0 0 3 - i i 5 t o 6 . C H l t o 6 . 1 6 -

t ' 004 '  
i f  twindow =  16

f n a m e s { 2 , l }  =  ' 004.  
f n a m e s { 2 , 2 }  =  ' 004.  
f n a m e s { 2 , 3 }  =  ' 004.  
f n a m e s { 2 , 4 }  =  ' 004.  
f n a m e s { 2 , 5 }  =  ' 004.

1 - C H l t o 6 . 1 6 .  ' ;
2 - C H l t o 6 _ 1 6 .  ' ; 
3 _ C H l t o 6_ 16 _? ??  
4 . C H l t o 6 . 1 6 .  ' ; 
5 - C H l t o 6 . 1 6 .  ' :

f n a m e s { l , l }  =  ' 0 0 4 _ i i 0 t o l _ C H l t o 6 _ 1 6 - ' ;



fnames  { 1 , 2 }  =  
f n a m e s { l , 3 }  =  
f n a m e s { l , 4 }  =  
f n a m e s { l , 5 }  =  
fnames  { 1 , 6 }  =

elseif twindow =  
end

ca se  '005 '
if tw indow =  16 

f n a m e s { 2 , l }  =  
f n a m e s { 2 , 2 }  =  
f n a m e s { 2 , 3 }  =  
f n a m e s { 2 , 4 }  =  
f n a m e s { 2 , 5 }  =

fnames  { 1 , 1 }  =  
f n a m e s { l  ,2}  =  
fnames  { 1 , 3 }  =  
fnames  {1 , 4}  =  
fnames  { 1 , 5 }  =  
f n a m e s { l  , 6}  =

end
ca se  ' 006 '

if twindow === 16 
f n a m e s { 2 , l }  =  
f n a m e s { 2 , 2 }  =  
f n a m e s { 2 , 3 }  =  
f n a m e s { 2 , 4 }  =  
f n a m e s { 2 , 5 }  =

fnames { 1 , 1 }  =  
f n a m e s { l , 2 }  =  
fnames { 1 , 3 }  =  
f n a m e s { l , 4 }  =  
f n a m e s { l , 5 }  =  
f n a m e s { l , 6 }  =

end

ca se  ' 007  1
if twindow =  16 

f n a m e s { 2 , l }  =  
f n a m e s { 2 , 2 }  =  
fnames { 2 , 3 }  =  
f n a m e s { 2 , 4 }  =  
f n a m e s { 2 , 5 }  =

fnames { 1 , 1 }  =  
fnames  { 1 , 2 }  =  
fnames  { 1 , 3 }  =  
fnames  {1 , 4}  =  
fnames  {1 , 5}  =  
fnames {1 , 6}  =

end

c ase  1008 1
if twindow =  16 

fnames  { 2 , 1 }  =  
fnames  { 2 , 2 }  =

fnames  { 1 , 1 }  =  
fnames  { 1 , 2 }  =  
fnames { 1 , 3 }  =  
fnames {1 ,4}  =  
fnames {1 ,5}  =  
fnames { 1 , 6 }

< - i h 1

ca se  '009  '

' 004 _ i i l t o 2 - C H l t o 6 - 1 6 .  
1 004 . i i 2 t o 3 . C H l t o 6 . 1 6 _  
1004 _ i i 3 t o 4 . C H l t o 6 . 1 6 -  
' 0 0 4 _ i i 4 t o 5 _ C H l t o 6 - 1 6 .  
' 0 0 4 _ i i 5 t o 6 - C H l t o 6 - 1 6 .
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' 0 0 5 - l . C H l t o 6 . 1 6 .  ' ; 
' 0 0 5 - 2 . C H l t o 6 . 1 6 . ? ? ?  ' ; 
' 0 0 5 . 3 - C H l t o 6 . 1 6 . ? ? ?  ' ; 
' 0 0 5 . 4 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 5 - 5 . C H l t o 6 . 1 6 -  ' ;

' 0 0 5 - i i l t o 2 . C H l t o 6 . 1 6 -  
' 005 _ i i 2 t o 3 . C H I 1 0 6 . 1 6 .  
' 0 0 5 . i i 3 t o 4 . C H l t o 6 . 1 6 .  
' 005 . i i 4 t o 5 . C H  I t 0 6 . I 6 .  
' 0 0 5 - i i 5 t o 6 . C H l t o 6 . 1 6 -  
' 0 0 5 - i i 6 t o 7 . C H l t o 6 . 1 6 -

' 0 0 6 . 1 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 6 - 2 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 6 . 3 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 6 - 4 . C H l t o 6 . 1 6 - ? ? ?  ' ; 
' 0 0 6 - 5 . C H l t o 6 . 1 6 - ? ? ?  ' ;

' 0 0 6 - i i 0 t o l . C H l t o 6 . 1 6 -  
' 0 0 6 - i i l t o 2 . C H l t o 6 . 1 6 .  
' 0 0 6 - i i 2 t o 3 . C H l t o 6 . 1 6 -  
' 006 _ i i 3 t o 4 . C H I 1 0 6 - I 6 .  
' 0 0 6 - i i 4 t o 5 . C H  I t  0 6 . 1 6 .  
' 0 0 6 - i i 5 t o 6 . C H l t o 6 . 1 6 -

' 0 0 7 - l . C H l t o 6 . 1 6 -  ' ; 
' 0 0 7 . 2 - C H l t o 6 . 1 6 .  ' ; 
' 0 0 7 - 3 . C H l t o 6 . 1 6 -  ' ; 
' 0 0 7 . 4 - C H l t o 6 . 1 6 - ? ? ?  ' ; 
' 0 0 7 - 5 . C H l t o 6 . 1 6 . ? ? ?  ' ;

' 0 0 7 . i i 0 t o l . C H l t o 6 . 1 6 -
' 0 0 7 . i i l t o 2 . C H l t o 6 . 1 6 .
' 0 0 7 _ i i 2 t o 3 _ C H l t o 6 _ 1 6 .
' 0 0 7 _ i i 3 t o 4 . C H l t o 6 . 1 6 .
' 0 0 7 - i i 4 t o 5 . C H l t o 6 . 1 6 -
' 0 0 7 - i i 5 t o 6 - C H l t o 6 - 1 6 .

' 0 0 8 _ l . C H l t o 6 . 1 6 .  ' ; 
' 0 0 8 . 2 . C H l t o 6 . 1 6 .  ' ;

' 0 0 8 . i i 0 t o l . C H l t o 6 . 1 6 .  
' 0 0 8 _ i i l t o 2 . C H l t o 6 . 1 6 .  
1 008 _ i i 2 t o 3 . C H I  10 6 . 1 6 . 
' 0 0 8 - i i 3 t o 4 . C H l t o 6 . 1 6 .  
' 0 0 8 - i i 4 t o 5 . C H l t o 6 . 1 6 -  
' 0 0 8 . i i 5 t o 6 . C H l t o 6 . 1 6 .



i f tw indow =  16 
f n a m e s { 2 , l }  = 
f n a m e s { 2 ,2 } = 
f n a m e s { 2 , 3 }  = 
f n a m e s { 2 , 4 }  = 
f n a m e s { 2 , 5 }  =

f n a m e s { l  
fnames  {1  
fnames  {1  
fnames  { 1  
fnames  { 1  
fnames  { 1

en d
ca se  10 1 0  '

i f  twindow =  
fnames  { 2  
fnames  { 2  
fnames { 2  
fnames  { 2  
fnames { 2

. 1 }
>2 }
-3}
A}
.5}
.6 }

= 16 
, 1 } = 
. 2 } = 
. 3}  = 
, 4}  = 
,5 }  =

end

fnames { 1 , 1 } 
fnames { 1 ,2 } 
fnames {1 ,3}  
fnames {1 ,4}  
fnames  { 1 , 5 }  
fnames  { 1  ,6 }

' 0 0 9 - l . C H l t o 6 . 1 6 _  ' ; 
' 0 0 9 _ 2 _ C H l to 6 _ 1 6 _ ? ? ?  ' ; 
' 0 0 9 _ 3 . C H l t o 6 . 1 6 . ? ? ?  ' ; 
' 0 0 9 . 4 . C H l t o 6 . 1 6 .  ' ; 
' 0 0 9 . 5 _ C H l t o 6 . 1 6 .  ' ;

' 0 0 9 .
' 0 0 9 .
' 0 0 9 .
' 0 0 9 .
' 0 0 9 .
' 0 0 9 .

i 0 t o l . C H l t o 6 . 1 6 .
i l t o 2 . C H l t o 6 . 1 6 .
i 2 t o 3 . C H l t o 6 . 1 6 .
i 3 t o 4 . C H l t o 6 _ 1 6 .
i 4 t o 5 . C H l t o 6 . 1 6 .
i 5 t o 6 . C H l t o 6 . 1 6 -

' 0 1 0 - l . C H l t o 6 . 1 6 -  ' ; 
' 0 1 0 . 2 . C H l t o 6 . 1 6 . ? ? ?  
' 0 1 0 . 3 . C H l t o 6 . 1 6 .  * ; 
' 0 1 0 . 4 . C H l t o 6 . 1 6 .  ' ; 
' 0 1 0 . 5 . C H l t o 6 - 1 6 .  1 ;

' 0 1 0 .

' 0 1 0 .

' 0 1 0 .

' 0 1 0 .

' 0 1 0 .
' 0 1 0 .

i 0 t o l . C H l t o 6 . 1 6 .
i l t o 2 . C H l t o 6 . 1 6 .
i 2 t o 3 . C H l t o 6 . 1 6 .
i 3 t o 4 . C H l t o 6 . 1 6 .
i 4 t o 5 . C H l t o 6 . 1 6 .
i 5 t o 6 _ C H l t o 6 _ 1 6 .

c a se  ' O i l  '
i f  twindow =  16 

fnames  { 2 , 1 } = 
fnames  { 2  ,2 } = 
f n a m e s { 2 , 3 }  = 
f n a m e s { 2 , 4 }  =

fnames  { 1 , 1 } = 
fnames  { 1 , 2 } = 
fnames  {1 , 3}  = 
fnames  { 1 , 4 }  = 
fnames  {1 , 5}  = 
fnames  { 1  , 6 } =

end

' 0 1 1 . l _ C H l t o 6 . 1 6 .
' 0 1 1 . 2 - C H l t o 6 . 1 6 _
' 0 1 1 . 3 - C H l t o 6 . 1 6 -
' 0 1 1 . 4 - C H l t o 6 . 1 6 .

' 0 1 1 - i i 0 t o l . C H l t o 6 . 1 6 -  
' 0 1 1 . i i l t o 2 . C  H i t  0 6 - I 6 . 
' 0 1 1 - i i 2 t o 3 . C H l t o 6 . 1 6 .  
'O i l  _ i i 3 t o 4 . C H I t o 6 . 1 6 .  
' 0 1 1 - i i 4 t o 5 _ C H l t o 6 - 1 6 .  
' 0 1 1 . i i 5 t o 6 . C H l t o 6 . 1 6 .

ca se  ' 0 1 2  '
i f  twindow 16

fnames  { 2 , 1 } = 
f n a m e s { 2 , 2 } = 
f n a m e s { 2 , 3 }  = 
f n a m e s { 2 , 4 }  =

f n a m e s { l , l }  = 
fnames { 1 ,2 } = 
fnames { 1 , 3 }  = 
fnames { 1 , 4 }  = 
fnames { 1 , 5 }  = 
fnames  {1  ,6 } =

' 0 1 2 . l - C H l t o 6 - 1 6 . ? ? ? ? ? ? - ? ? ? ?  ' ; 
' 0 1 2 _ 2 _ C H l to 6 -1 6 _ 1 1 0 1 1 1  —1945 .  ' 
' 0 1 2 . 3 . C H l t o 6 . 1 6 . 1 1 0 1 1 2  - 0 6 1 8 .  ' 
' 0 1 2 . 4 . C H l t o 6 . 1 6 . 110112 - 1 6 5 5 .  '

' 0 1 2 - a 0 t o l _ C H l t o 6 . 1 6 .1 1 0 1 1 1  - 1 11 2 . 
' 0 1 2 - a l t o 2 - C H l t o 6 . 1 6 _ 1 1 0 1 2 4  -2 1 5 6 .  
' 0 1 2 _ a 2 t o 3 - C H l t o 6 . 1 6 - 1 1 0 1 2 5  -0 6 3 6 .  
' 0 1 2 _ a 3 t o 4 _ C H l t o 6 . 1 6 . 1 1 0 1 2 5  -1 7 1 4 .  
'012 _ a 4 to 5 _ C H l to 6 _ 1 6 _ 1 1 0 1 2 6  -0 1 5 8 .  
' 0 1 2 . a 5 t o 6 . C H l t o 6 . 1 6 - l  10126  -2 1 1 6 .

e l s e i f  twindow  
end
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c a s e  ' 013  '
i f  twindow 16

f n a m e s { 2 , l }  = 
fnames { 2  ,2 } = 
fnames {2 ,3} = 
fnames {2  ,4} =

' 0 1 3 . l - C H l t o 6 . 1 6 .  ' ; 
' 0 1 3 - 2 . C H l t o 6 . 1 6 -  ' ; 
' 0 1 3 . 3 . C H l t o 6 . 1 6 . ? ? ?  ' 
' 0 1 3 - 4 . C H l t o 6 . 1 6 - ? ? ?  ’



fnames{2 ,5} =  1 013-5 .CHlto6-16-???  ' ;

f n a m e s { l , l }  = 
fnames  {1 , 2 }  = 
f n a m e s { l  , 3 }  = 
fnames  { 1 , 4 }  = 
f n a m e s { l , 5 }  = 
fnames  {1 , 6}  =

end
c a s e  1014 '

i f  tw indow =  16 
f n a m e s { 2 , l }  = 
f n a m e s { 2 , 2 }  = 
f n a m e s { 2 , 3 }  = 
fnames  {2  , 4 }  = 
fnames  { 2 , 5 }  =

fnames  { 1 , 1 }  = 
f n a m e s { l , 2 }  = 
f n a m e s { l , 3 }  = 
fnames  { 1 , 4 }  = 
fnames  { 1 , 5 }  = 
fnames  { 1 , 6 }  =

end
ca se  ' 015  '

i f  twindow =  16 
f n a m e s { 2 , l }  = 
fnames { 2 , 2 }  = 
f n a m e s { 2 , 3 }  = 
f n a m e s { 2 , 4 }  = 
fnames {2  , 5}  =

f n a m e s { l , l }  = 
fnames  {1 , 2}  = 
f n a m e s { l , 3 }  = 
f n a m e s { l  , 4}  = 
f n a m e s { l , 5 }  = 
fnames  {1 , 6}  =

end
ca se  ' 016 '

i f  twindow =  16 
f n a m e s { 2 , l }  = 
fn a m e s { 2 , 2 }  = 
f n a m e s { 2 , 3 }  = 
f n a m e s { 2 , 4 }  : 
fnames {2 ,5}  =

fnames { 1 , 1 }  : 
f n a m e s { l  ,2} = 
fnames  { 1 , 3 }  = 
fnames { 1 , 4 }  = 
fnames  { 1 , 5 }  = 
f n a m e s { l , 6 }  =

elseif twindow =  
f n a m e s { 2 , l }  = 
f n a m e s { 2 , 2 }  : 
fnames  { 2 , 3 }  = 
fnames  { 2 , 4 }  : 
f n a m e s { 2 , 5 }  : 
fnames  { 1 , 1 }  : 
fnames  { 1 , 2 }  =

end
cas e  ' 017  '

if  twindow =  16 
f n a m e s { 2 , l }  ; 
f n a m e s { 2 , 2 }  : 
fnames  {2 ,3} ;

' 0 1 3 - i i 0 t o l . C H l t o 6 . 1 6 -
' 0 1 3 . i i l t o 2 . C H l t o 6 . 1 6 .
' 0 1 3 . i i 2 t o 3 . C H l t o 6 . 1 6 -
' 0 1 3 - i i 3 t o 4 . C H l t o 6 . 1 6 .
' 0 1 3 - i i 4 t o 5 . C H l t o 6 . 1 6 -
' 0 1 3 . i i 5 t o 6 . C H l t o 6 . 1 6 .

' 0 1 4 . l _ C H l t o 6 . 1 6 .  ' ; 
' 0 1 4 - 2 . C H l t o 6 . 1 6 -  ' ; 
' 0 1 4 - 3 . C H l t o 6 . 1 6 .  1 ; 
' 0 1 4 . 4 - C H l t o 6 . 1 6 . ? ? ?  ' ; 
' 0 1 4 . 5 . C H l t o 6 . 1 6 . ? ? ?  ’ ;

' 0 1 4 . i i 0 t o l _ C H l t o 6 . 1 6 -  
' 0 1 4 . i i l t o 2 . C H l t  0 6 . I 6 .  
' 0 1 4 - i i 2 t o 3 . C H l t o 6 . 1 6 .  
, 0 1 4 . i i 3 t o 4 . C H l t o 6 - 1 6 .  
' 0 1 4 . i i 4 t o 5 - C H l t o 6 . 1 6 .  
' 014 . i i 5 t o 6 . C H  I t  0 6 . 1 6 .

' 0 1 5 _ l . C H l t o 6 . 1 6 -  ' ; 
' 0 1 5 . 2 . C H l t o 6 . 1 6 .  ' ; 
' 0 1 5 . 3 _ C H l t o 6 . 1 6 .  ' ; 
' 0 1 5 . 4 - C H l t o 6 . 1 6 .  ' ; 
' 0 1 5 - 5 . C H l t o 6 . 1 6 - ? ? ?  ' ;

' 0 1 5 . i i 0 t o l . C H l t o 6 . 1 6 .  
1 015 _ i i l t o 2 . C H I t 0 6 . I 6 .  
' 0 1 5 . i i 2 t o 3 . C H l t o 6 . 1 6 .  
' 0 1 5 - i i 3 t o 4  . C H I  t o 6 . 1 6  .  
' 0 1 5 . i i 4 t o 5 . C H l t o 6 . 1 6 -  
' 0 1 5 - i i 5 t o 6 . C H l t o 6 . 1 6 -

’0 1 6 . 1 .  C H l t o 6 _ 1 6 .  
' 0 1 6 - 2 . C H l t o 6 . 1 6 .  
' 0 1 6 - 3 . C H l t o 6 . 1 6 -  
' 0 1 6 . 4 - C H l t o 6 . 1 6 .  
' 0 1 6 - 5 . C H l t o 6 . 1 6 -

' 0 1 6 - i i O t o l  . C H I  10 6 . I 6 .  
' 016 _ i i l t o 2 . C H I t 0 6 . I 6 .  
' 0 1 6 . i i 2 t o 3 . C H l t o 6 . 1 6 .  
' 0 1 6 . i i 3 t o 4 _ C H l t o 6 . 1 6 .  
' 016 . i i 4 t o 5 . C H I t 0 6 . I 6 .  
' 0 1 6 . i i 5 t o 6 . C H l t o 6 . 1 6 .

32
' 0 1 6 - l . C H l t o 6 . 3 2 . ? ? ? ? ? ? - ? ? ? ?  ' ; 
' 0 1 6 . 2 . C H l t o 6 . 3 2 . 1 1 0 1 0 7 - 1 3 4 7 .  ' ; 
' 0 1 6 _ 3 . C H l t o 6 . 3 2 . ? ? ? ? ? ? - ? ? ? ?  ' ; 
' 0 1 6 - 4 . C H l t o 6 . 3 2 . 1 1 0 1 0 5  - 2 3 1 1 .  ' ; 
' 0 1 6 - 5 . C H l t o 6 . 3 2 . 1 1 0 1 0 6  - 0 9 3 4 .  ' ;
' 0 1 6 - d 0 t o l . C H l t o 6 . 3 2 - 1 1 0 1 0 6  -2021  
' 0 1 6 - d l t o 2 . C H l t o 6 . 3 2 _ l  1010 6  -2021

' 0 1 7 . 1 . C H l t o 6 . 1 6 -  ' 
' 0 1 7 - 2 . C H l t o 6 . 1 6 -  ' 
' 0 1 7 . 3 _ C H l t o 6 . 1 6 _  '
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fnames{2,4} =  '
fnames{2,5} =  '

fnames  { 1 , 1 }  =  1 
fnames  { 1 , 2 }  =  1 
fnames  { 1 , 3 }  =  1 
fnames  { 1 , 4 }  =  ' 
fnames  { 1 , 5 }  =  ' 
fnames  { 1 , 6 }  =  '

end
c a s e  1018 '

i f  twindow =  16
f n a m e s { 2 , l }  =  1 
f n a m e s { 2 , 2 }  =  ' 
f n a m e s { 2 , 3 }  =  ' 
f n a m e s { 2 , 4 }  =  ' 
fnames  { 2 , 5 }  =  '

fnames  { 1 , 1 }  =  ' 
fnames  { 1 , 2 }  =  ' 
fnames  { 1 , 3 }  =  ' 
fnames  { 1 , 4 }  =  ' 
fnames  { 1 , 5 }  =  ' 
fnames  { 1 , 6 }  =  '

end
c a s e  ' 019 '

i f  twindow =  16
f n a m e s { 2 , l }  =  ' 
f n a m e s { 2 , 2 }  =  ' 
fnames  { 2 , 3 }  =  ' 
f n a m e s { 2 , 4 }  - ' 
f n a m e s { 2 , 5 }  =  '

fnames  { 1 , 1 }  =  ' 
f n a m e s { l , 2 }  =  ' 
fnames  { 1 , 3 }  =  ' 
f n a m e s { l , 4 }  =  ' 
f n a m e s { l , 5 }  =  ' 
f n a m e s { l , 6 }  =  '

end
ca se  '020 '

i f  twindow =  16
f n a m e s { 2 , l }  =  ' 
f n a m e s { 2 , 2 }  =  ' 
f n a m e s { 2 , 3 }  =  ' 
f n a m e s { 2 , 4 }  =  ' 
f n a m e s { 2 , 5 }  =  '

fnames  { 1 , 1 }  =  1 
f n a m e s { l , 2 }  =  ' 
fnames  { 1 , 3 }  =  ' 
f n a m e s { l  ,4}  =  ' 
fnames { 1 , 5 }  =  1 
f n a m e s { l , 6 }  =  '

end
c a s e  '021 '

i f  twindow =  16
f n a m e s { 2 , l }  =  ' 
f n a m e s { 2 , 2 }  =  ' 
f n a m e s { 2 , 3 }  =  ' 
fnames { 2 , 4 }  =  ' 
f n a m e s { 2 , 5 }  =  1

f n a m e s { l , l }  =  ' 
fnames { 1 , 2 }  =  ' 
fnames {1 ,3}  =  ' 
f n a m e s { l , 4 }  =  ' 
f n a m e s { l , 5 }  =  '

_ 4 . C H l t o 6 . 1 6 .  1 ; 
- 5 . C H l t o 6 . 1 6 .  1 ;

_ i i 0 t o l . C H l t o 6 . 1 6 .
- i i l t o 2 . C H l t o 6 _ 1 6 _
- i i 2 t o 3 . C H l t o 6 . 1 6 _
- i i 3 t o 4 . C H l t o 6 . 1 6 -
- i i 4 t o 5 . C H l t o 6 . 1 6 -
- i i 5 t o 6 . C H l t o 6 . 1 6 -

_ l . C H l t o 6 . 1 6 .  ' ; 
- 2 . C H l t o 6 . 1 6 .  ' ; 
- 3 . C H l t o 6 . 1 6 -  ' ; 
- 4 . C H l t o 6 . 1 6 -  ' ; 
_ 5 . C H l t o 6 . 1 6 -  1 ;

- i i 0 t o l . C H l t o 6 . 1 6 -
- i i l t o 2 _ C H l t o 6 _ 1 6 _
. i i 2 t o 3 _ C H l t o 6 . 1 6 _
_ i i 3 t o 4 . C H l t o 6 . 1 6 .
- i i 4 t o 5 . C H l t o 6 . 1 6 -
. i i 5 t o 6 . C H l t o 6 . 1 6 -

- l . C H l t o 6 - 1 6 -  ' ; 
_ 2 . C H l t o 6 . 1 6 .  1 ; 
_ 3 . C H l t o 6 . 1 6 -  1 ; 
- 4 . C H l t o 6 . 1 6 _  1 ; 
- 5 . C H l t o 6 . 1 6 . ? ? ?  1 ;

- i i 0 t o l . C H l t o 6 . 1 6 -
- i i l t o 2 . C H l t o 6 . 1 6 _
_ i i 2 t o 3 . C H l t o 6 . 1 6 -
- i i 3 t o 4 . C H l t o 6 . 1 6 _
- i i 4 t o 5 . C H l t o 6 . 1 6 -
. i i 5 t o 6 . C H l t o 6 . 1 6 -

_ l . C H l t o 6 . 1 6 .  1 ; 
- 2 . C H l t o 6 . 1 6 .  1 ; 
- 3 . C H l t o 6 . 1 6 .  ' ; 
- 4 . C H l t o 6 . 1 6 .  1 ; 
_ 5 . C H l t o 6 . 1 6 .  1 ;

- i i 0 t o l . C H l t o 6 . 1 6 -
_ i i l t o 2 . C H l t o 6 . 1 6 .
- i i 2 t o 3 . C H l t o 6 . 1 6 -
- i i 3 t o 4 - C H l t o 6 . 1 6 _
_ i i 4 t o 5 . C H l t o 6 . 1 6 .
- i i 5 t o 6 . C H l t o 6 . 1 6 -

- l . C H l t o 6 . 1 6 -  1 ; 
- 2 . C H l t o 6 . 1 6 .  ' ; 
- 3 . C H l t o 6 . 1 6 . ? ? ?  1 ; 
- 4 . C H l t o 6 . 1 6 .  1 ; 
- 5 . C H l t o 6 . 1 6 .  ' ;

- i i 0 t o l . C H l t o 6 . 1 6 -
_ i i l t o 2 . C H l t o 6 . 1 6 .
. i i 2 t o 3 . C H l t o 6 . 1 6 .
_ i i 3 t o 4 _ C H l t o 6 - 1 6 .
- i i 4 t o 5 . C H l t o 6 . 1 6 -

017
017

017
017
017
017
017
017

018
018
018
018
018

018
018
018
018
018
018

019
019
019
019
019

019
019
019
019
019
019

020
020
020
020
020

020
020
020
020
020
020

021
021
021
021
021

021
021
021
021
021
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fnames{1,6}  =  '021 _i i5to6.CH 1 t o 6 . 1 6 .  ' ;
end

end
end
[ n r , n c ]  =  s i z e  ( fnames  ) ; 
f o r  i =  1: nr

f o r  j =  l : n c
s w i t c h  t y p e

ca se  1coh '
i f  “i s e m p t y  ( f n a m e s { i , j })

f n a m e s { i , j }  =  [ f n a m e s { i , j }  1 coh . mat 1 ] ;
end

c a s e  1 mc oh 1
i f  ' i s e m p t y  ( fn a m e s { i , j } )

fnames  { i , j } =  [ fnames  { i , j } 'mcoh.  m a t 1];
end

c a s e  ' s p i v  1
i f  “i s e m p t y  ( fn a m e s { i , j } )

f n a m e s { i , j }  =  [ fnames  { i , j } ' s p i v ,  m a t 1];
end

c a se  ' x c o r '
i f  “i s e m p t y  ( fn a m e s { i , j } )

f na m es ]  i , j } =  [ f n a m e s { i , j } 1 xcor  . mat ' ] ;
end

c a se  1 mxcr '
i f  “i s e m p t y  ( fn a m e s{ i , j } )

f n a m e s { i , j }  =  [ f n a m e s { i , j }  ' m x c r . m a t ' ] ;
end

c a se  ' core  '
i f  “i s e m p t y  ( fn a m e s { i , j } )

fnames  { i , j } =  [ fnames  { i , j } ' c o r e ,  m a t ' ] ;
end

end
end

end
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