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ABSTRACT

Research on cyber-behavioral biometric authentication has traditionally as

sumed naive (or zero-effort) impostors who make no attem pt to generate sophisticat

ed forgeries of biometric samples. Given the plethora of adversarial technologies on 

the Internet, it is questionable as to whether the zero-effort threat model provides a 

realistic estimate of how these authentication systems would perform in the wake of 

adversity. To better evaluate the efficiency of these authentication systems, there is 

need for research on algorithmic attacks which simulate the state-of-the-art threats.

To tackle this problem, we took the case of keystroke and touch-based authenti

cation and developed a new family of algorithmic attacks which leverage the intrinsic 

instability and variability exhibited by users’ behavioral biometric patterns. For both 

fixed-text (or password-based) keystroke and continuous touch-based authentication, 

we: 1) Used a wide range of pattern analysis and statistical techniques to examine 

large repositories of biometrics data for weaknesses that could be exploited by ad

versaries to break these systems, 2) Designed algorithmic attacks whose mechanisms 

hinge around the discovered weaknesses, and 3) Rigorously analyzed the impact of 

the attacks on the best verification algorithms in the respective research domains.

When launched against three high performance password-based keystroke ver

ification systems, our attacks increased the mean Equal Error Rates (EERs) of the 

systems by between 28.6% and 84.4% relative to the traditional zero-effort attack.



For the touch-based authentication system, the attacks performed even better, as 

they increased the system’s mean EER by between 338.8% and 1535.6% depending 

on parameters such as the failure-to-enroll threshold and the type of touch gesture 

subjected to attack. For both keystroke and touch-based authentication, we found 

that there was a small proportion of users who saw considerably greater performance 

degradation than others as a result of the attack. There was also a sub-set of users 

who were completely immune to the attacks.

Our work exposes a previously unexplored weakness of keystroke and touch- 

based authentication and opens the door to the design of behavioral biometric systems 

which are resistant to statistical attacks.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Biometrics — a set of measurements of either the human characteristics ac

quired naturally over time (behavioral biometrics), or the inherent physical traits of 

an individual (physiological biometrics) — have recently seen a lot of applications 

in user authentication [1, 2] and cryptographic key generation [3, 4]. The increased 

interest in biometrics has stemmed from a number of factors, key among which being 

the generally high entropy across a user population, and the elimination of the need 

for a subject to memorize a  potentially complex secret.

While physiological biometrics (e.g., fingerprints, iris patterns) are stable and 

highly unique for each user, behavioral biometrics (e.g., keystroke dynamics, handwrit

ing, touch gestures) tend to be imprecise, in some cases exhibiting considerable intra

user variability and overlap across users. This imprecision and variability prompts 

questions as to whether well orchestrated statistical attacks would not severely de

grade the performance of authentication systems based on these modalities. Unfortu

nately, the majority of research in this field seems to disregard this threat, with most 

systems being evaluated under the assumption of a naive attacker who is unable to

1
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pull off a sophisticated forgery. As a  result, very little is known about the resistance 

of these systems to sophisticated forgeries.

In this work, we applied a wide range of pattern analysis techniques to discover 

attack vulnerabilities in keystroke and touch biometrics data, and then developed 

a new family of algorithmic attacks that exploit the discovered weaknesses to de

grade the performance of the two categories of authentication systems. Keystroke 

authentication — the use of keyboard typing traits to identify/authenticate users 

— is categorized into two branches, namely, fixed-text authentication [5, 6, 7] and 

continuous authentication [8, 9]. Both types of authentication classify users based 

on the way in which they type the different characters making up a string, the only 

difference being that fixed-text authentication is based on short memorized strings 

(typically passwords), while continuous authentication is based on large chunks of 

text that users type while they freely interact with the computer. The keystroke 

attacks designed in this work are targeted against fixed-text keystroke authentication 

systems.

Touch-based authentication is a form of authentication in which touch patterns 

(such as swiping, zooming and clicking/tapping on a touch screen) are used to iden

tify/authenticate users. Like keystroke authentication, touch-based authentication 

is also categorized into two branches: “entry point” authentication and continuous 

authentication. In continuous authentication users’ touch gestures are monitored 

throughout a phone usage session [10, 11, 12]. In “entry point” authentication on the 

other hand, users are authenticated based on how they execute a  certain (possibly
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secret) gesture at the entry point to an application or to the phone itself (i.e., login) 

[13, 14, 15]. This work focuses on continuous touch-based authentication.

For both keystroke and touch-based authentication, we first perform a statis

tical evaluation of biometric data collected from a large population of users, before 

using the observed statistical traits to design and launch statistical attacks on users’ 

templates. In practice the keystroke statistical attack designed in this work would 

be launched with the aid of bots— a class of rogue applications that are now well 

understood to have the capacity to emulate keystrokes [16], based on programs like 

xsendkeycode [17] for the X Window system and APIs such as Sendlnput [18] for 

Microsoft Windows. Given a bot designed to mimic human typing, a motivated 

attacker who has access to a sizeable amount of users’ typing data could extract 

representative model information from one population, and use it as input to the bot 

so as to attack users’ keystroke profiles from any other population.

Since the dynamics of how a bot could generate and submit fake keystrokes 

at a verifier have been explored in recent literature [16], we do not implement a live 

bot in this study. Instead we evaluate a feature-level attack under the assumption 

of a password-keystroke co-authentication system for which the attacker has accessed 

the victim’s password, possesses the required software tools, and is only left with the 

task of synthetically generating the keystroke sequence corresponding to the user’s 

profile. Our assumption of a stolen password is not uncommon in security evaluations 

of biometrics systems “as it allows evaluators to better understand how much extra 

security the biometric adds to the strength of the password [19]”. In fact, we argue 

that on the basis of the current prevalence of attacks launched to steal authentication



data from central storage servers1, it is not unlikely that a password-keystroke system 

could be faced with adversaries who already have knowledge of the victim’s password.

To launch our statistical attack on a touch-based authentication system in 

practice, we used a  robot to execute the statistically fine-tuned touch gestures on the 

screen. While there exist a wide range of robots that could be used for this purpose, 

we assume that it would be infeasible for the adversary to use a very expensive and 

sophisticated robot (that could cost thousands of dollars) for the sake of breaking the 

security of a stolen touch screen device (e.g., phone). For this reason, we implemented 

our statistical attack using the standard Lego Mindstorms NXT robotic kit [21], a 

very cheap robot that can easily be programmed to perform swiping and clicking 

operations2. The simplicity of this robot convinces us that our attack could easily 

get embraced by adversaries if continuous touch-based authentication became widely 

deployed. Additionally, the fact that the attack is launched in the analog domain 

implies that it cannot easily be stopped by conventional software solutions like would 

be the case for malware-based attacks.

1.2 Dissertation Contributions

In this dissertation we analyze two large behavioral biometrics data reposito

ries — one of which a keystroke dataset and the other a touch gestures dataset — for 

vulnerabilities that can be exploited by adversaries to attack the associated authen

tication systems. We then design a family of attacks that leverage these weaknesses

1One recent example of a large-scale attack is described in [20]
2 Research on continuous touch-based authentication primarily revolves around three frequently 

occurring gestures — clicking (or tapping), swiping to move the screen vertically, and swiping to 
move the screen horizontally [10, 11])
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to break keystroke and touch-based authentication systems. Our contributions are 

described in greater detail below.

1. We design an algorithmic attack mechanism that exploits the instability of 

users’ keystroke features to degrade the performance of a keystroke biometric 

system. Relative to the zero-effort attacks typically used to test the performance 

of keystroke biometric systems, we show that our algorithmic attack increases 

the Equal Error Rates (EERs) of three high performance keystroke verifiers 

by between 28.6% and 84.4%. Our results confirm that zero-effort impostor 

testing can underestimate the threat faced by a keystroke verifier in practice, 

and demonstrate the need for the incorporation of algorithmic attacks in the 

standard impostor testing routine of keystroke verifiers.

2. We introduce the notion of robotic attacks against touch-based authentication. 

While we use a Lego robot to emphasize that these attacks could be implemented 

at minimal cost, our core contribution is not with regard to a particular robot 

type or algorithm (one could use a more sophisticated robot to launch a high 

precision attack). Rather, its the illustration that robots (in general) are 

a much more realistic performance evaluation tool (than the currently used 

methods) for the fast emerging field of touch-based authentication. Relative to 

the traditional zero-effort attack, our robotic attack increased the mean EERs 

of the verification algorithms by between 338.8% and 1535.6% depending on the 

failure to enroll threshold and the type of stroke used for classification. Further, 

we found that the impact of the attack could not be significantly reduced by a
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failure to enroll policy which bars the “poor” performing users from enrolling 

onto the system.

3. Putting aside the performance of the attacks, our work, by virtue of being the 

first to analyze the statistical attributes of a large keystroke dataset assembled 

over several years, could serve as a reference benchmark for studies that continue 

to be built around small numbers of users. This problem of keystroke research 

being predominantly based on small datasets has prompted questions on how the 

results reported from these experiments generalize to large keystroke systems in 

practice [22], and has, among other issues always called for a large-scale study 

whose findings can give some insights into the properties of keystroke data 

at scale. Our observations on the Gaussianity, discriminability and mutual 

information of keystroke features should address this gap for a number of 

research areas within keystroke.

4. Although the small size of our touch biometrics dataset (relative to the keystroke 

dataset) limits the rigor of our analysis, we present some statistics expressing 

variables such as: the regions of the screen on which most swiping is done, the 

pressure exerted on the screen, and the area of the finger touching the screen. 

These empirical results should play a role in enabling the community to better 

understand the dynamics of users’ touch behavior.

1.3 Definitions and Terminology

In this section we define the various terminologies that are central to the 

methodology used in this dissertation. Some of these terms are further described
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when they axe first used in the dissertation.

False R e jec t R a te  (F R R ): The proportion of genuine authentication attempts that 

the authentication system classifies as impostor attempts. Elsewhere in literature, this 

term is also referred to as the False Alarm Rate.

False A ccep t R a te  (FAR): The proportion of impostor authentication attem pts 

that the authentication system classifies as genuine attempts. Elsewhere in literature, 

this term is also referred to as the Impostor Pass Rate.

E qua l E rro r  R a te  (EE R ): The error rate at which the FAR and FRR are equal. 

D e tec tio n -E rro r (D E T ) T radeoff Curve: The plot of FAR versus FRR or vice 

versa. The EER can be computed with the aid of this curve.

C lassifier (or V erifier): A program which assigns a new observation to a given 

class based on training carried out on observations whose class membership is known. 

B iom etric  tem p la te : A stored record of a user’s biometric features. During testing 

(or authentication), a new biometric sample provided by the user is compared with 

the stored template (using a classifier) so as to determine whether the new sample 

indeed belongs to the user in question.

N ull hypo thesis  (Ha): A claim that is to be subjected to a statistical test. The 

alternative hypothesis is the hypothesis contrary to the null hypothesis. Rejection of 

the null hypothesis implies acceptance of the alternative hypothesis.

Level o f significance, o r c ritica l value, a: The probability that the null hypoth

esis is rejected when it is in fact true. It is also referred to as the Type I error.

P  value: The probability of obtaining a test statistic that is at least as extreme as 

the one that was actually observed, given that the null hypothesis is true
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A to u ch  s tro k e  (or sw ipe): The path taken by the finger on the touch screen. These 

two are not standard terms, and could hence assume completely different meanings 

in other literature.

C y b er-b eh av io ra l b iom etrics: A class of biometric modalities in which users are 

identified based on how they interact with computing devices (e.g., desktop computers, 

phones, etc.). Examples of cyber-behavioral biometric modalities include: keystroke 

dynamics, touch behavior, web usage patterns, etc.

Zero-effort a ttack : A method of testing the performance of a biometric authentica

tion system that uses samples generated by one user (i.e., the user designated as the 

impostor) to attack the template built for another user (i.e., the user designated as 

the genuine user, or victim). This attack method simulates a scenario in which the 

attacker does not make any attem pt to imitate the victim’s biometric footprint.

1.4 O rgan iza tion  o f th e  D isse rta tio n

In Chapter 2, we discuss the various past works which relate to the statistical 

analysis and attacks designed in this paper. In Chapters 3, 4 and 5, we respectively 

discuss our data collection and feature extraction, statistical analysis and the attack 

on the keystroke system. In Chapter 6 we discuss our data collection and feature 

extraction, statistical analysis and the attack on the touch-based authentication 

system. Finally in chapter 7, we give our conclusions and some indications of future 

work.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Related Work and Motivation Behind Touch-based Authentication

Over the past few years, the popularity and usage of mobile devices (i.e., smart 

phones, tablets, etc.,) has grown exponentially [23]. One of the key factors for the 

proliferation of these devices—their portability relative to the desktop computer— 

also unfortunately manifests as a major weakness from the point of view of physical 

security. The ease with which these devices can be carried around in their owners’ 

pockets and (or) briefcases is the same ease with which they can be misplaced or 

stolen by adversaries. Once in the hands of a sophisticated attacker, both the 

remotely accessible resources and stored data on these devices (eg., passwords, social 

security numbers, bank details, private emails, company secrets, etc.,) could easily be 

compromised, potentially resulting into catastrophic consequences for businesses and 

(or) individuals.

Currently, the most widely employed defense against such threats is the PIN 

lock mechanism. However, this mechanism is incorrectly used by some users (eg., by 

setting very long timeouts [10]), completely disengaged by others [24], and susceptible 

to several attacks even when users engage it in accordance with the best practices 

[25, 26]. To augment the single line of defence offered by the PIN lock, researchers

9
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have recently studied the possibility of continuously authenticating users after the 

initial login phase is completed [27].

Among the continuous authentication approaches that have been explored, 

touch-based authentication has attracted a lot of attention given tha t it revolves 

around touch gestures that users execute during their routine operations on the phone 

[10, 11, 12]. Touch gestures arise naturally from operations such as scrolling, zooming 

and clicking, and can thus be used by an authentication application without requiring 

the user to pay attention to the authentication process.

In a recent Active Authentication (AA) research drive championed by the 

Defense Advanced Research Projects Agency (DARPA) [28], touch gestures have been 

identified as one of the candidate biometric modalities that could be built into a pilot 

multi-modal “biometric platform [28]” to be deployed in IT devices at the Department 

of Defense (DoD). W ith the American government actively joining the stake-holders 

interested in evaluating the potential of touch-based authentication, there is now little 

doubt that interest in this area of research is only bound to increase.

As already mentioned in Chapter 1, research on touch-based authentication is 

categorized into two groups: 1) authentication mechanisms in which touch gestures 

are used for authentication at an entry point (e.g., at login), and, 2) authentication 

mechanisms in which touch gestures are extracted continuously as the user performs 

various tasks on the phone. The former category includes studies in which users touch 

behavior is analyzed based on a set of canonically defined gestures [13, 14] or gestures 

strictly captured at the unlock screen [15].
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“Entry point” touch-based authentication has several operational dissimilari

ties with continuous touch-based authentication. Perhaps the most notable of these is 

the fact th a t the known geometry of the hand can be easily matched with the strictly 

defined structure of a gesture to ensure that only touch points associated with similar 

fingers (say, a thumb in the template and a thumb presented during testing) are 

compared during “entry point” authentication [13]. Such kinds of assumptions can not 

be made with continuous authentication where users freely interact with the phones, 

touching them with whatever fingers and in whatever way they find comfortable. 

Because the attacks designed in this work are targeted against continuous touch- 

based authentication systems, we delve deeper into past works which studied this 

type of authentication.

Using a dataset of 41 users, Prank et al. [10] obtained Equal Error Rates 

(EERs) of between 0 and 4% when a k-Nearest Neighbors (k-NN) classifier and a 

Support Vector Machine (SVM) were used to continuously authenticate users based 

on their touch gestures. The study was based on 30 features extracted while users 

swiped/scrolled (to move the screen vertically or horizontally) as they read text 

and browsed images. In [12], a digital sensor glove was shown to enhance the 

performance of a touch gesture-based continuous authentication system. Using a 

decision tree, Random Forest and Bayes Net classifier, the authors showed that the 

glove reduced the error rates seen during authentication. For instance, for the Bayes 

Net classifier, a False Accept Rate (FAR) of 11.96% and a False Reject Rate (FRR) 

of 8.53% respectively reduced to 2.14% and 1.63% when the glove was used. Similar 

improvements were noted for the two other classifiers.
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More recently, Li et al. [11] evaluated the performance of a live implementation 

of a touch-based authentication system on a mobile phone. Leveraging a “hack into 

the lower layer of an Android system [11]”, the system monitored touch gestures 

across all applications installed on the phone. Based on a group of 75 users who were 

allowed to freely interact with the phones for days, the SVM-based authentication 

system was shown to attain classification accuracies as high as 95%.

All three papers cited above employ a zero-effort testing routine in which the 

system’s resistance to attack is gauged based on simplistic attacks in which samples 

from a subset of the population are used to attack samples drawn from a given user. 

It is on this front that this work advances the state-of-the-art, studying the impact 

that sophisticated adversaries could have on this type of authentication.

2.2 Related Work and Motivation Behind Keystroke Authentication

Unlike touch-based authentication which traces its roots to just a few years 

ago (following the emergence of touch screen devices), keystroke dynamics dates back 

several decades ago [29, 30]. Right from the earliest works on keystroke dynamics, the 

categorization between fixed-text and continuous keystroke dynamics was apparent: 

Forsen et aVs work in 1977 [29] was based on a small group of users who typed 

each other’s names (i.e., fixed-text) while Gaines et aVs analysis in 1980 [30] was 

based on pages of text typed by the users (i.e., continuous or free text). Over 

the past few decades, both streams of keystroke dynamics have seen a tremendous 

amount of research (see detailed keystroke dynamics history in [31]), with fixed-text 

authentication being evaluated for its potential to add a second layer of defense to the
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password at login-time [2, 32, 5, 6]), and continuous authentication being evaluated 

as a means to repeatedly authenticate a user after the initial login is completed 

[8, 33, 34, 35].

W ith the vast majority of research on this topic assuming a zero-effort threat 

model, there are only a  handful papers which directly relate to the algorithmic attack 

problem addressed in this work. Investigating synthetic attacks against keystroke 

systems, Khandakher et al. [36] present an attack called a Snoop-Forge-Replay attack 

in which an adversary snoops on a victim’s typing session using a keylogger, uses the 

captured data to build a fake template for the user (with the aid of outlier filtering 

in some cases), and then replays the data to defeat the verification mechanism. The 

attack was shown to induce increments in EER (relative to the zero-effort baseline) 

of between 69.33 % and 2730.55 % depending on parameters such as the amount of 

text snooped, the outlier filtering policy and the classifier used for authentication.

The attacks in [37] and [7] build on the same idea used in [36] as they both use 

a keylogger to steal a user’s typing latencies before using the stolen data as a source 

of input for an attack against the same user. The attack in [37] uses the captured 

latencies to train human impostors who later attack the victim’s keystroke profile, 

while the attack in [7] uses these latencies as a basis for systematically morphing 

the victim’s template into a weaker template that can easily succumb to attack. The 

major difference between these works and our research is that our generative algorithm 

uses general information on how a typical user would type a given string, and does not 

depend on text snooped from the victim. It is thus not surprising that the attacks in 

[36], [37] and [7] attain much higher success rates than our attack (i.e., relative to the
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zero-effort attack, the increments in EER were as high as 2730.55%, 395% and 305% 

in [36], [37] and [7] respectively compared to a maximum increment of 84.4% in our 

work). That said, our belief is that the relative ease of accessing general population 

keystroke statistics as compared to the intricacies of snooping on the typing session 

of an intended victim should make our model of attack more appealing to attackers 

in practice.

In [16], it was shown that an authentication system (called TUBA [16]) using 

a Support Vector Machine (SVM) for keystroke verification was able to repel a form 

of statistical attack. Unfortunately, the authors did not publish the parameters used 

to set up the SVM verifier, as they stated that “our timing approach was more along 

the lines of brute-force, and we thus do not show the final chosen parameters [16]” . 

We do not run our attack against the verifier used in [16], since it is very difficult to 

make a meaningful comparison without a set of common parameter settings. However, 

we evaluate our attack against three state-of-the-art keystroke verification algorithms 

(details in Section 5.4) that have been demonstrated to be among the best for fixed 

text authentication, do not require sophisticated tuning of parameters, and whose 

implementation details we have clearly laid out for other researchers who may seek 

to evaluate their statistical attacks against the same set of verifiers.

Below, we discuss four major aspects that put our algorithmic attack apart 

from that implemented in [16]:

1. Feature Distribution Assumptions—The attack in [16] is built under the assump

tion that keystroke features follow a Gaussian distribution. However, as we show 

in this work (Section 4), this assumption is suspect since we find none of the
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115 features extracted from our samples to be Gaussian. W ith Stefan et al. [16] 

not having tested their samples for Gaussianity, it is difficult to tell whether 

their conclusion about keystroke dynamics being resilient to synthetic forgeries 

could have been impacted by the Gaussianity assumption. Our attack does not 

make any assumptions about the keystroke feature distributions.

2. Size of User-population and Duration of Data Collection—Stefan et al. [16] esti

mated the parameters of their assumed Gaussian distribution, and implemented 

their attack based on data collected from a small group of 20 users. Even if 

the keystroke features had indeed been Gaussian, parameter estimates from a 

dataset of 20 users are unlikely to accurately represent the underlying distri

bution. Also, as we show in Section 5.5, the dip in mean system performance 

seen under our statistical attacks primarily originated from a small proportion 

of about 10% to 20 % of the full population who badly succumbed to the attack. 

With a small set of 20 users, the likelihood of capturing the full variety of typing 

traits naturally diminishes, and it is thus not so surprising that the work in [16] 

appears to have failed to reflect the impact of the “poor” users who negatively 

impacted the overall system performance in our experiments. The fact that 

the dataset in [16] was collected over a short period of time also made it hard 

to get a realistic view of the attack performance, since the inconsistency and 

long-term evolution of users’ features that a  statistical attack would typically 

be expected to exploit was obviously not reflected in the users’ keystroke data 

samples.
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3. Attack Design—The attack in [16] did not use any additional keystroke-feature 

properties (besides the assumed Gaussian behavior of keystroke features) to 

aid the feature space enumeration process. Our attack exploits the feature 

distributions, discriminability and dependencies between keystroke features to 

traverse the search space as intelligently as possible. We believe that the usage 

of a wider range of keystroke feature properties during attack design should 

make our statistical attack more rigorous than that implemented by Stefan et 

al. [16].

4. Keystroke Features Used— The attack in [16] was based on a relatively new 

feature-set1, which despite extending our understanding of the different features 

that a keystroke system could use, left behind the question: How would the 

traditional keystroke features (described in Section 4) on which most proposed 

keystroke systems have been based, perform against synthetic forgeries ? Our 

work addresses this question by subjecting these (traditional) features to the 

attacks.

The works in [38, 39], despite being based on handwriting biometrics evaluate 

the performance of a wide range of synthetic attacks in an environment similar to 

ours. In particular, the generative attack whose input is either extracted from general 

population handwriting statistics or from text written by the victim in a context 

different from that of the exact word (or phrase) subject to attack, closely relates

to our work by virtue of using an automated algorithmic approach against short

1Prom a 14-character string, they extract a 121 dimensional feature vector which they later reduce 
through Principal Component Analysis
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strings of text comparable to the password-like strings used in this paper. For certain 

categories of users, this attack was shown to considerably outperform attacks launched 

by trained human forgers in a verification mechanism which included both human 

judges and an automated reference monitor.

These findings motivate the work in this paper, although it is noteworthy that 

the operational dissimilarities between keystroke dynamics and handwriting mean 

tha t our algorithmic framework can not directly derive from the approach in [38]. 

Another difference between ours and Ballard et aVs [38] work, is that we do not 

extract any input from strings typed by the intended victim, since we focus on an 

attacker who only uses global typing traits to launch local attacks against individuals.

W ith regard to the keystroke statistical traits that we investigate to guide the 

design of our attack algorithm, Janakiraman et al. [40] also studied the discriminabil- 

ity of keystroke feature vectors as we do in this paper. However, that work was not 

based on fixed text (see detailed description of fixed text in Section 3.2) and used a 

small dataset built from samples collected from a group of 22 users. Meanwhile for 

the discriminability analysis performed by Balagani et al. [5], the authors used fixed 

text like in this paper, but again used a small population of 33 users and compared 

discriminability between heterogeneous and aggregate keystroke feature vectors, as 

opposed to a feature by feature evaluation which we use in this work. W ith all that 

said, the performance analysis methodology used in [5, 40] differs from the approach 

taken in this paper, since none of the two works subjected the observed differences 

difference in discriminative power seen across features to  formal statistical tests of 

significance. The absence of formal statistical analysis particularly makes it hard to
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generalize the findings (such as the means and standard deviations reported in [40]) 

to keystroke dynamics in general [41].



CHAPTER 3

KEYSTROKE EXPERIMENTS

3.1 O verview

We collected several thousand typing samples in four 3-week events, spread 

over a 2-year period between 2009 and 2011. All typists were staff, students and 

faculty of Louisiana Tech University. Table 3.1 summarizes the details of the dataset 

used in our experiments.

Table 3.1: Summary of dataset details

D a te G ender F irs t  L anguage H an dedness
Male Female English Other Left Right Ambidextrous

Oct 2009 589 412 - - - - -

Apr 2010 690 488 967 205 100 1051 22
Oct 2010 692 507 974 216 112 1052 21
Oct 2011 715 521 1007 221 117 1046 24

The missing values are because some details were not captured during the first 

phase of experiments when the project had just been initiated. Observe that the total 

number of users may appear inconsistent in some of the phases. For example, the sum 

of male and female typists in the April-2010 dataset is 1178, yet the sum of English 

and non English speakers for the same phase of experiments is 1172. The reason for 

the discrepancy is tha t some users opted not to fill certain fields of the questionnaire

19



20

handed out before the typing exercise. The sum of female and male typists however 

reflects the actual total typing population for each phase.

3.2 Typing Samples

While a wide range of samples were collected during the study, this work 

focuses on samples which were collected as fixed text. W ith fixed text, a user types 

a memorized word or very short sentence that constitutes little or no cognitive load. 

Such text closely mimics basic authentication in which a password or short passphrase 

may be typed by a user at log-in time. The ideal way to collect such text is by having 

users type their actual passwords, for which they must have developed a natural 

typing pattern over time. Unfortunately this option has major security implications 

and is generally not used in keystroke research. Past works simulated fixed text entry 

in two ways- some studies used a common password string (typically having about 

8-10 characters) across all users [6, 2], while others used a short sentence that could 

be easily memorized by users [5]. The usage of a sentence in the latter category 

of works was mainly motivated by the need to investigate how some modalities of 

fixed text keystroke authentication {e.g., classification accuracies) depend on variables 

such as the identities of characters making up users’ passwords (or passphrases), or 

authentication-string lengths such as in [5]. In such cases, the limited number of 

characters in a short password string would limit the scope of analysis.

Because our work involved investigations on a wide range of variables, we also 

used a sentence to simulate fixed text entry, and had users type the phrase “/  am 

an Undergraduate Student of Louisiana Tech U niversity. Our belief is that subsets
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of this phrase should give a plausible approximation of the nature of real passwords. 

Also, with most of the users in our study being undergraduate students of Louisiana 

Tech University, we figured that the words in this phrase would be familiar and easy 

to memorize.

To simulate password entry in our experiments, it was crucial that the char

acter distribution in our fixed text reflected the character distribution seen in real 

passwords. Table 3.2 compares the frequencies of the different characters in our typing 

sample with those in three recently hacked password lists (details of the three lists 

— i.e., the Singles.org, Myspace.com and phpBB.com password lists can be found in 

[20, 42]). The tabulated summary of the password character percentages is compiled 

from the statistics published in [42].

Table 3.2: Frequencies of the most common characters in passwords found on 3 
recently hacked password lists compared with frequencies of the same characters in 
the phrase studied in this work.

C h a ra c te r P assw ord  L ist P h ra se  U sed  in  
th is  W orkSingles.org Myspace.com phpBB.com

e 8.84% 7.71% 8.95% 10.0%
a 8.13% 7.00% 8.79% 12.0%
0 6.01% 5.46% 6.32% 4.00%
s 5.60% 4.89% 5.93% 6.00%
i 5.42% 4.84% 5.24% 8.00%
n 5.18% 4.28% 5.32% 10.00%
r 5.08% 4.69% 6.13% 6.00%
t 3.78% 3.55% 4.78% 10.00%
u 2.54% 2.29% 3.26% 10.00%
TO TA L 50.58% 44.71% 49.4% 76%

For the password lists, the 3 tabulated values in each row represent the number 

of times a character appears on the list as a percentage of the total number of 

characters on the list. The value tabulated for our phrase is the number of times
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a character appears in the phrase as a percentage of the total number of characters 

in the phrase. Our percentages do not exactly match those in the lists, although it 

is clear that we captured many of the most frequently occurring characters on the 

password lists. Note that the very low frequency of special characters in the hacked 

password lists (full statistics can be found in [42]) supports the omission of these 

characters from our study.

During the typing sessions, users easily memorized the phrase, and quickly 

got into their regular typing rhythm after just a few trials. Whenever the system 

detected an error after the user had typed the full string, the parser prompted the 

user to re-enter the string afresh, like is done in regular password entry1. All typing 

was done using DELL QWERTY keyboards. Across the several typing phases, users 

provided 12 to 20 samples of this string during each typing session.

3.3 Keystroke Features and Pre-processing M ethod

3.3.1 Keystroke Features

For every key typed by a user, there are two associated time stamps—the time 

when the key is pressed, and the time when the key is released. Figure 3.1 illustrates 

these time stamps for the digraph H I, with Ph representing the time when the letter 

H  is pressed, R h representing the time when letter H  is released, and the time stamps 

for the letter I  defined similarly. For the digraph H I, three independent features can

be derived from the raw time stamps. These are the Key Hold Time, K H T h of letter

1The program used during the last phase of experiments did not have this parsing module. For 
data collected during that phase, we scanned the data after it was collected and eliminated a given 
typing instance of the passphrase if it had at least one error.
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H, the Key Interval Time, K IT h i between H  and I, and the Key Hold Time, K H T i 

of letter I. These features can respectively be calculated as: KHT'h =  R h — Ph , 

K IT hi = Pi — R h and K H T i = R i — Pi, with K IT h i assuming a negative value if 

I  is pressed before H  is released.

i k k k

KHTh KITh, KHT,

V 1 r
- - - - - - - - - - - - - ►

H R H R. T im e

F ig u re  3.1: An illustration of the “atomic” features used in keystroke dynamics.

From these three “atomic” features, a number of other features can be derived 

to represent a user’s typing pattern for the digraph H I. Examples of these features 

include the up — up time {— R i — R h or K H T i +  K IT h i), the down — down time 

(= Pi — PH or K H T h + K IT Hi ), and the total time required to type the full digraph 

(=  R i — Ph or K H T h + K IT hi +  K H Ti). For longer words, additional features 

can be derived from the “atomic” features to express the time interval between any 

sequence of adjacent characters within the word. For instance in a word made of 5 

characters, n-graphs can be defined {e.g., trigraphs, 4-graphs, 5-graphs [40, 43]) in 

addition to the set of features already described above. Because the bulk of keystroke 

features are just linear combinations of the “atomic” features (i.e., the K H T s  and 

K IT s) ,  most keystroke verification systems are designed to use these two features 

(for summary statistics of which studies have used which features refer to [5, 6]). In 

order to make a thorough analysis while avoiding duplications, this dissertation thus
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also focuses on the K H T s  and K IT s .  We believe that their properties will provide 

insights into the properties of the other kinds of features.

3.3.2 Outlier Filtering

Over the several samples collected from each user, uncharacteristically long 

pauses could occur at various points in the string and pollute the user’s template if 

not filtered out. For each feature, we use the distance-based outlier detection method 

in [44] to filter out outliers from each user’s samples before using the data for our 

statistical analysis. In this method, a point is considered an inlier if 68% of all the 

points are within 100 ms of it. These thresholds were fixed heuristically in [44], and 

have been found to perform well in a number of other works (see an example in [9]).



CHAPTER 4

KEYSTROKE FEATURE PROPERTIES

In this section we present the keystroke feature traits seen across our dataset. 

We discuss their implications to keystroke dynamics research and to the design of 

statistical attacks in particular. For all statistical tests performed, we report results 

based on a critical value of a  =  5%.

4.1 D is tr ib u tio n  o f K ey  H old  an d  In te r-k ey  T im es

O b se rv a tio n #  1: All KHTs and KITs extracted from our fixed-phrase, “I  am 

an undergraduate student of Louisiana Tech University”, did not obey a Gaussian 

distribution

E vidence to  S u p p o rt O bserva tion  # 1 :  We used the Lilliefors [45] and 

Cramer-von Mises [46] tests to formally check whether keystroke feature data follows 

the normal distribution. A modification of the Kolmogorov Smirnov (K-S) test [47], 

the Lilliefors test returns a more accurate P-value (than the K-S test) when the 

parameters of the hypothesized distribution are not completely specified during the 

test [45]. We included the Cramer-von Mises test in our hypothesis testing routine 

for the purpose of checking the result returned by the Lilliefors test, since different 

categories of normality tests may sometimes fail to agree on the distribution followed

25
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by a  given dataset. For both normality tests and other statistical tests performed in 

this work, we used the R  [48] statistical programming environment.

We ran the two normality tests for all features extracted from the fixed-phrase 

(57 KITs and 58 KHTs). For instance, to test whether the KITs of digraph GR 

followed a Gaussian distribution, we created a vector Vqr containing every user’s 

latencies for digraph GR, from which we derived another vector VGR, containing 5000 

latencies that were randomly selected from Vqr■ The normality tests were performed 

on the vector V'GR. For every feature extracted from the fixed-phrase, we repeated 

the process as done for digraph GR.

Our method of performing the hypothesis testing on random sub-samples 

(rather than the full population), has also been used in past work [49, 50], and is 

motivated by the fact that large datasets tend to have statistically inexact descrip

tions, which in turn  makes it hard for a goodness-of-fit test to produce meaningful 

results if directly applied to the whole dataset [49]. For each normality test performed, 

our null hypothesis was that the latencies in the test vector came from the normal 

distribution. The alternative hypothesis was that the elements of the vector did not 

follow the normal distribution. For each vector tested, we rejected the null hypothesis 

for both the Lilliefors and Cramer-von Mises tests.

Note that while we perform a very large number of tests, we do not make any 

corrections (such as Bonferroni) on the critical values (of the Gaussianity tests and 

all other tests performed in the study) because each test checks a different hypothesis. 

For instance since we aim to study the distribution followed by each individual feature 

in our test-phrase, the test whether digraph GR followed a Gaussian distribution is
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distinct from the test whether digraph LO  followed a Gaussian distribution. For this 

reason our result-reporting throughout the dissertation is centered around identifying 

and counting the number of features of a certain type for which a certain hypothesis 

holds or fails to hold.

Figure 4.1 shows the quantile-quantile(Q-Q) plots [51] for two features which 

illustrate the general trend seen across the dataset (See [52] for more visualizations 

of feature distributions.). A Q-Q plot compares the quantiles of one sample against 

the quantiles of another. If the samples come from the same distribution, the plot 

will be linear even if one distribution is shifted or re-scaled from the other. In our 

plots, keystroke feature data is compared with samples drawn from the Gaussian 

distribution. For instance the Q-Q plot in Figure 4. la  compares the KITs of digraph 

SI  with data generated from the standard normal distribution.
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(a) Q-Q plot for KITs of digraph SI (b) Q-Q plot for the KHTs of letter T

F ig u re  4.1: Q-Q plots demonstrating the goodness-of-fit of the normal distribution 
for selected keystroke features.

The figure shows that the KITs of digraph S I  (Figure 4.1a) depicted a signifi

cant positive skew as evidenced from the sharp departure from the straight (normal)
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line. On the other hand, the KHTs of letter T  (Figure 4.1b) demonstrated a less 

pronounced departure from the normal distribution, although both features ultimately 

failed the normality test. We observed the tra it depicted in Figures 4.1a and 4.1b 

across many features and concluded that some features were more Gaussian-like than 

others despite all features returning very low P values.

Im p a c t o f O bservation  # 1  on  K eystroke R esearch : The fact that all 

the features in our fixed-phrase fail the Gaussian test suggests that past studies such 

as [53, 16] which have built entirely on the Gaussian assumption across all features, 

could see improved results if features derived from the typing samples used in those 

works had been closely studied to determine which ones are more accurately modeled 

by the Gaussian distribution.

For the designer of a statistical attack, this non-Gaussian behavior explains 

why a simple generative model that uses the means and standard deviations as 

the central reference parameters during forgery generation may not always work 

well. In the attacks launched in this work, these findings prompt us to focus on 

a non-parametric attack-design, in which we explicitly work with individual feature 

histograms, without globally assuming Gaussian behavior of the keystroke features.

4.2 K eystroke F ea tu re  D iscrim inab ility

In this section we investigate the discriminative power of the different keystroke 

features extracted from our typing samples.



29

O b s e rv a tio n # 2: In comparisons made between each K IT  and each K H T  

extracted from our fixed phrase, we rejected the null hypothesis that a KH T was as 

discriminative as a K IT  in favor of the alternative hypothesis that a K IT  was more 

discriminative than a KH T in 98% of the comparisons. Also, we found that certain 

KITs had considerably higher discriminative power than the rest of the KITs, just like 

certain KHTs had considerably higher discriminative power than the rest o f the KHTs 

E vidence to  S u p p o rt O b se rv a tio n # 2 : To study feature discriminability, 

we use the Bhattacharyya distance metric [40] to estimate the extent of overlap 

between the pdfs of users’ features. Equation 4.1 shows the definition of the B- 

hattacharyya distance, DB for the pdfs ufix) and ufix). A Bhattacharyya distance 

of 1 means that two pdfs overlap completely while a distance of 0 means the pdfs 

do not overlap at all. The more the overlap, the poorer the discriminability of the 

feature in question for the pair of users under study.

The first step in the D B computation is to empirically estimate the pdfs, ufix) 

and U j ( x ) ,  representing the latencies of users i and j  for a given feature. To this end 

we use the binning approach advocated by [40], in which the clock resolution used 

to time-stamp keystroke events is set as the bin size. With both ufix) and ufix)  

partitioned into bins, we multiply probabilities associated with corresponding bins, 

take the square root of each product, and then sum the results over all bins to obtain 

D b between the two pdfs. This discrete implementation of Equation 4.1 was also 

used in [40].

(4.1)
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For each of the 115 features in our dataset, we compute D b as explained 

above, using a set of 3000 randomly selected user-pairs. Each user-pair (represented 

by the pdfs Uj ( x)  and Uj ( x ) )  results into a single value of D b , which means that our 

computation produces a vector containing 3000 D B values for each feature. Let Dfl 

denote the vector of Bhattacharyya distances associated with the feature /?, and D j2 

denote a similar vector for the feature f 2. Each of these vectors contains 3000 D B 

values for the 3000 user-pairs. The vectors are such that the user-pair corresponding 

to the D b value in the ith position in vector D fx is the same user-pair corresponding 

to the i th entry in vector Df2. The ith element in the vector A D f — D fx — Dj2 is thus 

the difference between the discriminabilities (Bhattacharyya distances) of features f t 

and fg for the ith pair of users.

To determine whether the vector A D f pointed to a significantly large difference 

in discriminability between the features f i , and fg, we used the Wilcoxon signed-rank 

test [54]. We zeroed on this test after finding that the differences-vectors across the 

population were far from Gaussian (based on observation of Q-Q plots and P  values 

returned by Lilliefors normality test). The test generally “measures the tendency of 

one sample to contain values that are larger than those in another sample [55]” , and 

is known to be robust when the testing distributions are non-normal [6]. Even where 

the parent populations are Gaussian, this test does not perform much worse than the 

t-test [56, 57].

A critical requirement of this test is that the vector A D f should be sym

metrically distributed around some median. Real-world data being rarely perfectly 

symmetric however, the test is often applied when data is approximately symmetric
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[58], since the less restrictive alternative non-parametric test (i.e., the Sign test [59]), 

is generally considered less powerful1 than the Wilcoxon signed-rank test. In this work 

we used the rules of thumb in [60] (in addition to visual inspection of histograms in 

some cases) to check for the symmetry of our A D j vectors. According to these rules, 

a distribution is considered approximately symmetric if its skewness is between -0.5 

and 0.5, moderately skewed if its skewness is between -1 and -0.5 or between 1 and 

0.5, and highly skewed if the skewness is less than -1 or greater than 1.

When f i  and f 2 were both KHTs, all A D f vectors that we computed were 

approximately symmetric. Meanwhile in cases where both f i  and f 2 were KITs, the 

vast majority (?» 95%) of A D f vectors were approximately symmetric, with a few («  

5%) being moderately skewed. Cases where / i  was a KHT and f 2 was a KIT exhibited 

behavior that was in between the previous two cases. These results prompted us to 

conclude that the Wilcoxon signed-rank test was appropriate for our data. (See 

Appendix A for some symmetry results highlights).

The discriminability investigations conducted in this work were divided into 

two parts: In the first part, we sought to establish the extent to which the dis

criminative power of KITs generally compared to that of KHTs. As such, we made 

our computations in such a way that for each pair of features compared, ft  was a 

KHT while f 2 was a KIT. The null hypothesis for the Wilcoxon signed-rank test 

performed on each of these pairs was that the vector A D f — D fx — D f2 followed a

continuous symmetric distribution with zero median, which implied that the difference

1The lower power of this test relative to the Wilcoxon signed-rank test is mostly attributed to 
the fact that it uses limited information about the data, as it only takes into consideration the 
arithmetic signs of the elements in A D f ,  and not their magnitudes [59].
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A D f  between the Bhattacharyya distance-vectors of features fi  and fs  over the 

population was insignificant. The alternative hypothesis was that A D f, came from 

a continuous symmetric distribution with median greater than zero, which implied 

that the KHT represented by fi  had higher Bhattacharyya distances (and hence lower 

discriminability) than the KIT represented by /2 over the population .

Since our typing sample contained 57 KITs and 58 KHTs, we made a total 

of 3306 (= 57 x 58) hypothesis tests since each KIT was tested against each KHT. 

We rejected the null hypothesis in favor of the alternative hypothesis in about 98% 

(3239 of 3306) of the tests, an indication that for the vast majority of tests, we could 

not find evidence to suggest that a KHT was as discriminative as a KIT. Figure 4.2 

provides a visual perspective of how the discriminability of KHTs in our test-phrase 

compared to that of the KITs.

 KHTs
-  -  KITs0.8

0.6LL
Q
O

0.4

0.2

0 0.2 0.4 0.6 0.8 1

F ig u re  4.2: Comparing mean Battacharyya distances associated with KITs with 
those associated with KHTs in our typing samples
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The figure compares the mean Bhattacharyya distances of the KITs side-by- 

side with those of the KHTs extracted from our typing samples over the population. 

Following the notation used throughout this section, the mean Bhattacharyya dis

tance of a feature f x is computed by dividing the sum of the elements in vector 

by 3000. This value will give some measure of how a feature such as f x discriminated 

between each pair of users over the 3000 user-pairs. For each of the 58 KHTs in our 

typing samples, we compute this mean value, and plot a CDF of the full array of 

mean values on Figure 4.2. We do the same for the 57 KITs in our sample.

As shown in Figure 4.2, KITs were more discriminative on average, as over 80% 

of them were associated with a mean Bhattacharyya distance of less than 0.6, while 

about the same percentage were associated with a mean Bhattacharyya distance of 

more than 0.6 for the case of the KHTs. These results support our findings from the 

hypothesis tests, as they provide confirmation that the KITs were more discriminative 

than the KHTs.

In our further investigations, we sought to establish how discriminability varied 

across KITs and across KHTs. This way, we should be able to determine if any KITs 

were considerably more (or less) discriminative than the rest of the KITs, and if any 

KHTs were considerably more (or less) discriminative than the rest of the KHTs. We 

thus performed a set of hypothesis tests in which both f x and /g were KITs or KHTs.

Due to space limitations we only present results from these tests for a few 

pairs of KHTs and KITs that are enough to support our conclusions on the disparity 

in the discriminability of different keystroke features. Based on P values that were
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approximately equal to  zero, we rejected the hypotheses th a t2: 1) digraph U I was as 

discriminative as digraph —O, 2) digraph I S  was as discriminative as digraph —O, 3) 

digraph D E  was as discriminative as digraph OF, 4) letter S  was as discriminative 

as letter M, and 5) letter N  was as discriminative as letter I. Across the full dataset, 

we observed a number of features which were significantly much more discriminative 

than the others.

Im p a c t o f O bservation  # 2  on  K eystroke R esearch : Over the several 

decades of research on keystroke dynamics, very few papers (such as in [61, 16]) 

have applied feature selection during the keystroke template building process. W ith 

results in this section revealing certain features in our test-phrase to  be significantly 

more discriminative than others, our work should motivate research on how feature 

selection could be employed to build users’ profiles based on the most discriminative 

features. We believe that this direction of research could potentially improve the 

performance of keystroke verification systems.

Specific to the statistical attacks launched in this work, these findings on 

feature discriminability will be crucial for our feature-space enumeration strategy. 

Details of this strategy are discussed in Section 5.2 during our description of the 

attack.

2 The hyphen represents the space character
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4.3 In te r-F e a tu re  D ependencies

In this section we study the dependencies between the keystroke features. 

O bserva tion  # 3 :  For a large number of feature-pairs in our fixed phrase, we 

found evidence to indicate that one feature depended on the other.

E vidence to  S u p p o rt O bservation  # 3 :  To study the dependencies exhib

ited by our keystroke data, we computed the mutual information between keystroke 

features. In contrast to measures such as the Pearson correlation which are sensitive 

to linear dependencies, mutual information measures correlation in general terms, 

and is sensitive to both linear and non-linear associations between variables. For two 

random variables X  and Y , the mutual information I (X ;Y )  is defined as:

( 4 2 )

where Px  and Py are respectively the probability mass functions (pmf) of X  and 

Y , and Px y  is the pm f of the joint distribution between the two random variables. 

I ( X \Y )  expresses the reduction in uncertainity of variable X  given variable Y . In 

our experiments, the random variables X  and Y  correspond to two different keystroke 

features. Details of how we pre-process the keystroke feature data for I ( X \Y )  com

putation follow:

Let f i j  denote the value of the j th feature during the ith typing attem pt of a us

er, where 1 < i < n, 1 < j  < m. The vector V  = £ • ( £  f a  £  f a  £  f a '  * * £  Am)
i = l  i = l  i = 1 i = l

is the feature-means vector for each user. For many keystroke verification algorithms, 

this vector is the main building block of a user’s profile (e.g., see [6] for a survey),
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and is the basis against which feature vectors extracted from later typing attempts 

are judged to match (or not match) the user’s typing pattern. We use this vector to 

represent each user’s typing pattern during our mutual information computations.

For each user we first compute the vector V, and then create a 2  dimensional 

matrix, M, whose every row is the vector V, computed for a different user. For a 

group of k users, M  is a k x m  matrix, for which the j th column (1 < j  < m) is a 

vector, Uj, in which each element is the mean value of feature j  for one of the k users. 

Our computation of I ( X ; T) between keystroke features will be based on pairs of the 

vectors Uj, since each of these vectors represents a single feature over the population.

For a pair of features identified by the indices j  = 1 and j  =  2, we first bin 

the associated vectors U\ and U2 (corresponding to X  and Y  in Equation 4.2) using 

the approach described in Section 4.2, before applying Equation 4.2 to calculate 

the mutual information between the two feature vectors. To determine whether 

the amount of mutual information between U\ and U2 is statistically significant, we 

perform the mutual information permutation test [62, 63], with the null hypothesis 

being that the expected mutual information between the two vectors is zero (i.e., that 

the two vectors are independent). The alternative hypothesis is that the two vectors 

are dependent on each other. Since our test phrase has 115 features (=57KITs and 

58KHTs) there are ( ^ ^  =  6555 possible feature pairings. We run this test for each 

of the 6555 feature-pairs.

Before presenting the results, we define what we term as similar features. We 

refer to multiple instances of a given digraph, (or onegraph) in a word as a set of 

similar features. For example, since the word STUDENT  has two instances of the
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letter T, we refer to a feature-pair comprised of the KHTs of the two Ts as having 

similar features. We report results from the mutual information tests on such feature- 

pairs separately from those of the rest of the feature-pairs comprised of dissimilar 

features because high amounts of mutual information between similar features could 

give a deceptive view of how keystroke features depended on each other in general.

For tests run on feature-pairs comprising of similar features, we rejected the 

null hypothesis (i.e., the hypothesis that vectors in a pair were independent) in 

85% of the tests, an indication that the way in which users typed a key gave a 

significant amount of information about how they typed the same key at different 

locations within the typing sample. Meanwhile for the tests run on feature-pairs 

containing dissimilar features, we rejected the null hypothesis (of independence) 

in over 40% of the cases, an indication that even some of the dissimilar features 

exhibited dependencies. Table 4.1 captures the inter-feature dependencies in terms 

of conditional probabilities of the form P ( f\  < a  \ f i  < fi).

Table 4.1: Conditional probabilities between KITs of selected digraphs.

Event Probability
P (K IT AD < 100 | K IT h_ < 100) 0.50
P (K IT ad < 100 | K IT at < 100) 0.51
P {K IT ad < 100 | K IT du <  100) 0.51
P (K IT UN < 150 | K IT ra <  150) 0.59
P (K IT -u  <  150 | K IT ra <  150) 0.30
P (K IT CH <  150 | K IT ra < 150) 0.98

The features ( /i  and / 2), and thresholds (a and /3) used in the table axe chosen 

arbitrarily to give an example of how the extent of dependency between certain 

features could (or could not) aid statistical inferences about the features. The
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represents the space character. Take the case of digraph R A  for instance. A user 

who typed the digraph R A  in under 150ms was very likely to type digraphs C H  in 

under 150ms, very unlikely to type digraph —U in under 150ms, and moderately likely 

to type digraphs U N  in under 150ms. This means that an adversary who knew how 

users were likely to type the digraph R A  in our typing sample could (potentially) have 

lowered the search space for the digraphs CH , U— and U N  during an attack against 

a randomly selected user. Not all inter-feature probabilities (for different thresholds 

a,/3) were that interesting however. For instance, a user who typed digraphs DU, 

A T  or H- in under 100 ms had almost equal likelihood of typing digraph AD  in over 

100ms as in under 100 ms. In this case an adversary seeking to determine if a random 

user typed digraph AD  in under 100 ms could not benefit much from the knowledge 

that the victim (or a typical user) typed the digraphs DU, A T  or H- in under 100 ms.

Im p a c t o f O bservation  # 3  on  K eystroke  R esearch : While biometric 

features are typically associated with dependencies and correlations [64], no previous 

work has investigated the extent of these dependencies in keystroke dynamics to the 

best of our knowledge. Our findings thus represent the first empirical evaluation of 

the dependencies exhibited by keystroke features, and should influence:— 1 ) Analytic 

work such as [5] in which assumptions regarding keystroke feature dependencies are 

used to aid investigations into various aspects of keystroke dynamics; and 2) The 

design of statistical attacks that build off of the inter-feature dependencies to break 

keystroke systems. The latter direction of research should in turn  motivate work on 

defences against these types of attacks before they take root in real systems. Our
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attacks in this work actually also exploit the feature dependencies, as we use the 

conditional probabilities between features to make decisions on how to traverse the 

search space.



CHAPTER 5

THE KEYSTROKE STATISTICAL ATTACKS

In this section we discuss the underlying assumptions, implementation details 

and performance of the statistical attack on the fixed-text keystroke authentication 

system.

5.1 A ssum ptions an d  A ttack  Scenarios

A ssu m p tio n  # 1 : We assume that the adversary knows the victim’s password 

and has access to keystroke forging software. We discussed these two issues and 

provided accompanying evidence during our discussion in Chapter 1. We thus do not 

re-emphasize them here. Perhaps the only point we have to add is that although 

different keystroke verifiers may be based on different features, the attacker does not 

have to know about these features, since the verification system will automatically 

parse the bot-injected samples for the right features in the same way it would for a 

human typist.

A ssu m p tio n  # 2 : We assume that the attacker will be able to access large 

amounts of keystroke data so as to extract the keystroke feature statistics needed to 

design the attack. One obvious option available to the adversary is to use accomplices 

to provide biometrics samples for the password in question. Ballard et al. [65] also 

cite this data collection option in their paper on synthetic attacks against handwritten

40
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signatures. Other possibilities include crowdsourcing with the aid of fake keylogging 

Web sites, directly extracting feature statistics from publicly accessible keystroke 

datasets, or even fooling unsuspecting users at a public Cyber Cafe so as to have 

them type a common pass code (matching the victim’s authentication data) for access 

while a key logger captures keystroke sequences.

A tta c k  Scenarios: Our main attack scenario is the case of an adversary who 

uses a personal machine to attack other users via the Internet. If for instance Bob 

wants to launch an attack against a keystroke-protected Facebook account owned by 

Alice, Bob only has to make authentication attempts at the Facebook server using 

attack-software installed on his own machine. The attack is thus not affected by any 

host-based defences (such as the one in [6 6 ]) deployed at Alice’s machine since the 

injection of synthetic keys is done at the attacker’s own machine.

In high security applications such as online banking, the server may, in addition 

to Alice’s password and keystroke signature also authenticate the IP address used by 

Alice to make her transactions. This means that Bob, seated at his own compromised 

computer may not be able to make successful authentication attempts against Alice’s 

account. Our attack may hence only work in that case if Bob can have physical access 

to Alice’s machine so as to compromise any defences and (or) install and launch the 

keystroke forging software. This attack scenario will be much less likely than the first, 

but cant be ruled out given a committed adversary.
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5.2 The Attack Algorithm

Algorithm 1 shows how our attack extracts features from a user’s password,

and how it uses population data to generate feature values to be used for attack.

For each distinct KHT and KIT in the victim’s password, the algorithm bins the

associated latencies over the population using a bin size defined by the value of the

binSize parameter, and then returns the centers of the h highest frequency bins.

A L G O R I T H M  1 :  Generating feature outputs to be used for tree traversal 

I n p u t :  User’s password string / / E . g . ,  ABAB;
I n p u t :  KD population data corresponding to password string
O u t p u t :  Matrix of feature outputs for each feature
KHTs [ ]«— Distinct characters in password / / E . g . ,  KHTs=[A B] for  s tr in g  ABAB; 
KITs [ ]<— Distinct digraphs in password / / E . g . ,  KITs=[AB BA] fo r  s tr in g  ABAB; 
Features [ ]f-[KHTs KITs] / /  E . g . ,  Features=[A B AB BA];
NumberOfFeatures-<—NumberOf(Features)// Number0fFeatures=4 fo r  s tr in g  ABAB; 
for *<— 1 to  Num ber O f F eatures// Assume low est array index i s  1 fo r  s im p lic ity ;  
do

BinnedFeature[i]<—Binning(Features[i], binSize);
//U se  a bin s iz e  of b inS ize to  bin the la te n c ie s  of F e a tu r e s [ i] . Return 
bins sorted in  descending order of probability;
for j<- 1 t o  h d o

F[i,j]«—SelectDominantBins(BinnedFeature[i], h);

//Each pass through inner loop assign s center of j th bin  of 
F eature[i] to  the array lo c a tio n  F [ i , j ] ;
/ / E . g . ,  For KHT of A (see  Figure 5 . 1 ) ,  we sh a ll have F [l, 1] =  A  : V\ , 
F[1,2] = A :V 2, F[l,3] =  A:Vrs;

Return F //M atrix  containing a to ta l  of h outputs fo r  each feature;

Take the password string A B A B  for instance. The KHTs of A and B  and 

the KITs of A B  and BA  are respectively the distinct KHTs and KITs extracted 

from this password string. Across the population, the algorithm extracts and bins 

the latencies corresponding to each of these four features, and then determines the 

centers of the h highest frequency bins in each of the four cases. We heuristically
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set the binSize parameter as 16 m s  since this value gave us good results during 

our experiments. The function BinningQ  performs the binning process, while the 

function SelectDominantBinsQ  returns the centers of the most frequent bins. We 

set the value of h as 3 in this work, implying that Algorithm 1  (or the function 

SelectDominantBinsQ  in particular) returns three bin centers for each of the four 

features.

For a feature such as the KHT of A, we use the notation A  : Vi, A : V2 and 

A . \ 3  to refer to the 3 bin centers returned by Algorithm 1. The first (i.e., A  : Vi) 

corresponds to the highest frequency bin while the last (i.e., A  : V3 ) corresponds to 

the lowest frequency bin. During the search process, these three values per feature 

will account for only a small portion of the search space, but should be sufficient to 

illustrate the power of the attack.

Note that since the binning is explicitly built off of empirical data, rather than 

off of parametric density functions (say, under the Gaussian assumption), the highest 

probability bin will not necessarily be centered at the population mean. Additionally, 

for features having skewed or multi-modal distributions, a sequence of high probability 

bins may be located at the same side of the population mean, which would also not 

be the case under the Gaussian assumption.

We formulate the feature-space enumeration process as a  tree traversal in 

which each tree level represents a feature. Figure 5.1 illustrates the structure of this 

tree for the hypothetical password A B A B . The figure is motivated by the attack tree 

used for the analysis of Biometrics Cryptographic Key Generators (BKGs) in [64],
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KHTs

F ig u re  5.1: Enumerating the keystroke feature space for the hypothetical password 
A B A B .

although we use a  completely different algorithmic framework tuned to exploit our 

observed statistical traits.

The enumeration process begins by setting the output value of the feature 

located at the root of the tree. Before delving into the criteria for determining which 

feature to be located at the root of the tree, lets assume that this feature is the KHT 

of A, for the case of the hypothetical password used for our illustrations. Of the three 

possible values that can be assumed by the KHT of A, the algorithm sets the largest 

(i.e., A : Vi, corresponding to the most frequent bin) as the output of feature A  at 

this stage. The next output to be set is that of the KHT of B, located at the level 

just below the root node. Of the three possible values, B  : Vi, B  : V2 and B  : V3  

that can be assumed by the KHT of B, the algorithm then selects the one which
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maximizes the conditional probability, P (B  =  B  : Vn | A  =  A : V\), for n = 1,2,3. 

This process continues down the tree, with the output at each tree level being based 

on the conditional probabilities between the possible outputs at the particular tree 

level, and the current output at the level just above.

The first guessing attempt is realized when the enumeration process first reach

es the leaves of the tree. We define a guessing attempt as a set whose cardinality equals 

the number of levels in the feature enumeration tree, with every element in the set 

being an output of a  feature from a different level of the tree. For our hypothetical 

example, the first guessing attem pt could for instance take up the values in the set 

Gi = (A : V\, B  : Vs, A B  : V3, B A  : Vi), where the four elements of the set respectively 

correspond to the outputs of the KHT of A, KHT of B, KIT of A B  and KIT of BA. 

These four elements of G\ are represented on the graph by the path indicated by the 

sequence of short arrows.

Each subsequent guessing attem pt follows by modifying the output of a single 

feature in the current guessing attempt. These feature output modifications start 

from the features located at the leaves, and recurse up the tree, using conditional 

probabilities to guide decision making in the way already described.

For instance, assuming P (B A  =  B A  : V2 \ A B  =  A B  : V3) > P (B A  =  B A  : 

V3 | A B  =  A B  : V3), the second guessing attem pt will be G2 =  (A : Vi, B  : V3, A B  : 

Vz,BA  : V2), while the third guessing attem pt will be G 3  =  (A : V \ ,B  : V3, A B  : 

Vz,BA  : V3). Meanwhile, the next three guessing attempts will see the output of 

feature A B  modified to a new value, and the output of feature B A  again iterated
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through its three possible values in accordance with the earlier described conditional 

probability-based criteria.

Observe that between the first and third guessing attem pts (Gx through G3), 

the first three feature outputs (i.e., A : V i ,B :  V3 , A B  : V3 ) are unchanged, while the 

lowest feature (KIT of BA) sees three different outputs. A direct consequence of tree 

traversal techniques such as the one we employ, this trait means th a t a wrong output 

for the KHT of A, or KHT of B, or KIT of AB , will have a negative impact on all 

guesses G\ through (?3, while a wrong output for the KIT of B A  will only impact the 

individual associated guess. This problem generalists to all other guessing attempts, 

and is such that a wrong output for a feature located close to the root will result in 

a  greater amount of fruitless feature space enumeration than a wrong output for a 

feature located at the leaves of the tree.

Since authentication systems impose limits on the number of permitted false 

authentication attempts, its crucial that the tree design minimizes the extent of fruit

less search space enumeration. Our tree exploits information on the discriminability 

of features to handle this problem. Specifically, we ensure that the weaker (less 

discriminative) features are located towards the root of the tree while the powerful 

(more discriminative) features are located closer to the leaves of the tree. For two 

features f \  and / 2 , we locate the feature f x above the feature / 2  in the tree if the 

mean Battacharrya distance of f x across the population is greater than that of / 2. The 

method used to compute the mean Battacharrya distance of a feature was described 

in Section 4.2.
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5.3 Attack Samples

The choice of string lengths used for the attacks was based on two factors. 

First, the summary statistics in [6 ], indicate that past fixed text keystroke studies have 

for the most part used strings ranging from 6  to 17 characters in length. Because we 

needed our results to be easily put in the context of past findings, we decided to attack 

this same range of string lengths. The second consideration behind our choice of string 

lengths was the need to attack strings whose lengths are representative of the password 

lengths being used today, as this would give a  good reflection of the performance of a 

password-KD system under a statistical attack in the current Internet setting. W ith 

regard to this factor, we studied various recently hacked password lists from which 

we observed average password lengths of about 6.62 to 7.88 characters [20]. We 

took these average password lengths as some sort of password-length lower bound 

and attacked substrings of length 7, 9, 11, 13, 15, 17 and 20. This large number of 

password strings will help give a concrete view of how statistical attacks may perform 

over a wide range of string lengths.

5.4 Keystroke Verifiers

To evaluate the success of the synthetic attack, we used the Z-score [6 ], Scaled 

M anhattan [6 ] and Naive Bayes [5] verification algorithms. The first two were among 

the best performers in a study that compared up to 14 different fixed text KD verifiers 

[6 ], while the third, despite not being part of the algorithms compared in [6 ], is very 

popular in machine learning literature, readily available in the Weka machine learning 

tool [67], and was recently shown in [5] to perform very well for the kind of fixed text
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heterogenous feature vectors used in this work. We implement the first two verifiers 

from scratch and use the Weka implementation of the Naive Bayes classifier. A brief 

description of each of the three verifiers follows:

5.4.1 Z-score Classifier

Given feature vectors extracted from a user’s keystroke data for a given string 

over several typing runs, this verifier computes the mean and standard deviation 

of each feature during the training phase. In the test phase, the absolute Z-score 

between each feature of the test vector, and the corresponding feature in the mean 

vector (created during the training phase) is computed. The anomaly score is a count 

of how many z-scores exceed 1.96. If a* is the test value, and 6 * and s* are the mean 

and standard deviation of feature i as seen during training, the z-score is computed 

as z  =  (|flj -  bi\/si).

5.4.2 Scaled M anhattan Classifier

This verifier uses a Manhattan-distance computation in which each dimension 

is scaled by the average absolute deviation seen for each feature during the training 

phase. In the training phase, the mean and the mean absolute deviation for each 

of the features are computed. In the test phase, the anomaly score is computed as 

Sf= 1  — bl\/yl where at and bi carry the same meaning as in the z score classifier, 

and tji is the average absolute deviation of feature i during training.
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5.4.3 Naive Bayes Classifier

During training, the verifier builds a user’s model using maximum likelihood 

estimation. In the test phase, it makes a classification decision basing on the probabil

ity that a given set of latencies belongs to the user. Due to space limitations and the 

fact that the Naive Bayes verifier is well studied in literature, the reader is referred 

to [44] for details on its mechanism and underlying assumptions.

5.5 Performance of the Attack

5.5.1 Overview:

To launch the attacks, we used templates from 110 users who participated 

in at least 3 of the data collection phases. For each of the 110 users, we used data 

from the first phase of our experiments for training1, and then used 30 instances 

of the user’s data from the other typing phases to attack the user’s model so as to 

generate the user’s genuine scores. To generate the impostor scores, we launched 

impostor attempts in 2 different ways. In the first approach, we used 50 randomly 

selected impostors from a pool of 1 0 0 0  users to attack the template (or model) built 

for each user during training. Throughout the rest of the section, we shall refer to 

this attack as a zero-effort attack [9], since it simulates an impostor who makes no 

effort to imitate the genuine user’s way of typing. In the second approach, we used

50 of the top 1000 guesses generated by our attack algorithm to conduct impostor

1Unlike the first two classifiers, the Naive Bayes classifier requires instances of both the positive 
and negative classes during training. For each participant we used as many instances of the negative 
class as the participant had for the positive class during the first phase of our experiments.
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attacks against each user. We shall interchangeably use the terms algorithmic attack 

and statistical attack to refer to this form of attack.

The performance analysis in this section will focus on the comparison between 

these two attacks, since our principal aim is to illustrate how our algorithmic attack 

compares to the well known zero-effort attack which is still the benchmark for the 

performance evaluation of keystroke dynamics systems. Central to our performance 

evaluation methodology is the Equal Error Rate (EER), a measure which represents 

the point at which a verifier’s false-reject and false-accept errors are equal. The 

EER is often used to evaluate biometrics system performance [6 , 9], and is such that 

a  low EER is synonymous with good performance, while a  high EER implies poor 

performance of a system. Some researchers prefer to express EER values on a scale 

running from 0 to 100 [7]), while others use a scale running from 0 to 1 [6 ]. In this 

work, we adopt the latter convention.

To calculate a  user’s EER for a  given type of attack, we construct a Detection 

Error Tradeoff (DET) curve for the user, from which we determine the EER as the 

point at which the curve meets the line y=x (i.e., point at False Reject Rate (FRR) 

equals the False Acceptance Rate (FAR)). Figure 5.2 illustrates this procedure for a 

certain user for both the zero-effort and algorithmic attacks. The profile under attack 

was built for a 7-character string, and the algorithm used for verification was the NaiVe 

Bayes algorithm. As indicated by the figure, this particular user’s performance was 

negatively impacted by the algorithmic attack, given the high EER for this attack 

relative to the zero-effort attack. For each of the seven string lengths used in this 

study, we carry out this procedure for all 110 users and 3 verifiers, and eventually
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compute the mean EER and standard deviation of EERs over the population for the 

attacks against each string length and verifier.

0.8
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0.4
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0.5
FRR

Zero Effort 
—  Algorithmic 
 FRR=FAR

F ig u re  5.2: DET curves computed for the zero-effort and algorithmic attacks
launched against one of the users in our experiments.

5.5.2 G lobal Im p a c t o f th e  A ttack :

Below, we describe the major attributes of the of the attacks with regard to

the general behavior seen across the population.

1. Variance in EERs across the population:—  For all verifiers and string lengths,

the algorithmic attack always caused a much higher variance in the average

EERs than the zero-effort attack (see Figure 5.3)2. Because reliable systems

are typically designed to have low variance in their performance metrics [6 8 ],

this increment in the variance of EERs, irrespective of whether the mean EERs

were affected or not, is the first indicator of why the algorithmic attack is a

major threat relative to the zero-effort attack. Further investigations into the

cause of this high variance (results not shown due to space limitations) revealed

2 The error-bars indicate a single standard deviation from above and below the mean EER. Also 
note that the EERs plotted on the graph have only been computed for password lengths of 7, 9, 11, 
13, 15, 17 and 20 characters. The curve joining these points is only meant to show the general trend.
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classifiers under the algorithmic and zero-effort attacks.
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that under the algorithmic attack, there was a small proportion of the user- 

population which saw almost zero EERs and another small proportion which saw 

EERs almost close to 1. This kind of extreme behavior was not as pronounced 

under the zero-effort attack, and naturally accounted for the higher variance 

under the algorithmic attack. Regarding the cause of this high disparity in user 

behavior under the algorithmic attack, the population statistics-based nature 

of the attack indicates that the well performing users had their typing traits 

distinct from those of the general population, while the weak users’ group had 

characteristics very similar to those of the population.

2. Mean EERs across the population:— For all verifiers and string lengths, the 

algorithmic attack caused higher mean EERs than the zero-effort attack. The 

long error bars associated with the algorithmic attack cause us to use a wide 

scale (that unfortunately seems to dim the clarity of these EER changes), 

however, Table 5.1 captures this behavior so well as it indicates th a t the EER 

increments ranged from 0.11 for the 7-character string and the Naive Bayes 

verifier, to 0.03 for the 20-character string and the Scaled M anhattan classifier. 

While it may be tempting to write off these EER increments as trivial, they 

are quite high, as they constitute a large percentage of the EERs seen under 

the zero-effort attack. Observe for instance that the Naive Bayes verifier sees 

increments of over 50% of the zero-effort EER, while the other two verifiers see 

increments of over 30% of the zero-effort EERs for all string lengths. As a final 

note on why these EER increments should represent a major threat in the sense 

of a (keystroke) biometrics system, the reader is referred to [6], where an EER
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difference of just 0.075 separated the top ten verifiers in a study in which several 

verifiers were compared.

T able 5.1: EER increments caused by the algorithmic attack.

S trin g
Size

K D  V erification  A lgo rithm
N aive Bayes Z-score Scaled M a n h a tta n

Increase 
in mean 

EER

% Increase 
in mean 

EER

Increase 
in mean 

EER

% Increase 
in mean 

EER

Increase 
in mean 

EER

% Increase 
in mean 

EER
7 0.105 72.5 0.131 67.1 0.091 67.8
9 0.061 53.5 0.062 30.1 0.063 54.3
11 0.093 80.4 0.063 35.9 0.052 39.8
13 0.081 76.7 0.054 33.8 0.045 45.6
15 0.076 84.4 0.038 28.6 0.041 37.7
17 0.068 66.7 0.037 33.1 0.039 40.2
20 0.062 73.2 0.048 44.5 0.033 35.5

3. Impact of string length:— As the string lengths increased, the increments in 

mean EER caused by the algorithmic attack for the most part saw a monotonic 

decrement (save for 2 cases). The observed reduction in the impact of the attack 

suggests tha t free text keystroke systems, by virtue of using long blocks of text 

for verification could see much lower, or even no increment in EER, under the 

kind of algorithmic attacks implemented in this paper.

5.5.3 Effect o f th e  A ttack  on  th e  P erfo rm an ce  of In d iv id u a l U sers:

Having compared the mean system performance under the two attacks, we 

proceeded to investigate the extent to which the algorithmic attack improved or 

worsened each user’s performance relative to the zero-effort attack. For this analysis, 

we subtracted each users EER under the zero-effort attack from that under the 

algorithmic attack and plotted a CDF of these differences.
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Figure 5.4 shows the full distribution of the EER changes for the 7 and 20 

character strings over the population of users subjected to the two attacks. We focus 

on the two extreme string lengths because they reflect and (or) bound the general 

behavior exhibited across all string lengths. Highlights from this figure are discussed 

below:

1. EER Variations of Individual Users:—The EERs of different users were im

pacted markedly differently by the attacks. While some users saw performance 

improvement (reduced EERs) under the algorithmic attack, others saw consid

erably large increments in their EERs. For instance, under the Naive Bayes 

verifier (Figure 5.4a), about 40% of the population saw improved EERs (EER 

differences less than zero) under the algorithmic attack for both the 7 and 20 

character strings, while about another 20% for the 7 character string, and over 

15% for the 20-character string saw no change at all in their EERs. Meanwhile, 

about 5% of the population saw EER increments greater than 0.5 for the 7 

character string, while an even smaller number saw a similar increment for the 

20-character string. This variation in users’ behavior is seen across all verifiers 

and string lengths used for our study, and again points to the earlier mentioned 

trait of certain user clusters being very similar to the population, while others 

are very dissimilar to it. Additionally, the fact that a  small group of users 

seem to be responsible for the increment in mean system EER suggests that a 

targeted solution for the small group of poor users could be employed to control 

the attack.
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F ig u re  5.4: Effect of the algorithmic attack relative to the zero-effort attack for 
individual users.
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2. Impact of String Length:—Figure 5.4 shows that the proportion of users whose 

change in EER exceeded zero was higher for the 7 character string than for the 

20 character string across all verifiers. This observation explains the monotonic 

decrease in mean EER with increased string length that we highlighted earlier 

in the discussion since the small proportion of users with increased EERs for 

the long strings should naturally result into lower mean EERs for such strings.



CHAPTER 6 

ROBOTIC IMITATIONS OF TOUCH GESTURES

6.1 Overview

Touch-based authentication—now widely studied for its potential to serve 

as a second layer of defense to the PIN lock mechanism on mobile devices—has 

traditionally been evaluated under the assumption of naive (zero-effort) adversaries. 

The zero-effort threat model, although well understood not to be representative of the 

state-of-the-art threats [69], is for several reasons fronted by researchers as being able 

to sufficiently capture the threat that a touch-based authentication system would face 

in practice. For instance in one of the recent papers on touch biometrics, Frank et 

al. [10] make the following arguments to rule out the need for stringent penetration 

testing of their system:

.... we can hardly imagine someone learning the touch behavior of 30 

features, such as pressure, distribution of acceleration, etc., just by looking 

over the shoulder [10].

...A more successful but more involved attack would be to place a malware 

application on the user’s device. This malware could learn and report the 

touch pattern if  the details of how to compute the features are known to

58
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the attacker... However, we argue that a user with malware on the device 

has already lost the race against the attacker [10].

These arguments—echoed in many other papers—are sound without doubt. 

Notably though, the notion that these two attacks (malware and a  form of shoul

der surfing) represent the full spectrum of threats that the system could face is 

for several reasons debatable. In this chapter we demonstrate that: 1) a simple 

robotic/mechanical device (as opposed to malware) can very effectively degrade the 

performance of a touch-based authentication system, and, 2) publicly accessible touch 

biometrics data (such as the data at [70]) can be leveraged to drive the attacks 

even where detailed information about the intended victim’s swiping behavior is not 

available.

The chapter covers our data collection experiments, attack design and results 

of the robotic attack.

6.2 Data and Features Used for our Investigations

6.2.1 Data Collection Process

We conducted two data collection experiments using two Android applications 

that captured the way in which users touched the mobile phone screen. The gestures 

that users typically perform on a touch screen include zooming (in and out), clicking 

(tapping), swiping to switch between screens (i.e., horizontal swiping) and swiping to 

move a page up and down (vertical swiping). The tap gesture does not hold enough 

information to strongly separate between a  large group of users [10], while the zoom
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gesture does not occur frequently enough to guarantee tha t a continuous authenti

cation application will always have enough data to make classification decisions [10]. 

For these reasons, most work on continuous touch-based authentication hinges around 

the two swipe gestures1. We focus on these two gestures in this work.

For each of a set of points on a touch stroke registered on the screen during 

swiping, the applications recorded the: 1) x and y coordinates, 2) time at which the 

finger touched the point in question, 3) area occluded between the finger and the 

screen, 4) pressure exerted on the screen and 5) orientation of the phone (portrait or 

landscape). The two Android applications basically simulated how users read text and 

view images on the touch screen. Based on a short paragraph of text or an image, users 

had to answer several questions by selecting one of two to four alternative answers that 

we provided per question. On reading a question, each user would scroll/swipe back 

to the image or block of text containing clues to the solution, before scrolling/swiping 

towards the answer section where the user would select one of the choices provided.

Both applications were based on the same idea, although each application 

was based on a different set of questions/images. In the first phase of experiments 

(Session I), users interacted with one application. They then returned on another day 

at their convenience to interact with the second application (i.e., during Session II). 

All participants used the same brand of phone—the Google Nexus S running Android 

version 4.0—so as to avoid bias in our findings that might be caused by differences

in the way in which different phones extract information from touch gestures.

xLi et al. [11] used the tap gesture in conjunction with the two swipe gestures. However they 
found that it had very poor discriminability.
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6.2.2 Feature Extraction and Preprocessing

Before extracting features from the data, we performed an outlier filtering 

step to eliminate very short strokes since these likely originated from click events (or 

taps), as opposed to swiping (scrolling). Frank et al. [10] performed a similar step 

on users’ strokes before proceeding with the classification process. Having removed 

outliers, we extracted 28 features from each stroke. There is currently no universal 

feature-set that researchers use to represent a distinct stroke. For example, Frank 

et al. [10] defined 30 features and discarded 3 of them after feature analysis, Li et 

al. [11] defined 13 features (or 14 features if the x and y coordinates of a point are 

considered as distinct features) and discarded 4 of them after feature analysis while 

Feng et al. [12] used 53 features. For this work we used 28 features that we believe 

best summarize the statistical attributes of a touch stroke. A description of how we 

computed these features follows:

Using the pressure and area readings at different points along a stroke, we 

respectively built a pressure vector, P , and an area vector, A, to represent the pressure 

and area associated with the stroke. We computed the velocity between every pair 

of consecutive points along a stroke, and used these values to generate the velocity 

vector, V. Finally, for every pair of points in V, we computed the acceleration, and 

generated an acceleration vector, A'.

For each of the four vectors A, P , V  and A ', we computed five measures 

to summarize a user’s mean behavior, variability in behavior and extreme behavior 

along a stroke. These were: 1) lower quartile, 2) second quartile, 3) third quartile, 

4) mean, and, 5) standard deviation. This gave a total of 20 (=4x 5) features per
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stroke. The last 8  features making up a vector representing a stroke were: the x and 

y coordinates of the starting points, the x and y coordinates of the end points, the 

distance between the end and starting points of a stroke, the time taken to complete 

the stroke, the tangent of the angle between the line joining the end-points of a stroke 

and the horizontal, and the sum of distances between every pair of adjacent points 

on a stroke.

6.3 Attack Design

6.3.1 General Assumptions

We assume an adversary who gets physical access to a phone for which touch- 

based continuous authentication is the only active layer of defence. In practice, this 

scenario may arise for an attacker who : 1) breaks the PIN lock mechanism {e.g., using 

methods such as those in [25, 26]), or, 2) finds a  phone in which the PIN lock has been 

disabled temporarily {e.g., a user who sets a very long timeout for the PIN lock), or, 

3) finds a phone in which the PIN lock has been completely disabled by the owner [10]. 

To be able to determine the amount of extra security that touch-based continuous 

authentication adds to the standard PIN lock in the worst case, we believe that these 

assumption must necessarily be made. Also see [71], for an investigation in which a 

similar assumption (i.e., that the adversary has access to the victim’s password) was 

made in order to enable rigorous evaluation of the security of Randomized Biometric 

Templates (RBTs).
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In the attack itself, the attacker will seek to view private information on the 

phone {e.g., emails, pictures, etc.,) without triggering the anomaly detection mecha

nism. The attack thus basically proceeds by scrolling/swiping through documents on 

the phone. In practice we believe that the attacker could even assist the robot during 

certain operations {e.g., occasionally clicking at a challenging location), since the 

anomaly detector will most likely not be sensitive enough to detect a few anomalous 

clicks. Next we discuss the underlying statistical observations tha t drive the attack, 

and the details of the mechanical and algorithmic design of the robot.

6.3.2 How do People Swipe on the Phone?

To design the attacks, we first examine the way in which people swipe in 

general. How random is swiping behavior across a population ? Are there certain 

distinct traits that manifest frequently across a large number of users? This section 

provides answers to these and related questions. Due to space limitations, we only 

present results on the pressure exerted on the screen, the area between the finger and 

the screen and the region of the phone at which most swiping is done. Other measures 

such as the time interval between consecutive swipes, the velocity of the finger and 

the length of a stroke, to mention but a few, are left out here but will be used in the 

attack design.

Location of Swiping Activity. Figure D.12 shows the density of touch strokes 

captured at different positions of the phone screen during the first phase of exper

iments. The dark blue color corresponds to regions which saw very little or no 

swiping/scrolling activity while a high intensity of red corresponds to regions which
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F ig u re  6 .1 : Color map showing the spatial distribution of touch strokes on the phone 
screen.

saw a lot of swiping. The phone was being used in portrait mode when the strokes 

were generated. Note that the coordinate system used on the figures is different from 

that used by the Android system. Observe (Figure D.12a) that the vast majority 

of vertical strokes generated by our user population originated from points having X 

values in the neighborhood of 300 units, and terminated at a position with an X value 

of close to 400 units (and vice versa). Notably, this region of high activity comprises 

less than 50% of the screen display. The heart of the red region (which tends towards 

black) occupies an even a much smaller portion of the screen. Similar traits (see 

Figure D.12b) were seen with the horizontal swiping.

Based on evidence provided through this plot, an adversary with access to 

general population statistics could potentially significantly narrow down the scope of 

features such as: 1 ) the x coordinate of the start point of a stroke, 2 ) the y coordinate 

of the start point of a stroke, 3) the x coordinate of the end point of a stroke, 3) the
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y coordinate of the end point of a stroke, and, 4) the direction of the end-to end line, 

among other features. These features represent a good proportion of the features 

used to characterize users’ touch gestures in past research (such as in [1 0 , 1 1 ]), and 

will also be used in this study.

Regarding the cause of the clustering tendency, our conjecture is tha t the high 

density of strokes on the right side of the screen (i.e., taking the case of vertical swiping 

for instance) was likely because the majority of users are right handed, tending to 

hold the phone in the right hand and swiping with the thumb, or holding the phone 

in the left hand and swiping using one of the fingers on the right hand. In any of 

these two scenarios, a user is very likely to swipe in the manner reflected in the figure. 

We do not rule out the possibility that certain highly specialized applications could 

depict variations from the pattern shown in the figure. In this case we argue that a 

committed attacker who has interest in breaking into such an application could easily 

make research on the swiping trends for such an application.

Finger Area and Pressure on the Screen: Figure 6.2a shows the distribution 

of the mean area touched by the finger and the mean pressure exerted on the screen 

across a subset of our full user population. To plot the figures, we computed each 

user’s mean area (and mean pressure) and plotted the results on the CDF. Observe 

that over 80% of the population had a mean area of between 0.1 and 0.25 and that 

about 50% of the population had mean pressure values of between 0.4 and 0.6. These 

user proportions already suggest that a large number of users could be clustered 

around a narrow band of values (for both pressure and area). To get a more concrete 

insight into the possible clustering of users’ profiles, we studied the variability seen by
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users for each of these two variables. Particularly, we computed the standard deviation 

of the mean area and mean pressure exhibited by each of the users represented in 

Figure 6.2a, and then plotted these values on a CDF (Figure 6.2b).
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F ig u re  6.2: CDFs expressing the mean and variability of area and pressure across 
the population.

Taking the case of pressure for instance, the figure shows that about 40% of the 

population had a standard deviation of over 0.15. Assuming users’ pressure values 

follow a Gaussian distribution, a user with a standard deviation of 0.15 could see 

her/his biometric pattern fall on a band having a width of up to 0 . 6  units (i.e., 2  

standard deviations on either side of the mean). Given such a wide span, an input 

selected from the earlier mentioned clustered regions (Figure 6.2a) could have a good 

chance of falling within such a user’s feature range.

Similar observations made for the other features (e.g., velocity, length of 

strokes, start point of stroke, etc.) further prompted us to believe that generic 

information from the population could possibly enable us to implement a  lethal attack 

on a touch-based authentication system.
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6.3.3 Mechanical and Algorithmic Design of Robot

Fabrication of the “Finger”: We had three main design considerations regard

ing the object to be used to touch the screen. These were: 1) the object had to be 

able to register touch events on the capacitative screen, 2 ) it had to easily match 

the finger surface area as needed, 3) it had to be soft to avoid damaging the screen, 

and 4) it had to be made from cheap, domestically accessible materials. The fourth 

point rules out technologies such as prosthetics [72] that despite guaranteeing artificial 

fingers that match many of the properties of a human finger, would make the attack 

implementation expensive, and likely defeat our aim of demonstrating how easily the 

attack can be launched based on materials that are cheaply available off the shelf.

To address all four points we fabricated the finger surface from play-doh [73], 

a malleable compound that children use to model different kinds of play-objects. 

Although play-doh on its own was (to our surprise) able to register touch points on 

the screen, we housed it inside a touch screen glove (see [74]) in order to have more 

close control of the “finger” area touching the screen. The small Play-doh lump was 

fastened to the extreme end of a blunted steel nail to ensure firm contact between the 

“finger” and the phone screen.

In all experiments we set our “finger” area to be approximately 0.15 units, 

which was the mean value we observed across our user population. The area setting 

itself was manual—we iteratively molded the play-doh and tested it on the phone 

(during preliminary experiments) until the area value stabilized at around 0.15 units. 

When the motors pushed the play-doh against the touch screen during scrolling, the 

play-doh, owing to its softness, would see some amount of deformation. These small
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variations in play-doh touch surface area did not affect our attack that much, since 

human fingers also see variations in area along the path of a stroke.

Perhaps one interesting observation worth noting here is that when we con

nected a  battery (AA type) to the play-doh during the attack, the area registered 

on the phone screen increased. A possible reason for this is tha t the effective area of 

contact between the screen and the phone is not only dependent on the physical area 

of contact between the two, but, it also depends on the extent of electrical contact 

between them. We leveraged this property to introduce changes in the “finger” area 

during the experiments.

Robot Components and Attack Algorithm: The basic idea behind our attack 

is for the finger to stroke the screen in such a way that matches the average user’s 

behavior. Based on population statistics therefore, the finger has to be set to: 1) move 

at a certain average speed, 2 ) move in some general direction at a certain region of the 

phone, and 3) exert a certain average pressure on the phone, to match the average 

user. Compared to some of the tasks that Lego robots have been programmed to 

do in the literature (see [75] for an example), designing a Lego to attain the above 

four targets is obviously a much more straightforward problem. We stress that the 

focus of our work is not to push at the boundaries of Lego design, but rather to 

illustrate that a very cheap robot running a very simple algorithm (that could easily 

be implemented by a novice attacker) is a much more rigorous penetration testing 

tool for touch-based authentication systems than the current state-of-the-art methods. 

While we take some steps to minimize the likelihood that the attack could be very 

easily thwarted, the question of the most sophisticated robotic design that could be
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used for this kind of attack is not of interest in this work. In fact, depending on the 

value of the resource to be retrieved from the phone, the attacker could potentially 

use a more sophisticated robot (e.g., the NAO [76]) and hence a  different design 

philosophy. We leave all such investigations for future research after highlighting the 

impact of a robotic attack based on the very bare minimum resources. Figure 6.3 

depicts the robot design.

F ig u re  6.3: Mechanical design of the robot.

The main components used to build the robot are: 2 NXT Intelligent bricks, 

3 motors, 4 gears, 4 wheels and the “finger” . One of the Intelligent bricks serves as
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the CPU of the system while the second one helps prevent the robot from toppling 

over due to weight imbalances (also see Figure C .l, Appendix C). Motor C moves 

the pen (or robot finger) on and off the phone screen while motors A and B move the 

pen along the surface of the screen. The shape of the touch stroke is determined by 

the movement of motors A and B which run concurrently. Motor A drives the robot 

along a straight path while motor B, via a set of gears (see gear setup in Figure C.2, 

Appendix C) drives the framework supporting the robot “finger” along a circular path 

centered about the axis labeled R. To ensure that the robot does not deviate from the 

(approximately) straight path and get out of position (away from the phone region of 

interest), we connected it to a beam whose movement was restricted between a pair 

of rails firmly screwed on the board.

Based on observations on our dataset, most users’ strokes deviate very slightly 

from a straight path. Because our attack seeks to mimic general user behavior (as 

opposed to the traits of an individual user), our robot was designed to generate 

near-straight strokes, with just a slight amount of curved behavior. Bar any effects 

arising out of the mechanical interactions between robot components, our mechanical 

and algorithmic design of the robot seeks to generate a straight stroke, with a very 

slight amount of curvature at a section of the stroke. Figure 6.4 (see Figure 6.4b in 

particular) illustrates the philosophy behind the curved section of our stroke. The 

combination of a motor driving the pen along a curved trajectory (i.e., the arc labeled 

AB) and a motor driving the pen along a straight line (i.e., path labeled CD) results 

into the curved stroke section such as EF.
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(a) Design Philosophy #1: To generate a stroke, two motors run one after 
the other (i.e., serially). One motor makes a horizontal displacement, the 
other makes a vertical displacement. The x represents the points on the 
physical path which are sampled by the Android system to represent a 
stroke. The low sampling rate used by the Android OS (an average of 15 
ms per sample in our experiments) guarantees that the system is blind 
to the true shape of the stroke since a few points on each segment are 
registered by the system.
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(b) Design Philosophy #2: To generate a stroke, two motors rim concur
rently. The final trajectory (e.g., EF) is a result of the superposition of 
the two motor movements (e.g., AB and CD).

F ig u re  6.4: Philosophy behind the curved behavior of a touch stroke.

In our earlier design (see Figure 6.4a and (or) [77]), we used a different philos

ophy for the generation of a stroke. In that design, the mechanical and algorithmic 

implementation of the attack were such that the two motors controlling the shape of 

the stroke run sequentially at right angles to each other to form the zig-zag (or close to 

zig-zag) pattern that was our source of curvature. The coarse touch stroke sampling 

rate (~  15 ms on average) on our Google Nexus phones ensured that the Android 

system was “blind” to the precise shape of the stroke. While the design was sufficient
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to illustrate the impact of the attack for our set of inputs, a generalized robotic 

attack based on that design could (in theory and possibly in practice) be thwarted 

in several ways. For example, an increment in the rate at which the Android system 

samples touch points on the screen would potentially expose the zig-zag shape of 

the stroke. Because humans don’t  typically generate zig-zag strokes, detection of 

the zig-zag pattern would be a key indicator for the possible occurrence of an attack. 

Alternatively a sensor (such as an accelerometer or gyroscope) could be used to detect 

repeated instances of a vibration pattern resulting from the zig-zag movement of the 

robotic finger executing several strokes.

Depending on the exact attack setup, exploiting these theoretical weaknesses 

in practice may not necessarily be be trivial, especially given that we used a small 

number of very short vertical and horizontal steps to create the saw-tooth shape. 

We however still move to eliminate this theoretical weakness by using the design 

represented by Figure 6.4b for this dissertation. Note though that the final stroke 

will not always be as smooth as trajectory EF due to the mechanical dynamics of the 

robot components.

It is noteworthy that owing to mechanical factors {e.g., vibrations, friction, 

variations in the shape and size of the play-doh, etc.), the strokes produced by either 

approach can have notable variations from the behavior stipulated by the algorith- 

m. W ith meticulous mechanical design of the robot however {e.g., through careful 

selection of members, balancing weights, firmly securing vibrating elements, etc.), 

this behavior can be minimized. We implemented the attack using the Lego NXT
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Mindstorms IDE [21] due to its straightforward support for motors with dissimilar

inputs running in parallel.

Figure 6.5 depicts a  graphical model of how the motors generate a single stroke.

Motors B and C are connected in series with each other (i.e., they don’t run at the

same time), and their channel connected in parallel with that of Motor A. At the

extreme ends of a stroke, the algorithm is such that the “finger” (see Motor C) is not

in contact with the phone because the breaking (and in some cases starting) of the

robot is associated with momentum effects which may cause a distorted pattern on

the screen. The “finger” only moves towards the phone screen (see downward arrow

-  Motor C) after Motor A (which carries the full weight of the robot and hence the

greatest momentum effects) has been in motion for sometime. At the end of a stroke,

the “finger” begins to leave the screen before Motor A comes to a stop. 

t j

o
o

C

B

A

T im eline

F ig u re  6.5: Model for Generation of a Stroke.
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The exact duration for which the “finger” is in contact with the phone depends 

on the initial position of the “finger” relative to the phone. This is in fact one of the 

manual aspects of the attack, as we adjusted the position of the phone through trial 

and error (e.g., by putting thin material under it) until the pressure that the “finger” 

exerted on the screen during swiping reached our required average2. In practice the 

attacker can use a  phone (other than the one to be attacked) to guide these initial 

settings.

At the end of each stroke, we allowed a pause of about Is in order for any 

existing vibrations to die out before the next stroke was executed. After a number of 

strokes, the robot may drift away from the region of interest since one end of the rails 

was left open to allow for randomness in the exact length of a stroke. To address this, 

we stopped the swiping, and then physically placed the robot back at the region of 

interest. For each of the blocks represented in Figure 6.5, the motors are given power 

and speed inputs (see Table 6.1).

Table 6.1: Parameter settings used for the robotic attack.

Motor Id Power Time
A 70 0.7
B 1 1 2 0 . 2

b 2 1 2 0 . 1

C i 25 0 . 2

C2 70 0 . 2

The time parameters are in seconds while the power parameters are a function

of the voltage applied to the motor. These parameters are in essence just a general

2The Google Nexus S has a slight bulge at one end, so it does not sit perfectly horizontally if 
rested on a flat surface. We tried to compensate for this imbalance by raising one side of the phone 
more than the other.
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guide — a slight change in the experimental conditions could call for changes in 

these inputs. B\ is the first block representing Motor B while B 2 is the second block 

representing Motor B. The same notation is used for Motor C. The power input for 

the upward motion of Motor C is greater than that for its downward motion because 

the motor has to support the “finger” and its attached mechanism during the upward 

movement. For the downward movement, the weight of the “finger” and its parts 

assist the motor instead.

To generate a horizontal stroke, we positioned the phone such tha t the finger 

started around the point with coordinates (363, 541) and moved towards the point 

having the coordinates (145, 588)3. For the vertical strokes, the phone was positioned 

such that the start coordinates were approximately (320,613) and the direction of the 

finger being towards the point (352,400). These values were the means/averages 

observed over a portion of the full user population. Unlike in [77] where we explicitly 

generated noise to cause variations in the different features across different strokes, 

we rely on noise arising out of the mechanical interactions between robot elements as 

our sole source of randomness. The fact tha t the whole robotic framework moves the 

entire length of the stroke introduces a great amount of noise (e.g., due to vibrations 

of the members). We find this noise to be sufficient to ensure that the robotic strokes 

are not exactly similar to each other.

We set the power and time inputs of Motor C to the values tabulated so as

to get pressure outputs of between 0.4 and 0.6 on the phone screen. Depending on

factors such as the area of the finger and the initial position of the finger relative to

3In practice it only moves towards some point in the neighborhood of the point in question.
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the phone, one may have to set different values for these parameters in order to get 

pressure outputs in this range. Like in the case of the finger area (see Section 6.3.3.), 

we not only iteratively set the pressure during initial experiments, but also depended 

on a connected battery to increase the pressure to the required range. To ease the 

task of setting the various attack parameters, we enabled pointer locations (under 

developer options) so as to view the strokes and their associated raw feature outputs 

on the screen during the fine-tuning phase.

6.4 Attack Performance Evaluation

6.4.1 Verification Algorithms

We demonstrate the impact of the attack using a Support Vector Machine 

(SVM) [78] and the k-Nearest Neighbors (k-NN) classifier [79]. We select these two 

verification algorithms because they have recently been shown in [1 1 ] and [1 0 ] to 

perform very well for continuous touch-based authentication. We briefly describe the 

mechanisms of operation of the two algorithms below:

Support Vector Machine: An SVM is a binary classifier which uses a hyper

plane to separate two data classes in such a way that the margin between the two 

classes is maximized. The margin is the distance between the hyperplane and the 

boundary observations which are also referred to as support vectors. For classes 

that are not linearly separable in a given feature space, it is sometimes necessary to 

map the original data points to a higher dimensional space with the aid of a kernel 

function. We used the Gaussian radial-basis function as our kernel, like was done in



77

[10]. During classification, we set a given user’s data as the positive class, and a set 

of samples randomly selected from the other users as the negative class.

k-Nearest Neighbors: During training, this classifier does not have to extract 

any model from the data—it only stores the feature vectors from the different classes 

(in our case two classes). Given a new observation that is to be assigned a  class 

label, the k-NN classifier assigns it to the class A  if the majority of the k closest 

training vectors to the new observation belong to the class A. Different researchers 

use different measures to represent the distance between the training vectors and a 

test observation. In this work we use the Eucledian distance metric since it was also 

used in [10]. Like we did for the SVM, during training, we set a given user’s data 

as the positive class (genuine class), and a set of randomly selected samples from the 

rest of the population as the negative class (impostor class).

For both the k-NN and SVM, we used WEKA [67] via its Java API to 

implement the classification system. We used k=9 for the k-NN classifier since this 

value gave us the best performance. For all other parameters across the two classifiers, 

we used the WEKA defaults.

6.4.2 Training and Testing M ethodology

Training and Zero-effort Testing: Training was done based on data collected 

during Session I  while zero-effort testing was done based on data collected during 

Session II. For each user, we distinguished between portrait and landscape strokes, 

and further distinguished between horizontal and vertical strokes for each of the two 

phone orientations. This way, each user had four reference templates. The reason for
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separating between these four types of strokes was because certain features change 

depending on the type of stroke and the way in which the phone is held when the stroke 

is executed. For example, for the typical user, a horizontal stroke executed in portrait 

mode will very likely have different start and end-points (among other features) from 

a horizontal stroke executed in landscape mode. Owing to the mismatch between 

features, a classification mechanism that does not distinguish between these two types 

of strokes will likely perform unreliably.

In practice we believe that a touch-based authentication application should 

use all four types of reference templates since users can switch between stroke types 

depending on the type and organization of content they read on the phone. Regardless 

of whether a user is biased towards a certain type of stroke, the system should be 

able to accurately perform classification during those times when the user executes 

the other kinds of strokes.

For each of the four categories of strokes, we only performed our analysis for 

those users who executed at least 80 strokes during Session I. For the portrait strokes 

we had 106 and 118 users who met this 80 strokes requirement for the horizontal and 

vertical strokes respectively. For the landscape strokes, we had 41 and 50 users who 

met the requirement for the horizontal and vertical strokes respectively. For training, 

we used 80 strokes executed by the user in question (i.e., genuine or positive class) 

and 5 strokes from each of the other users (i.e., the impostor or negative class) for 

each of the four categories of strokes.

To establish a baseline against which to measure the impact of the robotic 

attack, we carried out zero-effort testing for each user. In these tests, to launch an
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impostor attack against a given user’s template, we used 1 0  strokes from each, of the 

other users. To carry out a genuine attack against a given user’s template, we used 

all the strokes captured from that particular user during Session II. Because a  user 

will every now and then execute a stroke which is very distinct from the rest of her 

strokes, we used a block of strokes, rather than a single stroke to make authentication 

decisions.

Each legitimate or impostor authentication attem pt was based on a single vec

tor derived from 10 consecutive feature vectors (or strokes). The single authentication 

vector was computed such that its elements were the component-wise means of the 

10 vectors contained in a sliding window. From the results obtained from these tests, 

we generated four Detection Error Tradeoff (DET) curves [80] for each user, one for 

each kind of swiping. From each of these curves, we determined the Equal Error Rate. 

Robotic Testing The robotic testing process was the same as that described in Section 

6.4.2, except that the impostor attack was based on samples generated by the robot. 

We will refer to the impostor attack in this case as the robotic impostor attack. We 

used 600 strokes generated by the robot to carry out this attack against each user. 

Like we did in the zero-effort tests, we again generated two DET curves for each user, 

and calculated the EER from each of the curves.

6.4.3 Attack Results

The Failure to Enroll Policy: To rigorously evaluate the impact of the attack, 

we employed a “failure to enroll’ policy in which we only enrolled users whose mean 

EERs across the two verifiers at baseline were less than a certain EER threshold
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(a)4. Our attack performance evaluation was done at values of a  ranging from 0 . 2  

to 0.08. We chose an upper bound of a=0.2 because we believe that a user with an 

EER higher than that would probably not use the technology anyway. For the lower 

bound we decided to use a=0.08 because the number of users able to enroll on the 

system became too small for values of a  less than that.

Mean Impact of the Attack: Figures 6 . 6  and 6.7 respectively summarize the 

effect of the attack on the mean and standard deviation of the classifier EERs.
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F ig u re  6 .6 : Impact of the robotic attack on the classification of the horizontal strokes 
generated in portrait mode.

4For each user we computed the EER seen with each of the k-NN and SVM verifiers at baseline
and found the mean of these two values. It is this mean value that we compared with a  in order to 
make “failure to enroll’ decisions.
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F ig u re  6.7: Impact of the robotic attack on the classification of the vertical strokes 
generated in portrait mode.

For different values of a , we computed the mean EER and standard deviation 

of the EERs across the population before and after the robotic impostor attack. 

Figures 6 . 6  and 6.7 respectively summarize these results for the horizontal and vertical 

touch strokes. The bottom (horizontal) axis shows the different EER thresholds (a), 

while the top (horizontal) axis shows the number of users who were able to  enroll onto 

the system at each value of a. Before the robotic attack was launched we obtained 

EERs of between 0.13 and 0.035 (see plots on the left side of Figures 6 . 6  and 6.7). 

These EERs are higher than the EERs reported in [10], but comparable to those 

reported in [1 2 ] during the sub-set of experiments in which the users did not wear
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a digital sensor glove. W ith our baseline EERs5  (i.e., EERs before attack) being 

comparable to the EERs reported in the literature, we proceeded to evaluate the 

impact of the robotic attack.

Observe (Figures 6 .6 b, 6 .6 d, 6.7b, 6.7d) that for both the vertical and horizon

tal strokes, the attack drastically increased both the mean EERs and the standard 

deviation of the EERs. The high mean EERs indicate that users begin to see very high 

False Reject Rates (FRRs), while impostors see equally high False Acceptance Rates 

(FARs). Also, the high variance in EERs implies that system performance becomes 

very unreliable/unpredictable as a result of the attack. It is noteworthy that the 

heightened EERs and standard deviations persist for both verification algorithms even 

when the system is used only by the best performing users (i.e., a=0.08). This implies 

that a defence mechanism centered around barring the poor users from enrolling onto 

the system would not thwart the attack. Table 6.2 gives a more precise view of the 

impact of the attack on the mean EERs.

T able 6.2: Percentage increment in mean EER due to the robotic impostor attack 
on the portrait strokes.

a SV M k-N N
Horizontal Vertical Horizontal Vertical

0 . 2 377.3% 638.6% 333.8% 382.9%
0.18 407.6% 734.9% 375.7% 405.6%
0.16 479.8% 752.9% 401.2% 475.4%
0.14 486.9% 702.8% 436.2% 583.1%
0 . 1 2 522.2% 1021.7% 509.7% 779.4%

0 . 1 695.4% 1175.8% 691.9% 827.0%
0.08 799.5% 1535.6% 803.3% 863.2%

5See our work in [81] for an in-depth analysis of the baseline EERs of various algorithms.
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The table shows the percentage change in mean system EER seen by each 

verification algorithm as a  result of the attack. Regardless of the verification algorithm 

or failure to enroll threshold, the percentage change in mean EER is beyond 300% in 

all cases, and over 1500% in the most extreme case. These results confirm why 

the robotic attack would significantly degrade the performance of a touch-based 

authentication system.

Impact of the Attack on each User: Figure 6 . 8  summarizes the impact of the 

attack on each user’s verification performance.
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For each user, we subtracted the EER seen under the zero-effort attack from 

that seen under the robotic attack and then plotted the CDFs of these changes in 

EER for each of the two extreme failure-to-enroll thresholds. For this analysis we 

only present results for a=0.2 and a=0.08 since the other values of a  did not give us 

any new insights. The plot reveals two salient features:

1. There was a proportion of users (in some cases up to 30% of the population) 

whose EER changes were negative. For these kinds of users, the robotic attack 

actually performed worse (i.e., caused lower EERs) than the zero-effort attack. 

Since our attack was designed based on data gleaned from the population, this 

trend suggests that there is a proportion of users (say, 30% of the population) 

whose touch gesture biometric footprint is very distinct from that of the majority 

of the users.

2. There was a proportion of users who had EER changes that were extremely 

high (close to 1). These types of users likely had their touch biometric patterns 

very similar to the mean values observed over the population.

These two features to some extent explain the high variance seen in Figures 

6 .6 b, 6 .6 d, 6.7b and 6.7d, since a combination of users seeing decrements in EER and 

others seeing very drastic increments in EER must have resulted into a population 

having very high variability in EER relative to the variability seen before the robotic 

attack. Results obtained with the phone held in landscape mode are left out because 

they did not provide any noteworthy new insights.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this Dissertation we conducted a rigorous pattern analysis on keystroke 

and touch biometrics data and leveraged the observed traits to design a new family 

of attacks that break keystroke and touch authentication systems. We evaluated the 

impact of our algorithmic attack on the best verification algorithms in the keystroke 

and touch authentication fields and compared the performance to that seen with the 

traditional zero-effort attacks.

When subjected to zero-effort impostor attacks, the EERs of the keystroke 

verification algorithms were between 0 . 2  and 0.08 for a set of password strings whose 

lengths ranged between 7 and 20 characters. This range of EERs was comparable 

to the zero-effort EERs reported in the benchmark study in [6 ]. When we launched 

our algorithmic attack, the EERs of the three verifiers increased by between 28.6% 

and 84.4%, relative to the zero-effort EERs. Also, we found that the shorter pass

words were more vulnerable to the attacks, and that a small proportion of the 

user-population accounted for most of the performance degradation caused by the 

algorithmic attack.

For the touch-based authentication system, the mean EERs of the verification 

algorithms were between 0.08 and 0.035 under the zero-effort attack. This range of
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EERs was comparable to the EERs reported in the literature [12]. When we launched 

our robotic attack, the mean EERs of the verification algorithms increased by between 

333.8% and 1535.6% depending on the failure-to-enroll threshold and type of touch 

stroke subjected to attack. Like was observed with the keystroke attacks, a subset of 

the population resisted the attack, while another subset of users badly succumbed to 

the attack.

In general, the results from our research indicate that in comparison to the 

zero-effort attacks typically used to test keystroke and touch authentication systems, 

our algorithmic attacks were considerably much more lethal. The kinds of synthetic 

attacks presented in this work rest on two premises: 1) The large amounts of keystroke 

and touch biometrics data required to design the attack can be easily accessed by 

committed adversaries, and, 2) The software tools and cheap easily programmable 

robots required to implement the attacks are within the reach of adversaries. From 

evidence cited in this work, these are realistic assumptions, implying that a keystroke 

or touch-based authentication system would have a decent chance of being subjected 

to such a kind of attack in practice.

There are several aspects of our attacks that might need further research. 

First, like most past studies in this area (see works cited in Chapter 2 ), our touch 

biometrics data collection was based on a group of users who used a small number 

of specialized applications (two applications in our case). In practice, people use a 

wide range of applications, some of which are designed for tasks which could prompt 

“touch signatures” (e.g., with regard to regions of the phone tha t people touch) that
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are very different from those seen with our applications. It would be interesting to 

determine how the attack scales to a large number of applications.

Another area worthy of investigation is whether a touch stroke could be 

decomposed into a set of features that are more resilient to this kind of attack 

than our features. Because touch-based authentication does not yet have a standard 

set of features universally used by all researchers, we defined a set of 28 features 

that captured the key statistical attributes exhibited along a stroke. The underlying 

philosophy behind our feature definitions is not so different from that of the features 

used in past work, however, this does not guarantee that all feature-sets will succumb 

to the attack in exactly the same way. It is thus interesting to determine how 

much less or how much more the other features are affected by the attack. Similar 

kinds of questions can be raised about our keystroke attacks — e.g., with regard to 

the variety of keyboards used during data collection, the variety of texts analyzed 

and the question of how the findings relate to free-text keystroke authentication. 

Investigations into the effects of changes in these variables would greatly increase 

the community’s understanding of the extent of the threat posed by these types of 

attacks.

The above open research problems notwithstanding, our attacks highlight pre

viously unknown threats to keystroke and touch-based authentication. Our findings 

do not only call for more stringent performance evaluation of keystroke and touch- 

based authentication systems, but should also motivate research into technologies 

which could defend against the larger family of robotic and software attacks, two 

instances of which have been demonstrated in this dissertation.
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F ig u re  A .l :  Skewness of A D f vectors.

In Figure A. la, the A D f vectors are computed such that the features f i  and 

/ 2  forming a pair are both KHTs. For each feature-pair, the associated A D f  vector is 

computed based on a set of 3000 randomly selected user-pairs. Since our test-phrase 

contains 58 KHTs, there are (528) =  1653 possible feature-pairs th a t can be formed 

out of the set of KHTs. We compute a A D / vector for each of these feature-pairs, 

and calculate the skewness value of this A D f  vector. Figure A. la  is a CDF of the 

full array of skewness values obtained across all 1653 KHT feature-pairs. W ith both 

f i  and / 2  being KITs, we repeat the procedure to generate the CDF in Figure A. lb. 

Results on the two plots generally supported the use of the Wilcoxon signed-rank test, 

as all KHT feature-pairs had a A D f  vector with skewness between -0.3 and 0.3, and 

about 95% of KIT feature-pairs had a A D f  vector with skewness between -0.5 and 

0.5.
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For each of the 8  features used to plot the two graphs, we calculate the 

standard deviation exhibited by each user in our population and then generate a 

CDF of the standard deviations. In the context of a statistical attack, high intra

in question could be matched by a wide range of guesses. For clarity of the plots, 

standard deviations exceeding 40 ms and 100 ms for the KHTs (Figure B .la) and KITs 

(Figures B.lb) respectively, were filtered off before generating the CDFs, since a very 

small proportion of users had standard deviations exceeding these thresholds. The 8  

selected features show the general trend observed across the dataset. Observe that 

different features did not necessarily have similarly shaped distributions, an indication 

of why the adversary would benefit from a feature-by-feature understanding of the 

statistical traits exhibited by keystroke data associated with the password in question.

KHTs over the full population. KITs over the full population.

F ig u re  B .l :  Intra-user variability of KHTs and KITs.

user variability for a given feature indicates that the user’s profile for the feature
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The NXT brick at the far end right provides a balancing moment that prevents 

the robot from toppling over due to the combined weight of the motor and finger- 

support mechanism on the other side of the robot.

F ig u re  C .l :  Aerial view of the robot.
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The gear-pairs are selected in such a way to produce a  low speed and high 

torque to drive the “finger” and its support-mechanism.

F ig u re  C.2: Gear mechanism driving the robot “finger” along a circular arc.
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D.l HUC 1086

L O U I S I A N A  T E C H
U N I V E R S I T Y

MEMORANDUM
OFFICE OF UNIVERSITY RESEARCH

TO: Mr. Abdul Serwadda and Dr. Phoha

FROM: Barbara Talbot, University Research

SUBJECT: HUMAN USE COMMITTEE REVIEW

DATE: April 11,2013

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed 
study entitled:

“Characterizing Mobile Phone Users Based on Typing Patterns 
Touch Gestures and Body Movement”

HUC 1086

The proposed study’s revised procedures were found to provide reasonable and adequate 
safeguards against possible risks involving human subjects. The information to be collected may 
be personal in nature or implication. Therefore, diligent care needs to be taken to protect the 
privacy o f  the participants and to assure that the data are kept confidential. Informed consent is a 
critical part o f the research process. The subjects must be informed that their participation is 
voluntary. It is important that consent materials be presented in a language understandable to 
every participant. If you have participants in your study whose first language is not English, be 
sure that informed consent materials are adequately explained or translated. Since your reviewed 
project appears to do no damage to the participants, the Human Use Committee grants approval 
o f the involvement o f human subjects as outlined.

Projects should be renewed annually. This approval was finalized on April 11, 2013 and this 
project will need to receive a continuation review by the IRB if  the project, including data 
analysis, continues beyond April 11, 2014. Any discrepancies in procedure or changes that have 
been made including approved changes should be noted in the review application. Projects 
involving NIH funds require annual education training to be documented. For more information 
regarding this, contact the Office of University Research.

You are requested to maintain written records o f  your procedures, data collected, and subjects 
involved. These records will need to be available upon request during the conduct o f  the study 
and retained by the university for three years after the conclusion o f  the study. If changes occur 
in recruiting o f subjects, informed consent process or in your research protocol, or if 
unanticipated problems should arise it is the Researchers responsibility to notify the Office o f  
Research or IRB in writing. The project should be discontinued until modifications can be 
reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-2292 or 257-5066.

A MEMBER O f THE UNIVERSITY OF LO UISIANA SYSTEM

P.O. BOX 3092 • RUSTON. LA 71272 • TELEPHONE (318) 257-5075 •  FAX (318) 257-5079
A N  EQUAL O PPO R TU N ITY  UN IV ER SITY
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D.2 HUC 416

*

LOUISIANA TECH
U N I V E R S I T Y

O FFICE O F U N IV ERSITY  RESEARCH
M E M O R A N D U M

TO: Dr. Vir Phoha

FROM: Dr. Les G uice, V .P . for Research & D evelopm ent

SU B JE C T : Human U se  C om m ittee R eview

DATE: N ovem ber 1 9 ,2 0 1 2

RE: A pproved Continuation o f  Study HUC 416  with
Attached A m endm ents

TITLE: “ S tu d ies  R ela ted  to  th e  u se  o f
K ey stro k e  D yn am ics as a B io m e tr ic”

H U C - 4 1 6  A dding A m endm ent Dated O ctober 30, 2012

The above referenced study has been approved as o f  N ovem b er 19, 20 1 2  as a 
continuation o f  the original study that received  approval on Septem ber 7, 2008 . T h is  
p ro jec t w ill n eed  to  rece iv e  a co n tin u a tio n  rev iew  b y th e  IR B  i f  th e  p ro jec t, 
in c lu d in g  co llec tin g  o r  a n a ly z in g  d a ta , co n tin u es b eyon d  N o v em b e r  19 , 2 0 1 3 . A ny  
discrepancies in procedure or changes that have been m ade includ ing approved changes  
should  b e noted in the review  application. Projects in vo lv in g  NIH  funds require annual 
education training to be docum ented. For m ore inform ation regarding this, contact the 
O ffice  o f  U niversity  Research.

Y ou are requested to m aintain written records o f  your procedures, data co llec ted , and 
subjects in volved . T h ese records w ill need to be availab le upon request during the 
conduct o f  the study and retained by the university for three years after the con clusion  
o f  the study. I f  changes occur in recruiting o f  subjects, inform ed con sent process or in 
your research protocol, or i f  unanticipated problem s should  arise it is the Researchers 
responsib ility  to n otify  the O ffice  o f  R esearch or IRB in writing. T he project should  be 
d iscontinued  until m odifications can be review ed  and approved.

I f  you  have any q uestions, p lease contact Dr. M ary L ivingston  at 2 5 7 -4 3 1 5 .

A M E M B E R  O F  T H E  UNIVERSITY OF L O U ISIA N A  SYSTEM

P.O. BOX 3092 •  R U STO N , I A 71272 •  TE LE PH O N E (3181 257-5075 * FAX (318) 257-5079
A N  EQ U A L O P P O R T U N IT Y  U N IV E R S IT Y
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LO U ISIA N A  TECH
U N I V E R S I T Y

OFFICE O F U N IV ER SITY  R ESEA RCH
MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research

SUBJECT: Human Use Committee Review

DATE: March 1,2010

RE: Approved Continuation of Study HUC 416 
Changing Number of Subjects from 500 to 2000

TITLE: “Studies Related to the use of Keystroke Dynamics as a Biometric”

The above referenced study has been approved as of March 1,2011 as a continuation of 
the original study that received approval on September 7, 2008. This project will need 
to receive a continuation review by the IRB if the project, including collecting or 
analyzing data, continues beyond March 1,2012. Any discrepancies in procedure or 
changes that have been made including approved changes should be noted in the review 
application. Projects involving NIH funds require annual education training to be 
documented. For more information regarding this, contact the Office of University 
Research.

You are requested to maintain written records of your procedures, data collected, and 
subjects involved. These records will need to be available upon request during the 
conduct of the study and retained by the university for three years after the conclusion 
of the study. If changes occur in recruiting of subjects, informed consent process or in 
your research protocol, or if unanticipated problems should arise it is the Researchers 
responsibility to notify the Office of Research or IRB in writing. The project should be 
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

# HUC-416

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.O . BOX 3092 • RUSTON7, LA 71272 •  TE LE PH O N E (318) 257-5075 • FAX (318) 257-5079
AN EQUAL OPPORTUNITY UNIVERSITY
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LO U ISIA N A  TECH
U N I V E R S I T Y

O FFIC E O F  U N IV E R SIT Y  RESEA RCH MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research

SUBJECT: Human Use Committee Review

DATE: September 28,2009

RE: Approved Continuation of Study HUC 416

TITLE: “Studies Related to the use of Keystroke Dynamics as a Biometric”

The above referenced study has been approved as of September 16, 2009 as a 
continuation of the original study that received approval on September 7, 2008. This 
project will need to receive a continuation review by the IRB if the project, 
including collecting or analyzing data, continues beyond September 16,2010. Any 
discrepancies in procedure or changes that have been made including approved changes 
should be noted in the review application. Projects involving NIH funds require annual 
education training to be documented. For more information regarding this, contact the 
Office of University Research.

You are requested to maintain written records of your procedures, data collected, and 
subjects involved. These records will need to be available upon request during the 
conduct of the study and retained by die university for three years after the conclusion 
of the study. If changes occur in recruiting of subjects, informed consent process or in 
your research protocol, or if unanticipated problems should arise it is the Researchers 
responsibility to notify die Office of Research or IRB in writing. The project should be 
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

# HUC-416

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.O. BOX 3092 •  RUSTON, LA 71272 • TELEPHONE 018) 257-5075 •  FAX 018) 257-5079
AN EQUAL OPPORTUNITY UNIVERSITY
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LOUISIANA TECH
U N I V E R S I T Y

OFFICE O F UNIVERSITY RESEARCH
MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research

SUBJECT: HUMAN USE COMMITTEE REVIEW

DATE: September 16,2008

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed study 
entitled:

“Studies Related to the use of Keystroke Dynamics as a Biometric”

# HUC-416

The proposed study's revised procedures were found to provide reasonable m d adequate safeguards 
against possible rides involving human subjects. The information to be collected may be personal in 
nature or implication. Therefore, diligent care needs to be taken to protect the privacy o f  the participants 
and to assure that the data are kept confidential. Informed consent is a critical part o f  the research 
process. The subjects must be informed that their participation is voluntary. It is important that consent 
materials be presented in a language understandable to every participant. If you have participants in your 
study whose first language is not English, be sure that informed consent materials are adequately 
explained or translated. Since your reviewed project appears to do no damage to die participants, the 
Human Use Committee grants approval o f  the involvement o f  human subjects as outlined.

Projects should be renewed annually. This approval was finalized on September 4,2008 and this project 
wiU need to receive a continuation review by the IRB if the project, Including data analysis, continues 
beyond September 4, 2009. Any discrepancies in procedure or changes that have been made including 
approved changes should be noted in the review application. Projects involving NIH funds require annual 
education training to be documented. For more information regarding this, contact tbe Office o f  
University Research.

You are requested to maintain written records o f  your procedures, data collected, and subjects involved. 
These records will need to be available upon request during the conduct o f  die study and retained by the 
university for three years after the conclusion o f the study. If changes occur in recruiting o f  subjects, 
informed consent process or in your research protocol, or i f  unanticipated problems should arise it is the 
Researchers responsibility to notify the Office o f  Research or IRB in writing. The project should be 
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.O. B O X 3092 •R U S T O N , LA 71272 • TELEPHONE I31W 257-5075 • FAX (3181 257-5079
AN EQUAL OPPORTUNITY UNIVERSITY
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LOUISIANA TECH
U N I V E R S I T Y

OFFICE O F UNIVERSITY RESEARCH ,  ,
MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research

SUBJECT: HUMAN USE COMMITTEE REVIEW

DATE: September 17,2007

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed 
study entitled:

“Studies Related to the use of Keystroke 
Dynamics as a Biometric

# HUC-416

The proposed study's revised procedures were found to provide reasonable and adequate safeguards 
against possible risks involving human subjects. The information to be collected may be personal in 
nature or implication. Therefore, diligent care needs to be taken to protect the privacy o f  the participants 
and to assure that the data are kept confidential. Informed consent is a critical part o f  the research 
process. The subjects must be informed that their participation is voluntary. It is important that consent 
materials be presented in a language understandable to every participant. If you have participants in your 
study whose first language is not English, be sure that informed consent materials are adequately 
explained or translated. Since your reviewed project appears to do no damage to the participants, the 
Human Use Committee grants approval o f  the involvement o f  human subjects as outlined.

Projects should be renewed annually. This approval was finalized on September 7,2667 and this project 
will need to receive a continuation review by the IRB if  the project, including data analysis, continues 
beyond September 7, 2668. Any discrepancies in procedure or changes that have been made including 
approved changes should be noted in the review application. Projects involving NIH funds require annual 
education training to be documented. For more information regarding this, contact the Office of 
University Research.

You are requested to maintain written records o f  your procedures, data collected, and subjects involved. 
These records will need to be available upon request during the conduct o f  the study and retained by the 
university for three years after the conclusion o f  the study. If changes occur in recruiting o f  subjects, 
informed consent process or in your research protocol, or i f  unanticipated problems should arise it is the 
Researchers responsibility to notify the Office o f  Research or IRB in writing. The project should be 
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 2574315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.O. BO X 3092 •R U ST O N , LA 71272 • TELEPH O N E (318) 2S7-5075 •  FAX 0 1 8 ) 257-3079
AK EQUAL O fPO rrUN ITY UNIVERSITY
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