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comparison for our simulation. We set up a nozzle channel with the initial fluid velocity 

equal to a dimensionless speed o f  20/second, ignoring the effect o f the gravity force. In 

Figure 6-2, we can see that when the speed o f  outgoing flow increases beyond a critical 

point, the flow breaks into small droplets.

Figure 6-2: Unsteady nozzle flow: Flow ejected from a nozzle in a thin conical jet, 
photographed by N. Dombrowski [89].

Figure 6-3 sequentially shows the time evolution flow passing through this 

nozzle. The red color represents the high velocity particles, while, the blue color 

represents particles o f the lower velocity. The total number o f  particles is 3,000.

Although we did not use a lot o f  particles, the effect o f  the boundary layer on the wall of 

the nozzle was created. The second and third subfigures in Figure 6-3 show what happens 

in a Hagen-Poiseuille flow. The last three subfigures in Figure 6-3 show the process o f  

droplet formation due to the effect o f  surface tension. The entire GPU simulation took 

only 40 seconds on a single GPU card as previously described.
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Figure 6-3: Unsteady nozzle flow: Five snapshots o f  a 2D unsteady nozzle flow. 

6.3.2 Two Dimensional Simulation o f Vortex Shedding

Vortex shedding formed by viscous fluid separated from a cylinder at Reynolds 

number between 40 and 150 is o f  engineering importance [90]. For example, in the
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designing o f bridges and offshore oil rigs, ignoring the effect o f vortex shedding could 

result in serious safety issues and potential loss o f equipment and lives [91], Simulation 

o f vortex shedding with SPH is rare in open literature [90, 92, 93, 94].

Figure 6-4 is a photo [89] for the experiment o f the Von Karman laminar vortex 

street [95]. We could see in Figure 6-4 that the vortices created behind the cylinder were 

separated from the boundary layer near the cylindrical surface which periodically 

detached from both sides o f the cylinder due to the adverse pressure zone created by skin 

friction on the cylinder. For comparison, a 2D GPU simulation o f a similar flow is 

illustrated in Figure 6-5. The flow has an initial dimensionless speed o f 15 per seconds 

with a peak Reynolds number o f 140. The only difference is that in our simulation, we 

use a narrow domain in order to use fewer particles and to speed up our GPU computing. 

The inflow and outflow are treated as periodic boundaries. This simulation used a total o f 

16,000 particles and it took 10 minutes and 22 seconds to spin the entire flow and to 

reach the stage o f steady vortex street shedding. This is much faster than using a mesh- 

based conventional method.

Figure 6-4: SPH simulation o f  Vortex Shedding: Von Karman vortex street behind a 
circular cylinder at Reynolds number 140, photographed by Sadatoshi Taneda [89].
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Figure 6-5: SPH simulation o f Vortex Shedding: Simulated laminar 2D vortex street at 
Reynolds number 140.

Figure 6-6 is a photo [89] for the experiment o f the flow passing a cylinder with a 

unit radius at Reynolds number 105. Using the results from our self-developed GPU 

codes, a matching run with the same setting as in Figure 6-6 was performed and shown in 

Figure 6-7. The domain is narrower than Figure 6-6 so that this GPU computing could 

render more resolution with 34,000 particles. The total GPU computing time is 35 

minutes. From the comparison between Figure 6-6 and Figure 6-7, we could claim that 

our GPU simulation captured the key characteristics o f  this vortex shedding phenomenon 

at the Reynolds number 105 with a relatively economical computational cost.

Figure 6-6: SPH simulation o f Vortex Shedding: Von Karman vortex street behind a 
circular cylinder at Reynolds number 105, photographed by Sadatoshi Taneda [89].
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Figure 6-7: SPH simulation o f Vortex Shedding: Simulated laminar 2D vortex street at 
Reynolds number 105.

6.3.3 Two Dimensional and Three Dimensional 
Simulation o f  Elastic Solid and 
Fluid Interaction

Many engineering problems involve a multi-phase media and a multi-phase flow, 

such as the dynamics o f  the weather development, the ocean circulations, and the near­

shore sediment transportation. Under certain situations, SPH could be efficient in 

simulating some complex two-phase flow problems. In the following, we present two- 

phase interactions o f  elastic objects and the fluid in two- and three dimensional spaces.

A two dimensional simulation o f the interaction o f  the fluid with a solid elastic 

cube and sphere at different times is shown in Figure 6-8. The size o f the simulation 

domain is 40 by 65 in dimensionless units, the same as below, surrounded by boundaries 

which consist o f  solid particles. The side o f the cube is 3 and the diameter o f  the sphere is 

3 as well. The density o f  the fluid is scaled to 1 and the density o f  both the cube and 

sphere is 0.6. Both solids are free falling under gravity before colliding with the collapsed 

fluid beam on the left. Initially, the fluid is fixed still on the left side o f the domain by a 

confinement immediately on its right. Once the simulation starts, the confinement is 

removed and the fluid is released from the left under gravity and then interacts with the 

elastic solids. Both objects are washed by the inertia o f  the fluid with some spinning. The 

color o f  the fluid particles indicates their magnitude o f velocity. Zero velocity is in blue 

and the higher velocity is in red with purple and pink, which denote the intermediate
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values. A total o f  5,500 particles are used in this simulation and it takes 3 minutes to 

complete this GPU computing, as shown in Table 6-1, compared with 14 minutes for a 

serial run on a single i5 CPU. Therefore, the GPU run is about 4 -5  times faster than the 

CPU run.

Similarly, a 3D simulation o f one solid elastic sphere o f  diameter 5 interacting 

with the fluid is shown in Figure 6-9. The simulation domain, a little larger than the 2D 

run, is 40 by 75 by 16, exactly the same density settings as in the 2D case used here. Four 

snapshots indicate the free falling and interaction processes at different moments. The 

velocity magnitude o f the fluid is indicated by the same color map as in the previous run. 

For a better visual effect, only the fluid and sphere are displayed and the boundary walls 

are skipped. A total o f  28,000 particles are used to render the three dimensional effect. 

Compared with over two hours o f CPU time with a serial algorithm without GPU 

computing, as shown in Table 6-1, the total run time for the GPU simulation is only less 

than 29 minutes. Therefore, the GPU run is at least four times faster than the CPU run.
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Figure 6-8: SPH simulation o f imping flow: Snapshots o f  2D solid-fluid interaction.
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Figure 6-9: SPH simulation o f imping flow: Snapshots o f 3D solid-fluid interaction.
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Table 6-1: GPU SPH: Execution time (seconds) and specifics o f GPU and CPU runs.

Simulations Number o f  
Particles

GPU Version 
time (seconds)

Serial Version 
time (seconds)

Time
Ratio

Unsteady nozzle flow 3,000 40 255 6.38

Vortex shedding Ex. (1) 16,000 622 2,605 4.18

Vortex shedding Ex. (2) 34,000 2,100 8,176 3.89

2D impinging flow 5,500 180 840 4.67

3D impinging flow 28,000 1,731 6,840 3.95

6.3.4 Simulation Execution Time

In this section, the execution time for GPU simulation versus CPU simulation is 

listed in Table 6-1. For all these five runs with exactly the same number o f  particles and 

unknowns, the GPU computing which does have a parallel computing involved is 4 to 6 

times faster than the corresponding CPU computation.

6.4 Conclusions

Simulation results have demonstrated that SPH, the mesh-free approach, is 

advantageous to handle problems involving free-surface flows, wave breaking, two-phase 

flows and polymorphic domain distortion. However, SPH is not an intrinsically accurate 

method due to its formulation and nature. To improve the resolution and accuracy, large 

numbers o f  particles are required for the simulation and parallel implementation is 

essential. A GPU-based multi-thread parallel approach could achieve a noticeable 

speedup comparing to a CPU serial algorithm.
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Several limits restrict the GPU computing. First, the memory on a single GPU 

card is limited which limits the maximum number o f particles allowed for a simulation. 

Second, the total number o f CUDA cores is finite. For example, our GPU card has 1,024 

cores. Third, GPU computing requires copying data back and forth between the CPU 

memory and GPU memory. This operation depends on the latency o f the system, i.e., the 

bus bandwidths o f both GPU and motherboard, and the cache size o f the system. 

Therefore, for large simulations such as one involving 100,000 particles, distributing the 

total computational load to multiple GPUs is necessary to accelerate the speed o f 

computation even further.



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK

In this dissertation, three different numerical methods are discussed individually 

and validations o f our general solvers are tested by solving four different problems with 

both complex physics and complex geometry. The application areas for each method are 

discussed.

In Chapter 3 and Chapter 4, the Spectral Element Method (SEM) based on a 

structured mesh is used to provide high order accurate solutions for a natural convection 

problem and reaction-diffusion problem in neuromuscular junction (NMJ). In Chaper 5, 

Discontinuous Galerkin (DG) method based on an unstructured mesh is used to give high 

order accurate solutions for fluid problem with moderately high Reynolds number. In 

Chaper 6, the mesh-free Smoothed Particle Hydrodynamics method is used to provide 

reasonable solutions to the fluid problem with rapid domain deformation and 

discontinuity.

The focus o f the future work will address the following topics:

1. To use the SEM solver to conduct further research in engineering simulations 

in areas o f  heat and mass transfer and computational fluid dynamics.

2. To develop a parallel version o f DG solver based on MPI and test the code on 

supercomputers. Adapt the optimized parallel version o f numeric libraries into
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the DG solver, such as ScaLAPACK to improve the solver. Use the DG solver 

to conduct further research in engineering simulations.

SPH simulation based on GPU computing is an emerging area with a bright 

future. Further engineering applications in simulating near-shore wave 

breaking, micro-nano-fluids, and so on will be conducted in using this GPU 

solver. At the same time, a MPI version o f the SPH will be developed and 

tested on supercomputers.
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