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ABSTRACT

In this dissertation, two high order accurate numerical methods, Spectral Element 

Method (SEM) and Discontinuous Galerkin method (DG), are discussed and investigated. 

The advantages o f  both methods and their applicable areas are studied. Particular 

problems in complex geometry with complex physics are investigated and their high 

order accurate numerical solutions obtained by using either SEM or DG are presented. 

Furthermore, the Smoothed Particle Hydrodynamics (SPH) (a mesh-free weighted 

interpolation method) is implemented on graphics processing unit (GPU). Some 

numerical simulations o f  the complex flow with a free surface are presented and 

discussed to show the advantages o f SPH method in handling rapid domain deformation.

In particular, four independent numerical examples are sequentially presented. A 

high-accurate SEM solution to the natural convection problem is provided. Up to the 6 th 

order bases and the 4th order o f the Runge-Kutta method are used in the simulation. 

Results show that our algorithm is more efficient than conventional methods, and the 

algorithm could obtain very detailed resolutions with moderate computional efforts 

(simply perform the /^-refinement). In another example, a more realistic and complete 

reaction model o f simulating the reaction diffusion process in human neuromuscular 

junction (NMJ) is developed, and SEM is used to provide a high order accurate numerical 

solution for the model. Results have succesfully predicted the distribution and amount of



open receipts during a normal action potential, which helps us gain a better understanding 

o f this process.

Still, high order DG method is used intensively to study the fluid problems with 

moderately high Reynolds (Re) number such as: flow passing a vertical cylinder and lid- 

driven cavity flow in both two dimensional (2D) and three dimensional (3D). 

Unstructured meshes (triangular element or tetrehedron) are adopted in our DG solver, 

which gives a greater ability than structured meshes (quadrilateral element or 

hexahedron) in solving particular problems with very complex geometry. By comparing 

our DG results with others obtained by conventional methods (Finite Difference Method, 

Finite Volume Method), high accuracy similar to other numerical results are obtained; 

however, the total number o f degree o f  freedom in our simulation is greaterly reduced 

due to the spectral accuracy o f the DG method.

Lastly, the SPH method is implemented on GPU to generate 2D and 3D 

simulations o f  fluid problems. The SPH solver has an advantage for solving fluid 

problems with complex geometries, rapid deformations and even discontinuities (wave- 

break) without generating computational grids. A noticeable speedup o f our GPU 

implementation over the serial version on CPU is achieved. The solver is capable o f 

developing further researches in real engineering problems such as: dam breaks, 

landslides, and near shore wave propagation and wave-structure interaction.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

There are many numerical methods available to solve partial differential 

equations. The most intuitive approach is the Finite Difference Method (FDM), because 

FDM is easy to derive a high order accuracy scheme and also it is very efficient to 

approximate high order derivatives. However, for high order accuracy schemes, FDM 

often requires a large size o f stencil. The Compact Difference Method (CDM) [1, 2, 3, 4, 

5] offers high order algebraic convergence schemes, which are built on smaller stencils 

than the Finite Difference Method. However, the linear system obtained via CDM is 

usually twice or even three times bigger than the one from FDM. Both FDM and CDM 

methods have a strong reliance on structured meshes, which means that they are not 

applicable to solve problems with complex geometry. Finite Element Method (FEM), 

derived from the variation method, is known for its advantage o f  handling geometrical 

complexity.

However, FEM is limited in acquiring a higher order o f accuracy as the basis 

functions become mutually dependent once the order o f  the basis functions increases 

beyond the fifth and the system matrices become ill-conditioned. Although FEM could 

achieve a higher resolution by introducing finer elements, rounding errors would 

accumulate and eventually defeat accuracy at a certain point. Spectral Element Method

1
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(SEM), first appeared in [6 ], could be a good alternative approach. SEM achieves very 

high accuracy by utilizing orthogonal polynomial bases and zeros o f orthogonal 

polynomials as quadrature points. SEM is capable o f /^-refinem ent (h stands for 

increasing the number o f  elements and p  stands for increasing the order o f  bases), and 

especially the /?-type refinement, which enhances resolution without an extra number of 

elements [7, 8 ]. Due to the capability o f  handling complex geometry and both hp- 

refinement for high accuracy, SEM has successfully appeared in solving problem 

involving complex physics and complex geometry, such as computational fluid dynamics 

[9, 10, 11, 12, 13, 14], simulating microfluidic devices [15, 16, 17], and so on.

However, SEM has a main weak point, and that is, it lacks an upwind treatment 

like FDM, which causes instable solutions for strong hyperbolic problems (strong 

advection problem). The Finite Volume Method (FVM) provides a good option by 

introducing the numerical flux between the elemental boundaries to retain conservation, 

but FVM has a limitation: it is unable to extend to higher order schemes on unstructured 

grids, due to the fact that FVM approximates the solution by cell average. To overcome 

this shortage, another relatively new approach, Discontinuous Galerkin method (DG), 

which incooperates the idea o f numerical flux o f FVM into SEM, has been successfully 

adopted to handle a strong hyperbolic problem [18, 19, 20, 21, 22, 23]. Using appropriate 

numerical fluxes at the boundaries between elements, DG-SEM is capable o f  capturing 

discontinuity in the solution without producing spurious oscillations near the 

discontinuity. Besides, the elements in DG are discontinuous and the mass matrix is o f  a 

block diagonal, which results in a highly parallelizable method.
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For some particular problems which involve rapid domain deformations and 

complex multi-phase interactions, grid based methods become deficient. The particle- 

based method, Smoothed Particle Hydrodynamics (SPH), does not rely on fixed 

computation grids and offers a good alternative solution. SPH is capable o f handling fluid 

mechanic problems involving free surface, wave breaking, and rapid geometry distortion, 

and has been adopted to mimic a variety o f problems such as near shore wave-structure 

interaction [24, 25, 26], dam break, fragmentation or crack growth [27] in mechanical 

parts, material melting, and materials impact phenomena.

1.2 Objectives of the Research

Our objective is to implement those advanced numerical methods (SEM, DG and 

SPH) to solve real problems with complex physics and complex geometry. The main 

goals o f  this dissertation are addressed:

1. Systematically study the SEM and DG method and conclude their advantages 

and shortcomings. Develop the general solvers for both methods.

2. Implement the (Smoothed Particle Hydrodynamics) SPH method on the 

(Graphic Processing Unit) GPU, and develop a GPU based SPH solver.

3. Illustrate the availability and correctness o f  the SEM solver for particular 

parabolic and elliptic problems and provide high order numerical solutions to 

particular engineering problems.

4. Provide numerical examples to illustrate the availability and correctness o f  the 

DG solver for particular hyperbolic problems.

5. Provide numerical examples to illustrate the availability and correctness o f the 

GPU based SPH solver for fluid problems.
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1.3 Organization of Dissertation

Chapter 1 introduces the motivation and some background about this research 

work. The research goals and the organization o f  this dissertation are shown.

Chapter 2 gives a brief literature review covering the knowledge needed for this 

dissertation: Spectral Element Method, Discontinuous Galerkin Method, and Smoothed 

Particle Hydrodynamics.

Chapter 3 provides an accurate high order numerical solution to conjugate heat 

and mass transfer and chemical reaction process around a vertical cylinder in the 

cylindrical coordinates using SEM. Advantages o f SEM over conventional methods are 

illustrated.

Chapter 4 describes 3D simulation o f the reaction diffusion system in the 

neuromuscular junction using SEM. A full reaction diffusion model with realistic 

geometry for simulating the neuromuscular junction in the human body is present, and an 

accurate high order solution is given and discussed.

Chapter 5 demonstrates 2D and 3D DG simulations o f  fluid problems with a 

moderately high Reynolds (Re) number. Especially, the flow passing through the cylinder 

and cavity flow are considered.

Chapter 6  presents 2D and 3D simulations o f particular fluidic problems which 

involve rapid domain deformation and discontinuity by GPU-based SPH method.

Chapter 7 concludes the results o f the dissertation, with recommendation for some 

future works.



C H A P T E R  2

COMPUTATIONAL METHOD

2.1 Spectral Element Method

The Spectral Element Method (SEM) was first introduced by [6 ], and has been 

further developed later by [7, 8 , 28, 29, 30]. The Spectral Element Method, which 

combines the idea o f the Finite Element Method (FEM) and the Galerkin Spectral 

Method [31], provides both geometry flexibility and spectral accuracy.

Convergence o f SEM is achieved either by increasing the degree o f  the 

polynomials o f the basis function (p-refinement) or by increasing the number o f elements 

(//-refinement). Figure 2-1 shows the mesh and modal SEM solution o f  2D Helmholtz 

equation given an exact solution (sin(27rx) sin(27ry)) in a complex domain. The solution 

is gained by using 32 elements and up to the 10th order o f Legendre polynomials. Figure 

2 - 2  illustrates the exponentially fast convergence (p-refinement) in accuracy achieved by 

SEM over algebraic convergence (//-refinement). Vertical axis represents the point-wise 

L2 error in /og-scale, and the horizontal axis represents the polynomial order o f  the basis 

function or the total number o f elements. We could see that point-wise L2 error decreases 

fast in the way o f p-refinement than //-refinement.

5
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Values

Figure 2-1: SEM: Solution o f 2D Helmholtz equation in a complex domain.
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-a  p-convergence,
t  p-converjence,
a  p-corvergencs,
-4----- h-conv«rgence.
♦ h-conv#rg«nca.

tvconvergence, 
h-convergenc«.

2 Element 
8 Bement 
32 Bement 
polynomial order = 5 
polynomial order = 7 
polynomial order * 9 
polynomial order * 11

0 2 4 6 8 1012141618202224 26 28 30 32 34 36 
Polynomial Order / Number of Elements

Figure 2-2: SEM: Exponential convergence vesus algebraic convergence.

2.1.1 Basis Function in Quadrilateral/Hexahedron Domain

There are two types o f  bases available in SEM. One is modal bases, shown in 

Figure 2-3, which are obtained by the tensor product o f  one dimensional Legendre 

polynomial in the standard domain ([—1,1]). At the comer o f each element, the linear 

basis function is used as the lift function to maintain the C° continuity. The other one is 

nodal bases, as shown in Figure 2-4, which are obtained from the tensor product o f one 

dimensional Lagrangian polynomial over the zeroes o f Legendre polynomial. C° 

continuity is automatically satisfied by utilizing this mode.
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Figure 2-3: SEM: Legendre polynomial as the modal basis function in a standard 
quadrilateral element.

Figure 2-4: SEM: Lagrangian polynomial as the nodal basis function in a standard 
quadrilateral element.
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2.1.2 Constructing Elemental Matrices

In this section, the method o f computing mass and stiffness matrices are 

illustrated respectively. Gauss quadrature is used for integration. For instance, in the ID 

case, if  the nodal basis (“h(£) ”) is used as bases, then mass matrix is constructed as:

M= J <t>i(x)0;(x)dx = J  hiiOhjiOJdt
(1)

N N N

w k ^ i k ^ j k J k
k = 0 \ i = 0 7 = 0  /  7 = 0  i= 0 U = 0

N  N N

and the stiffness matrix is:

g  = f  d x  = f h ' i C O h ' j  C O M
n e _1

(2)
N  N r N

- I I I
7 = 0  i = 0 Lfe= 0

In a quadrilateral element, if  the nodal basis (Lagrangian polynomial “ /( f , 77) ”) is chosen 

as bases, then the bases are expressed as the tensor o f ID  Lagrangian h ( f )  and h(rj) and 

the local mass matrix is constructed as:

M =  I <t>t(x,y)<Pj(x,y)dxdy = I ^,r})Jd^drj
—  J Jnst

N N N N

X Wk (X hî 2 hĵ k̂ n  k 02 Wk (X hi(j1k̂X hĵ  r 77
fc= 0  \ i = 0  7 = 0  /  fc=o[ \ i = 0 7 = 0  /

(  N  N  N

N N

(3)

I I I  wk8ik8jkJf,k
7 = 0  i= 0  U = 0

N  N

7 = 0  i= 0

NIII w k^ik^jkJr),k
Lk=0
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which results in a diagonal matrix by using Gauss integration over Gauss-Lobatto- 

Legendre quadrature points. <f and rj correspond to the values o f x  and y  from an 

arbitrary quadrilateral element to the standard quadrilateral element. J stands for the 

Jacobian o f the mapping. The local stiffness matrix is constructed as:

K =  f <b'i(x ,y ) < P ' j ( x ,y )d x d y  = f  I ' i t f . r i l ' j  ( ( . r i J d fd t j
~  J JClstn«

N  N  N

I I IJ = 0 1=0 Li=0 

which is a full matrix.

N  N N\  1 ‘1 % 1

La La Z a W k h > jtVk) Jrj.k 
j=0 i=0 Li=0

(4)

If  modal basis function “L(<f, q )” (Tensor o f ID  Orthonomalized Legendre 

Polynomial) is used, then, the local mass matrix is diagonal.

M =  J  d>i(x, y ) ^ j ( x ,  y ) d x d y
n e

=  InJ 1 r )  (V) (~r~ 9 (V)
v N{N  N

I I
j = i i=l Lfc=0 

N  IV r

(5)

zx
J = 1  i = 1 Lfc=0

The local stiffness matrix is computed using the derivative property o f the Jacobi 

polynomial:
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K =  j  &i(.x,y)<S>'j(x,y)dxdy

L.( (6)

r N  N  r  N  - A  f  AT JV r  W
\  \  \  . r  \  *f  />• \  ■ — \  \  \

2.2 Discontinuous Galerkin Method

In many interesting applications, such as in aeroacoustics, modeling the shallow 

water, turbulent flows, gas dynamics, and many others which involve strong convection 

phenomena, SEM becomes less efficient and may fail to provide a good solution. For 

strong convective problems, discontinuities will eventually develop in the solution even 

with a smooth initial condition. Due to the lack o f  upwind treatment in SEM, the 

numerical solution may be unstable and contains spurious oscillation near the 

discontinuities. The Discontinuous Galerkin Method is an elementally conservative and 

high-order numerical method, which combines the idea o f  numerical flux, slope limiter 

[32, 33] and the filter o f  the Finite Volume M ethod with a Spectral Element Method 

frame work. It is capable o f dealing with the problems with complex geometry over an 

unstructured mesh and has become the most powerful method of computational fluid 

dynamics [34, 21, 22, 35].

2.2.1 Basis Function in Triangle/Tetrahedron Domain

Similar to the SEM method, there are two types o f bases. In order to handle the 

numerical fluxes near the elemental boundary easily, only nodal bases are considered in
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this dissertation. However, we build the nodal bases with the help o f modal bases. Within 

each triangle element, the following orthonormal polynomial bases are chosen [31, 36]:

4>„(r, s )  = V2 P ,(a )P /2i+1 0 )(f>) ( 1  -  b y ,  (7)

14" V
in which, a  =  2 ------- 1 , b = s ; r  and s are the coordinates o f two short sides o f an

’ 1 - s  '

isosceles right triangle. P^a’ ^ \ x )  is the «-th order Jacobi polynomial. Figure 2-5 shows 

the modes below the 5 th order.

y

j  v

*  to ±
»V V ^

Figure 2-5: DG: Jacobi polynomial as the modal basis function in the triangle element.

To construct the nodal bases, we try to find a group o f interpolation points with 

good interpolation property. Beginning from the barycentric coordinates in the equilateral 

triangle in Figure 2-6, we relocate those equally spaced points to “Gauss-Lobatto- 

Legendre” like points along three directions that are parallel to each side o f the triangle.

*j

A
I f
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Then we map those points to the isosceles’ right triangle using the following relations:

(Xx, A3)=(^, •£), A2 =  1-Xx-X3, (i, j)>  0, i + j < N ,

(8)

( D = ( - 1) + ( - 1) +Ai ( i )

Titanic Element1*1

s 12

7

Figure 2-6: DG: Generating interpolation points in the isosceles’ right triangle.

I f  the interpolation points are chosen to be the same points for constructing the 

Lagrangian polynomials, we could establish a useful connection between the node bases 

l(r, s) and modal bases <p(r, s ) through the Vandermonde matrix V. These connections 

will eventually help us to construct the elemental matrices o f  the DG solver:

Vtj =  <*»;-! ( r ,s ) , - ,
(9)

K ^ /(r ,s )= 4 > (r ,s )  .

In Vandermonde matrix, subscript j  — 1 represents the order o f the basis function, and i 

is the index o f  the interpolation points r  and  s.

Figure 2-7 shows the nodal modes o f  the 5th order. For each mode, it has a unit 

value at the interpolating point o f  that mode while zero at the rests.



Figure 2-7: DG: Lagrangian polynomial as the nodal basis function in the triangle 
element.

2.2.2 Constructing Elemental Matrices

Since the nodal basis (Lagrangian polynomial “1”) is used as the bases in triangle 

element, the local mass matrix is constructed as:

M=  J  4 > i(r ,s )® j(r ,s )d rd s  = J  li( ( >T))lj (^,rj)Jd^dT]

St

N  N  [  /  N  N  \

i= l  j —1 ast 'n = l  m = l /

(10)

N  N

1=1 j =1

N

= 1 1  l < y TK ( v T) j u
n = 1



which is a diagonal matrix by using Gauss integration over Gauss-Lobatto-Legendre 

quadrature points. Figure 2-8 compares the condition number o f Vandemonde matrix 

constructed by Barycentric coordinates and “Gauss Lobatto Legendre” like points, which 

clearly shows the advantage o f using those points.

Barycentric coordinates 
Gauss Labatto Legendre104

£s
<?

_j

z
Ss
1o

Polynomial Order

Figure 2-8: DG: Comparison o f condition number o f  Vandemonde matrix. 

2.2.3 Numerical Flux

There are various numerical fluxes [37] we can choose from, particularly in our 

DG solver, and the Lax-Friedrichs flux [36] is used to satisfy the stability:
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2.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) was first proposed by Gingold and 

Monaghan [38] and Lucy [39] for astrophysics problems, and later it was developed by 

Monaghan [40] and Liu et al. [41] for problems in fluid dynamics and solid mechanics. 

Originally, the method was mainly for solving compressible flows but had tensile 

instability and inconsistency. Over the last two decades, Monaghan [42, 43, 44] and Liu 

et al. [41] have further developed and improved SPH such that it has wider applications 

to incompressible flow, fluid-solid interaction, solid mechanics, and explosion 

simulation, etc.

Being a mesh-free weighted interpolation method, SPH is especially effective for 

complex problems with large domain distortion and complex physics. SPH has recently 

been extensively used to solve hydrodynamics and solid mechanics problems. Different 

from conventional mesh-based methods such as Finite Difference, Finite Volume, Finite 

Element, and Spectral Element Methods, SPH does not rely on any fixed computational 

grid. This gives rise to the capability o f SPH in easily handling fluid mechanics problems 

involving free surface, wave breaking, and rapid geometry distortion. For solid 

mechanics problems, it is straightforward and intuitive for SPH to mimic atoms as 

particles. SPH is capable o f handling large distortion in solid mechanics, and it has been 

adopted to mimic a variety o f problems such as near shore wave-structure interaction [45, 

25, 24, 26, 46], dam break, fragmentation or crack growth in mechanical parts [47, 48, 

49], material melting, and materials impact phenomena [50, 51, 52].
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2.3.1 Weighted Interpolation Representation

SPH is a weighted interpolation method. SPH represents all bulk properties o f  the

fluid and solid body at a certain location in space with a discrete interpolation over a set

o f surrounding particles [40, 41]. The interpolating function used in SPH is called the 

kernel function and denoted as W ( r  — r \  h), where h is the radius o f  the influence 

region around the position r ' . The kernel function is similar to a delta function with the 

following properties:

j  W ( r - r ' , h ) d r '  = 1, (12)

l i m W ( r — r ' , h )  = S ( r  — r ') .  (13)
h->0

Using a kernel function, a  cetain property o f interest o f the particle, such as /, at the 

location r  can be expressed as [40]:

7 (r) =  J  I ( r ' ) W ( r  — r ' , h ) d r '  =  j  ■̂ —^ W ( r  — r ' ,h ' ) p ( r ' ) d r ’

(14)

Z / ( r ' )

r '

in which, the summation is over all neighbor particles within the influence region. To 

compute the gradient o f  /  at the location r ,  we use the following approximation after 

performing the integration by parts:

Z / ( r ' )
m ( r ' ) - ^ V W ( r - r ' , h ) .  ( i 5)

r t

The surface integral term is dropped, since the kernel function and /  both go to zero by 

definition. Similarly, higher order spatial derivatives could always be presented as a 

weighted summation o f derivatives o f the kernel functions.
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2.3.2 SPH Formulations

There are two types o f SPH methods for fluids: the weakly compressible SPH 

(WCSPH) and the incompressible SPH (ISPH) [53, 27]. Compared with the weighted 

residual methods, SPH dramatically simplified the procedures o f  numerically solving 

Navier-Stokers equations. First, SPH simplifies the nature o f  the Navier-Stokes equations 

in that SPH is a Lagrangian method and thus the non-linear convective terms in Navier- 

Stokes equations disappear. Second, the momentum and energy equations could be 

solved explicitly in time, and there is no need to invert large linear systems any more. 

However, WCSPH and ISPH treat the density and pressure differently. Since the fluid is 

treated as a group o f particles, WCSPH computes the fluid density with a weighted 

summation over all neighboring particles using certain kernel functions within the 

influence radius. Hence, the mass conservation is automatically satisfied as the total 

number o f particles maintained. This saves the effort for solving the equation o f mass 

conservation. Moreover, the pressure is directly computed from the equation o f state for 

both gas and liquid, as the pressure depends on density only. In contrast, ISPH solves the 

mass conservation equation to obtain the density and solves a pressure Poisson equation 

to acquire the pressure. In this dissertation, WCSPH method is used for generating our 

solver.



C H A P T E R  3

SPECTRAL ELEMENT SIMULATION OF FREE HEAT AND MASS 
CONVECTION AROUND A CYLINDER WITH CHEMICAL 

REACTION

3.1 Introduction

This chapter is based on my contribution to the publication titled "Spectral nodal 

element simulation o f conjugate heat and mass transfer: Natural convection subject to 

chemical reaction along a circular cylinder [54]". I am the first author o f this paper and its 

content is used in Chapter 3 with proper referencing.

Since the 1990s, heat and mass transfer through porous mediums has been o f 

interest to researchers and widely researched and applied to the industry [55] such as 

migration o f mass and energy through porous media [56, 57], and transfer o f moisture 

through dehumidifying materials [58, 59, 60]. Conjugate heat and mass transfer involving 

vertical cylinders has occurred in various engineering areas [61, 62, 63] such as solar 

energy retrieving, food sciences [64], and biological materials [65].

In this chapter, nodal Spectral Element Method and the 4th order Runge-Kutta 

method are used to solve the conjugate heat and mass transfer problem coupled with 

chemical reaction within the free convection boundary layer in cylindrical coordinates. 

The numerical results show the profile o f this natural convection phenomena and 

illustrate the efficiency o f the algorithm.
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3.2 Formulation

We consider the problem that a mass o f quiescent fluid, in which the chemical 

reaction takes place, embraces a semi-infinite vertical cylinder with uneven distributed 

surface heat and mass fluxes. By the boundary layer approximation and Boussinesq 

approximation [66], we have the following governing equations for this boundary layer 

problem o f free convection in cylindrical coordinates [63] as:

d(ru) d(rv)

dx dr
= 0, (16)

Ou On Ou ' ’ ' • (1^)
™ + u ^ t  + v ^ -  = g /3T ( r  - Too)  + g / 3 c ( C  - C J  
Qt Ox Or

u. d  ,

+ 7 ^ ( r F )’

0 T  8 T  OT a d ,  0 T  .
— -  + u ------ + V  =  ( r  ),
0t Ox dr r  dr dr

(18)

dC dC dC D  d , dC  . ( 19)
— ;—Yu--------h v  =  ( r  ) - K C  .
Qt dx dr r dr dr

In which, n  is viscosity, a  is thermal diffusivity, D is mass diffusivity, /?T and /?c are

thermal expansion coefficient and concentration expansion coefficient, respectively, and

K is reaction coefficient. For free convection, the pressure term is substituted by

~EPt T(!o ~  g f r o m  Boussinesq approximation [66], and the second order derivative

terms with respect to x are dropped from boundary layer approximation.

By performing the nondimensionalization, we have:
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d U  TTd U  T, d U  T  N C  1 d U  d 2U  (21)
 + U  VV   = ------1------------1--------  1--------r-,
dt 8 X  dR rQ R  dR QR2

dT ttq t  t, q t  i dT  i a 2r  (22)
 1- U  1- V   ------------- 1--------- —,
dt 8X dR P rR dR P t q r 2

dC TTdC T, d C  1 dC  1 d2C  (23)
 + U  + V  = -------------+ --------  -  kc.
dt dX  dR ScR dR Sc dR2

Where U, V, T, and C are the axial velocity o f the cylinder, radial velocity o f  the cylinder,

temperature and concentration, respectively. r0 is the radius o f the cylinder. Pr is the

Prandtl number, Sc is the Schmidt number, and N is the coefficient o f buoyancy ratio of

the temperature over the concentration. The problem is well-posed with the following

initial and boundary conditions:

1). All variables U, V, T, and C are set at zero initially.

2). On cylindrical surface 0 <  X  <  15:

t  >  0: U = 0 ,V  = 0 ,q T = =  - X QS,q c = D ^  = - X o s .

3). u  = 0, T = 0, C = 0 at X  = 0, R > R0.

4). U -» 0, T -* 0, C -* 0 as R -» oo.

3.3 Nondimensionalization

Within the boundary layer, the radius o f  the cylinder r 0 is chosen as the length scale, and 

the diffusive velocity scale, f i / (p t  o) is chosen to be the velocity scale. qT and qc are the 

variable heat and mass fluxes. We summarize these scalings as follows:

X  = JL' r  = j l , u  = m L, K = , = t  = V - tL )A '
n) r<s v  m m  i t

Pr
qc  p a  pD p j q j D



3.4 Numerical Method

3.4.1 Spatial Discretization

In space, Galerkin projections are implemented to Eqs. (20)-(23) to obtain the 

variational forms. Then spectral element discretization was employed. For an arbitrary 

element in the cylindrical coordinates, denoted as “e”, we map it to a standard element in 

<f0 and £l5 which are bounded from —1 to 1. Particularly, for solution o f U, we expand it 

in terms o f a tensor product o f  two one dimensional Lagrangian basis functions (denoted 

as h ) on quadrature points, which are chosen to be zeros o f Legendre polynomials:

where Po is the highest polynomial order o f  the basis functions. Because o f the 

collocation property o f  the nodal Spectral Element Method, coefficients Ugq in the above 

equation are the numerical solutions at those quadrature points. The test function in a 

standard element is chosen to be the same as the basis function:

Po Po (24)

Po Po (25)

r s

We set up the following short notations to particular matrices:

Global mass matrix:

Z Jn< .
Total~ (26)

Global Advection matrix:
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T otaK

AdvR = ]jT
(28)

Global Laplacian matrix:

Total

e

(29)

where J is the Jacobian for the transformation corresponding to element “e”. As in our 

simulation, each element is rectangular, and Lx , LR represent the length in X  and R 

direction o f element “e”, respectively.

3.4.2 Temporal Discretization

At the initial time step, values o f U0, V0, T0, and C0 are known. For Eqs. (21)-(23), 

we could treat them as a system o f initial-value problem by moving the convective terms 

on the left hand side to the right hand side o f the equations, and then use the 4th order of 

the Runge-Kutta method to solve the system o f partial differential equations. Let us 

assume k lu , k 1T and k ic  stand for the first stage coefficients o f the 4th order o f the 

Runge-Kutta method, respectively. Then we have:

To (30)
M k \u  — At ■UQ*{Advx U Q) - V Q * {A d vRU Q) + M -

ro

+ M  —h— {AdvjfUft  ) + M U  y  | — KJJ o
=  r0 R  =—  —  IQ —

Mkyf — At - U 0.*(Advx T0) - V 0.*(Ad'^T0) +  —?— (A d V o )
(31)

Pr  R

+ —  MTv\ -  — AT0 
P r =  b  Pr =
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M k\r  — At -UQS ( A d v x C0) - V 0^ ( A d v RC0) + — (AdvRC())
(32)

ScR

+ J_ M C X
S c =

KC0 - k M C 0

where fl represents the boundary o f the problem. Intermediate value o f Vt is computed 

from the following equation by substituting in the intermediate value o f [/*, which is from 

+  kiu-

M
(A dvR + ~ ) v i = Advx U j .

(33)

Then, k lv  can be computed from Vt — V0.

For computing the value o f k 2u, k 2T and k 2C:

- ( ^ 0  + ^ k w ) * [ A d v x (U0 + i k w ) \ - ( V 0 + ± k iV).*[AdvR(U0 + ± k l v )\

(T0 + \ k lT) N(C0 + \ k l c )
+ M ------------------ 1- M -------------------- + — [AdvR(UQ + — kxi;)] + MU x \

r0
1

r0 n
- K { U 0 + - k l u )

(34)

MJc2T ~~ A/
- ( U o + ^ k w ) - n A d Vx(TQ+ ^ k XT) } - ( y 0 + ±;kl v ) * [ A d v R(T0 + ] ; k lT)}

+ ^ j M T(>+\ kxT)] + V r = T x \ci “ F r = ( r ° +\ klT)

(35)

Mk'yp — At
-< V o  + ~  k\u ).*[A dvx  (C0 + k\C )] -  ( F q  + L k w ).*[AdvR(C0 + ± k l c )]

+ - ~̂z[AdvR(c  o + T ^ i c ) ] + - r ‘ M c 'x |0  -~rZ(c o +T kic)~kM co + t *i c ) ScR ===== 2 S c — S c -  2 — 2

(36)

Similar procedures as Eqs. (34)-(36) are performed to compute k 3U, k 3T and k 3C, 

while k 4U, k 4T and k4C are computed by following equations:
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M k j j j  — A t

-(■U q  +  k 3U ) . * [ A d v x ( UQ +  k 3j j ) \ - ( V Q  +  h v ) - * [ A d v R ( UQ +  k 3 U )]

(Tq + k^T )
+  M -

r0
. + M E £ o l h c l +l [AdVR(Uo+ ^ 60] + m / v

ro * —  — n

~K(Uq + k\u)

(37)

Mk^j = At

- ( U q  + k - i j j ) * [ A d v x (TQ +  k 3f  )] — ( Vq +  k 3V ) * [ A d v R (TQ +  k 3 T )]  

+ ^3r)] + — M7A'|n K(T0 +k3T) (38)

M kjc = At

- ( U q  + k y j  ). * [A d v x ( C q  + k 3C ) ] - ( V 0 +  k 3r ) . * [ A d \ ^ ( C 0  +  k 3 C )]

; [ A d n ( C 0 +  k 3 C )]  +  ~ M C x \ - ^ - K ( C 0 + k 3C ) - k M ( C Q  +  k 3 C ) 
' ------ S c —  S c ~  —

+
1

S c R
(39)

After every coefficient for all four stages o f  Runge-Kutta scheme are determined, 

the value o f U  at the next time level is calculated by following the formula:

U\ = UQ + — (k\u  + 2k2u  + 2k3U + k4Uy.
6

Following the same formula, the values o f  T  and C  can be computed, where V  is 

calculated by U  from Eq. (33).

(40)

3.5 Numerical Results and Discussions

Before discussing the simulation results, we first perform temporal and spatial 

convergence tests to ensure the convergence and correctness o f the algorithm. Figure 3-1 

shows the results o f the temporal convergence test. We discretize the computational 

domain into 20 elements, and use the 6th order Lagrangian polynomial as the basis 

function. A 4th order temporal convergence is achieved by varying the time step as 

0.0000125, 0.000025, 0.00005, and 0.0001, respectively. The result agrees well with the 

theoretical expectation, because the 4th order o f the Runge-Kutta method is used to treat 

the temporal derivative.
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Temporal Convergence

Convergence Rate: 4.0

1.0E-054.0E-051.0E-04 7.0E-05
A t

Figure 3-1: Natural convection simulation: Temporal convergence.

Figure 3-2 illustrates the exponential convergence in space. By increasing the 

polynomial order o f the basis function, the point wise L2 norm error decreases 

exponentially. Both spatial and temporal convergence indicate that the algorithm is 

compatible and correct.
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Spatial Exponential Convergence

,-10

10*

5 6 7 8 9 10 11 123 4
Polynomial Order of Basis Function

Figure 3-2: Natural convection simulation: Spatial convergence.

Figure 3-3 and Figure 3-4 present the numerical results o f  the free convection of 

conjugate heat and mass transfer with chemical reaction around a vertical cylinder. Sub 

graph o f Figure 3-3 on the left shows the mesh we generated for this problem. A total of 

20 elements are used and the 8th order o f the basis function for each direction in each 

element is adopted. A graph o f Figure 3-3 on the right is the velocity profile o f U. At the 

cylinder’s surface the velocity is equal to zero due to the non-slip boundary condition and 

a boundary layer is formed near the cylinder surface from free convection. Velocity 

increases in the boundary layer and then decreases away from the cylinder’s surface. 

Figure 3-4 reveals the distributions o f temperature and concentration from the cylinder’s 

surface to the region away from the cylinder, respectively. We could see that the
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distributions o f temperature and concentration mainly located within the free convection 

boundary layer.

Outside the boundary layer the temperature and concentration drop to background 

temperature and concentration. Since in our simulation, we choose Sc = 0.7 (Methanol) 

and Pr = 7.0 (Water), which assumes the mass diffusion rate is larger than the thermal 

diffusion rate. Therefore, the thickness o f the mass boundary layer is greater than the 

thickness o f the thermal boundary layer. Figure 3-5 presents the local magnitude and 

direction o f the velocity o f the fluid. For better resolution, we zoom in the bottom portion 

o f  the whole domain with x  chosen from 0 to 6. Figure 3-5 tells that the fluid is driven 

from the lower side to the upper side due to the uneven distribution o f heat and mass flux.

Mesh Velocity U
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Figure 3-3: Natural convection simulation: Mesh and contour o f  velocity u.
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Figure 3-4: Natural convection simulation: Contour o f temperature and concentration.
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Figure 3-5: Natural convection simulation: Local velocity profile

3.6 Conclusions

Free heat and mass convection coupled with chemical reaction around a semi 

infinite vertical cylinder is examined in this chapter. The computational domain is 

simplified by using cylindrical coordinates, and the problem is solved by nodal spectral 

element method and the 4th order o f  the Runge-Kutta method. The results indicate the 

effectiveness and correctness o f  our algorithm for solving conjugate heat and mass 

transfer problem. This algorithm may be further used to help us understand phenomenon 

details o f  some engineering problem involving mass and heat transfer, such as in solar 

energy retrieving, food sciences and biological materials.



C H A PT E R  4

SPECTRAL ELEMENT SIMULATION OF REACTION-DIFFUSION 
SYSTEM IN NEUROMUSCULAR JUNCTION

4.1 Introduction

This chapter is based on my contribution to the publication titled "Spectral 

element simulation o f reaction-diffusion system in the neuromuscular junction [67]." I 

am the first author o f  this paper and its content is used in Chapter 4 with proper 

referencing.

Studying the synaptic signal transmission in the neuromuscular junction (NMJ) is 

central to the understanding o f neuromuscular disorders such as myasthenia gravis 

disease. Investigating the dynamics o f Acetylcholine and Acetylcholine receptors in the 

NMJ under the conditions o f  activated enzyme is an important step towards this mission. 

In this article, we further develop Khaliq’s simulation model by adopting more realistic 

geometry to simulate the NMJ cleft and including new equations describing 3D reaction 

and the diffusion process with nonlinear reaction source terms and predicting the process 

rates o f  Acetylcholine with the receptor and the enzyme. The simulation analysis agrees 

with experimental measurements o f the reported maximum number o f  open receptors 

during the course o f a normal action potential. The population o f  the open receptor as a 

function o f time are investigated and discussed.

31
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4.2 Formulation

The NMJ is a three dimensional (3D) molecular diffusion-reaction system with a 

flat cylindrical fold shape. The synaptic gap is bounded by the pre-synaptic membrane at 

the top and post synaptic membrane or end-plate with a fork shape at the bottom, and it is 

accessible to the external environment at the edge, as shown in Figure 4-1. [68, 69, 70, 

71,72],

Acetylcholine 
Enzyme 
Receptor"R"
Receptor "AR"
Receptor "A2R" 
Post-synaptic 
Pre-synaptic

Figure 4-1: NMJ simulation: Neuromuscular junction.

We generate the corresponding 3D mesh for the NM J cleft, shown in Figure 4-2, 

within which we turn the mesh upside down in order to demonstrate the shape o f the post 

synaptic and the reactions o f the Acetylcholine receptors.
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Post-symnaptic Membrane

Post-symnaptic Membrane

Figure 4-2: NM J simulation: Mesh o f the NMJ cleft.

The neurotransmitter Acetylcholine is located at the pre-synaptic membrane and 

diffuses across the NMJ cleft, while all types o f neuromuscular receptors are located at 

the post-synaptic membrane and are immobile. Acetylcholinesterase, known as an 

enzyme which hydrolyzes the neurotransmitter Acetylcholine, fills in the cleft. Therefore, 

by further improving our previous model, we include the following chemical reaction 

partial differential equations (PDE) involving Acetylcholinesterase in the NMJ cleft. For 

consistency consideration, we adopt the same notations being used in Khaliq’s paper 

[73].

k Ei (41)
A +  E ^  AE, 

k~Ei

AE acE, (42)

acE  * 5  E, <43>

where A, E, AE, and acE represent the Acetylcholine, Acetylcholinesterase, Michaelis 

ligand-substrate complex, and acylate enzyme, respectively, and k E1, k - E1, k E2 and k E3 

are the forward and backward reaction constants for E, AE  and acE, respectively. In a
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normal NM J activity, the enzymatic destruction o f  Acetylcholine by AchE is an 

important reaction. Thus, we have included the complete fundamental processes which 

constitute the production, transmission and attenuation o f a neuromuscular action 

potential; that is, reactions Eqs. (41)-(43) represent the full kinetic cycle o f  Acetylcholine 

initially reacting with Acetylcholinsesterase and proceeding to the final renewal o f  the 

enzyme.

The reaction rates o f the chemical equations involving the enzyme given above 

can be expressed by the following equations:

d(E )  (44)
=  -fc £1(A )(E) + fc_£1(AE) +  k E3(acE),

d t
d (A E ) i (45>d t  =  k E1(A )(E )  -  fc_£1(AE) -  k E2(AE) ,

ddacE) (46)
— j j .—  =  “ k E3(acE ) +  k E2(AE).

The Acetylcholine is transported across the cleft and reacts with receptors located 

on the postsynaptic membrane. We expressed the rate change o f  concentration for 

Acetylcholine in a diffusion-reaction equation with source terms in the Cartesian 

coordinates:

5(A) „  a 2(A) , „  a 2(A) , „  a 2(A) (47)
d t  ~  x d x 2 + U y  d y 2 + 2 d z 2

- 2 k R( A K R ) +  k - R(AR)

- kAR(A X A R ) +  2k -AR (A 2R)

- k E1CA)(E) +  k . E1{ A E \  

where Dx, Dy , and Dz are diffusion coefficients along the x, y, z direction, respectively, 

and R, AR, and A 2R stand for unbound, single-bound and double-bound closed 

Acetylcholine receptors. The values o f all the coefficients in our simulation is listed in
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Table. 4-1. After a nondimensionalization process, we rescaled the geometry as 0 <  

x , y  <  5 and 0 <  z  <  0.5.

Table 4-1: Values o f  coefficients in NMJ simulation.

Name Value (units)

3.0xl07 M 'S '1 (3.0xl04 K g 'S 1)

k-R l.OxlO4 S'1

kAR 3.0xl07 M 'S’1 (3.0xl04 K g'S’1)

k-AR l.OxlO4 S'1

kE i 2.0x108 M -'S1 (2.0xl05 K g'S’1)

k-Ei l.OxlO3 S'1

kE2 1 lO.OxlO3 S'1

kE3 20.0x103 S’1

Dx, Dy, Dz l.OxlO-6 cm'2/s

R 5.0xl0‘5 cm

L 5.0X10-6 cm
Num. o f  molecules per Mol 6.022x1023 mol-1

The boundary conditions for A are assumed to be:

dA(x,y ,0 ,t)  = (48)
dz

3A(x,y, 0 .5 ,0  (49)
dz

A( x, y ,  z , t)  = 0, where x 2 + y 2 = 52. (50)

The initial conditions for A, R, and E are assumed to be:

A (x ,y ,z ,0 )  = A0, (51)

/?(x ,^ ,z ,0) =  /?o, (52)
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E(x, y ,  z, 0) = E0, where 0 < z  < 0.5. (53)

The parabolic Eq. (47) with an activated enzyme is to be solved numerically to predict 

the evolution o f the concentration o f  Acetylcholine under normal neuromuscular 

operation.

4.3 Numerical Method

The ordinary differential Eqs. (44)-(46) are solved with the 4th order o f the 

Runge-Kutta scheme for E, AE  and acE. We demonstrate the procedure for £  as an 

example below and the rest are similar:

Un + 1  __  rfTL I Erkl + 2 E rk2 + 2 g rfc3 + Erk4 ( 5 4 )
Cg c g 6 >

where the subscript g  stands for the global value, the subscript r k x represents the first 

step in Runge-Kutta scheme, etc., and coefficients Erkt, Erk2, Erk3, and Erk4 are 

determined as:

Brtl =  U  \ - k E1 ( S I M )  E'g +  k - B1(AE”t ) +  fcraCacfiJ)],

Erk2 — At

Erk3 ~ At

Erk4 ~  At

- k n  ( d L M )  (b ; +  +  k . E1 (a e "s+ M )

+ k E3(acE'g + a- ^ )

■kEl ( £ M )  ( b ; + M )  + ( A g i +  

+A:E3(acB ; +  5 M )

* « ( ^ )  ( s ; + * £ )  +  (-U 5  +

+ k E3( a c E " + ^ )

(55)

(56)

(57)

(58)

where A E rk,a cE rk are chemical compound Michaelis ligand-substrate complex and 

Acylate enzyme in the corresponding steps in Runge-Kutta scheme.
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For the parabolic differential Eq. (47), we first use the Spectral Element Method 

to discretize the spatial derivatives only and then adopt the second order Crank-Nicholson 

scheme for temporal derivatives. Within a typical element in the original x , y , z  

coordinates, we transfer it into a standard element in ^ ,,^ 2, ^  , and then describe the

solution for A in Eq. (47) in a typical element in terms o f  a tensor product o f three one 

dimensional Lagrange polynomials on quadrature points:

p0 Po Po ( 59}

^ ( 6 . 6 , 6 )  = Y y y 4 L X ( £ , m ? , m & )  = V .-C .I’L ,,
p  q r pqr

where P0 is the polynomial order o f  the basis function. For convenience, we choose the 

same order in x, y , z  coordinates, although different orders could be implemented.

From the collocation property o f  nodal SEM, we know that the coefficients o f  the 

basis functions are the numerical solutions at quadrature points. Those reaction terms in 

Eq. (47) can be represented as:

[ ( A w m , Z 2>t3) = lJ .W PV)-*(XPV)TV'P<r> (60)
pqr

[(A)(AJt)Y (^2, ^ )  = Y j { APqr)*(ARpqr) Y ^  (61)
pqr

[(a 2r )y  ( £ , & , & ) = ( 6 2 )
p q r

[ ( A X E ) Y = J J (A Mr)* (E pvr)Y&Mr, (63)

[(AE)Y (&,&,&) = Y±(AE)Pq,Y&M,  (64)
pqr

where superscript e stands for the elemental solutions. For nonlinear terms, the 

coefficients are calculated in the point-wise product o f the values o f two species on the 

quadrature points. We denoted this operation as “ . * ” in Eqs. (60)-(63) and (64). To be



38

specific, we choose Eq. (60) to illustrate this implementation. The nonlinear product 

(A)(R) at a quadrature point are computed as below:

= [(Apqr)Y &pqr(vk)[(Rlmn )Y djk ). (65)

Due to the property o f  8  function:

e - J 1’ p= i,q  = j , r = k  (66)
^  pqrOj &pqrjjk 1 „ n  , >^  J [0, Otherwise

and

„ fl, l — i,m = j ,n = k  (67)
Q>lmn 0 M  = 8lmn iik =1lmn lmn'ljk [ 0, Otherwise

Eq. (65) can be approximated as:

[(^)(/?)r ( £ , £ , 4 )  =  KApqr)Y{(Rpqr)Y<$>eMAijk) = KApq,)* tA R pqr-)Y<S>epqA m -  (68) 

Galerkin projection is performed with the test functions chosen to be the same as the 

basis functions:

po p0 (69)

^lmn III
I m  n

We could acquire the weak form in a single element by performing a Galerkin projection. 

After the global assembly, we get the matrix form o f Eq. (47):

=  - K A g -  2 k RK [ { A g).*  ( R g )] +  k . Rm . m g (70)

" ^ * M [ {Aa >  ( M g ) ]  + 2 k . ARMJiA2R^g 

~ k EiM l(A g).* (,Eg )] +  k_E1M (A E )g .
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where M_ is the global mass matrix:

=  = Z (  /
(71)

e \Cle

| J  | is the Jacobian o f the element e, Q e is the integral domain, and n  is the total

number o f  elements. The diffusion matrix K  consists o f contributions from all directions:

K  = Zi'N
-  ! n , ( * U r i ( * U x (fg %  -  fjj t )  1 ^ 3  '

+Dy in'(Q’pqriyi'&lmniy ( ^ ^ 7  ~  t',1 ^ i )  ^ 1^ 2^ 3

+ d z ( ^  -  ^ )  l y i j 'd f .d f  2d f 3

on. F.n tfiRt becom es-

V - -tie - • z -

By Crank-Nicholson, Eq. (68) becomes:

,n + 1 >.n An +1 . ,.n4n+1 _
Af .
=  A t

'R ? 1 +

(AR)g + 1 + (AR)g) -  k j n K
+ ^ Q4J?)g+1 +  Q4i ? ) ^

+2fc_i4RAf
Q42ft)g+1 +  Q42R ) ^

(72)

(73)

t % *+1 + /(A E )” +1 +  (i4 £ )2 \
+ fc-nM( * 2

The computational procedures for values o f  chemical compounds at the next time 

level n  +  1 from the present level n  are as given below:

1: Initialize values o f compounds A, R, AR, A 2R, A 2Ropen, E, AE, and acE  at 

time level n  +  1 with the same values at time step n;

2: Apply the Runge-Kutta scheme to obtain the values o f  A, R, AR, A 2R, 

A 2Ropen, E, AE, and acE  at time level n  +  1;



40

3: Substitute updated values o f A, R, AR, A 2R, A 2Ropen, E, AE, and acE  from 

step 2 into Eq. (71), then solve for the value o f A at time level n  +  1;

4: Repeat steps 1 to 3 until the overall difference o f  the two adjacent values o f A 

is under a tolerance o f 1.0 x  10-12.

4.4 Numerical Results and Discussions

We use the nodal Spectral Element Method for numerical solutions. The 

resolution could be improved by introducing more quadrature points; hence, the 

polynomial order o f the basis’ expansions are increased as well.

Figure 4-3 shows the top view o f the computational domain in the cross section of 

NMJ at plane Z  =  0 with a polynomial order o f 3 ,4 , and 5. The red lines are the 

boundaries o f  elements, and intersections o f blue lines are actual quadrature points within 

this element. Quadrature points are selected to be zeros o f  Legendre polynomials and 

cluster around the boundaries in order to minimize the overall discretization error.
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Poly. Order = 3 Poly. Order = 4

ic mitui-5 -4 -3 -2 -1
X

>• 0

X
Poly. Order = 5

^'V::::;iSii!S! i i : : : : ;
5̂ . ,  III!

Figure 4-3: NMJ simulation: Computational mesh at different polynomial orders in the 
plane Z =  0 for NMJ.

Figure 4-4 illustrates the side view o f computational domain in the middle cross 

section (plane Y — 0) o f  NMJ at the polynomial order being 3 ,4  and 5. To better 

visualize the mesh, we exaggerated the ratio in the z  direction for the cases o f  the 4th and 

5th order expansion. This is because the synaptic cleft is very thin and when the 

polynomial order is above five, quadrature points are clustered together in the plot.
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Poly. Order = 3 (x, z ratio 1:1)

Poly. Order = 4 (x, z ratio 1: 0.5)

Poly. Order = 5 (x, z ratio 1: 0.5)

Figure 4-4: NMJ simulation: Computational mesh at different polynomial orders in the 
plane 7  =  0 fo r  NMJ.

Since the diffusion process o f the neurotransmitter Acetylcholine happens in the 

NMJ cleft, we show the contour lines o f  concentration in the cross sectional plane o f Y = 

0 in NMJ in Figure 4-5. Four typical time snapshots are presented to show the change in 

the concentration o f Acetylcholine in NMJ. Since the diffusion rate is almost the same in 

all directions (the effect o f  confinement is neglected here), we observe that speeds are the 

same in the x, y  directions. To consider the effect o f  confined diffusion and any 

inhomogeneity, we could set different diffusion rates in each direction.
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Values 
2.20E-06 
2.03E-06 
1.87E-06 
1.70E-06 
1.54E-06 
1 37E-06 
1.21E-06 
1.04E-06 
8.77E-07 
7.12E-07 
5.46E-07 
3.81 E-07 
2.15E-07 
5.00E-08

IP1.5M0'*

Figure 4-5: NMJ simulation: Time-evolution o f Acetylcholine in the diffusion-Reaction 
system in the plane 7  =  0.

An accurate model should be capable o f predicting the number o f open receptors 

versus time. Some references such as [74, 75, 76] have reported that the maximum 

number o f  open receptors during the course o f a normal action potential is about 2000 at

0.3 ms. Our predicted time evolution o f A 2Ropen in the neuromuscular junction is shown 

in Figure 4-6. We could see the total number o f  A 2Ropen increase significantly in a very

short time and reaches its maximum around time 0 .4  x 10 s  and then rapidly decreases

 ^
after 3 x 1 0  s . This trend agrees with the experimental data [77, 69], Table 4-1 lists the 

geometrical size parameters, reaction rate constants, diffusion coefficients, and other 

parameters in the model.
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Figure 4-6: NMJ simulation: Time-evolution o f number o f  molecules o f  A 2Ropen in 
NMJ.

To further demonstrate the time evolution o f double-bounded open Acetylcholine 

receptors (A2Ropen) located at the post synaptic membrane, we show the contour plots of 

the concentration o f A 2Ropen versus time. Because the most significant reaction and

diffusion takes place from the beginning to 1.5xKT3s , we focus on this frame in Figure 

4-7 and Figure 4-8. The variation o f concentration agrees with the results in Figure 4-6. 

We assume that the distribution o f Acetylcholine receptors at the post-synaptic 

membrane is uniform. Our model allows us to study how a certain abnormal distribution 

affects the receptor dynamics during an action potential through changing the distribution 

o f Acetylcholine receptors according to the actual situations.



1.0E-12 2.7E-12 7.4E-12 2.0E-11 5.5E-11 1.5E-10 4.1E-10 1.1E-09 3.0E-09

Figure 4-7: NMJ simulation: Time-evolution o f concentration o f  A2Ropen at Post 
membrane, Part 1.



1.0E-12 2.7E-12 7.4E-12 2.0E-11 5.5E-11 1.5E-10 «.tE-10 1.1E-09 3.OE-09

Figure 4-8: NMJ simulation: Time-evolution o f concentration o f A 2Ropen at post 
membrane, Part 2.

4.5 Conclusions

We have presented a full 3D model with realistic geometry via Spectral Element 

Method for simulating the reaction-diffusion o f Acetylcholine and Acetylcholine 

receptors’ dynamics in the neuromuscular junction under conditions o f activated enzyme. 

Results show agreements with other literatures [70, 72, 76] that the maximum number of



47

open receptors during the course o f a normal action potential to be around 2000 after 0.3 

msec. With high accuracy, our model predicted the maximum number o f open receptors 

as time goes by. Aside from that, this model is fully capable of studying the sensitivity of 

the open receptors’ dynamics to the changes in the anisotropic diffusion parameters, and 

it can also analyze the subsequent effects o f  open receptor distribution when 

Acetylcholine receptors are not uniformly distributed at the post membrane. Future 

investigations will focus on the study o f  an organophosphate neurotoxin entering the cleft 

from the outer periphery and enzyme regeneration with oxygen therapy.



C H A PT E R  5

DISCONTINUOUS GALERKIN SIMULATION OF 
INCOMPRESSIBLE FLOW

5.1 Introduction

This chapter focuses on using the DG method to solve incompressible Navier- 

Stokes’ equation. 2D and 3D simulations o f  the flow passing a cylinder and lid-driven 

cavity flow will be presented to show the accuracy and efficiency o f  the DG method. For 

the DG solver, unstructured triangle mesh and tetrahedron mesh are used for 2D and 3D 

simulations, respectively.

5.2 Numerical Method

Time-dependent incompressible Navier-Stokes equation is considered below:

u t + ( u -  V )u  = — V p +  v A u  + f  in (0, T) x  £1, (74)

V • u  =  0 in (0, T) x  £2, (75)

where u  = (u, v) and p are velocity in x, y directions, pressure, v  is kinematic viscousity

and f  represents the external force.

We rewrite the nonlinear convection term into flux form F :

F \ u 2 uv]  (76)
'■UV V 2J

Then we have the conservative flux form o f Eq. (74):

48
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u t + V • F =  — Vp + v A u  +  / ,  (77)

7  • u  =  0 . (78)

5.2.1 Time Splitting Scheme

Second order accuracy time splitting scheme is used for marching time. Within

each time step, the original Navier-Stokes equation is separated into three equations.

Firstly, we explicitly integrate the conservation component [78]. Adams-Bashforth

second-order scheme is used:

y u  — a 0u n -  a xu n_1 (79)
r-  2 _ _ ----- 1-------- = - p 0 V - F ' - ( 3 1 V - F ' - 1 .

Second, a pressure Poisson equation is solved by assuming:

17 ■ S  =  0, (80)

p2pn+i = I _ V . U (81)
K At '

with proper boundary condition for pressure. For the inflow and the wall boundaries, the

Neumann boundary conditions are derived from the governing equation as:

d p n+1 ,  . n (82)
=  —/?0n • ( u t +  V ■ F  -  v A u )

— • (u t +  V ■ F  — v A u )  n \

Then, the velocity field is updated by:

u  — u  (83)
Y —I—  =  —Vpn+1.At

Last, we implicitly integrate the viscous component:

u n+i _  (84)
y  r =  vA un+1.
1 At
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With the Sum o f all three sub steps together, and we have a second order scheme in

time, as shown is Eq. (83), where u  and u  are intermediate velocity field.

y u n+1 — y u  + y u  — y u  + y u  — a 0u n — (85)
—

=  —p Q V ■ F*1 — ■ F " " 1 -  V pn+1 -I- vA un+1.

5.2.2 Internal Penalty Flux

Since the first step in the time splitting scheme is to solve a nonlinear convection

equation, the discontinuous solution may be acquired in this step. In order to eliminate

the jum ps from the solution o f the convection time step, for Poisson and Helmholtz

equations, internal penalty fluxes are used to adjust the solution.

For example, consider the two dimensional Poisson equation,

V2u  =  / .  (86)

We reconstruct it as a system o f two first order equations [79, 36]:

( Vu  =  q  (87)
[ V - q = f '

Assume we discretize (u,q)  as (u, q x , q y ), and we obtain the strong form for the first 

equation o f (87):

M q l  =  Sxu h -  f dDkn x ( u h -  u*h) l ( x ,y ) d x d y ,

Mq yh =  Sy u h -  n y (u h -  u*h)l(x ,  y )d x d y .
J d D k

So for the second equation o f (87), we have:

SxRh +  Sy q yh -  f  n  {qxh -  q*h) l ( x , y ) d x d y , 
JdDk

(88)

(89)

(90)



51

~  "- ( f l l -  q*h) K x , y ) d x d y  = Mf h.
J d D k

The internal penalty fluxes are:

<7h = -  r i l l ] ,  u*h =  {{«*}}, (91)

where {{Fuh}}~ —  *VUh and [[u]=n_u ~ + n +u +.

5.2.3 Constructing Data for Visualization

Unstructured mesh, such as triangular or tetrahedron element, is used in the DG 

simulation to visualize the results which usually requires additional information about 

connectivity. A new approach which is suitable for Tecplot format is used to generate the 

output data without providing the connective information. Tecplot zone data type is used 

for constructing the data. For instance, if  the order o f the basis function in each triangle 

element is chosen to be Porder =  5, then we have a total o f  (Porder +  1) (Porder +

2 )/2  =  21 interpolation points in the triangle. In order to avoid constructing the 

connective data for these interpolation points, we expand to (Porder +  l ) 2 points with 

extra points assigned the values using the rules shown in Figure 5-1.

21
32 . 33 . 34. 35 . 36

1 9  —

2 5 I. 27 . 28 . 29 . 30

1 » 1. 22 . 23 . 2420

i. 17. 18

12

42

1 2  3  4 5  6

Figure 5-1: DG: Generating Tecplot compatible data for visualization
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5.3 Numerical Results and Discussions

5.3.1 Two Dimensional Simulation o f  Flow Passing Cylinder

A 2D simulation o f the flow passing a cylinder, as shown in Figure 5-2, is 

considered in this section, with zero external force and proper initial and boundary 

condition:

1. At wall and cylinder surface, non-slip boundary condition for u  and Neumann 

boundary condition ^  for pressure.

2. At the inflow, u  = (sin(7rt/8)(6>'(0.41—>')),0), 0 < y  < 0.41, 0 <  t < 8s, and 

Neumann boundary condition ^  for pressure.

3. At the outflow, = 0, p=0.

j 0.41 m

Figure 5-2: DG simulation: Schematic o f  computational domain [80], 2D.

The Reynolds number in this simulation is around 100. Figures. 5-3, 5-4, and 5-5 

sequentially show the meshes and DG results at time t  =  8s. We could see that the 

simulation results are consistent and not mesh-dependent. Vector fields and pressure 

contour are illustrated in each figure, and the vortex street is formed in the channel.

Six independent simulation runs are performed with different mesh and basis 

function settings, as shown in Table 5-1. The maximum drag, lift force and pressure 

difference are computed and compared with the reference value [80]. A good agreement

inlot 0.15 m g  
------ ^  • 0.1 m

outlet

! 0.15 m

2.2 m
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is shown in Table 5-1. The number o f  degree o f freedoms in the DG simulation is only 

one tenth o f  the number required compared to standard Finite Element Method.

TrianglaMash

Vabefey and PiaauraQn Contain)

Figure 5-3: DG simulation: 2D simulation results o f 115 elements and a polynomial order 
o f  5.

Titangla Maah

Vabclty and Praaura(kn Cantou*)

Figure 5-4: DG simulation: 2D simulation results o f 307 elements and a polynomial order 
o f  5.
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Trtangte Marti

Vatoctyand Praaur*(in Contour)■
9 HMj

Figure 5-5: DG simulation: 2D simulation results o f 704 elements and a polynomial order 
o f  5.

Table 5-1: DG: 2D simulation results compared to reference values.

Element
Number

Polynomial
order

Maximum
Drag

Maximum
Lift

Pressure
Difference

Nodf

115 5 2.9827 0.4749 0.1067 7245

Numerical 307 3 2.6332 0.4598 0.1266 9210
Results

4 3.0571 0.4238 0.1076 13815

5 2.9598 0.4022 0.1080 19341

704 4 2.9458 0.3784 0.1069 31680

5 2.9434 0.3888 0.1070 44352

Reference N/A N/A 2.9505 0.3821 0.1113 449856
Value

5.3.2 Three Dimensional Simulation o f Flow Passing Cylinder

Similarly, a full 3D problem o f flow passing a cylinder with a circular cross- 

section is considered. The fluid channel shown in Figure 5-6 [81, 82] is defined asO <
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x  <  1 .5 ,-0 .2 0 5  <  y  <  0.205, —0.205 <  z  <  0.205 and with a  cylinder center located 

at x  =  0.5, y  =  0, and z  =  0. The cylinder has a diameter o f 0.1. Similar to the 2D 

simulation, non-slip velocity boundary conditions are set at the channel walls and 

cylindrical surface. At the inflow side o f the channel, the fluid has a velocity o f  0.45 m/s 

in the jc direction. At the outflow, the fluid has Neumann boundary condition for velocity

which is = 0 , and Dirichlet boundary condition for pressure p =  0. The Reynolds
o n

number o f  this simulation is around 20 with given inflow velocity.

Inlet

O.tSSm
Watt

Outlet

0.41m

Figure 5-6: DG simulation: Schematic o f  computational domain, 3D.

Figure 5-7 shows the meshes we used for our 3D simulation. The tetrahedron 

elements are depicted by black lines, while the interpolation points are presented as 

intersections o f  red lines. Figure 5-8 shows the contour plots o f velocity in the jc direction 

obtained by using 5920 tetrahedron elements and third order bases. Different slices o f  the 

velocity fields are drawn.
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Figure 5-7: DG simulation: 3D simulation o f flow passing cylinder: Mesh o f  2898 
elements with a polynomial order o f 4 and mesh o f 3320 elements and a polynomial 
order o f 3.
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Ux
0.477974
0.418644
0.359314
0.299983
0.240653
0.181323
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0.0626618
0.00333148

Ux
0.465617
0.40135
0.337082
0.272814
0.208547
0.144279
0.0800115
0.0157438

Figure 5-8: DG simulation: 3D simulation o f  flow passing cylinder: Contour profile o f 
velocity u  in the jc direction, with 5920 elements and a polynomial order o f 3.
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Figures. 5-9, 5-10 and 5-11 present the contour plots o f  velocity in y  and z 

directions and the pressure distribution, respectively. The view angles are adjusted 

individually for a better illustration.

Uy
0.22573
0.169293
0.112856
0.0564191
-1.79037E-05
■0.0564549
•0.112892
■0.169329
■0.225766

Figure 5-9: DG simulation: 3D simulation o f  flow passing cylinder: Contour profile o f 
velocity v  in the y  direction, with 5920 elements and a polynomial order o f  3.
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Uz
0.108647
0.0814771
0.0543078
0.0271384

-3.09646E-05
-0.0272003
-0.0543697
-0.0815391
-0.108708

Figure 5-10: DG simulation: 3D simulation o f flow passing cylinder: Contour profile o f 
velocity w  in the z direction, with 5920 elements and a polynomial order o f 3.

Four independent simulations are performed with different settings (hp- 

refinement). Table 5-2 lists the computed drag force, the lift force and the pressure 

difference. Our simulation results have a good match with the reference values [82],
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Pr
0.186382
0.159818
0.133254
0.10669
0.0801254
0.0535612
0.026997
0.000432737

-0.0261315

Figure 5-11: DG simulation: 3D simulation o f flow passing cylinder: Contour profile of 
Pressure, with 5920 elements and a polynomial order o f 3.

Table 5-2: DG: 3D simulation results compared to reference values

Element
Number

Polynomial
order

Maximum
Drag

Maximum
Lift

Pressure
Difference

Nodf

Numerical
Results 2109 4 6.0044 0.0097 0.1577 295260

2898 4 6.1059 0.0095 0.1611 405720

3320 3 6.0977 0.0091 0.1546 265600

5920 3 6.1105 0.0095 0.1613 473600

Reference
Value

N/A N/A 6.1295 0.0093 0.1693 2426292
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5.3.3 Two Dimensional Simulation o f Cavity Flow with High Reynolds Number

Two dimensional lid-driven cavity flow with Reynolds number o f 1000 or 5000 is 

considered, respectively. Unstructured mesh consisted of 385 triangular elements is used 

in this simulation and the Lagrangian polynomial o f  the order 7 is chosen as the basis 

function. Since all the rich features o f  2D cavity flow are mainly located at the three 

comers (right-upper comer excluded) o f the domain, more dense meshes are put to these 

three comers while coarser meshes are at the other places, as shown in Figure 5-12. The 

intersections o f red lines are interpolation points within each triangular elements.

Figure 5-12: DG simulation: 2D lid-driven cavity flow: Mesh o f 385 triangular elements.

Figure 5-13 illustrates the streamline o f the 2D cavity flow with a Reynolds 

number o f 1000 at a time o f 40 seconds. We could see two separations locate at the 

bottom comers. Velocity profiles along the lines o f X =  0 and Y =  0 are examined and
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compared with the reference values from [83, 84]. Since an unsteady Navier-Stokes 

equation was considered, we choose a relatively steady velocity field at a time o f 40 

seconds for comparison. Comparisons are illustrated in Figures 5-14 and 5-15. The red 

line represents the reference values and the green squares are the numerical solutions.

05

04
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02

01

>•

•0.1

-02

-03

-04
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X

Figure 5-13: DG simulation: 2D lid-driven cavity flow: Streamline with Reynolds 
number 1000.
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Figure 5-14: DG simulation: 2D lid-driven cavity flow: Velocity v versus X, Reynolds
number 1000.
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Figure 5-15: DG simulation: 2D lid-driven cavity flow: Velocity u  versus Y, Reynolds 
number 1000.

Figure 5-16 shows the streamline o f the 2D cavity flow o f  Reynolds number 5000 

at a time o f 80 seconds. More separations will occur at the three comers as the Reynolds 

number increases. Similarly, we examined the velocity profile at a time o f 80 seconds 

located on lines X =  0 and Y =  0, respectively, and compared them to the reference 

value. As shown in Figures 5-17 and 5-18, simulations results are close to the values in 

reference papers [85, 84].
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Figure 5-16: DG simulation: 2D lid-driven cavity flow: Streamline with Reynolds
number 5000.
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Figure 5-17: DG simulation: 2D lid-driven cavity flow: Velocity v versus X, Reynolds
number 5000.
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Figure 5-18: DG simulation: 2D lid-driven cavity flow: Velocity u  versus Y, Reynolds 
number 5000.

5.3.4 Three Dimensional Simulation o f  Cavity Flow with High Reynolds Number 

A 3D lid-driven cavity flow in a cube o f unit length with Reynolds number o f 

1000 is considered. The cube is decomposed into 777 tetrahedron elements. Within each 

element, Lagrangian polynomial o f  an order o f  4 is used as the basis function. The mesh 

adopted in this simulation is shown in Figure 5-19, in which the tetrahedron element is 

illustrated as black lines and inner interpolation points in each element are presented as 

the intersections o f  red lines. At the plane Z =  0.5, the flow is given a constant unit speed 

in the x  direction, while other planes are assigned a non-slip boundary condition. We run 

the simulation till T = 20 seconds. Figure 5-20 and Figure 5-21 show the velocity contour 

o f  the 3D cavity flow in x  and z  directions (u and w), respectively. The slices as shown in
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figure are in planes o f  Y  =  —0 .4 ,7  =  0 and Y =  0.4. View angle are adjusted for a better 

viewpoint.

Figure 5-19: DG simulation: 3D lid-driven cavity flow: Mesh o f 777 tetrahedron 
elements.
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Figure 5-20: DG simulation: 3D lid-driven cavity flow with Reynolds number 1000: 
Velocity contour o f u  in planes o f  7  =  —0 .4 ,7  =  0 a nd  7  =  0.4.
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Figure 5-21: DG simulation: 3D lid-driven cavity flow with Reynolds number 1000: 
Velocity contour o f w  in planes o f Y =  —0.4, Y = 0, and  Y  =  0.4.

5.4 Conclusions

Two dimensional and three dimensional simulation results are presented in this 

chapter and have demonstrated that DG approach is advantageous to handle strong 

hyperbolic problems. Unstructured mesh such as using triangular element or tetrahedron 

element is used in our simulation to illustrate the flexibility o f our DG solver for solving 

the problem with complex geometry. Therefore, Our DG solver can be further used to 

conduct reseach in electrodynamics, fluid mechanics and plasma physics.

For a larger scale o f DG simulation (especially 3D simulation), parallel 

computing is necessary. For our 3D simulation, a single run o f 5920 element and bases 

with a polynomial order o f  3 took more than 38 hours for 8 seconds o f real time 

simulation. Besides, the DG method strongly relies on numerical fluxes, and the
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numerical fluxes are only applied at the interfaces o f the adjacent elements or on the 

boundaries. By increasing the polynomial order o f bases, the ratio o f  boundary points and 

interior points decreases, which means the proportion o f  total points with numerical 

fluxes deceases. Therefore, for gaining a better resolution, /2-refinement is a must. Simply 

increasing the order o f  bases without introducing more elements will take longer time to 

gain a converged solution or, in some cases o f  simulating strong hyperbolic problem, 

even destroy the accuracy and fail to obtain a correct solution.



CHAPTER 6

SMOOTHED PARTICLE HYDRODYNAMICS AND GPU 
COMPUTING

6.1 Introduction

This chapter is based on my contribution to the submitted manuscript titled 

"Mesh-free GPU simulation o f violent flows in rapidly distorting domains with Smoothed 

Particle Hydrodynamics." I am the first author o f this paper and its content is used in 

Chapter 6 with proper referencing.

6.2 Formulation of Smoothed Particle Hydrodynamics

6.2.1 Fluid Particles

The momentum equation o f fluid, in Lagrangian form, is as follows: 

d v  1- =  - - w + M  * + /„,
(92)

where P is the pressure, p  is the density, and f ex stands for the external force. In order to

conserve linear and angular momentum and stabilize the simulation, Gingold and

Monaghan [38] reconstructed the original pressure term:

1 / P \ P
- - V P  + p A v  =  — J — —  Vp +  pAv. (93)

72
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By following the SPH formula [43], we have 

d v i
d t  ' p] ' ' ' e*' (94>

in which, subscripts i and j  denote the indices o f particle o f  interest and the surrounding 

particles, respectively. For WCSPH, density Pi is given by [40, 42]:

P i = Y j m j W ijt (95)

j

and Pj is computed from equation o f state [42], which depends on Pi only:

P i = ^ ~ k — ) 7 - l | -  (% )
7 I Pa J

. 2

K
fljy is the viscous pressure which has the following expression [86]:

<n2acfiij + (Spfj
(Pl +  py)/2  ' (97)

0, o th erw ise ,

in which, p.ij is equal to r 2^ o o i ft2 w^ere h is the radius o f influence region. The specific

values for a  and /? depend on the type o f problems. For a low Mach number flow, a  =

0 and 0 <  /? <  1; for a high Mach number flow, a  = 1 and /? >  1.

6.2.2 Solid Particles

For an elastic body, since it involves stress tensor a , we write the momentum 

equation in the component form [87]:

d v a 1 d o ab
- i 7  = - i r T + f a’ <98>d t  p dx°

where f a is the external force. To avoid the conflict in symbols, we use a and b to 

represent Cartesian components. Tensor stress a ab is consisted o f  two components, 

volumetric stress P 8 ab and deviatoric stress S ab. To calculate the volumetric stress, it is
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easy. However, for the deviator stress, we update it by adding the change o f S ab to the 

previous deviatoric stress. The rate o f change o f S ab is given by: 

d S ab
d t

where i ab and f l ab are defined below:

2fi (eab -  + Sacn bc + n acScb, (99)

2 \ d x b d x aj
(100)

„ 1 ( d v a d v b\
n a b = - l — r -- - - - - - ). ( i o i )

2 \ d x b d x aJ

To calculate the velocity derivatives, relative SPH scheme for velocity is adopted [88]:

dV® X ~ *  m i  n  n  j

^  = " L  (v f" ^  <102)
J 2 1

For the momentum equation o f the elastic body, the SPH scheme is:

d v f  y 1 ( ffi h r f b\ d w ij
d t

Z / f f j  aj  \ 0 W j j

,  m ' ( 7 r + 7 f ) w + / a - (103)

6.2.3 Particle Interactions

The interaction force exerted between particle "i" and particle "j” is described by the 

Lenard-Jones potential [41, 88]:

/  V t i l  /  V T i ' i  "1I !  f  T 1 /  ~ \
f i j  =  C0 lJ (104)

r U

where r tj  =  r* — r ;-, r0 is the initial spacing between two particles, p t and p 2 are chosen 

to be 12 and 6, respectively. C0 is an adjustable constant that depends on a particular 

problem.
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6.2.4 Velocity Evaluation

Particle movement is computed using the XSPH scheme:

d r i
~dt = v i + e Y j mj WH■ ( 105>

with ptj =  and 0 <  £ <  1 as a factor, which averages the velocity in the influence.

6.2.5 Time Evolution and Code Speedup

Although there are many options o f high order time integration schemes, we 

choose the forward Euler method in this paper for simplicity. As an explicit method I 

time, the time step should be restricted by the CFL condition:

A t < ~ ,  (106)
c

where h is the characteristic length and c is the speed o f propagation.

The procedures o f  the implementation for time evolution are shown in Figure 6-1. 

The values o f  velocity and positions are initialized at the beginning, and the densities o f 

fluid and solid particles and pressure are computed with the position vector. Since the 

previous velocity o f each particle is known, the deviatoric stress and viscous stress can be 

calculated. Next, using those known forces on particles, we could compute the 

acceleration o f  each particle. With the acceleration, we integrate to determine the values 

o f the velocity and position o f each particle at the next time level.
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Figure 6-1: GPU SPH simulation: Schematic o f  the implementation procedures.

Several ways are applicable to speed up the SPH code. For instance, one approach 

is to improve serial searching algorithms, and another one is by parallel implementation. 

The former approach mainly is to improve the efficiency o f searching for neighboring 

particles. An example is the tree search, which reduces the operation counts down to 

O( N 2) to 0(N logN). Another example is by introducing a link list, and only the 

neighboring particles within the list o f neighbors o f immediate neighbors are searched.

Perhaps the most intuitive approach is by using parallelization because SPH is 

ideal for parallelization and every particle is task-independent. We use NVIDIA CUDA 

C++ to write GPU codes and allow individual GPU thread to search for neighbor 

particles and compute forces. The flow chart o f  GPU version SPH is illustrated in Figure
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6-1. The computational time is significantly reduced. However, since CUDA is still in its 

early stage o f  development, it does not support a composite or nested data structure, such 

as class or structure. Therefore, in order to utilize GPU to perform computations that use 

a complex data structure, we have to convert from a simple and raw data structure to the 

composite memory-access efficient data structure that we designed in our codes.

6.3 Numerical Results and Discussions

We present three test cases in both two dimensional and three dimensional spaces 

in order to illustrate better visual effects o f results from GPU computing applications. 

Three different types o f  particles, fluid, elastic solid, and boundary particles are 

considered with different properties. The numerical simulations were performed on the 

desktop equipped with the Intel i5 processor with 16 GB memory and NVIDIA GTX 760 

graphic card with 2 GB GDDR5 memory. Results are visually rendered immediately via 

the open graphic library (OpenGL).

6.3.1 Two Dimensional Simulation o f Unsteady Nozzle Flow

A nozzle is a common fluid dynamics and fluid mechanics device to change the 

direction and rate o f flow o f the fluid through it. The “de Laval” nozzle is one o f the most 

important one, since it is widely used in je t or rocket engines to obtain maximized kinetic 

energy in a certain direction.

To illustrate the characteristics o f a transient je t flow ejected from a nozzle, we 

used GPU computing to simulate a  2D unsteady nozzle flow which adopts the WCSPH 

formulas (previously discussed in the Section Formulations o f  Smoothed Particle 

Hydrodynamics). In Figure 6-2, photographs o f  the flow ejected from a nozzle at a 

different flow rate in a thin conical je t by Dombrowski [89] was presented as a
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comparison for our simulation. We set up a nozzle channel with the initial fluid velocity 

equal to a dimensionless speed o f  20/second, ignoring the effect o f the gravity force. In 

Figure 6-2, we can see that when the speed o f  outgoing flow increases beyond a critical 

point, the flow breaks into small droplets.

Figure 6-2: Unsteady nozzle flow: Flow ejected from a nozzle in a thin conical jet, 
photographed by N. Dombrowski [89].

Figure 6-3 sequentially shows the time evolution flow passing through this 

nozzle. The red color represents the high velocity particles, while, the blue color 

represents particles o f the lower velocity. The total number o f  particles is 3,000.

Although we did not use a lot o f  particles, the effect o f  the boundary layer on the wall of 

the nozzle was created. The second and third subfigures in Figure 6-3 show what happens 

in a Hagen-Poiseuille flow. The last three subfigures in Figure 6-3 show the process o f  

droplet formation due to the effect o f  surface tension. The entire GPU simulation took 

only 40 seconds on a single GPU card as previously described.
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Figure 6-3: Unsteady nozzle flow: Five snapshots o f  a 2D unsteady nozzle flow. 

6.3.2 Two Dimensional Simulation o f Vortex Shedding

Vortex shedding formed by viscous fluid separated from a cylinder at Reynolds 

number between 40 and 150 is o f  engineering importance [90]. For example, in the
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designing o f bridges and offshore oil rigs, ignoring the effect o f vortex shedding could 

result in serious safety issues and potential loss o f equipment and lives [91], Simulation 

o f vortex shedding with SPH is rare in open literature [90, 92, 93, 94].

Figure 6-4 is a photo [89] for the experiment o f the Von Karman laminar vortex 

street [95]. We could see in Figure 6-4 that the vortices created behind the cylinder were 

separated from the boundary layer near the cylindrical surface which periodically 

detached from both sides o f the cylinder due to the adverse pressure zone created by skin 

friction on the cylinder. For comparison, a 2D GPU simulation o f a similar flow is 

illustrated in Figure 6-5. The flow has an initial dimensionless speed o f 15 per seconds 

with a peak Reynolds number o f 140. The only difference is that in our simulation, we 

use a narrow domain in order to use fewer particles and to speed up our GPU computing. 

The inflow and outflow are treated as periodic boundaries. This simulation used a total o f 

16,000 particles and it took 10 minutes and 22 seconds to spin the entire flow and to 

reach the stage o f steady vortex street shedding. This is much faster than using a mesh- 

based conventional method.

Figure 6-4: SPH simulation o f  Vortex Shedding: Von Karman vortex street behind a 
circular cylinder at Reynolds number 140, photographed by Sadatoshi Taneda [89].
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Figure 6-5: SPH simulation o f Vortex Shedding: Simulated laminar 2D vortex street at 
Reynolds number 140.

Figure 6-6 is a photo [89] for the experiment o f the flow passing a cylinder with a 

unit radius at Reynolds number 105. Using the results from our self-developed GPU 

codes, a matching run with the same setting as in Figure 6-6 was performed and shown in 

Figure 6-7. The domain is narrower than Figure 6-6 so that this GPU computing could 

render more resolution with 34,000 particles. The total GPU computing time is 35 

minutes. From the comparison between Figure 6-6 and Figure 6-7, we could claim that 

our GPU simulation captured the key characteristics o f  this vortex shedding phenomenon 

at the Reynolds number 105 with a relatively economical computational cost.

Figure 6-6: SPH simulation o f Vortex Shedding: Von Karman vortex street behind a 
circular cylinder at Reynolds number 105, photographed by Sadatoshi Taneda [89].
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Figure 6-7: SPH simulation o f Vortex Shedding: Simulated laminar 2D vortex street at 
Reynolds number 105.

6.3.3 Two Dimensional and Three Dimensional 
Simulation o f  Elastic Solid and 
Fluid Interaction

Many engineering problems involve a multi-phase media and a multi-phase flow, 

such as the dynamics o f  the weather development, the ocean circulations, and the near­

shore sediment transportation. Under certain situations, SPH could be efficient in 

simulating some complex two-phase flow problems. In the following, we present two- 

phase interactions o f  elastic objects and the fluid in two- and three dimensional spaces.

A two dimensional simulation o f the interaction o f  the fluid with a solid elastic 

cube and sphere at different times is shown in Figure 6-8. The size o f the simulation 

domain is 40 by 65 in dimensionless units, the same as below, surrounded by boundaries 

which consist o f  solid particles. The side o f the cube is 3 and the diameter o f  the sphere is 

3 as well. The density o f  the fluid is scaled to 1 and the density o f  both the cube and 

sphere is 0.6. Both solids are free falling under gravity before colliding with the collapsed 

fluid beam on the left. Initially, the fluid is fixed still on the left side o f the domain by a 

confinement immediately on its right. Once the simulation starts, the confinement is 

removed and the fluid is released from the left under gravity and then interacts with the 

elastic solids. Both objects are washed by the inertia o f  the fluid with some spinning. The 

color o f  the fluid particles indicates their magnitude o f velocity. Zero velocity is in blue 

and the higher velocity is in red with purple and pink, which denote the intermediate
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values. A total o f  5,500 particles are used in this simulation and it takes 3 minutes to 

complete this GPU computing, as shown in Table 6-1, compared with 14 minutes for a 

serial run on a single i5 CPU. Therefore, the GPU run is about 4 -5  times faster than the 

CPU run.

Similarly, a 3D simulation o f one solid elastic sphere o f  diameter 5 interacting 

with the fluid is shown in Figure 6-9. The simulation domain, a little larger than the 2D 

run, is 40 by 75 by 16, exactly the same density settings as in the 2D case used here. Four 

snapshots indicate the free falling and interaction processes at different moments. The 

velocity magnitude o f the fluid is indicated by the same color map as in the previous run. 

For a better visual effect, only the fluid and sphere are displayed and the boundary walls 

are skipped. A total o f  28,000 particles are used to render the three dimensional effect. 

Compared with over two hours o f CPU time with a serial algorithm without GPU 

computing, as shown in Table 6-1, the total run time for the GPU simulation is only less 

than 29 minutes. Therefore, the GPU run is at least four times faster than the CPU run.
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Figure 6-8: SPH simulation o f imping flow: Snapshots o f  2D solid-fluid interaction.
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Figure 6-9: SPH simulation o f imping flow: Snapshots o f 3D solid-fluid interaction.
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Table 6-1: GPU SPH: Execution time (seconds) and specifics o f GPU and CPU runs.

Simulations Number o f  
Particles

GPU Version 
time (seconds)

Serial Version 
time (seconds)

Time
Ratio

Unsteady nozzle flow 3,000 40 255 6.38

Vortex shedding Ex. (1) 16,000 622 2,605 4.18

Vortex shedding Ex. (2) 34,000 2,100 8,176 3.89

2D impinging flow 5,500 180 840 4.67

3D impinging flow 28,000 1,731 6,840 3.95

6.3.4 Simulation Execution Time

In this section, the execution time for GPU simulation versus CPU simulation is 

listed in Table 6-1. For all these five runs with exactly the same number o f  particles and 

unknowns, the GPU computing which does have a parallel computing involved is 4 to 6 

times faster than the corresponding CPU computation.

6.4 Conclusions

Simulation results have demonstrated that SPH, the mesh-free approach, is 

advantageous to handle problems involving free-surface flows, wave breaking, two-phase 

flows and polymorphic domain distortion. However, SPH is not an intrinsically accurate 

method due to its formulation and nature. To improve the resolution and accuracy, large 

numbers o f  particles are required for the simulation and parallel implementation is 

essential. A GPU-based multi-thread parallel approach could achieve a noticeable 

speedup comparing to a CPU serial algorithm.
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Several limits restrict the GPU computing. First, the memory on a single GPU 

card is limited which limits the maximum number o f particles allowed for a simulation. 

Second, the total number o f CUDA cores is finite. For example, our GPU card has 1,024 

cores. Third, GPU computing requires copying data back and forth between the CPU 

memory and GPU memory. This operation depends on the latency o f the system, i.e., the 

bus bandwidths o f both GPU and motherboard, and the cache size o f the system. 

Therefore, for large simulations such as one involving 100,000 particles, distributing the 

total computational load to multiple GPUs is necessary to accelerate the speed o f 

computation even further.



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK

In this dissertation, three different numerical methods are discussed individually 

and validations o f our general solvers are tested by solving four different problems with 

both complex physics and complex geometry. The application areas for each method are 

discussed.

In Chapter 3 and Chapter 4, the Spectral Element Method (SEM) based on a 

structured mesh is used to provide high order accurate solutions for a natural convection 

problem and reaction-diffusion problem in neuromuscular junction (NMJ). In Chaper 5, 

Discontinuous Galerkin (DG) method based on an unstructured mesh is used to give high 

order accurate solutions for fluid problem with moderately high Reynolds number. In 

Chaper 6, the mesh-free Smoothed Particle Hydrodynamics method is used to provide 

reasonable solutions to the fluid problem with rapid domain deformation and 

discontinuity.

The focus o f the future work will address the following topics:

1. To use the SEM solver to conduct further research in engineering simulations 

in areas o f  heat and mass transfer and computational fluid dynamics.

2. To develop a parallel version o f DG solver based on MPI and test the code on 

supercomputers. Adapt the optimized parallel version o f numeric libraries into

88



the DG solver, such as ScaLAPACK to improve the solver. Use the DG solver 

to conduct further research in engineering simulations.

SPH simulation based on GPU computing is an emerging area with a bright 

future. Further engineering applications in simulating near-shore wave 

breaking, micro-nano-fluids, and so on will be conducted in using this GPU 

solver. At the same time, a MPI version o f the SPH will be developed and 

tested on supercomputers.
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