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ABSTRACT

Privacy settings are a crucial part of any online social network as users are 

confronted with determining which and how many profile attributes to disclose. Re­

vealing more attributes increases users’ chances of finding friends and yet leaves users 

more vulnerable to dangers such as identity theft. In this dissertation, we consider 

the problem of finding the optimal strategy for the disclosure of user attributes in 

social networks from a game-theoretic perspective.

We model the privacy settings’ dynamics of social networks with three game- 

theoretic approaches. In a two-user game, each user selects an ideal number of at­

tributes to disclose to each other according to a utility function. We extend this 

model with a basic evolutionary game to observe how much of their profiles users 

are comfortable with revealing, and how this changes over time. We then consider 

a weighted evolutionary game to investigate the influence of attribute importance, 

benefit, risk and the network topology on the users’ attribute disclosure behavior.

The two-user game results show how one user’s privacy settings are influenced 

by the settings of another user. The basic evolutionary game results show that the 

higher the motivation to reveal attributes, the longer users take to stabilize their 

privacy settings. Results from the weighted evolutionary game show that: irrespective 

of risk, users are more likely to reveal their most important attributes than their 

least important attributes; when the users’ range of influence is increased, the risk



factor plays a smaller role in attribute disclosure; the network topology exhibits a 

considerable effect on the privacy in an environment with risk.

Motivation and risk are identified as important factors in determining how 

efficiently stability of privacy settings is achieved and what settings users will adopt 

given different parameters. Additionally, the privacy settings are affected by the 

network topology and the importance users attach to specific attributes. Our models 

indicate that users of social networks eventually adopt profile settings that provide the 

highest possible privacy if there is any risk, despite how high the motivation to reveal 

attributes is. The provided models and the gained results are particularly important 

to social network designers and providers because they enable us to understand the 

influence of different factors on users’ privacy choices.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Concerns regarding the privacy in social networks have received worldwide 

attention and led to frequent public debates [1 , 2 ]. Social networks contain large 

amounts of information that can be used uniquely to identify their users as well as 

provide information on their habits, interests, and history [3]. On the positive side, the 

information enables the users to identify potential new “friends” and find old friends 

[4]. However, revealing information also makes it accessible to potential criminals, 

leaving the users vulnerable to dangers such as identity theft, sexual predators, 

stalkers, and inference by defrauders [19]. The risk to user privacy has caused so much 

concern that over 60% of social network users employ privacy increasing measures such 

as deleting friends and concealing profile attributes from other social network users 

[20]. The benefits and risks create a dilemma that every user of a social network faces: 

reveal more attributes to attract more friends, or reveal less attributes and become 

less vulnerable.

A considerable amount of research has been done in understanding online 

social networks and the factors that contribute towards their success. Online social 

networks are built on the concept of self-disclosure [2 1 ], which is positively affected
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by factors like relationship-building and platform enjoyment. In contrast, perceived 

privacy risk is a factor with a negative effect on self-disclosure [21]. The benefit 

of relationship-building is linked to the number of friends a user stands to gain by 

disclosing personal information. The link between number of potential friends and 

revealed information is based on the homophily principle more commonly expressed as 

“birds of a feather flock together” [22]. In the context of a social network, this principle 

translates to users with similar attributes being more likely to establish a friendship 

[22, 23]. On top of the similarity in attributes, the number of revealed attributes also 

positively affects relationship-building. Lampe et al. [24] find that the number of 

friends that a user has is exponentially related to the size of the set of attributes that 

the user reveals. This is because sharing more profile attributes allows more users 

to establish common ground that promotes interaction and encourages “friendship” 

[25]. However, profile disclosing increases the privacy risk to social network users [2 1 ]. 

Profile disclosing is defined as the amount of a user’s profile that is visible to a third 

party [2 1 , 26].

Therefore, each user in a social network weighs both the risks and benefits to 

determine how many profile attributes to reveal. Additionally, the privacy setting of 

one user affects the choice of privacy setting of another user. However, little work 

has been done to show how all these factors are linked together. Consequently, there 

is a need to model the interaction of users in a generic social network to understand 

how privacy risk and relationship-building both influence the level of self-disclosure 

exhibited in that network. Such a model would be invaluable in predicting the general 

preference of users when it comes to privacy in social networks.
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Game theoretic models have been applied to online social networks before. 

Squicciarini et al. [27] present a general sum game involving a user and a server to 

explore the dynamics of user registration in social networks. The model and the results 

show that most users agree to provide their personal information during registration 

if the service provider promises to protect the users’ privacy.

Evolutionary games have also been applied to social networks. Using the 

results from a survey, Squicciarini et al. [28] build an evolutionary game theoretical 

model aimed at optimizing the users’ long-term utility. Additionally, by investigating 

the evolutionary game dynamics, they discover that social capital gained from self­

disclosure influences a user’s decisions more than the risk to that user’s privacy.

The profile attribute privacy problem is similar to  the stag-hunt gam e which  

exhibits both pure and mixed Nash equilibria [29]. The stag-hunt game is a two- 

player two-strategy game that captures the conflict between cooperation and safety 

involved in a situation where a hunter selects whether to hunt a stag or a hare without 

prior knowledge of another hunter’s choice. This game reaps the maximum benefit 

to both players if both players select to hunt a stag and there is maximum risk 

to one player if the other player selects otherwise. This situation is similar to the 

privacy in social networks between two players because maximum benefit is accrued 

if both players cooperate and reveal all their attributes. Maximum risk occurs to a 

user when the other user reveals less attributes because this leaves the more revealed 

user vulnerable to identity inference. However, the profile attribute privacy problem 

is different from the stag-hunt game because the privacy problem involves multiple 

players, and multiple strategies (options) in their privacy.

i



Other works have also employed game theoretic models to capture the relation 

and coordination between different user properties in different networks in a variety 

of applications. The networks range from online video sharing social networks [30] 

to mobile ad-hoc networks [31], and anonymous social networks [32]. The modeled 

applications include sharing co-owned pictures in a social network [33] and stimulating 

cooperation in the network [30]. In most of these works [30, 34], a two party model 

is captured and used as a basis to create a model that captures the dynamics of 

the entire network. This is because the networks can be looked at as a collection 

of multiple two party interactions. We employ this same reasoning when designing 

models to capture the interaction of a user’s privacy in a social network.

In this dissertation, we propose three gam e-theoretic m odels to  study the  

dynamics of privacy settings between users in a social network. These models include 

a two-user model and two evolutionary game models and are built on a novel analytical 

definition of risk and motivation in a social network.

The two-user game models the interactions between two users in both risk-free 

and risk-included scenarios. We use this model to understand how the privacy choices 

of one user affect the privacy choices of another user. For example, given a network 

in which Alice and Bob are “friends” with an identical number of profile attributes, 

the two-user game investigates whether a strategy by Alice to withhold 30% of her 

attributes would make Bob withhold or reveal more of his attributes.

The evolutionary game is an extension of the two-user game to model the 

interactions of multiple users over time with the utility function of the evolutionary 

game derived from the utility function of the two user game. In the basic evolutionary
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game, all the users are allowed to change their strategy over time in order to maximize 

the benefit of friendship establishment and minimize the risk to their privacy. The 

users’ choice of strategy at any point in time is dependent on the strategies currently 

employed by all the users in the network. Informally, given that Alice is part of a 

large social network, the evolutionary game investigates whether she would change 

her decision to withhold 30% of her attributes if she knew that 60% of the network’s 

users were revealing all their attributes. The evolutionary game also investigates 

whether and how her new privacy strategy would affect the rest of the network users. 

This iterative process is repeated until the entire population reaches an equilibrium 

state. The equilibrium states as well as the dynamics of the network provide insights 

into understanding the privacy preferences of social network users.

The weighted evolutionary model also considers different types of networks 

and different types (weights) of attributes. This model investigates two concepts. 

Firstly, it investigates what influence, if any, the type of network has on the privacy 

strategy of the users of the network given the benefit of friendship enhancement. The 

network types considered include random networks, scale-free networks, and small- 

world networks to model different social network properties [35]. For example, given 

Alice is the popular girl in the social network and is a friend to everyone, this model 

investigates whether her strategy to withhold 30% of her attributes affects other users’ 

strategies as much as Bob’s decision, given he is less popular with only two friends 

in that network. Secondly, this model investigates whether the importance of the 

revealed and hidden attributes play a role in the decision. By weighing the attributes, 

this model considers the possibility that some attributes have a higher impact than



others in either self-disclosure or privacy. This model investigates whether Alice 

revealing attributes such as her religion and sexual preferences would affect the 

network more than her revealing that she likes playing soccer and watching movies.

1.2 Dissertation Contributions

In this dissertation, we present the Nash equilibria [36] for the proposed two- 

user game model as well as the population dynamics for the evolutionary models. 

In our models, the Nash equilibrium refers to the optimal strategies taken by the 

users of the network. The strategies are optimal because the users cannot achieve a 

higher benefit by unilaterally changing their strategy. We also present the population 

dynamics for the evolutionary game showing the popularity of different strategies as 

different users change their privacy over time.

1. For the two-user game, we find that the pure strategy is for at least one of the 

players to disclose no attributes at all if there is an element of risk. Surprisingly, 

removing the risk element does not mean that all players will disclose all their 

attributes.

2. For the basic evolutionary game, we discover that the dominant strategy is to 

disclose no attributes if there is an element of risk. By dominant strategy, we 

refer to the strategy employed by most of the users in the social network. On 

the other hand, if the risk factor is ignored, the dominant strategy is to disclose 

all attributes. Revealing all but one attributes is also a common initial strategy 

in a risk-free network. Additionally, we find that networks where the risk factor 

is considered achieve equilibria faster than networks where risk was ignored.
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Our results indicate that users will only be satisfied with the maximum privacy 

setting regardless of the motivation and benefits of less private settings as long 

as there is an element of risk in the social network.

3. Using the weighted evolutionary game model, we observe a tendency by users to 

reveal their most important attributes more than their less important attributes. 

By important attributes, we refer to those attributes which have a larger impact 

on the privacy as well as the social capital of a user. Additionally, users in 

random and scale-free networks are more likely to reveal their attributes than 

users in small-world networks. Interestingly, we find that the type of network 

topology has a limited effect on privacy settings of a social network in the risk­

free case and yet have a considerable effect on the privacy in the risk-included 

scenario.

1.3 D efinitions and Terminology

In this section we define the various terminologies that are central to the 

methodology used in this dissertation. Some of these terms are further described 

when they are first used in the dissertation.

Game: An interaction between rational, mutually aware players, where the 

payoffs of some players are influenced by the decisions of others [5].

A ttribu te: A field in a user’s online social network profile. The importance of 

an attribute to a user is linked to the benefit gained from its revelation to other 

users in the network.
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Benefit: In the two-user and basic evolutionary games, the benefit is captured 

by the expected number of potential friends that a user can make. In the 

weighted evolutionary game, the benefit is captured by the enhancement of a 

“friendship”. We quantify this enhancement using the number and importance 

of attributes that a user shares with the neighbors.

Identity: The complete set of all profile attribute values of a user in a social 

network that differentiate that user from any other user in the network. 

Motivation: A factor that captures the incentive for users to disclose profile 

attributes and affects benefit.

Privacy settings: A configuration of the social network users’ profile informa­

tion to enable or disable the visibility of certain profile attributes.

Risk (Privacy risk): The probability of a user’s identity being inferred. It is 

inversely related to the number of the users who disclose the same attributes or 

additional attributes.

Strategy: A set of actions that players can follow. The strategy in two-user 

and basic evolutionary game models refers to how many attributes should be 

disclosed. In the weighted evolutionary game model, the strategy refers to which 

and how many attributes should be disclosed.

Utility: A quantity which represents the players’ preference of a certain strategy. 

In our game model, utility includes benefit (positive utility) and risk (negative 

utility).
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Random network: A network that is obtained by randomly sampling from a 

collection of networks which are constructed by the same amount of edges and 

vertices.

Small-world network: A mathematical graph where most nodes can be 

reached by other nodes in a small number of hops even though most of the 

nodes are not adjacent to each other.

Scale-free network: A network whose degree distribution follows the power 

law.

1.4 Organization of the Dissertation

In Chapter 2, we discuss the various past works which relate to privacy settings 

of online social networks and game theoretic models in this dissertation. We describe 

our game-theoretic models and specify the definition and strategies used in the models 

in Chapter 3. In Chapter 4, we provide theoretical analysis for the models. We then 

present the results and highlight the significance of our approach in Chapter 5 and 

conclude this dissertation with a discussion of our findings in Chapter 6 .



CHAPTER 2

BACKGROUND AND RELATED WORK

A considerable amount of research has been done in understanding online 

social networks and the factors that contribute towards their success. Online social 

networks are built on the concept of self-disclosure [2 1 ], which is positively affected 

by factors like relationship-building and platform enjoyment. In contrast, perceived 

privacy risk is a factor with a negative effect on self-disclosure [21]. The benefit 

of relationship-building is linked to the number of friends a user stands to gain by 

disclosing personal information. The link between the number of potential friends and 

revealed information is based on the homophily principle more commonly expressed 

as “birds of a feather flock together” [22]. In the context of a social network, this 

principle translates to users with similar attributes being more likely to establish a 

friendship [22, 23].

On top of the similarity in attributes, the number of revealed attributes also 

positively affects relationship-building. Lampe et al. [24] find that the number of 

friends that a user has is exponentially related to the size of the set of attributes that 

the user reveals. This is because sharing more profile attributes allows more users 

to establish common ground that promotes interaction and encourages “friendship” 

[25]. However, profile disclosing increases the privacy risk to social network users [21].

10
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Profile disclosing is defined as the amount of a user’s profile that is visible to a third 

party [2 1 , 26].

Therefore, each user in a social network weighs both the risks and benefits to 

determine how many profile attributes to reveal. Additionally, the privacy settings 

of one user affect the choice of privacy settings of another user. However, little work 

has been done to show how all these factors are linked together. Consequently, there 

is a need to model the interaction of users in a generic social network to understand 

how privacy risk and relationship-building both influence the level of self-disclosure 

exhibited in that network. Such a model would be invaluable in predicting the general 

preference of users when it comes to privacy in social networks.

Game theory is the analysis of situations involving conflicts of interest using 

mathematical models [14]. Each participant is referred to as a player, and each 

player has a set of possible strategies they can employ to achieve their goals. Each 

player’s utility is jointly determined by the strategies chosen by all the players in the 

game. Game theory is a growing field that has been applied to many areas including 

various aspects of online social networks. These aspects range from modeling network 

formation [13], to community detection [15], and discovering influential nodes [16].

Game theoretic models have been applied to online social networks before. 

Using results from a survey, Squicciarini et al. [28] built an evolutionary game 

theoretic model aimed at optimizing the users’ long-term utility. Additionally, by 

investigating the evolutionary game dynamics, they discovered that social capital 

gained from self-disclosure influences a user’s decisions more than the risk to that 

user’s privacy.
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In [6, 7], we apply a weighted evolutionary game to model privacy settings of 

an online social network. This model captures the relative importance of profile 

attributes by assigning different weights to different attributes. The model also 

considers different types of network topologies. We discover that network connectivity 

and attribute importance have an effect on the disclosure of profile attributes.

In [8 ], in addition to the weighted evolutionary game, we investigate the one- 

to-one interplay in selecting the strategies on privacy settings by employing a two-user 

game. We also explore the influence of a motivation factor on the population dynamics 

by a basic evolutionary game.

The profile attribute privacy problem is similar to the stag-hunt game which 

exhibits both pure and mixed Nash equilibria [29]. The stag-hunt game is a two- 

player two-strategy game that captures the conflict between cooperation and safety 

involved in a situation where a hunter selects whether to hunt a stag or a hare without 

prior knowledge of another hunter’s choice. This game reaps the highest benefit to 

both players if both of them decide to hunt a stag and there is a higher risk to one 

player if the other player selects otherwise. This situation is similar to the privacy 

in social networks between two players because the highest benefit is accrued if both 

players cooperate and reveal all their attributes. The highest risk occurs to a user 

when the other user reveals less attributes because this leaves the more revealed 

user vulnerable to identity inference. However, the profile attribute privacy problem 

is different from the stag-hunt game because the privacy problem involves multiple 

players, and multiple strategies (options) in their privacy.
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Other works have also employed game theoretic models to capture the relation 

and coordination between different user properties in different networks in a variety 

of applications. The networks range from online video sharing social networks [30] 

to mobile ad-hoc networks [31], and anonymous social networks [32]. The modeled 

applications include sharing co-owned pictures in a social network [33] and stimulating 

cooperation in the network [30]. In most of these works [30, 34], a two party model is 

derived and used as a basis to create a model that captures the dynamics of the entire 

network. This is because the networks can be looked at as a collection of multiple two 

party interactions. We employ this same reasoning when designing models to capture 

the interaction of the user’s privacy in a social network. We do not model the privacy 

settings of any specific online social network, but rather focus on a possible model for 

a generic online social network.



CHAPTER 3

METHODS AND MODELS

3.1 Definitions and Strategies

3.1.1 Definitions

In our model, the vector Ax =  (aXil, aX)2, • ••, ax<m) denotes the profile attributes 

in the social network, where ax i is the ith attribute of User x. An example of an 

attribute vector for a generic user (Alice) is given by A Ance =  (Name, Gender, Age, 

Religion,..., Hometown). For simplicity, we assume all the users have the same set 

of profile attributes. In a generic case, we refer to a specific attribute by A ttr# i.

The value of the attributes is defined as a mapping Ax —> Vx, where Vx = 

(vx,ii vx,21 •••) vx,m) is a vector of the values of the attributes of User x. We use vx<l to 

denote the value of ith attribute of User x. For example, VAuce =  (Alice, Female, 27, 

Christian,..., Chicago).

For each User x, a vector Sx = (sxA,sXt2 , ■■■, sXtTn) denotes whether specific 

attributes are disclosed or revealed. If attribute ax is disclosed, then sx  ̂ =  1 ; 

otherwise, sXj  =  0. For example, SAuce =  (1,1,0,0,..., 1) means that Alice decides to 

reveal her name, gender, and hometown, but withholds her age and religion.

We capture the similarities between two users using pairs. Two users Alice and 

Bob are said to have a pair if they both reveal the same attribute, e.g. age. Moreover,

14
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if both users have the same value for that mutually revealed attribute (e.g. the age 

for both of them is 27), then the users are said to have an equal value pair. Formally, 

a 2-tuple (aXti,aV'i) is called a pair if and only if sXii = 1 and sy>i — 1 . Additionally, 

if vX'i = Vy7i, then the 2 -tuple (aX)i, aVti) is referred to as an equal value pair. We 

use random variable Np to represent the number of pairs that two users share and 

random variable Nep as the number of equal value pairs of two users.

Figure 3.1 shows a possible profile configuration for two users x  and y. Out 

of the m  attributes, User x reveals kx attributes while User y reveals ky attributes. 

Both users reveal attributes A ttr# l, A ttr# 2 , ..., A ttr# r , which contribute to r pairs. 

The r pairs are denoted by (ax,i,aW)i), (ax,2 , ( ^ 2), ..., (ax>r,ayir).

A ttr# l 

Attr # r  

Attr # ( r  + 1 )

Attr#A;x 

Attr#(fcx -I-1)

Attr#(fcx + ky -  r)

Attr#(A;x + ky -  r + 1)

A ttr# ra

Figure 3.1: The figure shows a possible profile configuration for two users x and y, 
who disclose kx and ky attributes, respectively, from m  possible attributes. The clear 
rectangles represent the disclosed attributes while the shaded rectangles represent 
withheld the attributes.
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Figure 3.2 shows a similar profile configuration for the two users x and y with 

the attributes re-arranged such that the first r attributes are the r  pairs. We consider 

that 77 of the r pairs are equal value pairs. We assume that the 17 equal value pairs 

are important in establishing common ground for building friendships [25].

User x  User y

1 T) e q u a l v a lu e  p a ir s

A ttr# l

A ttr#2

Attr #77

A ttr#  (77 +  1 ) K + i

Attr # r

Attr # ( r  +  1 )

A ttr# 7B

> ( r  -  77) u n e q u a l v a lu e  p a ir s

u n p a ir e d  a t t r ib u te s

Figure 3.2: The figure illustrates the concept of equal value pairs given a profile 
configuration between two users x  and y who share r  pairs. An equal value pair 
is the occurrence of an identical valued attribute between two users. If the value 
of an attribute Aitrj^i is represented by ty, then the figure shows that attributes 
Attr#l...Attr#r) have identical values for both users (tq.-.iV/) and therefore make up 
77 equal value pairs. The attributes Attr#{rj-\-\)...Attr#r compose the pairs that are 
not equal value pairs since they do not have identical values in both users.

To capture the risk of identity inference, we introduce the concept of hiding. 

A user John is hidden by another user Jane if Jane is more distinguishable than John. 

For example, if VJohnDoe — {Doe, *, 34, *,..., *) and VJaneDoe = {Doe, Female, 34, *,..., 

Chicago), where V  refers to withheld attributes, then Jane is more distinguishable 

than John and therefore John is hidden by Jane. This is because it takes less effort 

for a third party to infer the identity of Jane than John given the revealed profile



17

attributes. Formally, given User x  discloses kx attributes and User y discloses ky, 

where kx < ky, User x  is hidden by User y if all the kx attributes disclosed by User x  

have the same values in both User x and y (cf. Figure 3.3). The set Dx of attributes 

disclosed by User x  is given by Dx =  {aXij | sx<i =  l , l < i < m } .  User x  is hidden by 

User y if and only if Dx C Dy and vX}i = vy<i for all ax<i 6  Dx.

User x  User y

A ttr# l  | vi | | V! |'

A ttr# 2  | v2 | | v2 | > kx e q u a l v a lu e  p a ir s

Attr#fcx j Vkx | | Vkx |

Attr#(fcx + 1) | j j l |  |vfcx+i|
U se r y d isc lo ses

Attr#*# ■  I »*, I
’ (ky -  kx) m o re  a t t r i b u te s

Attr#(fcy + 1) pHHj n e ith e r  U se r x n o r  U se r y
: : : i d isc lo ses t h e  re m a in in g

A ttr#m (m  — k y ) a t t r i b u te s

Figure 3.3: The risk to a user’s identity is dependent on whether that user can be 
easily distinguished from the rest of a network. User x is hidden if another user in 
the network exhibits characteristics identical to User x. Given users x  and y disclose 
kx and ky attributes, respectively, User x can be “hidden” by User y if kx < ky and 
the values exhibited by the kx attributes are identical to the same attributes in User 
y's profile. The figure shows such a scenario in which attributes Attr#1...A ttr# kx 
exhibit values v\...Vkx that are identical to the first kx attributes revealed by User y. 
In this case, User x  is hidden by User y.

Therefore, User x can be hidden by two types of users (cf. Figure 3.4). One 

type of users consists of the users who disclose the same set of attributes, where 

corresponding attributes have identical values (kx = ky = y). The other type of users 

consists of those users who reveal extra attributes in addition to the kx equal value 

pairs (kx = r) < kv).
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User x Users who disclose Users who disclose 
same set of attributes more attributes

A ttr# l M

Attr#2 M

A ttr# A;
M

Attr #(/c + 1 ) ■

Attr#(fc +  2) m

Attr#m »

V2

Vk

V2

Vk

V2

Vk

V2

Vk

vk+i i - F n r

Figure 3.4: The figure shows the two categories of users who can “hide” User x. 
The first category discloses the same number of attributes as User x , where all the 
revealed attributes are identical in value. The second category of users discloses more 
attributes in addition to the attributes disclosed by User x. The value of attribute 
A ttr# i  is denoted by c,. Disclosed attributes are represented by clear squares, while 
the withheld attributes are represented by shaded squares.

We define a social network as an undirected graph G =  (N, E) with node set 

N  and edge set E, where the node set N  = {1,2,..., n} corresponds to n users in the 

network.

Additionally, we consider that the connectivity pattern of the network can 

follow the different network types described in the previous section. These networks 

include random, small-world, scale-free, and Facebook friend networks.

3.1.2 Strategies

The privacy settings of a typical social network consist of levels of visibility 

of different aspects such as profile attributes, activity logs, and friend lists to various
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types of users, e.g. friends, friends of friends, and public. In our model, we consider 

a single level of visibility, i.e. whether profile attributes are visible to any other user 

of the network.

In the two-user and basic evolutionary game, a user’s strategy involves select­

ing how many attributes to reveal. Revealing more attributes increases the chance 

of having common attributes with other users which allows for friendship, while at 

the same time increases the risk of identity inference. Given m attributes, each user 

has m + 1 possible strategies which correspond to the number of attributes the user 

reveals (0, 1, ..., m). In the two-user game, we build an (m + 1) x (m + 1) payoff 

matrix made up of the payoff values for every possible strategy combination. The 

payoff values are evaluated from the positive and negative values associated with that 

strategy. In the basic evolutionary game, we classify the whole population into m + 1 

groups depending on which strategy they adopt. Each group consists of users who 

have selected to reveal a given number of attributes.

In the weighted evolutionary game, the strategy involves selecting which and 

how many attributes to disclose.

3.1.3 Network Topologies

In this dissertation, the weighted evolutionary game considers three different 

types of network topologies, which include a random network, a small-world network, 

and a scale-free network.
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A random network is a graph in which the occurrence of connection between 

nodes follows a probability distribution [37]. A random graph can be used for model­

ing social networks when the node degrees follow an arbitrary probability distribution. 

The Erdos-Renyi (ER) [39] model is considered to generate the random networks. The 

probabilities that edges occurs between any two nodes are equal and independent. 

Given the probability of an edge occurrence is p and there are n nodes, the average 

node degree k is approximately equal to n • p.

In a small-world network, most of the nodes are not directly connected to 

each other, but most nodes can be reached by every other node within a relatively 

small number of hops. Online social networks have been shown to exhibit small-world 

properties and can be produced using a Watts-Strogatz model in two steps [40]. In 

the first step, a regular ring lattice of n nodes is created and each node is connected 

with |  on each side making the average node degree k. In the second step, the edges 

are rewired with probability f3 to create the “shortcuts” that transform the regular 

network to a small-world network [40].

A scale-free network is a network where the node degree distribution follows a 

power-law distribution, i.e. the number of nodes decreases exponentially as the node 

degree increases. The scale-free network is created using the preferential attachment 

mechanism, which means a node with a higher degree is more likely to attract new 

connections compared to a node with a lower degree [41].



3.2 Models

We propose three game-theoretic models. One model is a two-user game, 

which captures interactions between two users while setting up their privacy. This 

is extended to a basic evolutionary game to capture the dynamics of the privacy 

preference of multiple users in a large-scale social network. This model is then 

extended to a weighted evolutionary game to investigate the influence of attribute 

weight and network topology on the privacy of users in a social network.

There are many online social networks available today with a variety of privacy 

designs [9, 10]. Therefore, we model a generic social network with characteristics 

exhibited by some of the social networks. For example, in our models, every user 

has a profile made up of profile attributes, where each user is tasked with selecting 

how many and which attributes to reveal to other users. In the two-user and basic 

evolutionary games, the revelation is to all other users in the network, whereas in 

the weighted evolutionary game, the revelation is only to the user’s friends. However, 

our models do not consider categories of friends with different levels of privacy which 

is a characteristic of some social networks. The assumptions used to construct the 

models and their justifications are provided in Table 3.1.

3.2.1 The Two-user Attribute Disclosure Game

In this model, we consider a two-user game between User x and User y to 

understand the basic interaction in complex networks such as online social networks. 

We use a utility function to capture the incentives of players [36].
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Table 3.1: Assumptions and Justifications for the Models

Assumptions Justifications

We define risk as the potential for identify inference. Identity inference is an important path for privacy infor­

mation leakage. Defining risk as the potential for identify 

inference allows us to build the relationship between 

profile attribute disclosure and privacy risk, even though 

there are other types of privacy risk Issues.

We define the positive utility from information revelation 

as the number of friendships made in the two-user game 

and the basic evolutionary game.

With an increase in the number of friendships, the users 

can benefit more from communication with others, and 

sharing more information with others.

We assume equal importance for each profile attribute in 

the two-user and basic evolutionary games.

Many social network user profiles consist of similar 

attributes [11, 12]. In such a profile, one attribute is 

not necessarily more risky or important than another 

attribute. However, we also consider dissimilar- attributes 

in the weighted evolutionary game model.

Users with more common attributes are more likely to be 

friends.

This assumption Is based on research which shows that 

the homophily principle is exhibited in social networks 

[22, 23],

In the two-user and basic evolutionary games, we assume 

the probability of two users with ?/ equal value pairs being 

friends is given by Equation 3.3.

Lampe et al. [24] find that the number of friends that a 

user has is exponentially related to the size of the set of 

attributes that user reveals.

In the two-user and basic evolutionary' games, each 

attribute has the same number of possible values. In 

the weighted evolutionary game, all users in the network 

attach the same importance to any given attribute, e.g. 

all users will consider their address attribute to be more 

important than their religion attribute.

These assumptions allow us to investigate the influence of 

global network properties while simultaneously compar­

ing local properties such as profile attributes and their 

importance to users on a common ground.

Positive Utility

The positive utility of revealing more attributes is the increased chance of 

establishing common ground with other users and thereby potentially obtaining more
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new friends. Given users x  and y disclosing kx and ky attributes, respectively, the 

probability of having exactly r  pairs is given by

(D  • (‘") • (? '* ;)

E  ( r )  ■ iki)  ■* l— \Kx' \ l / \ fCy—i /
i=max{fci+fej,—m,0}

where m is the total number of attributes. We use random variables Np and Nep to 

denote the number of pairs and the number of equal value pairs, respectively. The 

proof for Equation 3.1 is provided in Section 4 (Theorem 4.1).

Given r pairs, we can calculate the probability of getting r] equal value pairs,

using

P(N,p = n \ N r = r) = iL l J Z Z  . Q  (3 .2 )

where L is the number of values that an attribute can have. The proof for Equation

3.2 is provided in Section 4 (Theorem 4.2).

Given the number of friends that a user has is exponentially related to the set

of attributes [24], we assume the probability of two users with r\ equal value pairs

being friends is given by

pOtf)
P{F  | Nep = t)) = — -----  (3.3)

v 1 p ’ e a m  +  e v ’

where e > 0 and a indicates motivation. Dividing eQT? by eam + e guarantees that 

P(F  | Nep = rj) is between 0 and 1.

Additionally, we select an exponential style function because it mitigates the 

adverse effect brought by users with a lower number of equal value pairs. Users 

with a small set of equal value pairs are numerous but have little impact in building 

friendships.
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The motivation a captures the increase in the likelihood of being friends 

with an increase in equal value pairs. We consider three different values for a. 

Figure 3.5 shows the likelihood of being friends evaluated from Equation 3.3 for 

a  € {0.2,0.9,1.5}. Lower values of a  have slower change but higher initial values.

a=0.2
a=0.9
a=1.5

0.8

0.7

—  0.6

0.4

0.3

0.2

0.1

0

Figure 3.5: The figure shows the probability of being friends from Equation 3.3 
for different values of motivation a and equal value pairs 77. Increasing the number 
of equal value pairs boosts the probability of being friends for all a  values. This 
observation mimics the homophily principle more commonly known as “birds of a 
feather flock together,” since increased equal value pairs indicates similarity between 
users.

Given users x and y disclose kx and ky attributes, respectively, the probability 

Pkx,kv(F) °f them being friends is therefore given by combining two probabilities: (1 ) 

the probability of them being friends if they have 77 equal value pairs and (2 ) the 

probability of them having the 77 equal value pairs in the first place. Pkx,ky(F ) is
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evaluated using
min{fcx,fcj,}

J W F )  =  Y  =  r)
r=max{kx+ky—m,0} 

r

■ Y  P (F  I N'P = n) ■ P ( K ,  =  V I Np =  r), (3.4)
T)=0

where Pkx,ky(Np = r ) is the probability of having exactly r  pairs, P (F  | Nep =  7/) is 

the probability of being friends given 7/ equal value pairs, and P(Nep = r/ | iVp =  r) is 

the probability of having 77 equal value pairs given r  pairs.

Negative Utility

The negative utility of revealing more attributes is the increased risk incurred 

by the user. In our models, risk is equivalent to the chance of a user’s identity being 

inferred from their disclosed attributes. A user’s identity can be compared to a set 

of attributes that uniquely differentiate a user from a large group of users. Therefore, 

risk is inversely proportional to the number of users among whom a user can be hidden. 

This is because the higher the number of users with identical disclosed attributes, the 

less the probability of inferring a specific user’s identity or preference. The users with 

unique sets of disclosed attributes have the highest risk in the population.

In the two-user game, User x discloses kx attributes and User y discloses ky 

attributes. If kx > ky, then there is no chance that User x is hidden by User y. The 

reason is that User x will always be more distinguishable than y regardless of which 

ky attributes are selected by User y. If kx = ky and all kx disclosed attributes are 

equal value pairs, then User x is hidden by User y and they reduce each other’s risk. 

This is because User x  cannot be distinguished from y if all the attributes they reveal 

are identical. However, if kx < ky, and all kx attributes disclosed by User x are all



equal value pairs, then User x  is hidden by User y, and the risk of User x  is reduced. 

Hence, we get the formula for negative utility as follows:

Section 4 (Theorem 4.3).

Combining Positive Utility and Negative Utility

When users x and y exist in the same social network, they have a probability 

of becoming friends with Pkx,ky(F) and are also under the risk of identity inference 

Rkx,ky- We use the ratio of Pkx,ky(F) to Rkx,ky to obtain an appropriate utility function

In Equation 3.6, User x discloses kx attributes, while User y discloses ky 

attributes.

3.2.2 Basic Evolutionary Game

A basic evolutionary game is employed to analyze the dynamics of privacy 

among multiple users in online social networks. Given m  attributes, we divide the 

population into m  +  1 groups which consist of users who disclose the same number of 

attributes. Figure 3.6 shows an arbitrarily selected User Sk who discloses k attributes 

and belongs to group k of nk users.

(3.5)

1

where m  is the total number of attributes. The proof for Equation 3.5 is provided in
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U ser Uk w h o  d isc lo ses k  a t t r ib u te s

Figure 3.6: In the basic evolutionary game, the population is divided into m  + 1 
groups, which correspond to how many attributes are revealed. Given that every user 
has m  attributes, their strategy options include revealing 1 , 2 , m  attributes or 
withholding all attributes (revealing 0  attributes), hence a total of m +  1 strategies. 
We calculate the positive and negative utilities of an arbitrarily selected User 8k by 
comparing them with different groups of users.

Replicator Equation

Replicator dynamics are used to provide the population dynamics for each 

proportion [42]:

Ok =  0k[fk -  <p] (3.7)

where Ok is the proportion of all users who disclose k attributes. The parameter Ok 

is the differentiation of Ok over time, where the time unit is the iteration step in the 

process of solving Equation 3.7. The value of Ok is given by where nk is the number 

of users disclosing k attributes and n is the total number of users. The fitness of type 

k is denoted by fk which is defined later on in Equation 3.11, and 4> is the average 

population fitness which is given by Equation 3.8.

Users who disclose k attributes are referred to as type k. The fitness of the 

basic evolutionary game is comparable to the utility function of the two-user game, 

and is also comprised of positive utility and negative utility. Positive utility is the



expected number of friends that a user can make by disclosing k attributes while 

negative utility is the risk of inference from disclosing k attributes. Similar to the 

two-user game, the risk factor for a certain user is inversely proportional to the number 

of users that can hide that user.

The average population fitness <f> is given by:

m

0 =  (3.8)
fc=o

Positive Utility

The positive utility is an extension of the two-user game’s positive utility in 

Equation 3.4. In a large social network, the expected number of friends Np that User 

5k can make is:
m

Et[NF] = Y ^ nf ptJAF )
fc'= 0

m min{fc,fc'}

= S  nk' pk,k'{Np = r)
k ' —O r = m a x { k + k f—m,0}

r
■Y, P( F\ N<,r = V)-P(Ncp = ,t \Nr = r) (3.9)

7J=0

where nk> is the number of users of type k'. Equation 3.9 is derived by summing 

Equation 3.4 for all possible k' values and respective .

Negative Utility

In the evolutionary game, the negative utility is calculated using



29

The term -py • • {nk — 1) is the number of users of type k who can hide User
m—k

<5/b. The term V^rr • pr • f̂c+i is the number of users who can hide User 6k, and 
t = l  U + i J

are from the groups that disclose strictly more attributes.

Combining Positive Utility and Negative Utility

Similar to Equation 3.6, we use the ratio of positive utility to negative utility 

to define the fitness of type k using

A = (3-11)
n-k

All the users of the same type have the same fitness value.

3.2.3 The Weighted Evolutionary Game

We extend the previous model by considering a weighted evolutionary game. 

This model considers that users attach different importances to different attributes. 

This is captured by assigning weights to each attribute. Additionally, the topology 

of the network is considered. In this model, the positive utility of a user is affected 

by the number and type of attributes that a user shares with the neighbors.

We consider that the benefits and risks are affected by the users at two different 

levels of social closeness. The first level only includes User x ’s friends, and the second 

level also includes User x ’s friends-of-friends. We adopt influential range (I R ) to 

represent which level of users contribute to User x ’s benefit and/or risk.

BX{IR) = <
{F}, IR  = 1 ,

(3.12)

{F} U {FoF}, IR  =  2,
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where IR  denotes influential range, F  represents friend, and FoF stands for friend-of- 

friend. Therefore, Bx( 1) is the set of all the friends. Bx(2) includes not just friends, 

but also friends-of-friends.

In our game, the utility is a combination of benefits (positive utility) and 

risks (negative utility). A user’s positive utility is related to the amount and type of 

attributes that the user shares with other users in their influential range. The set of 

users who contribute to User x’s positive utility is denoted by BX(IR).

Conversely, the risk is the probability of a user’s identity being inferred. This 

probability is measured by the reciprocal of the number of the users who disclose the 

same or additional attributes, i.e. how many users in the influential range can hide 

that user. The set B^(IR) consists of users in the influential range who disclose the 

same attributes as x or extra attributes in addition to those disclosed by User x, and 

can possibly hide User x. The set B^(IR) determines how much risk a user is exposed 

to.

The combined utility (payoff) function is obtained by using

where wP and wN are the weight coefficients for the positive utility ^2yeBx{m) (S* A &v) 

x W T and negative utility rg^r, respectively1.

y€ BX(IR)

(3.13)

We define the benefit-to-risk ratio (B R R ) as wP : wN, which is the ratio of

the coefficient for positive utility to the coefficient for negative utility.

1 U n less  o th e rw ise  s t a te d ,  w e u se  n o ta t io n  A to  re p re s e n t log ic  A N D . N o ta t io n  W T  re fe rs  to  th e  
t r a n s p o s e  o f  v e c to r  W .
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Our model is iterative and synchronous. First, each user in the network is 

assigned a random initial attribute sign flag vector. In every iteration, each user 

compiles a set of candidate neighbors whose privacy settings they may mimic. This 

set consists of the neighbors who derive a higher utility from their privacy settings 

than the user derives from his/her own settings. Based on the neighbors’ utilities, each 

user decides whether to change or maintain their strategy. A user is likely to change 

his/her strategy if his/her neighbors derive a higher utility from their own strategies 

than the user derives from his/her own. If a user decides to change his/her strategy, 

one of the candidate neighbors is then selected as the object to mimic. The mimicking 

process involves a user changing one digit of his sign flag to the corresponding digit 

of the candidate neighbor’s sign flag. This is analogous to a user Alice deciding to 

reveal her location attribute after seeing that her friend Bob, who has a higher utility, 

has a revealed location attribute. At the end of each iteration, all the users update 

their strategies synchronously. The procedure keeps running iteratively until there 

are no users who change their sign flags between two consecutive iterations. When 

this condition has been met, the model is said to achieve convergence.

Formally, users follow the replicator rule to update their strategies between 

two successive time steps [43]. Each node makes a decision to maintain or change its 

current strategy based on the utilities exhibited by its neighbors. Given ulx and uy 

are the utilities of User x  and User y respectively at time t, the probability of User x 

(at time t + 1) adopting the strategy of User y (at time t) is given by:



We use the largest difference dm^ in payoff between any two users in the network to 

guarantee that PJ+ 1 € [0,1]. Equation 3.14 implies that the probability of User x 

following the strategy of a neighbor (User y) is proportional to the payoff difference 

between users x and y, when User y ’s utility is higher than User x ’s. This probability 

value is evaluated for all members of the candidate neighbor set Cx.

Each user’s decision to maintain or change his/her strategy depends on PJ+ 1 

values for the entire candidate neighbor set Cx. The probability of User x  maintaining 

its original strategy, as derived from [43], is given by:

w t =  r u i _  o  (3-i5)
y e c x

Conversely, the probability of User x  changing its strategy between t and t +  1 is 

given by

o r 1 =  i -  n  -  - O -  (3.i6)
y e c x

After evaluating all probabilities and deciding to change his/her strategy, each

user selects the neighbor to mimic in the update process. A higher PJ+ 1 value for

candidate y translates to a higher probability of being selected as the mimic object

y*. The implementation of selecting y* is based on a mathematical model called balls

into non-uniform bins [18], in which the probability2 P(yt) of a ball falling into a

certain bin is proportional to the size of the bin. In Figure 3.7, the size of the each

2In  th i s  d is s e r ta tio n , w e u se  y  to  re fe r to  a  g e n e ra l u se r , a n d  w e u se  y t to  re fe r  to  a  specific  u se r .
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bin is exactly equal to p*V/&, where A — Ylyecx ^x+y- I*1 total, there are \CX\ bins. 

Therefore, the probability of the ball falling into ith bin is given by:

P(Ui) = *& /*  (3-17)

rand G [0, .......................

Figure 3.7: The figure shows the implementation of selecting one of the neighbors
as y* based on the model of balls into non-uniform bins, where Cx =  yi, y2, y \ c x\-
The probability of selecting neighbor yi is directly proportional to Px+y]-

>

After the mimic object is determined, the specific attribute to mimic is ran­

domly selected from the attributes with different sign values.

The algorithm for updating the attribute sign flag is shown in Algorithm 1 .

3.2.4 Working Case for Risk-free Scenario

In this subsection, we describe a working case of a risk-free scenario of our 

model, in which the influential range is restricted to a user’s friends (neighbors). 

Figure 3.8a shows the topology structure of the network in this example, which 

consists of 8  users, whose profile attributes and associated weights axe shown in Figure 

3.8b. The profile attributes include (Name, Gender, Age,..., Hometown) with weight 

vector {wi,W2 ,W3 , ..., w-f) =  (0.02,0.06,0.10,0.14,0.18,0.22,0.28). Figure 3.8c shows 

the initial sign flags for all 8  users. For example, User 5 has a sign flag S$ =  (1100110), 

which means that only his/her name, gender, education, and occupation are revealed.
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In the next few paragraphs, we show how User 5 may change his/her strategy in our 

model.

Algorithm 1: Algorithm for updating profile attribute sign flag 
Input: Initial sign flag iS F  
Output: Final sign flag f S F

1 Assign iS F  for each node;
2 do
3 for each node do
4 Find the set of candidate neighbors Cx;
5 Evaluate Pit,1 for all members of candidate set;

Evaluate probability of changing strategy Qj.+1;
Generate a random number rand £ [0,1]; 
if rand< Qx+1 then

/* Decision is made to change strategy */
10 Select neighbor y* from Cx;
n  /* Neighbor is selected using balls into non-uniform bins */
12 Change single bit from SFX to mimic SFy-;

end13
14
15

end
All nodes update sign flags synchronously; 

la while any node changes sign flag; 
lr return f S F

In the first step, every user calculates their utilities from Equation 3.13. This 

involves a comparison of the users’ revealed attributes with each neighbor. User 5 

has two neighbors: User 1 and User 2 with initial sign flags Si = (1000110) and 

S2 = (0110011), respectively. The attribute pairs between any two users are obtained 

by using bit-wise AND operation between the users’ sign flag vectors. The bit-wise 

AND operation between Si and 5s is (1000110), which means that both User 1 and 

User 5 disclosed attributes 1, 5, and 6. The summation of the weights of attribute 

pairs (Equation 3.13) is therefore given by w l  +  wh + ic6, which evaluates to 0.42. 

Similarly, the summation of the weights of attribute pairs between S 2 and S5 is 0.28.
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The positive utility for any user is obtained by summing the weighted pair sums for 

all his/her neighbors. In this case, the positive utility for User 5 is the sum of the 

weighted attribute pairs between User 5 and both User 1 and User 2. This evaluates 

to 0.42 +  0.28 =  0.70. In a similar fashion, the utilities are evaluated for all the 

network users. Table 3.2 shows the positive utilities for Users 5, 1, and 2 .

Table 3.2: The Process of Calculating Payoff Value and Choosing Mimic Object 
from the Candidate Neighbors.

U s e r N e ig h b o r A N D  r e s u l t W e ig h te d  r e s u l t P o s i t i v e  u t i l i t y Dt+1

U ser 5
U ser 1 1000110 w \ +  w5 +  wt$ =  0.42

0.70 N /A

U ser 2 0100010 w'2 +  10$ =  0.28

U ser 2 0000010 w s =  0.22

U ser 3 1000100 Wi +  w 5 =  0.2

U ser 1 U ser 4 0000000 0 1.26 0.41

U ser 5 1000110 w i +  w 5 +  w 0 =  0.42

U ser 8 1000110 w i +  w s +  u>s — 0.42

U ser 1 0000010 W(j =  0.22

U ser 5 0100010 tt>2 +  W 6 =  0.28

U ser 2 U ser 6 0100011 W2 +  Wq + Wt =  0.56 1.38 0.49

U ser 7 0010000 Wi — 0.10

U ser 8 0000010 tt'ti =  0.22

In the second step, each user evaluates the probability of mimicking 

his/her neighbors according to Equation 3.14. The maximum range between the 

utility values for the network nodes dmax is found to be 1.38. User 5 only has to
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consider User 1 and User 2 when evaluating these probability values. evaluates 

to 0.41 while P^2 evaluates to 0.49.

In the third step, each user decides whether to change or maintain his/her 

strategy by using Equation 3.16 which utilizes the probabilities evaluated in the step 

above. For User 5, Q\ evaluates to 0.6991. If a randomly selected number in the range 

[0,1] is less than Q\, then User 5 decides to change his/her strategy. Otherwise, User 

5 maintains his/her strategy. In our case, User 5 decides to change his/her strategy.

In the fourth step, users who decided to change their strategies select a can­

didate neighbor to mimic. Candidate neighbors should exhibit higher utility values 

than the user itself. The probability of User x selecting a specific neighbor y is directly 

proportional to P̂ Py f°r that neighbor. Since Users 1 and 2 both have higher utilities 

than User 5, they are both viable candidates for User 5 to mimic. After normalizing 

P5j  and Pg2, the bin sizes for User 1 and User 2  are 0.46 and 0.54, respectively (cf. 

Equation 3.17 and Figure 3.7). In our case, User 5 selects User 2 as the mimic object.

In the fifth step, each user who decided to change their strategy selects which 

attribute to reveal or withhold to resemble their mimic object. Comparing User 5’s 

and User 2’s sign flags reveals that they differ in four positions, i.e. 1, 3, 5, and 7. 

User 5 can mimic User 2 in one of the following ways: revealing attribute 3, revealing 

attribute 7, withholding attribute 1, or withholding attribute 5. In our case, User 5 

decides to reveal attribute 7.

All five steps are repeated in each iteration until no single user changes his/her 

strategy between two successive iterations. The system is then said to have converged.
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Figure 3.8d shows the sign flags for all eight users after a single iteration. 

Figure 3.8e shows the sign flags for the whole network after convergence. In this 

simulation, convergence is achieved after 11 iterations.

(a)

W \ W2 W-i U>4 w 5 w r

(0.02) (0.06) (0.10) (0.14) (0.18) (0.22) (0.28)
Name Gender Age Religion Education Occupation Hometown

(b)

Node W'l W2 W>3 U’4 U'5 l<’6 U>7
User 1 1 0 0 0 1 1 0
User 2 0 1 1 0 0 1 1
User 3 i 1 0 0 l 0 0
User 4 0 1 0 1 0 0 1
User 5 1 1 0 0 1 1 0
User 6 0 1 0 1 0 1 l
User 7 1 0 1 0 1 0 0
User 8 1 0 0 1 1 1 0

(c)

N o d e m W2 W3 W i U’5 w 6 U»7
User 1 l 0 0 0 1 1 0
User 2 0 1 1 0 0 1 1
User 3 l 0 0 0 1 0 0
User 4 0 1 0 1 0 0 0
User 5 l 1 0 0 1 1 1
User 6 0 1 1 1 0 1 1
User 7 l 1 1 0 1 0 0
User 8 l 0 0 1 0 1 0

( d )

N o d e Wi U>2 w 3 W i w 3 Wfj U>7
User 1 0 1 1 0 0 1 1
User 2 0 1 1 0 0 1 1
User 3 1 1 1 0 1 1 1
User 4 0 0 1 0 1
User 5 0 1 1 0 0 1 1
User 6 0 1 1 0 0 1 1
User 7 0 1 1 0 0 1 1
User 8 0 1 1 0 0 1 1

(e)

Figure 3.8: (a) A sample network consisting of eight users, (b) each user has a 
profile with seven attributes with a weight vector, (c) initial sign flags for all eight 
users, (d) every user updates their strategy, and (e) the illustrated system converges.



CHAPTER 4

THEORETICAL ANALYSIS

In this section, we provide proofs for the theorems introduced and utilized in 

this dissertation.

T heorem  4.1. Given that User x discloses kx attributes and User y discloses ky 

attributes, the probability of having exactly r pairs is given by
fm—kx\

, w w- - o  =  ■t.ft.X i  ■E (m\  (kx\ (m—kx\
\ k x J V  i  )  ‘  V  k y ~ i  )

i = m a x { k x + k y —m,0}

Proof. User x has (™) ways of selecting kx attributes for disclosure from all m  

attributes in his/her profile. Similarly, there are (**) ways of obtaining r pairs from 

the kx disclosed attributes. Figure 3.1 shows a profile configuration arrangement in 

which users x and y have r  pairs. As shown in the figure, to have exactly r pairs, 

the kx — r unpaired but revealed attributes of User x should not correspond with the 

ky — r unpaired but revealed attributes from User y. In fact, the ky — r unpaired 

but revealed attributes from User y can only correspond to the m — kx unrevealed 

attributes from User x.

Therefore, as shown in Equation 4.1, the number Ar of ways to obtain r pairs 

is a product of selecting kx from m  attributes, selecting r out of the kx attributes,

38



39

and selecting ky — r attributes from m — kx withheld attributes,

( m \  ( kx\  ( m  — kx\
J ' ( r ) - U - r )

(4.1)

The number of pairs between two users Np varies between two extremes. The 

highest possible number of pairs is achieved when there is maximum overlap between 

the attributes disclosed by both users. In this case, the number of pairs is equal to the 

smaller number of revealed attributes and is given by Np =  min{A:x, ky}. On the other 

hand, the lowest possible number of pairs is achieved when there is minimum overlap 

between the revealed attributes of both users. This number is equal to 0  if both sets 

of revealed attributes are completely disjointed, but equal to kx + ky — m  if the sum 

of the revealed attributes is higher than the number of profile attributes for any user. 

The maximum number of pairs is therefore given by Np = m&x{kx + ky — m, 0}. For 

example, if Alice reveals five out of seven attributes, and Bob reveals four out of the 

seven attributes, then the maximum number of pairs is four and the minimum number 

of pairs is two. However, if Alice reveals two of the seven attributes and Bob reveals 

four of the seven attributes, then the maximum and minimum number of pairs is two 

and zero, respectively.

Therefore, the number of pairs Np is an integer in the range between max-fA;* + 

ky — m, 0} and min{kx,ky}. The probability of having exactly r pairs is therefore 

obtained by dividing Ar by A* where i takes on all possible values of Np. □

T heorem  4.2. Given r pairs, the probability of getting rj equal value pairs is
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Proof. We assume that each attribute can take one of the L possible values. Ad­

ditionally, there exist r  pairs between the two users x  and y. To obtain 77 equal 

value pairs, 77 of the r pairs belonging to User x should match with User y, while 

the r  — 77 remaining paired attributes must exhibit one of the remaining L — 1 values 

not already exhibited by User y. Without any restrictions, there are a total of L2r 

possible assignments for the r pairs. Given that 77 of the pairs have identical values, 

the numbers of possible assignments is given by Lr ■ l v ■ (L — l)r~n. The probability 

of having 77 equal value pairs is a product of Q  ways of selecting 77 equal value pairs 

from r pairs, and the ratio L □

Theorem  4.3. Given that User x and User y disclose kx and ky attributes, respec­

tively, the defined negative utility function of User x in the two-user game is obtained

Proof. The negative utility is given by the risk of identity inference. A user’s identity 

is less likely to be inferred if that user is hidden by another user. In our model, the

characteristics (attributes and their values) exhibited by User x. For example, if Alice 

exhibits completely unique characteristics in a network, then her risk is 1. If, on the 

other hand, another user in the network exhibits the same characteristics as Alice 

(same name, age, hometown, etc.), then Alice’s risk is | .

by:

1 if kx > ky.

risk of User x is equated to the inverse of the number of users that exhibit the same
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Formally, given two users x and y disclose kx and ky attributes, respectively, 

User x cannot be hidden by User y if kx > ky, because User x is more distinguishable 

than y since User x  reveals more attributes that uniquely identify them compared to 

User y. In this case, the risk for User x takes the maximum value of 1 because the 

only user with x ’s characteristics is User x  himself.

When kx < ky, there is a probability that User x is hidden by User y. User x is 

hidden by User y when all the attributes disclosed by User x are identical to attributes 

disclosed by User y. Given m attributes, there are a total of (™)(™) ways for users 

x and y to select kx and ky attributes for revelation, respectively. For x  to be hidden 

by y, the kx revealed attributes should be equal value pairs and any extra attributes 

(ky — kx) revealed by User y should correspond to the m — kx attributes that User 

x  withheld. This can happen in ((”) ) ways. Therefore, the probability that

User x reveals attributes only among the attributes revealed by y is given by
UJ

Assuming that any attribute can take up one of L possible values, the probability of
( m —kx \

x  being hidden by y becomes —̂ y - p b -  The number of users with x’s characteristics
/ m - k x \

is therefore 1 +  p b  and therefore User x’s risk is given by l/(\+--f ^ kv '  p^). □
Vfcy/ v̂ y/

We consider the risk-free scenario by nullifying the influence of the risk factor 

(negative utility) on the utility function in Equation 3.6 and fitness equation in 

Equation 3.11. This is done by setting Rkx,ky = 1 so that the risk is unaffected 

by the number of revealed attributes of any users. In this way, the strategies of the 

users only vary with the positive utility and are therefore risk-free (or negative utility 

free).



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Sim ulations Settings

We conduct simulations of the risk-included and risk-free cases for the two-user 

game, basic evolutionary game, and the weighted evolutionary game. In all games, we 

consider user profiles made up of seven attributes (m = 7), which each user can reveal 

or withhold. This is sufficiently large to make observations that can be applied to a 

generic online social network. We set the number of users in the basic evolutionary 

game to 80 so that all eight categories of users initially have a round number of 

members. We set the number of users in the weighted evolutionary game model to 

1 0 0  to emphasize the differences in graph structure between the considered network 

topologies. Other simulation settings specific to particular games are provided below 

and in Table 5.1.

5.1.1 Two-user Gam e

In the two-user game, the motivation is set to a G {0.2}. For the risk-free 

cases, the risk Rij  is made independent of i and j  by setting it to 1 .

We use the payoff matrix to derive the Nash equilibria for the two-user game. 

The payoff matrix shows the payoff values for each strategy combination for both 

players. Each payoff value is calculated from Equation 3.6 and the resultant payoff

42
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Table 5.1: Parameter Values Used in the Models

Parameter
Value

Two-user game Basic evolutionary game Weighted evolutionary game

a 0.2 0.2.0.9.1.5 -

\N\ 2 80 100

\ A \ 7 7 7

W p - - 1

U’N - - 15

W - - (0.02,0.06.0.10.0.14.0.18.0.22.0.28)

matrices for the risk-included and risk-free two-user games are provided in Table 5.2

and Table 5.3, respectively.

Table 5.2: Payoff Matrix of the Two-user Game for Risk-included Scenario

\  u

.v  \
*» =  o A:„ =  l A-„ =  2 A'„ =  3 k y  ~  4 k y  =  5 k y  =  6 k y  =  7

A'* =  0 0.1104. 0.1104 0.2209. 0.1104 0.2209. 0.1104 0.2209. 0.1104 0.2209. 0.1104 0.2209. 0.1104 0.2209. 0.1104 0.2209. 0.1104

k T =  1 0.1104. 0.2209 0.0327. 0.0327 0.0717. 0.0654 0.1122. 0.0982 0.1558. 0.1309 0.2025. 0.1636 0.2524. 0.1963 0.1581. 0.1186

frr =  2 0.1104. 0.2209 0.0654. 0.0717 0.0170. 0.0170 0.0517. 0.0509 0.10.50. 0.1018 0.1787. 0.1697 0.1896. 0.1757 0.1415. 0.1273

A-t =  3 0.1104. 0.2209 0.0982. 0.1122 0.0509, 0.0517 0.0141. 0.0141 0.0566, 0.0564 0.1105. 0.1093 0.1541. 0.1509 0.1418. 0.1367

A:r =  4 0.1104. 0.2209 0.1309, 0.1558 0.1018. 0.1050 0.0564. 0.0566 0.0151. 0.0151 0.0588. 0.0587 0.1222. 0.1215 0.1486. 0.1468

A =  5 0.1104. 0.2209 0.1636. 0.2025 0.1697. 0.1787 0.1093. 0.1105 0.0587. 0.0588 0.0210. 0.0210 0.0871. 0.0870 0.1583. 0.1577

Av =  6 0.1104. 0.2209 0.1963. 0.2524 0.1757. 0.1896 0.1509. 0.1541 0.1215. 0.1222 0.0870, 0.0871 0.0467. 0.0467 0.1695, 0.1693

A', =  7 0.1104. 0.2209 0.1186,0.1581 0.1273. 0.1415 0.1367. 0.1418 0.1468. 0.1486 0.1577. 0.1583 0.1693. 0.1695 0.1818. 0.1818

As an example, consider User x  discloses three attributes, while User y discloses 

six attributes (kx =  3, ky = 6 ). Given m = 7, a  =  0.2, e = 5.0, and L =  3, the payoff 

value of the risk-included two-user game is calculated.
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Table 5.3: Payoff Matrix of the Two-user Game for Risk-free Scenario

\ .  V 

x
t'„ =  (1 t-, =  1 If II Co t'„ — 4 k,  =  5 k„ = 6 t-„ =  7

tv = o 0.1104. 0.1104 0.1104. 0.1104 0.1104. 0.1104 0.1104.0.1104 0.1104. 0.1104 0.1104. 0.1104 0.1104. 0.1104 0.1104. 0.1104

tv =  1 0.1104. 0.1104 0.0327. 0.0327 0.0654. 0.0654 0.0982. 0.0982 0.1309. 0.1309 0.1636. 0.1636 0.1963. 0.1963 0.1186. 0.1186

tv =  2 0.1104. 0.1104 0.0604. 0.0654 0.0170. 0.0170 0.0509. 0.0509 0.1018. 0.1018 0.1697. 0.1697 0.1757, 0.1757 0.1273. 0.1273

tv = 3 0.1104. 0.1104 0.0982. 0.0982 0.0509. 0.0509 0.0141. 0.0141 0.0564. 0.0564 0.1093, 0.1093 0.1509. 0.1-509 0.1367, 0.1367

tv = 4 0.1104. 0.1104 0.1309. 0.1309 0.1018. 0.1018 0.0564. 0.0564 0.0151. 0.0151 0.0587. 0.0587 0.1215. 0.1215 0.1468. 0.1468

tv  =  5 0.1104. 0.1104 0.1636. 0.1636 0.1697. 0.1697 0.1093, 0.1093 0.0587. 0.0587 0.0210. 0.0210 0.0870. 0.0870 0.1577. 0.1577

tv = 6 0.1104. 0.1104 0.1963. 0.1963 0.1757. 0.1757 0.1509. 0.1509 0.1215. 0.1215 0.0870. 0.0870 0.0467. 0.0467 0.1693. 0.1693

tv = 7 0.1104. 0.1104 0.1186. 0.1186 0.1273. 0.1273 0.1307. 0.1367 0.1468.0.1468 0.1577. 0.1577 0.1693. 0.1693 0.1818. 0.1818

User x’s utility is calculated from Equation 3.6, ux = P:t̂ P , where P3i6 (F) is 

calculated from Equation 3.4:
min{3,6}

P*>(F) = E  W  = r)
r —max{3+6—7,0} 

r

• 5 3  P (F  | iVep =  V) ■ P(Nep — r) \ Np = r) =  0.1509,
0

while R3i6 is calculated from Equation 3.5, P 3,6 =  jU =  0.9793. User
w

x’s utility is therefore given by «x =  2-l|2|  =  0.1541. Similarly, User y ’s utility is 

evaluated from uy =  P̂ P , where the positive utility PejiF) = P3,e(F) =  0.1509.

Prom Equation 3.5, we find that User y's negative utility is 1. This risk is 

maximum because User y cannot be hidden by User x. Therefore, User y's utility in 

the same scenario is uy — 0.1509.

5.1.2 Basic E volutionary Gam e

For the basic evolutionary game, we set the motivation a € {0.2,0.9,1.5}. 

Similar to the two-user game in Section 5.1.1, the negative utility Pj,j in the risk-free 

case is made independent of i and j  by setting it to 1. The social network considered
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consists of 80 users with eight possible strategies. The users are categorized according 

to the strategy they employ. After initializing the population in each of the eight 

categories to ten users, we observe how the populations of the categories change over 

time.

5.1.3 Weighted Evolutionary Game

In this section, we describe the underlying simulation settings. The simulations 

deal with risk-included and risk-free cases of the weighted evolutionary game.

The simulation is designed to consider user profiles with seven attributes (m = 

7). Each user can choose to reveal or to withhold each of these attributes. A 7-bit. 

flag is assigned to each user, which corresponds to the attributes. For example, the 

flag 1000110 for User 1 means that Attributes 1, 5 and 6  are revealed while Attributes 

2, 3, 4, and 7 are withheld.

We begin by randomly assigning the attribute flag to all users of the network. 

During each iteration, each user has two options: maintain his/her attribute flag, or 

change it (by revealing or withholding a single attribute).

To consider different levels of the risk, we choose three different benefit-to-risk 

ratios (BRRs), which are 1 : 0, 1 : 15, and 1 : 30 (cf. Table 5.1). While all the 

attributes are assigned to different weights, the weight vector for the attributes is 

assumed to be the same for each user of the network. Additional simulation settings 

are shown in Table 5.1. We run the simulation for each configuration 500 times. 

After averaging 500 simulation results, we obtain the dynamic curves in each of the
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considered networks, which include random, small-world, scale-free, and Facebook 

friend networks.

The size and average node degree for each network are all listed in Table 5.4. 

Random network, small-world network, and scale-free network are generated with the 

same size and average node degree. Two Facebook friend networks are collected from 

real Facebook accounts, which exhibit different size and average node degree.

Table 5.4: The Properties of Networks in the Simulation

N e tw o r k S iz e A v e r a g e  N o d e  D e g re e

Random  network 100 4

Small-world network 100 4

Scale-free network 100 4

F B I 151 15.0

F B 2 502 49.0

In Figure 5.1, the visualized graphs for the random, small-world, and scale- 

free networks are shown. The visualized graphs for the Facebook friend networks are 

depicted in Figure 5.2. The Facebook graphs (FBI and FB2) are obtained using the 

SocialMediaData function in Mathematica. Figure 5.2a and Figure 5.2b are from two 

different Facebook accounts.



(a) Random network (b) Small-world network (c) Scale-free network

Figure 5.1: The network topologies used in the simulations. The average node 
degree for each network is 4, and each network includes 100 nodes.

( a )  F B I  ( b )  F B 2

Figure 5.2: The Facebook friend networks used in the simulations. Network FBI 
and FB2 are comprised of 151 and 502 nodes, respectively.

5.2 Results

5.2.1 Two-user Game

The Nash equilibria for the two user games in both the risk-included and 

risk-free scenarios are shown in Figure 5.3. The Nash equilibria correspond to the 

privacy decisions that the two users are likely to make. By definition, no user can 

increase his/her gain by changing his/her strategy unilaterally when Nash equilibrim 

is attained. The Nash equilibrium states are calculated using the enumerating extreme



points method [44] as calculated by the Gambit tool [45]. The states represent all the 

possible final strategies employed by a risk-included or risk-free simulation. Figure 5.3 

shows a total of 31 Nash equilibrium states, six of which are attained in the risk-free 

scenario, and 25 in the risk-included scenario. The states are represented with color- 

coded rectangles which correspond to the probability of a player taking that strategy. 

Darker colors correspond to higher probabilities while lighter colors correspond to 

lower probabilities. For example, State 25 of the risk-included scenario shows that 

both Player 1 and Player 2 choose strategy 1 with a probability 1.0. State 2 of the 

risk-included scenario shows that Player 1 could choose either strategy 7 or strategy 8  

while Player 2 chooses strategy 1. Recall that Strategy i refers to the user’s choice to 

reveal i — 1 attributes and therefore Player 1 choosing strategy 1 means they choose 

to withhold all their attributes.

The risk-included states show that Nash Equilibrium is only achieved when 

at least one of the players selects Strategy 1 . All 25 equilibrium states involve at 

least one of the players employing Strategy 1 , which corresponds to withholding all 

his/her attributes. This means that no player will be satisfied with his/her choice 

until at least one of them has chosen to withhold all their attributes. However, one 

player selecting to withhold all their attributes does not mean that the other player 

will choose the same strategy. For example, in State 2, Player 1 chooses to reveal six 

or seven of his seven attributes (strategy 7 or 8 ) with a probability of §|§ and §|§,s 

respectively.

The risk-free states show that players are more likely to reveal more attributes.

Only one of the six equilibrium states has any player withholding any information
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Player 1
With risk

Player 2

0.5 5

Without risk
i 1---------1---------1---------1— i

Strategies

Figure 5.3: The correlation map shows the Nash equilibrium states for the two- 
player game with the colors corresponding to the probability of any user taking a 
specific strategy when Nash equilibrium is attained. Dark colors represent higher 
probabilities, and lighter colors represent lower probabilities.
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(State 6 ). All remaining five states have at least one of the players revealing a 

minimum of six out of seven attributes. For example, State 3 shows that both Player 

1 and Player 2 choose Strategy 8 , which is the reveal-all strategy.

The results show that with risk involved, equilibrium will only be attained if 

at least one of the players selects to withhold all his attributes. In a risk-free scenario, 

however, a player will only withhold all attributes if the other player has withheld all 

their attributes. Otherwise, both players are comfortable with revealing either all or 

all-but-one of their attributes.

5.2.2 Basic Evolutionary Game

The population dynamics for the basic evolutionary game model are shown 

in Figure 5.4 and Figure 5.5 for the risk-included and risk-free cases, respectively. 

The figures show how many users employ the different possible strategies and how 

this changes with time. By considering an 80-user network, and solving the system of 

differential equations for different values of motivation a, we are able to determine the 

number of users n* that choose to reveal i attributes. For example, no is the number 

of users who choose to withhold all their attributes (reveal 0  attributes), while n 7 is 

the number of users who choose to reveal all seven attributes. Initially, ten users are 

assigned to each strategy, i.e. n* =  10, Vi € {0 ,1 ,2 ,3 ,4 ,5 ,6 , 7}.

From Figure 5.4 we observe that the number of people who withhold all their 

attributes no increases to 80 in all three plots, while all other strategies decrease to 0 . 

This shows that as long as there is risk in the network, the final strategy employed 

by all users is to withhold all the attributes.
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Figure 5.4: Population dynamics for the basic evolutionary game for the risk- 
included scenario with different levels of motivation.
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However, comparing Figures. 5.4a, 5.4b, and 5.4c shows that increasing the 

motivation a  increases the time it takes for the network to eventually employ the 

withhold-all strategy. For example, comparing Figures. 5.4a and 5.4b shows that 

increasing a from 0.2 to 0.9 results in an increase in convergence time from 0.012 

to 0.7. This indicates that an increase in the motivation to reveal more attributes 

only affects how long it takes for the network to eventually employ the withhold-all 

strategy. It is interesting to note that the reveal-one-attribute strategy rq is initially 

more common than the more revealing strategies (n<i,n3 , n4, n^, t i q , n7).

In contrast, we observe from Figure 5.5 that the dominant strategy in the 

risk-free case is to reveal all attributes n7. The number of people who reveal all- 

but-one attribute n6 also initially increases but eventually decreases alongside other 

less revealing strategies (n0, n i ,n 2,n 3 ,n 4 ,n 5). While this result might seem intuitive, 

the effect of increasing motivation is counter-intuitive. Figures. 5.5a, 5.5b, and 5.5c 

show that increasing the motivation increases the time the network takes to achieve 

equilibrium. For example, comparing Figures. 5.5a and 5.5b shows that increasing a  

from 0.2 to 0.9 results in an increase in convergence time from 2.5 to 7. Similar to 

the risk-included case, increasing motivation only affects the convergence time of the 

network. However, increasing the motivation also reduces the number of users who 

will initially employ the reveal all-but-one strategy n6. This means that the reveal 

all-but-one strategy is more popular with lower values of motivation.

Comparing convergence times of the risk-free and risk-included networks shows 

that risk-free networks have longer convergence time than risk-included networks for 

low values of a, and a shorter convergence time for a  =  1.5.
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5.2.3 Weighted Evolutionary Model

In this section, we describe the results derived from simulations of the weighted 

evolutionary game on a random network, a small-world network, a scale-free network, 

and two Facebook friend networks.

The attribute dynamic curves for random network, small-world network, scale- 

free network, FBI, and FB2 are shown in Figures. 5.6 - 5.15, respectively. Each 

dynamic curve shows how the proportion of the entire population that discloses any 

specific attribute changes with time. Each dynamic plot consists of seven curves 

corresponding to seven attributes, A ttr#  1 , A ttr# 2, ..., Attr#7, which are numbered 

according to their importance (weight), i.e. A ttr#7  is the most important attribute, 

while Attrjfcl is the least important attribute.

There are three sub-figures (Figures, a-c) in each figure. Figures. 5.6, 5.8, 5.10, 

5.12, and 5.14 correspond to the simulation results when we consider the benefit and 

risk only within the users’ friends. Figures. 5.7, 5.9, 5.11, 5.13, and 5.15 correspond 

to simulation results when we consider both the users’ friends and friends-of-friends. 

The top, middle and bottom rows correspond to B R R  values of 1 : 0, 1 : 15, and 

1 : 30, respectively, where (B R R  = 1 : 0 )  represents risk-free scenario.

The first observation is a general reduction in attribute revelation with an 

increase in risk. Consider Figure 5.6 which shows the attribute dynamics in a random 

network: comparing Figures. 5.6a, 5.6b, and 5.6c shows that increasing the risk causes 

less users to reveal attributes. Figure 5.6a shows that over 85% of the population 

reveal all their attributes by 100 iterations when there is no risk. Introducing risk 

causes users to reveal less attributes. In fact, Figure 5.6c shows that all users withhold
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all their attributes by 50 iterations when B R R  =  1 : 30. The small-world, scale-free, 

and Facebook networks (cf. Figures. 5.8, 5.10, 5.12, and 5.14) all exhibit similar 

observations. While this observation might seem intuitive, it provides some form of 

vindication for our model.

The second observation is that the networks generally exhibit larger drops in 

attribute revelation when the range of influence is restricted to friends as opposed to 

when friends-of-friends are also considered. For example, Figures. 5.8a and 5.9a show 

almost identical levels of revelation without risk. However, increasing the risk leads 

to more attributes withholding in Figures. 5.8b and 5.8c than it does in Figures. 5.9b 

and 5.9c. This means that risk plays a more dominant role in attribute disclosure 

when only the friends of a user are considered.

The third observation is that increasing the users’ range of influence generally 

results in increased levels of attribute revelation. Consider Figures. 5.10 and 5.11 

which capture attribute dynamics in a scale-free network: comparing Figures. 5.10a, 

5.10b, and 5.10c and Figures. 5.11a, 5.11b, and 5.11c shows that maximum revelation 

is obtained by as early as 40 iterations for all attributes when friends-of-friends are 

considered (Figures. 5.11a, 5.11b, 5.11c). In contrast, the risk-free scenario with 

friends (Figure 5.10a) only obtains maximum revelation for some of the attributes, 

while Figures. 5.10b and 5.10c do not obtain maximum revelation for any attributes 

at all. This observation can be attributed to the process of enlarging the influential 

range. Increasing the range results in an increase in the number of users who can 

hide any specific user which leads to a reduction in risk. Increasing the range also
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allows for more users who share the same attributes, which leads to an increase in 

the user’s benefit.

The next observation is related to the friend’s influential range. Increasing the 

risk factor has a larger effect on attribute disclosure in the random and small-world 

networks than in the scale-free and Facebook networks. Comparing Figures. 5.6 

and 5.8 to Figures. 5.10, 5.12 and 5.14 shows that B R R  =  1 : 30 causes complete 

attribute withholding in the random and small-world networks in contrast to partial 

attribute withholding in the scale-free and Facebook networks.

The final observation is related to the effect of network topology on attribute 

disclosure with the range of influence restricted to friends. We find that network 

topology plays a more considerable effect on the privacy in risk-included scenarios 

than in a risk-free scenario for the random, small-world, and scale-free networks. 

Comparing Figures. 5.6a, 5.8a and 5.10a shows that the networks exhibit similar 

performance in the risk-free environment (B RR  = 1 : 0 ) .  However, comparing 

Figures. 5.6b, 5.8b and 5.10b as well as Figures. 5.6c, 5.8c and 5.10c shows that 

the performance is different for different networks. For example, Figures. 5.6c and 

5.8c show complete attribute withholding while Figure 5.10c shows partial attribute 

disclosure.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we model and analyze the privacy settings of social networks 

from a game-theoretic perspective by introducing three types of game models. The 

models aim to investigate the influence of various factors on the privacy settings 

employed in social networks. The first is a two-user game model, which investigates 

the relationship between two users when disclosing profile attributes. The second is 

the basic evolutionary game model, which shows the dynamic behavior of multiple 

users as in large-scale online social networks. The third is a weighted evolutionary 

game model. We aim to investigate the influence of various factors such as attribute 

importance, benefit, risk, and network topology on the privacy settings employed in 

social networks.

As for results, we find both pure and mixed Nash equilibria in the two-user 

game. We also show the dominant strategy and population dynamics for the basic and 

weighted evolutionary game models in both the risk-included and risk-free cases. The 

two-user model results show that in a risk-included environment, Nash equilibrium 

is only achieved when at least one of the users withholds all their attributes. In the 

risk-free environment, results show that the ultimate privacy settings selected by one 

user is highly dependent on the privacy settings selected by another user.
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In the basic evolutionary model, results indicate that the presence or absence 

of risk affects the final strategy adopted by the users in a network, while motivation 

only affects how long they take to adopt that strategy. This means that increasing 

motivation in a social network, e.g. by improving friend recommendation algorithms, 

only affects the level of self-disclosure in the short term. The existence of any risk 

factor means that eventually all users of a social network will adopt the highest 

possible privacy regardless of the benefits of revealing more profile attributes.

In the weighted evolutionary model, the results show that the most important 

attributes exhibit higher levels of revelation than the least important attributes. 

This finding is more evident in random and scale-free networks than in small-world 

networks. We also find that increasing the risk exhibits limited effect on the privacy 

dynamics of the network if we consider the benefit and risk from friends-of-friends. In 

the Facebook friend networks, which include more users and feature a higher average 

node degree, increasing the risk coefficient only slightly affects the level of attribute 

disclosure.

The models presented in this dissertation provide a way to study and compre­

hend the dynamics of privacy settings in social networks. Additionally, the nature 

of the transitions reveals the influence of certain factors in the short and long run in 

social network privacy to social network designers and users.

For future work, we plan to investigate the performance of our model on a 

larger variety of networks as well as compare it with data from real world social 

networks. Moreover, we intend to investigate multi-level privacy where users reveal 

different sets of attributes to different users in the network.



BIBLIOGRAPHY

[1] Guynn J: New Facebook information sharing features cause privacy concern- 
s. h t tp : / / a r t i c l e s . la tim es. com/201l/s e p /2 7 /b u s in e s s /la - f i-facebook- 
privacy-20110927, September 27, 2011.

[2] Sengupta S: F.T.C. Settles Privacy Issue at Facebook. http://w ww.nytim es. 
com /2011/11/30/technology/facebook-agrees-to-ftc-settlem ent-on- 
privacy.htm l, November 29, 2011.

[3] Ben Abdesslem F, Parris I, Henderson T: Reliable Online Social Network Data 
Collection. In Computational Social Networks, London, UK: Springer, 2012:183- 
210 .

[4] Scott C: Facebook Proposes More Changes to Privacy Policy, h ttp : 
/ / www.pcworld.com /businesscenter/article/255518/facebook_proposes_ 
more_changes_to_privacy_policy.html, May 11, 2012.

[5] Mike Shor: Glossary of game theory terms, http://w ww.gam etheory.net/ 
d ic tio n ary /, May 6, 2002.

[6] Jundong Chen, Matthias R. Brust, Ankunda R. Kiremire, Vir V. Phoha: 
Modeling Privacy Settings of an Online Social Network from a Game-Theoretical 
Perspective. Proc. of 9th IEEE Int’l Conf. on Collaborative Computing, pages 
213-220, Austin, TX, USA, 2013.

[7] Jundong Chen, Matthias R. Brust, Ankunda R. Kiremire, Vir V. Phoha: A 
Game Theoretic Approach for Modeling Privacy Settings of an Online Social 
Network. EAI Endorsed Transactions on Collaborative Computing, 2014(l):e4.

[8] Jundong Chen, Matthias R. Brust, Ankunda R. Kiremire, Vir V. Phoha: 
Modeling online social network users’ profile attribute disclosure behavior from 
a game theoretic perspective, Comput. Commun., 2014(49): 18-32.

69

http://articles.latimes.com/201l/sep/27/business/la-fi-facebook-
http://www.nytimes
http://www.pcworld.com/businesscenter/article/255518/facebook_proposes_
http://www.gametheory.net/


70

[9] Sarah Evans: Top 18 social networks who have joined the 100 million (and 
more) users club, h ttp ://sa rah sfav .es /2 0 1 3 /0 4 /2 4 /so c ia ln e tw o rk s/, April 
24, 2013.

[10] Pingdom: Facebook’s crushing domination - the 26 busiest social networks, 
h ttp ://ro y a l.p in g d o m .com/2012/07/25/facebooks-crushing-domination- 
the-26 -busiest-soc ia l-ne tw orks/, July 25, 2012.

[11] University of Wyoming: Learning Guide: Pinterest. http://www.
wyomingextension.org /w ik i/index .php5?title=Learning_Guide: 
P in te re s t, May 27, 2013.

[12] Goodreads: How it works, http://www.goodreads.com /about/how\_it\
_works, May 27, 2013.

[13] Jon Kleinberg, Siddharth Suri, Eva Tardos, Tom Wexler: Strategic Network 
Formation with Structural Holes. Proc. of ACM SIGecom Exch., pages 1-4, 
Chicago, IL, USA, 2008.

[14] Osborne, Martin J.: An introduction to game theory. Oxford Univ. Press., 2004.

[15] Wei Chen, Zhenming Liu, Xiaorui Sun, Yajun Wang: Community Detection 
in Social Networks Through Community Formation Games. 22nd International 
Joint Conference on Artificial Intelligence (IJCAI), pages 2576-2581, Menlo Park, 
CA, USA, 2011.

[16] R. Narayanam, Y. Narahari: A Shapley Value-Based Approach to Discover 
Influential Nodes in Social Networks. IEEE Trans. Autom. Sci. Eng. 2011, 
8(1):130-147.

[17] Andrew K. C. Wong, David E. Ghahraman: Random Graphs: Structural- 
Contextual Dichotomy. IEEE Trans. Pattern Anal. Mach. Intell., 1980, 2(4):341- 
348.

[18] P. Berenbrink, A. Brinkmann, T. Friedetzky, L. Nagel: Balls into non- 
uniform bins. IEEE International Symposium on Parallel Distributed Processing 
(IPDPS), pages 1-10, Atlanta, GA, USA, 2010.

http://sarahsfav.es/2013/04/24/socialnetworks/
http://royal.pingdom.com/2012/07/25/facebooks-crushing-domination-
http://www
http://www.goodreads.com/about/how/_it/


71

[19] Liu Y, Gummadi KP, Krishnamurthy B, Mislove A: Analyzing Facebook privacy 
settings: User expectations vs. reality. Proc. of the Usenix/ACM Internet 
Measurement Conf. (IMC), pages 61-70, Berlin, Germany, 2011.

[20] Madden M: Privacy management on social media sites. h ttp :/ /p e w in te rn e t. 
org/Reports/2012/Privacy-management-on-social-media/Summary-of- 
findings.aspx, 2012.

[21] Krasnova H, Spiekermann S, Koroleva K, Hildebrand T: Online social networks: 
why we disclose. Journal of Information Technology, 2010, 25:109-125.

[22] Miller M, Lovin LS, Cook JM: Birds of a Feather: Homophily in Social Networks. 
Annual Review of Sociology, 2001, 27:415-444.

[23] Kossinets G, Watts DJ: Origins of Homophily in an Evolving Social Network. 
American Journal of Sociology, 2009, 115(2):405-450.

[24] Lampe C, Ellison N, Steinfield C: A familiar Face(book): Profile elements as 
signals in an online social network. Proc. of the SIGCHI Conf. on Human Factors 
in Computing Systems, pages 435-444, San Jose, CA, USA, 2007.

[25] Mislove A, Viswanath B, Gummadi KP, Druschel P: You Are Who You Know: 
Inferring User Profiles in Online Social Networks. Proc. of the ACM Int’l Conf. 
on Web Search and Data Mining, pages 251-260, Hong Kong, China, 2010.

[26] Becker J, Chen H: Measuring privacy risk in online social networks. Web 2.0 
Security and Privacy Workshop, Oakland, CA, 2009.

[27] Squicciarini AC, Griffin C, Sundareswaran S: Towards a Game Theoretical Model 
for Identity Validation in Social Network Sites. Proc. of the Third Int’l Conf. on 
Social Computing, pages 1081-1088, Boston, MA, USA, 2011.

[28] Squicciarini AC, Griffin C: An Informed Model of Personal Information Release 
in Social Networking Sites. In ASE/IEEE Conf. on Privacy, Security, Risk and 
Trust, pages 635-645, Amsterdam, Netherlands, 2012.

[29] Skyrms B: The Stag Hunt and the Evolution of Social Structure. Cambridge 
University Press, 2003.

http://pewinternet


72

[30] Lin W, Zhao H, Liu K: Cooperation Stimulation Strategies for Peer-to-Peer 
Wireless Live Video- Sharing Social Networks. IEEE TYans. Image Processing,
2010, 19(7):1768-1784.

[31] Yu W, Liu K: Secure Cooperation in Autonomous Mobile Ad-Hoc Networks 
Under Noise and Imperfect Monitoring: A Game-Theoretic Approach. IEEE 
TVans. Inf. Forensics Security, 2008, 3(2):317-330.

[32] Xu S, Li X, Parker T, Wang X: Exploiting Trust-Based Social Networks for 
Distributed Protection of Sensitive Data. IEEE Trans. Inf. Forensics Security,
2011, 6(l):39-52.

[33] Squicciarini AC, Shehab M, Paci F: Collective Privacy Management in Social 
Networks. Proc. of the Int’l World Wide Web Conf., pages 521-530, Madrid, 
Spain, 2009.

[34] Kamhoua C, Pissinou N, Makki K: Game Theoretic Modeling and Evolution of 
Trust in Autonomous Multi-hop Networks: Application to Network Security and 
Privacy. Proc. of the IEEE Int’l Conference on Comms. (ICC), pages 1-6, Kyoto, 
Japan, 2011.

[35] Antonioni A, Tomassini M: Cooperation on Social Networks and its Robustness. 
Advances in Complex Systems, 2012(15):46-64.

[36] Osborne MJ, Rubinstein A: A course in game theory. Cambridge, MA: The MIT 
Press, 1994.

[37] Wong AKC, Ghahraman DE: Random Graphs: Structural-Contextual Dichoto­
my. Trans. Pattern Anal. Machine Intell., 1980, 2(4)-.341-348.

[38] Newman MEJ, Watts DJ, Strogatz SH: Random graph models of social networks. 
Proc. Natl. Acad. Sci. U.S.A., 2002, 99(l):2566-2572.

[39] Erdos P, Renyi A: On the evolution of random graphs. Publ. Math. Inst. Hung. 
Acad. Sci., 1960, 5:17-61.

[40] Watts DJ, Strogatz SH: Collective dynamics of small-world networks. Nature, 
1998, 393(6684):440-442.



73

[41] Barabasi AL, Albert R: Emergence of Scaling in Random Networks. Science, 
1999, 286(5439):509-512.

[42] Taylor P, Jonker L: Evolutionary Stable Strategies and Game Dynamics. 
Mathematical Biosciences, 1978, 40(1-2):145-156.

[43] Roca CP, Cuesta JA, Sanchez A: Evolutionary game theory: Temporal and 
spatial effects beyond replicator dynamics. Phys. Life Rev., 2009, 6(4):208-249.

[44] Audet C, S, Hansen P: Enumeration of All Extreme Equilibria in Game 
Theory: Bimatrix and Polymatrix Games. Journal of Optimization Theory and 
Applications, 2006, 129(3):349-372.

[45] McKelvey, D R, McLennan, M A, Turocy TL: Gambit: Software Tools for Game 
Theory, http://w w w .gam bit-project.org , 2010.

http://www.gambit-project.org

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2014

	Modeling profile-attribute disclosure in online social networks from a game theoretic perspective
	Jundong Chen

	00001.tif

