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However, comparing Figures. 5.4a, 5.4b, and 5.4c shows that increasing the 

motivation a  increases the time it takes for the network to eventually employ the 

withhold-all strategy. For example, comparing Figures. 5.4a and 5.4b shows that 

increasing a from 0.2 to 0.9 results in an increase in convergence time from 0.012 

to 0.7. This indicates that an increase in the motivation to reveal more attributes 

only affects how long it takes for the network to eventually employ the withhold-all 

strategy. It is interesting to note that the reveal-one-attribute strategy rq is initially 

more common than the more revealing strategies (n<i,n3 , n4, n^, t i q , n7).

In contrast, we observe from Figure 5.5 that the dominant strategy in the 

risk-free case is to reveal all attributes n7. The number of people who reveal all- 

but-one attribute n6 also initially increases but eventually decreases alongside other 

less revealing strategies (n0, n i ,n 2,n 3 ,n 4 ,n 5). While this result might seem intuitive, 

the effect of increasing motivation is counter-intuitive. Figures. 5.5a, 5.5b, and 5.5c 

show that increasing the motivation increases the time the network takes to achieve 

equilibrium. For example, comparing Figures. 5.5a and 5.5b shows that increasing a  

from 0.2 to 0.9 results in an increase in convergence time from 2.5 to 7. Similar to 

the risk-included case, increasing motivation only affects the convergence time of the 

network. However, increasing the motivation also reduces the number of users who 

will initially employ the reveal all-but-one strategy n6. This means that the reveal 

all-but-one strategy is more popular with lower values of motivation.

Comparing convergence times of the risk-free and risk-included networks shows 

that risk-free networks have longer convergence time than risk-included networks for 

low values of a, and a shorter convergence time for a  =  1.5.
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5.2.3 Weighted Evolutionary Model

In this section, we describe the results derived from simulations of the weighted 

evolutionary game on a random network, a small-world network, a scale-free network, 

and two Facebook friend networks.

The attribute dynamic curves for random network, small-world network, scale- 

free network, FBI, and FB2 are shown in Figures. 5.6 - 5.15, respectively. Each 

dynamic curve shows how the proportion of the entire population that discloses any 

specific attribute changes with time. Each dynamic plot consists of seven curves 

corresponding to seven attributes, A ttr#  1 , A ttr# 2, ..., Attr#7, which are numbered 

according to their importance (weight), i.e. A ttr#7  is the most important attribute, 

while Attrjfcl is the least important attribute.

There are three sub-figures (Figures, a-c) in each figure. Figures. 5.6, 5.8, 5.10, 

5.12, and 5.14 correspond to the simulation results when we consider the benefit and 

risk only within the users’ friends. Figures. 5.7, 5.9, 5.11, 5.13, and 5.15 correspond 

to simulation results when we consider both the users’ friends and friends-of-friends. 

The top, middle and bottom rows correspond to B R R  values of 1 : 0, 1 : 15, and 

1 : 30, respectively, where (B R R  = 1 : 0 )  represents risk-free scenario.

The first observation is a general reduction in attribute revelation with an 

increase in risk. Consider Figure 5.6 which shows the attribute dynamics in a random 

network: comparing Figures. 5.6a, 5.6b, and 5.6c shows that increasing the risk causes 

less users to reveal attributes. Figure 5.6a shows that over 85% of the population 

reveal all their attributes by 100 iterations when there is no risk. Introducing risk 

causes users to reveal less attributes. In fact, Figure 5.6c shows that all users withhold
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all their attributes by 50 iterations when B R R  =  1 : 30. The small-world, scale-free, 

and Facebook networks (cf. Figures. 5.8, 5.10, 5.12, and 5.14) all exhibit similar 

observations. While this observation might seem intuitive, it provides some form of 

vindication for our model.

The second observation is that the networks generally exhibit larger drops in 

attribute revelation when the range of influence is restricted to friends as opposed to 

when friends-of-friends are also considered. For example, Figures. 5.8a and 5.9a show 

almost identical levels of revelation without risk. However, increasing the risk leads 

to more attributes withholding in Figures. 5.8b and 5.8c than it does in Figures. 5.9b 

and 5.9c. This means that risk plays a more dominant role in attribute disclosure 

when only the friends of a user are considered.

The third observation is that increasing the users’ range of influence generally 

results in increased levels of attribute revelation. Consider Figures. 5.10 and 5.11 

which capture attribute dynamics in a scale-free network: comparing Figures. 5.10a, 

5.10b, and 5.10c and Figures. 5.11a, 5.11b, and 5.11c shows that maximum revelation 

is obtained by as early as 40 iterations for all attributes when friends-of-friends are 

considered (Figures. 5.11a, 5.11b, 5.11c). In contrast, the risk-free scenario with 

friends (Figure 5.10a) only obtains maximum revelation for some of the attributes, 

while Figures. 5.10b and 5.10c do not obtain maximum revelation for any attributes 

at all. This observation can be attributed to the process of enlarging the influential 

range. Increasing the range results in an increase in the number of users who can 

hide any specific user which leads to a reduction in risk. Increasing the range also
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allows for more users who share the same attributes, which leads to an increase in 

the user’s benefit.

The next observation is related to the friend’s influential range. Increasing the 

risk factor has a larger effect on attribute disclosure in the random and small-world 

networks than in the scale-free and Facebook networks. Comparing Figures. 5.6 

and 5.8 to Figures. 5.10, 5.12 and 5.14 shows that B R R  =  1 : 30 causes complete 

attribute withholding in the random and small-world networks in contrast to partial 

attribute withholding in the scale-free and Facebook networks.

The final observation is related to the effect of network topology on attribute 

disclosure with the range of influence restricted to friends. We find that network 

topology plays a more considerable effect on the privacy in risk-included scenarios 

than in a risk-free scenario for the random, small-world, and scale-free networks. 

Comparing Figures. 5.6a, 5.8a and 5.10a shows that the networks exhibit similar 

performance in the risk-free environment (B RR  = 1 : 0 ) .  However, comparing 

Figures. 5.6b, 5.8b and 5.10b as well as Figures. 5.6c, 5.8c and 5.10c shows that 

the performance is different for different networks. For example, Figures. 5.6c and 

5.8c show complete attribute withholding while Figure 5.10c shows partial attribute 

disclosure.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we model and analyze the privacy settings of social networks 

from a game-theoretic perspective by introducing three types of game models. The 

models aim to investigate the influence of various factors on the privacy settings 

employed in social networks. The first is a two-user game model, which investigates 

the relationship between two users when disclosing profile attributes. The second is 

the basic evolutionary game model, which shows the dynamic behavior of multiple 

users as in large-scale online social networks. The third is a weighted evolutionary 

game model. We aim to investigate the influence of various factors such as attribute 

importance, benefit, risk, and network topology on the privacy settings employed in 

social networks.

As for results, we find both pure and mixed Nash equilibria in the two-user 

game. We also show the dominant strategy and population dynamics for the basic and 

weighted evolutionary game models in both the risk-included and risk-free cases. The 

two-user model results show that in a risk-included environment, Nash equilibrium 

is only achieved when at least one of the users withholds all their attributes. In the 

risk-free environment, results show that the ultimate privacy settings selected by one 

user is highly dependent on the privacy settings selected by another user.

67



68

In the basic evolutionary model, results indicate that the presence or absence 

of risk affects the final strategy adopted by the users in a network, while motivation 

only affects how long they take to adopt that strategy. This means that increasing 

motivation in a social network, e.g. by improving friend recommendation algorithms, 

only affects the level of self-disclosure in the short term. The existence of any risk 

factor means that eventually all users of a social network will adopt the highest 

possible privacy regardless of the benefits of revealing more profile attributes.

In the weighted evolutionary model, the results show that the most important 

attributes exhibit higher levels of revelation than the least important attributes. 

This finding is more evident in random and scale-free networks than in small-world 

networks. We also find that increasing the risk exhibits limited effect on the privacy 

dynamics of the network if we consider the benefit and risk from friends-of-friends. In 

the Facebook friend networks, which include more users and feature a higher average 

node degree, increasing the risk coefficient only slightly affects the level of attribute 

disclosure.

The models presented in this dissertation provide a way to study and compre

hend the dynamics of privacy settings in social networks. Additionally, the nature 

of the transitions reveals the influence of certain factors in the short and long run in 

social network privacy to social network designers and users.

For future work, we plan to investigate the performance of our model on a 

larger variety of networks as well as compare it with data from real world social 

networks. Moreover, we intend to investigate multi-level privacy where users reveal 

different sets of attributes to different users in the network.
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