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ABSTRACT

In this work we analyze a one dimensional model for a flexible wing micro 

aerial vehicle which can undergo heaving motion. The vehicle is modeled with a 

non-local type of internal damping known as spatial hysteresis as well as viscous 

external damping. We present a rigorous theoretical analysis of the model proving that 

the linearly approximated system is well-posed and the first order feedback system 

operators generate exponentially stable Co—semigroups.

Furthermore, we present numerical simulations of control designs used on the 

linearly approximated model to control the associated nonlinear model in two different 

strategies. The first strategy used to control the system is a target tracking strategy. 

The second strategy used in this work is morphing the system to a target state over 

time. The controllers used in this work include Linear Quadratic Regulator, Linear 

Quadratic Gaussian, and central control.

In light of the theory of this work we have incorporated the appropriate Riccati 

equation solutions into the control design for a system with a mode problem (i.e. zero 

eigenvalue for stiffness operator). This work remains consistent with the literature 

that concerns multiple component structures with a mode problem.
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CHAPTER 1

INTRODUCTION

A great deal is known about how to achieve stable flight for large aircraft that 

are in use every day around the world. What is strange is that little is known about 

the natural modes of flight that we see in the sky daily as well. Researchers such as Dr. 

Kenny Breuer at Brown University and Dr. Wei Shyy at Michigan University were 

both a part of a Multidisciplinary University Research Initiative (MURI), and as part 

of the project, explored the flight dynamics of creatures in nature. Their hope was 

that engineering methods and state of the art technology could be developed to mimic 

the flight capabilities seen in nature. For example many creatures such as insects 

and birds have flexible wings which can bend and morph shape to attain stable flight 

paths. Bats have been of particular interest in the realm of biologically inspired flight. 

The Air Force Research Laboratory Munitions Directorate suggested that unmanned

m! m  m

Figure 1.1: Dog faced fruit bat in flight. Credit for this image goes to Kenny Breuer 
in [24]
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micro aerial vehicles, MAVs, with a flexible wing structure, similar to that of insects 

and birds, would be able to attain flight that small rigid wing vehicles can not. Thus, 

work began to achieve this goal at the turn of the millennium. A recent spur in the 

theory for DPS has developed into innovative research in what the Air Force originally 

proposed; see [6 ], [7], and [8 ]. A recent direction in creating a model for the proposed 

micro aerial vehicles has been to model flexible wing structures as Euler Bernoulli 

beams attached to a rigid fuselage considered to be a simple rigid mass.

The work in this thesis will build upon the partial differential equation model 

developed in [6 ], [7], [8 ], and [14]. The model in those works was created by modeling 

two flexible Euler-Bernoulli beams connected to a rigid mass. The properties of the 

model, such as well-posedness, and the heave dynamics were analyzed using semigroup 

analysis and finite element method. The model considered there consisted of a vehicle 

initially assumed to be in forward flight. The vehicle’s lift force was modeled using a 

nonlinear lift coefficient obtained by adapting a model of lift determined experimentally 

for fruit fly wings [10]. Furthermore, the Euler Bernoulli beams were assumed to see an 

external viscous damping mechanism to simulate air damping and an internal damping 

mechanism called Kelvin Voigt damping to simulate internal damping effects since it 

is known that beams undergo internal damping at higher frequencies of oscillations 

[2],[20]. The model called BMB in the works mentioned above was proven to be 

well-posed and provided promising numerical results in the context of distributed 

parameter control. A modification to the model was also made in that the authors 

considered the addition of piezoceramic patch actuators (PZTs) as a realistic way 

of implementing control designs. Extensive theory can be found in [3] in relation
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to piezoceramics and smart materials being used to control beams and plates. The 

well-posedness of the BMB model with PZTs was also considered and proven. However, 

numerical simulations for the controlled model with PZTs have not yet been performed.

In this work, we hope to gain insight into whether we should pursue a 

new material and model the vehicle with the more accurate non-local damping, 

or investigate other avenues of modeling and materials. The non-local damping model 

we consider will provide a more accurate description of the model using the material 

for the estimated parameters, than would previously have been considered with other 

damping models [2 ].

In Chapter 2, we will present a significant amount of theory which will be 

referenced while proving well-posedness of a linear approximation to the model 

developed in Chapter 4. The theory presented will rely heavily on the notions 

of functional analysis, Hilbert spaces and linear operators as well as semigroup theory. 

Chapter 3 will present a brief overview of the three different control designs used in 

this thesis and will provide a few theorems concerning the semigroups generated by the 

feedback control laws. In Chapter 4, the model with spatial hysteresis internal damping 

is presented. Also, a linear approximation to the model is developed which will be 

proven to be well-posed. After model development, theoretical results, well-posedness 

and exponentially stable semigroup results concerning our model are presented in 

Chapter 5. The finite element scheme used for our work and the Riccati Equation 

approximations used are presented in Chapter 6 . Chapter 7 will show the numerical 

results we obtained using the control designs discussed in Chapter 3. Lastly, Chapter 

8  will present some conclusions and future work.



As with any work, a certain amount of prior knowledge is assumed of the reader. 

This work assumes the reader is familiar with the following terms: linear operator, 

inner product, norm, Hilbert and Banach space, dual space, ordinary differential 

equation, and partial differential equation. Furthermore, the reader may benefit from 

familiarity with the finite element approach to solving partial differential equations.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we will provide a brief introduction to the methods used in 

the control of linear systems. The terms, definitions, and theorems of Section 2.1 are 

given in [17], [18], and [21]. The derivation and definitions given in Section 2.2 are 

taken from [19]. The discussion in Section 2.3 primarily follows that found in [3].

2.1 Basic Definitions and Theorem s

We will provide some basic definitions and theorems which will be used 

throughout Chapter 5.

Definition 2.1. Let H be a Hilbert space and let A  : D (A ) —»• H be a linear operator 

whose domain D(A) is dense in H . Then A  is called self-adjoint if and only if  

D(A) =  D(A*) and A  — A*. The adjoint of A  is defined as follows: D(A*) is defined 

to be the set of all x  € H so that y (rr, Ay) is continuous on D (A ). Then for all 

x  € D(A*) and all y e  D(A) the adjoint A* satisfies (A*[x],y) = (x, A[y]).

Definition 2.2. A self-adjoint operator A  is said to be coercive in a Hilbert space H  

if there is a positive constant c so that

{ M , 4 > ) h > c \ \ ^ „  ( 2 .1 )

for all <f> £ H.

5



The next theorem is a well known result in analysis and states a famous 

relationship between an inner product on a space and the norm of the elements of the 

inner product. It is known as the Cauchy-Schwarz inequality.

Theorem 2.3. Cauchy-Schwarz Inequality Let X  be an inner product space with 

inner product (•, •)x  and for all x  € X , let ||x||x =  ^/{x,x).  Then, for all x, y € X  

we have

\{x iV}x\ — IMIx||y|U- (2 -2 )

To use the framework in Section 2.3 we require some operators to be self-adjoint. 

The next theorem will be needed in proving that our system operators are self-adjoint.

Theorem 2.4. Fundamental Theorem o f Calculus o f Variations If  g : —>
rx 2

R is a fixed measurable function and / ((x)g(x) dx =  0 for every function £ :
J X1

[£1, 3:2] —> R that is Lipschitizian on [aq, 3:2] and vanishes at the endpoints, then 

g(x) = 0 for xi < x < x 2 except possibly on a set of measure zero.

2.2 Semigroups

In this section, we will present the concept of a semigroup as well as a brief 

motivation for their use. Following the definitions, some theorems will be presented 

which give insight into the types of properties the semigroups we consider will be 

shown to have.

Definition 2.5. A pair (S,*) is called a semigroup if  for all u, v, w € S  we have

u * (v * w) — (u * v) * w) (2-3)

where * : S  x S  —» S is a binary operation.
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Now if M  : S  x S  —> S  is the mapping of the binary relation then we have the 

following

M  (M(u,v),w) = M  (u, M(v ,w) ) . (2.4)

To solidify this concept of a semigroup we will consider the following I VP:

x = Ax(t), x(0) =  / . (2-5)

Then x(t) is given by

x(t) = eAt. (2 -6 )

Now define an operator T (t) as T(t) [a:(s)] =  x(t  +  s). Then T(t)[f] =  x(t) and 

T( t ) [x(s)] =  x(t + s) =  T(t  +  s)[f]. Thus, the operator T  satisfies the following:

1 . T(0 ) =  1  

and

2 . T{t + s ) =T ( t ) oT ( s ) .

We’ll use this to define a semigroup of a family of linear operators.

Definition 2.6. Let X  be a Hilbert space. A family T(t), 0 < t < o o o f  bounded linear 

operators from X  —> X  is called a semigroup if

1. T(0) =  X, here X is the identity on X , and

2. T(s + t) — T(s) o T( t ) for all s, t  > 0.



It is important to note that the argument of the operators in the semigroup 

are the functions x(t), and thus the linearity of T  is such that T( t ) [x(s) +  y{s)] = 

T(t) [x(s)] +  T(t) [y(s)] =  x(a + t) + y(s + t).

Definition 2.7. A linear operator A  defined by

_ . .. f ,, ,. T(t)x — x 1D (A) = <x E X  : lim -------------, exists >
I t—>o+ t I

and

T(t)x — x dT+(t)x
A x  =  lim

t-»o+ t t t=0
for  x E D (.4)

is the infinitesimal generator of the semigroup T(t), where D ( A ) is the domain of A.

Definition 2.8. Let X  be a Hilbert Space. A semigroup T(t), 0 < t < oo of bounded 

linear operators is said to be strongly continuous if

lim T(t)x =  x for every x E X. 
t-> o+

A strongly continuous semigroup of bounded linear operators is a semigroup of class 

Co- This will be abbreviated in writing as Co-semigroup.

T heorem  2.9. Let T(t) be a Co-semigroup. There are constants ui > 0 and M > 1 

so that

||T(t)|| < Mewt, for  0 < t < oo.

If there is an oj < 0 such that the inequality in Theorem 2.9 is satisfied then 

the semigroup is called exponentially  stable.

Definition 2.10. An operator A is said to be exponentially stable if it generates an 

exponentially stable Co-semigroup.
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2.3 W ell-Posedness Theorems

Let V  and H be complex Hilbert spaces with corresponding norms || • \\y 

and || • || #. Let {•,•)# denote the inner product on H. We now assume that V  is 

densely and continuously embedded in H. Therefore, V  is dense in H  and there is 

a positive constant c so that for all <j> £ V, we have \\<P\\h < c||0||v- Now let H  be 

identified with H* through the Riesz map. Now for each z £ H  we define ip(z) £ V* 

by = (z, (p)h for <j> £ V. Through this mapping H  is densely and continuously

embedded into V*. This common construction is what is known as a Gelfand triple 

and is denoted

1/ H  ^  H* V \

and we call H  the pivot space. The duality pairing -)v\v  will be utilized through 

the above Gelfand triple. Define <p* £ V* for <j) £ V  by

cj)*(( f ) )  =  (4 > * ,  4 > } v * y  =  lim  {z n , 4 > ) hn—>oo

where zn £ H  is such that zn —>• 4>* in V*. Prom here the proofs will use the above 

framework and the theory associated with sesquilinear forms which is now defined.

D efinition 2 .1 1 . Let V and H be vector fields over the same field K  =  3R, C. A 

sesquilinear form a is a function from V  x H to K  so that for all v ,v i ,v2 £ V, all

h,, hi, h2 £ H and all scalars a.,/3 £ K  we have

1. a(vi +  v2, h ) =  o(vi, h) + a(v2, h)

2. a(v, hi +  h2) =  a(v, hi) +  a(v, h2)

3. a(av, h) = aa(v, h)

4. a(v,/3h) =  /3a(v,h)
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This means that linearity in the first argument holds, but scalars factor out as 

their conjugate in the second argument, therefore implying conjugate linearity. 

Assume now that we have a second order in time system given by

z +  V z  +  A z  =  f ( t)  in V*

(2.7)

z(0) =  z0, z(0) =  z,.

To use the framework in this section, Gibson and Adamian state that A  must be 

coercive in H  (the corresponding state space) [12], Recall from Definition 2.2 that

A  is coercive if there exists a constant c such that (A(f), 4>)// > c||0||^, (E D (A).

If the operator is not coercive we may choose a bounded, self-adjoint operator to 

add to A  such that their sum is coercive in H  [1 2 ]. We now assume that A  and V  

are generated by sesquilinear forms a and d. It was shown in [16] that there is a 

one-to-one correspondence between continuous sesquilinear forms on V  and operators 

in C(V, V*). Thus we have

a(,z, 4>) — Az(4>) =  (Az, 4>)v\v z,<j>£V (2.8)

and

d (z, 0) =  Vz((j>) = (Vz, <j>)v . tv z , ( j )eV  (2.9)

We assume now that a i k x k - ^ C i s a  sesqulinear form on V  that satisfies the 

following:

(H I) (Symmetry condition) For all 4>, £ V  we have a(0, iji) — a  (ip, 4>).
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(H2) (Continuity condition) There exists a constant c\ such that for all <f>, ip G V

l|a(&VOII < c i M v M v  (2-10)

(H3) (Ellipticity condition) There exists a positive constant k\ such that for all (j> G V

Jk(a(*,*)) =  a ( ^ ) > * , M J. (2.11)

The sesqulinear form d is defined on a Hilbert space such that the following

containments hold: V  C Vi C H. The Gelfand triple,

V  M- V2 H 2* H* *-> V2* V \  (2.12)

is considered with the duality pairing (•, •)v2*,v2- Suppose that the sesquilinear form 

d : Vi x V2 C satisfies:

(H4) (Continuity condition) There exists a constant C2 such that for all 0, G V2

l|d(^», VOII < c a lM k lM k - (2-13)

(H5) (Coercivity condition) There exists constants &2 > 0, Ao > 0 such that for all 

0 G V2

fte(d ( 6  0)) +  A o M i > (2.14)

Lastly, one regularity assumption is made about f(t):

(H6) The input function /  satisfies /  G L2 [(0, T),V£].

Using the above hypotheses we consider the variational form of (2.7) given by

(z, <f>) + d(z, <f>) +  a(z, 4>) = (/, 0) for <j> e  V,

(2.15)

z(0) = z0, i(0) = z\.



Theorem 2.12 ([3]). Suppose that a,d and f  satisfy H1-H6 and that w0 G V, wx G 

H. Then there exists a unique solution w of (2.15) with w G L2 ((0, T) ,V)  ,w G  

L2 ((0, T), V2) and w G L2 ((0, T), V*). Moreover, solutions of (2.15) depend continu­

ously on the data (wo,wx, f )  in that the map (wo,wx, f )  —> (w,w) is continuous from 

V x H  x L2 ((0, T), V2*) to L2 ((0, T), V) x L2 ((0, T), V2).

2.4 Semigroup Theorems

To consider the semigroup properties of the system, define the space E = V x H . 

Furthermore, foregoing motivation, let rH\ = 7l(( — 4̂) where 71 is the range for some 

C > 0  [3]. We consider rewriting (2.15) in first order form

(z,v*^ = (Az(t) ,v*^ + {F(t),v*), z(0) = z0, (2-16)

where D ( i )  =  {(<£, ip) G H : ip G V, M  +  ^  G H}  and u* G D (A*^ . The follow­

ing theorem provides the criteria such that the semigroup generated by A  is strongly 

continuous.

Theorem 2.13 ([3]). Under hypotheses H1-H5 on a,d, the operator A  generates a 

Co-semigroup T(t) o n H  — V x H which satisfies ||T (i)||Wl < ext.

The semigroup generated through this theorem is known as a contraction 

semigroup and is a stronger condition than the condition of a Co—semigroup. It does 

imply that provided we meet the hypotheses that we a get a strongly continuous 

semigroup, but it is advantageous to know it has more properties which may be 

beneficial for future analysis. The next theorem states that if we add a bounded
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linear operator to a generator of a strongly continuous semigroup then their sum 

will generate a strongly continuous semigroup. We will rephrase it to fit with the 

framework developed in this section.

T heorem  2.14 ([19]). Suppose A  is the generator of a Cq—semigroup. I f  B is 

a bounded linear operator on %, then A  + B is the infinitesimal generator of a 

C q — semigroup S(t) on % satisfying ^ ( t ) ! ^  < M e ^+M^ n>)t, where u  is from the 

inequality in Theorem 2.9 for A.

The last theorem presented here shows that if the first order system generates 

a strongly continuous semigroup then the weak formulation of the system has a unique 

solution which can be represented in terms of the semigroup generated.

T heorem  2.15 ([1]). There exists a unique solution of (2.16) which has continu­

ous dependence on initial data if and only if  A  is the infinitesimal generator of a 

Co—semigroup T(t) of bounded linear operators on H, and in this case z is given by

z{t) = T(t)x  +  f  T(t  -  s)F(s)dx, 0 < t < T .  (2.17)
Jo



CHAPTER 3

LINEAR FEEDBACK CONTROL

We will now discuss the basic theory behind linear quadratic control. The 

systems upon which control design is developed are assumed to be linear. The 

minimization that takes place is quadratic in the cost function. The infinite dimensional 

outline is given in this chapter; however, the layout follows closely to that in the finite 

dimensional text by Dorato et. al. [11]. The infinite dimensional treatises can be 

found in [9], [12], and [13].

3.1 Full S ta te  Feedback Design (LQR)

Full state feedback refers to the fact that complete information about the 

system is available for feedback. The Linear Quadratic Regulator (LQR) problem is 

constructed so that the state of the system is driven to zero.

Let E  be a Hilbert space and the dynamics of a linear system be governed by 

the following:

i  =  M  +  Bu, f(0) =  (3.1)

where D(A) C X,  £(f) is some state, and u{t) G Rm is a control input vector which 

will be uniquely determined. Furthermore, B : Rm —> E  is the control operator. In

14
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this work we wish to transform the state £ starting at £o to another state £ using a 

linear feedback control. This type of linear tracking problem is called a disturbance 

rejection problem. In the disturbance rejection problem we assume that the system 

dynamics are given by

x — A x  +  Bu +  w(t), x(0) = x q , (3.2)

where w(t) — A£ — £ ^  0 is a disturbance signal and £ =  £ — £. Our desire is to find a 

control input that minimizes the cost function

V ( x , u ) —J  ̂ ((x, Qx) E + v! Ru)dr.
(3.3)

The operator Q : E  -» E  is positive-semidefinite and in this work will be Q — X, and 

R  : Rm —> Rm is. positive definite which will take the form R  =  cl where I  is the 

identity and c is some constant. To obtain the control law u for this so called Linear 

Quadratic Regulator (LQR) problem, we must solve the Differential Riccati Equation 

(DRE)

- i l  = A TU(t) + U ( t ) A + Q - U ( t ) B R - 1BTTL(t), II(T) =  0, (3-4)

integrating backward in time from the final condition. The feedback gain operator K 

is then defined as

K = R~lB*Yl(t). (3.5)

The feedforward signal Ufw(t) is defined as
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ufw = -R ~ lB*b{t). (3.6)

Here b(t) is given by solving the system

b(t) = - [ A -  BR-'Hit)] * b{t), b{T) = 0 . (3-7)

Once we have n(£) and b(t), the control law u(t) is given by

u = — Kx{t) +  ujw. (3-8)

If we substitute Equation (3.8) into Equation (3.2), we obtain the following closed-loop 

full state feedback-controlled system

i(t)  =  [̂ 4 — BK] x(t) — Bufw. (3-9)

In the limiting case as T  —>■ oo the Differential Riccati Equation (3.4) becomes the 

Control Algebraic Riccati Equation (CARE)

.A*n(<) + u( t )A +  q -  n(t)5i?_1B*n(t) = o. (3.io)

3.2 State Estimate Control Design

In reality we most likely do not have complete knowledge of the system for 

feedback purposes. However, we assume that we are able to measure the system in 

(3.2) and that measurement takes the form

y(t) = Cx{t), (3.11)
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where C : E  —> Rp is an operator that determines how we measure the system. We 

can use this information to provide some feedback into the system to apply control 

effort. In this section two state estimate control designs will be presented: the first 

will be Linear Quadratic Guassian (LQG), the second will be Central Control Design.

3.2.1 The Linear Quadratic Gaussian Tracking Problem (LQG)

After measuring the system we have the estimate

xc = A cxc(t) +  Ty(t),  xc(0) =
(3.12)

u = - KLxc(t) - u Jw

Much of the theory of determining the operators A c, and K, is found in [1 1 ] and 

[12].

“ ~ - " “ -

X A - B K X x{0) X 0

i c TC A c xc 0
1

x c { 0 ) Xco

Definitions of stabilizable and detectable will now be presented to ensure that the 

feedback closed loop system operators can be found.

Definition 3.1. The state H(A,B,C) is said to be exponentially stable if  A  is 

exponentially stable as an operator.

Definition 3.2. The state T,(A,B,C) is said to be stabilizable if there exists a linear 

operator T  : X  —> U such that A  +  BJF is exponentially stable as an operator. It is 

standard to refer to just the pair (A, B) as being stabilizable.



Definition 3.3. The state T,(A,B,C) is said to be detectable if there is a linear 

operator C : Y  -> X  such that A  + CC is exponentially stable as an operator. It is 

standard to refer to just the pair (A , C) as being detectable.

Under the assumptions of (A, B) and (.4, C) being stabilizable and detectable 

respectively, the operators 4 C, F, and K are found by solving the ARE 3.10 and 

solving an additional Riccati equation know as the Filter Algebraic Riccati Equation 

(FARE):

AP(t)  + P(t)A* -  P{t)C*n~xCP{t) +  0  =  0.

Here 7Z — k l.  In this work the operator 0  is also assumed to be I  

operator and control law are then given by

K =  R~lB* n

F = P C * n - 1 (3.15)

A c = A  -  BK -  FC.

According to the previous assumptions the closed loop system (3.13) is stable.

3.2.2 C entra l C ontrol Design

The design of what is known by Glover and McFarlane as the Central controller 

is presented in full in[13] and summarized by Skogestad and Postlethwaite in [2 2 ], A 

proper treatise of the frequency domain and derivation of robustness conditions is 

given in [13]. Since the focus of the work here is not on maximizing robustness but 

rather on comparing controller effort for a specific model, we will forego the in depth

(3.14) 

The control gain
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discussion of the Central controller’s deep origins in the frequency domain. The first 

step in designing the Central controller is to calculate a parameter

7 min = 1 +  \ M l I  P), (3.16)

where a is the spectral radius (in finite dimensions a is just the maximum eigenvalue). 

Just as for the LQG controller, 11 and P  are solutions to the Algebraic and Filter 

Riccati Equations (3.10) and (3.14). As this controller only sees an estimate of the 

state we are given the state estimate system

xc =  A cxc(t) +  Py(t), £c(0) =  Xcq

(3.17)

u = JCxc(t) — Ufw

Note the difference in the control law u. Under the assumptions of stabilizablity and 

detectability the closed loop system is stable and after II and P  are obtained we define 

the following:

K = B* n

£  =  ( 1  — 7 2) /  +  r i p
(3.18)

t  =  ^ { c * ) - lp c n ~ l

Ac = A -  B R - lBU + 7 2 ( £ * ) _1  PCX.

It is important enough to mention that if we choose 7  =  7 min, then £  = — cr(IIP)/+IIP 

is singular. This implies that with this choice of 7  the controller cannot be directly 

implemented numerically. A common choice for 7  is the multiple 7  =  1.1 * 7 mjn [22]. 

For computational purposes we have chosen 7  =  1.2 * 7 min.
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3.3 Useful Theorems

In this section we will state a few useful theorems from [12] for showing 

uniqueness of solutions to Ricatti equations (3.10) and (3.14). Furthermore, we see 

the conditions that are needed for generation of exponentially stable semigroups by 

closed-loop feedback operators.

Theorem  3.4. There exists a nonnegative self-adjoint solution of (3.10) if and only 

if, for each z € E, there is a control u such that V  (x , u ) is finite. If  II is the minimal

nonnegative self-adjoint solutions of (3.10), then the unique control u(-) that minimizes

V(x,u) and optimal trajectory are given by

u(t) = —R~1B*Hz(t) (3.19)

and

z(t) = S(t)z (3.20)

where S(t) is the semigroup generated by A  — BR~lB*Ii. Furthermore, if Q is coercive 

in E  then S(t) is uniformly exponentially stable.

Now define

A  - B K
(3.21)

JFC A c

from (3.13). Furthermore let S(t) be the semigroup generated by A  — PC*TZ~lC. If 

we replace A, B, Q, R, II in Theorem 3.4 with .4*, C*, O, R, and P  we obtain a unique 

minimal solution to the Filter Riccati Equation (3.14) and furthermore show that the 

S(t) is uniformly exponentially stable if fl is coercive in E.
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Theorem  3.5. Suppose that there exist positive constants M \ ,M 2, oli, and ct2 such 

that

IISMIU < Jfie —a i t Sit) < M2e~a2t, t > 0.
E

(3.22)

Then, for each real a 3 < min{o;i, ot2}, there exists a constant M3 such that

|S,oooo(0 IIex£ ^  M*e a3ti (3.23)



CHAPTER 4

MICRO AERIAL VEHICLE MODEL WITH SPATIAL 
HYSTERESIS DAMPING

4.1 Model

The model upon which this work builds was developed in [6 ]. The original 

beam-mass-beam model called “BMB” consists of two beams composed of latex and 

carbon graphite fiber with epoxy connected to a rigid mass. That initial model 

implemented viscous air damping and Kelvin Voigt internal damping. The initial 

model can be visualized as in Figure 4.1.

Figure 4.1: MAY beam-mass-beam system.

The system represents a one-dimensional micro aerial vehicle. The vehicle is 

only assumed to be capable of heave dynamics in this work. The vehicle is assumed to

22
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be in balanced flight, i.e. lift and gravity are balanced at the start of any simulation, 

and the vehicle is gliding with flexible wings that can morph rather than flap.

The original model was analyzed in great depth (see [6 ], [7], [8 ], [14]). The 

first change made here will use the results in [2] which suggests that the BMB model 

can be improved by incorporating spatial hysteresis internal damping. Banks and 

Inman showed that spatial hysteresis damping more accurately describes the damping 

of a flexible beam than other internal damping models, such as Kelvin-Voigt, time 

hystersis, and structural damping. Spatial hysteresis damping, as the term was coined 

by Banks, was introduced by Russell in [20]. It takes into account damping of a 

differential element of beam caused by internal friction with neighboring differential 

elements due to different bending rates. These damping effects are caused by energy 

dissipation within the beam due to fiber dynamics. This type of damping is often 

referred to as non-local damping because it takes into account the neighboring sections 

of the beam when considering damping properties.

The second change, in cooperation with the first, will be the adaptation of the 

material used experimentally and modeled in the work done by Banks and Inman. 

The flexible beam in [2] was composed of biaxial fiberglass roving, polyester yarn, and 

isophtalic polyester resin, which we will now consider to constitute our beams as well. 

Adapting the work done by Banks and Inman, we can modify the original BMB model
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using the following equations for the left and right beams respectively:

d  [  f e
pAwL (t , x L) +  i w L (t , x L) -  —  IJ  h (x L, £) [w'L (t,, x L) -  w'L (t , 0 ]

(4.1)
+EIw"l' (t, x L) =  b (x L) uL (t) -  0.5pau2cC ,̂

for 0  < xl < I and t > 0 , and

d
pAwR (t, x R) +  7 wR (t , xK)

rtM+u
/  h ( x R,£) [w'R {t,xR) -  u4 (t,f)]d£

dxR

+ E I w r (t, xR) =  6 (xh) UR (i) -  0.5pau2cC*,

(4.2)

for t  + I m < < ^a/ + 2£ and t > 0. Here the displacement w(t, x) is a combination

of beam displacement from equilibrium as well as over all rigid body displacement from 

the initial location in the air. Furthermore, p is the density of the beam material, A is 

the cross-sectional area of the beam, 7  is the air damping coefficient, E  is the modulus 

of the material, I  is the area moment of inertia of the beam, b is the control input, u 

is the controller, pa is the density of air at sea level, v is the forward velocity of the 

vehicle, c is the chord length of the beam, and Ce is the aerodynamic lift coefficient. 

The functions h (x, £) and Ce, x G {xR, x r } ,  have the forms

M  =  (4 3 )

and

Ce = hi +  k2 sin ( k3 arctan ( ™ x) + ^ (4.4)

The aerodynamic lift coefficient, Ce, was derived in [10] for a fruit fly model. It 

has been scaled here to accommodate the BMB model. The parameters k\, k2, k3, and



A;4 were best fit parameters from [10]. To scale up to an aircraft of the size we consider 

and to balance generated lift with gravity we have modified ki from that in [1 0 ] and 

let ki =  0. In [8 ], a new parameter k^ was added to the lift coefficient to incorporate 

a vertical wind velocity, which will remain in this work as well. The way we interpret 

the lift force has changed from the early work done with the BMB model. Originally, 

the model included gravity and the total lift forces. However, we have streamlined 

the model in the assumption that the model is already in balanced flight or in an 

equilibrium. Therefore, the new interpretation of the lift force is that of a perturbation 

lift acting on the system that is already balanced. This interpretation of the lift force 

in the model is suggested by research collaborator Dr. Animesh Chakravarthy at 

Wichita State University.

The interaction kernel h(x, £), as it is described in [2 ] and [20], is symmetric. 

Symmetry of h(x,£) follows from Newton’s second law [20]. Although we see a 

Gaussian form here, the term h(x. £) can take different forms depending on what type 

of material composes the beam. We have chosen the above Gaussian form to make 

use of the results presented in [2], We see here that h is nonnegative and bounded; 

thus, there are constants r, fi > 0  where r  < h(x, £) < //.

The boundary conditions presented in Table 4.1 are those from standard beam 

theory. Furthermore, they include the conditions for the beams which incorporate 

spatial hysteresis damping [2], [4].



Table 4.1: Boundary Conditions

Boundary Condition Physical Interpretation
E I w ' l  (t, 0) = 0 

E I w ' h ( t , e M  + 2 £ )  =  0
Zero bending moment 
at the two free ends

E I w ' £  (t, 0)

-  f  h ( * L , 0  [w'L ( t , x L ) -u 4 (t ,f ) ]U  o
E I w % ( t t £ +  £M )

-  /  h ( x R , ( )  [ w R ( t ,  x R ) -  w ’R ( t ,  £)] d £  
J l + l M

= 0
XX, =0

= 0

Zero shear force 

at the two free ends

E I w £  ( t ,  e)
-  f  h ( x L , 0  [ w ’L ( t , x L ) - ii4 (t ,f ) ]  d£

Uo JxL=«
—E I uir  (t, £ + £ m )

T r eM + 2e 1 
+ /  h ( x R , 0  [w'R ( t , x R ) -  df = m x i i L { t J )

Change in shear force 

across the rigid mass equals 

the rigid mass (m) multiplied by 

its acceleration

u>l  (t , e ) =  w R ( t , t  +  t M ) Continuity of deflection 
across the rigid mass

w 'l  (M) = o 
w ' n i t J  +  t M )  = 0

Zero slope at each 
end of rigid mass

4.1.1 Linearization of Lift Coefficient

To apply linear control methods as described in [11], [12], and [22], we must 

obtain a linear system for which we can develop the controllers. The only nonlinearity 

in the system is seen in the aerodynamic lift coefficient, Ce- The lineariztion process 

is now presented. The vehicle is assumed to be moving at a higher velocity in the 

forward direction than in the vertical direction. Thus, we can assume the following 

approximation holds:

arctan / “ (*■*>+ M  ” (<.*) + *», (4.5)
V  /  V

Now if we substitute this approximation into the Taylor Series expansion of Ce and 

recall that k4 = 0  we obtain

r  V  ( - 1)” /% « * .* )  + « Y n+1
c ,  =  fe +  f e ^ f & T T i ! i  v  )  ■ ( 4 6 )
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In the linear approximation we keep only the linear term from the series which is 

w ( t ,  x ) .  Note here that we do not keep the constant terms in the approximation.
v

The constant terms are excluded due to the desire to have the lift be wholly a part of 

the damping operator for analysis purposes. We do not want to split the lift force 

into the damping operator and an external force operator. If the lift were split in this 

fashion, we would then be attempting to incorporate part of the lift into the controller 

and trying to reject part of the lift though some rejection process. We have elected 

to wholly absorb the lift force into the system operator. Thus, we have the final lift 

coefficient approximation

Ce «  ^ ^ w ( t , x ) .  (4-7)

Assuming a linearized lift function, (4.1) and (4.2) can be rewritten in a linear form as

pAibL (t, x L) +  l w L (t, x L) -  h (xL, £) [w'L (t, x L) -  w'L (t, £)] d£

(4-8)
+E l  w'l (£, x L) = b (xL) uL (t) -  wL (t, x L) ,

for 0  < xl < £ and t  > 0 , and

H+tM

q  r r lM+2t
p A w R  ( t ,  X R ) +  ' J W r  (£, X r )  -   ----  /  h  ( x R , £ )  [w'R  ( f , X r )  ~  w ' R  ( t ,  £)] ^

OXR Ue+e,,

 ̂ / n Q.5pav2ck2k3 . . .+ E I wr (£, X r )  =  b ( x r )  U r  (t ) ---------------------W r  (t, X r )
V

(4.9)

for I +  l u  < xr < £m + 2£ and t > 0 . As stated above, the control design will be 

developed on the linear approximation of the BMB model. Once the controllers are



developed they will then be applied to the nonlinear system that arises from (4.1) 

and (4.2). The next chapter will show that the control problem is well-posed and the 

first order system feedback operators used in the control design produce exponentially 

stable Cq—semigroups for our particular system.



CHAPTER 5

THEORETICAL ANALYSIS

5.1 Well-Posedness and Semigroup Results

Using the framework developed in Chapter 2, the well-posedness of the linearized 

BMB model with spatial hysteresis damping will now be proven. Given two real 

Hilbert spaces V  and S , let the state space be S  := L2 [0, iI] x L2 [t +  I mi +  2̂ ] x M. 

Equations (4.8) and (4.9) along with the boundary conditions in Table 4.1 can be 

rewritten with acceleration terms first as:

pAwL { t ,  x L) +  (t, x L)

d
dxi [ f  h(xL,g) 

U  0
— wL (t , x L) -  -w— wL (t, £)
O X r  O X r

d4
+ E I-^ j u >l [t, x L) = b (xL) uL (t )

0.5pav2ck2k3 .
wL ( t ,xL) ,

pAwR ( t ,  X R ) + 7 W r  ( t ,  X r )

(5.1)

rtM+M
/  h (x R,£)

Jl+lM

q r r*M+ 

9xr Ue+eM
d . . . d . . .

  W r  [ t ,  X r ) ~  -= W r  ( t ,  f  )
O X r  O X r

, j p r  94 <+ \  ^   ̂ U \  Q - 5 p a V 2 c k 2 k 3  .
+ E I - ^ j W r  ( t ,  X r ) =  b  [ X r ) U r  ( t ) --------------- -------------W r  ( t ,  X r )  ,

29
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E I ~ w L ( t , ( ) -  \ J ‘ h { x U )
3 . 3 . . ^

wL(t ,xL) -  - — wL[t,€)
dxL dxL

di
X L = t

r r&M+M- 
+  /  h(xR, 0

U t+tM

32
(t,0) =  0,

a 2

=  m w i  (if, £ ) ,
XL=i+lM

El~q^ 2 wR (*> +  2 £) =  0

5 s r r£
E I d x l WL{t' 0 ) ~ [ J 0 h{XL' C)

3 . . . 3 . , .
=  0 ,

xL=0

r rt-M+W 
/  h(xR,£)

L J 1+£m

33
E l ^ WR ( t , ^ +  £m )

d . . . 3 . 'wR(t ,xR) -
3a:

=  0 ,

wL (t, £) -  (t, £ +  £m) =  0 ,

3
3ar£, (M ) =  0 ,

3
3a:fl wr (t, (- +  ^m) =  0 .
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Define the following operator such that

^ 7  + 0.bpavck2k3 _ a  r r
d x  1A

h { x ,0
d d

d x  axl(t,4) w (t, x)

a r r 2
= 7 W (t, X) +  0.5pavck2k3w (t, x) -  —  h (x, Q

d . a  .
<ie

Now we can rewrite (5.1) as

(p4) u)L (t, xl)

7  +  0.5pavck2k3 -  - [  h (x L,£) 
.Jo

d d
dxL dxL

WL (t ,xL)

d 4
+ E I dx*WL Xl  ̂ =  b ^  Ul ®  ’L

(pA) Wr (t, Xr )

0 r rtM+2t
+  7  +  0.bpavck2k3 -  - —  / h (x R, f )

a  a
dxR dx R l(t,0 wR {t,xR)

a
+ E I - ^ w R (t , x R) =  6 (x*) tt* (t)

d3
mwL (t, i) -  E I - ^ wl (t, £)

+ ^  * (x l , 0
a a

dxL dxL l(«)
a3

WL (t , Xl) +  E I - ^ - w r  (t, t  +  £m) 
x l =1 R

r ftM+w 
/  M xr,£)

a a
ax* axfi' ! ( * , ■t .£ )

wR {t,xR) =  0

(5.2)



r f l M + 2 t

U  i+£u
h (x R,£)

d d
dxR dxR I (*■£) wR (t , x R) = 0 ,

WL (t , — Wr (t, £ +  £m) — 0 ,

a
dxL

wL (t , =  0 ,

_5_
dxRwR (t , & +  Im ) — 0 .

Now divide through each equation by the constants in front of the acceleration terms.

7  0.5pavck2k3 1 , i ,  •Let I = —- H----------  and A = —- to obtain
pA pA pA

wL (t ,xL) +  -  A -^ -  ^  h (xL,£)
d d

dxL dxL \ ( W WL (t, XL)

E l  <9 4

+  pA dx*WL Xl  ̂ =  ^  Ul ^  ’
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/  Q  r r t M + a e

^ { t , X R ) + { T - A —  [ /  k (* .,{ )
d d

dxR dxR
wr ( t ,xR)

E l  d4 
pA dxR

W r  (t, X r )  = Ab  (xR) U r  (t ) ,

.. , M E l  dz . '1
WL M )  +  ~m dx \ f  h{xL, 0  

Jo
d d

dxL dxL l ( « ) di W L  ( M l )
%L=t.

m

i r /•̂ m+2£
-  /  h { x R , Z )
™  U t i

R

d d
dxR dxR dZ W r  ( M r )  = 0 ,

XR—t+tM

d2 , .
E I d x * WL =

d2
E l ~q^ T wR (̂ > +  2 £ )  =  0 ,

E I - ^ j w L (t, 0 ) -  | j f  h ( x L,£)
d d

dxL dxL l(t,0 de W L  ( M l )  = 0 ,
IL=0

d3
E I - ^ wr (t , £ +  M )

I" rt-M+lt-
-  /  h  ( x r , 0

' t+f\i
d d

dxR dxR l(*.0 wr (M r)  =  0 ,
Zfl=̂ M+2£

W L  ( t ,  £ )  -  W r  (t , £  +  £ m ) =  0 ,

6)
CM W L  {t, £) = 0,

A

o— (£, £ +  £m) =  0 . 
O X r

(5.3)
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Let the state z(t) =  (zx(t), z2(t), z3(t,)) € S, where zi(t) = wi  (t , •), z2(t) =  wR (t , •), 

2:3 (t) =  wi (t, I). The inner product on S  is taken to be

(z, z)s = (pAzu 2 i ) l 2[0.«] +  (PAz2 > 5 2)L2[mM.£M+2̂ ] +  mz3z3. (5-4)

From this, the system of second order differential equations

z(t) + T>oz(t) +  Aoz(t) = Bu(t) in S (5.5)

is obtained, where the operators P 0 and A  are given by

V 0z

[* ! ( • ) ]

rn (.) “  Ql {£)[z!(•)] — f A/) A-J + Â/ j +  A)[ -'2(‘ )] )
(5.6)

E l  S4

A-z

pA dxj  
E l  d4

2 l ( ’)

**(•)pA dxR
E l  d3 E l  d3 ,

M z' V) + ^ a ? RZ2{e+eM)m

(5.7)

where D (A ) = {z £ S  : z-i € H %  £}, z2 E ff4[* +  +  2 4  z( (£) =  0,

4  +  4 r) =  0, zi(£) -  z3 = 0, z2 (£ +  £M) ~  z3 =  0}. Furthermore,

v[(j)](x) =  f  h(x,£)d£ <p(x) and G[<f>](x) =  f  h(x, £)</>(£) d£. That is, for the Q
J  ol J  a

operators in (5.6), the input is the function argument 2  as a function of the integration
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variable. Furthermore,

Abl 0 0 M - ) Ab uL(-)

Bu = 0 AbX 0 “*(•) = Ab Wfl(-)

0 0 X 0 0

(5.8)

and b(x) = b is constant across each beam.

Equation (5.5) can be rewritten in the form of (2.16) where z\ — z. z2 

z, F(t) =  [0, j&}T , and

A = (5.9)
0 X 

-Ao —'Dq

The operator Ao is not coercive in S  since it was shown in [14] that the 

undamped uncontrolled system has an eigenvalue of zero. According to [12], a 

bounded, self-adjoint linear operator A\  can be chosen such that A  = A q + Ai  

is coercive. The choice of operator suggested in [12] is one whose null space is 

the orthogonal complement of the eigenspace of A q corresponding to nonpositive 

eigenvalues. Note here that there are infinitely many ways to choose A\.

Consider A\  =  X. Note that X G S  is bounded, linear, and self-adjoint. 

Then define V  to be the completion of D (Ao) with respect to the inner product 

(x, y)v  =  (Ax ,  y ĵ for x, y G D (Ao) (see [12]). Then V  = D ^A1//2̂  =  D (^4c/2)  and 

D (Al /2)  is contained in the set {z 6  S : Z\ € H 2 [0 , £], Z2 ^ H2 [£ +  £m , +  2 £],

z[ {£) = 0, z'2 (£ +  £m ) =  0, Z\ (£) — z3 = 0, zi (£ +  £m ) ~  =  0}. We now make the
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following observation,

iz iz)v — (EIZl, >i2[0,,] + {EIZ2, ~z2)L2m M,eM+2e) + (Aiz > *)s

= ( A z , z \ (5.10)
s

=  ( a 1i 2 z , A 1I2z )

We note here that the last equality in (5.10) is due to the fact that square root

operators are symmetric. To show that A is coercive we must first show that it is self-

adjoint for consistency with Definition 2.2. The next lemma will show that D (.Ao) is 

densely defined. However, first note that [0, £} C  H4 [0, i\ C  L2 [0, t\ and similarly 

C0°° {£ + £m, £m + 2£\ C  H4 [£ + £M, l M +  2£] C  L2 {£ + £M,£m + 2£). However, it is 

well known that C™ is dense in L2. Hence, H4 is dense in L2. We will use this result 

in the estimates for the proof of Lemma 5.1.

Lem m a 5.1. D (A q) is dense in S.

Proof. The proof is similar to a proof provided in [23]. Let e > 0 and assume that 

z  = (2 1 , z2, z3) G S. Let V’i ( - )  G H4 [0, £} be such that ip[(£) = 0, ip 1 (£) — z3, and

Also, let ip2(-) G H4 {£ +  £M, £u  +  2̂ ] be such that ip'2 (£ +  £m) = 0, ip2 (£ + 1m) =  z3,

and
■eM+w
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This construction implies that z =  (fa, fa, z3) € D (.Ao) and

ll2 - ^ l l l  =  ( z - z , z - z ) s

= pA (zi{xL) - f a { x L))2 dxL 
Jo

/•eM+2t
+pA / (z2{xR) -  fa (x R ) ) 2 dxR +  (z3 -  z3)2

J £-\-£

r£ r£M+2£
< p A  \zi(xL) -  fa(xL)\2 dxL + pA |z2{xR) -  fa{xR)\2 dx

Jo J i+Im

e e 
< 2  +  2 = e ‘

Therefore A q is densely defined in S.

□

Theorem 5.2. The operator A is self-adjoint with respect to the inner product on S  

defined in (5.4).

Proof. By definition of A ,  all that needs to be shown is that A q is self-adjoint. 

The proof will follow similarly to self-adjoint arguments in [5], [14], [16] and [23]. 

Recall from Definition 2 .1  that we must show .AJ =  A q and D («4J$) =  D (A))- For 

D ( A q) C D (.A )̂, the containment is clear. The reverse containment will be provided 

later. Now to establish the definition of .4^, assume there is a $  € .S' such that

(,A qz, $ ) 5  — ^z , =  0 for all z € D ( A q).
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Equivalently, we can say that $ e D  (.Ag) if the above holds. The following is then 

obtained by definition of the inner product on S:

f  mi f ‘M+M
/ E l  4 "  (xL) fa (x L) dxL +  / E l  4 '  (xR) 02 { x r )  dxR 

Jo Je+eM

ft  ptM+tt
- E I z (£) 03 +  EIz'" (£ +  £m) 03 -  /  pAzx4>i dxL -  /  pAz2J>2 dxR (5-11)

Jo Jt+lu

dxL

-mzafa  =  0 .

Now integrate the last two integrals by parts four times to obtain 

[  \e I zI" (xL)(f>i{xL) -  pA f  I f f  <k (r) dTdxd(d£z'i"
Jo L Jo Jo Jo Jo

f t M + 2 t  r f X R  f t  K  f X

+  /  \ E l 4 "  { x r )  02 (xji) -  pA /  /  /  /  & (t ) dTdxd(d£
J L J - £ m J t-Viu ^

r  f X L  _ I  f X L  f t  _  ,£ f X L  f t  f t  _

~ pA r 1 J  J  J  A ( 0 d c 4  + *fjfo Jo Jo M x )  dx<K<%

f X L  f t  f t  f X  _ _

- 4 /  /  /  /  <M r) + *2 /  M O  ^Jo Jo Jo Jo 10

dxR

tM+2t

t+lM

[■XR f t  _ rM+2^ /'x «  /*£ /■£
- 4  /  M O d ^ d i  + 4  / / 0 2  (x)

J  t +t f r f  J l + t M  

f X R  f t  f t  f x  _ e M + 2 t

- 4 ' / / / / fcto•/M-flU Jt+lM

dxd(d£
eM+M
t+t\f

drdxd^d£ EIz'" {£) 03

+ E I 4 '  (I +  Im ) 03 “  rnzsfo =  0 .
(5.12)
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Now note that D (Ao) contains V\  = {z E S  : z\ G Hq [0, £], z2 =  z3 = 0}. Therefore, 

(5.12) holds for all z E V i , and we can obtain the following:

r i  r r XL f^ f t  r *
/  z™ (xL) EI(f)i{xL) - p A  /  /  /  <t>i{r) dTdxd(d£

Jo I Jo Jo Jo Jo
dxL =  0. (5.13)

Now, applying Theorem 2.4 we can write

r*L ri K rx _
EI(j>1(xL) - p A  /  /  /  <M r ) drdxd^di = d + cxL +  bx\ + ax\  (5-14)

Jo Jo Jo Jo

where a, b, c, and d are constants. This implies that

M * l ) = pA f  [ f f  0i(T) drdxd^d^ + d + cxl + bx\ +  ax\  
Jo Jo Jo Jo

(5.15)

Therefore, (pi(xL) € HA [0, £] and differentiating (p\ four times yields

E l
E l
PA (

(5.16)

Similarly D (Ao) contains V 2 =  { z e S : z 2 E HA [£ + £m ,£m +  2£\, z\ = z3 =  0}. Thus, 

we also have

r^M+2£ 

Jt+tM
4" (* * )

fXR r£ K rx
EI<p ( x r )  ~ pA I /  /  /  M t ) drdxd(d£

(+(m JI+Im J J t+t-M
dxR =  0 . 

(5.17)
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Applying Theorem 2.4, we write

rxR rZ K rx
E I 4>2 { x r )  - p A  / / / 0 2  (r) drdxd(d£ = 8 + 7 x R +  fix2R +  ax3R,

J J J J ^
(5.18)

where a,  /3,7 , and 8 are constants. Rewriting yields the following:

0 2  (Xr) = E l
r*R rZ rZ rx 

pA / / / 0 2  (t) drdxd(d£ +  8 + j x R + /3x2R + a x \
Jt+tM Jt+iM J1+tfA Jl+lkf

(5.19)

Therefore 4>2{x r ) € f f4 [f +  h i ,  h i  +  21] and differentiating h i  four times yields

f f ( x R) = ^ j M x R) <=*■ to(xR) = (5.20)

Substitute 01 and 02 into Equation (5.11) and integrate the first two integrals by 

parts four times to obtain

f  Elzy (xL) 0' " '  (xL) dxL -  f  pAzi^cj)"” dxL 
JO Jo pA

plM+1l rlM+W- J?T
+  /  E Iz2 ( x r )  02W ( a * )  dxR -  /  pAz2— <f%"{xR) dxR

Jm m  Jm m  Pa

- E I z ' "  (£) 03 +  EIz% { t  + e M )  03 + E I  \ zl'fa

+EI

4'4
■ Im+ 2̂ eM+2t , „ (m+2£
4V 2 - 4<4 + 402 -  2̂02l+t-M t+t-M

- z\4>"

-  mz3(j>3 =  0 .

(5.21)
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Canceling the first four integrals and evaluating the terms in brackets gives

- E l f a  {£)  f a  +  E l 4 '  (£  +  e M ) f a  +  EIfa{£)fa{£) -  E I fa (0)^(0) -  EIfa(£)fa(£) 

+EIfa{Q)fa{0) +  EIfa{£)fa(£) -  EIz[{0)fa{0) -  EIzfa£)fa(£) + E I Zl{0)fa{0) 

+ E I f a  (iM +  2£) fa {£M + 2£) -  E l 4 '  (£ +  i M) fa (£ + l M)

—E l 4  (£m +  2£) fa (£m +  2£) +  El fa  (£ +  £m) fa {£ +  £m) 

+ E I 4  (£m  +  2£) f a  (£m  +  2£)  -  E l  f a  (£ + £M ) f a  (£ + £ M )

—EIzi  (£m +  2£) fa' +  2^) 4 - E Iz2 (£ +  £m ) fa1 (£ +  £m ) — mz^fa =  0.
(5.22)

Now using the properties of D (̂ 40) applied to z and regrouping we are left with

EIz'" (£) [fa(£) -  fa] + E I z (£ + £m) [fa - f a ( £  + £M)] -  Elfa{0)fa(0)  

-El4(£) fa(£)  +  EIfa{0)^(0) -  EIz[{0)fa{0) +  Elzfa0)fa(0)

+EIfa'  (£m  +  2£)  f a  (£m  +  2£) -  E l  f a  ( £M +  2£) f a  (£M  + 2£)

+EIfa {£ + £m ) fa {£ +  £m ) +  E l  fa {£u +  2£) fa (£m +  2£) 

- E I z2 (£m + 2£) f a  (£m +  2£) +  z3 [E l fa  (£ + £M) -  EI fa{£) -  mfa ] =  0
(5.23)

Because (5.23) must hold for arbitrary z £ S, then it must be true that

23 [E l fa  (£ +  £m) ~ EIfa(£)  -  mfa} = 0. (5.24)
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Equation (5.24) implies

FT
(5.25)

and the remaining terms in (5.23) must sum to zero. Choosing different subsets for 

z of D (A)), for which terms in (5.23) are eliminated, determines the domain of the 

adjoint. This implies that

d (A )  c  { $ e  s  :<t>x £ H 4 [ o j ] , < j > 2 £ H * { e  +  £ M , e M +  2e } , =  o

(j/2 (£  +  £m ) =  0 , cj>i(£) — f a  =  0 , (f>2 (£  +  £m ) — =  0 }

= D (A )-  

Thus D (A )  — D (A)), and

(5.26)

4>i

4>2
=

f f o r

i--
-- CO

i f M T  +  4 * ) - f  < « " ( « )

= Ao$. (5.27)

Therefore A A  = A $  for all $  € D (A), and Aq is self-adjoint. Furthermore, this 

means that A  — A  +  A  is self-adjoint.

□

A short computation will show that A  is indeed coercive in the state space S.



43

T heorem  5.3. The operator A  of bounded perturbation of A q is coercive in S.

Proof.

'̂A z , z^  =  {z , z )v  =  {EIz1,z1)l ^Q(̂  + (EIz2, *2 )L2[mm,im+21\ +  M iz i z )s 

= (E/zj, z1)L2[0£j + ( E I z 2 i z 2 ) L 2\e+eMieM+ 2e} + ( PA z i> 2i) l2[o,£]

+  (pAz2 * 2 2)£a[/+<M,<M+2<l +  mz*zz 

> C (pAz\ , 2n)£,2[0 ,̂ ] +  C {pAz2 i 2;2)/,2[£+fM̂ M+2£] +  cmz3z3

= clWli
(5.28)

for 0  < c < 1 .

□

Now that we have a coercive operator we can exploit the theory developed in 

Chapter 2. The first thing will be to determine the sesquilinear forms associated with 

A  and V  = V Q + A\.  According to [3], when considering spatial hysteresis damping in 

a single Euler-Bernoulli beam, it is natural to let V2 — JT1[0, £]. A slight modification 

will suit our multiple component model. Let V2 = H 1 [0,£] x H 1 [£ + £m,?m + 2 ]̂ x R. 

The inner product on V2 is taken as

( Z 1 z ) v 2 —  (21> Z1 ) h 1[0A +  ( z 2> z% ) +  M l 2 i z ) s  •
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Now let 0 £ V  and z € S'. Then

{Aqz, <E)s =  (E Izx ,4>i)L2[0A +  {EIz2 , fc)L2[i+tM,eM+M]
(5.30)

-EIz"'(e)<j)3 +  E l  4 ” {£ +  t M) 03- 

Now integrate by parts twice to obtain

{Aqz, 4>)s =  (EIz" , 0 /) l2[o,£] +  {EIz2 , $2 ) L2[t+eM,eM+21}

+EIz'"{E)(j)i(t) -  Elz'I'iO)0i(0) -  E l z a ' S )  +  EIz'H0)^(0) 

+EI4'{1M +  2 ^)0 2 (^m +  2*) -  E Iz” (e +  £m)02(  ̂+  4 r) 

- E I 4 { £ m +  2£)02^m +  2£) +  E l  4 (1  +  ^m)02^ +  ^m) 

-£ /z " '( / )0 3 +  E l 4 '  {t +  i M) 03-
(5.31)

Regrouping (5.31) results in

(Ajz, $ )s =  {E l z x, 0 i )i 2[o,̂ ] +  {EIz2, (̂ 2 )L2[e+eM/M+2e]

+ E I  [z?(t) (0 1  (i) -  03) -  *T(O)0i(O) -  *?(*)#(*) +  •*! (O)0'i(O)]

+15/ +  2 / ) 0 2 (/a/ +  2 /) — +  /m) (0 2 (/ +  ^Af) -  03)

~4(^M  +  2 ^ ) 0 2 (/m +  2 /) +  2:2 (/ +  ) 0 2 (/ +  ^A/)] •

(5.32)
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Substituting boundary conditions at the rigid mass location in for $  and regrouping 

yields

Mo2,$>5 =  ( ^ 2 1 >^i)l2[0,£] ( ^ '^ />^2,) l 2[<+<m.<M+2<]

-£/*"'( O)0i (0) + £?/«? (0)^(0) (5.33)

+EIz%'{£M + 2£)<$>2{£M +  2 £) -  E I4 {£ m + 2 £)$2{£M +  2£).

This will be used in defining the sesquilinear form a  later. A similar computation now 

with $  € V2, the damping operator T>0 gives

(V0z, $ ) s  =  (7 Z1, (j>i)L2io,e} +  (0.5pacvk2k3Zu <j)i)L2[QA -  ( {vL -  Gl ) [z j], <t>l )
\ UXL I L2[qA

+ (7 3 2  >$2)L2[e+eM/ M+2i} +  (0.5paci)k2k3Z2, 4>2) LAe+eMj M+2q

-  ( -S— (vR -  Gr) [z2\, (j>2\  + (vl { £ ) -  Gl (£)) [z[]fa
\ o x R  /  L 2[ e + e M , e M + 2e]

~  ( " n i f  +  Zm ) — Gr (? +  1m ) ‘I I2') ]1?.']-

(5.34)
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If we integrate the third and sixth inner products by parts once each, we obtain the 

following:

(V0z, $ )s =  (7 2 1 , +  (O.bpacvkihzu +  ^ VL ~  ^ i) l2[q/]

+  ( l z2 i fa) L2[e+eM,eM+2e] +  (0.5pacvk2k3z2, fa) L2[t+£Mj M+2e]

+  ( ( v r  — G r )  [-22]) $ 2) L i i t + iM,iM+2t\ +  { v l { Z )  — Q l { Z ) )  \z l \ f a

— { v r {£  +  Z \{ )  — Gr (£  +  Zm ) )  [z '^ fa

— (UL (Z) -  ^  (0) Wl)fa (*) +  (^(0) -  0l(O)) [^]01 (0)

— +  2€ ) — G r {Zm  +  2 ^ ) )  [ 4 ] ^ 2 ( ^ m  +  2€)

+  +  Zm ) ~  Gr (Z +  Zm ) )  [z>2[ fa ( Z  +  Zm )-

(5.35)

As before, we can substitute boundary conditions at the mass location in for $  to 

obtain

<£>02, $ > s  =  (7 2 1 , f a ) L , [ 0 ,e ]  +  (0 .5p acvfc2fc3* i ,  4> i ) l 2[q,t] +  < K  ~  & )  & ] ,  ^ /i> t a[0,fl 

+  (7 2 2 , ^2)La[<+/w / M+2fl +  {0.5pacvk2k3z2, f a ) L 2{i+tM{ M + n  

+  ( ( ^ f l  ~  G r )  [22], 0 2 ) l 2[M-<m/m+2<] d" ( ^ ( 0 )  — G l { 0 ) )  [ 2 i ] 0 l  (0 )

— ( v r (Zm  +  2 Z) — G r {Zm  +  2 ^ ))  [ z2\ f a ( Z M  +  2 ^ ).

(5.36)



47

Now a variational formulation of the system is given by

(.z(t), $ ) , +  d (z(t), $) + a  (z(t), $) =  (Bu(t), $ ) 5 , (5-37)

where the sesquilinear forms a (z(t), <f>) and d (z(t), 4>) are defined as

a (z(t), 3>) = (EIz", +  (E l4 ,  (5'38)

and

d (z(t), $) =  ( ( 7  + 0.5pacvk2k3) zu <i>i)L2m +  ((vL -  Gl) 4>'x)L2m

+  ( ( 7  +  0.5pacufc2A:3) z2, fa, )L2[e+eMt£M+2e] (5-39)

+  ((vr — Gr) z 2 , <l>2)L2[e+tM,eM+2e] •

To show that the system is wellposed, we will apply Theorem 2.12 to the system

<i(t), 4>), +  d  (i(t), 4>) + a  (*(f), 4>) = (Bu(t), $>s (5-40)

where a  (z(t ), 4>) =  a  (z(t), 4>) + (Axz, <fi)s  and d (z(t), $) =  d (z(t), 4>) +  {Axz, 4>)s .

T heorem  5.4. The sesqulinear form a  (<f>, 'I') satisfies H i  - H 3 from Section 2.3.

Proof. The symmetry property H I  follows from the symmetry of the inner product 

on V. Thus, a ($ , '&) =  (4>, \&}v =  =  { f̂,$ )y  =  a (^ ,$ ) ,  since V  is a real
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Hilbert space. Next, using the Cauchy-Schwarz inequality, we have

||a(® ,*)|| =  ||($ ,S )v l| < * ||® ||v |l* |k  <5'41)

for k > 1. Thus, a  satisfies the continuity condition H2. Lastly,

Re( § ($ ,$ )) =  a ($ ,$ )

=  (El<j>1, 4>\)L2[q̂  +  (E l f a , $2 )L2[i+tM,iM+2e\ "I' ^ )s

> e (Elfa, fa)L2[0A +  e (Elfa, $ 2 )L2[e+eM,£M+2e} e ^)s

= e($,<$>)v = e \ m l ,
(5.42)

for 0 < e < 1. Thus, a  is V-elliptic satisfying condition H3. □

It is well known from the theory that a sesquilinear form is continuous if and

only if it satisfies the inequality in H4 (hence the title “Continuity Condition”). Thus,

we will show that d  is the sum of continuous functions and is therefore continuous, 

implying it satisfies H4.

Lem m a 5.5. Let 4>, 4/ E V2 . The following are continuous: (A.!#, 4/)s ,

( ( 7  +  0.5pacvk2k3) fa, fa)L2[0A, and ( ( 7  +  0 .5 pacufc2fc3Zi) fa, fa, >L2[*+wM+2f]-

Proof. To begin, note that the proof is identical for the last two terms. Also note 

that ( 7  +  0 .5 pacvk,2k3) is a constant. Therefore continuity will follow quickly from the



49

Cauchy-Schwarz inequality. Consider,

. (5.43)

Now by the Cauchy-Schwarz inequality we have

< c 11 <̂1 11 l 2 [o,r] 11 ̂ 1 11 l 2 [o/] •

Therefore, the last two terms listed in Lemma 5.5 are continuous. Lastly,

(5.44)

by Cauchy-Schwarz. Thus, the first term described in Lemma 5.5 is continuous, which 

finishes the proof. □

T heorem  5.6. The sesqulinear form d  (<$, \I/) satisfies H4 — H 5  from Section 2.3.

Proof. As noted, we only need to show that ((uL — Gl)4>\^\) ô j is continuous for 

e  L2 [0 , €]. The proof for ({uR -  G r ) ^ , ^ }  L2{e+eM,eM+2e] is nearly identical. As

noted above, we need to show that ((^L -  G l L 2[0,e}\ — l|z.2[o,4e] IÎ Ax llx.atô ]



for some constant e. Now consider

{(vl ~  Gl)4>1) V4)l2[0,/] — (^0 1 , '4>'i )l2{qa ^i)z,2[o,f]

M® > 0
l2[o,*]

+ 1/  J  M®»0#(0 ̂ i(») dx

+ /  f h(x,£)<!>[{€) d ^ [ ( x )  dx 
Jo Jo

<

(since h(x,£) < y) 

ci ||0i(a:)||L2[ô ] ll^i(a')llr,2[o/]

+ | Jo Jo h(x, £)<!>[(€) dtifcix) dx

(by Cauchy-Schwarz)

^  c i  | | ^ i ( x ) | | La[0,/| l l ^ l ( ;r) l l l , 2[0,f]

+ti f  f  1^1 (01 Wi(x)\ dZ dxJo Jo

(again since h(x, £) < y)

50

(5.45)
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— Cl 11̂ 1(3 )1 1 ^ 0 4  WiWWlvlOfi

<1^1 ( £ ,  • ) U V » i ( - , a : ) l ) L a[04 xLa[0,fl

< Ci ||ip[(x I £2 [0,<]

+/i l 2[0 4 xl2[04

< c i i i ^ ^ n ^ ^ i i ^ ^ ) ! Il2[04

+M II^i(^)IIl2[o4xL2[o4 II^i(^)IU2[04xz,2[04

(by Cauchy-Schwarz) 

=  c i  | | ^ i ( i ) | | i 2 [ 0 4  | | ^ i ( a : ) ^ [ 0 4

+H* ( f  / W ) ) a «wo ^0 /

1 ri
(ip[(x))2 d£ dx

0 J o

Note that the first integral only involves an integrand as a function of £ and similarly 

the second integral an integrand as a function of x. Therefore, the second term gives 

us the multiplication of two (£)^’s. Thus, we get that the above is
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+ „*(<)j ( 7 V . t t ) ) 2 W } ( / V i M ) 2 d l) !

^  C 1 i l ^ l  l l z , 2 [ 0 , f ]  l l ^ ’l l l L 2 [ 0 , f ]

+ c 2  I I ^ i I I l 2 [0 ,£ ]  I V ’l  I I l 2 [0,*]

=  e  1 1 ^ 1  I I l 2 [0,<] l l V h l l i 2 [0,€]  ’

where c2 =  (aO(£) and e =  c\ + e2. Thus, by this argument and Lemma 5.5, the 

sesquilinear form d satisfies continuity condition H4.

To prove that the sesquilinear form is elliptic in V"2 we will make use of the 

highly non-trivial result in Appendix A; it states that the following inequality holds:

f X 2  r X 2  r X 2  r X 2

/  / h (x, £)(<!>'(x) -  <f>'(€)) d£<i/(x)dx+ I  ((j>(x))2 dx > L (4>(x))2 dx,
J  X \  J x  1 * / X l  j  X \

(5.46)

where L is some positive constant. This, when rewritten in terms of the L2[xi,x2) 

inner product, is just

((u -  G)ct>'(x), d>'(x))L2[xuX2] +  (<f>{x), (}>{x))L2[xuX2] > L (4>'{x), 4>'{x))L2[xi X2] . (5.47)
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Now let A =  0 from H5. Then we have 

R e ( d  ($ ,$ ) )  =  d ($ ,$ )

=  (701, 0 l)l,2[O,*] +  (0-5^0^^2^301) 0 l)l,2[O,£]

+  ((l^L -  0 l )  <t>l> 4>l)L2[0,t) +  (702, 02, ) l 2[£+£m,£m+2«]

+  ( 0 . 5 p acvk<2k:i(f)2,$ 2 ) rJ2[e+eMyeM+2t]

(5.48)
+  ( ( ^ k  — 0 h )  0 2 ,  ^ 2) L2[e+eM,tM+2i}  ^  ( * ^ i ^ >  * ^ ) s  •

> (70i, 0i)l2[o,*] + K (0i’ 0i)l2[o,/|

+K ((*7, — £/Z-) 01, 0 l ) i 2[O,€]

+  (702, 02, )l2[*+«m,<M+2*] +  K ^02’ ^ ^ 2 [W m,<M+2<]

+K ((^K ~  £ii) 02, 02) l2[M-£m/ m+2£! +  (*^1^, ^ )s

(for k := m in{l,0 .5 pQct;A:2A:3 }),

> (70 i, 0i)l2[o,£] + (0i> 0i)l2[o)«]

+  (702, 02, ) i 2[WM/ M+2f] +  kL 2 (02, 02)l2[/+/m^M+2<|

+  (,4l$, $><; •

(by (5.47)),
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> k ( 0 i, 0 i)L2[Ô] +  k (0 lf 4>\)L2[0tq + k (0 2 , 0 2 ,) L?[t+iM,eM+2t]

+k (0 2 , <&)La[e+eM,eM+2e\ +  ^ ®)s

= * ( $ , ^ = * 11̂ ,  

for k := min{«Li, kL2, 7 ,1}. Thus, d satisfies coercivity/ellipticity condition H5 with 

A =  0 and k2 = k. □

By Theorem 2.12 the system in (5.40) is well-posed. By Theorem 2.13, the 

first order system operator, defined on E = V  x S,

0  0  

- I  - J
(5.49)

generates a Co—semigroup of contractions. Furthermore, by Theorem 2.14, the 

operator A  generates a Co—semigroup. Now, by Theorem 2.15, we have that the first 

order weak formulation of the system with A  is well-posed which implies that the 

equivalent second order weak formulation (5.37) is well-posed.

To show that the closed-loop feedback operators A  — BK, and A  — TC  generate 

exponentially stable semigroups, it suffices to show that Q and 0  are coercive in E  [12]. 

In our work, we choose the identity for both Q and 0. Thus, we have that both are 

coercive in E  and the semigroups generated are exponentially stable. Furthermore, by 

Theorem 3.5, we have the semigroup, Soooo, produced by the state estimate operator 

in (3.13) is exponentially stable.



CHAPTER 6

VARIATIONAL FORM AND APPROXIMATION 
THEORY

6.1 Numerical M ethods

We now use a Galerkin finite element approach to find numerical solutions to 

the BMB model with spatial hysteresis damping.

6.1.1 Weak Formulation

As is standard in Finite Element approaches we desire a solution 

[wl (t , x L), wR (i, x R)]t  G U C  H = H2 [0, £] x H2 [£ +  Im, +  2£]. Here the Hilbert 

space H 2 is the Sobolev space W 2'2. We multiply (4.1) and (4.2) by test functions 

4>l(xl) and ^>r(xr), respectively, and integrate to obtain

j pAwL (t, x L) +  jwl  (t, xL) -  | j f  h (xL, £) [w'L (t , x L) -  w’L (t, 0 ] d£

+ E I w T ( t , x L) (j)L{xL)dxL = [b (x L) uL (t ) -  0.5pav2cCt\ (j)L{xL)dxL
J o

(6 .1)
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and

/Jt-

eM+w

£ + £ m

,jm

p A l l l R  ( t , X r ) +  ^ W r  ( t , X r )
d

dxR

p £ M +2£

/  h (x Ri£)[w'R (t ,xR) - w 'R (t,t)]d(, 
.J £+£m

+ E I W r  ( t , X r )  4>r {x R )
r£ m +2£

d x R  = / [b  (xR) U r  (t ) - 0 .5pav2cCt] ( j ) R ( x R ) d x R
J

(6 .2)

for all iM zr)]T € 1/ = |[<fc(-), 'M ')]3' £ S  '■ ‘t’lJJ) =  0 /?(f + =  0 ,

'̂r (£ +  £m ) =  0} . Integration by parts of (6.1) and (6.2) yields the following

J  \ ^ > A w l  ( t , x L )  < P l { x l )  +  7 w l  ( t , x L) 4>l { x l )

+  [ /  h  ^XL’ ^  ^  _  ^  ^  ^  +  E I w l  ( * » ^ ( x l )

~  \ Io  h  ^  ^  ^  ^  _  ^  ^  ^  ^

+  Jjf h  ( x L , f ) [ti/L (i, Xx,) -  w'L (t , 0 ] df

dxx,

XL==«

<M 0 )
IL=0

+EIw'Z (i, *) 4>l (£) -  EIw"l (t, 0) 0L (0) -  EIw"L (t, £) <j>'L (£) +  EIw"h (t , 0) <f>'L (0)

/ [6 (xL) uL (t) —0.5pav2cCf] 4>L{xL)dxL
Jo

(6.3)
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and

LI+Im
pAwR (t, x R) <t>R{xR) +  7 wR (t , x R) 4>r {x r )

<I>'r ( z r ) +  E I w r  (*» x r ) <I>r ( x r )

r /^m+2<
+  /  h (xR, 0  [ii4  (t, x R) -  w'R (t, 0 ] d£ 

L J m m' <+1M

’t+tM

rtM+M

dx R

rt-M+'Zi
/  h (x R,t )  [wR (t ,xR) -  w'R (t,£)\d(, 

J 1+tM
$ r  ( £ m  +  2  £)

XR=tM+2t

r rtM+w
+  /  h  (:X R, £) [l i /R  (t, X r )  -  w ' R  (t, £)] ^

LJ  £4-&m
<f>R (V  +  &m )

X R = t + f . M

+ E I w r  ( t , I m  +  2£) (f>R  ( £ m  +  2£)  — E I w R ( t , £  +  £ m )  <i>R {£  +  £ m )  

—E I w 'r  {t, £ m  +  2£) <j>'R (£ m  + 2£) +  E l w ' h  (t , £  +  £M ) d>’R (£  +  £M )

?Im+21
=  [b (xR) U r  ( t )  -0 .5pav2cCe] <t>R{xR)dxR

J £+(m

(6.4)

Adding (6.3) and (6.4) gives

J  ^ p A w L  { t ,  X L ) (f>L { x L ) +  1 W L  (t , X L ) <j>L ( x L )

+  [ j T  h  (x L , 0  [w'L ( t ,  x L ) -  w'L ( t , 0 ]  d £  <t>'L { x L ) +  E l w ' i  ( t ,  X L ) <t>"L { x L)

~  [ /  k ^  ^  XL  ̂~ ™'L ^  ^  ^ 1 ^

+  [ jT  *  ( X L ,  0  [ w 'L  (t, ® i)  -  t u i  ( i ,  0 ] ^

dxL

xi=e

4>l  ( 0 )  +  E I w 'l  ( i ,  £ )  (f>L  (£ )
Xl=0

- E I w ’l  (i, 0) f a  (0) -  E Iw l  (t, I) fa  (I) + E l f a  (t, 0) fa  (0)
(6.5)
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+ pAwR ( t ,  X r )  4>r ( x r ) +  7W r  (t, X r )  <I>r ( x r )/

r /^m+2^
/ ft (a;*, f ) [w;R (t, a*) -  w'R (t , £)] df

^M+2^

+  E I w R  (*> X R ) 4>"r {x R ) dxR

(■ / > £ M + 2 f

-  /  (a*, 0  (*, a?fl) ~ <  (t, 0 ] d£
J

0.R { t -M  +  2^ )
XR=tM+2t

I" r̂ M+ 2^
/ h (ar«, 0  N4 (*, ®*) -  iu#R (£, 0] ̂

U
+ <Ar +  ^m )

X R —f+ f - M

+EIwR (t , +  2£) 4>r (£m +  2£) — EIw'r (t , £ -f £m) +  ^m)

—E I w'r (t , £m +  2£) 4>r (£m +  2£) 4- E I w'r (t , £ +  £m ) (£ +  £m )

= [  [b(xL) u L (t) -0 .5pav2cCe] <f>L(xL)dxL 
Jo

riM+ 2t
+ [b (xR) Ur (t ) -0 .5pav2cCe] <j>R{xR)dXR.

J M m

An application of the boundary conditions in Table 4.1 leaves only

X L ) 4 l ( x l )  + 7 (t,  X L )  <pL { x L)j  j p A u > L ( t ,

+ Jjf h (xL, g) K  (t, xl) ~  w'l (*> 0 ] dt 4>'l {xl) +  EIw'[ (t , x L) (f>"L{xL) dxi

pAwR ( t ,  X r )  4>r { x r )  +  7WR (*, X r )  <t>R{xR)+  /
[■ /-^ m + 2£

+  /  h (xR, 0  [lijj (t, ®Ji) -  w ' r { t ,  £ ) ]  d £
U  £+£ftf

0 r { x r )  +  EIw"r  (t, X r ) <P"r { x r ) dxR

(6.6)
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+mwL (t, I) <f>L W =  /  [b (x L) uL (t) -0 .5pav2cCt\ <j>L(x L)dxL 
Jo

rlM+U
+  [b (xR) U r  (t ) -0 .5 P a V 2c C e] (f)R(xR)dxR.

J M m

6.1.2 Discretization

We choose a basis {ej}^=l of the approximating space UN C U. Here N 

will represent the total number of basis functions used. We will approximate the 

displacements of the left and right beams with cubic Hermite interpolating polynomials. 

Then the basis functions take the form:

for j  = 1 (6.7)

The displacements of the left and right beams will be approximated, respectively, 

using the following:

_ -| r- -|

wL{t,xL) W L  (*> XL)

W R ( t , X R ) wR(t,xR)

N

i—1

^ 2 0 i ' ( t ) bR,i{XR)
L i = l

(6 .8)
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If we substitute this approximation into (6 .6 ) we have

/Jo
pAii)% (t, x L) <j>L(xL) +  7 w" (t, x L) <I>l(xl )

N

+ /  h ( x L,t )  (w%y (t ,xL) - (w % ) '( t ,g )  d£ (t>'L(xL) + E I  (wy)" ( t ,xL)(f>l{xir) 
Jo 1 J J

dxi

+ L pAwR (t, X r )  & r ( x r )  +  7 W R  ( t , X r )  f o f a f l )
t+iM

r p
+ /  h (xR, 0  (w%y (t, x R) -  ( w % y  (t, f ) d£ 4>'r ( x r )  +  E l  ( w % ) "  (t , x R) d>"R(xR) 

U m m

dxR

+mwy (t, i) 4 > l { £ )  = [  [b(xL) u L (t) -0 .5  pav2cCi\(j)L{xL)dxL 
Jo

rtM+21
+ / [6 ( x r )  U r  (t) - 0 .5paV2cCe] (pR(xR)dxR.

Jt+lM
(6.9)

The last equality in (6 .8 ) gives

fJo

+

N N

Ct)bL,i(xL)<l>L(xL) + 7 ^ 2 ® ?  {t)bL,i(xL)<t>L(XL)
1 = 1

Jo h (XL' ^

N

i=l

N

1 = 1 i=l

N

+ I ,
i= 1 

•Im+2 I

dxt (6 .10)

N N

I + I m

eM+2e

PA ^  P? (fyRAxR^R&R)  +  7 Pil(t )h*,i(x R)<f>R(x R)
1 = 1

( /\Jl+
+ I I h (xR,g) 

> M m

N

i=l

V

M l i=1
d£, I 4>r ( x r )
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N

+ E l Y , t f ( t K i(xR)ct>"R(xR)
1=1

N

dxR + m ^ 2 (t)bL,i (0  4>l (£)
i= 1

=  / [6 (xl) Wl (<) -0.5pfl?;2cC*] (j)L{xL)dxL 
Jo

+ [b (xR) u r  (t) -0 .5pav2cCi] 4>R{xR)dxR.
Jm m

Now the test functions will also span the appropriate basis functions to obtain,

/Jo

N  N

pa  X  {t)bLti{xL)bLij{xL) +  7  X  at?{t)bL,i{xL)bLj ( x L) 
i,j=l i,j=1

+ X  ( /  k  [h'x ,i iX L ) ~  b>L , i ( ^ ]  b>L j ( x L )

N

+ E I Y  ^ ( t W L M K / x , . )
i j=1

dxi

+
J

N  N

PA  X Pif (t )bR,i(xR)bRj(x R) +  7 X Pi, (t )bR.i(x R)bRj(x R)
i j= 1 hi= 1 (6 .11)

+ X I  ( /  h ^  P W **) -  ^  J &,/y  (x*)
iJ = 1  V<+<M /

AT
+ E I  Y  & (*)Wh M V r j M

ij = 1

AT
cteft +  m

i,i=l

= [  [b(xL)u L (t) - 0 .5paV2c C t] b Lj ( x L) d x L 
Jo

pIm+21
+ / [6 (a:/i) «h (*) -O.bpa^cQ] bRJ(xR)dxR,

J i+Im
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which we can rewrite in the following way

/ pAbL<i(xL)bLJ(xL) dxL 
Jo ij=l

nl N
+  / 'rbLti(xL)bLj ( x L) dxL X  <*?'(*)

i j=i

+  J o  G o  k  ^ L ’ ^  ~~ 6 x 1  S  W

TV
+  /  E Ib l ti{xL)b"Ltj{xL) dxL X  a?(t)

Jo i,j=1

/>£m+2f
+  / pAbRti(xR)bRJ(xR) dxR Y  P i i 1)

Je+eM u - i

r t M + 2 l  N

+ /  7bRti(xR)bRJ{xR) dxR Y  P?(t)
JI+Im j j - 1

rtM+2# / p£M+2t 
+ 1 1

+

( I h (xR, f ) [^ (a :* )  -  (*)6Si,i(0 ] ^
J £+Im \Jt+lM J i,j=l

/  E I b R , i ( x R ) bR , j ( x R ) d x R  Y  P * ®  +  W  b l ’i  ^  X
d  £-¥£m  i j - i  i,j=l

=  / [6 (xi,)ul (t) -0.5pav2cQ] bLj ( x L) dxL 
Jo

rlM+ 2£
+  /  [6 (® /i) « r  ( i )  - 0 . 5 p a u 2c C i]  bR, j {xR) d x R.

Je+iM
(6.12)



In the matrix representation we can rewrite (6.12) as

MRa(t) +  M Rf3(t) +  D[,a(t) +  DRfi{t) +  K Ra(t) +  K Rf3(t) 

— B i u ^ t )  +  BfiUji(t) + Fl + Fr ,

where

[ M l I i j  -  [  P A h , i ( x L ) b L , j { x L )  d x L  +  m b L , i { t \ ) b L j ( t \ )
Jo

r l M +

WRiij  = /  pAbRii(xR)bRj ( x R) dxR
Jw m

[Dl]^  =  l b Lyi{xL)bLd(xL) dxL

+ Jo ( /  k ̂ X L ^L'^XL̂ ~ d̂ ) h’̂ XL) dxL
r t M + l l

Id r]h  =  /  7bR,i(x R)bRd{xR) dxR
Je+eM

r i M + W  /  f & M +  2  ̂ \
+ /  /  h (zR, () [^ (x * ) -  i.'Rii(e] di 6'ftj(zfl)

[Kl I j  = I  E I ^ ( x M j ( x L) d x L 
Jo

p i M + 2 ?

[A-*]y =  /  d x n
J t + i M
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[Bl\, =  t  b{xL)u L (t)bLtj(xL) dxL

ftM+U
[BR]j = /  b{xR)u R (t)bRtj{xR) dxL

J I+Im

r t

[FlIj = J  -0.bpav2cCebLj ( x L) dxL

rhi+M
r[FR}j =  / - 0 .5pavzcCebRJ(xR) dxR.

We can rewrite (6.13) as the following:

c(t) = A T 1 (-D c ( t ) -  Kc{t) + B + F ) , (6.15)

where

c(t)
a(t)

=» c(t) =
a(t)

=> c(t) —
a(t)

.  P{t)  . .  P {t) . 1

rs-
 

1__
__

_
Also,

1

o

i

o-J
Q

i r .. 
■■■"

o

i

M  =

0 M r

, D =

1

Qo
1

, K  =

—...... 
1

o
1

b l Fl
B =

B r

F =
Fr

(6.16)

(6.17)
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We can now rewrite (6.15) as a first order system of ordinary differential equations

x(t) =  Ax(t) + Bu(t) +  F(x(t)), (6.18)

where 1

No’
l_ 

. 
. 0 IH

i

_____
i

—M~lK  - M ~ lD

(6.19)

0 0
B = , F =

M - XB M~1~F(x(t))

6.2 Approximating Ricatti Solutions

In this section we will describe the routines and theory for calculating solutions 

for the finite dimensional approximations to the Ricatti equations (3.10) and (3.14). 

The results here follow from the work done in [12]. The spaces S, V, and E = V x S  will 

be defined as in Chapter 5, as well as their corresponding inner products. Furthermore, 

let A\,  Q, and M. be as defined in Chapter 5.

6.2.1 Optimal Control Approximations

To calculate the solutions to the appropriate Ricatti equations for a system 

with a mode problem, we calculate

K  = K  + [(Aiei,ej )s] = K  + M, (6 .20)
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since A \  =  I .  The Grammian matrix then is defined as

W
K  0 

0 M
(6 .21)

Now, since Q 6  £(E),  we can write Q as

Q
Qo Q \ 

Q* 0.2.

(6 .22)

where Q0 € jC(V'), Qi G C(H, V), and Q2 € £(#)■ Now let Q be the approximation 

of Q matrix, which is substituted into the finite dimensional Control Algebraic Riccati 

Equation as

ATUN + IlNA -  UNBR~lB TUN + Q = 0. (6-23)

Then, defining a matrix Q as

Q  =
Qo Q\

QT Q2

XQ. Here, we have

(6.24)

Qo = [<e», fioe,)v], Q , = [((',, Qi<'j)i.], Q-i = [<r .- Q^}.,]. (6-25)
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Since Q = I ,  we have that Q =  W.  Then (6.23) is equivalent to the following Riccati 

equation:

w ~1a t w b n  +  -  tF b r - ' bF w t i 1* +  q  =  o. (6 -26 )

If we premultiply (6.26) by W, we have

ATUN +  ilNA -  Un B R - 1B t Un  +  <2 =  0, (6.27)

which is the matrix Riccati equation used in implementation. Here I P  =  WTI^. 

Furthermore, the gain matrix Kg — —Rr^BTflN.

6.2.2 Observer Solutions Approximations

To calculate the solutions to the finite dimensional approximation to the Filter 

Algebraic Riccati Equation, we start with

AP  +  PAT -  P C t R ~xC P  + ftN = 0. (6-28)

Similar to the approach in the previous section, fi has a representation as in (6.22).

Then we have the following

p  =  P W ~l (6.29)

and

n N =  n N W - \  (6.30)
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Then the approximating Filter Algebraic Riccati Equation to be solved is

A P  + PAT - P C TR - 1CP + n N = 0. (6.31)

The observer gain is then given by

F  =  PCt R - \  (6.32)

We note here that if f2 =  1  then tlN = W "1. The Riccati equation solutions presented 

here are used for the development of all three control designs in Chapter 7.



CHAPTER 7

NUMERICAL RESULTS

7.1 Numerical Results

Here we present the numerical simulations for the BMB system with spatial 

hysteresis damping. The parameters used for the simulations are presented in Table 

7.1. The values for the modulus of the material and the external damping coefficient 

were estimated in [2] for spatial hysteresis damping. Banks and Inman note that the 

external or viscous damping coefficient cannot be determined independently of the 

internal damping features.

Table 7.1: System Parameter Values

Parameter Value Units
I 0.3048 m

(■M 0.0508 m
P 1710 kg/m3

ui, width 0.127 m
h, height 0.0254 m
a = wh 0.0032 m2

E 2 .6 8  x 1 0 10 N/m2

I  =  (wh3) / 12 1.734 x 10“ 7 m4

m 1.927 kg
mb 3.363 kg
7 0.090189 kg/(m sec)
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The uncontrolled system will be presented first and will require a little discussion 

before the controlled results are presented. For the controlled results we are assuming 

that the controllers are able to act over the entire beam.

7.1.1 Uncontrolled Simulation

Incorporating spatial hysteresis damping led to some unexpected convergence 

issues. Because of the nature of the damping we were not able to see convergence in 

uncontrolled simulations with a low number of elements. We believe this is due to the 

fact that spatial hysteresis damping fundamentally relies on the surrounding beam 

elements to interact with a given beam element to produce internal damping effects. 

The fewer elements we use, the less internal friction, and thus internal damping, 

the system experiences. However, due the Gaussian nature of the kernel function, 

we expect to see the convergence appear with a higher number of elements. As 

the number of elements per beam increases we do, in fact, see the system deviate 

less from the previous simulation with fewer elements (See Figure 7.1). To try to 

eliminate the possibility of a coding error, we ran the same code with a constant 

kernel function. In [20] it is proven that a constant kernel function will produce the 

effects of Kelvin Voigt damping. Thus, we ran the code with h(x, £) =  100 (the Kelvin 

Voigt damping constant used in [7],[8 ], and [14]), and the results were consistent with 

previous simulations using explicit Kelvin Voigt damping. The results for Kelvin Voigt 

kernel simulations can be seen in Appendix B. We were unable to run simulations 

with higher numbers of elements due to time constraints on the Louisiana Optical 

Network Initiative (LONI supercomputer). The simulations we did run were with 3



elements per beam ( 6  elements total), 6  elements per beam ( 1 2  elements total), 1 0  

elements per beam (20 elements total), and 15 elements per beam (30 elements total). 

The uncontrolled position, slope, velocity, and angular velocity plots can be seen in 

Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4, respectively.

Displacement, Nonlinear Uncontrolled System Displacement, Nonlinear Uncontrolled System

Displacement, Nonlinear Uncontrolled System

Figure 7.1: Uncontrolled Postion: 6  Elements (Top Left), 12 Elements (Top Right), 
20 Elements (Bottom Left), 30 Elements (Bottom Right)
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Slope, Nonlinear Uncontrolled System

Slope, Nonlinear Uncontrolled System

Slope, Nonlinear Uncontrolled System

Slope, Nonlinear Uncontrotted System

Figure 7.2: Uncontrolled Slope: 6 Elements (First), 12 Elements (Second), 20 Elements
(Third), 30 Elements (Fourth)
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Velocity, Nonlinear Uncontrolled System

Velocity, Nonlinear Uncontrolled System

Velocity, Nonlinear Uncontrolled System

Velocity, Nonlinear UncontroMed System

Figure 7.3: Uncontrolled Velocity: 6 Elements (First), 12 Elements (Second), 20
Elements (Third), 30 Elements (Fourth)
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Angular Velocity, Nonlinear Uncontrolled System

Angular Velocity, Nonlinear Uncontrolled System

Angular Velocity, Nonlinear Uncontrolled System

Angular Velocity, Nonlinear Uncontrolled System

Figure 7.4: Uncontrolled Angular Velocity: 6 Elements (First), 12 Elements (Second),
20 Elements (Third), 30 Elements (Fourth)
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It is important to note here that the magnitude of the slope and angular 

velocity states is very minor; although, we also note here that both slope and angular 

velocity state grows slightly with the number of elements used. This will be important 

in interpreting the data from the controlled simulations.

7.1.2 Target Tracking Results

In this section the goal of our controllers is to track the BMB system to a 

certain shape. For the LQR, LQG, and Central Controllers we assume input functions 

of the form

bL (xL) =  bR (xR) =  56, I7-1)

for 0 < Xl < i  and £ + £m < x R < £m + %£■ We also assume state estimates of the

form

yL =  2 S w l  (t , x L), yR = 2SwR (t , x R) (7-2)

for 0 < xl < £ and £ +  £M < %r < £m + 2£. The desired target tracking position and 

slope are given by

. . bx (x — 2£) (x — £)2
w(t, x) = k M >- (7.3)

^Wpeak

and

W'it, x) = z t + n 2 ( 7  4)

respectively. Here 0 < x < 21 and wpeak = 0.0762 m. Figure 7.5 shows the shape of

these targets.
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Target State, Position Target State, Slope
2
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S

Figure 7.5: Target Tracking Goal: (Left) Position, (Right) Slope.

We assume a linear approximation of the aerodynamic lift term which aids in 

development of control design. Assuming a linearized lift coefficient we then obtain 

the following, modified, first order linear system:

x(t) =  Ax(t) +  Bu(t) (7.5)

where

(7.6)
—M~lK  - M ~ ' D

and

D =
Dl 0 

0 Dr

(7.7)

such that
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\d l ] = [  7bLti{xL)bLJ(xL) dxL
L J »J J O

+ L  U o k  ^XL' ^  ~  b'L̂  dt )  bLj(XI') dxL

+ / SbLii(xL)bLj { x L) dxL
Jo

(7.8)
r  ,  r£M+2t
\Dr \ = /  7 bRA{xR)bRj ( x R) dxR
L J hJ J M m

rtM+2t /  rt-M+ \
+  /  (  /  h (xr,  0  P W 2*) -  b>R , M ) ]  ) V r j M  dxR

I*£m+%£
+  / ZbR<i(xR)bRij(xR) dxR,

J

were E =  —0.hpavck2k3.

The initial condition for the system is chosen as ,r(0) = [0,0, - 2 , 0]T that is no 

initial displacement, slope, or angular velocity, but some initial velocity. Also it is 

assumed that the initial condition of the state estimate is such that xc(0) =  0.75a;(0). 

It is assumed that the position and slope states are available for measurement for the 

state estimate controllers (See Chapter 3). The finite element discretization was done 

with N  = 21 nodes, i.e. 10 elements per beam. Matlab’s ODE15s stiff differential 

equation solver was used to solve the systems. The target tracking results for the 

LQR, LQG, and Central controllers are seen in Figures 7.6, 7.7, and 7.8, respectively. 

The control efforts for each of the controllers here are presented in Figure 7.9.
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Displacement, LOR-Controlted Nonlinear System Slop*, LQR-Controlted Nonlinear System

Velocity, LOR-Controlled Nonlinaar System Angular Velocity, LQR-Controilecl Nonlinear System

Figure 7.6: LQR Full Order Control: Position (Top Left), Slope (Top Right), Velocity
(Bottom Left), Angular Velocity (Bottom Right)
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Figure 7.7: LQG State Estimate Control: Position (Top Left), Slope (Top Right),
Velocity (Bottom Left), Angular Velocity (Bottom Right)
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Displacement, Central-Controller Nonlinear System

oa.

o.i

Velocity, Central-Controller Nonlinear System

Siope, CentraJ-Controller NonKnear System

Angular Velocity, Central-Controller Nonlinear System

X 10

a .

Figure 7.8: Central Controller State Estimate Control: Position (Top Left), Slope
(Top Right), Velocity (Bottom Left), Angular Velocity (Bottom Right)
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LQR Control Effort LOG Control Effort

Central Controller Effort

Figure 7.9: Target Tracking Control Efforts: LQR (Top Left), LQG (Top Right), 
Central (Bottom)

In addition to plotting the control efforts over time, we calculated the total 

area under the control effort curve using a trapezoid rule. The total area for each 

curve is presented in Table 7.2.

Table 7.2: Cumulative Tracking Control Efforts

C o n t r o l l e r A r e a  U n d e r  C o n t r o l  E f f o r t  C u r v e

L Q R  C o n t ro l le r 3 .4 7 5 8 e + 0 4

L Q G  C o n tro l le r 3 .4 7 7 1 e + 0 4

C e n t r a l  C o n tro l le r 3 4 .7 6 9 7

7.1.3 Morphing Trajectory Results

In this section we seek to morph the BMB system linearly over five seconds to 

a desired state. To obtain solutions to the Ricatti equations we choose control input
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functions, for LQR, LQG, and Central Controllers, of the form

bL (x L) =  bR (xR) = 56, (7-9)

for 0 < x i  < t  and I +  Im < x R < £m +  2£. We also assume state measurements of 

the form

yL =  28wL (t, x L) , yR = 28wR (t, x R) (7-10)

for 0 < xr < t  and £ + < xr < (m + 21.

The initial conditions for the system are given as x(0) = [0,0,0,0]T, that is, no 

initial displacement, slope, velocity, or angular velocity from equilibrium. Similar to 

the target tracking simulations we assume xc(0) = 0.75x(0). The spatial discretization 

for the finite element scheme is done with N =  21, i.e. 10 elements per beam. We are 

again using Matlab’s ODE15s stiff differential equation solver to solve each feedback 

control system. For the morphing trajectory results, the target states are presented in 

Figure 7.10. The results here have been accepted for publication by the Conference 

on Decision and Control [25].
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Target Position Target dlopa

Target Velocity Target Angular Velocity

Figure 7.10: Target States For Morphing Trajectories: Position (Top Left), Slope (Top 
Right), Velocity (Bottom Left), Angular Velocity (Bottom Right)

The controlled simulations are presented in Figure 7.11, Figure 7.12, and Figure 

7.13 for the LQR, LQG, and Central controllers, respectively. Furthermore, the control 

efforts are presented in Figure 7.14.
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Displacement, LQR-Control l*d Nonlinear System Slope, LQR-Control led Nonlinear System

Velocity, LQR-Controlled Nonlinear System Angular Velocity, LQR-Control led Nonlinear System

Figure 7.11: LQR Full Order Control Lineax Morphing: Position (Top Left), Slope
(Top Right), Velocity (Bottom Left), Angular Velocity (Bottom Right)
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Oi*plac*m*nt, LQQ-ControlM Nonlinear System Slop*, LQQ-Controtod Nonlinmr Sy*t*m

Figure 7.12: LQG State Estimate Control Linear Morphing: Position (Top Left),
Slope (Top Right), Velocity (Bottom Left), Angular Velocity (Bottom Right)
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Displacement, Central-Controlier Nonlinear System Stop* CentraK&ntrotler Nonlinear System

Angular Velocity, Cantral-Controller Nonlinear SystemVelocity, Central-Controller Nonlinear System

Figure 7.13: Central Controller State Estimate Control Linear Morphing: Position
(Top Left), Slope (Top Right), Velocity (Bottom Left), Angular Velocity (Bottom
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Figure 7.14: Morphing Control Efforts: LQR (Top Left), LQG (Top Right), Central 
(Bottom)

Again we calculated the cumulative control effort for each controller by computer 

the area under the control effort curve for each controller. The total area under each 

curve is presented in Table 7.3.

Table 7.3: Cumulative Morphing Control Efforts

Controller Area Under Control Effort Curve
LQR Controller 2.1712e+05
LQG Controller 2.1716e+05

Central Controller 2.1716



We see here that for the tracking results, LQR and LQG controllers reach 

the target position and slope. For the tracking control, the central controller cannot 

compensate for the initial condition. Although we see a small amount of control effort, 

the performance is not satisfactory for the central controller. This is not surprising 

since increasing robustness usually decreases performance. For the central controller, 

we can guarantee a stability margin, but we cannot reach our target position. The 

velocities and angular velocities for tracking control are not within reason. Attempting 

to linearly control these angular velocities leads to unrealistic control efforts which 

are reflected in Figure 7.9. We infer that the LQR and LQG controller are able to 

successfully control the vehicle, albeit with an unrealistic amount of input, but the 

central controller does not even reach the target position.

The morphing strategy results provide a marginally better outlook than the 

tracking strategy. For morphing control, LQR and LQG controllers overshoot the 

target position slightly but are within centimeters of the target, and the slope states 

for each reach their target. The velocities for each are not at target but they are 

within reason. However, the angular velocities for the morphing strategy still requirine 

unrealistic amounts of control input as seen in Figure 7.14. We conclude for this 

strategy that the LQR and LQG controllers can theoretically control the vehicle but 

may not realistically be able to achieve this control. Lastly, we see that the Central 

controller used here overshoots the target position without an attempt to return to 

target. The same constants b, c, R, 1Z for all three controllers may not be optimal, but 

they were chosen to numerically solve the Ricatti equations.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In the work herein we have described a model incorporating a non-local damping 

type called spatial hysteresis for modeling the heave motion of a one dimensional 

micro aerial vehicle. Furthermore, we presented the simulations of uncontrolled and 

controlled motion of the vehicle due to some initial disturbance. The vehicle is shown 

to undergo little bending during the initial drop in position. The control strategies then 

are seen to require unrealistically high angular velocity states to achieve the desired 

position. The density as well as the flexural rigidity of the beam are contributing 

factors of this inherent problem. Although the morphing over time strategy is not as 

extreme as the optimal in time target tracking, the angular velocity state still needs 

to achieve some impossible rates. Due to this difficulty we propose that using the 

material adapted in Chapter 4 is not a plausible choice for a flexible, morphing wing 

MAV with these tracking strategies.

Due to the numerical results discussed previously we propose going back to a 

previous model with beams composed of a different fiber structure than that described 

in Chapter 4. Although the spatial hysteresis parameters for the beam composite used 

in previous research have not been experimentally estimated, we do know parameters

89
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for the internal damping mechanism known as Kelvin-Voigt damping. We hope to 

implement control design on the previous BMB model with piezoceramic patches.

Another future direction for research might include experimentation on a beam 

composed of carbon graphite fiber with epoxy to estimate spatial hysteresis damping 

parameters. If an experiment could be performed on such a beam, then there would be 

an even greater mesh of the research to date and the literature concerning appropriate 

damping models for flexible beams of a composite structure. Perhaps a collaboration 

of faculty and students could achieve such research together. Also, from here, research 

could be done with functional gains and sensitivity analysis to consider optimal patch 

placement.

Other avenues of research include a two dimensional plate model that is 

currently under investigation by research collaborators Dr. Lisa Kuhn and Dr. Cody 

Ray. Although it is a formidable task, Dr. Kuhn has already begun the modeling 

process and hopes to begin running numerical simulations soon. The work done by 

Kuhn and Ray focuses more on a bat type wing which has a longer chord length than 

the model presented here. Dr. Katie Evans suggests considering beam-like plates, 

where beam-like means a small chord length to beam length ratio.

Furthermore, incorporation of roll motion and yaw motion is currently a 

focus of research collaborator Dr. Animesh Chakravarthy. Furthermore, he has 

done a frequency domain analysis of the model with Kelvin-Voigt damping. His 

recommendation for future work is to look at trying to do frequency domain analysis 

of the model with spatial hysteresis damping. Lastly, we would like to develop a 

theory, similar to that in [12] for the MinMax controller.



APPENDIX A 

SPATIAL HYSTERESIS INEQUALITY

The work in this appendix has been submitted for publication (see [15]).

91



92

In this note, we prove the following Cacciopoli-type inequality. (The interval 

[0, L] is chosen for convenience only and can be replaced with any finite interval [a, 6]. 

Scaling up to multidimensional domains, if possible at all, is more sophisticated than 

a simple application of Fubini’s Theorem, because of the double integral on the left 

side.)

Theorem A .I. Let L > 0 and p > 1. There is a constant Cp > 0 so that, for all 

functions (j) E W1,p[0, L), we have that

f  f  |<p'(x) -  0'(£)|p dx d£ + (  |0(x)|p d x > C p f  \4>'{x)\p dx.
Jo Jo Jo Jo

U n lik e  f o r  t h e  C a c c io p o l i  i n e q u a l i t i e s  w e  w e r e  a b l e  t o  f in d  in  t h e  l i t e r a t u r e ,

there are no restrictions on <f> E W x'p{0, L], This freedom comes at the price of

n
L

\4>{x) — <//(£)|p dx on the left side. Because the
.

left side is a sum of two terms, the inequality could also be considered a relative of 

the Gagliardo-Nirenberg inequality. However, the Gagliardo-Nirenberg inequality 

involves LP norms with four different values for p, whereas this inequality stays with 

one p. Consideration of straight lines 4>{x) =  ax shows that, just like the integral 

/ \4>(x)\p dx, the extra term is not solely responsible for the truth of the inequality
Jo

in Theorem A.I.

Clearly, for <f, ^  E L2[0, L], the L2-inner products <f>) and {G[tf\,<j>) are 

bilinear forms and so is their difference. For the bilinear form {{v — G)[ip], <t>) 

associated with spatial hysteresis internal damping, the kernel function h in v and Q 

is so that, for all (z,£) E [0, L]2, we have =  h(£,x), and, there are k, p > 0 so



that, for all (x , £) G [0, L]2, we have k < h(x, £) < /i .  To assure that the bilinear form 

associated with spatial hysteresis internal damping for an Euler-Bernoulli beam is 

coercive with respect to the damping space //’1[0, L] and the state space L2[0, L] (see

[3] for more details), there must be an C > 0 so that, for all functions 

<f> G #*[0, L] = W1,2[0, L] that satisfy <fi(0) =  0, we have that

The inequality above follows from Theorem A.l because Proposition A.2 

below shows that, for symmetric kernels, the first term above can safely be replaced 

with the simpler term we use in Theorem A.I. Hence, the model under consideration 

is well-posed. To our knowledge, this is the first time a formal proof of the above 

inequality appears in the literature.

P roposition  A.2. Let L > 0 and let h G L2[0, L]2 be a kernel function so that, for 

all (x , £ )  G [0, L]2, we have h(x, £ )  = h ( £ ,  x) and so that there are k , ( j l > Q s o  that, for 

all (x, £) G [0, L]2, we have k < h(x , £) < //. Then, for all ip G L2[0, L], we have that

Proof. First note the following.
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= Jo ( /  h(x^) ^  -
= [  [  h(x,£) ((ip(x))2 -  ip(£)ip(x)) d£ dx

Jo Jo

= \ J q Jq h(x,^)({ip(x))2 - ^ ) i p ( x ) )  d£dx

+ \J o  Jo (WO)2 -  d x d t

^  \  Jo  Jo  h (x >€) ((̂ (x))2 -̂ (OV»(*)) d £ d x

+ \ J Q J 0 h (x ' ®  + MO)2) d*

=  ̂ Jo Jo ̂ *’£HM*))2_M 0 ^ ) + M0)2)

=  ^ Jo Jo ̂ x,0 Mx) ~ ^(0)2 dC dx

The inequalities now follow from 0 < k < h < p. □

Note that one, maybe even surprising, consequence of Proposition A.2 is that 

/ (y — g)[ip](x)ip(x) dx is nonnegative.Jo
Although we only needed Theorem A.l for p = 2 and with the additional 

boundary conditions 0(0) =  0 and 0'(O) =  0 (clamped beam) imposed, we prove it 

first without boundary conditions for p = 2 (see Lemma A.3) and then generalize to 

pth powers. This gives us the most general version of the inequality without much 

extra work.

A .l P ro o f of T heorem  A .l

We will need the following lemma.

Lem m a A .3. Let { fn}%Li be a sequence in C^QO, L]) such that

Jo
h(x, £)V*(0 d£ ) ip{x) dx
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(i) \fn(x)\ < 1;

(ii) lim [  |/n(:r)|2 dx =  0;

(utj lim [  [  / ' (x) -  / ' (y) dx dy =  0.
n^°°Jo Jo

Then we must have

lim [  \fn{x)\* dx =  0.
n-+oo , /0

jProo/. Suppose for a contradiction that this is not true. Then, without loss of 

generality, there exists a sequence {/n}£Li that satisfies (i)-(iii) and an e > 0 such 

that

/ 'Jo
\fn{x)\2 d x > £ ,  n > 1.

For any n > 1, we have

£  £  ( s »  -  fn(y))2 dx dy =  2 L £  ( f n(x))2 dx -  2 (/„(L) -  /„ (0 ))2.

Hence

} ^ o L  f  { f n ( X ) )  d x  ~  ( f n ( L )  -  / n ( 0 ) )  =  0.J 0

On the other hand, using the assumption (i), we get

fn{L) -  /„( 0) =  I /  f 'Jx) dx I < [  I f'n{x) 
1Jo 1 Jo 1

dx < L,

for any n > 1. So there exists a subsequence {f^(n)}^L\ such that

A  . lim 0)
n-*oo
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exists. Hence

lim L
n--> oo

dx — A2 — 0,

which implies

( 4 » ) W ) 2 i x  =
A2

In particular we have A ^  0. Next we prove that {/v>(n)(0)}^1 converges and 

compute the limit. Indeed, we have

<

<

\ [
2| [  U(n)ix ) f ^ n)(x ) ^

1 J O

aL „ \  V 2 /  Z'1' r 1 2 \  i /2
/t/Kn)^} dx)  ( J  f ^n)(X) dx)

\ 1/2
4(n)(z) >

for any n > 1. Hence

lim
n—>oo

Since A  =  lim f ^ n)(L) -  U(n){0) ±  0 and
n—>00

f  (l ) + f  in ') -  n „ -  i  o
Jtp(n) \Xi ) (U)

we get

lim /^ (n)(L) +  fip(n) (0) =  4  =  °.
n—> oo /I



Putting everything together, we get

lim U(n)(L) =  —, and lim /^ (fl)(0) =n—> 0 0  Z n-+oo z

Next note that we have

ftp(n){x ) ^  </V(n)(‘C) /t/'(n)(0) d* /y(n)(0)

<

<
do 1

/ 'do
dx +

dx +  

/v>(n) (0)

< L 4- sup
n>l

= :  M ,

for any x G [0, L], that is, the sequence {f^{n)(x)} in uniformly bounded on [0,1 

Using this fact, we obtain the following

4(„)(0 -  4 <»>(°)

- 3

I
[  f } ( n ) ( x ) f ' ^ n ) ( x ) d x

J O

<  z ( f  f i ( n ) ( x ) d x Y  ( j f  f l p { n ) ( x )  d x )

, J i ( I  f i ( n ) ( x ) d x )  '

aL \  1/2

M 2 f } ( n ) ( X ) d x )

a
L  \  1 /2

fi(n)(x ) dx)  1

1/2

<

<



for any n > 1. Hence

limn—>00 = 0,

which implies

nl i m 4 w ( L ) - 4 w ( 0 ) = ( ^ )  = ^ = 0 ,

a contradiction. □

Proof of Theorem A.l. First note that, for f  =  0, the inequality is true for any 

constant Cv. So we may restrict our proof to f  ^  0. Because C l is dense in W l'p, we

may assume that all functions are in C'1([0, L]). Let /  € C'1([0, L\) be such that

/ '  7  ̂0. Because / '  is continuous, we have that M  := sup \ f(x ) \  E (0,0 0 ) . Set
x & { 0  ,L]

g(x) =  — /(x). It is clear that /  satisfies the inequality if and only if g satisfies the 

same inequality with the same constant. So it is enough to prove the inequality for 

/  E C^QO, L}) such that \ f(x )\  < 1. Suppose for a contradiction that the inequality is 

not true. Then there exists a sequence {/n}£Li in C^fO, L]) and an e > 0 such that

«  l / » l  < i;

(ii) /  \fn(x )\p dx >
Jo L

(hi) [  [  I fn(x ) -  fn(y) P dx dy+  [  |/„(x)|p dx -¥ 0 as n -> 00 .
Jo Jo ' Jo

Clearly (iii) implies
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Using (i), we get

/  /  Ifn(x )~ fn (y )  dx dy =  f f  \ fn (x ) - fn (y )  fn(x ) ~ f M  
Jo Jo 1 Jo Jo '

- 2 1  I  ~  dx  dyJo Jo 1

n L p Y /p\ rL rL
fh(x ) -  fn(y) dx dy / / dx dy

Jo Jo

rL r L
dx dy

< 2
Vq

< 2 L2/q [  [  I fnix) ~ m  P dx dy
Jo Jo 1

1 Ip

jj

where, for p > 1, q is the conjugate of p, i.e., q = ------. (For p =  1 we stop after the
P ~  1

first inequality, which suffices for the following.) Hence

lim /  /  ( fn ( x ) - fn ( y ) )  dx dy — 0.”-W o Jo K J

Next we claim that { fn(Q)}%Li is bounded. Assume this is not the case. Then there 

exists a subsequence {/^(n)(0)}£Li such that |/^(„)(0)| > 2L. Note that

/*X  />  Xj

f n { x ) ~ f n (  0 ) | =  /  f „ ( t ) d t \ <  /  I f n(t) d t <  I f n{t)
Jo ' Jo 1 Jo '

dt < L

for any iG  [0, L] and n > 1. Hence

L < \U(n){0)\ ~ L <  \U(n)(x)\', x  G [0, L).

This implies

L p + i  < I \fip(n) (
Jo

x ) Y  d x ,
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a contradiction. Hence { /r^O )}^  is bounded and we obtain that

M  := sup |/»(ar)| < sup |/„(0)| +  L < oo,
®€[0,L], n>l w>l

that is, that the sequences { fn{x)}^=i are uniformly bounded on [0, L\. Next note 

that we have

f  \fn(x)\2 dx = f  \fn(x)\ |/n 0 * 0 | dx
Jo Jo

[  \fn{x)\ dx 
Jo

< M

< M L 1'* [ J  \fn(x)\p dx
1 / p

(again with q being the conjugate or the last step omitted) which implies that

lim [  |/n(x)|2 dx =  0. 
n->oo JQ

So we have

\fn{x)\ < 1, n =  1,2,

lim [  \fn(x)\2 dx =  0
Jo

lim /  /  \fn(X) ~f n( y )  n^-ooj o JQ I

and by Lemma A.3 we infer

dx dy = 0.

lim f  |fn(x)\2 dx — 0. n->oo J0
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On the other hand, we have

/  I / n ( * ) l p dx = [  \ f n ( x ) \ p 1 |/'(ar)| dx 
Jo Jo

<  f  \ f n ( X )\ d x  
Jo

<  L l / 2  [ j f  \ f n ( x ) \ 2 dx '  ,

which implies

J  \ f n ( x ) \ 2 dx ,

a contradiction. □

A.2 Observations

The proof primarily relies on the homogeneity of the inequality, so that the 

following result is an easy consequence.

T heorem  A.4. Let L > 0, p > 1 and let H : [0, oo) x [0, oo) [0, oo) be so that

1. H(u, v) = 0 i f fu  = v =  0,

2. For all c > 0 we have H(cu, cv) =  cH(u, v),

3. H  is continuous.

Then there is a constant Cp>h > 0 so that, for all functions <j> € VF1,p[0, L], we have 

that

H (  f  /  M * ) “  <^(£)|P dx d£, [  \(j)(x)\p > CP,H [  \4>'(x)\p dx.
\ J  0 Jo Jo /  Jo
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Although Theorem A.4 looks rather technical, with H(u,v) = (urn + vm)™, we 

see that we can attach exponents to all three terms in Theorem A.l and then obtain, 

for example, that the corresponding inequality for the norms

\ W ( X )  -  ( / > ' { 0 \ \ l p [ 0 M 2 +  U W W l p i o a  >  C P U ' { x ) \ \ l p i o ,l ] h o ld s > t o °-



APPENDIX B

CONVERGENCE OF BMB WITH KELVIN VOIGT
PARAMETERS
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Here it is shown that the Matlab code used for spatial hysteresis damping 

converges for a constant kernel function which as stated in [20] is equivalent to Kelvin 

Voigt damping.

Displacement, Nonlinear Uncontrolled System Slope, Nonlinear Uncontrolled System

-0.6.

“  -0.8 .

Velocity, Nonlinear Uncontrolled System Angular Velocity, Nonlinear Uncontrolled System

Figure 2.1: Uncontrolled BMB with KV Kernel Simulation with 6 Elements: Position 
(Top Left), Slope (Top Right), Velocity (Bottom Left), Angular Velocity (Bottom 
Right)
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D isp la c e m e n t,  N o n lin ea r  U n co n tro lled  S y s te m S lo p e , N o n lin ea r  U n co n tro lled  S y s te m

A n g u la r V elocity , N o n lin ea r  U n c o n tro lled  S y s te mV elocity , N o n lin ea r  U n co n tro lled  S y s te m

Figure 2.2: Uncontrolled BMB with KV Kernel Simulation with 12 Elements: Position 
(Top Left), Slope (Top Right), Velocity (Bottom Left), Angular Velocity (Bottom 
Right)
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Displacement, Nonlinear Uncontrolled System

Velocity, Nonlinear Uncontrolled System

Slope, Nonlinear Uncontrolled System

Angular Velocity, Nonlinear Uncontrolled System

Figure 2.3: Uncontrolled BMB with KV Kernel Simulation with 18 Elements: Position 
(Top Left), Slope (Top Right), Velocity (Bottom Left), Angular Velocity (Bottom 
Right)
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