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ABSTRACT

This dissertation proposes methods and algorithms to improve the performance
of biometric verification systems. It introduces a new rejection method, “symmetric
rejection method,” for multi-stage biometric verification. The symmetric rejection
method significantly improves the performance over the state of the art rejection
methods and controls the genuine reject rate which has not been specifically addressed
in earlier studies. The dissertation also proposes a new fusion framework for multi-
biometric verification systems, which achieves accuracy higher than parallel fusion
framework, and provides convenience to genuine users. In addition, it proposes a
framework consisting of impostor score based normalization, impostor score based
rejection, and fusion to lower the verification errors of continuous keystroke verification
with weak templates. It introduces a new formulation to incorporate the reject option
in verification with weak templates and develops a new impostor score based rejection
method called “Order Statistic rejection method”. Results show that the proposed
framework in conjunction with the Order Statistic rejection method significantly

reduces the equal error rates of continuous keystroke verification with weak templates.

1l
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CHAPTER 1

INTRODUCTION

1.1 Overview

A biometric verification system uses physiological traits (for example, finger-
print, face, iris, hand-geometry, retina, etc.) and/or behavioral traits (for example,
keystroke dynamics, mouse movement, signature, speech, etc.) of an individual to
verify his/her identity claim. A unibiometric verification system that uses a single
biometric trait suffers from several practical problems such as noisy sensor data,
non-universality and lack of uniqueness of biometric traits, and spoof attacks (see [1],
[2]). As a result, a unibiometric verification system fails to meet the tight requirement
of real-world applications. A multi-biometric verification systemn seeks to alleviate
these problems by fusing information from multiple biometric sources (see [3], [4], [5],
[6]). These sources may be multiple biometric traits (for example, face and fingerprint),
multiple instances of the same biometric (for example, left index fingerprint and right
index fingerprint of a person), multiple matching algorithms for the same biometric (for
example, two different face matchers: principal component analysis based matcher and
linear discriminant analysis based matcher), or multiple sensors for the same biometric
(for example, optical and ultrasonic fingerprint sensor) (see [1] for details). Several

studies show that fusion of information from multiple biometric sources significantly
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lowers the verification errors (see [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20]).

Fusion of information can be performed in two different modes: (1) parallel
mode and (2) serial mode. In parallel mode (see [1], [4], [6], [9], [18], [19], [20], [21]),
to verify a user U, an n-biometric verification system collects n biometric traits from
U, processes each trait individually, combines the information, and gives verification
decision on the combined information. In contrast, in serial mode (see [22], [23], [24],
[25], [26], [27], [28]), to verify a user U, an n-biometric verification system collects the
first biometric trait in the processing chain from U, process it, and gives verification
decision on the processed information if it has enough evidence to classify U as genuine
or an impostor. If the verification system is not confident enough to ascertain whether
U is genuine or an impostor, it rejects the sample and collects the sample of the
next biometric trait to get more evidence for classification. The verification system
collects the nt* biometric trait only when it fails to give the verification decision using
biometric traits 1 through n — 1.

A serial fusion based biometric verification system is referred to as a multi-stage
biometric verification system. The option to reject the ‘confusing’ samples in stages 1
through n — 1 of an n-stage biometric verification system is called reject option (see
[29], [30], [31], [32], [33], [34], and [35]), which builds the skeleton of the multi-stage
biometric verification system. Reject option is exercised by selecting a reject region
that says which samples are to be rejected. A sample is rejected if the corresponding
matching score falls inside the reject region. A rejection method is used to select an

appropriate reject region.
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In this dissertation, we propose a new rejection method, referred to as symmetric
rejection method, for multi-stage biometric verification. We empirically show that the
symmetric rejection method significantly improves the performance over the state of
the art rejection methods. Compared to the existing rejection methods, the symmetric
rejection method has two notable advantages: (1) it allows to control the genuine
reject rate—the proportion of genuine scores that are erroneously falling inside the
reject region, which has not been specifically addressed in earlier studies, and (2) it
allows to compute the reject region without estimating the underlying probability
density function of the base scores.

We also propose an optimized fusion framework for multi-biometric verification
systems, which combines the advantages of parallel fusion and serial fusion. Both
parallel fusion and serial fusion involve multiple biometric verifiers and/or multiple
biometric traits. Between the two modes of fusion, parallel fusion has received more
attention from researchers because of its higher accuracy [2]. However, several recent
studies such as [23], [24], [26], and [27] have questioned the applicability of parallel
fusion in applications that involve a large population of users or a great number of
biometric transactions because parallel fusion has a much longer verification time and
thereby causes inconvenience to genuine users. Serial fusion provides convenience to
genuine users by allowing them to submit a subset of biometric traits.

Unfortunately, studies such as [26] and [36] show that serial fusion cannot reach
the accuracy level of parallel fusion and hence its applicability is questionable in high
security applications that require robustness to forgeries, robustness to enrollment

problems, etc. In this work, we propose a fusion framework which (1) achieves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an accuracy level higher than parallel fusion, and at the same time (2) provides
convenience to genuine users. Hence, our proposed fusion framework is applicable to
high security applications as well as applications that involve a large population of
users or a huge number of biometric transactions.

We also propose a framework for continuous keystroke verification with “weak”
templates. In continuous keystroke verification, a user’s template is built from
keystroke samples collected in multiple enrollment sessions. Several studies in keystroke
verification ([37], [38], and [39]) show that increasing the number of enrollment samples
with “multi-session enrollment” lowers the verification error rates. However, a practical

7 is that it assumes users are either available

limitation with “multi-session enrollmen
or solicitable multiple times. Though this assumption is usually true in a controlled
laboratory setting, its validity is questionable in realistic cyber environments. For
example, in cloud computing environments, thousands of users access system resources
remotely (over the network) and it is unrealistic to expect that every user is available
in a timely fashion to submit enroliment samples. Some users may even access the
system so infrequently that repetitive collection of enrollment samples is impractical.
With such users, a keystroke verification system is left to use a “weak” template,
which is a template built from insufficient enrollment samples (e.g., enrollment samples
collected in a single session).

The goal of this work is to minimize the equal error rates (EERs) of continuous
keystroke verification when “weak” templates are used. In this regard, we propose a

framework comprising of impostor score based normalization, impostor score based

rejection, and fusion. We introduce a new formulation to incorporate the reject option
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in verification with weak templates and develop a new impostor score based rejection
method called Order Statistic (OS) rejection method. We compare the performance
of OS rejection method with two other impostor score based rejection methods—(1)
Otsu [40] and (2) Gaussian. Experimental results show that our proposed framework
significantly reduces the EERs of continuous keystroke verification with weak templates
and the OS rejection method achieves better error-reject trade-off than Otsu and

Gaussian rejection methods.

1.2 Our Contributions
In this dissertation, our focus is to improve the performance of biometric
verification systems, and at the same time, provide significant convenience to genuine
users. Below, we briefly describe our contributions.
1. We propose a new rejection method called symmetric rejection method for multi-
stage biometric verification. Compared to existing rejection methods, symmetric

rejection method has the following advantages:

e Compared to the rejection methods proposed by [23], [24], and [25] that
reject all the genuine scores inside the confusion region (which can consid-
erably increase user inconvenience, especially when the volume of biometric
transactions is high), the symmetric rejection method allows the admin-
istrator to control the genuine reject rate in each stage of a multi-stage
verification system.

e Compared to the rejection methods proposed by [26], [27], and [28] that

require estimation of probability density function of the scores (which can
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turn out to be difficult and expensive), the symmetric rejection method

allows us to calculate reject region directly from the scores.

2. We analytically show how the symmetric rejection method reduces false alarm
rate and impostor pass rate when it is used in a multi-stage biometric verification
system. We validate our theory by experimenting on a four-stage verification
system. We perform experiments using NIST multi-modal database [41}, which
consists of verification scores originated from four individual verifiers. Our results
show that the symmetric rejection method significantly reduces false alarm rate
and impostor pass rate. Using the symmetric rejection method, we achieve (1) a
minimum false alarm rate of 0.0039, which is 91.58 percent less than the equal
error rate of the top performing individual verifier and (2) a minimum impostor
pass rate of 0.0203, which is 56.16 percent less than the equal error rate of the
top performing individual verifier.

3. We compare the performance of the symmetric rejection method with two
existing rejection methods: (1) SPRT-based method [26] and (2) Marcialis et
al.’s method [23]. Experimental results show that to achieve the same value
of area under ROC curve (AUC), genuine users require less number of stages
with the symmetric rejection method compared to SPRT-based and Marcialis et
al.’s rejection methods. This indicates that the symmetric rejection method can
provide better user convenience, which is a desirable attribute, especially for
applications involving a large population of users or a great number of biometric

transactions.
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4. We propose a new fusion framework for multi-biometric verification systems,
which (1) achieves an accuracy level higher than parallel fusion, and at the same
time (2) provides a significant amount of convenience to genuine users. In other
words, we propose a fusion framework which combines the advantages of parallel
fusion and serial fusion.

5. We theoretically show that the false alarm rate and impostor pass rate obtained
by our proposed fusion framework is less than or equal to the false alarm rate
and impostor pass rate obtained by parallel fusion. We validate our theory
by experimenting on two multi-biometric verification systems, where each
verification system uses three different biometric traits. We use NIST multi-
modal database [41] in our experiments. The experimental results provide a
considerable amount of evidence that the proposed fusion framework improves
the performance over the parallel fusion framework, and at the same time,

provides a significant amount of convenience to the genuine users. Specifically:

e With one verification system, (1) we achieve a minimum EER of 0.4561
percent, which is 13.63 percent less than the EER obtained with parallel
fusion and 89.29 percent less than the EER obtained with the top performing
individual verifier, and at the same time, (2) we achieve the following user
convenience: 77.29 percent genuine users received verification decision by
using only one biometric trait, i.e., 77.29 percent genuine users did not need
to submit second or third biometric traits and 7.36 percent genuine users
received verification decision by using only two biometric traits, z.e., 84.65

percent genuine users received verification decisions without submitting
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the third biometric trait. In contrast, in parallel fusion, every user had to
submit three biometric traits.

e With another verification system, (1) we achieve a minimum EER of 0.3399
percent, which is 3.08 percent less than the EER obtained with parallel
fusion and 92.02 percent less than the EER obtained with the top performing
individual verifier, and at the same time, (2) we achieve the following user
convenience: 25.89 percent genuine users received verification decision by
using only one biometric trait, i.e., 25.89 percent genuine users did not need
to submit second or third biometric traits, and 57.29 percent genuine users
received verification decision by using only two biometric traits, i.e., 83.18
percent genuine users received verification decisions without submitting
the third biometric trait. In contrast, in parallel fusion, every user had to

submit three biometric traits.

6. We propose a framework comprised of impostor score based normalization,
impostor score based rejection, and fusion to lower the EERs of continuous
keystroke verification with weak templates.

7. We introduce a new formulation to incorporate the reject option in verification
with weak templates and develop a new impostor score based rejection method
called the Order Statistic (OS) rejection method. Furthermore, we adapt: 1) the
Otsu threshold selection method [40] and 2) the Gaussian assumption of scores
to our rejection formulation and study how they perform as impostor score based

rejection methods.
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8. By conducting experiments on a large keystroke database of 1100 users, we
show that all three rejection methods significantly reduce the EERs (i.e., our
rejection formulation has considerable impact on reducing the EERs of continuous
keystroke verification with weak templates). We compare the performance of the
OS rejection method with Otsu rejection method (non-parametric) and Gaussian
rejection method (parametric). Results show that OS rejection outperforms
both Otsu and Gaussian in terms of error-reject trade-off. We achieve 59.97
percent to 86.74 percent reduction in average EERs compared to the individual
verifiers when we use OS rejection method in conjunction with impostor score
based normalization and fusion.

9. We show that impostor score based normalization and fusion significantly reduce
the EERs of continuous keystroke verification with weak templates. Though
impostor score based normalization and fusion were previously studied with
several biometric modalities, to the best of our knowledge, this is the first work
to study its performance in a continuous keystroke verification setting. With
impostor score based normalization and fusion, we achieve 47.47 to 69.67 percent

reduction in average EERs compared to the individual verifiers.

1.3 Organization of the Dissertation
In Chapter 2, we briefly describe (1) fusion in biometric verification, (2) the
basics of reject option—which plays a key role in multi-stage biometric verification,
(3) biometric verification rule with reject option, and (4) the basics of continuous

keystroke verification. In Chapter 3, we discuss related research and our motivation.
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In Chapter 4, we introduce the symmetric rejection method, analyze its performance,
give empirical validation, and compare its performance with SPRT-based [26] and
Marcialis et al.’s [23] rejection methods. In Chapter 5, we introduce the proposed
fusion framework by theoretically showing how it (1) gives better performance than
parallel fusion and (2) provides convenience to genuine users, and empirically validate
our theory. In Chapter 6, we describe the proposed framework of continuous keystroke
verification with weak templates, introduce OS, Otsu, and Gaussian rejection methods,
give experimental details, and analyze the results. We conclude and give future

directions in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Fusion of Information in Biometric Verification

Fusion in a multi-biometric verification system can be done at four different
levels of information: (1) sensor level, (2) feature level, (3) matching score level, and
(4) decision level. Score level fusion is generally preferred because matching scores
contain sufficient information to distinguish genuine users and impostors, and at the
same time, they are relatively easy to obtain (see [9], [10], [42], [43]). Given a number
of unimodal biometric verification systems, it is possible to generate matching scores
for a specified number of users without having any knowledge of the underlying feature
extraction methods and matching algorithms of the unimodal verification systems.
Hence, combining information using score level fusion is feasible and practical (see
[10], [43]).

Parallel fusion and serial fusion are two widely used modes of information
fusion. In parallel mode (see {1], [4], [6], [9], [18] [19], [20], [21}), to verify a user U, an
n-biometric verification system collects n biometric traits from U, processes each trait
individually, combines the information, and gives verification decision on the combined
information. In Section 3.2, we discuss different approaches to parallel fusion proposed

in the literature.

11
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In serial mode (see [22], [23], [24], [25], [26], [27], [28]), to verify a user U, an
n-biometric verification system collects the first biometric trait in the processing chain
from U, processes it, and gives verification decision on the processed information if
it has enough evidence to classify U as genuine or an impostor. If the verification
system is not confident enough to ascertain whether U is genuine or an impostor, it
rejects the sample and collects the sample of the next biometric trait to get more
evidence for classification. The verification system collects the n* biometric trait only
when it fails to give verification decision using biometric traits 1 through n» — 1. In
Section 3.2, we discuss different approaches to serial fusion proposed in the literature.

A serial fusion based biometric verification system is referred to as the multi-
stage biometric verification system. The option to reject the ‘confusing’ samples in
stages 1 through n — 1 of an n-stage biometric verification system is called reject
option (see [29], [30], [31], [32], [33], [34], and [35]), which builds the skeleton of the
multi-stage biometric verification system. In the following subsections, we describe

the reject option basics and biometric verification rule with reject option.

2.2 Reject Option Basics
In classification, a test pattern S is classified into one of r classes {wq,- - ,wr}.
The goal of a rejection rule is to improve classification accuracy by allowing the
classifier to not classify S if the classifier has low confidence on its decision on S.
Ambiguity-reject [29] and distance-reject [44] are two widely used rejection rules. Let
P(w|S) be the posterior probability of a class given S. S is assigned to w, if a)

P(w.|S) = max{P(wi|S),-- , P(w,|S)}, b) Bl > b1, j =1, ,7, w; # w,, and
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c¢) P(w,|S) > to. Here, w, is one of the r classes, a) is Bayes classification rule, b) is
ambiguity-reject rule, ¢) is distance-reject rule, and t; and ¢, are thresholds.
Ambiguity-reject assumes that all classes are known apriori, test patterns
belong to one of the known classes, and all classes are well represented in the training
data. Under these assumptions, ambiguity-reject rejects patterns that occur in the
overlapping regions between classes. On the other hand, distance-reject assumes that
a test pattern may belong to a class unknown to the classifier. Under this assumption,
it rejects patterns that are “distant” from the known classes. The performance of a
rejection rule is analyzed using an error-reject trade-off curve, which shows how the

classification error decreases as more test patterns are rejected.

2.3 Reject Option in Multi-stage Biometric Verification

Reject option plays a key role in multi-stage biometric verification. Specifically,
in an n-stage biometric verification system (e.g., [22], [23], [24], [25], [26], [27], [28],
and [45]), if the verifier in stage ¢ is not confident enough to decide whether the sample
is genuine or an impostor, the sample is rejected and a new sample is submitted to
the verifier in stage 7 + 1 to get a more confident decision. If all the verifiers in stages
1 through n — 1 fail to give a genuine or impostor decision, the verifier in stage n (last
stage) gives the final decision. Below, we formally state the biometric verification rule
with the reject option.

Biometric Verification Rule with Reject Option: Let s denote a
verification score output by verifier v when a biometric sample S is matched with

a claimed template C. Assuming v outputs a dissimilarity score (e.g., Euclidean
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distance between features of S and C), biometric verification with the reject option is

implemented as:
S is genuine if s < L, impostor if s > R, else reject S, (2.1)

where [L, R] is the reject region defined by thresholds L and R. In Figure 2.1, we
illustrate the reject region [L, R] (‘LR’ hereafter). Here we assume X and Y are
genuine and impostor score sets, respectively, generated by the verifier v for user U,
fo(z) and f;(y) are the distributions estimated from scores in X and Y, respectively.
Without loss of generality, we assume verifier v outputs real-valued dissimilarity scores.
In the scoreline [Z, 0], ZF, is the genuine score region, E,0 is the impostor score

region, and E E, is the confusion region where fg(z) and f;(y) overlap.

Genuine (fo(x)) Reject reglon Impostor (f{y))
le—!
)
/><\
1
1
1 i
z E, L R E. o]

Figure 2.1: Genuine score distribution fg(z) and impostor score distribution fi(y)
along with reject region LR, genuine score region Z E,, impostor score region £;0,
and confusion region E;Es.

Because scoreline [Z, 0] (see Figure 2.1) is a real line, there are potentially
an infinite number of regions that verification rule in (2.1) can use as a reject region.

Depending upon the location and width, different reject regions can yield different

error rates. There are two types of error rates associated with the verification rule in

(2.1):

FAR — # of genuine scores declared as impostor
" Total # of genuine scores — # of genuine scores in LR

(2.2)
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and

IPR = # of impostor scores declared as genuine
~ Total # of impostor scores — # of impostor scores in LR’

(2.3)

where FAR" is the false alarm rate, IPR’ is the impostor pass rate, and LR is the
reject region. We use superscript ‘r’ to specify that the false alarm rate and impostor
pass rate are obtained by exercising ‘reject option’.

Obviously, the target of any verification rule is to minimize the error rates.
However, when the reject option is added to a verification rule, one more thing needs
to be considered: how many scores are being rejected by the reject region? There are

two types of reject rates associated with the verification rule in (2.1):

# of genuine scores in LR

GRR

" Total # of genuine scores

and

# of impostor scores in LR

IRR =

2.
Total # of impostor scores ’ (2:5)

where GRR is the genuine (score) reject rate, IRR is the impostor (score) reject rate,
and LR is the reject region. Note that, while rejecting impostor scores incurs no cost
in terms of user inconvenience, erroneously rejecting genuine scores translates to both
user and administrator inconvenience. The problem becomes severe in the applications
that involve a large population of users or a great number of biometric transactions,
for example, e-commerce, ATMs, etc. In such applications, selecting an inappropriate
reject region can result in a high genuine reject rate and thereby render the verifier

impractical. Therefore, it is necessary, in such applications, to control the genuine

reject rate (GRR).
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In summary, we expect a reject region should be chosen such that: (1) it reduces
false alarm rate and impostor pass rate, and at the same time, (2) it maintains a

specified genuine reject rate.

2.4 Basics of Continuous Keystroke Verification

Continuous keystroke verification (see [46], [47]) is implemented in two phases:
the training phase and the testing phase. In the training phase, we extract keystroke
features from a user’s typing sample (enrollment text), remove outliers, and generate
templates. In the testing phase, we use a verifier to match test attempts (extracted
from verification text) to the user’s template and output verification scores. In
continuous verification, extracting attempts from verification text and matching them
against the user’s template is a continuous process.

We experimented with three widely used keystroke features: 1) key interval
latency (the time between release of a key and press of the next key), 2) key hold
latency (the time between press and release of a key), and 3) key press latency (the
time between press of a key and press of the next key). A user’s template is a 26-by-26
matrix in which each cell corresponds to an English digraph (i.e. aa, ab, ac, ..., zy,
zz). Each digraph can occur multiple times in the user’s sample. Therefore, each
cell stores multiple latency values and their aggregate statistics (mean and standard
deviation). Typically, a key hold latency corresponds to a single key on the keyboard.
Because our template holds only digraphs, in the case of key hold latencies, each cell
records the key hold latency of the first letter in the digraph (i.e., cell “th” has key

hold latencies of “t” only when the next letter typed is h).
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To discard extreme latency values, we used a simple distance based outlier
detection method where a latency value in a cell is considered an outlier if it does not
have a predefined number of latencies (neighbors) within the neighborhood distance r.
We calculated the predefined number of neighbors as a percent of the total number
of latencies in the cell. In our experiment, we used r = 100 and o = 68% for key
interval and key press and r = 80 and o = 50% for key hold. We used three verifiers:
1) relative (“R”) verifier, 2) absolute (“A”) verifier, and 3) similarity (“S”) verifier.
The “R” and “A” verifiers were proposed in [37] and the “S” verifier was proposed in
[48].

Matching Pairs: In continuous verification, the user is free to type any
text he/she desires. Therefore, some digraphs in a verification text may not have
corresponding signatures in the template (i.e., some cells in the template may be
empty). The verifier outputs a score only after the verification text and the template
have M number of digraphs in common. We refer to these M digraphs as matching

pairs. We experimented with different M values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3
RELATED WORK AND MOTIVATION
3.1 Related Work and Motivation Behind the Symmetric Rejection
Method

In Section 2.3, we discussed the importance of controlling the genuine reject
rate in multi-stage biometric verification. However, to our knowledge, no work has
focused on controlling the genuine reject rate in multi-stage biometric verification. In
Table 3.1, we present a summary of the existing multi-stage biometric verification
schemes. The first column of the Table 3.1 shows the studies focusing on multi-stage
biometric verification. The second column specifies how each study selects the reject
region. The third column specifies the domain of the thresholds. The fourth column
specifies whether the verification score in it*-stage is fused with the verification scores
in previous stages.

Rejection methods proposed in [23], [24], and [25] select the whole confusion
region as the reject region, which can cause a large proportion of genuine scores to
be rejected because all scores in the confusion region are rejected indiscriminately,
without considering to which part of the confusion region the score belongs. As a
result, a genuine score falling in the portion of the confusion region where genuine
scores outnumber impostor scores is treated the same way as a genuine score falling

in the portion where impostor scores outnumber genuine.
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Table 3.1: A summary of the existing multi-stage biometric verification schemes.

Score in ith

stage fused

Studies | How to select the reject region? Threshf) Id with scores
domain . .
in previous
stages?
Marcialis
et al. | The whole confusion region, where . .
. A Verification
(23, 24] genuine and impostor scores overlap, scores No
Zahir et | is selected as the reject region.
al. [25]
An effectiveness function is defined
based on application, classification
quality, error rates, and reject rates.
Sansone | A single threshold, which maximizes | Classification No
et al. [22] | the effectiveness function, is selected | reliability
by an exhaustive search. The se-
lected threshold maximizes error-
reject trade-off.
For given impostor pags rate and Likelihood
false alarm rate, two reject thresh- .
Allano et . , | ratio between
olds L and R are set using Wald’s .
al. [26] . - : genuine score
. | sequential probability ratio test [49)]. : Yes
Takahashi .. density and
The selected thresholds minimize the | .
et al. [27] : impostor
average number of stages required to .
. score density.
verify.
For a given impostor pass rate, a | Likelihood
single threshold is set using the | ratio between
Murakami | minimum log-likelihood ratio. The | genuine score Yes
et al. [28] | selected threshold minimizes the av- | density and
erage number of stages required to | impostor

verify.

score density.
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Rejection method in [22] maximizes an effectiveness function defined on several
parameters like classification quality, error rates, reject rates, etc.; however, it does
not control the genuine reject rate.

Studies such as [26] and [27] select the reject region using the sequential
probability ratio test (SPRT) and [28] selects the reject region using the minimum
log-likelihood ratio (MLR). The reject regions based on SPRT and MLR do not
indiscriminately reject scores in the confusion region. However, they require an
accurate estimation of genuine and impostor score distributions, which is non-trivial
because (1) it involves collecting biometric samples from a large number of users, which
is an expensive task (see [50] and [51]) and (2) biometric scores can be dependent,
which makes it only harder to estimate the distributions (see [9] and [52]).

In this dissertation, we develop a new rejection method, which combines the
practical advantages of [23], [24], and [25] by directly estimating the reject region
from scores, with the advantages of [26], [27], and [28], where genuine scores inside
the reject region are not rejected indiscriminately.

3.2 Related Work and Motivation Behind the Proposed Fusion
Framework

Two widely used modes of fusion are: (1) parallel mode and (2) serial mode.
Parallel fusion approaches proposed in the literature can be broadly categorized into
three groups: (1) arithmetic combination approach, (2) classification approach, and
(3) density based approach. In the arithmetic combination approach, the individual

matching scores are combined by performing some arithmetic operation such as
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summation, average, product, minimum, maximum, or median to generate a single
fused score, which is used to make the verification decision [1], [18]. In the classification
approach, a feature vector is built from the individual matching scores, which is
then classified as genuine or impostor using some two-class classifier such as linear
discriminant analysis, k-nearest neighbors, artificial neural network, or support vector
machine [6], [19], [20]. In density based approach, a multi-dimensional density function
is estimated from the matching scores and the verification decision is given based on
the likelihood ratio test [4], [9], [21].

Serial fusion based multi-biometric verification systems proposed in the liter-
ature can be broadly categorized into two types: (1) serial non score-fusion based
system (e.g., [22], [23], [24], and [25]), in which the matching score obtained from the
it" biometric trait is not fused with the matching scores obtained from the previous
biometric traits in the processing chain, and (2) serial score-fusion based system (e.g.,
[26), [27], and [28]), in which the matching score obtained from the i** biometric trait
is fused with the matching scores obtained from the previous i — 1 biometric traits.

Parallel fusion based multi-biometric verification systems have received more
attention from researchers because of their higher accuracy [2]. However, several recent
studies such as [23], [24], [26], and [27] have questioned the applicability of parallel
fusion based multi-biometric verification systems in many real world applications
because parallel fusion can cause serious inconvenience to genuine users. For example,
some genuine users could be accepted by the verification system by using only one
biometric trait; however, in parallel fusion, he/she is bound to submit all of the n

biometric traits (in the case of an n-biometric verification system). In such cases,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

parallel fusion turns out to be very time consuming and irritating. The problem
becomes severe in the applications that involve a large population of users or a huge
number of biometric transactions.

Serial fusion can provide convenience to the genuine users by allowing them to
submit a subset of the biometric traits. For example, when a serial fusion based multi-
biometric verification system gets enough evidence for classification after processing
the first biometric trait, the user does not need to submit other biometric traits. A
serial fusion based system can also allow the user to decide which biometric trait he/she
would submit first [2]. Unfortunately, studies such as [26] and [36] show that serial
fusion cannot reach the accuracy level of parallel fusion. Therefore, the applicability
of the serial fusion is questionable in highly secured systems which require robustness
to forgeries, robustness to enrollment problems, etc.

In this dissertation, we propose a new fusion framework for multi-biometric
verification systems, which (1) achieves an accuracy level higher than parallel fusion,
and at the same time (2) provides a significant amount of convenience to genuine
users. In other words, we propose a fusion framework which combines the advantages
of parallel fusion and serial fusion. Hence, our proposed fusion framework is applicable
to high security applications as well as applications that involve a large population of

users or a great number of biometric transactions.
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3.3 Related Work and Motivation Behind the Proposed Framework of
Continuous Keystroke Verification with Weak Templates

A number of transitory factors such as the state of mind (e.g., anxiety), cognitive
state (e.g., inferring) while typing, physical conditions (e.g., minor finger or hand
injuries), and operational environment (e.g., size of the keyboard and its position
relative to the body) can affect typing behavior. To average-out the effect of such
transitory factors, in keystroke verification, a user’s template is built from keystroke
samples collected in multiple enrollment sessions, each session occurring at a different
point in time (i.e., sessions are spread over days, weeks, or even months).

Several studies in keystroke verification ([37], [38], and [39]) show that increas-
ing the number of enrollment samples with “multi-session enrollment” lowers the
verification error rates. In [37], each user provided 15 free text samples for enrollment
in sessions occurring in different days, weeks, or months (no two enrollment samples
were collected on the same day). Empirical results (in tables VIII and IX in [37]) show
that the error rates for continuous keystroke verification significantly drop as more
number of samples are used for enrollment. Study in [38] systematically evaluated
three fixed text password based verifiers on data collected from 51 users. Each user
typed 400 samples in 8 sessions, 50 samples per session, each session occurring in
different days. Results (in Table 1 in [38]) show that all three verifiers achieve lower
error rates with 100 and 200 enrollment samples than with 5 and 50 enrollment
samples. (Note: 5 and 50 samples were collected in a single enrollment session while
100 and 200 samples were collected in multiple sessions.) Other keystroke verification

studies which collected enrollment samples in multiple sessions are [39], [53], and [54].
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A practical limitation with “multi-session enrollment” is that it assumes users
are either available or solicitable multiple times. Though this assumption is usually
true in a controlled laboratory setting, its validity is questionable in realistic cyber
environments. For example, in cloud computing environments, thousands of users
access system resources remotely (over the network) and it is unrealistic to expect that
every user is available in a timely fashion to submit enrollment samples. Some users
may even access the system so infrequently that repetitive collection of enrollment
samples is impractical. With such users, a keystroke verification system is left to use a
“weak” template, which is a template built from insufficient enrollment samples (e.g.,
enrollment samples collected in a single session).

In this dissertation, we address the above challenge by introducing a new
framework which consists of impostor score based normalization, impostor score
based rejection, and fusion. Our goal is to minimize the equal error rates (EERs) of
continuous keystroke verification when “weak” templates are used. We introduce a
new formulation to incorporate the reject option in verification with weak templates
and develop a new impostor score based rejection method called Order Statistic (OS)

rejection method.
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CHAPTER 4

SYMMETRIC REJECTION METHOD

In this chapter, we introduce a new rejection method called symmetric rejection
method for multi-stage biometric verification. Compared to the existing rejection
methods, the symmetric rejection method has two advantages: (1) it enables the
system administrator to control genuine reject rate and (2) it allows the administrator
to calculate the reject region directly from scores, without the need to estimate
underlying probability density function. We analytically show how the symmetric
rejection method reduces the false alarm rate and the impostor pass rate when it is used
in a multi-stage biometric verification system. We validate our theory by experimenting
on a four-stage biometric verification system. We compare the performance of the
symmetric rejection method with two existing rejection methods: (1) SPRT-based
method [26], which uses score-fusion and (2) Marcialis et al.’s method [23], which does
not use score-fusion.

The rest of the chapter is organized as follows. In Section 4.1, we present the
symmetric rejection method and describe how this method allows us to control the
genuine reject rate and estimate the reject region directly from scores. In Section
4.2, we analyze the performance of the symmetric rejection method on a multi-stage

verification system. In Section 4.3, we empirically validate our findings and claims.

25
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In Section 4.4, we empirically compare the performance of the symmetric rejection

method with SPRT-based [26] and Marcialis et al.’s [23] rejection methods.

4.1 Proposed Method

Let X be the set of genuine scores and Y be the set of impostor scores. Without
loss of generality, we assume that the verifiers output real-valued dissimilar scores. If
we classify the scores as genuine or impostor using the traditional verification rule
(which uses a single threshold to give a binary “genuine/impostor” decision) and plot
a DET-curve, we can find a threshold where the impostor pass rate and false alarm
rate are equal. This error rate is called the equal error rate (EER) and we refer to the
threshold where EER occurs as EER-threshold. Because in the EER-threshold, the
impostor pass rate and false alarm rate are equal, it is expected that the scores that
surround the EER-threshold are most confusing and therefore are most likely to get a
wrong verification decision. Considering this, in the symmetric rejection method, we
take the EER-threshold as the center of rejection and reject the scores that surround
it.

We demonstrate an EER-threshold in Figure 4.1, where ZF, is the genuine
score region, F,0 is the impostor score region, F1 FE, is the confusion region, and B is
the EER-threshold. Note that the impostor scores in the left side of the EER-threshold
(impostor scores in E1B in Figure 4.1) give the impostor pass rate and the genuine
scores in the right side of the EER-threshold (genuine scores in BE; in Figure 4.1) give
the false alarm rate. In the symmetric rejection, our goal is to reduce both impostor

pass rate and false alarm rate, and at the same time maintain a specified genuine
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reject rate. Considering this, we reject scores such that the proportion of impostor
scores rejected from the left side of the EER-threshold is equal to the proportion of the
genuine scores rejected from the right side of the EER-threshold. Below, we explain

the symmetric rejection method with the help of Figure 4.1.

Genuine (fs(x)) ,  mpostor {f(y))

z E, j\ B ¢ E o

Figure 4.1: Illustration of the symmetric rejection. AC is the symmetric reject
region, Z E, is the genuine score region, F;0 is the impostor score region, E; Ey is the
confusion region, and B is the EER-threshold.

In Figure 4.1, fo(x) and fi(y) are the genuine and impostor score distributions,
[Z, O] is the scoreline, E; E; is the confusion region, and B is the EER-threshold. We
select the reject region AC such that B is the center of rejection and the proportion
of impostor scores in AB is equal to the proportion of genuine scores in BC, where
A€ [Ey,B)and C € (B, E;]. We call AC the symmetric reject region. The proportion
of impostor scores in AB is calculated by (number of impostor scores in AB)/(total
number of impostor scores) and the proportion of genuine scores in BC' is calculated
by (number of genuine scores in BC)/(total number of genuine scores).

Assumption Made in Our Formulation and Related Proofs: In our
formulation of the symmetric rejection method and its related proofs that follow, we
assume 1) fg(z) is monotonically decreasing inside the confusion region and f;(y)
is monotonically increasing inside the confusion region, and 2) fg(z) and f;(y) are

continuous throughout the scoreline [Z, O]. For example, in Figure 4.2, fs(z) and
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fr(y) in (a), (b), (c), and (d) follow the assumption. However, fe(z) and f;(y) in (e)
do not follow the assumption because there are ups and downs within the confusion

region Fy E.

fox) My fel) ) fo(x) ) ) Y fofx) fity)
z z éq éz o z Ey E; O

(b) (c) - (d) (e)

Figure 4.2: Examples of {fo(z), fi(y)} following/not following the assumption that
fe(z) is monotonically decreasing and f;(y) is monotonically increasing inside the
confusion region F1E,. fe(z) and fi(y) in (a), (b), (c), and (d) follow the assumption.
However, fg(z) and fi(y) in (e) do not follow the assumption because there are ups
and downs in the confusion region E) F,.

While the above assumption simplifies our proofs, we note that our assumptions
are true for a wide range of distributions, including Gaussian, certain parameters of
beta, binomial, and beta-binomial, and Gaussian mixture model (except when a mode
is inside the confusion region). The above mentioned distributions have also been
used in various studies to model score distributions of various biometric modalities
(see [9], [48], [55], [56], and [57]).

Notation and Symbols: Below, we introduce some notations and symbols
corresponding to the symmetric rejection. We use Figure 4.3 to illustrate the notation.

e a;: The proportion of impostor scores in AB (Figure 4.3a).

ag: The proportion of genuine scores in BC (Figure 4.3a).

Ar: The proportion of impostor scores in E1 B (Figure 4.3b).

Ac: The proportion of genuine scores in BE, (Figure 4.3b).

K: The proportion of genuine scores in the confusion region EyE, (Figure 4.3c).
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Genuine (fo(x)) | , Impostor (f{y))

4 Ets A B C E o
(a) ag and ay

Genuine (fo(x)) . Impostor (fi(y))

F2 E, ABC E o
(b) )‘G and A]

Genuine (fo(x)) , Impostor (f(y))

Z Ets A B C E 0
(c) K
Figure 4.3: Illustration of ag, oy, Mg, A7, and K.

4.1.1 Estimating Reject Region

The symmetric rejection method chooses the reject region such that ag = a;.
By setting a¢ at different values, we can get different symmetric reject regions. The
minimum possible value of ag is zero (when no score is rejected) and the maximum
possible value of a¢ is Ag (when all scores in the confusion region are rejected). Based
on the idea of symmetric rejection, we devised an algorithm, “Algorithm 1”7, which
calculates the symmetric reject region AC' from a given ag. The benefit of Algorithm
1 is that it calculates the reject region directly from scores, i.e., it does not need to
estimate the underlying probability density function of the scores. Below, we briefly

explain Algorithm 1.
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Algorithm 1 : Estimating Symmetric Reject Region.

Input: G[1: M]: array of M genuine scores,

I[1: N]: array of N impostor scores, and

a: proportion of genuine scores in BC (see Figure 4.1).
Output: Symmetric reject region AC

1: Gsorted|l : M| « sorted G[1: M]; /*Sort in ascending order*/

2. Iorted[l : N|  sorted I[1: NJ]; /*Sort in ascending order*/

3: B « funcEERThreshold(Gsorted, Isortea); /*Calculate the EER before exercising
reject option and return the EER-threshold.*/

4: 1BGoorted + funcFindIndexO f B(Gsorted, B); /*Search B in Gyppeq and return
the corresponding index. If B is not found, return the index of the closest score
in Gsorieq that is greater than B.*/

5: iBlsorieq + funcFindIndexO f B(Iorieq, B); /*Search B in Ij,eq and return the

corresponding index. If B is not found, return the index of the closest score in

Isorteq that is less than B.*/

nImpAB « N x ag; /*Calculate the number of impostor scores in AB.*/

nGenBC + M * ag; /*Calculate the number of genuine scores in BC.*/

iA  iBlorteq — nImpAB+1; [*Calculate the index of A in Lyprpeq.*/

iC + iBGsprteq + nGenBC-1; [*Calculate the index of C in Ggpppeq-*/

10: A ¢ Ioriea[iA]; /*Get the value of A.*/

11: C  Gsortea|iC]; /*Get the value of C.*/

12: return AC;
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In steps 1 and 2, we sort the scores in ascending order. Arrays Ggoreq and
I;orteq store the sorted genuine and impostor scores, respectively. In line 3, we use
the function funcEERT hreshold() to calculate the EER-threshold. In line 4, we find
the location (index) of B in the array Ggorteq- In line 5, we find the location of B in
Iorieq- In line 6, we calculate the number of impostors to be rejected from the left
side of B, which we store in variable nImpAB. Note that to calculate the value of
nImpAB, we multiplied N with a¢ instead of ay. This is valid because in symmetric
rejection, a; = a. In line 7, we calculate the number of genuine scores to be rejected
from the right side of B. In lines 8 and 9, we find the locations of A and C in arrays
Isorted and Giorieq, Tespectively. In lines 10 and 11, we extract the value of A and C
from the corresponding arrays.

In the following section, we discuss how we determine the value of a¢.

4.1.2 Determination of ag

We determine the value of o based on our desired genuine reject rate. To
this end, we have derived a relationship between ag and the upper bound for the
genuine reject rate. The relationship is as follows: when ag is equal to pAg, where p
is a rational number such that 0 < p < 1, the upper bound for the genuine reject rate
is pK. The derivation of this relationship is given in Section 4.1.3.

Below, we show how the above relationship helps us to determine o for a

desired upper bound for the genuine reject rate.
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Let z denote the upper bound for the genuine reject rate. Then we can rewrite

the above relationship as follows: z = pK when ag = pAg. Or alternatively,

ag K
= —K = —ag. .
z o /\Gac (4.1)

Because K and A¢ are constant for a given genuine and impostor score set,

is a strictly monotonic function of ag. Let f : g — z represent the function. We

define f as follows:

z = flag) = {—2&0. (4.2)

Because z is a strictly monotonic function of ag, we can calculate the inverse

of f. Below, we show the calculation of f~!: 2 = ag.

z A
Qg = p/\(; = "I-{*/\G = -—I-{qx
Or alternatively,
A
ac = fYz) = EG”” (4.3)

We use (4.3) to determine o for a desired upper bound for the genuine reject
rate, .
Step-by-step procedure to determine ag: Below, we give a three-step
procedure to determine ag for a desired upper bound for the genuine reject rate, x.
e Step 1: Find the confusion region E;F,y and calculate K by (number of genuine
scores in Ey E,)/(total number of genuine scores).
e Step 2: Find the EER-threshold B and calculate Ag by (number of genuine
scores in BE»)/(total number of genuine scores).

e Step 3: Calculate ag = -'}?iL‘
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For example, let K = 0.5 (i.e., 50% of genuine scores lie inside the confusion
region Ey Ey) and Ag = 0.2 (i.e., 20% genuine scores lie inside BE,). Let us assume
that we want to find a reject region which will not reject more than 10% of the genuine
scores, i.e., £ = 0.1. Then using the above procedure, a¢ = (0.2/0.5)*0.1 = 0.04.

Summary of Section 4.1.1 and Section 4.1.2: In Section 4.1.1, we have
shown how to estimate the reject region AC from a given ag. In Section 4.1.2, we
have shown how to determine o from a specified upper bound for the genuine reject
rate. If we combine Section 4.1.1 and Section 4.1.2, we find a way to estimate the
reject region AC from a specified upper bound for the genuine reject rate =, which
involves the following two steps:

e STEP I: Determine a¢ for the specified upper bound z using the three-step
procedure described above.
e STEP II: Use the value of ag estimated in STEP I to calculate the reject region

AC using Algorithm 1.

In the following section, we give the derivation of the relationship between ag

and the upper bound for the genuine reject rate.

4.1.3 Derivation of Relationship between oz and the Upper Bound for
Genuine Reject Rate

In this section, we derive the following relationship between ag and upper
bound for the genuine reject rate: when ag is equal to pAg, where p is a rational
number such that 0 < p < 1, the upper bound for the genuine reject rate is pK.

For simplicity, here, we will show the derivation for a specific value of ag. A

generalized derivation is given in Appendix A.
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Let ag = 0.75)¢, i.e., p = 0.75. We will present p by fractions Z such that ¢
and m are positive integers. Here, we present p by f’;-, i.e., g =3 and m = 4.

We use Figure 4.4 to explain the derivation. In Figure 4.4, let B be the
EER-threshold and F; F, be the confusion region. Ag is the proportion of the genuine
scores in BFE, and A; is the proportion of the impostor scores in £} B. Because m = 4,
we divide BE, into 4 parts such that the proportion of the genuine scores in each part
is 3‘&9. Similarly, we divide E B into 4 parts such that the proportion of the impostor
scores in each part is 54‘. Let bg,, ba,, bgs, and bg, be the proportions of the genuine
scores in the four parts of E1B (see Figure 4.4). Because fg(z) is monotonically
decreasing and f;(y) is monotonically increasing inside the confusion region, bg,, bg,,

bg,, and bg, are related as: bg, < bg, < bg, < bg,-

Genuine (fg(x)) Impostor (fi(y))

bG4 bGa baz bGl

: VU PN °
A[ A’ A, A; AG AG AG AG

4 4 4 4 4 4 4 4

semamel

Figure 4.4: Dividing F1B and BE, into four parts. E,B is divided into 4 parts such
that the proportion of impostor scores in each part is 1\41. Similarly, BE, is divided
into 4 parts such that the proportion of genuine scores in each part is Af. ba,, ba,,
bg,, and bg, are the proportions of genuine scores in the four parts of Ey B.

Using the notation in Figure 4.4, we can present the proportion of genuine

scores in the confusion region F,F,, K, as follows:

K= bG1 -+ b02 + bGa + bG4 + /\G~ (44)
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We can calculate the genuine reject rate (GRR) as follows:
GRR = Proportion of genuine scores in AC, (4.5)

where AC is the symmetric reject region. Because B is a threshold in between A and

C (see Figure 4.4), we can rewrite (4.5) as follows:

GRR = Proportion of genuine scores in AB + Proportion of genuine scores in BC.
(4.6)
Now we will explain what happens when og = %/\G = 314@. Because ag (i.e.,
proportion of genuine scores in BC) is equal to 3 times -Af, following the symmetric
rejection rule, o (i.e., proportion of impostor scores in AB) is equal to 3 times ’\f. As
a result, the proportion of the genuine scores in AB is equal to bg, + bg, + bg, (see

Figure 4.4). Hence, we can rewrite (4.6) as follows:

GRR = bg, +b02+b03+3%
3 4
=113

4
= 0~75{§(b01 +bg, + be,) + A} (4.7)

bcl + b(;2 + bGa) + /\G}

Now we will show that %(bg, + b, + be,) < ba, + be, + be, + bg,. For
contradiction, we assume that 3(bg, + bg, + be,) > be, + be, + b, + be,. This implies
that

4(be, +be, +bay) > 3(be, + ba, + ba, + ba,).

After algebraic manipulation, we get

bg, + ba, + bg, > 3bg,.
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However, this is impossible because b, < bg, < bg, < bg,. Therefore, the
statement é(bg1 +bg, +bg,) < bg, + bg, + be, + bg, is true. Hence, we can rewrite

(4.7) as follows:
GRR < 0.75(b01 + bg, + bgy + bg, + )\G)- (4.8)

Or alternatively, GRR < 0.75K because K = bg, + bg, + bg; + bg, + Ag. That is, the
upper bound for the genuine reject rate is 0.75K.
4.2 Performance of Symmetric Rejection Method on a Multi-stage
Verification System

In this section, we analytically show how the symmetric rejection method
reduces the false alarm rate and the impostor pass rate when it is used in a multi-stage
biometric verification system. For simplicity, here, we perform the analysis on a three-
stage verification system (a similar analysis is applicable to an n-stage verification
system).

Let vy, v, and w3 be three verifiers such that v; performs better than v, and
vy performs better than vz in terms of equal error rate, i.e., FER; < EFR, < EER;3,
where FER,, EER,, and EERj are the equal error rates of vy, vq, and vg, respectively.
We model a three-stage verification system such that v; is placed in the first stage, vy
in the second stage, and v3 in the third (final) stage. The first and second stages use
the symmetric rejection method and the third stage uses the threshold where FER3
occurs, to give verification decisions.

We expect the performance of the three-stage verification system (described

above) will be better than the top performing individual verifier v;. That is, the false
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alarm rate and the impostor pass rate obtained by the three-stage verification system
will be less than EER;. In this section, we show how the symmetric rejection method
ensures this.

Let FAR3 denote the false alarm rate and I PR3 denote the impostor pass rate

of the three-stage verification system described above. We will prove that

BER; _ 1
EER, ~ K

FAR3 and I PR3 will be less than EER; if (4.9)

where K, is the proportion of the genuine scores within the confusion region of the
top performing verifier v;.

For example, let K; = 0.25. That is, 25% of the genuine scores originated by
verifier v, lie inside the confusion region. In this case, FAR; and I PR3 will be less
than EER; if (EER3/EER,) is less than (1/0.25) or 4.

We give the proof of statement in (4.9) in Section 4.2.1. The proof uses the
following lemma, which states that the symmetric rejection method reduces both the

false alarm rate and the impostor pass rate when it is used in an individual verifier.

Lemma 4.1. Let v; be a verifier with equal error rate EER;. Let FAR] and IPR;
be the false alarm rate and impostor pass rate, respectively, obtained by applying the

symmetric rejection method on the verification scores produced by v;. Then, both

FAR] and IPR] are less than EER,.

The proof for Lemma 4.1 is given in Appendix B.

4.2.1 Proof that FAR; and IPR; will be less than EER, if %f < K%

Below, we prove that FAR3 will be less than EER, if (EER;/EER;) < %

1

The proof for I PR3 is similar to the proof for FAR;3.
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We use Figure 4.5 to demonstrate FAR3. Let ng denote the total number
of genuine scores submitted to verifier v; in Stage 1. Verifier v; uses the symmetric
rejection method. Let vy correctly declare nge,1 genuine scores as genuine, erroneously
declare ngy1 genuine scores as impostor, and reject ngr; genuine scores. Hence,
the number of genuine scores submitted to verifier v, in Stage 2 is equal to ngg,.
Verifier v, uses the symmetric rejection method, correctly declares nge 2 genuine scores
as genuine, erroneously declares ng; . genuine scores as impostor, and rejects ngp 2
genuine scores. Hence, the number of genuine scores submitted to verifier v3 in Stage
3 is equal to ngro. Verifier vz gives the binary decision using the threshold where
EFERj3 occurs, correctly declares nge 3 genuine scores as genuine, and erroneously

declares ngy 3 genuine scores as impostor.

Verifier vy in Stage 1
ng

Nee,1 NGr,1 NGyt

l

Verifier v, in Stage 2

)

NGe,2 NgRr,2 Nei2

1

Verifier v; in Stage 3

)

nGa,s3 NGi3

Figure 4.5: A three-stage verification system to demonstrate F'AR;. Because we
demonstrate F'AR3, we only show the flow of genuine scores.

From Figure 4.5, the number of genuine scores erroneously declared as impostor

by the three-stage system is equal to ngr1 + N2 + ners. Therefore, the false alarm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

rate of the three-stage system is

FAR; = ngr1 + ngl,z + nG1,3. (4.10)
G

We use Figure 4.1 to demonstrate EER;. Let (1) the genuine scores and impostor
scores in Figure 4.1 originate from verifier vy, (2) the number of genuine scores in Z F,
is equal to ng, and (3) B be the threshold where EER; occurs. Then we can present
EER, as follows:

EFER, = Proportion of genuine scores in BF,

# of genuine scores in BEj

- (4.11)

In Figure 4.1, let AC be the symmetric reject region used by Stage 1. Then,

the genuine scores that lie inside C'E, are erroneously declared as an impostor by

Stage 1. That is,
# of genuine scores in CEy = ngr 1.
Hence, we can present the numerator on the right side of (4.11) as:

# of genuine scores in BE; = # of genuine scores in BC + # of genuine scores
in CE2

= # of genuine scores in BC + ngy 1.

Therefore, we can rewrite (4.11) as:

EER, = ner1 + # of genuine scores in BC .

- (4.12)
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By comparing (4.10) and (4.12), we find that F AR5 will be less than FER, if

the following statement is true:
nar2 + ngr3 < # of genuine scores in BC

or alternatively,

ngere + ng13 # of genuine scores in BC

4.1
neez2 +Nerz2 +necs + Nz # of genuine scores in AC (4.13)

because ngg2 + ner2 + Nee3 + Ner3 = Ngr = # of genuine scores in AC.

Below, we discuss how the statement in (4.13) is true.

First, we analyze the left side of (4.13). In (4.13), ngg 2 + ngr2 + nec,s + ners
is equal to the number of genuine scores submitted to verifier v, in Stage 2 (see Figure
4.5). Stage 2 rejects nge,s + Ners genuine scores, correctly declares nge 2 genuine
scores as genuine, and erroneously declares ng; 2 genuine scores as impostor by using
the symmetric rejection method. Therefore, ngr2/(nee2 + ner2) in (4.13) represents
the false alarm rate of verifier v, obtained by the symmetric rejection method (FARY).
That is,

_NGl2  _ pAR
= r.
ngg.2 + NGr2

In (4.13), nga s + ner s is equal to the number of genuine scores submitted to
verifier v3 in Stage 3 (see Figure 4.5). Stage 3 correctly declares ngg 3 genuine scores
as genuine, and erroneously declares ngr 3 genuine scores as impostor by using the
threshold where EERj3 occurs. Therefore, ngr3/(nggs + ngrs) in (4.13) represents
EFER;. That is,

ngi3 — EER
St 4
nGag,3 + Ngi,3
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Because (1) FAR}, < EER; (according to Lemma 4.1) and (2) EER, < EER;
(according to our design of the three-stage verification system), we deduce that

FAR; < EERg3. That is,

nagr,2 ngrs
< . (4.14)
ngg2 +Nerz2 Nees +ners

It is easy to show that if £ < §, then ZT+§ < . By using this property in (4.14),

we find that

ngrz2 + Nei3 nNGI,3
ngez tner2 tneges +ner3  Nees + Nars

or alternatively,

ngr2 +nNGr3
ngg2 + nNgrz +nNgg3 + NGr3

< EER, (4.15)

because EER3 = ’nGl’a/(TLGG,;; + nGm),
Now we analyze the right side of (4.13). We can rewrite the right side of (4.13)

as follows:

# of gen. scores in BC _ Proportion of gen. scores in BC  ag,
# of gen. scores in AC ~ Proportion of gen. scores in AC  GRR;’

Here, we use subscript ‘1’ to specify that these ag and GRR correspond to verifier v,
in Stage 1.

According to Section 4.1.3, ag, and GRR, are related as follows: when ag, =
pAc,, 0 < p < 1, the upper bound of GRR, is pKy, where Ag, is the proportion of
genuine scores in BE, and K, is the proportion of genuine scores in the confusion
region F; F5. Here, we use subscript ‘1’ to specify that these A¢ and K correspond to

verifier v, in Stage 1.
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Because pK; is the upper bound for GRR; (i.e., maximum possible value of

GRR,), if we divide ag, (= pAg,) by pKi, we will find the minimum value of —I—GagRl.

.. o . A A
Hence, the minimum value of ~=4- is equal to 221 or 254, In other words
) GRR; pK1 K1 !

ag, A,
> 201 :
GRR, — K; (4.16)

Because \g, = proportion of genuine scores in BE; = FER;, we can rewrite (4.16)

as follows:

ag, _ EER,
GRR, © K

or alternatively,

# of gen. scores in BC S EFER,

# of gen. scores in AC ~ K, (4.17)

Now we are ready to state how the statement in (4.13) is true.
Because (1) the left-hand side of (4.13) is less than EER3 (see (4.15)) and (2)
the right-hand side of (4.13) is greater than or equal to Eglﬂl (see (4.17)), we deduce

that the statement in (4.13) will be true if

EER,

EER
3 < 78

or alternatively,
EER; 1

EER, " K,

Therefore, we conclude that FFAR3 will be less than EF R, if %} < K%

4.2.2 General Case: An n-stage Verification System
Let v, vo, -+, U, be n verifiers such that EER; < FERy; < --- < EER,,

where EER; is the equal error rate of verifier v;, for i = 1,2,--- ,n. We model an
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n-stage verification system such that v; is placed in the first stage, v, is placed in the
second stage, and so on, until v, is placed in the n'* stage. Stages 1 to n — 1 use
the symmetric rejection method and the nt*-stage uses the threshold where EER,,
occurs to give verification decisions. Let F'AR,, represent the false alarm rate and
IPR, represent the impostor pass rate of the n-stage system. Then according to (4.9),

FAR, and IPR, will be less than FER; if the following condition is satisfied:

EER, _ 1
EER, ~ K;'

(4.18)

where K is the proportion of genuine scores within the confusion region of the top

performing verifier v;.

4.3 Empirical Validation

We empirically validated: (1) when ag is equal to pAg, where p is a rational
number such that 0 < p < 1, the upper bound for the genuine reject rate is pK and
(2) FAR, and IPR, will be less than EER, if (EER,/EER;) < K%

We did our experiments using NIST Biometric Scores Set Release 1 (BSSR 1)
[41]. The NIST-BSSR1 database consists of three score sets—1) fingerprint-face, 2)
fingerprint, and 3) face. We experimented with the score set fingerprint-face. The
fingerprint-face set consists of face and fingerprint scores from the same set of 517
individuals. For each individual, the set contains one score from the comparison of two
right index fingerprints, one score from the comparison of two left index fingerprints,
and two scores (from two separate face verifiers, namely, C and G) from the comparison

of two frontal faces. The scores of the right and left index fingerprints were generated
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using the same fingerprint verifier. The fingerprint images and the face images used
to compute the scores were collected from the same person and at the same time.
We divided the fingerprint-face score set into four disjoint subsets—(1) LI: set
of scores of left index fingerprints, (2) RI: set of scores of right index fingerprints, (3)
C: set of scores from face verifier C, and (4) G: set of scores from face verifier G. We
used the scores of the first 259 individuals from each of these sets (LI, RI, C, and G)
for training and the scores from the rest of the 258 individuals in testing. The number
of genuine scores and impostor scores in training and testing sets are presented in

Table 4.1.

Table 4.1: The number of genuine and impostor scores in training and testing sets
of LI, RI, C, and G.

Score sets (LI/RI/C/G)
Training sets | Testing sets
Genuine scores 259*1 258*1
Impostor scores 259*516 258*516

4.3.1 Validation of Our Derived Relationship between agz and the Upper
Bound for Genuine Reject Rate

In Section 4.1.3, we theoretically proved that when ag¢ is equal to pAg, where
p is a rational number such that 0 < p < 1, the upper bound for the genuine reject
rate is pK. In this section, we empirically validate the statement.

Validation Procedure: For different values of ag, we (1) estimate the
theoretical upper bound for the genuine reject rate (pK), (2) apply the symmetric

rejection method on verification scores and find the genuine reject rate (GRR), and
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(3) compare the genuine reject rate obtained from the experiment with its theoretical
upper bound to see whether the experimental value of the genuine reject rate is less
than its theoretical upper bound. Below, we give the details of the experiment.

We experimented with 10 different values of ag on score set LI, RI, C, and G .
We set the initial value of ag to 0.1Ag. Then we incremented the value of ag 9 times,
each time by 0.1\g, up to Ag, which is the maximum possible value of ag.

For each ag, we estimated the theoretical upper bound for the genuine reject
rate (pK). Table 4.2 shows the values of K in score sets LI, RI, C, and G, estimated
on training data. Below, we demonstrate estimation of theoretical upper bound (pK)

in the case of score sets LI, RI, C, and G.

Table 4.2: Ks and Ags of score sets LI, RI, C, and G, estimated on training data.

LI RI C G
K | 0.3707 | 0.1660 | 0.5792 | 0.4054
Ac | 0.0772 | 0.0547 | 0.0463 | 0.0579

Let ag is equal to 0.1\g. Then, in the case of score set LI, the theoretical upper
bound (pK) is 0.1*0.3707 or 0.0371. Similarly, in the case of RI, pK is 0.1%0.1660
or 0.0166, in the case of C, pK is 0.1*0.5792 or 0.0579, and in the case of G, pK is
0.1*0.4054 or 0.0405.

We obtained the experimental values of the genuine reject rate (GRR) as
follows: for each value of a¢, we estimated the symmetric reject region AC' from the
training data, using Algorithm 1. We applied the reject region AC' on the testing data

and calculated GRR by (number of genuine scores falling inside AC)/(total number
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of genuine scores). In Table 4.3, we compare the experimental values of the genuine

reject rates (GRRs) with their theoretical upper bounds (pKs).

Table 4.3: Comparing experimental values of genuine reject rate (GRRs) with their
theoretical upper bounds (pK's). We performed experiments on four score sets LI, RI,
C, and G with 10 different values of ag.

LI RI C G

pK GRR | pK GRR | pK GRR | pK GRR
0.1x¢ | 0.0371 | 0.0116 | 0.0166 | 0.0154 | 0.0579 | 0.0039 | 0.0405 | 0.0116
0.2)\g { 0.0741 | 0.0116 | 0.0332 | 0.0194 | 0.1158 | 0.0078 | 0.0811 | 0.0155
0.3)\g | 0.1112 | 0.031 | 0.0498 | 0.0194 | 0.1737 | 0.0155 | 0.1216 | 0.0349
0.4)¢ | 0.1483 | 0.0349 | 0.0664 | 0.0349 | 0.2317 | 0.0233 | 0.1622 | 0.0581
0.5)¢ | 0.1853 | 0.0426 | 0.083 | 0.0388 | 0.2896 | 0.0271 | 0.2027 | 0.062
0.6)¢ | 0.2224 | 0.0736 | 0.0996 | 0.0465 | 0.3475 | 0.031 | 0.2432 | 0.0698
0.72¢ | 0.2595 | 0.0814 | 0.1162 | 0.062 | 0.4054 | 0.0388 | 0.2838 | 0.093
0.8)\¢ | 0.2965 | 0.0891 | 0.1328 | 0.0698 | 0.4633 | 0.0775 | 0.3243 | 0.1124
0.9A¢ | 0.3336 | 0.1434 | 0.1494 | 0.0736 | 0.5212 | 0.1008 | 0.3649 | 0.1395

A¢ 1 0.3707 | 0.3527 | 0.1660 | 0.1660 | 0.5792 | 0.5581 | 0.4054 | 0.3721

ag

Qur observations from Table 4.3 are listed below:

e Observation 1: Experimental values of genuine reject rate, GRRs, are less
than the theoretical upper bounds, pKs, for all ags, and this happens to all
score sets LI, Rl, C, and G. Hence, the results of our experiment validate our
derived relationship: when o is equal to pAg, where p is a rational number
such that 0 < p < 1, the upper bound for the genuine reject rate is pK.

e Observation 2: Experimental values of the genuine reject rate, GRRs, are
close to the theoretical upper bounds, pKs, for large ags. For example, when
ag = Mg, GRR is equal to 95.14% of pK in the case of score set LI, 100% of
pK in the case of score set RI, 96.54% of pK in the case of score set C, and

91.79% of pK in the case of score set G. However, the tightness of the upper
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bound reduces when ags are small. For example, when ag = 0.1)\¢, GRR is
equal to 31.27% of pK in the case of score set LI, 92.77% of pK in the case of
score set RI, 6.74% of pK in the case of score set C, and 28.64% of pK in the
case of score set G. On average, GRR is equal to 35.40% of pK in the case of
score set LI, 59.13% of pK in the case of score set RI, 19.27% of pK in the case

of score set C, and 36.90% of pK in the case of score set G.

4.3.2 Validation of the Statement: FFAR,, and /PR, will be less than FFR;
if BB < L

EER,
In Section 4.2, we theoretically proved that FAR, and IPR, will be less
than EER, if (EER,/EER;) < (1/K3). In this section, we empirically validate the
statement. Below, we give the experimental details.
We have four score sets available: LI, RI, C, and G. Table 4.4 shows the
individual performance of the four verifiers (that generate the score sets LI, RI, C, and
G) in terms of the equal error rate (EER) on the training set. According to Table 4.4,

C is the best performing, RI is the next best performing, G is next best performing,

and LI is the worst performing verifier. Therefore, in our experiment,
EFER, = Equal error rate of C,
EER, = Equal error rate of LI, and

K; = Proportion of genuine scores in confusion region of C.

From Table 4.4, EER; = 0.0463 and EER, = 0.0772. Hence, (EER4/FER;)
= (0.0772/0.0463) = 1.6674. From Table 4.2, K; = 0.5792. Hence, (1/K;) = (1/0.5792)

= 1.7265. We see that (FER;/EER;) < ‘z%? Therefore, according to our findings in
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Section 4.2, if we build a four-stage verification system such that verifier C is placed in
Stage 1, verifier RI is placed in Stage 2, verifier G is placed in Stage 3, and verifier LI
is placed in Stage 4, the false alarm rate and the impostor pass rate of the four-stage
system will be less than the equal error rate of the top performing verifier C (i.e.,

FAR, and IPR4 will be less than EERy).

Table 4.4: Individual performance of the four verifiers (that generate the scores in
LL RI, C, and G) in terms of equal error rate (EER) on the training set.

Fingerprint verifiers | Face verifiers
LI RI C G
EER | 0.0772 0.0547 0.0463 | 0.0579

To validate the above statement (i.e., FAR, and I PR, will be less than EER;),
we model a four-stage verification system, accordingly. Figure 4.6 presents the system,
where Stage 1 uses score set C, Stage 2 uses score set RI, Stage 3 uses score set G,
and Stage 4 uses score set LI. In Stages 1, 2, and 3, the score s; is compared with two
reject thresholds L; and R;, for ¢ = 1, 2, and 3, respectively. If s; lies in the interval
[L;, R;], the system proceeds to the next stage. In the fourth stage, the subject is
classified into genuine or impostor using a single threshold 7.

In Stages 1, 2, and 3, we apply the symmetric rejection method (i.e., we
calculate reject regions Ly R;, Lo Ry, and L3 R3 using the symmetric rejection method).
In the symmetric rejection method, we need to specify the upper bound for the genuine
reject rate, z. From the specified upper bound z, we estimate the value of ag and
use the estimated value of ag to calculate the reject region L;R; by Algorithm 1. We

experimented with 10 different values of z. The minimum possible value of z is zero
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and the maximum possible value of z is K. Table 4.2 shows the K of score sets LI,

RI, C, and G, estimated on training data.

,
N

Score from face AN

\\
verifier C (s;) d stage1 . Yes Declare as
Subject > > genuine or
s1<L; or s;>R,? - A
N ) impostor
\\\\ 7
No
Activate next stage
Score of right index o o
fingerprint(s)) . stage2 . VYes DecI?re as
™ s.<l,ors,>R,?  Benuineor
Q Chal 2/ impostor

No
Activate next stage

Score from face

. o .
verifier G (s;) - stage3 . Yes Decl;.:re as
o ) <L.ors.>R.2. genuineor
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e

-
. ~

No
Activate next stage
Score of left index S0 N
fingerprint (s,) d Stage 4 Yes Declare as
> \ s T? impostor
No
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Figure 4.6: A four-stage biometric verification system based on the score sets LI,
RI, C, and G.

We start with z = 0.1K. When we specify x = 0.1K, z is set to 0.1*0.5792
or 0.0579 in Stage 1 (verifier C), 0.1*0.1660 or 0.0166 in Stage 2 (verifier RI), and
0.1*0.4054 or 0.0405 in Stage 3 (verifier G). In other words, by specifying = = 0.1K,
we actually specify that Stage 1 is not allowed to reject more than 5.79% of the

genuine scores, Stage 2 is not allowed to reject more than 1.66% of the genuine scores,
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and Stage 3 is not allowed to reject more than 4.05% of the genuine scores. After
initializing x to 0.1K, we increment z 9 times, each time by 0.1K, up to K. Table 4.5

shows the interpretation of the values of ‘z’ used in the experiment.

Table 4.5: Interpretation of the values of ‘z’ used in the experiment to generate the
results in Table 4.6. For example, by specifying x = 0.1K, we actually specify that
Stage 1 (verifier C) is not allowed to reject more than 5.79% of the genuine scores,
Stage 2 (verifier RI) is not allowed to reject more than 1.66% of the genuine scores,
and Stage 3 (verifier G) is not allowed to reject more than 4.05% of the genuine scores.
Table 4.2 shows the Ks of verifiers C, RI, and G, estimated on training data.

. Interpretation of z in Stages 1, 2, and 3

Specified value of z x in Stage 1 | z in Stage 2 | z in Stage 3
0.1K 5.79% 1.66% 4.054%
0.2K 11.58% 3.32% 8.108%
03K 17.38% 4.98% 12.16%
04K 23.17% 6.64% 16.22%
0.5K 28.96% 8.30% 20.27%
0.6K 34.75% 9.96% 24.32%
0.7K 40.54% 11.62% 28.38%
08K 46.34% 13.28% 32.43%
0.9K 52.13% 14.94% 36.49%
K 57.92% 16.60% 40.54%

In Stage 4, we set the value of T to EER, (which is the equal error rate of LI).
From Table 4.4, EFE R, is equal to 0.0772.

We present the results in Table 4.6. Table 4.6 shows that FAR4s and IPRys
are less than EER,; (which is equal to 0.0463) for all values of . The false alarm rate
has been reduced by a maximum of 91.58% (when z = 0.9K) and the impostor pass
rate has been reduced by a maximum of 56.16% (when z = 0.7K) compared to EER;

(i.e., compared to the equal error rate of the top performing individual verifier C). On
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average, the false alarm rate has been reduced by 43.05% and the impostor pass rate

has been reduced by 32.68% compared to EER;.

Table 4.6: False alarm rates and impostor pass rates of the four-stage biometric
verification system presented in Figure 4.6. We experimented with 10 different values
of z, where z is the specified upper bound for genuine reject rate. Table 4.5 shows the
interpretation of the values of ‘z’ used in the experiment.

z | False Alarm Rate (FAR,) | Impostor Pass Rate (I PR;)
0.1K 0.0349 0.0424
0.2K 0.0349 0.0418
03K 0.0349 0.0371
04K 0.0349 0.0321
0.6K 0.0310 0.0279
0.6K 0.0310 0.0235
0.7K 0.0271 0.0203
0.8K 0.0156 0.0290
0.9K 0.0039 0.0252

K 0.0155 0.0324

In summary, the results of our experiment validate our finding: FAR,, and

IPR,, will be less than EER, if £Zfn < 2.

4.4 Empirical Comparison of Symmetric Rejection Method with Other
Methods

We compared the performance of the symmetric rejection method with two
existing rejection methods: (1) SPRT-based method (see [26] and [27]), which uses
score-fusion and (2) Marcialis et al.’s method (see [23]), which does not use score-fusion.
Below, we briefly describe these two methods.

SPRT-based Rejection Method: The SPRT (sequential probability ratio

test) based rejection method is a sequential score-fusion method, which uses the
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likelihood ratio of verification score and fuses the score of it* stage with the scores of

the previous stages. Assuming the real valued similarity scores, the reject thresholds

L and R, in the SPRT-based method, are set as follows: L = %5, R = 1’70‘, where o

™

and S are the desired false alarm rate and the desired impostor pass rate, respectively
(see [58]).

Marcialis et al.’s Rejection Method: Marcialis et al.’s rejection method
is a non score-fusion method, i.e., it does not fuse the verification score of i*" stage
with the verification scores of the previous stages. The method is simple-it selects the

whole confusion region as the reject region.

4.4.1 Experiments

We did experiments on the four-stage biometric verification system presented
in Figure 4.6. In Stages 1, 2, and 3 of the verification system, we need to choose the
reject regions Ly Ry, LRy, and L3Rs, respectively. Below, we describe how we chose
the reject regions in three rejection methods: Symmetric, SPRT-based, and Marcialis
et al.’s, in our experiments.

Symmetric Method: In the symmetric rejection method, we need to specify
the upper bound for genuine reject rate, z. We experimented with 40 different values
of z. Specifically, we set the initial value of z to 0.025K. Then we incremented the
value of = 39 times, each time by 0.025K, up to K (which is the maximum possible
value of ).

SPRT-based Method: In SPRT-based rejection method, we need to set

two parameters: (1) the desired false alarm rate (@) and (2) the desired impostor
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pass rate (). We experimented with equal value of o and f, which we denote as €
(= a = ). We used the same value of € in all stages of the system. We experimented
with 500 different values of e. Specifically, we set the initial value of € to 0.001 and
then incremented the value 499 times, each time by 0.001. Furthermore, SPRT-based
rejection method requires the estimation of underlying probability density functions
of genuine and impostor scores in order to compute the likelihood ratios. We used
Gaussian mixture models (GMM) to estimate the densities because (1) it has been
successfully used in several studies (for example, [9] and [26]), and (2) studies in [59]
and [60] theoretically show that the density estimates produced by finite mixture
models converges on the true densities if there are a sufficient number of training
samples. In GMM-based density estimation, we need to set the number of components,
k. After performing some preliminary experiments, we set the values of k to 2 for LI,
RI, and C and 3 for G.

Marcialis et al.’s Method: Marcialis et al.’s rejection method chooses the
whole confusion region as the reject region. Note that Marcialis et al.’s method is
an extreme case of the symmetric rejection method. In particular, the reject region
selected by Marcialis et al.’s method is the same as the reject region selected by the
symmetric method when z is maximum (i.e., when z = K).

In Stage 4 (which is the terminal stage), we need to set a single threshold,
T. Because we compared three different rejection methods, to keep consistency in
the experiment, we did not fix the value of T', but rather, we generated a receiver

operating characteristic (ROC) curve by varying the value of T over the scoreline.
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4.4.2 Results and Analysis

We measure the performance of the four-stage verification system, presented
in Figure 4.6, using the trade-off between the area under the ROC curve (see [61],
[62], and [63]) and the average number of stages required (see [26] and {27]). The area
under the ROC curve (AUC) quantifies the overall ability of a verifier to discriminate
between genuine users and impostors. The value of AUC for a perfect verifier, which
yields zero false alarm rate and zero impostor pass rate, is 1. The value of AUC for a
verifier that performs like a random guess is 0.5. Minimally, a verifier should perform
better than a random guess. The higher the value of AUC, the better the verifier.

The average number of stages (ANS) required to get verification decision is
directly related to the reject rate of the verification scores. Because one of our primary
goals in this paper is to control the reject rate of genuine scores (GRR), we are
interested in the average number of stages (ANS) required to verify the genuine
scores. A small value of ANS required to verify the genuine scores indicates high
user-convenience. We also report the ANS required to verify the impostor scores to
show the full picture of the system’s performance.

Trade-off between “area under ROC curve” and “average number
of stages required to verify the genuine scores”: Figure 4.7 shows the trade-
off curves between the area under the ROC curve (AUC) and the average number of
stages (ANS) required to verify the genuine scores. We calculated the values of AUC
and ANS at 40 different values of x in the case of the symmetric rejection method and
500 different values of € in the case of SPRT-based rejection method. In the symmetric

rejection method, AUC and ANS increase with the increase of x and in SPRT-based
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method, AUC and ANS increase with the decrease of €. To avoid cluttering the figures,

we indicate the z and ¢ values corresponding to only some points in the plot.

oo i

+SPRT
©Symmetric .
rMarcialis et al.

L L

95 11 12 13 14 15 16 1.7 1.8
Average Number of Stages

Figure 4.7: Comparing the performance of three rejection methods: Symmetric,
SPRT-based, and Marcialis et al.’s evaluated on the verification system presented in
Figure 4.6. Performance metric is—trade-off between “area under the ROC curve” and
the “average number of stages required to verify the genuine scores”.

Our observations from Figure 4.7 are listed below.

e Observation 1: The symmetric rejection method performs better than the SPRT-
based method in terms of trade-off between AUC and ANS required by the
genuine scores. For example, to achieve AUC = 0.985, the symmetric rejection
method requires ANS = 1.062 and the SPRT-based method requires ANS =
1.081. Similarly, to achieve AUC = 0.995, the symmetric rejection method
requires ANS = 1.112 and the SPRT-based method requires ANS = 1.139.
However, the SPRT-based method produces slightly higher AUC at the expense
of higher ANS in comparison to the symmetric rejection method. For example,
the maximum value of AUC achieved by the SPRT-based method is 0.999 (at

the expense of ANS = 1.271 at ¢ = 0.001), whereas the maximum value of AUC
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achieved by the symmetric rejection method is 0.998 (at the expense of ANS =
1.17 at z = 0.975K).

e Observation 2: Performance of Marcialis et al.’s method is worse than both the
symmetric and the SPRT-based methods in terms of trade-off between AUC
and ANS required by the genuine scores. AUC obtained by Marcialis et al.’s
method is 0.995; however, it requires ANS = 1.725. To achieve the same AUC,
the symmetric rejection method requires ANS = 1.112 and the SPRT-based

method requires ANS = 1.139.

Summary: Figure 4.7 signifies that to achieve the same AUC, genuine users
require less number of stages (which incurs less cost in terms of biometric sample data
acquisition effort and verification time) in the symmetric rejection method compared
to the SPRT-based rejection method. This indicates that the symmetric rejection
method can provide better user convenience and administrator convenience, which are
desirable attributes, especially for applications involving a large population of users or
a great number of biometric transactions.

Trade-off between “area under ROC curve” and “average number
of stages required to verify the impostor scores”: Figure 4.8 shows the
trade-off curves between AUC and ANS required to verify the impostor scores. Our

observations from Figure 4.8 are listed below.

e Observation 1: The SPRT-based method performs better than the symmetric
rejection method in terms of trade-off between AUC and ANS required by the
impostor scores. For example, to achieve AUC = 0.976, the symmetric rejection

method requires ANS = 1.124 and the SPRT-based method requires ANS =
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1.068. Similarly, to achieve AUC = 0.985, the symmetric rejection method
requires ANS = 1.304 and the SPRT-based method requires ANS = 1.118.

e QObservation 2: Performance of Marcialis et al.’s method is worse than both
the symmetric and the SPRT-based method in terms of trade-off between AUC
and ANS required by the impostor scores. AUC obtained by Marcialis et al.’s
method is 0.995; however, it requires ANS = 2.638. To achieve the same AUC,
the symmetric rejection method requires ANS = 2.116 and the SPRT-based

method requires ANS = 1.276.
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Figure 4.8: Comparing the performance of three rejection methods: Symmetric,
SPRT-based, and Marcialis et al.’s evaluated on the verification system presented in
Figure 4.6. Performance metric is-trade-off between “area under the ROC curve” and
the “average number of stages required to verify the impostor scores”.

Summary: Figure 4.8 signifies that to achieve the same AUC, impostors
require more stages in the symmetric rejection method compared to the SPRT-based
rejection method. This indicates that the symmetric rejection method gives more

inconvenience to the impostors (which is good); however, it incurs more cost to verify
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the impostors, which, in turn, increases the administrator-inconvenience (which is

bad).
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CHAPTER 5

PROPOSED FUSION FRAMEWORK FOR
MULTI-BIOMETRIC VERIFICATION

In this chapter, we propose a new fusion framework for multi-biometric
verification systems, which: (1) achieves an accuracy level higher than parallel fusion,
and at the same time (2) provides convenience to genuine users. We theoretically
show that the false alarm rate and impostor pass rate obtained by our proposed fusion
framework is less than or equal to the false alarm rate and impostor pass rate obtained
by parallel fusion. We validate our theory by experimenting on fwo multi-biometric
verification systems.

The rest of the chapter is organized as follows: In Section 5.1, we present our
proposed fusion framework and theoretically show how it (1) gives better performance
than parallel fusion, and (2) provides convenience to genuine users. In Section 5.2, we

give our experimental details and analyze the results.

5.1 Proposed Fusion Framework
We propose an information fusion framework for multi-biometric verification
systems. Let vy, vg, - - -, v, be n biometric verifiers such that EER; < EERy, < --- <
EER,, where EER; is the equal error rate of verifier v;, fori = 1,2,--- ,n. We model

an (n + 1)-stage multi-biometric verification system as follows:

59
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(1) Verifier v; is placed in the first stage, verifier v, is placed in the second
stage, and so on, until verifier v, is placed in the n'* stage.

(2) Stage i, for i = 1,2,--- ,n, gives a verification decision when it is fully
confident about the decision, i.e., it declares a subject as genuine when it is fully
confident that he/she is genuine and it declares a subject as an impostor when it is
fully confident that he/she is an impostor. If Stage ¢ is not fully confident, it does not
give any verification decision; rather, it rejects the biometric sample and activates the
(i + 1)*-stage. In such a case, the subject will have to submit the (¢ + 1) biometric
trait to Stage 7 + 1 to get the verification decision.

By “fully confident” we mean that when Stage 7 gives a verification decision, it
ensures that no genuine user is going to be erroneously declared as an impostor and
no impostor is going to be erroneously declared as a genuine user. As a result, the
given verification decision incurs zero false alarm rate and zero impostor pass rate.
Below, we explain how Stage i can give verification decision with full confidence.

We use Figure 5.1 to explain the operation of Stage i. We assume X and Y
are genuine and the impostor score sets, respectively, are generated by the verifier v;
at Stage 7; fo(z) and fi(y) are the distributions estimated from scores in X and Y,
respectively. Without loss of generality, we assume the verifier v; outputs real-valued
dissimilarity scores (e.g., Euclidean distance between a biometric sample and the
claimed template). In the scoreline {Z, O], ZE, is the genuine score region, E;0 is
the impostor score region, and E) E, is the confusion region where fe(z) and fi(y)

overlap.
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Figure 5.1: Genuine score distribution fg(z) and impostor score distribution f;(y)
along with genuine score region ZE,, impostor score region E;0O, and confusion region
E\E,.

In Figure 5.1, the probability of a score that lies on the left side of the confusion
region (i.e., a score that lies inside ZE;) to be an impostor is zero. Similarly, the
probability of a score that lies on the right side of the confusion region (i.e., a score
that lies inside E2Q) to be genuine is zero. Hence, during verification, if a score lies
on the left side of the confusion region, Stage ¢ can be fully confident that the subject
is genuine and can give verification decision accordingly. Similarly, if a score lies on
the right side of the confusion region, Stage ¢ can be fully confident that the subject
is an impostor and can give verification decision accordingly. If the score lies inside
the confusion region, Stage ¢ cannot be fully confident, and hence cannot give any
verification decision.

The above way of “being fully confident” while giving verification decision is
theoretically sound; however, in practice, it may not work properly (i.e., it may not
give our expected result). Specifically, in practice, the confusion region of the testing
scores may differ from the confusion region estimated on the training scores in such
a way that some part of the confusion region of the testing scores lies outside the

confusion region of the training scores. In such a case, the above way of “being fully
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confident” may lead to some wrong verification decisions. As a consequence, we may
fail to reach our target of zero false alarm rate and zero impostor pass rate at Stage :.
To ensure zero false alarm rate and zero impostor pass rate at Stage i, we add
some safety region to both sides of the confusion region and form a confident reject
region. Below, we explain the concept of confident reject region.
In Figure 5.2, we illustrate a confident reject region L R, where L, is the left
threshold and R, is the right threshold. We calculate L. and R, based on the length

of the confusion region E; Es, as follows:

Length of ElEg = Ez - El,
L. = FE; — p percent of the length of E;FE>, and

R, = E5 + p percent of the length of £} Ey,

where p is a real number greater than or equal to zero; p determines the length of the
safety region and hence we refer to p as the safety level. In Figure 5.2, L E; is the
left safety region and Es R, is the right safety region. The length of the left safety
region is equal to the length of the right safety region.

Note that when p is equal to zero, the confident reject region is the same as the
confusion region. When p is equal to 50, 50 percent of the confusion region is added to
each side of the confusion region and the confident reject region becomes double the
confusion region. Similarly, when p is equal to 100, each safety region becomes equal
to the confusion region and the confident reject region becomes triple the confusion
region. Because the confident reject region changes as the value of p changes, p

controls the performance of the proposed framework. An optimal value of p, which
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gives the minimum verification error, can be estimated using well-known parameter
selection techniques such as cross-validation on a hold-out dataset, bootstrapping [64],

or genetic algorithm [65].

Genuine(fs(x)) Impostor (f(y))

Confident reject region

Safety Safety
region, , region

Z Lc Eq E; Re o

Figure 5.2: Illustration of the confident reject region. E)F, is the confusion region,
L. F; is the left safety region, Fy R, is the right safety region, L. R, is the confident
reject region, Z L. is the confident genuine region, and R.O is the confident impostor
region.

Now we are ready to formally state the biometric verification rule with the
confident reject region. Let s denote a score output by verifier v; at Stage ¢ when a
biometric sample S is matched with a claimed template C. Assuming v; outputs a

dissimilarity score (e.g., Euclidean distance between features of S and C), biometric

verification with the confident reject region L.R,. is implemented as follows:
S is genuine if s < L., impostor if s > R,, else reject S.

In Figure 5.2, we refer to ZL, as the confident genuine region and R.O as the
confident impostor region.
(3) Stage n + 1 gives verification decision to those subjects who fail to get

the decision in stages 1 through n. Stage n + 1 uses a parallel fusion approach
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(e.g., arithmetic combination, classification, or density based approach) to make the
verification decision.

Ezxzample: In Figure 5.3, we illustrate the working principle of our proposed
fusion framework. We have two biometric verifiers: (1) a face verifier and (2) a
fingerprint verifier. Let the equal error rate of the face verifier be less than the equal
error rate of the fingerprint verifier. We model a three-stage verification system as
follows: we place the face verifier in Stage 1, the fingerprint verifier in Stage 2, and
use the weighted sum fusion of face and fingerprint in Stage 3. The weighted sum
fusion [1] is a well-known parallel fusion method.

To verify a subject, we submit his/her face sample to the face verifier at Stage 1.
The face verifier matches the sample with the claimed template and generates a score
z1. The score z; is then compared with two thresholds L.; and R, where L. R
is the confident reject region of the face score distribution. If z; is less than L., the
subject is declared as a genuine user, if z; is greater than R, i, the subject is declared
as an impostor, and if z; lies inside [L.;1, L.1], the face sample is rejected without
giving any verification decision. When the face sample is rejected by Stage 1, we
activate Stage 2, submit a fingerprint sample of the subject to the fingerprint verifier
at Stage 2, and follow the same procedure. In Figure 5.3, 3 denote the matching
score generated by the fingerprint verifier and L.2 K. 2 denote the confident reject
region of the fingerprint score distribution.

If the fingerprint sample is rejected by Stage 2, we activate Stage 3. In Stage
3, we perform the weighted sum fusion over the scores z; and z. Specifically, we

calculate the fused score zy = wy; + wexe and compare x5 with a threshold T'. If =y
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is less than T, the subject is declared as a genuine user; otherwise, he/she is declared

as an impostor.

Face sample [
Subject »  Face Verifier }
1 Score x4
. T \“\\ Give
R < Lsor x >R\?‘ Yes , decision as
ST T AT e genuine or
S T impostor
Stage1 |No
Fingerprint Activate next stage
sample
Fingerprint Verifier |
Give
decision as
X2 <Lezor x;>Rea ? genuine or
impostor
Stage 2 |No
Activate next stage
x; generated in
Stage 1
"] Weighted Sum Fusion Wi
x; generated in /"L. ___Module w2
Stage 2 X = WiX; + WaXa
e lsxe2 T Yes L Declare as
s impostor
Stage3 |[No

Declare as genuine

Figure 5.3: Illustration of our proposed fusion framework using a three-stage
verification system, where x; denotes the matching score generated by the face
verifier, 3 denotes the matching score generated by the fingerprint verifier, L. R,
denotes the confident reject region of the face score distribution, and L.2R. 2 denotes
the confident reject region of the fingerprint score distribution.

Note on Verifier Order: The order in which the individual verifiers are
placed in a multi-stage verification system is called verifier order. Because we use a

confident reject region, which ensures zero false alarm rate and zero impostor pass

rate in stages 1 through n of an (n + 1)-stage verification system, the verifier order
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has theoretically no effect on the verification errors. However, in practice, there is
always some chance of intrusion in the case of weak biometric verifiers. Hence, if
we allow the users to decide which biometric trait to submit first, a clever impostor
may use the weakest biometric verifier first and may get access to the system. To
prevent such security breaches, in our proposed fusion framework, we suggested the
following verifier order: the best performing individual verifier in the first stage, the
next best performing individual verifier in the second stage, and so on, until the worst
performing individual verifier in the n‘* stage of an (n + 1)-stage verification system.
Use of this verifier order makes our proposed framework applicable to high security

applications.

5.1.1 Performance Improvement by the Proposed Fusion Framework

In Figure 5.4, we give a two-unit representation of our proposed fusion
framework, where the confident unit consists of stages 1 through n and the parallel
unit consists of the (n + 1) stage of an (n + 1)-stage verification system. Because
each stage in the confident unit gives verification decision when it is fully confident,
the false alarm rate and impostor pass rate incurred by the confident unit is zero.
Therefore, the only source of verification error in our proposed framework is the
parallel unit. This phenomenon enables the proposed fusion framework to give better
performance than parallel fusion framework in terms of impostor pass rate and false
alarm rate.

Below, we prove that the false alarm rate obtained by our proposed fusion

framework is less than or equal to the false alarm rate obtained by the parallel fusion
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framework. The proof that the impostor pass rate obtained by our proposed fusion
framework is less than or equal to the impostor pass rate obtained by the parallel

fusion framework is similar and hence it is given in Appendix C.

Stage 2

Stage n

Parallel
Stage n+1 } Unit

\ Confident
Unit

Figure 5.4: A two-unit representation of the proposed fusion framework.

Proof that the False Alarm Rate Obtained by Our Proposed Fusion
Framework is Less than or Equal to the False Alarm Rate Obtained by
the Parallel Fusion Framework: For simplicity, we prove the statement using a
specific number of genuine users (the proof is similar for any number of genuine users).
We use Figure 5.5 and Figure 5.6 to explain the proof.

Let Gy, Ga, Gs, G4, Gs, Gg, G, Gs, Gg, and Gyo be 10 genuine users. First,
we calculate the false alarm rate obtained by the proposed fusion framework. We use
Figure 5.5 in this regard. When we apply the proposed fusion framework, let genuine
users Gy, Gy, G3, G4, and Gy receive verification decision by the confident unit and
the remaining genuine users Gg, G7, Gs, Gg, and Gy receive verification decision by
the parallel unit of the framework. We define two groups of genuine users on the basis

of the verification decisions the proposed framework gives:
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e Group I: The genuine users who receive verification decision by the confident
unit. In Figure 5.5, Group I consists of genuine users G, G3, G3, G4, and Gs.
e Group II: The genuine users who receive verification decision by the parallel
unit. In Figure 5.5, Group II consists of the genuine users Gg, G7, Gg, G, and

Gho.

Received verification decision Received verification
by the confident unit decision by the paralle! unit

Received wrong
verification decision

Group | ; ‘ ‘‘‘‘ Group i
# of genuine users # of genuine users
declared as impostor =0 declared as impostor = 2

False alarm rate = (0+2)/10 = 0.2

Figure 5.5: Calculation of false alarm rate obtained by the proposed fusion
framework.

G I Received wrong
roup Group Il verification decision

{ {

# of genuine users # of genuine users
declared as impostor2 0 declared as impostor = 2

False alarm rate 2 (0+2)/10 = 0.2

Figure 5.6: Calculation of false alarm rate obtained by the parallel fusion framework.
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Because the confident unit incurs zero false alarm rate, the number of genuine
users in Group I erroneously declared as impostor is zero. However, because the
parallel unit may give some wrong verification decisions, the number of genuine users
in Group II erroneously declared as impostor is greater than or equal to zero. Let the
parallel unit declare the genuine users Gg and Gjg as impostor (for clarity, G¢ and
G are enclosed by a dotted circle in Figure 5.5). Hence, the total number of genuine
users declared as impostor by the proposed fusion framework is equal to (0+2) or 2.
Therefore, the false alarm rate obtained by the proposed fusion framework is equal to
2/10 or 0.2.

Now, we calculate the false alarm rate obtained by the parallel fusion framework.
We use Figure 5.6 in this regard.

In Figure 5.6, we apply parallel fusion separately on Group I and Group II.
Because parallel fusion may give some wrong verification decisions, when we apply
parallel fusion on Group I, the number of genuine users in Group I erroneously declared
as impostor is greater than or equal to zero. When we apply parallel fusion on Group
II, we achieve exactly the same result as we achieve by applying the parallel unit of
the proposed framework on Group II, i.e., the genuine users Gy and Gjg receive the
wrong verification decision. Hence, the total number of genuine users declared as
impostor by the parallel fusion framework is greater than or equal to 2. Therefore,
the false alarm rate obtained by the parallel fusion framework is greater than or equal

to 2/10, i.e., greater than or equal to 0.2.
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5.1.2 Convenience to Genuine Users Provided by the Proposed Fusion
Framework

The proposed fusion framework provides convenience to genuine users by
allowing them to submit a subset of the biometric traits. For example, if a user
receives verification decision at the first stage, he/she does not need to submit other
biometric traits. Thus, our proposed fusion framework can save a lot of time for
the genuine users. In contrast, in the parallel fusion framework, a person needs to
submit all of the n biometric traits in case of an n-biometric verification system. As a
result, the verification task takes a lot of time. The problem becomes severe in the
applications that involve a large population of users or a huge number of biometric
transactions. Obviously, our proposed fusion framework can be an effective solution
to this problem.

Note that while the proposed fusion framework can provide a considerable
amount of convenience to a large number of genuine users, a few genuine users may
have to go through the parallel unit, and they will require a bit more time than the
time required to be verified by a parallel fusion framework. The good news is the time
difference is so small that we should not be worried. Let us explain in detail. We have
two biometric verifiers available: a face verifier and a fingerprint verifier. In parallel
fusion, e.g., in weighted sum fusion, the verification time for a user consists of (1) time
required to submit two biometric traits (face and fingerprint), (2) time required to
generate two matching scores, (3) time required to fuse the matching scores, and (4)
time required to apply a threshold on the fused score. In contrast, in the proposed

fusion framework (with weighted sum fusion in the parallel unit), the verification time
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for a user who goes through the parallel unit consists of (1) time required to submit
two biometric traits (face and fingerprint), (2) time required to generate two matching
scores, (3) time required to fuse the matching scores, and (4) time required to apply
three thresholds in three different stages (one threshold in each stage). Therefore, a
user who goes through the parallel unit needs two extra thresholdings in comparison
to the parallel fusion framework. To perform a thresholding task (i.e., to compare
two real numbers), a personal computer with 1 GHz processor takes less than 0.1
micro seconds [66], [67]. Thus, the time difference is insignificant (in comparison
to the time required for acquiring biometric sample). With this small sacrifice, the
proposed fusion framework can achieve the minimum EER, and at the same time, it
can provide convenience to a large population of genuine users. Hence, the proposed

fusion framework can be very useful in real world biometric applications.

5.2 Empirical Validation
In this section, we empirically show that the proposed fusion framework can
give better performance (in terms of equal error rate) than parallel fusion framework,
and at the same time, it can provide a considerable amount of convenience to the
genuine users. We did our experiments on two multi-biometric verification systems

to provide substantial evidence. Below, we give the experimental details.

5.2.1 Data
We performed experiments using NIST Biometric Scores Set Release 1 (BSSR
1) [41]. The NIST-BSSR1 database consists of three score sets-1) fingerprint-face,

2) fingerprint, and 3) face. We experimented with score set fingerprint-face. The
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fingerprint-face set consists of face and fingerprint scores from the same set of 517
individuals. For each individual, the set contains one score from the comparison of two
right index fingerprints, one score from the comparison of two left index fingerprints,
and two scores (from two separate face verifiers, namely, C and G) from the comparison
of two frontal faces. The scores of the right and left index fingerprints were generated
using the same fingerprint verifier. The fingerprint images and the face images used to
compute the scores were collected from the same person and at the same time. Hence,

the fingerprint-face score set is true multi-modal.

5.2.2 Design of Experiments

We divided the fingerprint-face score set into four disjoint subsets—(1) LI: set
of scores of left index fingerprints, (2) RI: set of scores of right index fingerprints, (3)
C: set of scores from face verifier C, and (4) G: set of scores from face verifier G.

We experimented on 10 different training-testing sets. Each training-testing
set was generated as follows: the scores of 259 individuals were randomly selected to
form the training set and the rest of the scores from the 258 individuals were used to
form the testing set. Table 5.1 shows the number of genuine and impostor scores in

each of the 10 training-testing sets of LI, RI, C, and G.

Table 5.1: The number of genuine and impostor scores in a training-testing set of

LL RI, C, and G.
Score sets (LI/RI/C/G)
Training sets | Testing sets
Genuine scores 259*1 258*1
Impostor scores 259*516 258*516
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We modeled two four-stage multi-biometric verification systems based on our
proposed fusion framework:
1. Verification System RI-G-LI: This system uses score set RI in the first
stage, G in the second stage, and LI in the third stage. In the fourth stage, it
uses weighted sum fusion [1].
2. Verification System C-RI-LI: This system uses score set C in the first
stage, RI in the second stage, and LI in the third stage. In the fourth stage, it

uses weighted sum fusion [1].

We did not use score sets C and G in the same verification system because
C and G are generated from the same biometric trait: face. We selected the verifier
order in each verification system based on the individual performance of the four
verifiers (that generate the score sets LI, RI, C, and G). Table 5.2 shows the individual
performance of the four verifiers in terms of percentage equal error rate (% EER)
estimated on testing scores of the 10 training-testing sets. The “Average” column
gives the means of percentage EERs calculated over the 10 sets. On the basis of the
average of percentage EERs, C is the best performing individual verifier and LI is
the worst performing individual verifier. In both verification systems (RI-G-LI and
C-RI-LI), we placed the best performing individual verifier in the first stage, the next
best in the second stage, and the worst one in the third stage.

We compared: (1) the EER achieved with verification system RI-G-LI to the
EER achieved with the weighted sum fusion of RI, G, and LI, and (2) the EER

achieved with verification system C-RI-LI to the EER achieved with the weighted sum
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fusion of C, RI, and LI. In addition, we studied how much convenience the verification
systems RI-G-LI and C-RI-LI can provide to the genuine users.

In our experiments, as a parallel fusion method, we used the weighted sum
fusion because it is one of the top performing parallel fusion methods [1], {34].

We tested our proposed fusion framework with 11 different safety levels: 0, 5,
10, 15, 20, 25, 30, 35, 40, 45, and 50. Recall that when the safety level is equal to
zero, the confident reject region is the same as the confusion region. When the safety
level is equal to 50, the confident reject region expands by 50 percent of the length of
the confusion region on each side and becomes double the confusion region.

In the weighted sum fusion, we need to choose a score normalization method.
In our experiments, we chose the min-max normalization [1] because it is easy to
implement and studies in [9] show that the min-max normalization is the best for NIST-
BSSR1 database [41]. In the weighted sum fusion, we also need to select an appropriate
weight combination. We experimented with 19 different weight combinations and
reported the average of EERs obtained with them. We selected 19 weight combinations
as follows: Let w;, we, and w3 be the weights assigned to three verifiers (e.g., RI, G,
and LI). We varied wi, wa, and ws over the range [0.25, 0.45] in steps of 0.05, such
that the constraint w; + we + ws = 1 is satisfied. Another way of explaining is we
define a universal set of weights, U,, = {0.25,0.3,0.35,0.4,0.45}. Then we generate
a weight combination, W = {w;, w,, w3} by taking three weights (i.e., permutations
with repetition) from the universal set U,, such that the constraint w; + ws + w3 =1
is satisfied. In this way, 18 different weight combinations were generated. We also

experimented with the special weight combination {1/3,1/3,1/3}, i.e., w; = wy = ws.
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5.2.3 Results with Verification System RI-G-LI

Table 5.3 shows the percentage equal error rates (% EERs)! for 10 training-
testing sets obtained by the weighted sum fusion of RI, G, and LI. In the “Average”
column, we give the mean of percentage EERs calculated over the 10 sets.

Table 5.4 shows the percentage equal error rates (% EERs)? for 10 training-
testing sets obtained by the verification system RI-G-LI when safety level (p) is varied
between 0 and 50. In the “Average” column, we give the mean of percentage EERs
calculated over the 10 sets.

In Table 5.4, we indicate the minimum percentage EERs for each training-
testing set obtained by the verification system RI-G-LI in bold typeface. For example,
in the case of sets 1, 2, 8, and 10, the verification system RI-G-LI achieves the minimum
EERs at safety level zero, in the case of set 6, it achieves the minimum EER at safety
level 5, in the case of sets 3, 4, 5, and 7, it achieves the minimum EERs at safety
level 10, etc. If we compare the minimum EERs obtained by the verification system
RI-G-LI for sets 1 to 10 (given in Table 5.4), with the EERs obtained by the weighted
sum fusion of RI, G, and LI for sets 1 to 10 (given in Table 5.3), respectively, we
find the following: in the case of sets 1, 2, 4, 5, 6, 7, 9, and 10, the minimum EERs
achieved by the verification system RI-G-LI are less than the EERs obtained by the
weighted sum fusion of RI, G, and LI (for example, in the case of set 1, the verification

system RI-G-LI achieves the minimum EER 0.7752 percent, which is 14.69 percent

less than the EER obtained by the weighted sum fusion of RI, G, and LI, which is

1For each training-testing set, we obtained percentage EERs with 19 different weight combinations
and reported the mean of them.
2See footnote 1
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0.9087 percent). For the other two sets (3 and 8), the minimum EERs achieved by
the verification system RI-G-LI are equal to the EERs obtained by the weighted sum
fusion of RI, G, and LI. In summary, the experiments on every training-testing set
show that the verification system RI-G-LI can achieve an EER that is less than or
equal to the EER obtained by the weighted sum fusion of RI, G, and LI

In Figure 5.7, we plot the average percentage EERs at different safety levels
(p), achieved with verification system RI-G-LI (given in Table 5.4, column “Average”)
and draw a horizontal line presenting the average percentage EER achieved with the

weighted sum fusion of RI, G, and LI (given in Table 5.3, column “Average”).

“%-Verification System RI-G-L1 e
---Weighted Sum Fusion of Rl, G, and LI

0.5
7 ek 1

0.5~

Average Percentage EER

0475+

045 5 10 15 20 25 30 35 40 45 50

Safety Level

Figure 5.7: Comparing the performance of verification system RI-G-LI with weighted
sum fusion of RI, G, and LI.
Our observations from Figure 5.7 are listed below:

e Observation 1: Figure 5.7 shows that at safety level zero, the average EER
achieved by the verification system RI-G-LI is higher than the average EER
achieved by the weighted sum fusion of RI, G, and LI. The actual fact is that at
safety level zero, the EER achieved by the proposed fusion framework can be

less than (see Tables 5.3 and 5.4, columns Set 1, Set 2, Set 6, and Set 10), equal
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to (see Tables 5.3 and 5.4, column Set 8), or higher than (see Tables 5.3 and
5.4, columns Set 3, Set 4, Set 5, Set 7, and Set 9) the EER achieved by parallel
fusion. Let us explain the fact.

At safety level zero, the confusion region estimated on the training scores
is considered as the confident reject region. During testing, two cases can occur:
(1) some part of the confusion region of the testing scores may lie outside the
confusion region estimated on the training scores. In this case, the confident
unit of the proposed framework will make some wrong verification decisions,
and as a consequence, the EER achieved by the proposed framework may be
higher than the EER achieved by parallel fusion, and (2) the confusion region
of testing scores may lie inside the confusion region estimated on the training
scores. In this case, the confident unit will not make any wrong verification
decision, and hence, the EER achieved by the proposed framework will be less
than or equal to the EER achieved by parallel fusion. In summary, it is not safe
to use the confusion region as the confident reject region. We should add some

safety region to the confusion region to form a confident reject region.

Observation 2: Figure 5.7 shows that when the safety level increases from
zero, the average EER achieved by the verification system RI-G-LI monotonically
decreases, and at one safety level, it reaches the minimum value (0.4561 percent
at safety level 20). This behavior of the proposed framework is expected because
when we increase the safety level from zero, the confident reject region becomes

larger than the confusion region estimated on the training scores, by expanding
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on both sides. As a result, the number of wrong verification decision given by
the confident unit decreases, which in turn, decreases the EER achieved by the
(whole) framework. As we keep increasing the safety level, at one point, we obtain
our desired confident reject region which gives no wrong verification decision,
and as a consequence, we achieve the minimum EER. The confident reject region
that gives the minimum EER is referred to as the optimal confident reject
region.

e Observation 3: Figure 5.7 shows that after reaching the minimum value
0.4561 percent at safety level 20, the average EER achieved by the verification
system RI-G-LI monotonically increases with an increase in the safety level. The
most important thing to notice is, though the EER achieved by the verification
system RI-G-LI increases, it does not cross the EER achieved by the weighted
sum fusion of RI, G, and LI. For example, at safety level 50, the average EER
achieved by the verification system RI-G-LI reaches 0.4781, which is 9.47 percent
less than the average EER achieved by the weighted sum fusion of RI, G, and
LI (which is 0.5281). Let us explain the fact.

After achieving the minimum EER, if we increase the safety level more,
the confident reject region will expand more, and in turn, it will reject more
scores. As a result, the confident unit will give verification decision to a less
number of scores and the parallel unit will have more scores (compared to the
number of scores at the safety level which gives the minimum EER) to give a

verification decision. Therefore, with an increase in the safety level, the EER
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obtained by the proposed fusion framework converges to the EER obtained by
parallel fusion. In the extreme case, with a very high safety level, the confident
reject region may become so big that it will reject every score, i.e., the confident
unit will not give any verification decision and the parallel unit will have to
handle all scores. As a result, the EER obtained by the proposed framework will
be exactly same as the EER obtained by parallel fusion. Thus, after reaching the
minimum value, the EER obtained by the proposed framework always remains

less than or equal to the EER achieved by parallel fusion.

Performance Improvement: Table 5.5 shows the percentage of reduction
in the average EER achieved with the verification system RI-G-LI (given in Table
5.4, column “Average”) in comparison to the average EER achieved with weighted
sum fusion of RI, G, and LI (given in Table 5.3, column “Average”). We see that
verification system RI-G-LI achieved a maximum of 13.63 percent reduction in the
average EER over the weighted sum fusion of RI, G, and LI. Thus, the proposed
fusion framework shows considerable promise in improving the performance of multi-
biometric verification systems. In Table 5.5, the percentage reductions in the average
EER at safety levels 0 through 5 are negative because the average EERs obtained
by the verification system RI-G-LI at safety levels O through 5 (given in Table 5.4,
column “Average”) are higher than the average EER obtained by weighted sum fusion
of RI, G, and LI (given in Table 5.3, column “Average”). We explained this fact in

observation 1 in this section, Page 77.
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Table 5.5: Percentage of reduction in the average EER achieved with the verification
system RI-G-LI (given in Table 5.4, column “Average”) in comparison to the average
EER achieved with the weighted sum fusion of RI, G, and LI (given in Table 5.3,
column “Average”). The safety level (p) is varied between 0 and 50.

Safety Level (p) | % Reduction in Average EER
0 -17.4967
) -17.4967
10 13.6148
15 13.6148
20 13.6338
25 13.6338
30 13.577
35 11.8728
40 11.8728
45 11.8728
50 9.4679

Table 5.6 shows the percentage of reduction in the average EER achieved with
the verification system RI-G-LI in comparison to the average EER achieved with
the best performing individual verifier C (given in Table 5.2, column “Average”).
Specifically, we compared the minimum of the average EERs obtained by the ver-
ification system RI-G-LI (0.4561 percent) with the average EER obtained by the
best individual verifier C (4.2579 percent). We observe that the proposed fusion
framework (verification system RI-G-LI) reduces the equal error rate significantly
(89.2881 percent).

Convenience to Genuine Users: Table 5.7 shows the percentage of
genuine users getting verification decisions at different stages of the four-stage multi-

biometric verification system RI-G-LI when the safety level is varied between 0 and
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50.% In other words, Table 5.7 shows how much convenience our proposed framework
(with verification system RI-G-LI) provides to the genuine users. Let us give an
example. With verification system RI-G-LI, we achieved the minimum equal error
rate (EER) 0.4561 percent at a safety level of 20, which is 13.63 percent less than the
EER obtained with the weighted sum fusion of RI, G, and LI (0.5281 percent). Now
we will see how much convenience we achieve with the verification system RI-G-LI at

the safety level of 20.

Table 5.6: Percentage of reduction in the average EER achieved with verification
system RI-G-LI in comparison to the average EER achieved with the best performing
individual verifier C (given in Table 5.2, column “Average”).

Verification System | % Reduction in Average EER
RI-G-LI 89.2881

In Table 5.7, we see that at the safety level of 20, 77.29 percent of the genuine
users received verification decision by using only one biometric trait (RI), i.e., 77.29
percent of the genuine users did not need to submit a second or third biometric trait.
Also, 7.36 percent of the genuine users received verification decision by using only
two biometric traits (RI and G), i.e., (77.29 + 7.36) or 84.65 percent of the genuine
users received verification decisions without submitting the third biometric trait (LI).
In contrast, in the case of the weighted sum fusion, a user is bound to submit all of
the three biometric traits (RI, G, LI). Thus, the proposed fusion framework gives

the minimum EER, and at the same time, it provides a considerable amount of

3The percentage of genuine users getting verification decision at each stage of the verification
system reported in Table 5.7 is the mean of the percentages of genuine users getting verification
decisions at the corresponding stage, calculated over the 10 training-testing sets.
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convenience to the genuine users. Hence, we call our proposed framework optimized

fusion framework for multi-biometric verification systems.

Table 5.7: Percentage of genuine users getting verification decisions at different
stages of the four-stage multi-biometric verification system RI-G-LI, when safety level
is varied between 0 and 50.

Safety Level | 1st Stage | 2nd Stage | 3rd Stage 4th Stage

(») (RI) (G) (LI) (Parallel Unit)
0 82.52 11.32 2.17 3.99

) 81.59 10.12 3.18 5.12

10 80.08 9.81 4.03 6.09

15 78.37 8.68 4.96 7.98

20 77.29 7.36 5.62 9.73

25 76.28 6.16 5.89 11.67
30 74.69 5.47 6.59 13.26
35 72.83 3.49 7.4 16.28
40 70.74 244 8.53 18.29
45 69.61 1.74 8.95 19.69
50 67.48 0.93 9.65 21.94

Note—At the safety level of 20, 9.73 percent of the genuine users received
verification decision by the fourth stage of the verification system RI-G-LI, i.e., by the
parallel unit of the proposed framework and hence they should have required more
time (to be verified) than the weighted sum fusion of RI, G, and LI. In Section 5.1.2,
we discussed this fact and showed that this time difference is insignificant. With this
small sacrifice, the proposed framework achieved the minimum EER, and at the same

time, it provided convenience to a large population of genuine users.
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5.2.4 Results with Verification System C-RI-LI

Table 5.8 shows the percentage equal error rates (% EERs) for 10 training-
testing sets obtained by the weighted sum fusion of C, RI, and LI. In the “Average”
column, we give the mean of percentage EERs calculated over the 10 sets.

Table 5.9 shows the percentage equal error rates (% EERs) for 10 training-
testing sets obtained by the verification system C-RI-LI when the safety level (p) is
varied between 0 and 50. In the “Average” column, we give the means of percentage
EERs calculated over the 10 sets.

In Table 5.9, we indicate the minimum percentage EERs for each training-
testing set obtained by the verification system C-RI-LI in bold typeface. For example,
in the case of sets 1, 2, and 8, the verification system C-RI-LI achieves the minimum
EERs at safety level zero, in the case of set 6, it achieves the minimum EER at safety
level 5, in the case of sets 3, 5, and 7, it achieves the minimum EERs at a safety level
of 10, etc. If we compare the minimum EERs obtained by the verification system
C-RI-LI for sets 1 to 10 (given in Table 5.9), with the EERs obtained by the weighted
sum fusion of C, RI, and LI for sets 1 to 10 (given in Table 5.8), respectively, we find
that in the case of sets 1, 2, 3, 4, 6, 8, and 9, the minimum EERs achieved by the
verification system C-RI-LI are less than the EERs obtained by the weighted sum
fusion of C, RI, and LI (for example, in the case of set 1, the verification system
C-RI-LI achieves the minimum EER 0.1887 percent, which is 34.46 percent less than
the EER obtained by weighted sum fusion of C, RI, and LI, which is 0.2879 percent).
For the other three sets (5, 7, and 10), the minimum EERs achieved by the verification

system C-RI-LI are equal to the EERs obtained by the weighted sum fusion of C,
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RI, and LI. In summary, experiments on every training-testing set show that the
verification system C-RI-LI can achieve an EER that is less than or equal to the EER
obtained by the weighted sum fusion of C, RI, and LI.

In Figure 5.8, we plot the average percentage EERs at different safety levels,
achieved with verification system C-RI-LI (given in Table 5.9, column “Average”)
and draw a horizontal line presenting the average percentage EER achieved with the

weighted sum fusion of C, RI, and LI (given in Table 5.8, column “Average”).

-k Verification System C~RI-LI
---Weighted Sum Fusion of C, Rl, and LI

Average Percentage EER

0 5 10 15 20 25 30 35 40 45 50
Safety Level

Figure 5.8: Comparing the performance of verification system C-RI-LI with weighted
sum fusion of C, RI, and LI.

Our observations from Figure 5.8 are listed below:

e Observation 1: At safety level zero, the average EER achieved by the

verification system C-RI-LI is higher than the average EER achieved by the

weighted sum fusion.
o Observation 2: When the safety level increases from zero, the average EER
achieved by the verification system C-RI-LI decreases (with one small exception

at safety level 20), and at one safety level, it reaches the minimum value (0.3399

percent at safety level 25).
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e Observation 3: After reaching the minimum value 0.3399 percent at safety
level 25, the average EER achieved by the verification system C-RI-LI monotoni-
cally increases with an increase in the safety level. The most important thing to
notice is, though the EER achieved by the verification system C-RI-LI increases,
it does not cross the EER achieved by the weighted sum fusion of C, RI, and
LI. For example, at safety level 50, the average EER achieved by verification
system C-RI-LI reaches 0.3506, which is 0.03 percent less than the average EER

achieved by the weighted sum fusion of C, RI, and LI (which is 0.3507).

Note that the behavior of our proposed fusion framework that we observe in
Figure 5.8 (with verification system C-RI-LI) is the same as the behavior we observed
in Figure 5.7 (with verification system RI-G-LI). Therefore, we can conclude that
this is the typical behavior of our proposed fusion framework. The reasons for this
behavior are explained in detail in Section 5.2.3, Page 77.

Performance Improvement: Table 5.10 shows the percentage of reduc-
tion in the average EER achieved with the verification system C-RI-LI (given in
Table 5.9, column “Average”) in comparison to the average EER achieved with the
weighted sum fusion of C, RI, and LI (given in Table 5.8, column “Average”). We see
that the verification system C-RI-LI achieved a maximum of 3.08 percent reduction in
the average EER over the weighted sum fusion of C, RI, and LI. Thus, our proposed
fusion framework shows considerable promise in improving the performance of multi-
biometric verification systems. In Table 5.10, the percentage reductions in the average

EER at safety levels 0 through 20 are negative because the average EERs obtained
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by the verification system C-RI-LI at safety levels 0 through 20 (given in Table 5.9,
column “Average”) are higher than the average EER obtained by the weighted sum
fusion of C, RI, and LI (given in Table 5.8, column “Average”). We explained this

fact in observation 1 in Section 5.2.3, Page 77.

Table 5.10: Percentage of reduction in the average EER achieved with the
verification system C-RI-LI (given in Table 5.9, column “Average”) in comparison to
the average EER achieved with the weighted sum fusion of C, RI, and LI (given in
Table 5.8, column “Average”). The safety level (p) is varied between 0 and 50.

Safety Level (p) | % Reduction in Average EER
0 -108.8395
5 -97.0345
10 -30.1967
15 -8.982
20 -11.0636
25 3.0796
30 3.0796
35 0.0285
40 0.0285
45 0.0285
50 0.0285

Table 5.11 shows the percentage of reduction in the average EER achieved
with the verification system C-RI-LI in comparison to the average EER achieved
with the best performing individual verifier C (given in Table 5.2, column “Aver-
age”). Specifically, we compared the minimum of the average EERs obtained by
the verification system C-RI-LI (0.3399 percent) with the average EER obtained by
the best individual verifier C (4.2579 percent). We observe that the proposed fusion
framework (verification system C-RI-LI) reduces the equal error rate significantly

(92.0172 percent).
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Table 5.11: Percentage of reduction in the average EER achieved with verification
system C-RI-LI in comparison to the average EER achieved with the best performing
individual verifier C (given in Table 5.2, column “Average”).

Verification System | % Reduction in Average EER
C-RI-LI 92.0172

Convenience to Genuine Users: Table 5.12 shows the percentage of
genuine users getting verification decisions at different stages of the four-stage multi-
biometric verification system C-RI-LI when safety level (p) is varied between 0 and 50.
In other words, Table 5.12 shows how much convenience our proposed framework (with
verification system C-RI-LI) provides to the genuine users. Let us give an example.
With verification system C-RI-LI, we achieved the minimum EER 0.3399 percent at a
safety level of 25, which is 3.08 percent less than the EER obtained with the weighted
sum fusion of C, RI, and LI (0.3507 percent). Now we will see how much convenience
we achieve with the verification system C-RI-LI at safety level 25.

In Table 5.12, we see that at safety level 25, 25.89 percent of the genuine users
received verification decision by using only one biometric trait (C), i.e., 25.89 percent
of the genuine users did not need to submit a second or third biometric trait. Also,
57.29 percent of the genuine users received verification decision by using only two
biometric traits (C and RI), i.e., (25.89 + 57.29) or 83.18 percent of the genuine
users received verification decisions without submitting the third biometric trait (LI).
In contrast, in the case of the weighted sum fusion, a user is bound to submit all

of the three biometric traits (C, RI, and LI). Thus, the proposed fusion framework
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gives the minimum EER, and at the same time, it provides a considerable amount of

convenience to the genuine users.

Table 5.12: Percentage of genuine users getting verification decisions at different
stages of the four-stage multi-biometric verification system C-RI-LI, when safety level
(p) is varied between 0 and 50.

Safety Level | 1st Stage | 2nd Stage | 3rd Stage 4th Stage
() (©) (RI) (LI) (Parallel Unit)
0 47.64 43.64 3.29 5.43
5 43.33 46.59 3.49 6.59
10 38.18 50.12 4.03 7.67
15 33.8 52.64 481 8.76
20 29.46 95.23 4.84 10.47
25 25.89 57.29 5.04 11.78
30 21.51 59.34 5.85 13.29
35 18.99 59.61 6.67 14.73
40 15.19 60.43 7.52 16.86
45 11.86 61.43 8.33 18.37
50 9.42 61.09 9.11 20.39
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CHAPTER 6

PROPOSED FRAMEWORK FOR CONTINUOUS
KEYSTROKE VERIFICATION WITH WEAK
TEMPLATES

In this chapter, we propose a framework comprised of impostor score based
normalization, impostor score based rejection, and fusion to lower the EERs of
continuous keystroke verification with weak templates. We introduce a new formulation
to incorporate the reject option in verification with weak templates and develop a
new impostor score based rejection method, called the Order Statistic (OS) rejection
method. Furthermore, we adapt: 1) the Otsu threshold selection method [40], and 2)
the Gaussian assumption of scores to our rejection formulation and study how they
perform as impostor score based rejection methods. We conduct experiments on a
large keystroke database of 1100 users.

The rest of the chapter is organized as follows. In Section 6.1, we describe the
proposed framework. In Section 6.2, we formulate the impostor score based rejection
and present three rejection methods. In Section 6.3, we discuss data collection and

experiment design. In Section 6.4, we discuss the experimental results.

94
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6.1 Proposed Framework
We propose a framework for continuous keystroke verification with weak
templates. Figure 6.1 shows the proposed framework. It consists of four modules-1)
score generation by individual verifiers, 2) impostor score based normalization, 3)

rejection, and 4) fusion.

r Module 1 — Module 2— (————— Module3 ———— - Module 4
Y1 | 1 | ¥t [ =1 Rejecty s/Don't reject y "y
(V1,KH) o Nor I +Rej f - -
(VaKD) Y2 | Frormtion] Y2 | o1 | Reject ¥ 2/Don't reject ¥ 2
Verification _ . : :
Attempt Z . . . 3 ;
VeKP) H—Y' - Normatization -1 [Rejoction | }-Relect ¥ ifDor't reject y s
ks *| Nor | |
Individual impostor Score Rejection
Verifiers Based Normallzation Rule

Figure 6.1: Schematic diagram of normalization, rejection, and fusion based
continuous keystroke verification framework.

Let {v1,--- , vk} denote k verifiers. Let KH, KI, and KP denote templates
containing key hold, key interval, and key press latencies, respectively. Let {(v;, KH),
(v1, KI), (v1, KP), (vg, KH), ---, (ux, KP)} be a set of verifier-template pairs. A
verifier-template pair, say (v1, KP), means that verifier v; uses the template containing
key press latencies to generate verification scores. We paired each verifier with a
template containing either key hold or key interval or key press latencies because the
keystroke verifiers used in this paper (i.e., “R”, “A”, and “S”) were not designed to
work with templates containing multiple types of latencies. For example, the verifiers
are not designed to work with a template containing both key hold and key interval

latencies.
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Module 1 (see Figure 6.1) consists of a set of verifier-template pairs and
generates raw scores for a verification attempt. Let Z be a verification attempt and
let ¥y, ¥, -+, ¥ be the raw scores of Z generated by (vi, KH), (vy, KI), ---, (v,
KP), respectively.

Module 2 performs impostor score based normalization [68]. In impostor score
based normalization, each user U has a set of (training) impostor scores with each
verifier-template pair (i.e., U has a set of impostor scores with (v;, KH), another set of
scores with (v, KI), and so on). These impostor scores are generated by matching U’s
template with a set of impostor attempts, which are different from impostor attempts
used in testing. Using each set of impostor scores, we estimate the impostor score
density. We used z-score normalization in which each raw score, say vy, is transformed
as y; = (y — wm)/o1, where u; and o; are the mean and standard deviation of the
corresponding impostor score density.

Module 3 performs rejection [29], [44]. This module checks whether the
verification attempt Z is good enough to be classified as genuine or an impostor. Z
is rejected if the verifier cannot determine whether Z is genuine or an impostor. A
rejection rule is applied to each normalized score y; to determine whether y; should be
rejected or not. If more than half of ¥}, s, - - ,y; get rejected by the rejection rule,
then verification attempt Z is rejected; otherwise, y3, 5, - - ,y; are fused to generate
SCOT€ Yfuseq- 1he rejection rules are described in Section 6.2.

Module 4 performs fusion [1}, [69]. The goal of fusion is to use yi,y3, - ,¥y]
to obtain a fused score yyysq. For fusion, we implemented the weighted sum rule,

i.€., Yfused = W1y + - - - + wyy;, where y’ is a normalized score and the weights are
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constrained as wy + - -- +w; = 1. In Modules 2 and 4, we chose z-score normalization
and weighted sum fusion because they were easy to implement and have been shown

to perform well in score-level fusion studies [1].

6.2 Rejection Methods

The purpose of adding a rejection rule to verification with weak templates is to
reduce EERs by rejecting as few genuine verification attempts as possible. Ambiguity
and distance rejection cannot be directly applied to verification with weak templates
for the following reasons: 1) ambiguity-reject assumes that all classes are known and
the posterior probabilities of classes can be estimated well. However, in verification
with weak templates, we can estimate the density of one class (i.e., impostor), while
the density of the other class (i.e., genuine) is unknown; and 2) distance-reject rejects
a pattern based on how far it is from the samples or prototypes of known classes.
However, in verification with weak templates, scores of genuine verification attempts
are (ideally) expected to be far from the impostor scores. So, applying distant-reject
directly can result in erroneously rejecting many genuine attempts.

Our Formulation: To incorporate the reject option in verification with weak
templates, we modify the distance-reject rule by using two thresholds to identify a reject
region. In our formulation, the reject region is the region in which unknown genuine
scores overlap with known impostor scores. Let z1,-- - , x, represent n impostor scores
generated by a verifier-template pair (v, f) for user U. Let X be the random variable
representing these impostor scores. Let fx represent the density function of X. For

expositional convenience, we assume that 1) the verifier outputs a dissimilarity score
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(i.e., genuine scores typically have smaller values than impostor scores), and 2) all
scores lie in [0, 1]. However, our formulation can be straightforwardly extended to any
type of verifier (that outputs similarity scores and scores outside [0, 1] range).
Figure 6.2 shows the proposed formulation. We define reject region R as
the impostor score region bounded by lower threshold LT and upper threshold UT
(LT,UT € [0,1]). Reject region R has two parameters—1) position as specified by
the closed interval [LT,UT)], and 2) size, defined as A = UT — LT, A € [0,1]. The
cumulative probability of R is C = f I(/JTT fxdX. The value of C is maximum (i.e.,
1) when R is [0, 1] and minimum (i.e., 0) when LT = UT. In our formulation, R
represents a window in which genuine and impostor scores overlap and the idea is to
reduce EER by rejecting the verification scores which fall in R. EER values change as
R changes its position and size. Therefore, by using our formulation, we can control

the EERs by changing the position and size of R.

0.08———mr—r——r——r
%‘ Reject | Impostor score density
S 0.06 region fx ]
a R
£ 0.04
=
3
3] 0.02r
[
RV 1
Imposter Scores

Figure 6.2: Formulation of impostor score based rejection.

Our formulation poses the challenge: how to choose thresholds LT and UT
of R under the constraint that genuine scores are not given? We introduce three

methods (described below) to address the challenge.
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6.2.1 Order Statistic Rejection Method

Recall z,z,,--- ,z, are n independent impostor scores of user U, X is a
random variable representing the impostor scores, and fx is the density function of X.
Let Fx denote the cumulative distribution function of X. Let ) < z¢5) < -+ < x(p)
represent the order statistics of z1,T,--- , T, i.€., T(;) denotes the impostor score
at rank r when zy, x5, - - ,x, are arranged in ascending order. Each rank r can be

associated with an impostor risk, IR(7), which can be empirically calculated as

IR(r) = number of impo;tor scores < :z:(r). (6.1)

Equation (6.1) gives the impostor risk of r, estimated from a single realization
of n impostor scores x1,---,%n. Estimating the impostor risk of r with (6.1) is
unreliable because it is based on only one instance (i.e., a snapshot) of n impostor
scores. A more reliable approach to find IR(r) is to calculate the expected impostor
risk of rank r when n scores are independently and identically drawn from fx.

Let K = P(X < z(y) = Fx(z(y) be a cumulative probability value, i.e.,
K is the proportion of impostor scores less than or equal to z(). Assuming that
Fx is the true cumulative distribution function of X (i.e., the functional form and
the parameters of Fx are somehow known apriori and not estimated), K gives the

impostor risk of rank r. The following formulas are well known (see [70], [71]):

n
T

P(K) = 1"( ) (1-K)" " (K)! (6.2)
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and

r
n+1’

E(K) = /0 ' KP(K)K = (6.3)

where P{K) is the probability density function of K and F(K) is the expected value of
K. Equations (6.2) and (6.3) show that both the density function and the expectation
of K are independent of the impostor score density fx. Equation (6.3) further implies
that the expected impostor risk of rank r is dependent only on the rank 7 and the
number of impostor scores 1, regardless of the actual impostor score value z(,y or the
cumulative distribution function Fx.

We determine Order Statistic (OS) reject region, Rpg, as follows— STEP 1)
Specify two impostor risks IR; and IRy; STEP 2) Using (6.3), find ranks r; and 7,
that correspond to IRy and IR, (i.e., 1y = (n+ 1) x IR; and ry = (n+ 1) x I Ry);
and STEP 3) Rog is the region bounded by z(,,y and x(,,), where z(,) is the impostor
score at rank 7 when the impostor scores xy,Zs,--- ,, are arranged in ascending
order. Thus, the OS rejection method identifies a reject region using the impostor
pass rates associated with ranks, without making any assumptions on the underlying
distribution of impostor scores. After Rpg is determined, we reject all verification

scores falling in Rpg. Figure 6.3(a) illustrates the OS rejection method.

6.2.2 Otsu Rejection Method

The Otsu method (developed by Nobuyuki Otsu [40]) is a non-parametric
threshold selection method. The input to Otsu is a normalized histogram (i.e.,
probability distribution) of discretized scores. Otsu iteratively searches for the

histogram bin k that partitions the scores into two clusters C; (containing scores
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Figure 6.3: Impostor score based reject region identification with (a) Order Statistic,
(b) Otsu, and (c) Gaussian methods.
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in bins 1,--- ,k) and Cy (containing scores in bins k + 1,---, L), where L is the

number of bins in the histogram and k is the bin that maximizes the discriminant

Tnter (k)

inter

(k)+ai2ntra(k) ’

criterion: —

Ointer

Here, 02,..(k) and o2, (k) are inter-cluster and intra-
cluster variances of clusters C; and C, partitioned by the k™ bin, given as o2, (k) =
wi(k)wa(k)[ua(k) — pr(k)]* and 07,,q(k) = wi(k)oi (k) + wa(k)od(k), where wi(k) and
wy(k) are probabilities of C; and Cy, pi(k) and pa(k) are zero-order cumulative
moments, and o2(k) and o2(k) are first-order cumulative moments of C; and Cs,
respectively. Figure 6.3(b) illustrates the Otsu method with the 25" bin partitioning
the scores into clusters C; and C;. Because k is a bin number in the normalized
histogram, the reject region Ros can be bounded by the lower and upper limits of k.
In Section 6.3.2, we give details on the limits used for Ro.s, in our experiments.
Otsu views the reject region identification as a threshold selection problem and
does not assume any functional form on the impostor score distribution. However, the
drawback with Otsu is it requires a careful selection of histogram bin widths. If the

bin is too wide, it over generalizes the score distribution and if too narrow, it overfits

the distribution.

6.2.3 Gaussian Rejection Method

In this method, we assume that impostor scores are independent and identically
drawn from Gaussian distribution, i.e., fx ~ N(y, o). Because the verifiers we use
output dissimilarity scores between [0, 1], the genuine scores are expected to be towards
the left side of the impostor score distribution. Therefore, the reject region is defined

towards the left tail, as shown in Figure 6.3(c). The reject region, Rg, is bounded by
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[ — lo, p — ro], where [ is the left coefficient, 7 is the right coefficient, and [ > 7 > 0.
The mean (1) and standard deviation (o) are the maximum likelihood estimates. In
Section 6.3.2, we give details on the | and r values used in our experiments. We
implemented the Gaussian rejection method because of its simplicity and use it for

comparison.

6.3 Experiments
6.3.1 Keystroke Data Collection

We collected keystroke data at Louisiana Tech University. Data were collected
during two periods—-1) between April 4 and April 30, 2010 and 2) between October 25
and November 9, 2010. We collected at least 1800 characters of copy text and at least
300 characters of self text from each participant. Participants typed copy text from
the text samples provided by us. Participants had to compose self text by themselves,
as if they were writing an email or composing an essay. While typing copy and self
texts, participants were allowed to correct typos and use any key on the keyboard.

For training (i.e., building weak templates from samples collected in a single
enrollment session), we used keystroke samples collected from 100 participants during
April 4-April 30, 2010. We call this dataset D;. For generating impostor scores to be
used in impostor score based normalization and impostor score based rejection, we
used samples collected during Oct. 25-Nov. 9, 2010 from 500 participants who were
not in D;. We call this dataset D,. The test dataset D; contains samples collected
during Oct. 25-Nov. 9, 2010 from the same 100 participants who were in D; (i.e.,

test samples were collected approximately six months after the training samples).
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Keystrokes from 500 new participants (not present in D; and Dj) collected during
Oct. 25-Nov. 9, 2010 were included in D3 for generating zero-effort impostor attempts.
In summary, a user’s weak template, constructed with a keystroke sample in D, was
matched against his/her verification attempts in D3 and against impostor attempts

from 599 remaining users in Ds.

6.3.2 Design of Experiments

Baseline: We experimented with ten different matching pairs (Ms) and nine
verifier-template pairs (verifiers “R”, “S”, and “A” trained on templates containing
key interval (KI), key hold (KH), and key press (KP) latencies). We used dataset
D; for training and Dj; for testing. Columns KI, KP, and KH in Table 6.1 give
the average genuine and impostor verification attempts per user, (i.e., total genuine
attempts/total users and total impostor attempts/total users), used for obtaining
EERs of individual verifiers (Table 6.2). Table 6.1 shows that we had very few genuine
verification attempts for high M values like 300, 350, and 500. Recall that D; has 100
users, so the total users are 100. In test data, there were on average 2934 keystrokes per
user. Each user typed on average 751.33, 879.47, and 1251.31 keystrokes to generate a
verification attempt with M values 300, 350 and 500, respectively. So, for high M like
500, 350, and 300, we could only extract between 2 to 4 genuine verification attempts
per user. However, we did not have this problem with impostor attempts because, for
each user, we had 599 users to generate zero-effort impostor attempts.

Order Statistic Rejection: We tested 250 reject regions. First, we ini-

tialized IR; to 20 values, from 0.02 to 0.2 (i.e., I R; was shifted right towards the
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Table 6.1: Average genuine (G) and impostor (I) verification attempts per user
used in the experiments. Verification attempts in column KI (key interval), KP (key
press), and KH (key hold) were used to generate the results in Table 6.2. Verification
attempts in column Fusion were used to generate the results in tables 6.3, 6.4 and 6.5.

M KI KP KH Fusion
G [Ix10°] G [Ix10°] G [Ix10°] G [1Ix10°

20 | 589 | 355 |586| 352 |71.1| 426 |56.0| 33.8
30 [39.1| 235 |388| 234 |[472| 283 |37.3] 225
40 [29.2| 176 [29.1| 175 [354| 212 [279 | 16.8
50 | 233 | 140 |231| 139 |281| 169 |222| 134
60 | 193 | 116 |192| 115 |234| 140 185 111
100 {113 69 |113| 68 |138( 83 [108| 6.5

150 | 7.4 4.5 7.4 4.4 9.1 5.4 7.1 4.3
300 | 3.5 2.1 3.5 2.1 4.2 2.5 3.3 2.0
350 | 2.9 1.7 2.8 1.7 3.7 2.2 2.8 1.7
500 | 1.9 1.1 1.9 1.1 2.2 1.3 1.8 11

impostor score distribution, in increments of 0.02). Next, for each I R; value, we set
IRy as IR, + 0.2 and shifted IR, rightwards in increments of 0.01 until it reached a
maximum value of 0.55. For example, when I R; = 0.02, I R, was varied as 0.22, 0.23,
0.24, and so on, until 0.55. This process was repeated again with I R; set to 0.04, 0.06,
and so on, till 0.2. This way, we created 250 different reject regions.

Otsu Rejection: We tested 256 reject regions. Because Otsu outputs a bin
number, we extracted a real value threshold 7" from the bin by setting T to the upper
limit of the bin. We calculated Rotsy as (T' — 61,7 + d2), where §; and 4, take 16
different real values, from 0.01 to 0.16, in increments of 0.01. We recorded the reject
rates and corresponding EERs with all 256 (i.e., 16 x 16) combinations of 4; and J,.

We chose to use 40 equal-width bins after performing trial and error experiments.
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Gaussian Rejection: We tested 120 reject regions. First, we initialized (I, )
to 15 values — (0.2, 0.0), (0.3, 0.1), (0.4, 0.2), and so on, until (1.6, 1.4) (i.e.,l and r
were increased in increments of 0.1). Next, we expanded each (I, r) seven times with a
step size of 0.05. For example, (1.6, 1.4) was expanded as (1.65, 1.35), (1.7, 1.3), and
so on, till (1.95, 1.05). This way, we created 120 different reject regions.

Fusion: In fusion, we used five verifier-template pairs: (R, KH), (R, KI), (S,
KH), (S, KI), and (A, KP). As key press (KP) latencies are formed by adding key
hold (KH) and key interval (KI) latencies [72], KP does not bring new information if
KH and KI are already included. Therefore, with verifiers “R” and “S”, we paired KH
and KI. However, with verifier “A”, we used KP because we needed an odd number of
verifier-template pairs (for avoiding ties during rejection with majority voting) and
“A” was designed primarily for KP and performed better with KP than with KI or KH
(see Table 6.2).

Setting Parameters for Rejection Rules: The main goal of our experi-
ments is to comprehensively evaluate the performance of our rejection rules across a
broad range of parameters. Therefore, we computed EERs with 250 (I Ry, I Ry), 256
(61,92), and 120 (I,r) parameter values. However, in an actual verification scenario,
the parameter values have to be set. Optimal parameter values can be estimated
using well-known parameter selection techniques such as cross-validation on a hold-out
dataset, bootstrapping [64], and genetic algorithm [65).

In the rejection and fusion experiments, we used databases D, for training, D

for generating impostor score densities, and Dj for testing.
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6.4 Results and Analysis

6.4.1 Baseline Results

In Table 6.2, we give EERs of “R”, “S”, and “A” verifiers trained with templates
containing key interval (KI), key hold (KH), and key press (KP) latencies. We tested
each verifier-template combination with ten different matching pairs (M varied between
20 and 500). The “Avg” and “SD” columns give the means and standard deviations
of EERs at each M calculated over the nine verifier-template combinations. Table
6.2 shows that EERs of almost all verifier-template combinations decrease as M
increases. This is expected because verifiers get more information for decision making
when M increases. We achieved 0.285 average EER with M = 20 and 0.162 with
M = 500 (i.e., 43.16 percent reduction in average EER when M changed from 20
to 500). Though increasing M reduces EER, the user is required to type more text
to generate more matching pairs, which ultimately increases the verification delay.
In our experiments, each user on average typed between 12.77 seconds (with KH)
to 14.81 seconds (with KP) when M = 20 and 307.81 seconds (with KH) to 366.78
seconds (with KP) when M = 500 (i.e., the verification delay increased by more than
20 times when M changed from 20 to 500). Therefore, a trade-off exists between
verification accuracy and verification delay and the challenge is to achieve lower EERs
with smaller Ms.
6.4.2 Results without Incorporating Rejection

To observe the effect of the impostor score based normalization and fusion in

performance improvement, we did some experiments without incorporating rejection
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before fusion and compared the resultant EERs to the baseline EERs. Recall that we
fused five verifier-template pairs: (R, KH), (R, KI), (S, KH), (S, KI), and (A, KP).
We conducted the experiments with 7 different M values (varied between 20 and 150).
At each M, we obtained EERs with 21 different weight combinations. The number of
genuine and impostor verification attempts per user used in these experiments is given
in Table 6.1, “Fusion” column. In Table 6.3, in the “Best” column, we give the lowest
EER obtained among 21 weight combinations. In “Avg” and “SD” columns, we give
the average EERs and standard deviations obtained with 21 weight combinations. For
M = {20, 30,40,50,60}, the best EERs were achieved with equal weights (0.2, 0.2,
0.2, 0.2, 0.2). For M = {100,150}, the best EERs were achieved with (0.266, 0.266,

0.266, 0.1, 0.1) weights.

Table 6.3: EERs with impostor score based normalization and fusion when M is
varied between 20 and 150. “% Reduction” column gives the percentage of reduction
in the average EERs achieved with impostor score based normalization and fusion
compared to the individual verifiers (Table 6.2).

M | Best | Avg SD | % Reduction
20 | 0.124 | 0.1497 | 0.0228 47.47
30 | 0.0999 | 0.1110 | 0.0065 56.47
40 | 0.0864 | 0.0958 | 0.0062 99.57
50 | 0.0769 | 0.0855 | 0.0059 61.65
60 | 0.0693 | 0.0772 | 0.0057 64.09
100 | 0.0575 | 0.0639 | 0.0048 67.06
150 | 0.0454 | 0.0552 | 0.0068 69.67

Performance Improvement: Table 6.3, “% Reduction” column, gives the
percentage of reduction in the average EERs achieved with impostor score based

normalization and fusion compared to the individual verifiers (Table 6.2). With
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normalization and fusion, we achieved 47.47 to 69.67 percent reduction in average
EERs over the individual verifiers. Thus, the impostor score based normalization
and fusion shows considerable promise in improving continuous verification EERs,
especially with low Ms (20, 30, 40, 50, and 60), which had less than one minute
verification delay in fusion experiments (each user on average typed between 13.42
seconds (when M = 20), and 46.09 seconds (when M = 60) to generate a verification
attempt). We excluded M = {300,350,500} in the fusion experiments because a
user on average typed for 227.64 seconds (when M = 300), 267.06 seconds (when
M = 350), and 380.75 seconds (when M = 500) to generate a verification attempt.
Verification delays with M = {300, 350, 500} are too high (and therefore impractical)

for continuous verification applications.

6.4.3 Results with Incorporating Rejection

In this experiment we incorporate rejection before fusion. We fused five verifier-
template pairs: (R, KH), (R, KI), (S, KH), (S, KI), and (A, KP)), with equal weight
(0.2) assigned to each pair. We used equal weights because we achieved the best results
with equal weights in the baseline fusion experiments. We present the performance
of three rejection methods: Order Statistic (OS), Otsu, and Gaussian. We measure
performance in terms of equal error rate obtained when z percent of genuine verification
attempts are rejected (i.e., EER at = percent genuine rejection). The parameters used
for obtaining EERs in this section are discussed in Section 6.3.2. As the size and
position of the reject regions change, different percentages of genuine and impostor

verification attempts are rejected. While rejection of an impostor attempt incurs no
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cost (and may even be desirable in multi-factor authentication applications where a
rejected attempt can be used to trigger a different authentication factor), rejecting
genuine verification attempts causes user inconvenience and incurs costs in terms of
re-authentication effort. Therefore, we evaluated the rejection methods using the
percentage of genuine rejection versus EER curves that plot the percentage of genuine
attempts erroneously rejected on the z-axis and the corresponding EERs on the y-axis.

Which Rejection Method Performed Better? In Figure 6.4, we plot
the average EERs achieved with the rejection methods at various percentages of
genuine rejections (i.e., average EERs were calculated when the percentage of genuine
rejections were between 0 and 2 percent, 2 and 4 percent, and so on, until 28 and 30
percent). Error bars indicating standard deviations are shown only for OS to avoid
cluttering the plots. Plots in Figure 6.4 clearly show that OS outperforms Otsu and
Gaussian i.e. OS achieved lower average EERs compared to Otsu and Gaussian (the
percentage of genuine rejections versus EER curves of OS are lower than Gaussian
and Otsu) for all Ms.

Performance Improvement over Individual Verifiers: Table 6.4 shows
the percentage of reduction in the average EERs achieved with the OS rejection
method in comparison to the average EERs of individual verifiers (Table 6.2), when
the percentage of genuine rejections are between 4 and 6, 8 and 10, 14 and 16, 20
and 22, and 28 and 30. In Table 6.4, we highlight the reduction in average EERs
achieved with low Ms (20, 30, 40, 50, and 60), which had less than one minute average
verification delay. The actual average EER values for all Ms are given in Figure 6.4.

Depending on the percentage of genuine attempts rejected, the OS rejection method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.13
5 0.12 4
= 0.1 1
g o
i Y A e
g [(M=20] T IITTNAL ST e XN
g o (YT — S S .
‘: 0.07) - Otsu 0.07] E
o 0.06 eGaussian 0.08] ...Otsu :
g 0.05] —0s 0.05 leGaussian 4
g o X
<o , ., ., ., ] oe4 B9 1 0 ]
0 (02] (48] (8,10] (12,94] (16,18] (20,22] (24,26] (28,30] 0 (0,2] (46] (8,10] (12,14] (16,98] (20,22] (24,26] (28,30]
Percentage Genuine Attempts Rejected Percentage Genuine Attempts Rejected
0.43, —r ——— 0.13 e o
o1t Otsu o ~Otsu 1
0.9r eGaussian o1 eGaussian 1
008 e, -0s 0.09 08 j
008t B e
pou]
.06
0.05}
o. i e A A i 1 1 A i 1 1 L Al i i ] 1 1 1 i i ' 1 1 i L 1 i L 1
0 (02] (48] (810] (12,14] (16,18] (20,22] (24,26] (28,30] 0 (0,21 (48] (8,10] (12,14] (16,8] (20,22] (24,26] (28,30}
Percentage Genuine Attempts Rejected Percentage Genuine Attempts Rejected
[ 4
-3 ]
[ 2 oo Y - T W N O e =
5 ]
E O ]
Woooas 0000 00 TTUINL L ] 7 At 004 R e, 1
B4 M=o 00 LITTNY N ] M G e 1
Socst LM=00] 2 TINS N1 e [MEq00] | RO e, 5\;
S e e NG Tpea M=100 ¢ T T
& °::: leGaussian Otsu
g 0_0'15 =08 eGaussian 1
Z om ~08

000502 (481 (B.40] (12.14] (16.18] (20.22] (24.26] (26.30]
Percentage Genuine Attempts Rejected

SOV R @6 B0 (214 (1610] (@22 (2426] (6.)
Percentage Genuine Attempts Rejected

[M=150]

Otsu 9
eGaussian
-0S

* (4:5] . (8.‘10] ’ (12:14] ’ (16:18] , (20:22] ' (24:26] I (28:30)

Percentage Genuine Attempts Rejected

Figure 6.4: Percentage of genuine rejections versus EERs of OS, Otsu, and Gaussian

methods with different M values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

achieved 59.97 to 86.74 percent reduction in average EERs compared to the individual

verifiers.

Table 6.4: Percentage of reduction in the average EERs achieved with OS rejection
method compared to the individual verifiers (in Table 6.2).

M % of Genuine Attempts Rejected
(4-6] | (8-10] | (14-16] | (20-22] | (28-30]
20 | 59.97 | 61.99 65.24 68.23 69.59
30 | 6497 | 67.23 70.52 72.86 75.3
40 | 68.11 | 70.79 | 74.15 76.94 80.17
50 | 69.19 | 72.31 | 76.14 78.99 81.39
60 | 73.03 | 75.72 78.07 81.19 86.74

Performance Improvement over Fusion of Verifiers: Table 6.5 shows
the percentage of reduction in the average EERs achieved with the OS rejection
method in comparison to impostor score based normalization and fusion (Table 6.3).
Depending on the percentage of genuine attempts rejected, the OS rejection method
achieved between 23.79 percent and 63.07 percent reduction in average EERs compared

to impostor score based normalization and fusion.

Table 6.5: Percentage of reduction in the average EERs achieved with OS
rejection method compared to the average EERs achieved with impostor score based
normalization and fusion (in Table 6.3).

M % of Genuine Attempts Rejected
(4°6] [ (8-10] | (14-16] | (20-22] [ (28-30]
20 | 23.79 | 27.64 33.82 39.51 42.1
30 | 19.52 | 24.71 32.28 37.66 43.25
40 | 21.11 | 27.73 36.05 42.95 50.94
50 | 19.65 | 27.78 37.77 45.21 51.45
60 | 24.89 | 32.38 38.93 47.61 63.07
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CHAPTER 7

CONCLUSIONS

In this dissertation, we propose (1) a new rejection method called the symmetric
rejection method for multi-stage biometric verification, (2) a new fusion framework
for multi-biometric verification, and (3) a new framework to reduce the equal error
rates of continuous keystroke verification with weak templates.

Compared to existing rejection methods, the symmetric rejection method has
two notable advantages: (1) it enables the system administrator to control the genuine
reject rate and (2) it allows us to calculate the reject region directly from scores
without the need to estimate the underlying probability density function. Experiments
performed on a four-stage biometric verification system demonstrate significant promise
of the symmetric rejection method in multi-stage biometric verification. Using the
symmetric rejection method, we achieved (1) a minimum false alarm rate of 0.0039,
which is 91.58 percent less than the equal error rate of the top performing individual
verifier, and (2) a minimum impostor pass rate of 0.0203, which is 56.16 percent less
than the equal error rate of the top performing individual verifier. We compared the
performance of the symmetric rejection method with two existing rejection methods:
(1) SPRT-based method and (2) Marcialis et al’s method. Results show that to

achieve the same value of area under the ROC curve (AUC), genuine users require
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less number of stages with the symmetric rejection method compared to SPRT-based
and Marcialis et al.’s rejection methods. This indicates that the symmetric rejection
method can provide better user convenience than the existing rejection methods.

The core of our proposed fusion framework is the new concept of “confident
reject region” which ensures that the confident unit of the framework incurs zero
false alarm rate and zero impostor pass rate. As a consequence, the proposed fusion
framework achieves better performance than the parallel fusion framework. This
advantage of the proposed fusion framework makes it applicable to very high security
applications. In addition, the proposed fusion framework provides convenience to
genuine users by allowing them to submit less number of biometric traits than the
parallel fusion framework. This advantage of the proposed fusion framework makes it
applicable to biometric applications that involve a large population of users or a great
number of biometric transactions. We evaluated our proposed fusion framework on
two multi-biometric verification systems. Experimental results provide a considerable
amount of evidence that the proposed fusion framework improves the performance over
the parallel fusion framework, and at the same time, provides a significant amount of
convenience to the genuine users.

Our proposed framework for continuous keystroke verification with weak
templates consists of impostor score based normalization, impostor score based
rejection, and fusion. We introduced a new formulation to incorporate reject option
in verification with weak templates and developed a new impostor score based
rejection method, called Order Statistic (OS) rejection method. We studied two more

impostor score based rejection methods—(1) Otsu and (2) Gaussian, and compared
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their performance with the OS rejection method. We experimented on a large dataset
of 1100 users and evaluated the rejection methods across a broad range of parameter
values. Results show that (1) all three rejection methods significantly reduce the
EERs (i.e. impostor score based rejection has considerable impact on reducing EERs
in continuous keystroke verification with weak templates), and (2) the OS rejection
method outperforms both Otsu and Gaussian in terms of error-reject trade-off.

In the future, we are interested to see how the proposed rejection methods
and fusion framework perform in general two class problems, for example, anomaly
detection, fraud detection, etc. In addition, we will work on finding new and interesting
human behavioral patterns and anomalies to address security issues in cyberspace and

human-computer interaction.
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APPENDIX A

THE GENERALIZED DERIVATION OF RELATIONSHIP
BETWEEN o; AND THE UPPER BOUND FOR
GENUINE REJECT RATE
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In this section, we derive the following relationship between o¢ and upper
bound for genuine reject rate: when ag is equal to pAg, where p is a rational number
such that 0 < p < 1, the upper bound for the genuine reject rate is pK.

We use Figure A.1 to explain the derivation. In Figure A.1, let B be the
EER-threshold and E;E, be the confusion region. A¢g is the proportion of genuine
scores in BE, and )\, is the proportion of impostor scores in E1B. Let p = £, where
g and m are positive integers such that ¢ < m. We divide BE; into m parts such that
the proportion of genuine scores in each part is % Similarly, we divide E; B into
m parts such that the proportion of impostor scores in each part is %nl Let bg,, bg,,
-+, bg,, be the proportions of genuine scores in m parts of EyB. Because fg(z) is

monotonically decreasing and f;(y) is monotonically increasing inside the confusion

region, bg,, bg,, - - -, bg,, are related as: bg, < bg, < -+ < bg,,.
Genuine (fs(x)) Impostor (fi(y))
me bGZ bGl

e /EN e
).1 ).1 2.] AG )-G }-G

Figure A.1: Dividing E;B and BE; into m parts.

Using the notation in Figure A.1, we can present the proportion of genuine

scores in the confusion region F1Es, K, as follows:

K=bg +bg,+- - +bg, + A (1.1)
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Now we will explain what happens when ag = pAg. Let AC be a symimetric
reject region with ag = phg = £Ag = q%na. Note that we present ag by ¢ times
i\ff. When og is equal to ¢ times ATnQ, following the symmetric rejection rule, oy is
equal to g times %nl As a result, the proportion of genuine scores in AB is equal to
be, + bg, + - - + bg,. Hence, using Figure A.1, the genuine reject rate is

GRR = Proportion of genuine scores in AC
= Proportion of genuine scores in AB + Proportion of genuine scores in BC
A
:bcl +bG2+..+qu+q__€
m
m
= —%{E(ba1 +bg, + - +bg,) + A}

m

:P{;(bcl +bg, +++-+bg,) + Ac}- (1.2)

Now we will prove that %(bg1 +bg, + - +bg,) < bg, +bg, + -+ bg,,.

If ¢ = m, both sides of the above statement become equal. Hence, the statement
is true for ¢ = m. Below, we prove by contradiction that the statement is true for
g <m.

For contradiction, we assume that 2 (bg, +bg, +- - +bg,) > bg, +bg,+- - -+ba,,-
This implies that

m(bGl + bGz +-0t qu) > Q(bGI + bGz +-e me)'

After algebraic manipulation, we get

(m - Q)(bGl + bGz +oee ot qu) > Q(qu-H + qu+2 +- 4+ me)'
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Note that bg,,, + bg,,, + - + bg,, consists of m — ¢ terms. Because bg, <

bg, < --- < bg,, it follows that bg,,, + bg,,, +--- + bg,, > (m — q)bg,,,. Therefore,
(m—q)(bg, +bg, + -+ bg,) > q(m - @)bg,,,.

Because q < m, it follows that m — q # 0. Hence, we can divide both sides by
m — ¢. Dividing by m — q, we get bg, + bg, + --- + bg, > qbg,,,. However, this is
impossible because bg, < bg, < --- < bg,,. Hence, the statement %(bg1 +bg, +--+
bg,) < bg, +bg, + - - + bg,, is true. Therefore, we can rewrite (1.2) as follows:

GRR < p(bg, +bg, + -+ + bg,, + Ag). (1.3)

Or alternatively, GRR < pK because K = bg, + bg, + -+ + bg,, + Ag. That is, the

upper bound for the genuine reject rate is pK.
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Below, we show that FAR; < EER;. The proof of IPR; < EER,; is similar.
First, we introduce two notations. Let PQ be any region in the scoreline [Z, O]. Then
Pg pq refers to the proportion of genuine scores in PQ), which is calculated by (the
number of genuine scores in PQ)/(total number of genuine scores). Similarly, P; pg
refers to the proportion of impostor scores in PQ), which is calculated by (the number
of impostor scores in PQ)/(total number of impostor scores).

We use Figure 4.1 to explain the proof. In Figure 4.1, let genuine scores and
impostor scores originate from verifier v;, AC be the symmetric reject region, E;FE,
be the confusion region, and B be the threshold where EFR; occurs.

Using (2.2), the false alarm rate obtained with the symmetric rejection method
is

# of genuine scores in C'E»

FAR] =
' Total # of genuine scores — # of genuine scores in AC
_ Proportion of genuine scores in CE,
~ 1 — Proportion of genuine scores in AC
_ _Focn
1 - Pg ac
P
- G,CE; . (21)
1 — Pg.ap — Ps,Bc
P,
Let —222 - (2.2)
Pg, o

Because C lies inside (B, E], it follows that px > 1. From (2.2), we get Pgpc =
Pg E, /1. Hence, we can present the numerator on the right side of (2.1) as follows:

P —1)P
PG,CE2 = PG,BE2 _ PG,BC = PG,BEQ _ G',U/BE2 — (u‘ l)jl G,BE'z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Therefore, we can rewrite (2.1) as:

(p —1)Pg BE,

FAR! = . 2.3
1 — Pg g, — 1P a8 23)

Because FER; occurs at threshold B,
EER,, = PI,ElB = PG,BEQ' (24)

We will prove that FAR, < EER,;. For contradiction, we assume that FAR] > FER,.

This implies that

(1 —1)Ps,BE,
p— Pgpe, — nPg .aB

> Pe BE,.

After algebraic manipulation, we get

p—1>p— Pgpe, — 1P aB

or alternatively,

1 — Pg BE, < pFg a8 (2.5)

Because Z E, contains all genuine scores, Pg zg, = 1. Hence, 1 — Pg pg, = Pg zE, —

Pg BE, = Pg,zp. Therefore, we can rewrite (2.5) as follows:

Ps z8 < pFPg aB. (2.6)

Because fg(z) is monotonically decreasing and f;(y) is monotonically increasing
inside F1 B, the following statement is true:

P P,
G.E:B -, T1EB (2.7)

Poa ~ Pras
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From (2.4), Pr g, = Ps,pE, and using the symmetric rejection rule, P 45 =
PG,BC- Then,

Pre.s  Pepe,
Prap  Pepe

Hence, we can rewrite (2.7) as follows:

P
G,E1B > 7

Ps.aB

or alternatively,

Ps e B > pFPg aB-

Because FB is a part of ZB (see Figure 4.1), Ps zp > Fo g,p- Because Pg zp >
FPspp and Pgpp > pPgap, it follows that Pgzp > pFPgap. However, this

contradicts (2.6). Therefore, we conclude that FAR] < EER,.
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PROOF THAT THE IMPOSTOR PASS RATE OBTAINED
BY OUR PROPOSED FUSION FRAMEWORK IS LESS
THAN OR EQUAL TO THE IMPOSTOR PASS RATE
OBTAINED BY THE PARALLEL FUSION FRAMEWORK
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For simplicity, we prove the statement using a specific number of impostors
(the proof is similar for any number of impostors). We use Figure C.1 and Figure C.2

to explain the proof.

Received verification Received verification
decision by the confident unit decision by the parallel unit

Received wrong
verification decision

Group | @ """" Group Il

\ {

# of impostors declared # of impostors declared
as genuine user = 0 as genuine user = 2

impostor Pass = (0+2)/10 = 0.2

Figure C.1: Calculation of impostor pass rate obtained by the proposed fusion
framework.

Received wrong
Group | Group Il yerification decision

______

Is, Iy, ls,{ls, 1o}

& v

# of impostors declared # of impostors declared
as genuine userz2 0 as genuine user =2

Impostor pass rate 2 (0+2)/110=0.2

Figure C.2: Calculation of impostor pass rate obtained by the parallel fusion
framework.

Let I, I, I3, 1y, Is, Ig, Iy, Iy, Iy, and Iy be 10 impostors. First, we calculate

the impostor pass rate obtained by the proposed fusion framework. We use Figure
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C.1 in this regard. When we apply the proposed fusion framework, let impostors I,
I, I, I, and I5 receive verification decision by the confident unit and the remaining
impostors Ig, Iz, Is, Iy, and I receive verification decision by the parallel unit of
the framework. We define two groups of impostors on the basis of the verification

decisions given by the proposed fusion framework:

e Group I: The impostors who receive verification decision by the confident unit.
In Figure C.1, Group I consists of impostors I, I, I3, I, and I.
e Group II: The impostors who receive verification decision by the parallel unit.

In Figure C.1, Group II consists of impostors Ig, I, Ig, I, and Iho.

Because the confident unit incurs zero impostor pass rate, the number of
impostors in Group I erroneously declared as genuine user is zero. However, because
the parallel unit may give some wrong verification decisions, the number of impostors
in Group II erroneously declared as genuine user is greater than or equal to zero. Let
the parallel unit declare the impostors Iy and I;g as genuine user (for clarity, impostors
Iy and Iy are enclosed by a dotted circle in Figure C.1). Hence, the total number of
impostors declared as genuine user by the proposed fusion framework is equal to (0+2)
or 2. Therefore, the impostor pass rate obtained by the proposed fusion framework is
equal to 2/10 or 0.2.

Now, we calculate the impostor pass rate obtained by the parallel fusion
framework. We use Figure C.2 in this regard.

In Figure C.1, we apply parallel fusion separately on Group I and Group II.
Because parallel fusion may give some wrong verification decisions, when we apply

parallel fusion on Group I, the number of impostors in Group I erroneously declared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

as genuine user is greater than or equal to zero. When we apply parallel fusion on
Group II, we achieve exactly the same result as we achieve by applying the parallel
unit of the proposed framework on Group II, i.e., the impostors Iy and I3 receive the
wrong verification decision. Hence, the total number of impostors declared as genuine
user by the parallel fusion framework is greater than or equal to two. Therefore, the
impostor pass rate obtained by the parallel fusion framework is greater than or equal

to 2/10, i.e., greater than or equal to 0.2.
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LOUISIANA TECH
UNIVERSITY

OFFICE OF UNIVERSITY RESEARCH
MEMORANDUM

TO: Dr. Vir Phoha
FROM: Dr. Les Guice, V.P. for Research & Development

SUBJECT: Human Use Committee Review

DATE: November 19, 2012

RE: Approved Continuation of Study HUC 416 with
Attached Amendments

TITLE: “Studies Related to the use of

Keystroke Dynamics as a Biometric”
HUC- 416 Adding Amendment Dated October 30, 2012

The above referenced study has been approved as of November 19, 2012 as a
continuation of the original study that reccived approval on Scptember 7, 2008. This
project will need to receive a continuation review by the IRB if the project,
including collecting or analyzing data, continues beyond November 19, 2013. Any
discrepancies in procedure or changes that have been made including approved changes
should be noted in the review application. Projects involving NIH funds require annual
education training to be documented. For more information regarding this, contact the
Office of University Research.

You are requested to maintain written records of your procedures, data collected, and
subjects involved. These records will need to be available upon request during the
conduct of the study and retained by the university for three years after the conclusion
of the study. If changes occur in recruiting of subjects, informed consent process or in
your research protocol, or if unanticipated problems should arise it is the Researchers
responsibility to notify the Office of Research or IRB in writing. The project should be
discontinued until modifications can be reviewed and approved. )

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.Q. BOX3092 « RUSTON, LA 71272 « TELEPHONE (318) 257-5075 » FAX (318) 257-5079
AN EQUAL OPPORTUNITY UNIVERSITY
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L)

LOUISIANA TECH
UNIVERSITY

OFFICE OF UNIVERSITY RESEARCH
MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research
SUBJECT: Human Use Committee Review
DATE: March 1, 2010

RE: Approved Continuation of Study HUC 416
Changing Number of Subjects from 500 to 2000

TITLE: “Studies Related to the use of Keystroke Dynamics as a Biometric”
# HUC- 416

The above referenced study has been approved as of March 1, 2011 as a continuation of
the original study that received approval on September 7, 2008. This project will need
to receive a continuation review by the IRB if the project, including collecting or
analyzing data, continues beyond March 1, 2012. Any discrepancies in procedure or
changes that have been made including approved changes should be noted in the review
application. Projects involving NIH funds require annual education training to be
documented. For more information regarding this, contact the Office of University
Research.

You are requested to maintain written records of your procedures, data collected, and
subjects involved. These records will need to be available upon request during the
conduct of the study and retained by the university for three years after the conclusion
of the study. If changes occur in recruiting of subjects, informed consent process or in
your research protocol, or if unanticipated problems should arise it is the Rescarchers
responsibility to notify the Office of Research or IRB in writing. The project should be
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.O. BOX 3092 » RUSTON, LA 71272 » TELEPHONE (318) 257-5075 « FAX (318) 257-5079
AN EQUAL OPPORTUNTTY UNIVERSITY
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LOUISIANA TECH
UNIVERSITY

OFFICE OF UNIVERSITY RESEARCH MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research

SUBJECT: Human Use Committee Review

DATE: September 28, 2009

RE: Approved Continuation of Study HUC 416

TITLE: “Studies Related to the use of Keystroke Dynamics as a Biometric”
#HUC- 416

The above referenced study has been approved as of September 16, 2009 as a
continuation of the original study that received approval on September 7, 2008. This
project will need to receive a continuation review by the IRB if the project,
including collecting or analyzing data, continues beyond September 16, 2010. Any
discrepancies in procedure or changes that have been made including approved changes
should be noted in the review application. Projects involving NIH funds require annual
education training to be documented. For more information regarding this, contact the
Office of University Research.

You are requested to maintain written records of your procedures, data collected, and
subjects involved. These records will need to be available upon request during the
conduct of the study and retained by the university for three years after the conclusion
of the study. If changes occur in recruiting of subjects, informed consent process or in
your research protocol, or if unanticipated problems should arise it is the Researchers
responsibility to notify the Office of Research or IRB in writing. The project should be
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 257-4315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

P.0. BOX 3092 * RUSTON, LA 71272 » TELEPHONE (318} 257-5075 ¢ FAX (318} 257-5079
AN EQUAL OPPORTUNITY UNIVERSITY
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LOUISIANA TECH
UNIVERSITY

OFFICE OF UNIVERSITY RESEARCH

MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Rescarch
SUBIJECT: HUMAN USE COMMITTEE REVIEW
DATE: September 16, 2008

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed study
cntitled:
“Studics Related to the use of Keystroke Dynamics as a Blometric”

# HUC-416

The proposed study’s revised procedures were found to provide reasonable and adequate safeguards
against possible risks involving human subjects. The information to be collected may be personal in
nature or implication. Therefore, diligent care needs to be taken to protect the privacy of the participants
and to assure that the data are kept confidential. Informed consent is a critical part of the research
process. The subjects must be informed that their participation is voluntary, It is important that consent
materials be presented in a language understandable to every participant. If you have participants in your
study whose first language is not English, be sure that informed conscnt materials are adequately
explained or translated. Since your reviewed project appears to do no damage 1o the participants, the
Human Use Committee grants approval of the involvement of human subjects as outlined.

Projects should be renewed annually. This approval was finalized on September 4, 2008 and this project
will need to receive a continaation review by the IRB if the project, including data analysis, continues
beyond September 4, 2009. Any discrepancies in procedure or changes that have been made including
approved changes should be noted in the review application. Projects involving NIH funds requirc annual
education training to be documented. For morc information regarding this, contact the Office of
University Research.

You are requested to maintain written records of your procedures, data collected, and subjects involved.
These records will need 1o be available upon request during the conduct of the study and retained by the
university for three years after the conclusion of the study. If changes occur in recruiting of subjects,
informed consent process or in your rescarch protocol, or if unanticipated problems should arise it is the
Rescarchers responsibility to notify the Office of Research or IRB in writing. The project should be
discontinued until modifications can be reviewed and approved.

If you have any questions, please contact Dr. Mary Livingston at 2574315,

A MEMBER OF THE UNIVERSITY OF LOUISIANA S8YSTEM

P.O. BOX 3092 « RUSTON, LA 71272 » TELEPHONE (318) 257-5075 ¢ FAX (318) 257.5079
AN EQUAL OPPORTUNITY UNIVERSITY
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LOUISIANA TECH
UNIVERSITY

OFFICE OF UNIVERSITY RESEARCH
MEMORANDUM

TO: Dr. Vir Phoha

FROM: Barbara Talbot, University Research
SUBJECT: HUMAN USE COMMITTEE REVIEW
DATE: September 17, 2007

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed
study entitled:
“Studies Related to the use of Keystroke
Dynamics as a Biometric

# HUC-416

The proposed study’s revised procedures were found to provide reasonable and adequate safeguards
against possible risks involving human subjects. The information to be collected may be personal in
nature or implication. Therefore, diligent care needs to be taken to protect the privacy of the participants
and to assure that the data are kept confidential. Informed consent is a critical part of the research
process. The subjects must be informed that their participation is voluntary. It is important that consent
materials be presented in a language understandable to every participent. If you have participants in your
study whose first language is not English, be sure that informed consent materials are adequately
explained or translated. Since your reviewed project appears to do no damage to the participants, the
Human Use Committee grants approval of the involvement of human subjects as outlined.

Projects should be renewed annually. This approval was finalized on Septesber 7, 2007 and this project
will need to receive a continuation review by the IRB if the project, including data analysis, continues
beyond September 7, 2008. Any discrepancies in procedure or changes that have been made including
approved changes should be noted in the review application. Projects involving NIH funds require annual
education training to be documented. For more information regarding this, contact the Office of
University Rescarch.

You are requested to maintain written records of your procedures, data collected, and subjects involved.
These records will need to be available upon request during the conduct of the study and retained by the
university for three years after the conclusion of the study. If changes occur in recruiting of subjects,
informed consent process or in your research protocol, or if unanticipated problems should arise it is the
Researchers responsibility to notify the Office of Research or IRB in writing. The project should be
discontinued until modifications can be reviewed and approved.

If you have any questions, plcase contact Dr. Mary Livingston at 257-4315.

A MEMBER OF THE UNIVERSITY OF LOUISIANA SYSTEM

£.0. BOX 3092 » RUSTON, LA 71272 « TELEPHONE (318) 257-5075 » FAX 318) 257-5079
AN EQUAL OFPORTUNITY UNIVERSITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[1] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal
biometric systems,” Pattern Recognition, vol. 38, no. 12, pp. 2270 — 2285,
December 2005.

[2] A. Ross, K. Nandakumar, and A. Jain, Handbook of Biometrics. Springer-Verlag,
2006.

[3] A. Ross and A. Jain, “Information fusion in biometrics,” Pattern Recognition

Letters, vol. 24, pp. 2115-2125, 2003.

[4] S. Prabhakar and A. K. Jain, “Decision-level fusion in fingerprint verification,”
Pattern Recognition, vol. 35, no. 4, pp. 861 — 874, 2002.

(5] K.-A. Toh, X. Jiang, and W.-Y. Yau, “Exploiting global and local decisions for
multimodal biometrics verification,” Signal Processing, IFEFE Transactions on,
vol. 52, no. 10, pp. 3059-3072, October 2004.

[6] R. Brunelli and D. Falavigna, “Person identification using multiple cues,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 17, no. 10, pp.
955-966, October 1995.

[7] B. Ulery, A. Hicklin, C. Watson, W. Fellner, and P. Hallinan, “Studies of biometric
fusion—executive summary,” National Institute of Standards and Technology, Tech.
Rep. 7346, September 2006.

i

[8] A. Kumar and D. Zhang, “Personal recognition using hand shape and texture,
Image Processing, IEEE Transactions on, vol. 15, no. 8, pp. 2454-2461, August
2006.

[9] K. Nandakumar, Y. Chen, S. C. Dass, and A. Jain, “Likelihood ratio-based
biometric score fusion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, pp. 342-347, 2008.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

[10] M. He, S. Horng, P. Fan, R. Run, R. Chen, J. Lai, M. Khan, and K. Sentosa,
“Performance evaluation of score level fusion in multimodal biometric systems,”
Pattern Recognition, vol. 43, no. 5, pp. 1789 - 1800, 2010.

[11] F. Yang and B. Ma, “A new mixed-mode biometrics information fusion based-on
fingerprint, hand-geometry and palm-print,” in Image and Graphics, 2007. ICIG
2007. Fourth International Conference on, pp. 689-693, August 2007.

[12] M. Monwar and M. Gavrilova, “Fes: A system for combining face, ear and
signature biometrics using rank level fusion,” in Information Technology: New
Generations, 2008. Fifth International Conference on, pp. 922-927, April 2008.

[13] L. Nanni and A. Lumini, “Ensemble of multiple palmprint representation,” Ezpert
Systems with Applications, vol. 36, no. 3, Part 1, pp. 4485 — 4490, 2009.

[14] E. Marasco and C. Sansone, “Improving the accuracy of a score fusion approach
based on likelihood ratio in multimodal biometric systems,” in Image Analysis

and Processing, ser. LNCS, vol. 5716, pp. 509-518, 2009.

[15] A. Lumini and L. Nanni, “When fingerprints are combined with iris - a case
study: Fvc2004 and casia.” International Journal of Network Security, vol. 4,
no. 1, pp. 27-34, 2007.

[16] J. Fierrez-Aguilar, L. Nanni, J. Ortega-Garcia, R. Cappelli, and D. Maltoni,
“Combining multiple matchers for fingerprint verification: a case study in fvc2004,”
in Proc. 13th IAPR Intl. Conf. on Image Analysis and Processing, ICIAP, ser.
LNCS, vol. 3617. Springer, pp. 1035-1042, September 2005.

(17] C. Bergamini, L. Oliveira, A. Koerich, and R. Sabourin, “Combining different
biometric traits with one-class classification,” Signal Processing, vol. 89, no. 11,
pp- 2117 - 2127, 2009.

[18] R. Smelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large scale evaluation
of multimodal biometric authentication using state-of-the-art systems,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 450-455,
2005.

[19] J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzalez-Rodriguez, and J. Bigun,
“Discriminative multimodal biometric authentication based on quality measures,”
Pattern Recognition, vol. 38, no. 5, pp. 777 - 779, 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

[20] Y. Ma, B. Cukic, and H. Singh, “A classification approach to multi-biometric
score fusion,” in Audio- and Video-Based Biometric Person Authentication, ser.
Lecture Notes in Computer Science. Springer, vol. 3546, pp. 484-493, 2005.

[21] P. Griffin, “Optimal biometric fusion for identity verification,” Identix Research,
Tech. Rep. RDNJ-03-0064, 2004.

[22] C. Sansone and M. Vento, “Signature verification: Increasing performance by
a multi-stage system,” Pattern Analysis and Applications, vol. 3, pp. 169-181,
2000.

[23] G. L. Marcialis, F. Roli, and L. Didaci, “Personal identity verification by serial
fusion of fingerprint and face matchers,” Pattern Recognition, vol. 42, no. 11, pp.
2807 — 2817, 20009.

[24] G. Marcialis, P. Mastinu, and F. Roli, “Serial fusion of multi-modal biometric

systems,” in Biometric Measurements and Systems for Security and Medical
Applications (BIOMS), 2010 IEEE Workshop on, pp. 1 -7, September 2010.

[25] Z. Akhtar, G. Fumera, G. Marcialis, and F. Roli, “Evaluation of serial and
parallel multibiometric systems under spoofing attacks,” in Biometrics: Theory,
Applications and Systems (BTAS), 2012 IEEF Fifth International Conference on,
pp. 283 -288, September 2012.

[26] L. Allano, B. Dorizzi, and S. Garcia-Salicetti, “Tuning cost and performance in
multi-biometric systems: A novel and consistent view of fusion strategies based
on the sequential probability ratio test (sprt),” Pattern Recogn. Lett., vol. 31,
no. 9, pp. 884-890, July 2010.

[27] K. Takahashi, M. Mimura, Y. Isobe, and Y. Seto, “A secure and user-friendly
multimodal biometric system,” Proceedings of the SPIE, vol. 5404, pp. 12-19,
2004.

[28] T. Murakami, K. Takahashi, and K. Matsuura, “Towards optimal countermeasures

against wolves and lambs in biometrics,” in Biometrics: Theory, Applications
and Systems (BTAS), 2012 IEEE Fifth International Conference on, pp. 69 -76,
September 2012.

[29] C. K. Chow, “On optimum recognition error and reject tradeoff,” Information
Theory, IEEE Transactions on, vol. 16, no. 1, pp. 41-46, January 1970.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

[30] G. Fumera, F. Roli, and G. Giacinto, “Reject option with multiple thresholds,”
Pattern Recognition, vol. 33, pp. 2099-2101, 2000.

[31] F. Tortorella, “An optimal reject rule for binary classifiers,” in Proceedings of
the Joint IAPR International Workshops on Advances in Pattern Recognition.
London, UK: Springer-Verlag, pp. 611-620, 2000.

[32] C. M. Santos-Pereira and A. M. Pires, “On optimal reject rules and roc curves,”
Pattern Recogn. Lett., vol. 26, pp. 943-952, May 2005.

[33] P. L. Bartlett and M. H. Wegkamp, “Classification with a reject option using a
hinge loss,” J. Mach. Learn. Res., vol. 9, pp. 1823-1840, June 2008.

[34] M. Hossain, K. Balagani, and V. Phoha, “New impostor score based rejection
methods for continuous keystroke verification with weak templates,” in Biometrics:
Theory, Applications and Systems (BTAS), 2012 IEEE Fifth International
Conference on, pp. 251-258, 2012.

[35] T.C. W. Landgrebe, D. M. J. Tax, P. Paclik, and R. P. W. Duin, “The interaction
between classification and reject performance for distance-based reject-option
classifiers,” Pattern Recogn. Lett., vol. 27, pp. 908-917, June 2006.

[36] L. Allano, S. Garcia-Salicetti, and B. Dorizzi, “An adaptive multi-biometric
incremental fusion strategy in the context of bmec 2007,” in Control, Automation,
Robotics and Vision, 2008. ICARCYV 2008. 10th International Conference on, pp.
1144-1149, December 2008.

[37] D. Gunetti and C. Picardi. Keystroke analysis of free text. ACM Trans. Inf. Syst.
Secur., 8(3):312-347, August 2005.

[38] K. Killourhy and R. Maxion. Why did my detector do that?! predicting keystroke-
dynamics error rates. In Recent Adv. in Intrusion Detection, pages 256276,

Canada, 2010.

[39] E. Yu and S. Cho. Ga-svm wrapper approach for feature subset selection in
keystroke dynamics identity verification. In Intl. Joint Conf. on Neu. Nets., pages
22532257, 2003.

[40] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans.
on SMC, 9(1):62-66, 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

[41] “Biometric scores set,” November 7, 2011, retrieved January 17, 2014, from
Information Technology Laboratory, The National Institute of Standards and
Technology (NIST): http://www.nist.gov/itl/iad/ig/biometricscores.cfm.

[42] Q. Tao and R. Veldhuis, “Hybrid fusion for biometrics: Combining score-level and
decision-level fusion,” in 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Workshop on Biometrics, pp. 1-6, June 2008.

[43] S. Dass, K. Nandakumar, and A. Jain, “A principled approach to score level
fusion in multimodal biometric systems,” in Audio- and Video-Based Biometric
Person Authentication, ser. Lecture Notes in Computer Science. Springer, vol.
3546, pp. 1049-1058, 2005.

[44] B. Dubuisson and M. Masson. A statistical decision rule with incomplete
knowledge about classes. Pattern Recognition, 26(1):155 — 165, 1993.

(45] M. Hossain, K. Balagani, and V. Phoha, “On controlling genuine reject rate in
multi-stage biometric verification,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013 IEEE Conference on, pp. 194-199, June 2013.

[46] K. Rahman, K. Balagani, and V. Phoha, “Snoop-forge-replay attacks on
continuous verification with keystrokes,” Information Forensics and Security,
IEEE Transactions on, vol. 8, no. 3, pp. 528-541, March 2013.

[47] K. Rahman, K. Balagani, and V. Phoha, “Making impostor pass rates meaningless:
A case of snoop-forge-replay attack on continuous cyber-behavioral verification
with keystrokes,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Conference on, June 2011, pp. 31-38.

[48] V. Phoha and S. Joshi, “Method and system of Identifying users based upon free
text keystroke,” US Patent Number 8489635, 2013.

[49] A. Wald, Sequential Analysis, 1st ed. John Wiley and Sons, 1947.

[50] M. Girolami and C. He, “Probability density estimation from optimally condensed
data samples,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 25, no. 10, pp. 1253-1264, October 2003.

[51] S. Prabhakar and A. K. Jain, “Decision-level fusion in fingerprint verification,”
Pattern Recognition, vol. 35, pp. 861-874, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

[52] S. Dass, Y. Zhu, and A. Jain, “Validating a biometric authentication system:
Sample size requirements,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 28, no. 12, pp. 1902 —1319, December 2006.

[53] K. Killourhy and R. Maxion. Comparing anomaly-detection algorithms for
keystroke dynamics. In Intl. Conf. on Dependable Systems and Networks, pages
125-134, 2009.

[54] F. Bergadano, D. Gunetti, and C. Picardi. User authentication through keystroke
dynamics. ACM Trans. Inf. Syst. Secur., 5:367-397, November 2002.

[55] J. Ilonen, “Keystroke dynamics,” Advanced Topics in Information Processing -
Lecture, 2003.

[56] A. Kumar, “Incorporating cohort information for reliable palmprint authentica-
tion,” in Computer Vision, Graphics Image Processing, 2008. ICVGIP ’08. Sizth
Indian Conference on, pp. 583 —590, December 2008.

[57] M. E. Schuckers, “Using the beta-binomial distribution to assess performance of
a biometric identification device,” International Journal of Image and Graphics,
vol. 3, no. 3, pp. 523-529, July 2003.

[58] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of Mathematical
Statistics, vol. 16, no. 2, pp. 117-186, 1945.

[59] J. Q. Li and A. R. Barron, “Mixture density estimation,” in Advances in Neural
Information Processing Systems 12, pp. 279-285, 1999.

[60] A. Rakhlin, D. Panchenko, and S. Mukherjee, “Risk bounds for mixture density
estimation,” ESAIM: Probability and Statistics, vol. 9, pp. 220-229, October
2005.

[61] J. Huang and C. Ling, “Using auc and accuracy in evaluating learning algorithms,”
Knowledge and Data Engineering, IEEE Transactens on, vol. 17, no. 3, pp. 299~
310, 2005.

[62] H. A. Guvenir and M. Kurtcephe, “Ranking instances by maximizing the area
under roc curve,” IEEFE Transactions on Knowledge and Data Engineering, vol. 25,
no. 10, pp. 2356-2366, 2013.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

[63] R. Wang and K. Tang, “Feature selection for maximizing the area under the
roc curve,” in Data Mining Workshops, 2009. ICDMW ’09. IEEE International
Conference on, pp. 400-405, 2009.

[64] C. Léger and J. Romano, “Bootstrap choice of tuning parameters,” Annals of the
Institute of Statistical Mathematics, vol. 42, pp. 709-735, 1990.

[65] T. Scheidat, A. Engel, and C. Vielhauer, “Parameter optimization for biometric
fingerprint recognition using genetic algorithms,” in Workshop on Mult. Sec., NY,
pp. 130-134, 2006.

[66] “Intel 64 and ia-32 architectures software developer’s manual, volume 2,
instruction set reference, a-z,” February, 2014, retrieved April 15, 2014, from
Intel: http://www.intel.com/content/dam/www/public/us/en/ documents/ man-
uals/ 64-ia-32-architectures-software-developer-instruction-set-reference-manual-
325383.pdf.

[67] “Processor instruction timings,” retrieved April 15, 2014, from ARM:
http://infocenter.arm.com/help/index.jsp?topic=/ com.arm.doc.ddi0337¢/ BAB-
BCJILhtml.

[68] J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez. Target
dependent score normalization techniques and their application to signature
verification. IEEE Trans. on SMC-Part C, 35(3):418 —425, 2005.

[69] N. Poh, T. Bourlai, J. Kittler, L. Allano, F. Alonso-Fernandez, O. Ambekar,
J. Baker, B. Dorizzi, O. Fatukasi, J. Fierrez, H. Ganster, J. Ortega-Garcia,
D. Maurer, A. A. Salah, T. Scheidat, and C. Vielhauer. Benchmarking quality-
dependent and cost-sensitive score-level multimodal biometric fusion algorithms.
Trans. Info. For. Sec., 4(4):849-866, December 2009.

[70] H. A. David. Ordered Statistics. Wiley, 1981.

[71] A. Sarma and D. Tufts. Robust adaptive threshold for control of false alarms.
IEEE Sig. Proc. Let., 8(9):261 —263, 2001.

[72] K. Balagani, V. Phoha, A. Ray, and S. Phoha. On the discriminability of keystroke
feature vectors used in fixed text keystroke authentication. Pattern Recog. Let.,
32(7), 2011.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2014

	Novel rejection methods and fusion approaches for multi-biometric verification
	Md Shafaeat Hossain

	tmp.1562163540.pdf.h9NMf

