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ABSTRACT

The emergence of an attractive vacuum force (Casimir force) between two purely 

dielectric materials can lead to an increase in the friction and the stiction effects in 

nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high 

practical importance that the conditions for the reversal of the Casimir force from attractive 

to repulsive are identified. Although the repulsive Casimir force has been considered for 

high dielectric materials as an intermediate (between the plates) medium, so far no realistic 

system has been proposed that can demonstrate quantum levitation with air/vacuum as a 

host medium. Since air is the natural environment for almost all nano- and microscopic 

devices, it is therefore imperative to seek a better understanding of the nature of the Casimir 

force under such ambient conditions. In this thesis, the conditions for achieving quantum 

levitation at an arbitrary temperature are investigated by considering a simple configuration 

consisting of two parallel plates separated by air. The proposed parallel-plate designs are 

based on artificial nano-engineered electromagnetic materials commonly referred to as the 

electromagnetic metamaterials.

In the case of an ideal system consisting of non-dispersive plates, we have 

uncovered the existence of six universal Casimir force types. We have also derived an 

explicit necessary condition for Casimir force reversal as a function of the non-retarded 

specular functions of the plates. By introducing a modification of the Lifshitz theory, we 

have performed an extensive investigation of the Casimir force for general dispersive



magneto-dielectric plates. Simple necessary and sufficient conditions for force reversal 

have been derived that can serve as a useful tool in designing quantum levitation systems. 

Based on the sufficient condition, the complete parametric domain for the Casimir force 

repulsion has been identified. A strongly magnetic response for at least one of the plates is 

required to achieve quantum levitation with the air as an intermediate medium.

To achieve magnetism at high frequencies, we have considered three potential 

metamaterial designs based on the split ring resonators (SRRs), the parallel-wires, and the 

Ni-polystyrene nanocomposites. The SRRs and the parallel-wires composites are 

“diamagnetic”, whereas the Ni-polystyrene nanocomposites are paramagnetic in nature. 

By combining the above para- and diamagnetic metamaterial plates, we have demonstrated 

practically feasible designs of a quantum levitation system. If successfully implemented, 

the proposed designs could find applications in the frictionless bio-fluid transport devices, 

the micro and nano-accelerators, and as the coatings for an ultra-clean room environment.
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CHAPTER 1

INTRODUCTION

1.1 Casimir Force

Casimir force is a quantum force between two neutral objects separated by 

distances ranging from a few nanometers up to tens of micrometers. The force appears due 

to an imbalance in the total number of vacuum fluctuation modes in-between and on either 

side of the objects. The Casimir force was first predicted to exist between two particles by

H. G. B. Casimir and D. Polder in 1947 [1],

According to the van der Waals theory, two neutral particles are attracted to each 

other (or repelled away) due to the interaction of the fluctuating dipole field that is inherent 

to any neutral particle [2-6]. The electromechanical charge fluctuations in the neutral 

particles can be induced by the quantum zero-point fluctuations in the energy. Generally, 

the corresponding interaction energy between the particles follows a power law ~ 1 /d 6, 

where d is the separation distance between the objects. This is valid under the assumption 

that the separation distance is much larger than the size of the particle a and much smaller 

than the wavelength A under consideration, which usually corresponds to the energy 

difference between the ground level and the first excited level states of the atomic 

constituents (A »  d »  a). In this case, the dipole field interaction between multiple 

particles is not considered [1-5, 7].

1
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However, when the separation distance is comparable to or greater than the 

wavelength (d > A), the finite time the dipole field takes to travel from one particle to the 

other needs to be included in the calculation, and as a result, the interaction energy falls 

rapidly. This phenomenon is known as retardation effect. Hence, with further increase in 

the separation distance d »  X, the retardation effect becomes important and the interaction 

energy falls rapidly as ~1 / d 7 (instead o f ~ l / d 6 as per van der Waals interaction). Casimir 

and Polder observed this effect for a first time for colloidal particles. Hence the Casimir 

force between particles is also called a retarded van der Waals interaction [1-3, 7].

Based on their observations, Casimir and Polder argued that the force is due to the 

vacuum fluctuation modes that are responsible for inducing charge fluctuations in the 

otherwise neutral atoms. The quantum fluctuating field can be viewed as an ensemble of 

virtual photons that are created by the emergence and consequent annihilation of virtual 

particles such as quarks, anti-quarks, and gluons in a short period of time of the order of 

the Planck’s time (tp~5.32 * 10~44s) [8]. In a later study, Casimir considered a system 

made of two parallel conducting plates [9]. Similar to the case of two neutral particles, he 

observed the above mentioned retardation effect between the plates, with the vacuum force 

falling rapidly as 1 /d 4 instead of 1 /d 3. Casimir provided a theory for this particular case 

assuming semi-infinite plates with thickness t much larger than the plate separation 

distance d « t  and the thermal equilibrium for the system.

The nature of the Casimir force, whether attractive or repulsive, mainly depends on 

the object’s material constituents, separation distance, shape, and temperature. It is 

important to note that in the literature a number of interactions are commonly referred to
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as the Casimir effect and to clarify the distinction between them, we define them as 

follows [3, 6, 7]:

1. Retarded van der Waals interaction: Interaction between atoms or molecules, 

with a separation distance much larger compared to the relevant wavelength.

2. Casimir-Polder interaction: Interaction between an atom and a surface of a bulk 

material, usually a semi-infinite plate.

3. Casimir interaction: Interaction between two neutral material bodies.

The Casimir force is a striking example of the second quantization of the zero-point 

field and can be better understood using quantum field theory (QFT). According to the 

QFT, the vacuum field may be envisioned as interconnected oscillators present at each and 

every point in space (first quantization of the vacuum field). The strength of the vacuum 

field relates to the amplitudes of the oscillations. According to the second quantization of 

harmonic oscillators, the energy is quantized. The energy quantization leads to a nonzero 

ground state energy E = ha)f 2 of the harmonic oscillators, also called the vacuum state. 

In order to determine the total energy of all vacuum fluctuations in space, one needs to 

perform an infinite summation. Hence, the total energy of the vacuum field is ill defined 

(infinite) and cannot be measured directly without an obstruction (an object). It is only 

possible to measure the difference in the vacuum force between two or more objects. This 

is because, in the case of a single object, the vacuum energy on either side of the object is 

the same and hence the net force acting on the object is zero. The presence of conducting 

and/or dielectric entities splits the physical space into various domains with each domain 

having infinite, but different, expectation values of the zero-point energy. The difference
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in the expectation values between the domains, however, can be finite and may result in 

the manifestation of a force between them, the Casimir force [1, 3, 7,10,11].

In 1948, Casimir and Polder proposed a simple theory that described the particle- 

particle interactions (retarded van der Waals interaction) and plate-particle interactions 

(Casimir-Polder interactions) [1]. Later in the same year, Casimir investigated the force 

between two uncharged parallel metal plates and provided a simple but elegant theory [9]. 

According to Casimir, the force is due to the impact of the object’s material boundaries on 

the zero-point energy fluctuations existent ubiquitously in space. The force is created due 

to the imbalance in the availability of vacuum fluctuations in-between and on either side 

of the plates. When two parallel plates are placed in the vacuum and separated by a 

distance d, only vacuum fluctuation of certain modes with wavelength limited by A < 2d 

can exist in between the plates, whereas vacuum fluctuations of all energies (wavelengths) 

exist on either side of the plates [9].

To clearly understand the origin of the Casimir force, next we review the concept 

of vacuum fluctuation modes in between two plates (similar to the case of the 

electromagnetic wave in a parallel plate waveguide).

1.2 Vacuum Fluctuations

According to classical electrodynamics, when there are no sources (charge and 

current), the energy associated with the system is zero (E = 0). The situation, however, is 

rather different when considered from the quantum electrodynamics (QED) point of view. 

According to QED, the minimum or the so-called zero-point energy of an oscillator is E = 

ha)/2, where h is the reduced Plank constant and a) is the angular frequency [12]. Thus,
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the free space with no material boundary constraints is comprised of a continuum of 

vacuum fluctuations modes with all possible energies (E -> 0 to oo).

The vacuum fluctuations can be considered as creation and subsequent annihilation 

of the virtual particles in an extremely short time in the range of the Planck time. This is a 

process that is a direct consequence of the Heisenberg uncertainty principle which states 

that

AE At > Eq. 1.1

or the product between the uncertainty in the energy and the time can never be less 

than ft/2 [12].

Figure 1.1 provides a rough depiction of the vacuum fluctuations as being a 

compendium of modes having different energies and existing all over the space. According 

to the law of conservation of energy, energy is neither created nor destroyed and the total 

energy remains constant. Since the vacuum fluctuations are emergent in space, it may seem 

that their existence violates the conservation of energy. However, as the vacuum 

fluctuations are extremely short lived, all energy perturbations are within the constraint of 

the Heisenberg principle and therefore the conservation of energy is not violated in any 

observable manner.
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Figure 1.1: Illustration which exemplifies the fact that, in free space, fluctuating modes 
of virtually arbitrary energies (depicted with different colors) can be manifested 
simultaniously [13].

The vacuum field was an abstract idea before the discovery o f  the Casimir effect. 

Furthermore, apart from the Casimir effect, the vacuum fluctuations have other observable 

consequences that could be measured in experiments. For instance, the decay of an electron 

from excited energy level to ground state through spontaneous emission of a photon is due 

to the vacuum fluctuations. Without the notion of fluctuating fields and the Heisenberg 

uncertainty principle, the electron will remain in excited state for an infinitely long time. 

The process can thus be understood as being due to the perturbation introduced by the 

vacuum field on the electron at the excited state which leads to a transition to the ground 

state by radiation of a photon [14, 15].

In addition, the Lamb shift is one of the consequences of the vacuum field. The 

Lamb shift is the small energy difference between 2S1/2 and 2 P1/2 orbitals of the hydrogen 

atom. According to Dirac, even though the energy levels of the 2S1/ 2 and 2P1/ 2 orbitals
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are supposed to be the same, due to the interaction of electrons with vacuum fluctuations, 

there is a minor shift in the energy levels of the orbitals 2Sx/2 and 2P1/2 [16].

1.3 Casimir Force Between Two Parallel Metal Plates

The Casimir effect occurs whenever a break of symmetry occurs in a given system. 

For example, when two parallel metal plates are placed in a vacuum and separated by a 

distance d, only vacuum fluctuations of certain modes with a maximum wavelength limited 

to 2d can exist in between the plates, whereas vacuum fluctuations of all energies exist on 

either side of the plates. The imbalance of the number of vacuum fluctuation modes in 

between and on either side of the plates is due to the boundaries of the plates [3,5,9, 11, 

17]-

As a result, the pressure due to the zero point fluctuation outside the plate will 

surpass that due to the fluctuating modes in between the plates. Concurrently, this radiation 

pressure imbalance pushes the two plates together and is manifested as a vacuum force. 

This force is generally attractive and mainly depends on the plate’s optical properties, 

separation distance, and temperature. Figure 1.2 illustrates schematically the imbalance in 

the vacuum fluctuations modes when two parallel metal plates are placed in a vacuum. 

Similar to Figure 1.1, in Figure 1.2 the vacuum fluctuations of different frequencies are 

depicted as bubbles of different colors and sizes that correspond to different energies and 

wave vectors. The modes with low energies are depicted with red colors while the high 

energy modes are shown as blue.
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Figure 1.2: Parallel semi-infinite metal plates separated by a distance d with vacuum 
fluctuations in between and on either side of the plates.

The net force per unit area (vacuum pressure) was first derived by Casimir for two 

perfectly conducting plates at absolute zero and is given as [9],

n2flc r  ,  p  —-------- Eq. 1.2
240d4'

The Casimir pressure is inversely proportional to d4, which indicates that the force will 

decrease rather fast with the increase in the plates separation. For example, the Casimir 

pressure of d = 1 nm  is 1.3 mPa, which is much stronger compared to the Casimir 

pressure of d = 10 nm which is only 0.13 MPa.

The first successful experimental observation of the Casimir force was reported in 

1958 by M. Spamaay [18]. M. Spamaay’s results were in general agreement with the 

Casimir theory, but with large experimental errors mainly due to the difficulty in aligning 

the metallic mirrors as perfectly parallel to each other as possible. To eliminate alignment 

issues, thereafter, the experimental efforts have focused on using one flat plate and a second 

plate that is a segment of a sphere with a large radius of curvature. Using this new setup,
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Steve K. Lamoreaux in 1997 [19], Umar Mohideen and A. Roy in 1998 [20], and A. Meurk 

et al. in 1997 [21] have reported experimental measurements with a much higher accuracy.

1.4 Implications Due to the Attractive Nature 
of the Casimir Force

One of the well-known implications due to the attractive nature of the Casimir force 

is the stiction effect in micro or nano devices such as comb drive, cantilevers, and other 

sensors and actuators that have components separated from each other in the range of a few 

micro/nano meters. The attractive Casimir force leads to decreased performances of nano 

devices due to increased friction between moving parts and may result in the sticking 

together of two or more components which is called as the “stiction effect”. The stiction 

effect hinders the proper functioning of the nano devices or in certain cases completely 

collapsing them [10, 22, 23].

In addition to the deleterious effects in microscopic devices, the attractive Casimir 

force can affect the state of macroscopic devices when they are close to each other. For 

instance, when two vessels are traveling parallel to each other in an ocean with strong tidal 

waves, they experience a force of attraction between them due to the difference in the 

availability of tidal-wave modes in between the vessels and on either side of the vessels. 

Thus, a classical Casimir force is generated that tends to pull the two vessels together with 

the ocean waves playing the role of the vacuum fluctuations [24].

The Casimir force plays a role in many natural phenomenon and can be even used 

by animals to get an evolutionary advantage. For instance, Geckos have a special type of 

feet that empowers them to stick to walls or glass surfaces effectively. The molecules in 

the outer part of the membrane of the Gecko’s foot facilitate a strong attractive force with
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the walls or glasses. The Casimir force is not the only force that determines the sticking 

property of the Gecko’s foot, but it is one of the main contributing forces [25].

1.5 Repulsive Casimir Force and Applications

Due to the implications that the attractive Casimir force has on nanodevices in the 

form of deleterious stiction effects, thus affecting their performances and proper 

functioning, it is desirable to find a way to nullify or reverse the force. Currently, there is 

a substantial impediment in a design of MEMS (micro electromechanical systems) or 

NEMS (nano electromechanical systems) devices or any other nano systems that have 

structures parallel to each other. For instance, in a case of a comb drive with parallel arms, 

the force on both sides of an arm needs to be balanced mechanically or electronically such 

that the air gap on either side of the arm is the same; otherwise, the arms will stick together 

and the whole system collapses [10,22,23]. So, it is highly important to balance the force 

to protect the integrity of the nanoscopic devices against the attractive Casimir force.

Hence, in this thesis, we investigate the possibility to reverse the Casimir force 

through the use of artificial electromagnetic material. Despite the many studies related to 

the reversal of the Casimir force [26-36], the conditions for force reversal in the case of 

air/vacuum as the intermediate medium are not well understood. Since air is the natural 

host medium for almost all MEMS/NEMS devices, the possibility of reversing the Casimir 

force can be of great practical importance.

The range of prospective applications of the Casimir force reversal or quantum 

levitation is rather broad. To list a few:

1. Highly accurate micro cantilevers to detect and measure extremely weak forces 

could be manufactured when the Casimir force of attraction is neutralized.
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2. Quantum levitation devices allowing frictionless transportation of an object 

from one place to the other could be designed. For example, micro/nano 

channels for bio-fluid transportation: one can envision a viscous bio fluid 

levitating above a designed metamaterial plate with air as an intermediate 

medium. The fluid can possibly be made to flow over the metamaterial plate 

(channel) with no friction, thereby reducing corrosion or degradation of the 

plate.

3. Coating the surfaces of the experimental tables and equipment in a clean room 

with a metamaterial that repels dust particles, the incoming air flow will wash 

away the hanging dust particle resulting in a clean room with lower 

contamination and low maintenance costs.

4. Actuators and sensors based on the Casimir force could also be realized [23,37, 

38]. For example, an optical switch based on the attractive/repulsive Casimir 

force could be considered in the form of two parallel plates. If the force is 

repulsive and one of the plates is illuminated by an external laser beam, the 

electron concentration of that plate can rise and shift the plate’s plasma 

frequency. If properly tuned this can change the polarity of the Casimir force 

from repulsive to attractive, collapsing the plates, and thus closing the switch 

mechanically.

1.6 Casimir Force Reversal Strategies

Recently, studies have shown that reversal of the Casimir force may be obtained at 

low temperature for a particular combination of materials, geometrical designs, and
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distance between the plates. Currently, there are few known constraints for the Casimir 

force reversal that depends on the optical properties of the objects involved.

1.6.1 Dzvaloshinskii’s Condition

As early as 1961, Dzyaloshinskii et al. showed that the Casimir force becomes 

repulsive if the permittivity of the intermediate medium is the intermediate value of the 

permittivity of the two plates {eplateX > £medium > eplate2) [17]. However, satisfying the 

Dzyaloshinskii’s condition is not possible with vacuum or air as the intermediate medium, 

except for materials with gain. This is because the permittivities of both plates estimated 

at the complex Matsubara frequencies are greater than unity for dissipative 

materials {epiatev ep ia te2 ^  l )  by assuming the Lorentz model for the permittivities. 

Though repulsion may be possible in the case of the active materials which usually requires 

an arrangement that changes the temperature of the plate like optical pumping [39] or 

quantum cascade lasing techniques [40], the Casimir or Lifshitz theory may not be 

applicable [41,42]. This is because the Casimir and Lifshitz theories are based on the 

fluctuation—dissipation theorem, which requires thermal equilibrium of the system. 

Recently, a few new theories have been proposed that considers systems that are not in 

thermal equilibrium and thus may be applicable for active materials [42]. However, these 

theories have not experimentally validated and will not be considered in this work.

1.6.2 Boyer’s Condition

In 1974, Boyer proposed a different approach towards Casimir force reversal by 

considering a perfectly permeable plate (spiatei = 1 and Mpiatei -» oo) and a perfectly 

conducting plate (epja te 2 00 and npiate2 = l )  [43]. The magnitude of the repulsive

force is determined to be 7 /8  times the attractive force between two perfectively
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conductive plates (see Equation 1.2). However, it is clear that Boyer’s condition is highly 

unphysical and may not be achieved in practice. Recently, Kenneth et al. have investigated 

ways to relax the Boyer’s condition mainly through the use of non-dispersive 

permeabilities [33]. They have proposed that the Casimir force will be reversed if one of 

the plates is purely magnetic (£piatel = 1 and nplatel > l )  while the other plate is purely 

dielectric (epiate 2 > 1 and Hpiate2 = l) . However, this approach is also challenging to 

realize in practice, as it is not yet known how to achieve strong magnetic properties without 

a strong dielectric response.

1.6.3 Leonhardt and Philbin Condition

In 2007, Leonhardt and Philbin proposed a levitating system consisting of two 

dielectric/metal plates with a negative refractive index material in between them [44]. A 

material with magnetic permeability and electric permittivity that are simultaneously 

negative is called a negative index medium (NIM) [45]. The system consists of a base 

metal/dielectric plate with a thin metal sheet above it, with a NIM (e = p. = — 1) in 

between them. The NIM was shown mathematically to play the role of a parity inversion 

of Maxwell’s equations that transforms the Cartesian +x half-space into —x  half-space 

and vice versa. This process effectively results in the reversal of the Casimir force for all 

spatial frequencies. Metamaterial exhibiting negative index properties have been recently 

proposed as a mean to fabricate “perfect lenses” [46, 47]. However, as shown by Rosa et 

al., this approach is also problematic due to the Drude nature of the metals that are used in 

the design [48]. In addition, the index of refraction has to be negative for a broad range of 

frequencies, as the Casimir force involves integration over all frequencies.
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1.6.4 Proposed Systems with Repulsive Casimir Force

Apart from the theory, progress in the experimental validation of these concepts 

has been rather limited. In 2009, Munday et al. experimentally verified Dzyaloshinskii’s 

condition using a silicon plate and a gold sphere with bromobenzene as the intermediate 

medium [49]. A maximum repulsive force of 100 pN was measured at room temperature, 

and the force decreased almost linearly at larger distances. Recently, another repulsive 

system, based on Dzyaloshinskii’s condition, has been proposed with silicon dioxide as 

one of the plates and a high Tc superconductor (Tc — Curie temperature), bismuth strontium 

calcium copper oxide (BSCCO, BiaS^CaCuaOs+s) as the other plate with bromobenzene 

as the intermediate medium [50].

Considering that air/vacuum is the natural medium for most of the NEMS/MEMS 

devices in which the Casimir force plays an important role, the need for achieving repulsion 

under such typical conditions remains imperative.

1.7 Related Research

Recent developments in the field of nanotechnology now permit manufacturing of 

devices with sizes in the range of a few nanometers. This advance in nano-manufacturing 

allows for the design of artificial materials with pre-set optical properties that may not be 

available in nature. Therefore, the field of electromagnetic metamaterials (EMMs) have 

recently gained a prominent role in optics and have been recognized as one of the most 

promising candidates for realizing Casimir force repulsion [28, 30, 35, 36,44,48, 51-53]. 

The EMMs are engineered materials that can provide unique optical properties such as 

magnetism at the infrared and optical frequency range [54], reversal of many optical 

phenomenon such as Doppler shift, Cherenkov’s radiation and Snell’s law [55], and
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cloaking objects from EM waves [56-58] or matter waves [59]. The EMMs can be viewed 

as composite materials comprised of small metal-dielectric resonators that act as artificial 

“atoms” or “molecules” but with much larger magnetic and dipole moments, thus 

dramatically enhancing the range of optical properties of the naturally existing constituents. 

In what follows, we discuss some of the recent works that aim at achieving repulsive 

Casimir force using electromagnetic metamaterials.

In 2005, Henkel and Joulain provided a comprehensive theory for the Casimir force 

between dispersive magneto-dielectric plates for arbitrary temperatures. Most importantly, 

the authors showed that in principle it is possible to achieve a force reversal with air as the 

intermediate medium using metamaterials with strong magnetic response that are not 

commonly used in nano/micro devices. Few cases have been presented with a repulsive 

Casimir force achieved either with magnetic materials or multi-layered plates involving 

magnetic materials as thin films [28].

In 2008,1. G. Pirozhenko and A. Lambrecht studied the possibility of the Casimir 

force reversal using metamaterials for non-equal plate thicknesses [34]. As 

Dzyaloshinskii’s condition cannot be satisfied for a system with air as the intermediate 

medium, only Boyer’s condition is considered for achieving repulsion. Various 

configurations have been discussed including two nonmagnetic plates and the case of a 

purely magnetic plate and a purely dielectric plate for which the Casimir force is reversed 

as expected. The authors have shown that repulsion can be achieved in the case of a 

dielectric plate and a mainly magnetic metamaterial plate. The force is attractive for small 

plate separations and repulsive for intermediate and large plate separations.
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In 2009, V. Yannopapas and N. V. Vitanov studied a configuration consisting of a 

metallic plate and a second plate made of various magnetic metamaterials [52]. The 

metamaterial plate modeled consisted of dielectric spheres made of AI2O3 infused with a 

paramagnetic Ni particles. The authors have shown that in principle this system can 

manifest quantum levitation for intermediate plate separation distances.

In 2010, L. Rosa and A. Lambrecht provided a sufficient condition for the Casimir 

force reversal in terms of the surface impedances of the two plates at zero temperature [36]. 

Even though the condition seems simple, involving only the surface impedances rather than 

the dielectric and magnetic material properties, the internal degrees of freedom of the plates 

including the temperature were not apparent.

From the previous works mentioned above, it is evident that a strongly magnetic 

plate is needed to achieve repulsive Casimir force. However, none of these works have 

provided an explicit sufficient condition for Casimir force reversal in general magneto- 

dielectric plate configurations. Hence, the main goal of this thesis is to provide a 

comprehensive study of Casimir force, mainly for the practically significant parallel-plate 

configuration. The goal is to provide an explicit formulation, in the form of necessary and 

sufficient conditions, for achieving quantum levitation in general dispersive magneto- 

dielectric systems. Such conditions will be highly useful for practically designing a 

quantum levitation system.

1.8 Dissertation Overview

The chapters in this dissertation are organized as follows. In Chapter 2, we provide 

the derivations of the Casimir force as proposed by Casimir and Lifshitz, separately. We 

provide the large and small separation distance asymptotic limits of the Casimir force and
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introduce a modified Lifshitz theory that allows studies of dispersive magneto-dielectric 

plates. In Chapter 3, we consider an ideal system with non-dispersive plates. We show that 

there are in total six Casimir force types and have obtained a necessary condition for force 

reversal. In Chapter 4, we consider a system consisting of one dielectric plate with non- 

dispersive properties and a second magneto-dielectric plate that mimics nanoscale devices. 

We have identified the explicit parametric domain and the necessary and sufficient 

corresponding conditions for force reversal. In Chapter 5, we consider a general system 

with two dispersive plates and have identified the parametric domain and sufficient 

conditions for force reversal. In Chapter 6, we discuss in detail some prospective composite 

materials that can manifest strong magnetic response and thus may be used in the practical 

realization of a quantum levitating system. In Chapter 7, we discuss two specific designs 

that we have identified as the most promising candidates for repulsive Casimir force. 

Finally, in Chapter 8, we conclude and present future research directions.



CHAPTER 2

CASIMIR FORCE THEORY

2.1 Introduction

The first theory for the vacuum force between two objects has been formulated by 

Casimir in 1948. The Casimir theory is based on the idea of zero-point energies fluctuations 

and provides the force between two perfectly conducting metal plates at zero 

temperature [9]. In 1956, a comprehensive theory for the vacuum force was formulated by 

Lifshitz, who considered dielectric plates at non-zero temperature [2]. The Lifshitz theory 

is based on the fluctuation-dissipation theorem which states that a fluctuating field can be 

radiated from an atom/molecule due to vacuum induced dipole moments. Therefore, from 

the interacting fields in between the plates, the vacuum force is calculated [2]. Since 

Lifshitz method, several other methods have also been proposed to calculate the Casimir 

force between parallel plates [6, 7, 10, 17,60,61].

To better understand the origin of the Casimir force, we first consider the 

approaches provided by Casimir and Lifshitz, separately. We must point out that in both 

cases, the magnetic properties of the plates are not considered which, as we mentioned 

above, play a major role in the force reversal. Recently, Henkel and Joulain [28] have 

provided a generalization of the Lifshitz theory which includes the effects of magnetism. 

A discussion related to Henkel and Joulain theory is included in this chapter.

18
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2.2 Casimir Theory - Force Between Two 
Uncharged Metallic Plates

Casimir described the origin of the attractive vacuum force between two conducting 

parallel half spaces separated by a distance d by considering the vacuum fluctuations as 

the source. The thickness t of the plates are assumed to be much larger than the plate 

separation distance d «  t. The vacuum fluctuating modes are analogous to EM waves and 

the problem in hand is similar to EM waves in a parallel plate waveguide. The availability 

of the vacuum fluctuations in between the plates is limited due to the material boundaries 

of the plates. Hence, vacuum fluctuations of only certain modes (frequencies) can exist in 

between the plates, whereas vacuum fluctuations of all possible energies (frequencies) exist 

on either side of the plates. Casimir calculated the force between the plates by determining 

the energy associated with the vacuum modes in between and on either side of the plates 

at absolute zero and calculated the energy difference between them [9].

For perfectly conducting metal plates and low frequencies, the permittivity is very 

large [f (&>) -> —oo] which forces the tangential component of the electric field to be zero 

at the surface of the plates. This results in quantization of the z-component of the wave 

vectors of all modes in between the plates,

where n is the mode number. The zero-point energy associated with each mode of

Eq. 2.1

frequency co is ha)(k) /2  and the total energy of all fluctuating modes in between the

plates is given by,



20

where kx and ky are the wave vectors in the x  and y  directions, respectively. A factor of 

2 is added to account for the two polarizations [transverse electric (TE) and transverse 

magnetic (TM)] and the prime in the summation indicates that for n = 0 mode there is only 

one polarization mode and hence it has to be multiplied by 1/2. When the sides of the 

plates L »  d, the kx and ky can be assumed to be continuous functions and could be 

summed over the corresponding integrals Xk* -» (JL/it) dkx and ->

(L/ri) /0°° dky in Equation 2.2. The total energy then follows as,

The vacuum fluctuations on either side of the plates are not quantized and hence 

the summation in Equation 2.3 is replaced by an integral along the wave vector k z  in the z  

direction. Therefore, the total energy in the fluctuating field on either side of the plates can 

be calculated as,

where F ( k )  = / “  Vx + k 2 /[Vx + k 2 n / d ] d x ,  x  -  k 2d 2/ n 2, k  = yjkl + k$,  and k  =  

k z d / n .  The cutoff function has the property that /(fc) -* 1 for k  «  k m and f ( k )  -* 0 

for k  »  k m , where c k m «  a>p , the plasma frequency of the metal constituting the plates.

Eq. 2.3

00 00 OO

Eq. 2.4
kx =0 ky = 0 kz= 0

The interaction energy then follows as,

U(d) = E(d) -  E(oo)

F { t c ) d K

00 00 Eq. 2.5

n = l 0



From Equations 2.3 and 2.4, it is clear that the energy of the vacuum fluctuation in-

between and on either sides of the plates are infinite. However, the energy difference

between two infinite values E(d) and E (oo) can be finite as shown in Equation 2.5. The

difference between two infinite integrals or sums can be calculated using one of the

regularization methods such as Euler-Maclaurin summation formula or the zeta function

regularization method. Here, we apply the Euler-Maclaurin summation formula in

Equation 2.5 and obtain the difference as,

00 oo

F ( n )  -  J  F ( K ) d t c

n=1 0 Eq. 2.6

= ~ F ( 0 ) - ± F ' ( 0 ) + 7L F- m  + ....

By considering the limits off ( k ) ,  we determine that F(k) = —(2/3)k3/ [ k 7i/d], Then 

for k -* 0, all the derivatives of F(k -» 0) in the series (Equation 2.6) goes to zero 

except F"'(0) = —4 and we obtain a simple form for the Casimir energy as,

y (d) = _ J l ! 5 i L2. Eq. 2.7
w  720d3

Finally, the Casimir force per unit area between two uncharged metal plates is obtained as,

F W  =  J J W  =  _ * ^ _  Eq. 2.8
W  d d 240d4'

From Equation 2.8 the Casimir force depends only on the separation distance between the 

plates d. The force decreases as a power law 1 /d 4 with the increase in the plates’ 

separation distance and the negative sign implies that the force is attractive.



2.3 Lifshitz Formula - Force Between Two 
Uncharged Dielectric Plates

Lifshitz theory for calculating the Casimir force between parallel plates is based on 

Rytov’s theory of charge and current fluctuations in a material body. When compared to 

Casimir theory, the Lifshitz theory is more general as it can be used to determine the force 

between dielectric plates as well as for arbitrary temperature. According to Rytov’s theory, 

every atom or molecule has a fluctuating charge which creates a fluctuating 

electromagnetic field that radiates in all directions away from the source [62], When we 

apply this theory to a bulk material, for instance a plate, the fluctuating electromagnetic 

field radiates from all sides of the plate. Lifshitz proposed his theory based on this 

assumption and the force between two parallel plates is created due to the interaction of 

the radiating fields in the region between the plates [2]. The magnitude and attractive or 

repulsive nature of the force mainly depends on the material of the plates, the medium 

between the plates, plate separation distance, and temperature.

In the calculation of the Casimir force, the fluctuating field acts as the source which 

is used in Maxwell’s equations to obtain the associated electric and magnetic fields by 

applying the boundary conditions due to the material/object’s body surfaces. Approaching 

the problem macroscopically, the interaction force between two objects is determined 

considering the fluctuating electromagnetic field. The fluctuating electromagnetic field is 

always present inside the absorbing medium and also extends outside its boundaries, 

partially as travelling waves and partially as standing waves, that decays (damped) 

exponentially as it propagates away from the surface of the material. It is important to note 

that this fluctuating electromagnetic field does not vanish at absolute zero, at which it is 

related to the zero-point vibrations (lowest possible energy) of the charges which is hco/2.
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Unlike the Casimir theory, the Lifshitz theory provides the change in the interaction energy 

due to retardation effects at large plate separations. Casimir energy is the difference 

between the energy associated with the field in between and on either side of the plates [2].

Here, we present the derivation of the Lifshitz formula using the method which has 

been developed and reformulated recently [7, 63-67]. For the calculation, a purely 

dielectric parallel-plates system is considered and the fluctuating field due to the dielectric 

material acts as a source. We consider the simplest configuration of two parallel semi

infinite plates separated by a vacuum gap of width d and the boundaries of the plates are 

at z = ± d /2  (see Figure 2.1).

-d/2 d/2 OO

Figure 2.1: Semi-infinite parallel plates separated by a distance d.

For non-magnetic materials in the absence of charge and current densities, 

Maxwell’s equations are given as,

_  dB(t , f )
V.D(t,f) = 0, V x g (t, r)  +  = 0,

Eq. 2.9
-  _  dD(t,r)

V.B(t, f)  = 0, V x H ( t , f )  —  = 0.
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where D(t ,r ) is the electric displacement, E{t,r) is the electric field, and B(t,r) is the 

magnetic field. Switching the time domain to the frequency domain we write,

E(t,r) = E(r)e~i(0t,
Eq. 2.10

B(t,r)  = B{f)e~mt.

Using the constituent relationship D = £Qs(oi)E Maxwell’s equations (Equation 

2.9) can be written in the form of the wave equations,

V2£ ( t ,f )  + £ = 0,
c*■

Eq. 2.11
_  O)2

V2£ ( t ,f )  + e (a})^ -B( t , f )  = 0. 
ci

For the region between the plates, the solutions of Equation 2.11 can be written in the form,

£>(r) = E%v{z,kL)er^ f ,
Eq. 2.12

Bj(r) = B o 'p & k j e 1* ^ ,  

where f  = (x , y, z ) = (rx, z), k ± = (kx, ky), J = {p, kL, <u) is a compound index, and p = 

{'TM,TE) represents the two polarizations of the field. On substituting the fields in 

Equation 2.12 back into Equation 2.11, we obtain the equations for E0 p and B0 p as,

E' r̂, ~  1%,P = 0,
Eq. 2.13

B'iP ~  l2B0iP = 0,

where I2 = k \ -  s((o) co2/ c 2 and for the intermediate medium the wave vector is replaced 

with I2 -» k 2 = k 2 — ai2/ c 2. Similarly, when applying the fields in Maxwell’s equations 

involving divergence, we obtain the projections of the Expand B0 p on the x, y, and z axes 

as,



25

E q,p ,z i^ x ^ o ,p ,x  "b ^ y ^ O ,p ,y  =
Eq. 2.14

Eo,p,z  "b i k x ^ o ,p ,x  ~b i k y B o p y  — 0 .

To obtain the fields associated with each regime in the system, see Figure 2.1. The 

continuity boundary conditions need to be satisfied which are given as,

Eat(t, r) = E2t(t, f) , Dan(t, r)  = D2n(t, f ),
Eq. 2.15

BarSX. f )  = B2n(t, f),  Bat{t, r) = B2t(t, r).

Here, n and t  refer to the normal and tangential components, respectively. The suffix 2 

and a — (1,3) refer to the intermediate region and the dielectric semi-infinite regimes, 

respectively.

First, we consider the electric field and electric displacement. From the first 

equation in Equation 2.14 and the first condition in Equation 2.15, it is clear that 

Eo,p,x> EoiPiy, and Eqpz need to be continuous across the boundary planes z =  ± d/2.  

Similarly, from the first equation in Equation 2.14 and the second condition in Equation 

2.15, s{(i))E0pz needs to be continuous across the boundary planes. Most 

importantly, E0 p z =£ 0 only for TM mode and hence only TM is considered for the electric 

field. Therefore, we present the electric field components in the different regions as,

E q,t m ,z (.z > ^ D  ~

Aelz z < - d / 2  
Bekz + Ce~kz \z\ < d /2  Eq. 2.16

De~lz z > d / 2 .

Then, by applying the boundary conditions (Equation 2.15) the continuity ofEopz 

and e(a))E0 p z at the boundaries provides the following system of equations,



Ale~ld>2 = Bke~kd' 2 -  Ckekd' 2,

—Dle~ld/2 = Bkekd/2 -  Cke~kd/2,
Eq. 2.17

Aee~ld!2 = Be~kd^2 + Cekd^2,

Dee~ld/2 = Bekdt2 + Ce~kd^2.

The unknown coefficients of the electric fields A, B, C, and D in Equations 2.16 and 2.17 

have a non-trivial solution when the determinant of the known coefficients is equal to 

zero [7, 68], or

A™(a>, k±) = e~ld[(ak + l)2ekd -  (ck -  l)2e~kd] = 0. Eq. 2.18 

Similarly, by using the second set of equations in Equation 2.15 for the magnetic 

field, we find that the components BQ p x, B0 p y, and BQ p z need to be continuous across the 

boundary planes. In the case of the magnetic field, B0pz ±  0 for the TE mode and hence 

only TE modes are considered here. Matching the boundary conditions at the interfaces, 

similar to the electric field, we obtain a non-trivial solution for the magnetic field only 

when the below dispersion condition is satisfied,

Ar£(to, k±) = e~ld[(k + l)2ekd -  (k -  Q2e~kd] = 0. Eq. 2.19 

The solution to the dispersion relationships in Equations 2.18 and 2.19 give the modes 

Eigen frequencies as a function of the wave vectors (0 ™n and (o££n where n is the mode 

number.

The vacuum energy of the fluctuating field in between the plates, at absolute zero, 

is given as,
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where S is the surface area of the plates. The summation in the Equation 2.20 can be 

determined using the argument principle. For that we consider a closed contour consisting 

of a semi-circle C+ of infinite radius on the right half of the complex plane with its center 

at the origin, and the imaginary axis bypassed in a counterclockwise direction. Provided 

that A™ and Ar£ do not have poles inside the contour, we get

r-ioo

Eq. 2.21

+ j  a) d In A™'T£(o>, k±)
c+

The second integral in Equation 2.21 can be determined using the natural assumption that 

lim s(co) = 1 and lim de((o)/d(o = 0 for the dielectric permittivity and given as,(a)-*CO Cl) “*00

j  (o d \nA TMTE((i},kx) = 4 j  doi. Eq. 2.22
c+ c+

The value of the contour in the above equation is infinite and does not depend on the plate 

separation distance d.

By substituting Equation 2.22 back into Equation 2.21, and replacing co -» — ioj, we

obtain

—  00

^  (0 ™£E = J  a) din A™'TE(i(o,kL) + -  J  day. Eq. 2.23
n  oo C+

Again the total energy is infinite. However, the Casimir energy per unit area is finite and 

can be determined as:



It is important to note that the contour integral along C+ in Equation 2.23 will be cancelled 

when calculating the energy difference (Equation 2.24). The Casimir energy per unit area 

between semi-infinite dielectric plates is thus given as,

00 —00

ft f  f  [ A™(ia},k±)
U( d ) ~ 8 ^ J  k^ j

00

A TE(ia), k±)

A™( i<o,k±)
0 “ Eq. 2.25

+ ln-
A  Z£(ia), k ±)

where A™ ( i G ) , k ± )  = ( e k  + 0 2e(fc-^dand A£f (i&>, k x )  =  ( k  +  l ) 2e^k~l d̂ .

By performing the integration in Equation 2.25 using Equations 2.18 and 2.19, we 

arrive at the Lifshitz formula,

00 00

= 7̂2 f  k±dk± f d(*> M 1 -  r f M(i(D,k ±) e - 2kd] 
w  J0 J0 Eq. 2.26

+ ln[l — r 2E(ia), k x ) e ~ 2kd]}.

The Fresnel reflection coefficients for the TM and TE waves used in the above equation 

are given as,

£{i (o)k{ i (o ,  k j )  -  l(io),  k ±)

T™  io)’ E(ia))k(ia) ,  fcx )  +  Z ( io ) ,  k x y
Eq. 2.27

^ k i i w . k j  -  l ( i ( o , k ±)  
r TE{ i a ) , k x )  -  +  i f a ' k j

The Casimir pressure can be determined using F(d) = — dU(d)/dd  and is given as,
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00 00 

h f  , j ,  f  , J f rTM(tW,fcx)F(d) = -  — J  k±dkx J  kda)
e2kd - r $ M(iu),kx)

Eq. 2.28

+
rfE(ia),kx) ) 

e2kd _  r^(i6),/cx)j

For finite temperature, the mode frequencies take discrete Matsubara values oi -> 

Q)n = 2nnkBT/h,  where n is the mode number. Thus the Casimir pressure at finite 

temperature can be obtained by replacing in integration of the frequencies by 

summation, (h/2ri) f  da) -» kBT £n” o [7] and the wave vectors are k 2 = kx + 

e(i<un) id\ / c2 and I2 = kx + u>\/c2. Inserting in Equation 2.28, we arrive at the Lifshitz 

formula for the Casimir pressure at finite temperature,

F(d,T)

M ’V 1'00 F , ,  f  [rTM(i^n.fc±)]2

o

l]2 \  
k j v y

2Id. _  Tr Tih?M(ia>n,k x)]2 Eq. 2.29

e2ld -  [r”g(imn,,

Here, the Fresnel reflection coefficients are estimated at the corresponding Matsubura 

frequencies 0)n. The prime next to the summation indicates that the n = 0 term is to be 

weighted by a factor of 1/2 as only one polarization mode exists. By transforming the 

integration in Equation 2.29 in terms of k we can also write the Casimir pressure as,

[r™ (i"n.k)]2
K~aK\jTk

Wn /c

00

k  T  k —i /0° C
F(d,T) = — —  > I k 2dk

It J

+ ■

e 2kd _  [r”M(i&jn, k)]2
Eq. 2.30

[r”B(iu)n, k)]2 )
i 2 k d  -  [ r f M o j n ,  k )]2J
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If we consider the case of two different dielectric plates with permittivities

and f 2(iwn)then we have r*(e, ia)n) -» i<on)r£2(e2, io)J where icon)

and r^ 2(£2, i(on), are the reflection coefficients of plate 1 and plate 2, respectively.

Finally, the Casimir pressure between two parallel dielectric plates at arbitrary 

temperature T is given as [2,28],

J1 ir"1 n   n / oo r CO
F = - 4 - >  )  Li0[^ (fc )e-2fcd]/c2dfc, Eq. 2.31

n Z-ip Z-in=o JnkT

where Li0[a] = a / (  1 — a) is the zero order polylogarithmic function, p = (TM, TE) is the 

polarization index, coT = 2nkBT/h,  and kT — a)T/c  are the thermal frequency and thermal 

wave vector, respectively. For convenience, the sign of the Casimir pressure in Equation 

2.30 is reversed such that the force is attractive when the signature is positive and vice 

versa. The integration in Equation 2.31 is performed over the transversal wave vector k. 

The specular functions Rp = Jp]1r ]̂2 are given by the Fresnel reflection coefficients at the 

respective plate interfaces. The Fresnel reflection coefficients for the TM and TE modes 

are written as,

„n _  £i(iw„)fc -  V O i(i^„) -  l )n 2fc2 + k 2
Ttm ,.........     - > n-q. Z.3Z

£i(ia)n)k  + 7 -  1 )n2fc2 + k 2

_ , x k — J(£i(i(on) -  1 )n2k i  + k 2
r?E, (k) =  y  1 nJ T Eq. 2.33

k + y/(Ei(i(*)n) -  l )n 2fc2 + k 2

where (on = na>T are the Matsubara frequencies. The signature of the Casimir force can be 

altered by changing the material and geometry of the plates, temperature, and the separation 

distance between them. The Casimir force, either attractive or repulsive, will become 

negligible or zero for large separation distances.
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Although the Lifshitz theory can be used to calculate the Casimir force at arbitrary 

temperature and for dielectric materials, in its current form (Equations 2.31, 2.32, and 

2.33), the theory cannot be used to investigate general magneto-dielectric materials. More 

importantly, if both plates are dielectric with permittivities given by the Lorentz oscillator 

model [16], then it follows that for dissipative plates we have £i(io>n) > 1 and £2(,io)n) > 

1. Hence, Dzyaloshinskii’s condition [£i(iwn) > £3(icun) > £2(iu>n)] cannot be satisfied, 

with air as the intermediate medium. Therefore, to consider the possibility for Casimir force 

reversal it is necessary to modify the Lifshitz theory to include magnetic materials.

Recently, Henkel and Joulain provided such a modification of the Lifshitz theory 

which includes magnetism [28]. The main and only difference compared to the original 

theory is the modification of the Fresnel reflection coefficients; for the TM mode are now 

given as,

_  £i(iG>n)fc -  Vl£j(iwn)^(iw n) -  1] U2k \  + k 2 „
) — .— —  —   ........................ —. nq. z .j 4

£i(ia)n)k + -  1] n2k$ -I- k 2

The reflection coefficient for the transfer electric (TE) polarization is obtained by 

exchanging £( «-* /q in Equation 2.34. It is important to note that the role of magnetic 

properties has already been considered by Boyer in 1974 [43], who also proposed a 

condition for quantum levitation (see section 1.6.2), but no elaborate theory have been 

provided. In what follows we will extensively use the Lifshitz formula Equation 2.31 with 

the general reflection coefficients Equation 2.34 to study the effects of magnetism on the 

Casimir force.

Performing the integration in Equation 2.31 is not a straightforward task. To 

simplify the analysis, we adopt a new integration variable, the inverse wave vector q = 

nkT/ k  € (0,1) and substituting it in Equation 2.31 we write,



where s = 2kTd = 4nd/XT is the normalized plates separation distance. The Fresnel

For the TE waves the reflection coefficients are obtained again by interchanging £t <-» Hi- 

The force due to n = 0 mode is obtained by direct integration of Equation 2.31 and 

it can be written in close form as,

zeroes of each term through the frequency dependence of the reflection coefficients 

Equation 2.34, which are now partially decoupled from the mode indexes and depends only 

on the dispersive properties of the plates (see Equation 2.36). By adopting this new 

integration variable for the integral, we obtain the finite limit for the integral q G (0,1), 

which is comparatively easier to analyze the nature of the force for different cases and 

investigate for the Casimir force reversal condition.

2.4 Casimir Force at Large Plate Separations

Before we study the material properties required for repulsive Casimir force, we 

find it useful to first investigate the asymptotic limits at large and small plate separation

reflection coefficients for the TM polarization in terms of the new integration variable q

are given as,

r n  ( f £  _  £ l ( i(° n )  -  V ( £ t ( ^ n ) ^ ( i f t > n )  ~  1)<?2 +  1 

£ l ( i (D n )  +  ~  X ) Q 2 +  1

P

where R$(0) are the static values of the specular functions. We have parted the n = 0 term 

in Equation 2.35. This particular rendering of the force allows us to infer the sign and
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distances. In the limit of large plate separations or high temperatures or both, d/AT »  1 

or s »  1 where XT = 2nc/o)T is the thermal wavelength. By applying the limit s »  1 in 

Equation 2.35, the polylogarithmic function approximates to Li0[/?p(q)e~n5/fl] -> 

Rp(.q)e~ns/q as e~ns^q «  1. Hence, the force can be written as,

Furthermore, the term (ns)3e ns^q in Equation 2.38 falls exponentially with an 

increase in mode number and normalized plate separation distance s. Hence, for s »  1, the

zero order vacuum mode (n = 0). Therefore, the vacuum force at the large plate 

separations is accurately described using the zero frequency (n = 0) term, Fa, = Fn=0 [28, 

33], The specular functions R£(0) then takes static values (in Equation 2.34) which are 

given as,

Clearly, if a plate is non-magnetic, we have R?E(0) = 0, and similarly, when a plate is 

purely magnetic then = 0.

The asymptotic result shows us that to achieve quantum levitation at large 

separation distances or high temperatures or both, one or both of the specular functions 

must be negative. This may be achieved if £i(0) < 1 and £2(0) > 0 and/or one of the 

plates is diamagnetic and the other is paramagnetic in the static limit [43]. However, there

Eq. 2.38

force due to the higher order terms n >  1 is negligible compared to the force due to the

Eq. 2.39

Eq. 2.40



34

may be practical difficulties in realizing such materials, which will be discussed in 

Chapters 6 and 1.

2.5 Casimir Force at Small Plate Separations

Similar to the previous case, the Casimir force for small plate separations, low 

temperatures or both where d/XT «  1 or s «  1 could be obtained in closed form. For this 

we expand the polylogarithmic function in Equation 2.35 which now reads,

k n T  V  V ° °  V ”F — Fa, + ,
87rd3

In the limit s -> 0 w e  can use,

y  y 00 y 00 m 3 f4—ip4_in=iZ_jrn=i J 0 e ns/q
dq
n4 Eq. 2.41

lim
A-*Q

-4A fq

Eq. 2.42
= 3 2 4 i W ’ " 11

where A= nms/A  -> 0 and 5[0,i] is the modified Dirac delta function defined in the unit 

interval such that Jq f (q )S [0il](q -  d)dq = f (a )  and 8[01](q -  a)dq = 1. The

integral in Equation 2.41 can now be estimated as,

(ns)3 f  
Jo [ e rts/<?

m
—x -♦ (ns)3 lim 
q 4 a-»o L32A3 K n(A)]m

Eq. 2.43

= - A « m
m

Finally, substituting in Equation 2.41, and performing the summation with respect 

to m, we obtain,

kBT v - Z
/oo
n=oLi3[fl?(°)]. Eq. 2.44

This result implies that at very small separation distances, it is the non-retarded specular 

functions Rg(0) that define the signature and magnitude of the force:
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on frn — n / *v nJ
K ™ W  e1(io>B) + 1 £2(i<on) + l '

_  fjUl (lft)n) -  1 H2( ^ n) ~ 1
^(i6>n) + 1 ft2(ta>n) + 1.'

Eq. 2.45

Eq. 2.46

We must note that the result of Equation 2.44 has also been obtained by other authors using 

a different procedure than ours [28,33]. The possibility of the force reversal at small plate 

separations will be discussed in detail for specific cases in Chapters 3,4, and 5.

Therefore, in this section, we have provided the theoretical background of the 

Casimir force that includes the derivation of the Casimir force between parallel metal plates 

(Casimir theory) and between parallel dielectric plates at an arbitrary temperature (Lifshitz 

theory). Finally, we also obtained the Casimir force at the asymptotic limits of large and 

small plate separations.



CHAPTER 3

CASIMIR FORCE BETWEEN TWO NONDISPERSIVE 
PARALLEL PLATES (IDEAL CASE)

3.1 Casimir Force for Parallel-Plate Configurations

We begin the analysis of the Casimir force by considering a simple case, a parallel- 

plate system with each plate having thickness t  and are assumed to be made from non- 

dispersive materials. The plates are separated by a distance d and the system is at a 

temperature T. We will further simplify the analyses by considering the limiting case 

of t  »  d, or two semi-infmite plates. The Casimir force can be calculated using Equation 

2.35. The Fresnel reflection coefficients for TM modes and for non-dispersive plates are 

given as,

,   ̂ “  V fafc-1 )< ?2 + 1 „  ,  ,
rrM,i(<?) -  i > E<i*

El + V(e ,̂ -  1 )q2 + 1

where the permittivities and permeabilities fit of the plates are independent of the wave

vector, and the frequency and the plate index takes the values I = (1,2). The reflection

coefficients for the TE waves are obtained from Equation 3.1 by exchanging sL «-» /q.

In the analysis that follows, we impose the practical limitation on the plates’

permittivities and permeabilities which is that they must be positive [et, jtq G (0, oo)]. The

permittivity and permeability of real materials are usually described using one of the well-

known analytical models: Lorentz, Drude, and Debye models. The Lorentz model is

36
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generally used to describe the electromagnetic properties of dielectric materials. Similarly, 

the Drude model is used for metals, and the Debye model is used for stratified media. 

Estimated at the imaginary Matsubura frequencies, all three models give real and smooth 

(non-resonance) functions for elt and fit (see Equation 2.36). In the case of the Lorentz and 

Drude models, the permittivities and permeabilities are always greater than one for the 

dissipative media. If gain is present, however, one can also have £t < 1, and Hi < 1 within 

a finite frequency range. In the case of the Debye model, the permittivities and 

permeabilities are generally positive; however, they could become negative for a narrow 

frequency range. Considering the above limitations and the fact that the Casimir force 

includes contributions due to all modes (from n = 0 to oo), we restrict our analysis by 

assuming positive values for both £( and jq.

3.2 Attractive and Repulsive Casimir Forces

First, to gain an understanding on the nature of the force for different plate 

separation distances, we plot in Figure 3.1 the Casimir force which was numerically 

calculated by using Equation 2.35 for two different configurations. The force can be 

repulsive (case 1) or attractive (case 2) for all separation distances. In the figure we have 

normalized the Casimir pressure so that it is constant at large separation distances. 

Furthermore, the thermal wavelength XT = 2nc/a)T is introduced to provide a physically 

meaningful length scale. In the limit of small plate separations (d «  Ar ), the force scales 

as 1 /d 4 and falls as 1 /d 3 at large plate separations (d »  Ar ).
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Figure 3.1: Casimir forces (solid lines) and large distance asymptotic (dashed lines) for 
two different configurations, (a): = 2,/tx = 1 , e 2 = 0.5, and n2 = 1 (blue) and (b):
e1 = 2, = 1,£2 = 2, and /t2 = 1 (red).

A simple analysis of Equation 2.35 shows that for large separation distances, d »  

At , the large distance asymptotics (LDA), the value of the force Plda — Poo depends only 

on the n = 0 mode and is indeed given by Equation 2. 37 (dashed lines in Figure 3.1) [28, 

33]. With a decrease in the separation distance an increasing number of modes (higher 

order modes) needs to be included in the summation in order to achieve convergence. This 

is evident by inspection of Equation 2.35, which shows that the integrands will become 

exponentially small only forn > nc = 1/s  = AT/4nd,  or conversely all terms withn < 

nc will contribute substantially to the force and must be considered. Furthermore, since Ar 

is inversely proportional to the temperature for a fixed separation distance, an increasing 

number of modes need to be included to achieve convergence with decreasing temperature. 

To summarize, a large number of modes needs to be included in the summation at low 

temperatures and/or small plate separations.
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As shown in Figure 3.1, case (a) FLDA is repulsive because it satisfies the 

Dzyaloshinskii’s condition > 1 > f2), and case (b) FLDA is attractive, as it does not

satisfy any of the well-known repulsive conditions (see Section 1.6). In what follows we 

will show that the Casimir force may be repulsive even when the conventional (known) 

conditions for quantum levitations are not satisfied.

Here, we perform a parametric analyses aiming at identifying parallel-plate 

configurations showing quantum levitation that are not defined by the well-known 

conditions. For that, first we consider the vacuum force for large plate separations s = 

2kTd »  1, which is accurately described by Equation 2.37. By inspection it is clear that 

repulsion can be achieved provided,

When Equation 3.2 is satisfied, the Casimir force is repulsive for large plate separations. 

Through parametric swipe, we can compare the repulsion condition due to Equation 3.2

3.3 Repulsive Casimir Force Parametric Analysis

p
Eq. 3.2

Q*i -1)0*2 -  f)
0*i -1 )0 * 2  - 1 )

with the Dzyaloshinskii’s and Kenneth et al. ’s conditions for different permittivities and

permeabilities of the plates (see Figure 3.2).
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1010

Figure 3.2: Repulsive Casimir force domains according to Dzyaloshinskii’s (yellow 
domain) and Kenneth et al.'s (gray domain) conditions and the LDA condition in 
Equation 3.2 (red domain, FLDA < 0) for fixed permeability of plate 1: (a) = 1 and
(b) = 2. The point A correspond to the values e1 = 2, e2 — 2, and n2 = (y and
similarly, the point B correspond to the values = 10, e2 = 2, and y.2 = 10.

Figure 3.2 (a) shows the parametric domains for force reversal, assuming one of the 

plates is non-magnetic {p.x = 1). In this case, the Dzyaloshinskii’s condition coincided with 

the far field asymptotic condition Equation 3.2 while Kenneth et al.'s condition is a subset.



Although Boyer’s condition also falls in the parametric space considered, it is not shown 

as it lies in a plane where the permeability of one of the plates and the permittivity of the 

other plate are infinitely large (e* = \ ,n r -* co,e2 -* oo and \i2 -  1). Leonhardt’s 

condition is not applicable here, as it involves negative index medium (NIM) as a host, 

which is clearly different from the natural medium (air/vacuum) of the nano or micro 

devices.

Figure 3.2 (b) shows the parametric domain for nx = 2 in which case Kenneth et 

al. ’s condition is not applicable and only Dzyaloshinskii’s condition and the large distance 

asymptotic (LDA) condition of Equation 3.2 are studied. Clearly, the repulsion LDA 

condition is a subset of the Dzyaloshinskii’s condition. This implies that if the 

Dzyaloshinskii’s condition is satisfied, the force can be repulsive at small separations even 

if it is attractive at large separations.

More importantly, none of the conditions outlined above are necessary for force 

reversal. This is demonstrated in Figure 3.3 where we plot the force for two ’’random” 

points from the parametric spaces in Figures 3.2 (a) and (b), which do not satisfy the above 

conditions but show quantum levitation [the points are marked as A in Figure 3.2 (a) and B 

in Figure 3.2 (b)]. The Casimir forces for both cases are repulsive for small plate 

separations and attractive for large plate separations because they do not satisfy the large 

distance asymptotic (LDA) condition of Equation 3.2.
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LL

Figure 3.3: Casimir force for the two configurations chosen from the parametric space 
in Figures 3.2 (a) and (b). A: ex = 2, (ix = 1, e 2 = 2, and fi2 = 6, and B: e x = 10, =
2, f2 = 2, and ^2 = 10.

The two repulsive systems presented in Figure 3.3 clearly shows that quantum 

levitation can be achieved for a much broader range of parametric conditions far surpassing 

the much restrictive conditions due to Dzyaloshinskii and Kenneth et al. and the LDA 

repulsion condition in Equation 3.2. Therefore, we conclude that the LDA condition is a 

subset of Dzyaloshinskii’s condition which in turn is a subset of a broader parametric 

domain showing quantum levitation. Hence, in the next section, our aim is to provide 

broader (all encompassing) necessary and sufficient conditions for quantum levitation.

3.4 General Conditions for Repulsive Casimir Force

In this subsection, we perform a detailed analyses aimed at finding the entire 

parametric domain for repulsive Casimir force. To perform this type of analysis, we work 

directly with Equation 2.35. If we expand the polylog function in series (Li0[u] = 

Xw=i am) we can write,
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P  71=1 771=1 0

Introducing a new variable a  = s /q ,  we can also write,

p  n = l  m = lo

The summation over the mode number n can be performed explicitly, thus resulting in,

Introducing the function C(ma) = [(m a)4/48][2 + cosh(ma)]csch4(m a/2) we 

rewrite Equation 3.5 in a shorter format:

This new formulation of the Casimir force still involves the summation overm and 

integration over q and, in general, does not have an exact analytical solution. However, the 

summation is fast converging with the first term (m = 1), thus constituting the largest 

contribution to the total force (more than 80%). This is due to the fact 

thatLi0[ftp(q)e_ns/<*] «  Rp(q)e ns/<? «  1, a fact we used earlier to obtain the force at 

large separation distances. This also implies that, similar to the role of the mode number n 

at different separation distances, we may need to include a large number of m  to describe 

as accurately the force for small separation distances.

p m = l o Eq. 3.5

+ cosh(ma)]csch4 (~ y )

C(mcc)R™(q)
Eq. 3.6

p  m = l o
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We proceed by seeking simplified expressions for the force at critical regions with 

the goal of identifying various conditions for force repulsion. A simple analysis shows that 

the Casimir force is non-monotonic when repulsive, with a minimum at intermediate 

separation distances.

To perform an in-depth analysis for the repulsive conditions, first we need to 

understand better the dependence of the specular functions on the inverse wave vector. The 

specular functions for non-dispersive materials with £t > 0 and > 0 are confined within 

the strict limits with Rp( 1) <  Rp(q) < Rp(0) and - 1  < Rp(q) < 1, with single or no real 

roots. The specular functions at <7 = 0 and q = 1 take simple forms: /?rM(0) = 

(f i “  l ) ( f2 — l ) / [ ( £i + 1)(^2 + 1)L ^te(O) = Q*i “  1)0*2 — l)/[0 * i + 1)0*2 + 1)], 

and Rtm(1) = RTE( 1) = [(zt -  l) (z 2 -  l)]/[Czx + l)(z 2 + 1)], where z x =

and z2 = Vm2/ £2 ^ e  impedances of the first and second plates, respectively.

For large plate separations, the force is mainly described by the zero-order vacuum 

mode and F(s -* 00) = Fm [28, 33]. Hence, the force will be repulsive if the LDA 

condition of Equation 3.2 is satisfied (depending on RP(Q) <  0), irrespective of the value 

of Rp( 1). The LDA condition implies that the non-retarded specular functions need to be 

predominantly negative such that Fm = U3[ftTM (0)] + Li3[/?TE(0)] <  0. We must note 

that this does not necessarily require simultaneous negative signature of the specular 

functions.

For small plate separation distances, we have C(ma) -» 1 and the Casimir force 

F Fq, which is written as,
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8nd3F0 6 
kgT s U4[Rp(q)]dq. Eq. 3.7

Hence, in this case, the force depends on specular functions for the entire range of wave 

vectors (0  < q < 1) and is negligible for s -* 0.

For intermediate separation distances (s > 1 or ma > 1), the force in Equation 3.6 

can be expanded in the power series about e -ma/2 -> 0, and by considering only the first 

term in the series, we obtain

For ms  > 1, the weighted term in the integral (Equation 3.8) e~Tnŝ q/q*  has a maxima 

for q = m s /4. Since q <  1, the expression Equation 3.8 can be further simplified by 

expanding R™(q) in the power series about q -* 1. Considering the first term in the series 

and after simple algebraic manipulation by including only the dominant terms, we obtain

The Casimir force for intermediate plate separations explicitly depends on both Rp (0) 

and Rp(l). It is apparent that the force is repulsive when both Rp(0) < 0 and Rp( 1) < 0. 

However, this does not suggest that the force is repulsive only for intermediate plate 

separations; the force might be repulsive for large plate separation and/or small separation 

distances as well. For instance, when Rp (0) > 0 and /?p( l)  < 0, the force may be 

repulsive for intermediate and small plate separations with attractive force at large 

separations.

R™(q)e~ms/q8nd3Fs
Eq. 3.8

8nd3Fs
Eq. 3.9

v
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From the analyses performed for small, intermediate, and large plate separations, 

we can categorize the Casimir force based on its attractive and repulsive nature at different 

separation distances. There are six different types based on the values of F0, Foo, Rp(0), 

and Rp( 1) as shown below.

1. Type 1: The force is attractive for all plate separation distances when F0 > 0, 

Foo > 0 [Fp(0) > 0], and Fp( l)  >  0 (0 in Figure 3.4).

2. Type 2: The force is repulsive for all plate separation distances when F0 < 0, 

Fa, < 0 [Fp(0) < 0], and Fp( 1) < 0 ( 0  in Figure 3.4).

3. Type 3: The force is attractive for small plate separations and repulsive for large 

plate separations when F0 > 0 and Fm <  0 [Fp(0) < 0], irrespective of Rp( 1) 

( 0  in Figure 3.4).

4. Type 4: The force is repulsive for small plate separations and attractive for large 

plate separations when F0 < 0 and Foo > 0  [ f ip (0 )  > 0], irrespective of Fp( 1) 

(0 in Figure 3.4).

5. Type 5: The force is attractive for small and large plate separations and may be 

repulsive for intermediate separations, which is termed as a repulsive kink, 

when F0 > 0, Foo > 0 [/?p(0) > 0], and Rp( 1) < 0 (®  in Figure 3.4).

6. Type 6: The force is repulsive for small and large plate separations and may be 

attractive for intermediate separations, which is termed as an attractive lank, 

when F0 < 0,Fm < 0[/?p(0) < 0], and Fp(l)  > 0 ( ®  in Figure 3.4).
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Figure 3.4: Force quadrants in terms of F0 and Fm, showcasing the six universal types 
of the Casimir force.

Figure 3.4 presents all four quadrants with respect to the values of the Casimir force 

at large and small separation distances. The nature of the force according to the 

specifications from above is identified. Specifically, the first quadrant (I) includes type 1 

and type 5, the second quadrant (II) includes type 3, the third quadrant (III) includes type 

2 and type 6, and the fourth quadrant (IV) includes type 4. The cutoff distance s = sc, that 

is related to type 3 and type 4, is the plate separation distance at which the force changes 

its signature. The conditions provided for types 1 -4 (with respect to the specular functions) 

can be considered as sufficient conditions, whereas the conditions provided for types 5 and 

6 are necessary but not sufficient. Therefore, in the following analysis, we seek a sufficient 

condition for the Casimir force of types 5 and 6.

We proceed by writing (Equation 3.6) in terms of a weighted function as,

00

8(s, m, 1) J  W (s,m ,q)Rp(q) dq, Eq. 3.10
p m=i 0
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where the weight function is W (s,m ,q) = 6(s, m ,q)/6(s, m,q = 1) and 8(s, m, q) = 

6C(m a)/sm 4. The introduction of the weight function allows us to understand the 

dependence of the integrant better and the selection of the dominant value of specular 

functions on various parameters including q.

Figure 3.5 shows the weight function W (s,m ,q)  for different q, and summation 

index m  [Figure 3.5 (a)], and the normalized separation distance s [Figure 3.5 (b)]. With 

an increase in s, the weight W is, m, q) to the specular functions shifts towards q = 1 [see 

Figure 3.5 (a), solid green], and with a decrease in s, the weight function broadens, thus 

covering a wide range of q and shifts towards q = 0 [see Figure 3.5 (a), solid blue]. Finally, 

for small separation distances, the specular functions are weighted equally for all q [see 

Figure 3.5 (a), solid red].

The weight function W for intermediate separation distance could be approximated 

as a Heaviside function with new limits for the integral in Equation 3.10 with W(s, m, q) -» 

0(q — qc), where qc is the cutoff inverse wave vector, thereby reducing the complexity of 

the integral [see solid blue curve in Figure 3.5 (a)]. Similarly, with an increase in m, the 

weight shifts towards q = 1 for fixed s [see Figure 3.5 (a), solid, dotted, and dashed blue 

curves] and for m  -» oo, the specular functions at q = 1 is sufficient to determine the force. 

To summarize, the sign of the specular functions at q -»1 are of great importance and 

mainly determines the nature of the force (attractive or repulsive).
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Figure 3.5: (a) The weight function W (s, m, q)  for m = 1 (solid blue), m = 3 (dotted 
blue), and m = 5 (dashed blue) for fixed s = 2, and different values of s = 0.001 
(solid red) ands = 20 (solid green) for fixed m = 1. (b) Plot of S(s, m) normalized 
over its maximum value for m = 1, and for different plate separation distances s = 
0.001 (solid red), s = 2 (solid blue), and 5 = 20 (solid green).

In Figure 3.5 (b), we analyze the function 6(s,m)  which is to be summed up with 

the weighted specular functions (see Equation 3.10). The function <S(s,m) determines the 

magnitude of the force, as the weight function is normalized 0 < VF(s, m, q) < 1 

and —1 < R™(q) < 1. In Figure 3.5 (b), we plot the normalized 6(s, ni). The plot clearly 

shows that this function rapidly decreases with an increase in the values of m, regardless
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of the separation distances s. For large plate separations or high temperatures or both s »  

1, m  = 1 term in S(s, m) is sufficient to reproduce the force S(s »  1, m) -* d(s, m = 1). 

It is important to note that in Figure 3.5 (b) the variation of S(s, m )/S (s ,m  = 1) is 

continuous for different m; however, we know that m is a discrete variable and only the 

values of S(s, m)  at m  = 1,2,3,... must be considered in the analysis.

For large plate separations or at high temperatures [see solid green curve in Figure 

3.5 (b)], m  = 1 is the dominant term, whereas with a decrease in the plate separations or 

temperature, for smaller separation distances [see solid red curve in Figure 3.5 (b)], though 

the force due to higher values of m > 1 contributes to the force, it may not be significant 

enough to change the sign of the force. To conclude, the m = 1 term in the summation is 

sufficient for further analysis of the Casimir force, and most importantly, the specular 

functions at q 1 is considered as the main factor that sets the signature of the force.

The analysis is much simplified when we consider the first term in the summation 

of Equation 3.10, which is the dominant as identified above. Furthermore, by the 

parametric sweep, it can be shown that the force has minima/maxima (extreme values) 

for s = se > 2. Hence, by substituting s = 2, we obtain a simplified form of the Casimir 

force at minima/maxima as,

where 8(q) = ( l /q 4)[2 + Cosh(2/q)]Csch(l/q)4.

The function <5(q) now plays the role of a weight for the specular functions Rp (q). 

More importantly, the weight function 5(q) is similar to that of a Heaviside function and 

can be approximated as 5(q) = d (l)0 (q  — qc). The cutoff wave vector is obtained from

p
Eq. 3.11
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the normalization condition f*  S(q) = 5(1)(1 -  qc) and can be explicitly written as qc =

(1 + e 2 + 23e4 — e 6) /[4 (e 2 + 4e4 + e6)] = 0.342. Equation 3.11 is written in terms of 

new limits for the integral as,

F(s = se) = Fm + ^  J  Rp(q)dq. Eq. 3 .1 2

p

Although the Casimir force in Equation 3.12 can be presented in a short form by explicitly 

performing the integral, the end result is rather cumbersome. However, it can be utilized to 

perform a fast parametric swipe and identify the conditions for the kink in the force. These 

are given as,

1. Positive kink: F0 > 0, Fa, >  0 , Rp( 1) < 0 and F(s = se) <  0 and

2. Negative kink. F0 < 0, Fm < 0 , Rp( 1) > 0 and F(s = se) > 0.

In Figure 3.6 we have plotted the conditions for positive and negative kinks along 

with the sufficient conditions for Casimir force reversal. Figure 3.6 is analogous to Figure

3.4 and provides the parametric regions for which different types of the Casimir force 

reversals could be achieved. It is important to note that the condition provided for the kinks 

are not sufficient conditions; however, it closely captures the parametric region required 

for achieving the kinks (black domains in Figure 3.6).

The description of different regions in Figure 3.6 are as follows:

i. First quadrant: The red domain shows the region where the force is attractive 

under the condition Fp( l)  > 0 (type 1). The gray domain corresponds 

to Rp( 1) < 0, and the black domain with F(s = se) < 0 (type 5). Both satisfy 

the necessary condition for the negative kink.
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in.

IV.

Second quadrant: The light orange domain with Rp( 1) > 0 shows the region 

where the force is attractive for small separation distances and repulsive for 

large separation distances (type 3).

Third quadrant: The orange domain shows the region where the force is 

repulsive with Rp( 1) < 0 (type 2). The gray domain with Rp( 1) > 0 and the 

black domain with F(s = se) > 0 (type 6 ), both satisfying the necessary 

condition for the positive kink.

Fourth quadrant: The yellow domain with Rp{ 1) < 0 shows the region where 

the force is repulsive for small separation distances and attractive for large 

separation distances (type 4).

Figure 3.6: Parametric plot showcasing the parametric domains that identify the 
different types of the Casimir forces. The domains are plotted for fixed e1 = 5 and z1 = 
0.05.
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Using the parametric region plots as per Figure 3.6, we pick six different 

configurations (one from each domain, except the gray domains) to illustrate the types of 

Casimir forces that can be expected (see Figure 3.7). The material parameters for plate 1 is 

fixed as = 5 and zx =  0.05, and the properties of plate 2 is varied. For type 1: e2 = 0.7 

andz2 = 0.98, type 2: e 2 = 1.2 andz2 = 1-05, type 3: e 2 = 1.5 andz2 = 0-95, type 

4: £2 = 0-5 andz2 = 1.1, type 5: e 2 = 0.5 andz2 = 1.09, and type 6: f 2 = 4 andz2 =

0.9072.

fc -4
u_

-10

Figure 3.7: Six different types of the Casimir forces: (T) type 1 (dashed orange), ©  
type 2 (dashed purple), (5) type 3 (dashed blue), (4) type 4 (dashed gray), (5) type 5 
(green), and ©  type 6  (red).

In this section, we have studied six different types of Casimir force behavior (as the 

function of plate separation distance) that can be expected for non-dispersive plates. Each 

of the six cases can be considered for various practical applications based on the 

requirements of attraction or repulsive for different separation distances. For instance, let 

us consider type 4, which is repulsive for small plate separations and attractive for large 

plate separations. For this case, one particular application could be in a quantum levitating
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system with one of the plates levitated on top of the other. The plate will be at an 

equilibrium distance from one another such that the force is zero. This system could be 

used to transport materials with no friction (in vacuum). For practical designs, we also need 

to include other associated forces such as gravitational force, etc. It is important to note 

that, of all six cases, the configurations with kinks in the force are extremely difficult to 

achieve practically since the parametric domain corresponding to those specific cases are 

extremely narrow.

3.5 Challenges in Realizing the Six Universal 
Casmir Force Types

Although there are six different Casimir force types, it may not be possible to 

realize all of them in practice. Some of the challenges include finding naturally existing or 

artificially designed material with a strong magnetic response, or a material with optical 

gain, for a broad range of frequencies. Since the main focus is to achieve quantum levitation 

of nanoscale devices, we have to note that these devices commonly contain metallic layers 

or dielectric coatings that are dispersive in nature. We already discussed the fact that these 

materials are described using one of three analytical models, namely the Lorentz oscillator, 

Drude, and Debye models [16, 69, 70]. Thus, the assumption of non-dispersivity and the 

analyses above provide the knowledge regarding the material properties required to achieve 

different types of the Casimir force. However, while practically designing a system the 

dispersive properties of the constituent materials need to be considered.

According to the Lorentz oscillator model [16], the permittivity and permeability 

of a dissipative material is always positive and larger than unity (at the complex Matsubura 

frequencies). However, the permittivity/permeability could be negative when gain is 

present. It is worthwhile to note that active (gain) materials had already been considered
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for the prospect of achieving quantum levitation by Leonhardt and Philbin [44], and Y. 

Sherkunov [41], Generally, optical gain in metamaterials [71] is attained through optical 

pumping [39] or quantum cascade lasing techniques [40] which would disturb the thermal 

equilibrium of the system. Therefore, in the case of gain media the contribution of excited- 

state emission of electrons and the thermal fluctuations (due to pumping of electrons) has 

to be considered in the calculation of the Casimir force. As the Lifshitz theory is based on 

fluctuation-dissipation theory, which demands thermal equilibrium, for the applicability of 

Lifshitz theory in the case of gain, a media is highly doubtful [42].

Recently, theories that include the effects of gain has been proposed [41,42]. These 

works have shown that a correction factor has to be added to the vacuum force predicted 

by the Lifshitz theory in order to account for the emission of electrons from excited 

states [42]. Although the role of gain may hold the key in reversing the force, for in-depth 

analysis, the correction factors to the Lifshitz theory have to be considered, which is out of 

the scope of this thesis. Hence, in the rest of this work we consider only dissipative 

materials with the permittivities and permeabilities of the plates described by the Lorentz 

oscillator model and thus always larger than unity (c > 1 & fi > 1). While materials with 

e »  1 do exist in nature (metals), magnetic materials with // »  1 are difficult to find. In 

Chapter 6 , we will identify a variety of strategies that may allow for artificial engineering 

of such magnetic materials.

In addition to the well-known conditions for force reversal proposed by Boyer [43], 

Dzyaloshinskii [17], and Leonhardt [44], our analyses from above and due to other 

authors [26, 27, 32-36, 72] show that quantum levitation could be achieved for a broad 

range of material properties. In order to identify a practically feasible configuration with
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repulsive Casimir force, we identify and analyzed all available conditions below. The 

discussion is inclusive with the only exception being Leonhardt’s condition, as we focused 

only on systems with air as the intermediate medium.

1. Boyer’s condition: -* oo, nt - » 1  and s2 -* 1, ju2 00 •

According to Boyer’s condition, one of the plates has to be perfectly metallic and 

nonmagnetic (note that at imaginary frequencies e »  1  for metals) while the other plate 

has to be perfectly magnetic with weak (non-existent) electric polarizability [43]. While 

natural materials with strong dielectric response and weak (non-existent) magnetic 

response do exist (for instance noble metals), it is not clear how to develop a material with 

a strong magnetic response without a dielectric response (no such material exists in nature).

2. Kenneth et al condition. ex > 1, nx -* 1 and e2 -> 1, (i2 > 1-

Kenneth et al. condition [33] is a relaxed form of Boyer’s condition where again 

the levitating configuration includes one of the plates being non-magnetic while the other 

must be non-dielectric, but the difference is that the permeabilities and permittivities are 

now finite. Still, this condition is difficult to achieve in practice since as we mentioned 

earlier it is not clear how one can have a material with magnetic response but no dielectric 

response.

3. Dzyaloshinskii’s condition: e2 > 1 >  and/or n2 > 1 >  fi1.

As we discussed above, if a material is not active and described by the Lorentz 

oscillator model, its permittivity and permeability are always larger than unity. To achieve 

Dzyaloshinskii’s condition with air/vacuum as the intermediate medium, one of the plates 

must have s < 1 and/or jt < 1  [17]. This suggests that one of the plates need to be 

diamagnetic and the other a paramagnetic plate for quantum levitation. Hence, this
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condition is not practical for air/vacuum as the intermediate medium, and if the plates are 

described by the Lorentz oscillator model. However, if the material properties are described 

using a model other than the Lorentz oscillator model (such as Pendry’s model), then the 

permittivity and permeability of a material could be less than unity when estimated at the 

Matsubara frequencies. Such possible materials will be discussed in more details in Chapter 

6 .

4. Leonhardt’s condition; e2 > 1, >  1 and emedium < 0.

Leonhardt’s condition requires a negative index medium as an intermediate 

medium [44]. To realize negative values for the permittivity and/or permeability (in 

complex frequencies), both dielectric and magnetic gain is required, and hence, this 

configuration is not practical.

5. Magneto-dielectric plates with ^  and |i2 > £2 -

According to this configuration, one of the plates needs to be strongly magnetic and 

the other is strongly dielectric [27, 30, 36, 52, 72]. This condition could be achieved even 

in the case of air/vacuum as the intermediate medium. One of the plates could be a simple 

dielectric with et > = 1. However, the challenging task is to design a strongly magnetic

material with p2 > s2 - No such material exists in nature, and thus, it must be engineered. 

Particular nanostructured materials that could satisfy such a condition may be a 

ferromagnetic material in a low permittivity dielectric host [32], geometrically optimized 

split ring resonators (SRR) with resonance frequencies in the optical and near infrared 

frequency range [73], dielectric spheres [74], dielectric rectangular plates [75], or Bi-Helix 

structures [76].



CHAPTER 4

CASIMIR FORCE BETWEEN A WEAKLY 
DISPERSIVE DIELECTRIC PLATE AND 

A METAMATERIAL PLATE

4.1 Introduction

In this chapter, we study the Casimir force for systems with material properties that 

are similar to that of NEMS or MEMS devices in which the permittivity of the material is 

approximately constant for a wide range of frequencies and can be assumed to be non- 

dispersive and non-magnetic. Hence, we consider plate 1 to be a weak dispersive dielectric 

plate and non-magnetic and plate 2  as dispersive with arbitrary values for the permittivity 

and permeability. Examples for weakly dispersive materials are Si, glass, and etc., with 

permittivity and permeability that are nearly constant for a broad range of frequencies. 

Plate 2 is considered to be a metamaterial plate with arbitrary values of the permittivity and 

permeability. Metamaterials have been demonstrated across the microwave, infrared and 

optical frequency [56, 58, 73, 75-85]. Our goal is a sufficient condition for quantum 

levitation, which will be a useful tool in designing practical systems that could help resolve 

the stiction problem in nanoscale devices. Again, similar to the previous studied 

configurations, we assume that the thickness of the plates are much larger compared to the 

separation distance between the plates (t »  d), and both plates are dissipative.
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4.2 Lorentz Oscillator Model for Dispersive 
Magneto-Dielectric Properties

The optical response of plate 1 and plate 2 are modeled using the Lorentz oscillator

plasma frequencies, respectively. The dissipation rates (ye i, Y m , i )  31-6 positive if the 

material is dissipative and negative if there is a gain. The suffix I represents the plate 

number (I = 1,2). We note that provided the resonant frequency of the first plate is much 

greater than the resonant frequency of the second plate, a)0e>1 »  (i)0ei2, we can approximate 

that the first plate is weakly dispersive without affecting the results since for all modes 

with d)n > co0el »  (o0e>2 , where the dispersive properties of plate 1 become important, we 

have Rp(q) -* 0 and the contribution of these modes to the Casimir force is negligible. 

Therefore, the electromagnetic properties of plate 1 are £i(io)n) = et =  constant and fxx =

1. Assuming the specular functions’ dissipative materials for the plates are given as,

model with the permittivities and permeabilities at the discrete complex Matsubura 

frequencies given as,

“ > 0 e ,l + <°n + Y e . l U n

Eq. 4.1

+ wn + Y m ,l< O n
Eq. 4.2

where (o)0e l, u>om,j) and (<t)pe l, (opm l) are the plates’ electric and magnetic resonance and
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It is important to note that if the two plates have the same optical properties the 

specular functions are positive for all parameters (see Equations 4.3 and 4.4) and the 

Casimir force is positive (attractive) or zero for all separation distances. The classical 

example of two perfect metal plates, used by Casimir, falls in the same category and thus 

the force in this case is attractive [9]. Hence, to achieve force reversal, it is necessary to 

design a system where the two plates are dissimilar in nature. We must also note that the 

split ring resonators (SRRs) are one of the promising candidates for the design of 

metamaterials with a strong magnetic response [73, 84]. When describing the magnetic 

permeability of complex metamaterials based on the SRRs, it is common to use the Pendry 

model [73], according to which,

f 0 ) 2
Psrr(<*>) = Hsrr + if*sRR — 1 + — 2 TTS * Eq. 4.5

O)0 —  CO — l(0 0 )T

and for imaginary Matsubura frequencies,

f < » l

COjj +  CO  ̂ +  COTCOnl* S R R (i< O n )  =  1  -  . . 2  . . . 2  ?  ' E q ‘ 4 , 6

where /  is the SRR’s filling fraction and coT is the constant relaxation frequencies (does 

not depend on con). Though Pendry’s model accurately describes the permeability of the 

SRR at low frequencies (compared to width of the SRR), it is invalid at high frequencies 

as it provides unphysical values for permeability lim u(tcon) = 1 — /  <  1 and cannot ben->oo

used without proper modifications in the calculation of the Casimir force, where 

summation for the overall modes needs to be performed. Furthermore, Pendry’s model 

does not satisfy the causality. In considering the asymptotic behavior for large frequencies, 

we obtain lim (jisrr — 1) = /  [violating the 1/co2 asymptotic required by Kramers-
0 ) - + o o

Kronig relation], and lim [i 'srr «  1/co (violating the 1/co3 asymptotic required by the



Kramers-Kronig relation) [86]. Hence, in our work, we restrict our study to EMMs that can 

be described by the Lorentz oscillator model.

4.3 Casimir Force Reversal at High and 
Low Temperatures

For the material configuration under consideration, the Casimir force at large and 

small separation distances compared to the thermal wavelength (Ar  = 2nc/(oT) can be 

determined using Equations 2.37 and 2.44 and by utilizing the corresponding specular 

functions provided in Equations 2.39, 2.40, 2.45, and 2.46. For the permittivities and 

permeabilities of the plates, we use the Lorentz oscillator model provided in Equations 4.1 

and 4.2, respectively.

In the case of large plate separations, we have already shown that the force is 

accurately defined by the n = 0 term, and we have = 1 + ojpe l/u>Qe l >  1 and jq = 1 + 

a)pm,i/0iom,i — 1- Consequently, the specular functions are positive (0 < Rp < 1) and so 

is the force (attractive). We must note that the attractive nature of the Casimir force in the 

high temperature limit have already been discussed in the case of non-dispersive 

materials [28, 33]. Here, however, we show that for realistic dispersive materials, the 

Casimir force will reverse to attractive even for cryogenic temperatures provided the 

plates’ separation is sufficiently large (d »  XT) or sufficiently small (d «  XT) as shown 

next.

In the case of small plates separations, we have £j(imn) and /q(i<wn). When the 

plates are dissipative with y e l >  0 and ym J > 0, we have 0 < RJ}(0) < 1 and the force is 

attractive, regardless of the nature of the plates. However, if gain is present the force may 

turn into repulsive provided (i) £t (iajn) < 1 < £2(iojn) and/or (ii)/t1(iu>n) < 1 <
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li2(.i(^n) when one of the plates is diamagnetic and the other is paramagnetic. We must 

note that this approach is a particular manifestation of the Boyer’s condition for the Casimir 

force reversal [43] here with vacuum as the intermediate media and as discussed by 

Kenneth et al. [33]. Metamaterials with loss compensation have been reported recently [39, 

71], which suggests that use of gain may be a feasible approach for achieving repulsive 

force.

Though the validity of the Lifshitz theory is questionable in the case of gain 

medium [41,87], we show here that even if the Lifshitz theory is applicable, extremely high 

gain is required for repulsion. We consider the best case scenario where one of the plates 

(plate 1) is dissipative while the other (plate 2) is active. An inspection of Equations 4.1 

and 4.2 reveals the condition for signature change of the specular functions which is,

, . + <*>c ^  * -lyl >  —  Eq. 4.7

where y  = (ye l , Ym,i) ando»c = (^oe,i* wom.i)- If this condition is satisfied, then 

negative contributions to the force are provided by all terms in Equation 2.35 with 

Matsubara frequencies in the range y — -yjy2 — 4(o2 < 2a)n < y  + yjy2 — 4(o£. The 

condition in Equation 4.7 clearly shows that extremely high gain across a broad frequency 

range must be applied. For instance, in the case of metals (silver) that are commonly used 

in the design of metamaterials and under ambient condition (T = 300K), one must 

have y  > o)T/ c  = 8200cm-1. It is difficult to conceive how such levels of gain across a 

broad frequency range can be achieved in practices. Hence, material gain may no longer 

be considered for Casimir force reversal. In addition, as mentioned in the previous chapter 

(see chapter 3.5), the effect of spontaneous emission of electrons from higher energy levels
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and the thermal fluctuations has to be considered while calculating the Casimir force [41, 

87].

As the specular functions are always positive for both large and small separation 

distances, we conclude that under realistic material configurations relevant to 

MEMS/NEMS devices, which generally consist of dissipative dielectric materials lacking 

magnetic response, and by considering EMM as plate 2, the Casimir force is always 

attractive (positive) or zero for a large and a small plate separation distances. Nevertheless, 

the force could be reversed for a range of intermediate separation distances as we will show 

below.

4.4 Upper Bound of the Casimir Force

To reduce the complexity of the analysis, both the plates are assumed to be 

dispersive with relatively low losses (ym l «  6)0m,i and ye l «  (i)0e,i) and the role of the 

dissipation factor in reversing the Casimir force is not considered. To derive a sufficient 

condition for the Casimir force reversal, we seek an upper analytical bound F of the force 

in Equation 2.35 such that F < F for all plate separation distances. Since dissimilar plates 

are required for repulsion, we chose one of the plates to be purely dielectric while the other

is dominantly magnetic at least for a finite set of frequencies such that z2 = VM2A 2 >  1* 

In this case, the specular functions are confined within the strict limits Rp (1) <  Rp(q) < 

Rp(0)> where RJ}(1) <  0, > 0 and/?"E(0) = 0, with a single or no real roots.

Since - 1  <  RJ}(q) < 1, it can be shown by the parametric swipe that for n  >  1 and within 

the domain of applicability of the normalized wave vector q 6 (0,1), the following upper 

bound of the specular functions hold
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^ L i 0[R”((,)e-'“ /9] <  £  

where R*(q) = R$(l)q2 + fl” (0)(1 -  q2) > R$(q).

Eq. 4.8

Figure 4.1 shows the parametric domains for which the upper bound (Equation 4.8) 

is not satisfied (red) and for which the force is repulsive (blue). In both cases [Figures 4.1 

(a) and (b)], the material parameters of plate 1 are fixed as e1 =  2 and fa = 1, and the 

material properties of plate 2 is varied. The upper bound is not satisfied for fa  < 1  and the 

force could be repulsive only for fa  >  1. Thus, by considering the system forz2 =

y jfa /s2 > 1, our upper bound holds and can be used to derive sufficient condition for the 

force reversal.

Direct integration of the force in Equation 2.35 represented by its upper bound 

Equation 4.8 immediately follows as,

repulsive Casimir force may be provided only ifi?£(l) < 0, which is our necessary 

condition for at least one vacuum mode. This implies that with the first plate purely 

dielectric (zx < 1), plate 2 has to be dominantly magnetic with z2 = yjfa/sz  > 1 to have 

the possibility of force reversal.

Eq. 4.9

+ ns)+ n2s 2f tp ( l) ) .

We note that the first term in the sum is always positive [/?p(0) >  0] and the
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Figure 4.1: The parametric domains corresponding to the cases where the upper bound 
(Equation 4.8) is not satisfied (red) and the force is repulsive F < 0 (blue). In the 
calculation we use st = 2 and ns = 2 , (a) plotted in terms of z2 and (b) plotted in terms 
ofH2.

The first term in the sum, Equation 4.9 can then be estimated explicitly giving,

F = Fa> + kBT +
[2  Pi Cl/1  + ifl; 287rd3

+ iH;e s) + s + iO.;2 + iil;e  5)] Eq. 4.10



where fl = (l/o>r )̂ <*>oe,2 + ojpe2/2  and 2 Ft is the Gauss hypergeometric function. For

the general case of plate 2  having both magnetic and dielectric responses, the remaining 

sum in Equation 4.10 does not have an exact solution. However, if we impose the restriction 

Rp( 1 ) < 0  for alln, which is equivalent of having simultaneously aJpe>2 wom,2 /  

Mpm,2 cooe,2 < 1  and a>pe 2/<A>pm 2 < 1 , then we can consider the lower bound of this sum 

through the related generalized hypergeometric function,

We note that this lower bound of the negative contributions to the force leads to an 

upper bound for the total force (see Equation 4.12) and captures the exact dependence of 

the sum for small and large mode numbers. The upper bound of the Casimir force thus can 

be written in the explicit analytical form as,

( 1  /eoT)J(cojwhere a

+ 1 ; e ' s)

Eq. 4.12

+ s 2 F1 (2,1 + iSl; 2 + if1; e-s)] -  c. c. f ,

where c. c. represents the complex conjugate of the corresponding terms.
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To compare the upper bound with the actual Casimir force, we plotted them at 

different plasma frequencies and at different temperatures. Figure 4.2 shows a comparison 

between the Casimir force (Equation 2.35) and the analytical upper bound (Equation 4.12). 

A repulsive domain appears with a decrease of plate 2’s dielectric to the magnetic plasma 

frequency’s ratio 6>pe2 /<upm 2 [Figure 4.2 (a)]. The repulsive domain also increases with a 

decrease in temperature [Figure 4.2 (b)], a fact that will be used below to derive a sufficient 

condition for the force reversal. In every case, and as expected, the upper analytical bound 

holds and capture the relevant physics.

Furthermore, we have included in the figures the large (or high temperatures) and 

small (or low temperatures) separation distance asymptotic of the Casimir forces calculated 

using Equations 2.37 and 2.44. The force is attractive in both cases and scales as 1 /d 3 with 

the distance. Only for intermediate plates’ separations, the force becomes repulsive.

The proper behavior of the upper bound allows for the derivation of a simple 

sufficient condition for the force reversal. We consider the high temperature 

limit (H «  1, a «  1) or the worst case scenario and expand Equation 4.12 in the power 

series. After simple algebraic manipulations, we obtain the leading terms in the expansion, 

87rd3F
< Li3[R$Mm  + 2 ^ M(0)(Li2 [e-s] + sL iJe"5]) 

kb 1 Eq. 4.13

+ 2s2/?£M(l)Li0[e-s].

In the above result, we have used the general properties of the specular functions 

KfM(l)  = flrff(l) /?”E(0) = 0 (plate 1 is non-magnetic). Taking into account that 

Ktm(O) ^  F°m(0 ) and enforcing the bounds of the polylogarithmic functions, we can 

further simplify Equation 4.13 by writing,
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8nd3F
kRT —  RtmW

n
((3) + ( 2<? + —  \e + ZRj-M( l ) s 2e s, Eq. 4.14

where (  is the Riemann zeta function.

m
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Figure 4.2: (a) The Casimir force (solid lines) and its upper bound (dashed lines) 
calculated for two ratios of plate 2 ’s dielectric and magnetic plasma frequencies 
60pe2 /a)pm2 and fixed co0m2 /(or = 1. (b) The temperature dependence of the force and 
its upper bound is calculated for different temperatures with fixed plasma and resonance 
frequencies 0)pe2/(*)prn2 = 0.25, a>0e2 /wom2 = and 6>pm2 /w 0m2 = 0.5. The large 
distance Fm and the small distance F0 asymptotic are included and in all calculations 
we have set plate 1 ’s permittivity at = 2 .

Figure 4.3 depicts the parametric domains for Casimir force reversal obtained from 

the analytical bounds in Equations 4.12 and 4.14. In the calculations we have restricted the
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parametric space to assure that the bound’s applicability condition 1 ) < 0

is satisfied for alln which is for 6 )pe2<uOTn2 A*>pm2 woe2 <  1 and&)pe2 /ftjpm 2 < 1. The 

figures also show the range of plate separation distances across which the Casimir force is 

repulsive.

Attraction

R ep u ls io n

Attraction

Figure 4.3: (a) Repulsive Casimir force domain according to Equation 4.14 (region A, 
blue) and Equation 4.12 (region B, gray), (b) The range of plate separation distances for 
force repulsion is calculated at fixed o)0m2/(oT = 1 , and <Upe2 /ajpm2 = 
(*)pm.2 / 0)om 2 = 0.5. The dots corresponds to the parametric domain for force reversal 
obtained through exact numerical solutions of the actual force given by Equation 2.35. 
In all cases we have set plate l ’s permittivity at £x = 2.



70

As expected the parametric domains for Casimir force reversal obtained using the 

bounds in Equations 4.12 and 4.14 correspond to a subset of the parametric space obtained 

through exact numerical calculations using Equation 2.35, which would provide the 

sufficient condition for Casimir force repulsion. Furthermore, we observe that repulsion is 

only possible provided 6Jpe26>0jn2/<Upm2a)0e2 <  1 and d/XT < 1 (which is d < 7.64 ym  

at 300 K).

The upper bound of the Casimir force in Equation 4.14 is easier to tackle 

analytically and allows for an explicit solution for the plate separation distance at the 

minima, which is

From the minima of the plate separation distance, we could determine the material 

properties required to achieve repulsive force at smin.

Figure 4.4 shows the repulsive Casimir force domain for different temperatures 

(oiom2 /° l)r )  shown in different colors. The dashed line represents the wpe2/o>pm2 required 

for achieving repulsive a tsmin. Hence, it is obvious from the figure that we need 

<upe2/u>pm2 <  |mpc2/oi>pm2| to reverse the force. In addition, in Figure 4.4 for a
s=smln

particular value of o>pe2 /o)pm2 less than the | o)pe2 /  (upm21 _ , the width of the repulsive
S—Smin

domain represents the width of the repulsive window. Therefore, for a fixed value 

of 0}0e2/o j0m2, a higher magnetic plasma frequency over the dielectric plasma frequency

4.5 Sufficient Condition

^min

Eq. 4.15

+
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is needed for the force reversal. The smaller the oipe2/oipm2 ratio, the wider the repulsive 

window.

0.20

0.15

0.10
CM

0.05

0.00

d/Xj

Figure 4.4: Plot showing the (jope2/(jopm 2 required for achieving repulsion at different 
temperatures (a) a)0m2/coT = 0.1, (b) a)0m2/a)r = 0.4, (c) a)0rn2/a>r  = 0.8, and 
(d) (o0m2/n>7- = 10 for o>0e2/u)0m2 = 2. The dashed line corresponding to each 
domain represents the c*>pe2/o)pm2 required from our assumption for s = smin.

Furthermore, with an increase in temperature, comparatively higher magnetic 

plasma frequency or lower dielectric plasma frequency (smaller a)pc2/w pm 2 ratio) is 

required than at low temperatures. In other words, for a particular value of tope2/a)pm2, 

the width of the repulsive window decreases with an increase in temperature and vice versa. 

Further increase in the temperature would close the repulsive window making the force 

attractive for all separation distances. For instance, when wpe2/oopm2 = 0.15 (see the 

Figure 4.4) and o>0m2/a)r = 10 (yellow domain), the Casimir force is repulsive for a 

certain range of separation distances, whereas when the temperature is increased to have 

w0tm/ mt = 0.8 (red domain), u>pe2/oopm2 > |wpe2/rnpm2| and therefore there is

no repulsive window and the force is attractive for all separation distances.
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Finally, estimating the upper bound (Equation 4.15) at s = smin and through further 

simplification we obtain the following sufficient conditions for the Casimir force repulsion:

It is important to note that with decreases in temperature, the minimum of the actual force 

in Equation 2.35 shifts towards smaller plate separations and the repulsive force at the 

minima increases. Hence, the sufficient condition holds regardless of the temperature.

The sufficient condition only involves the specular functions for the n = 0 and n = 

1 modes in the limit of large and small transversal wave vectors. From the condition that 

= (zi “  l ) ( z 2 ~  l ) / ( zi + l ) ( z 2 + 1) < 0 forn = 1, it is obvious that z2 >  1 

(since zx <  1) to have the possibility of force reversal. Hence, we term < 0 as the

necessary condition for force reversal and we have recovered the condition discussed by 

Kenneth et al. [33] using our analytical theory. The sufficient conditions are most 

promising in terms of realizing a Casimir force based levitation system, as it requires only 

the permittivities and the impedances of the plates for co = 0 and a> = a>T, to determine 

whether the force will be repulsive or not.

The process of determining the optical properties of the plates required to achieve

must be satisfied. Since zx =■ 1/V^i < E it immediately follows that z2 (u>r) > 1, or the 

metamaterial plate must be predominantly magnetic at frequencies equal to the thermal 

frequency a) = (i)T. The second step involves the sufficient condition of Equation 4.16, 

which in using the definition of the specular function can be written as,

— 2 and <- 0- Eq. 4.16

force reversal is as follows. First, the necessary condition = (zt-iXzztair)-!) <  q 
( Z j+ I X z ^ W tO + I )

Eq. 4.17
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where a(£j) = 1 + 2V ei/(l + £1) > 0. More importantly, the sufficient condition of 

Equation 4.17 depends only on three independent parameters and the sign of the force can 

be inferred from the permittivities and the impedances of the plates at <w = 0 and (o = o>r . 

This fact dramatically simplifies the analysis since the original problem depends on seven 

independent parameters such as electric and magnetic plasma and resonant frequencies of 

plate 2, temperature, separation distance, and the permittivity of plate 1.

Figure 4.5 depicts the parametric domain where quantum levitation can be 

achieved. In general, the analysis can be performed either with respect to the values of the 

permittivities and permeabilities of the plates estimated at oj = 0 and a) =  <oT [Figure 4.6

(a)], or equivalently [Figure 4.6 (b)] one can involve the Lorentz oscillator model. In the 

latter case, it is convenient to introduce three compound parameters that uniquely define 

the repulsion domain and directly involves the resonance and plasma frequencies of the 

plates: GJpe,2^om ,2/& >pm ,2w oe,2> w p e ,2 /w pm,2> and (o0mi2/ ( o t -  The results show that there 

should be a large variety of magneto-dielectric materials that can in principle be used for 

quantum levitation. However, there are some important restrictions. Equation 4.17 directly 

follows that force reversal cannot be guaranteed for e2(0) > [2a(£i) + l] /[2 a (f1) — 1], 

even in the case of the infinitely permeable plate [z2(a)T) -* oo]. Since 1 < a (f t ) <  2, it 

is clear that one must have £2(0) < 3 in order for the sufficient condition to be satisfied. 

In terms of the dielectric plasma and resonance frequencies, this restriction translates

38 w pe,2 — (l)oe2'j2.
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R11m( 1 ) + 2 R ? m( 0 ) < 0

Figure 4.5: Quantum levitation in magneto-dielectric plate configurations, (a) The 
complete parametric domain for Casimir force reversal according to the sufficient 
condition in Equation 4.17. (b) The parametric domain represented by the optical 
constants described Lorentz oscillator model with toprn2/wom2 = 0.5. In all cases, we 
have set plate 1 ’s permittivity as = 2.

Figure 4.6 shows the comparison of the parametric domains for repulsion provided 

by the sufficient conditions in Equation 4.17 and obtained from direct numerical 

calculations of Equation 2.35. As expected for all parameters the sufficient condition holds. 

From Figure 4.5 (b) and Figure 4.6, we observe that force reversal is possible only if 

a,pe2a)om2 / wpm2 woe2 < 1, which also implies that provided the magnetic and dielectric
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plasma frequencies of the magneto-dielectric plate 2 are matched (<o0m2 = w0e2), then 

(*>pm2 > wpe2 or P̂ ate 2 must be predominantly magnetic. This requirement becomes 

rather extreme in the limit of very high temperatures with mpm2/<x)pe2 00 f°r 

(o0m2 l (l)T 0 [see Figures 4.5 (b) and 4.6 (a)].

0.6

S 0-5
3CN ^
B 0.4a.

3
^  0.3

i »a>
a

3 0.1

o
i

0.6

S 0.5 
3
E 0.4a

3
^  0.3

OJ
a

3 o.i

(a)
Attraction

M
0.5

0.5

R e p u l s i o n

|R!Vi( 1)| > 2 R ; i ;(0)

1.5 2 2.5
^Omz/^T

Attraction (b)

...........................

Repuls ion

!R!M( D | > 2 R ? r ,(0)

1 1.5 2 2.5

Figure 4.6: A comparison between the repulsive Casimir force domains calculated 
based on the sufficient condition of Equation 4.17 (blue domain) and through exact 
numerical integration of Equation 2.20 (dots). In the calculations we vary the compound 
parameters and have fixed (a) u>pe2/o>prn2 ~  0-9 and (opm2/(o0m2 = 0.5, and (b) 
0)Qm2/o>t = 0.5 and cjope2/u>pm2 = 0.1. In all cases, we have set plate 1 ’s permittivity 
as e x = 2.
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We must note that in general the requirement o)pm2 > <i)pe2 is difficult to achieve 

in practice and the Casimir force reversal is highly unlikely to be accomplished at ambient 

conditions (o)r  = 0.163 eV at 300 K) and matched metamaterial designs based on split 

ring resonators operating at the microwave or far infrared frequencies. An alternative 

approach will be to use metamaterial plates with magnetic and dielectric resonance 

frequencies that are highly dissimilar. For instance, if 6>0e2 = 10<wOm2, the repulsion may 

be achieved for copm2/ojpe2 >  1/5 [see Figure 4.6 (a) for a>0m2 =  3a>r ]. However, in this 

case the strict applicability condition fl"M(l)  = 1) < 0 for the bound in Equation

4.12 is no longer valid, and one must be careful when using the sufficient condition of 

Equation 4.17. In any case, the derived constrains shows that the Casimir force repulsion 

is, in principle, possible for a broader range of the plates’ magneto-dielectric properties far 

beyond the much restrictive condition due to Boyer [43].

In this chapter, we have studied the problem of quantum levitation in parallel 

magneto-dielectric plate configuration. We have shown that when both plates are 

dissipative and one of the plates is non-magnetic, the Casimir force is always attractive for 

large and small plate separations. In the case of dispersive plate 2, described by the Lorentz 

oscillator model, we have obtained an explicit upper bound of the force and derived a 

simple sufficient condition for Casimir force repulsion. Based on the derived sufficient 

condition and the direct numerical calculations, we have shown that Casmir repulsion can 

be achieved for a broad range of optical parameters defining the magneto-dielectric plates, 

dramatically reducing the constrains imposed by the well-known Boyer’s condition [43].

Most importantly, our approach of obtaining the upper bound for the Casimir force 

and from there a sufficient condition for Casimir force reversal can be rather helpful in
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designing quantum levitation systems. This method could also be applied for any system 

provided the model for the permittivities and the permeabilities of the plates are known. 

When the sufficient condition is derived for the considered system with our approach, we 

explicitly obtain the limits on the material properties required for repulsion. For instance, 

consider a system with SiC as plate 1 and plate 2 is made of nickel polystyrene 

nanocomposites [32,88] (mainly magnetic) that involves parameters like filling fraction of 

nickel, polystyrene and air. By obtaining the sufficient condition for this particular system, 

we get the bounds for the filling fraction of the materials involved and other associated 

materials’ parameters. This would in principle allow us to realize the large variety of 

Casimir force based levitating MEMS devices. Therefore, our approach eliminates the 

tedious method of random numerical searches involving a large number of free optical 

parameters of the plates’ required identifying domains where repulsive Casimir force may 

exist.

Overall, in this chapter the sufficient condition derived for Casimir force reversal 

provides important insights into the problem and can serve as a highly useful tool in future 

designs of levitating magneto-dielectric systems.



CHAPTER 5

CASIMIR FORCE BETWEEN A DIELECTRIC PLATE 
AND A METAMATERIAL PLATE

5.1 Introduction

Although some MEMS or NEMS devices can be made from nondispersive or 

weakly dispersive dielectric materials, there are many nanoscale devices that involve 

strongly dispersive materials (for instance having metal components). Hence, in this 

chapter, we consider a general system with two dispersive plates and air/vacuum as the 

intermediate medium. The systems that fall under this category are assumed to have (i) 

resonance frequencies close to the first few Matsubura frequencies, which mainly 

determines the nature of the force, and/or (ii) magnetic and dielectric resonance frequencies 

that are approximately the same. In addition to resolving the stiction effect in nanoscale 

devices, by considering the general case of two dispersive plates, we could design a 

quantum levitation system that has a wide range of applications. These include frictionless 

transportation, ultra clean rooms where metamaterial coating is used to repel the dust 

particles from the equipment surfaces, etc.

To reduce the complexity of the system and ease of the analysis, we consider plate 

1 to be non-magnetic and the metamaterial plate 2 with values for permittivity and 

permeability satisfying the necessary condition [i2 > £2 - Again, the optical response of the 

plates is modeled using the Lorentz oscillator model (refer to Equations 4.1 and 4.2) and

78
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the dissipation is assumed to be negligible compared to the corresponding resonant 

frequencies (a)0e l »  ye l and (t)0ml »  Ym,i)•

5.2 Critical Mode Number for Casimir 
Force Repulsion

In Chapters 3 and 4, we showed that for a parallel-plate configuration consisting of 

two dissimilar plates described by the Lorentz oscillator model [16, 89], a repulsive 

Casimir force may only exist if the following condition is satisfied for at least one 

Matsubara frequency,

[ZiCioin) -  l][z2(i&>„) -  1] < 0, Eq. 5.1

where zt = -Jui/Ei are the plates’ impedances. This is a necessary condition and indicates 

that force reversal may only occur if one of the plates is predominantly dielectric while the 

other is predominantly magnetic within a finite range of frequencies. The validity of the 

necessary condition can be assessed by inspecting the signature of the integrant in the 

Casimir force in Equation 2.35, which itself is determined by the signature of the sum of 

the specular functions. The specular functions vary from Rp(0) >  0 (non-retarded limit) 

to R£(l) = [z^icjn) -  l][z2(i<o„) -  l]/{[zi(i6)n) + l][z2(i<on) + 1]} (thermal- 

resonance limit). Then, pertaining to the optical properties of the plates, the force can be 

either positive (attractive) or negative (repulsive), provided the necessary condition is 

satisfied [Rp (1) < 0]. In the opposite case where the necessary condition is not satisfied 

or R p(l) > 0, it can be shown by parametric swipe that the sum of the specular functions 

and concurrently the integrant in Equation 2.35 is positive regardless of the wave vectors 

or mode numbers.
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However, it may not be possible to reverse the force by satisfying the necessary 

condition for a single vacuum mode, and on the opposite limit, it is not physically possible 

to satisfy the condition for all modes since all materials, including man-made, are 

nonmagnetic at high frequencies. Therefore, we need to identify the minimum number of 

modes or critical mode number nc for which the necessary condition can be satisfied. In 

Figure 5.1, we depict the parametric regions where the necessary condition is satisfied. In 

the figure, for simplicity, we use a nonmagnetic plate 1 with frequency independent 

permitivity s1 = 2 while the optical parameters of plate 2 are varied. The entire parametric 

domain is split into three subdomains, depending on a critical cutoff mode number nc =

( l / t u 7') [ ( a jp ei2w 0m,2 — ^ p m . Z ^ O e . z i / i ^ p m . i  ~  w pe,2 ) ]

n > n  >1

Figure 5.1: Parametric plot depicting the necessary condition in Equation 5.1 satisfied 
for different mode numbers as categorized based on the critical mode number nc.

For the system under consideration where one of the plates (plate 1) is nonmagnetic, 

the necessary condition reduces to z2(ia>n) > 1 and depends on three compound
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parameters involving the resonance and plasma frequencies of the magneto-dielectric plate 

(plate 2). Three distinct parametric subdomains are observed such that the necessary 

condition is satisfied for (i) all modes (red domain), or for modes with (ii) 1 <  n < nc 

(blue domain) or (iii) n > nc > 1 (green domain), where nc > 1 is a critical mode number 

that depends on plate 2’s magnetic and dielectric properties as well as the temperature. The 

first two subdomains [(i) red domain & (ii) blue domain in Figure 5.1] define the plates’ 

parametric space most favorable for manifestation of repulsive Casimir force while in the 

third case [(iii) green domain in Figure 5.1] repulsion may only be achieved for low 

temperatures where the contribution of the higher order modes becomes significant. 

Furthermore, we observe that magneto-dielectric plates with (ope2 > o)pmi2 and 

£t>pe  2/u > o e ,2  > <wp m 2/c u o m ,2  will always lead to attractive forces and the parametric 

domain where the force may turn repulsive increases for decreasing temperatures (lower 

thermal frequencies oiT).

While the condition in Equation 5.1 provides a general guidance with respect to the 

plates’ optical properties, it does not guarantee Casimir force reversal. Stricter constraints 

on the parametric domain that assure repulsion follows.

5.3 Upper Bound for the Casimir Force

As the Casimir force is rather difficult to solve analytically, similar to the previous 

case studied in Chapter 4, we seek an analytical upper bound for the force which can be 

solved analytically. As mentioned previously, to simplify the analysis, we consider plate 1 

to be nonmagnetic and plate 2 is a magneto-dielectric such that the necessary condition in 

Equation 5.1 is satisfied for at least one mode. Then the specular functions are 

monotonically decreasing and confined within the strict limits of /?£(!) < Rp(q) <



82

flp(O), where = J?”e(1) < 0, J?”M(0) > 0 and/?£*(()) = 0 (as plate 1 is

nonmagnetic).

The specular functions have single or no real roots within the reciprocal wave 

vector range 0 < q < 1 and the following upper bound of the integrant in Equation 2.35 is 

valid:

L io

< ( l - < f 2)Li0 [fiJ(0)e"?] Eq.5.2

[ ns-i
Rpil)e  <].

The parametric domains that identify the conditions for the validity of the upper 

bounds in Equation 5.2 are shown in Figure 5.2. It is clear that the specular function may 

only be negative provided z2 > 1 or [(zt — l)(z 2 - 1 )  < 0] and bounds hold for all 

physical parameters and for both the TM and TE modes.

Integration of the Casimir force in Equation 2.35 represented by its upper bound in 

Equation 5.2 immediately follows:

+ ns Li2 [f?p (0)e-ns] Eq. 5.3

The first two terms in the sum are positive [/?£ (0) >  0] and repulsive Casimir force may 

only appear, without being guaranteed, if the necessary condition /?£(!) <  0 is satisfied.
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3 1

Figure 5.2: Parametric domains corresponding to the cases where the bounds in 
Equation 5.2 are not satisfied (red) and Li0[/?£(q)e_ns/t?] < 0  (blue), (a) TM and 
(b) TE polarizations are studied separately and in the calculation we use et = 2.

We note that Equation 5.3 correctly reproduces both the short distance (s -» 0) and 

large distance (s -* oo) asymptotic limits as per Equations 2.44 and 2.37, respectively. 

Equation 5.3 shows that when the force is repulsive for n = 1 for fixed plate separation 

distance s , the force for higher order modes is also repulsive with a decrease in magnitude. 

Hence, we consider only the n = 1 term, underestimating the repulsive force, for obtaining 

sufficient condition.
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Finally, using the properties of the polylogarithmic function Liv[/?p(0)e-ns] < 

Liw[/?p(0)]e-ns < Li„[i?” (0)]e-s and/?$M(0) > /?fM(0), by underestimating the 

repulsive term and overestimating the attractive term, we further simplify the force as,

<  U3[ft?M(0)]

+  2e-s{Li3 [ R j M  (0)] +  s Li2[fi?M(0)] Eq- 5-4

+ S2 Lii[/?TAf(l)]}*

Again by using the properties of the polylogarithmic function that Li3 [/?£(*)] <

Li2[i?p(x)] <  [/?£(*)] for 1 > Rp(x) >  - 1 ,  and by underestimating the repulsive term

and overestimating the attractive term, we get

8nd3F n

+  2 e - s { ( l  +  s)L i1[fi?<1(0)] Eq' 5'5

+  s 2 L i1 [/?7.M ( 1 ) ] } .

The Casimir force calculated through direct numerical integration of Equation 2.35, 

its upper bound Equation 5.3 and the approximation with n = 1 for the summation of 

Equation 5.5 are depicted in Figure 5.3. We consider a plate’s configurations with 

ft,pm,2 G>oe,2 > wpe,2wom,2 and n>pm ,2 > wpe,2 > or both necessary and the sufficient 

conditions are concurrently satisfied. In Figure 5.3 we show the effect of change in 

temperature in the force and the bounds. As it is clearly shown, the upper bound Equation

5.3 follows the actual Casimir force and exactly recovers the force for small and large 

separation distances. In the case of the approximation with n = 1 for the summation of 

Equation 5.5, the force is recovered for large separation distances or high temperatures (as 

only n = 0 mode is required) and as expected the force for small separation distances is
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not recovered as a large number of modes has to be included in the summation. However, 

it follows the Casimir force and its upper bound (Equation 5.3) for intermediate separation 

distances or near force minima 5  «  2. This allows us to investigate for the separation 

distance corresponding to the force minima and sufficient condition.

o  10

LL

d/A

Figure 5.3: Casimir force calculated numerically based on Equation 2.35 (solid lines), 
the upper bound Equation 5.3 (dotted lines), and the approximated result Equation 5.5 
(dotted lines). In the calculations we use u>pel = O.5oi0e l for the nonmagnetic plate 1 
while the optical parameters of the plate 2  are set as (a) cu0 m 2  = 4oir and (b) u>0 m 2  = 
1 .0 1 0 )7- witho)0m 2 = 0 .6  oi0e,2» wpm,2 = wom,2 and ^pe.z ~  0.5o)pm,2.

Figure 5.3 illustrates the Casimir force for the system at low temperatures with 

o)0m ,2 = 4o)r  [Figure 5.4 (a)] and high temperatures with o>0 m 2  = 1.01o)T [Figure 5.4

(b)]. The parameters used in the calculations have been chosen such that the necessary 

condition (Equation 5.1) is satisfied for all modes. It is clear that for the same plate 

configuration with a decrease in temperature, the width of the repulsive window widens or 

the range of separation distance for which the repulsive force is achieved increases. It is
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important to note that the force for large separation distance remains unchanged, whereas 

for small separation distances, the attractive force increases with decrease in temperature.

Figure 5.4 shows the Casimir force for a different system chosen such that it does 

not satisfy the necessary condition Equation 5.1.

<NIot—
X

m
*o
te

00
LL.

Figure 5.4: Casimir force calculated based on Equation 2.35 (solid lines), the upper 
bound of the Casimir force Equation 5.3 (dotted lines) and the approximation Equation 
5.5 (dotted lines). In the calculations we use a)pe l = 0.5<oOel for the nonmagnetic plate 
1 while the optical parameters of the plate 2 are set as (a) a)0m 2 = 1.5o>r  and 
(b) (Ogm 2 = 1.01o>7- with (Ooe,2 = 0.55 n>om,2 > w0m,2 = 2.2 C0 pm 2 . and U)pe 2 =
1 . I d ) p m  2 -

Here, as expected the force is attractive and decreases with increase in temperature. 

From Figures 5.3 and 5.4, it is clear that low temperatures are preferable for quantum 

levitating systems.
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5.4 Sufficient Condition for Repulsive 
Casimir Force

The objective here is to determine a sufficient condition in terms of the material 

properties of the plates and temperature. We proceed by considering the minima of the 

upper bound in Equation 5.5, which is

""" "  Lii[R™ (l)]' “ •

It is important to note that smin > 2 since ftfM(l)  < 0 and 1?°M(0) > 0 , provided the 

force is repulsive. Substitute smin in Equation 5.5 and we obtain,

8nd3F
< L iit/^CO )] [ l  + 2e-2+6 ( -  -  l ) ]  Eq. 5.7

minkBT

where 6 = Lix (Ojj/Lii (1)]. From Equation 5.7 we can obtain the limits of 6,

and thus the sufficient condition for the force reversal.

Sufficient condition: For a parallel plate configuration where one of the plates is 

non-magnetic (plate 1) and the second plate (plate 2) is a magneto-dielectric, the repulsive 

Casimir force is manifested for a finite range of plate separations provided,

0 > . .  J  >  -0.654658. Eq. 5.8

Figure 5.5 shows the parametric domain representing the sufficient condition in 

terms of the specular functions 0) and /?fM(l) . The plot range in Figure 5.5 is chosen

such that the necessary condition is also satisfied — 1 <  ^  0 and 1 > >

0. When a system is designed such that its specular functions falls within the parametric 

domain depicted in Figure 5.5, it is guaranteed to have a repulsive Casimir force for a finite 

range of plate separations.
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R e p u l s i o n

-1 - 0.8 - 0.6  - 0.4 - 0.2 0

R™<1>

Figure 5.5: Parametric domain depicting the sufficient condition for Casimir force 
repulsion.

In Figure 5.6, we compare the parametric domains associated with the repulsive 

Casimir force calculated using the necessary and sufficient conditions and through exact 

numerical calculations of the force given by Equation 2.35. The yellow domain represents 

the sufficient condition and the region below the white dotted line represents the exact 

repulsive domain obtained numerically. It is apparent that by designing a system with 

plates whose material parameters fall in the yellow domain, we are assured to have a 

reversal of the Casimir force; hence, the suficient conditions hold.
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Figure 5.6: Parametric domains corresponding to various conditions for the realization 
of quantum levitation. The yellow domain corresponds to the sufficient condition given 
by Equation 5.8, red domain corresponds to the case where the necessary condition is 
satisfied for all modes n > 1, the blue domain corresponds to the case where the 
necessary condition is satisfied for modes less than the critical (1 < n < nc), and the 
green domain corresponds to the case where the necessary condition is satisfied for 
modes greater than the critical (n > nc > 1). The white dots represent the actual limit 
obtained through direct numerical calculations of the Casimir force using Equation 2.35 
(the area below the dotted line).

It is important to note that the parametric domain defined by the sufficient condition 

in Equation 5.8 falls whithin the regions where the necessary condition is satisfied either 

for all the modes (red domain) or for modes that are less than the critical mode 

(1 < n < nc) (blue domain). The green domain in Figure 5.1, for which the necessary 

condition is satisfied for higher order modes only (n > n c > 1), is not included in Figure

5.6 as this domain does not overlap with the domain where the sufficient condition is 

satisfied. This again indicates that it is highly difficult or nearly impossible to achieve
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quantum levitation in systems with material properites that satisfies the necessary condition 

forn >  nc >  1.

In this chapter, we have studied the Casimir force between a dispersive magneto- 

dielectric plate and a dispersive dielectric plate. For this configuration, we have derived an 

explicit upper analytical bound of the Casimir force. Using this bound we have obtained a 

necessary and a sufficient condition for quantum levitation in terms of the specular 

functions of the plates at zero and thermal frequencies. The complete parametric domain 

corresponding to the Casimir force reversal have been investigated.



CHAPTER 6

ELECTROMAGNETIC METAMATERIALS

6.1 Introduction

Recently, a rapid progress in the field of electromagnetic metamaterials (EMM) 

allows have open the possibility to design materials with optical properties that are not 

observed in nature [47, 54, 55, 57-59, 71, 85, 90-96]. These artificial materials could be 

used to control the flow of electromagnetic waves. The EMMs are engineered to have 

unique optical properties, for instance, to demonstrate strong magnetism at optical 

frequencies [54, 73, 90]. In a way, the EMMs can be viewed as a composite material 

comprised of artificial atoms or molecules in the form of small metal-dielectric resonators 

that can have either magnetic or electric responses or both. The unique properties of EMMs 

have attracted researchers’ attention in the fields of physics, optics, and engineering. The 

permittivity and permeability of the materials can be nanofabricated by incorporating 

resonant structures that are smaller in size compared to the incident wavelength, but much 

larger compared to the atomic length scale. One of the well-known designs for engineering 

such metamaterials is the use of metal wires [79] or split ring resonators (SRRs) [73] in a 

host medium.

The vast majority of naturally existing optical materials, such as air and glass, are 

characterized with positive electric permittivity. Nobel metals and highly doped 

semiconductors can also exhibit negative values of the permittivity at frequencies below

91
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the plasma frequency [70, 89]. However, no natural materials have yet been found with 

negative permeability in the optical range. Recently, the electromagnetic metamaterials 

(EMM) that mimic the atomic response of a conventional media through assembling large 

number of electromagnetic resonators have been proposed as a mean to design the electric 

permittivity and magnetic permeability at will.

Figure 6.1 shows a typical composite medium with a host medium with 

permittivity £1 and permeability in which another material with permittivity s2 and 

permeability ju2 of a specific structure like a sphere, a spheroidal, a cylindrical, etc. is 

imbedded. The entire medium with two or more material inclusions can act as a single 

material with effective optical properties (effective permittivity and effective 

permeability), provided the wavelength of the applied field X is much larger than the size 

of the inclusions a (A »  a). This phenomenon is popularly known as homogenization of a 

media. The limit (A »  a) implies that no retardation plays a role on the local level [55,97- 

99],

H ost m ed ium  Inclusions
£ t M i £2 M 2

\  Effective m edium

•  •  •  
•  • — ► £eff Meff

•  •  •

Figure 6.1: Illustration of a composite medium consisting of a host medium with £x 
and fix and inclusions with s2 and p2-

Hence, by proper design of the inclusions, it is possible to tailor the optical response 

of the composite media and thus create new exotic electromagnetic materials. A particular
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type of composite media for which both the permittivity and permeability are negative is 

commonly referred to as left handed materials (LHM) [45,54,55, 71, 82]. The LHM have 

attracted strong interest due to the possibility of reversing many optical effects including 

reversal of the Doppler shift and Cherenkov radiation, demonstration of negative 

refraction, and development of novel optical lenses that can image with resolution below 

the diffraction limit [55]. This dramatic progress in developing artificial electromagnetic 

material may provide the means to reverse the Casimir force.

Despite the dramatic increase in the parametric space, where Casimir force reversal 

can occur, the practical development of such levitating systems based on EMM plate 

remains highly challenging and requires the use of an engineering approach when 

designing the plates. Some particular systems that could be considered for achieving strong 

magnetic properties which is required for the force reversal are geometrically optimized 

SRR with resonance frequencies in the optical and near infrared frequency range [73], 

dielectric spheres [74], dielectric rectangular plates [75], or Bi-Helix structures [76] that 

increases the magnetic susceptibility of the composite medium. Another possible way is to 

use natural ferromagnetic materials and composites that have large magnetic susceptibility 

at low frequencies [77]. However, this approach should be considered with care since even 

though some ferrites have high permeability at low frequencies, the magnetic susceptibility 

is usually negligible when compared to the dielectric susceptibility of the ferrites at higher 

frequencies [77]. Probably the most promising strategy is to use structured composites 

where a ferromagnetic material is included within a low permittivity dielectric host [27, 

30]. Few potentially promising candidates have recently been considered in the form of
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nickel polystyrene nanocomposites and yttrium iron garnet (YIG) that exhibit high 

permeability and low permittivity [30, 32].

Therefore, to better understand the role of inclusions tailoring the permittivity and 

permeability of the material as a whole, we discuss in detail some of the important 

structures or composites such as SRR, parallel wires, and nickel polystyrene 

nanocomposites.

6.2 Split Ring Resonators

Split ring resonators (SRRs) are one of the most widely used structures that can 

provide strong magnetic response with negative permeability and thus are used to engineer 

NIM [45, 55, 73, 84]. If the magnetic field of the incident light is polarized perpendicular 

to the surface of the SRR, it generates an electromotive force and a magnetic dipole with 

orientation opposite to the incident field can be induced. Thus, the overall response of a 

composite made of SRR can manifest a negative permeability within a narrow frequency 

range close to the resonance. As we have demonstrated in the previous chapters, strong 

magnetic response is a prerequisite for any quantum levitation system with air/vacuum as 

the intermediate medium.

The effective permeability of the SRR is commonly modeled using Pendry’s model 

(see Equation 4.5) [73]. Specifically, the effective permeability of such composite media 

will depend on the geometrical and physical characteristics of the SRRs. Though Pendry’s 

model accurately describes the permeability of the SRR at low frequencies (compared to 

the width of the SRR), it is invalid at high frequencies as it provides unphysical values for 

permeability \p.{oi -* oo) < 1], Furthermore, as already discussed, Pendry’s model does 

not satisfy causality (refer to Section 4.2). Hence, it is imperative to develop a new
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analytical model for the permeability of the SRR that satisfies causality and is valid at all 

frequencies. This model would be highly useful for designing quantum levitation systems 

at the nanoscale.

In what follows, we develop an analytical model that is similar to Pendry’s model 

but satisfying causality. This is achieved by the introduction of the radiation resistance 

which is absent in Pendry’s model. The radiation resistance is the dominant at high 

frequencies and thus has important ramification for quantum levitating systems.

6.2.1 Analytical Model for Split Ring Resonator 
Including Radiation Resistance

6.2.1.1 RLC Model o f a Split Ring Resonator

The SRR is analogous to a transmission line, with effective electrical components 

such as resistance due to losses in the metal, inductance due to circular flow of the current, 

and capacitance due to charge accumulation at the SRR termination points. The schematic 

of the active element (SRR) is shown in Figure 6.2. The width of the SRR is w and the 

mean radius is a, with outer and inner radii being a + w and a — w, respectively. The 

height of the SRR is h and the split length is given in terms of split angle (2<jp0) as d = 

a sin[2<p0] «  2a<p0. From Figure 6.2, dx  = ad<p where dx  and d<p are the length and 

azimuthal angles of an infinitesimally small segment of the split, respectively.



Figure 6.2: Illustration of the split ring resonator with the polarization and propagation 
direction of the incident electromagnetic wave indicated.

The SRR is illuminated with a transverse magnetic (TM) wave. According to 

Faraday’s law of induction, the incident oscillating magnetic field (with frequency 

cS) induces an electromotive force (emf) which drives the current flow across the 

resonator. As mentioned, the SRR is analogous to a transmission line where a resistor R is 

connected to an inductor in the series with inductance L and the two splits in the SRR with 

a dielectric material act as two capacitors with capacitance C connected in the series with 

the equivalent capacitance Ceq — C/2.

To derive an analytical model for the permeability, we use Kirchhoff s voltage law 

involving the potential drop across each circuit element (/?, L, & Ceq).

propagate along the x-axis direction), we seek a solution for the current as / (t) = I0e io)t.

uB =  I( t)R  + L —  h —  I I ( t )d t .  Eq. 6.1
Lpn J

Assuming harmonic waves with the incident magnetic field B(t) = B0e la)tz  (assumed to
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Using Faraday’s law, the emf induced in the SRR is uB =  —d(f)/dt = i<i)B0e~i(A)t(na2), 

where <f> is the magnetic flux. Substituting it back into Equation 6.1 we get,

i(t)B0(na2) = I0R + LI0(-i(o) + g Eq. 6.2

From Equation 6.2 we determine the current /0 in the SRR as,

f _  nBQo)2a2 ^
/q w 2  7 • v  Eq. 6.3L(o)q -  coz -  iwo>T)

where <w0 = l/^jLCeq is the resonant frequency and <or = R/L  is the relaxation frequency. 

The magnetic dipole moment as,

H0(D2( n a 2) 2 

L{pi q — (o2 — i(i)(oT)
m  = lA z  =  t , 2 7— t — -  H, Eq. 6.4

where A = n a 2 is the surface area of the SRR. The magnetization of a composite material 

made of SRR is then M = nfn where n = l / V  is the number density of the resonators, and 

V is the volume of the unit cell. Identifying that p = n a 2h /V  is the volume fraction of the 

SRR and x m = M / | / / | ,  we obtain the effective permeability of the composite,

u0 (i)2n a 2
H e f f  =  1 +  X m  -  1 +  PTTT—5-------;-----:------ V  E<F 6-5K Lh(a>l -  oi2 -  ia)(oT)

Next, we determine the circuit components such as the internal resistance Rin, 

inductance L, and equivalent capacitance Ceq. The internal resistance Rin of the SRR is 

given as,

Rin =  p j , .  Eq.6.6

where p  — l / o )  e"e0 is the resistivity, I = 2 n a  is the length, A ' = wh  is the cross sectional 

area of the SRR, s''is the imaginary part of permittivity of the SRR, and £0 is the 

permittivity of free space. We adopt the Drude model for the SRR metal permittivity s =
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e ' + ie" = eb -  o)p/a)(ft) + it) where eb is the contribution due to inter-band 

transitions, a)p is the plasma frequency of the metal, and t is the relaxation frequency of 

the metal. The internal resistance then follows from Equation 6.6 as,

2na(D2 + T2
R i n  =  " H T  t /  >2 c  h  =  P(fi> + *  )•  E q - 67w xo)p e0n

The inductance of the SRR can be determined from the magnetic flux inside the 

ring </>; and the flux in the region enclosed by the ring <f>n . The inductance of the SRR is 

given as L  = <f>/I where <j) = <pt  + <f>n is the total flux. Using Ampere’s law, the fluxes <f>i 

and <f)u are determined to be,

^ w(6a -  w), Eq. 6.8
o h

. 2na Eq. 6.9
<Pu =  - j y -  V-ol I i( f c a ) -

where h(ka)  is the Bessel’s function of first kind. From Equations. 6.8 and 6.9, the 

inductance of the SRR can be written as,

L = ~  [ y ) ,(ka)  + 1  (6a -  w)], Eq. 6.10

and in the large wavelength limit ka «  1 (or quasi-static limit), the inductance simplifies 

to,

L =
w21 

a2 + wa — -  
6

Eq. 6.11

Again, when iv «  a, the inductance becomes L = nfiQa2/h .

The capacitance of the SRR is determined using the relation, C = £QsrA'/d. 

where A' =  wh and the split in the ring is d = a sin 2<p0. Then the equivalent capacitance
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using Ceq = C/2. Using the parameters of the SRR the equivalent capacitance is written 

as,

wh wh
ceq =  £0£r n— ^ —  *  £o « r  (sin 2(p0 «  1). Eq. 6.12H 2asm2<p0 4 a<pQ ™ M

Hence, we have determined all the necessary electrical parameters related to the SRR. By

substituting the resistance/? (Equation 6.7), inductanceL (Equation 6.11), and

capacitance Ceq (Equation 6.12) in the effective permeability Equation 6.5 we get,

f ( 0 2
Heff  — 1 H— 5------ 2— :----- 7—v EQ- 6.13

where /  =  pa2/ (a2 + wa — w 2/ 6) is the effective filling fraction of the SRR and when 

the width is much smaller than the radius of the SRR w «  a, f  -* p. Hence, we obtained 

an analytical model for the SRR in terms of its circuit components.

When we compare our analytical model for the effective permeability of a 

composite made of SRR (Equation 6.13) to Pendry’s model (Equations 4.5 and 4.6), we 

observe that the relaxation frequency <wT is no longer constant but is proportional to <o2 for 

high frequencies. Considering the asymptotic behavior for high frequencies, we 

obtain lim (p'eff — 1) = l/o )2, satisfying the l/oo2 asymptotic required by causality.(j)-*CO * *

Similarly, for the imaginary part, we get lim u"efr oc l/co, which violates the l/o»3CO->00 J J

asymptotic required by the Kramers-Kronig relations [86]. While our model is an

improvement compared to Pendry’s model, it needs to be modified further if it is to be 

entirely consistent with causality. Additionally, at a high frequency, it is important to 

include the effects of radiation which will affect the effective resistance of the SRR.
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6.2.1.2 Radiation Resistance o f  the SRR

The radiation resistance is related to the energy losses in the form of a radiating EM 

field. According to classical electrodynamics, as the electrons (charged particles) are 

accelerated, they radiate EM waves which results in added losses [86]. The radiation 

resistance of a circuit element is usually negligible at low frequencies; however, it can be 

the dominant dissipation process at high frequencies as we will show in this section.

First, we modify the RLC model to include higher order resonance modes that play 

a major role at high frequencies. The telegraph equation [100] associated with the SRR is 

given as,

where R is the resistance per unit length, L is the inductance per unit length, I is the current, 

and uB is the emf induced across the SRR due to the incident magnetic field B(x, t). 

Including the associated parameters and rewriting Equation 6.14 in terms of the azimuthal 

differential angle, we get

Su = - IR  S x -  L S x —  + SuB, Eq. 6.14

6u = - IR a  8q> -  LaStp — + SuB. Eq. 6.15

The magnetic flux (#) and the corresponding induced emf (SuB) are given as,

Eq. 6.16

dtp a
SuB = - —  = ia)B(t)h(ka)-S(p, Eq. 6.17
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where k  = aiyfe~rjc  is the wave vector in the host medium, a) is the angular frequency of 

the incident wave, c is speed of light in the vacuum, and sr is the relative permittivity of 

the host medium.

Substituting the induced emf (Equation 6.17) in Equation 6.15, we write the 

telegraph equation as,

du dl i(oa , „ , N
—  = - IR a  - L a —  + - r - J 1(ka)B(t). Eq. 6.18dq> d t k

To relate Equation 6.18 to the capacitance of the SRR, we use the current conservation law

/ cLp & *♦ <4
— + J V./ dv  = 0 where p is the charge density and J is the current density. Integrating

over the split ring we obtain,

dl du

which can also be written in terms of the current and voltage across the infinitesimally 

small angular element S(p as,

d2I d2u
= ~ C,"a d ^ d t '  Eq' 6'2#

where Ceq is the equivalent capacitance per unit length.

Using Equations 6.18 and 6.20, we relate R,L and Ceq to the current /  as,

d2I
d<p2 ~ Ceqa

dl d2I iota dB(t)
- R a - - L a - r - =  + — }1{ka)

Eq. 6.21dt d t2 k dt

= - q 2I - Y 2B(t),

where q2 = (o2a2LCeq + i (o a2RCeq and y 2 = Ceq(a)2a2/k )  ]1(ka). Then by applying 

the current termination conditions Î ijcp = — <p0 + n /2 ) = lx(<p = <Po~ n /2 )  = 0
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and /2(<p = —(pQ — n /2 )  =  /2(q> = <p0 — 3 n /2 )  = 0 in Equation 6.21, we get the current 

in the first (I/) and second (/2) half rings of the SRR (see Figure 6.2) as,

From Equations 6.22 and 6.23, we obtain the resonant condition for the currents as,

where n is the mode number. Using the resonant condition, we could design a SRR with 

R, L, and Ceq with resonances at given (preset) frequencies. The circulating current 

resonances will lead to a strong magnetic response of the SRR and thereby high HejT 

the metamaterial.

Equations 6.22 and 6.23 show that the current /* reaches its peak value at <p = 0 

and the current /2 reaches its peak value at q> = n  which is given as,

where Ilimax(<P = 0) = l2,max(SP — n) = /0. The current profiles are shown in Figure 6.3.

cos (q(p)
Eq. 6.22

f Eq. 6.23Y2 cos [q Op + 7r)]
— 1

rr(n - 1 / 2 )
qr = it Eq. 6.24

2

Eq. 6.25

h,max(<P = n) = B(t) ̂ 2  [cos(2?rq) sec q ( |  -  <p0) -  l], 
Eq. 6.26
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Figure 6.3: Plot of real part of the current (dashed blue) and I2 (solid red) for a = 
20 pm, w = 1 pm, h = 1 pm, 2<p0 = 5°, A = 100a, and B0 = 1. The material 
considered for the SRR is gold with plasma frequency o)p = 1.396 * 1016 rad/sec  and 
relaxation frequency /  = 3.25 * 1013 rad/sec.

Now the radiation resistance can be determined using the currents I1 and /2. To 

begin, we write the magnetic vector potential A in terms of the current as follows:

,ikr
A(x) =

Bo_e_  
An r

r
J J(x') d3x ' ,

i tr  2Ur, a e y
A(x) = —  —  B(t) — (q<pr -  tanq<pr).

Eq. 6.27 

Eq. 6.28
n r  q-

Then the vector potential for the radiation field in terms of magnetic dipole moment p  [86] 

is written as,

,ikr
A ( X )  =

W  An r P'

and when compared with Equation 6.28 we identify the dipole moment as,

Eq. 6.29

_ i4a , ,
p  = ---- 5(f) — (q<pr -  tan q(pr).

o) q J
Eq. 6.30
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The power radiated by the SRR due to the flow of the current is related to the 

radiation resistance (Rrad) and the dipole moment p  as [86],

c2Z fc4
P = l S R r a < l = - ~ m 2. E , .6 3 1

where Z0 = V/*oAo is the impedance of the free space. Finally, from Equation 6.31 we 

obtain the radiation resistance of the SRR as,

c2Z0k4 |p |2 
= E , ' 6 J 2

It is clear from Equations 6.30 and 6.32 that the radiation resistance depends on the

resistance, the capacitance, and the inductance of the SRR. Therefore, by using Equations

6.7,6.11, and 6.12 for Rin, Ceq and L, we write the radiation resistance as,

c2Z0kA 4a2#
Rrad — ,  7 , - ~ => Eq. 6.33

(pr(t)3a2Ceqy/R2 + L2(i)2

where

„ Y   sm[q(n -  Z<pQ)\_________|
2 cospf(7r- 2<p0)] + cosh[T(7r- 2<p0)])

2(cos[X(n/2 -  <Pq)] -  cosh[T(7r/2 -  <p0)])2
<pr

X = a
N

cos[Z(7r -  2<p0)] + cosh[F(7r -  2<pQ)]

Ceq(ti{L<xi + VR2 + L2cu2) Ra.yJC(
, and F = e<?0)

2 V2Z.W + 2VR2 + L20)2

To simplify the expression for the radiation resistance in Equation 6.33, we expand 

in power series about ka and consider the quasi-static limit (ka «  1). This is because, in 

principle, an effective permeability and/or permittivity can be assigned only for composite 

materials with inclusions having sizes that are much smaller than the wavelength X »  a. 

Only in this limit the material can be considered as a homogeneous material. When X > a,
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increased scattering and multi-pole interactions between adjacent SRRs in the medium

Figure 6.4 compares the internal resistance, radiation resistance, and the total 

resistance as a function of ka and for different split angles 2(p0. It is evident that for ka  «  

0 the radiation resistance is much smaller compared to the internal resistance and can be 

neglected from the calculations. However, with an increase in the frequency, the radiation 

resistance becomes dominant and for ka -»1 the internal resistance becomes negligible 

and can be neglected. In addition, Figure 6.4 shows that the approximated radiation 

resistance in the limit of ka «  1 in Equation 6.34 is virtually the same as the actual 

radiation resistance due to Equation 6.33. Nevertheless, for extremely small values of the 

split angle 2<p0, the error between the approximated and the actual radiation resistance 

increases [see Figures 6.4 (a) and (b)].

need to be included in the calculation, which is out of scope of this work. After expansion

in the series, we obtain a rather simplified form of the radiation resistance as,

Eq. 6.34
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Figure 6.4: Plot of internal resistance (solid blue, Equation 6.7), exact radiation 
resistance (solid green, Equation 6.33), analytical radiation resistance (dashed red, 
Equation 6.34) and total resistance Rrad + Rin (black dashed) for a = 20 fim, w =
1 fim, h = 1 nm, (a) 2<pQ = 2°, and (b) 2<jo0 = 0.02°.

To further analyze the nature of the radiation resistance and the validity of our 

approximated result, in Figure 6.5 we plot the relative error between actual radiation 

resistance (Equation 6.33) and the approximated radiation resistance (Equation 6.34). We 

consider two parameters, the retardation factor ka and the width to radius ratio (w /a ) of 

the SRR.

kat  --   ’--1 1 >--   1-- '-- ’--■--1-->--»--   r

(b)

j.i i

(a)
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1.0 o.o

Figure 6.5: Percentage relative error between the actual radiation resistance (Equation 
6.33) and the approximated radiation resistance (Equation 6.34) with a = 20 ixm and 
2tp0 = 2° for different ka and w/a  ratio.

The relative error between the actual and approximated radiation resistance 

increases with an increase in the SRR width to radius ratio w /a  and incident 

frequency (ka) for fixed a. Even for the worst case of w -* a and ka -* 1, the maximum 

possible error is approximately 8%, which suggests that the approximated radiation 

resistance can be used for 0 < ka < 1 and any w /a  provided that 2cp0 is not extremely 

small. It is important to note that the limit of w -> a may not be considered as the structure 

will not be a SRR anymore, and it will become a system of two half spheres separated 

by 2(p0 measured from the center. To further analyze the validity of our approximation, we 

calculated the relative error as a function of the size parameter ka and split angle (see 

Figure 6.6).
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Figure 6.6: Percentage relative error between the actual radiation resistance (Equation 
6.33) and the approximated radiation resistance (Equation 6.34) with a = 20 pm  for 
different ka and 2<p0.

Figure 6.6 shows that the relative error is extremely small in the limit of ka «  1; 

however, for extremely low value of 2cp0 the relative error increases with an increase in ka. 

Hence, from our analysis it is clear that the approximation holds for any w /a  andO < ka < 

1 provided (p0 > 1°. This constraint is not an issue since it is practically difficult to 

fabricate SRR with such small split angles. In addition, the SRR is generally designed to 

achieve resonance at high frequencies whereas with (p0 -> 0, the capacitance C -* oo and 

the resonance frequency becomes o)0 -> 0, which is the opposite of the design needs. 

Therefore, for all practical purposes, we can consider the approximation of Equation 6.34 

to be highly accurate.

6.2.2 Analytical Model for Split Ring Resonator 
Satisfying Causality

In this section, we include the effects due to the radiation resistance on the effective 

permeability of the SRR based metamaterial composite which is thus given as,
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, . .. /ft)2
Me// -  M eff  + e// -  1 + “ 2------i— :------ p r< Eq. 6.351 "  "  (Oq — ft) — 1 ojojt((o)

where ft)T(ft)) = R/L  is the relaxation frequency and R = /?*„(&)) + /?rad(<w) is the total

resistance of the SRR. Using Equations 6.7 and 6.34, we can write the relaxation rate

as ft)T(ft)) = [fix2 + (/? 4- ^)w 2]/L = ft)T0 + aft)2, where a>r0 = ojt (0 ) is the relaxation

frequency at zero frequency.

The real and imaginary part of the effective permeability can be explicitly written

as,

,  / f t ) 2 ( go2 — (O2)
H ' e f f  =  1 +  t V — k r  7 —7 7 — Eq. 6.36(<0$ -  ft)2)2 + ft)2ft)2(ft))

„ _  /ft)3ft)T(ft)) Eq. 6.37
M e// "  (a)2 -  ft)2)2 + ft)2ft)2(ft))'

Considering the asymptotic behavior for large frequencies, we obtain lim y ' rr «
CO->00 J  *

1 /(a2 (obeying the asymptotic required by the Kramers-Kronig relation) and lim y"eff oc»00 * *

l/(i) =£ 1/ft)3 (violating the asymptotic required by the Kramers-Kronig relation) [86]. 

Clearly, y ef f  in Equation 6.35 does not satisfy the causality and may not be used to define 

the permeability of a medium.

According to Kramers-Kronig relation, the real and imaginary parts of the 

permeability of a material are interrelated as [86],

2 f 00 ft)' u" (ft)')
fi'ia)) = 1 + -  P I do)', Eq. 6.38

7r J0 ft) 2 -  ft)2

2ft) f 00 uYft/) — 1
ju"(ft)) =  P , do) , Eq. 6.39

7T J 0  ft) 2 - f t ) 2

where y' (ft)) and y"(oi) are the real and imaginary parts of the relative permeability of a 

medium and P in the integral refers to the principal part (determined by using the Cauchy
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principal value method). The Kramer-Kronig relation is derived based on the basic 

principle of nature that the effects follow the cause (causality) which any material should 

satisfy. If an analytical model is causal, we should be able to get the imaginary part from 

its real part and vice versa (using Equations 6.38 and 6.39).

The permeability model of Equation 6.35 is inconsistent with the Kramer-Kronig 

relations. The reason for this inconsistency is the incorrect high frequency asymptotic 

of m'V /-  Therefore, we proceed to obtain the imaginary part of the permeability using the 

real part which we have already shown to have the proper asymptotic. By employing the 

Cauchy principal value method to perform the integration in Equation 6.39, we obtain,

„ " e„  = — 1[ x W W  1 d a .
It |J (l) — 0) Eq. 6.40

m'-*o

A closed form solution of the above equation can be obtained as,

_ “ Pw
S R R  27r{o>o +  m2[(u2 -  2o>o +  (<uT0 +  am 2) 2]} 

v-> <*>o(fy -  <Mq) + Aid)2 -  Ria2(i)4(Ri — mg)
J&3 V^Bl /[2 Log(-VfiD -  Log(«,)]

Eq. 6.41

where

At = a>o + Q)q Ri(Rid2 + 2(ox0a -  1) + (*)20Ri,

Bt = (<uT0 + RiCcX<*>ro + 3flja) + 2 (/?£ — <ug), 

_  “ + 8<uT0a  -  [27/3( l  + 4(or0a + (o20a 2 + 6 a2a>o)]}
R l ~  12 a 2m (l + 22/ 3) '

_  -{4  + 8mT0a  + [24/3( l  + i V 3)(l + 4<uTOa  + a>20a 2 + 6a2too)]} 
R* ~  12 a 2m [l + 22/3( l  — i V3)] '

m = (/? + V ()1/3,
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P =  - 2  -  15a)^Qa 2 +  2(i)%0a 3 -  18a 2a)Q -  2 7 a 4o»o -  12o»T0(a  +  3 a 3Wo),

<■ = 27a4(o)r0 + aa)o)2(-a)30 -  4a)30a + 4o)q + 18o>r0awo + 27a2Wo), 

and /?3 is the complex conjugate of R2.

Figure 6.7 shows the real and imaginary parts of the analytical model (h’srr 

and h"srr)- Since we obtained the imaginary part from the real part using the Kramer- 

Kronig relation, it is obvious that the imaginary part is causal. Hence, we derived an 

analytical model for the permeability of the SRR that satisfies causality. However, as the 

analytical h"srr is complicated, it needs further simplification. Hence, our future work is 

to simplify the current analytical }i "srr to a much simplified form so that it could be used 

universally.

2.5

2.0

SRR
'* 1.0crto
1  0.5

SRR0.0

10 1550
w(eV)

Figure 6.7: The analytical model of the permeability y!Srr (solid blue, Equation 6.36), 
y"srr (solid red, Equation 6.41), and y"Srr (dashed black, Equation 6.37). Plotted 
for (or0 = 0.5, a  = 0.01, ct>0 = SeF, and p = 0.4.

Most importantly, we compare y " S RR  that satisfies causality in Equation 6.41 with 

the analytical model that is not causal in Equation 6.37 (see Figure 6.7). Although the non-
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causal h”srr is similar to causal h"srr near resonance, for higher frequencies, both are 

dissimilar, and therefore the non-causal \l"srr cannot be used in the calculation of the 

Casimir force.

To conclude, we have derived the internal resistance, radiation resistance,

equivalent capacitance, and inductance of a split ring resonator (SRR) and developed an

analytical model for the effective permeability of a composite made of SRRs. We have also

showed the importance of the radiation resistance at high frequencies, which is generally

omitted. The approximated radiation resistance and its parametric domain for which it is

valid is also provided. Based on the Kramers-Kronig relation, we have obtained a causal

analytical result for the imaginary part of the effective permeability. This model can be

used to properly calculate the Casimir force between metamaterial plates.

6.2.3 Permeability of the SRR at Imaginary 
Frequencies

Due to the approximation we have made earlier for the radiation resistance (see 

Equation 6.34), the analytical model for the effective permeability of the SRR composite 

is valid only within the limit ka < 1. Assuming that the lower order vacuum modes 

especially n = 1 falls in the range of 0 < ka < 1, we analyze the permeability of the SRR 

at imaginary frequencies, as we intend to use in the application of the Casimir force. Figure 

6.8 shows the permeability of the SRR for different thickness w and height h of the ring 

for a fixed radius a. Although the SRR provides strong magnetic properties at real 

frequencies, it behaves like a diamagnetic material at imaginary frequencies. We 

plot neff(iay) for 0 <  ka < 1, the range for which the material is homogeneous.

Figure 6.8 shows that with an increase in the width and height of the SRR, the 

material becomes highly diamagnetic. The line denoted by n = 1 shows that the first
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vacuum mode falls in the range of 0 < ka < 1 when a = 1 pan and T = 300 K. Therefore, 

the material is diamagnetic at the first Matsubara frequency, a fact that can be used when 

designing quantum levitating systems. It is important to note that Me//(0 )  = 1, regardless 

of the SRR geometrical properties.

0.8
0.20.05 0.5

ka

Figure 6.8: Permeability of the SRR for a = 1 jurn, 2<p0 = 2° and (a) w = h = 0.1a, 
(b)w = h = 0.2a, and (c)w  = h = 0.3a. The solid black line denoted byn = 1 
represents the frequency corresponding to the first vacuum mode kTa = 2na/AT.

Figure 6.9 shows the maximum allowable radius of the SRR for the different 

number of the vacuum modes that falls in the limit 0 < ka < 1, obtained by 

assuming ka = 1. This shows that the higher the number of vacuum modes for which a 

diamagnetic response is achieved, the smaller the radius of the SRR must be. This result 

can be explicitly written as a < c/con = c/nw r = XT/2nn.
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Figure 6.9: Maximum radius of the SRR a (red dots) allowable in the limit of ka < 1.

6.3 Ferromagnetic Nanocomposites

Ferromagnetic materials like nickel, yttrium iron garnet, magnetite, etc. have high 

permeability than other materials, especially at low frequencies in the GHz range. Although 

these materials have high permeability fi »  1, the permittivity is generally even higher £ > 

fi »  1 and the necessary condition for force reversal is not satisfied [70]. However, in using 

composites with ferromagnetic materials included in a low permittivity dielectric host, it 

may be possible to satisfy the condition £ < fi at low frequencies. Recently, this 

prospective has been considered by Inui with nickel nanopowder, a ferromagnetic material 

infused in to polystyrene spheres [30-32, 88].

Figure 6.10 illustrates the material composition of nickel polystyrene 

nanocomposites. The polystyrene acts as the framework which holds the nickel 

nanoparticles. The nickel nanoparticles can be viewed as discrete quasi-atoms with high 

magnetic moments that give rise to strong magnetization of the composite material. Since
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the permittivities of the polystyrene and the air (the host) is low, it is also expected that the 

effective permittivity of the composite will also be relatively low as well [32].

Figure 6.10: Nickel polystyrene nanocomposites with air as a host medium.

The effective permittivity/permeability of the nickel-polystyrene nanocomposites 

can be modeled using the Maxwell-Gamett theory [101,102], according to which the 

effective permittivity £eff(ico) is related to the permittivity of the nickel and the 

polystyrene as [32],

where sNi and f r are permittivity and filling fraction of the nickel and £poly and f 2 are 

permittivity and filling fraction of the polystyrene.

The effective permeability nef f  of the composite material can be determined using 

Onsager’s theory [103,104], according to which when the size of the nickel particles is 

much smaller than the field penetration depth (or skin depth) we have,

Polystyrene Nickel

ge//(tm ) -  1 _  sNi( iQ })- l  t epoty(tQ>) -  1 
£e ff (i(o) + 2 1£Ni( iaj) + 2 2 Zpoly (ico) + 2' Eq. 6.42
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where r  is Debye relaxation time, R = A na^m l/kgT ,  and m is saturation magnetization.

Figure 6.11 depicts the effective permittivity and effective permeability of the 

composite material with filling fractions = 0.2, f 2 = 0.1 and the size of the nickel 

nanoparticles aNi = 5 nm. Clearly, we have juê ( 0 )  > £ê (0 )  and the necessary 

condition for the Casimir force reversal can be satisfied for at least the n = 0 vacuum 

mode. Using cryogenic temperatures can substantially decrease the Matsubara frequencies 

and higher order modes may also be made to satisfy the condition neff(i(i)n) >  £ê (io )n). 

Furthermore, modification of the permittivity/permeability can also be facilitated by 

changing the relative filling fractions of the nickel and polystyrene, or by choosing a 

different ferromagnetic material such as ferrite, yttrium iron garnet, etc.

Figure 6.11: Effective permittivity £d (dashed red) and effective permeability fj.d (solid 
blue) of the nickel polystyrene nanocomposites. The solid black lines denotes the first, 
second, and third Matsubara frequencies.
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6.4 Nanowire Composite Materials

A composite media made of pairs of parallel metal nanowires is another promising 

candidate for achieving repulsive Casimir force. The nanowire composite can manifest 

strong diamagnetic response, and if matched with a second paramagnetic plate, it can 

satisfy Dzyaloshinskii’s condition for Casimir force reversal or y.2 > 1 > ^  if the 

intermediate medium is non-magnetic. A nanowire-pair composite media has been 

proposed by A.N. Lagarkov and A.K. Sarychev as a means to introduce strong magnetic 

response in the near-infrared and optical spectral ranges [79]. A schematic of the composite 

is shown in Figure 6.12 (a) and it consists of metal nanowire pairs of permittivity em 

dispersed in a dielectric host medium of permittivity ed.

Figure 6.12: (a) Illustration of the nanowire composite media, (b) The composite is 
made of nano-wire pairs where w and a are the diameter and length of the wire, 
respectively, d is the separation distance between the wires.

Similar to that of the split ring resonator (SRR), a circulating current is generated 

in a pair of nanowires due to the incident time-varying magnetic field, which is assumed 

to be polarized perpendicularly to the surface of the pair. The basic response of the system 

can be simulated as a system of RLC elements with the gap between the nanowires acting 

as the capacitor. In the model developed by A.N. Lagarkov and A.K. Sarychev [79], the 

radiation resistance associated with the parallel-wire system was not considered.
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If the host material is air, then the effective permittivity and permeability of the 

nanowire composite is given as,

where p is the volume fraction of the nano wire, the dE and mH are the electric and magnetic 

dipole moments, respectively. If the permittivity nanowires is £m and pm = 1 and a 

magnetic field is perpendicular to the surface of the material, the electric and the magnetic 

dipole moments are given as,

where <p = (a<i)/c)yfe^-J\n(a/w)/ ln (l + eda/w ),  A= w 22nama)/c2, g  =

a((j}/c)y[e^^Jl + 1/2 A/dctln(d/w ), C2 = fd/[41n(d/w)], and am = oi£m/An.

Figure 6.13 shows the effective permittivity and permeability of the nanowire 

composite for different separation distances between the pair of gold nano wires. The spatial 

characteristics of the nanowires considered in the calculation are a =  350 nm, w = 

30 nm, and d =  150 nm with a filling fraction of p = 0.1. The Drude model is used to 

model the permittivity of the gold nano wire, which is £m(i(o) = 5 +

(A/Ap) / [ I  + (A/At)], where Ap = 0.135 pm  is the plasma wavelength and At = 58 pm  

is the relaxation wavelength [70]. Our results clearly show that for the system under 

consideration, the composite material is purely dielectric for low frequencies

Eq. 6.44

perf(i(o) = l + ^ m Ht Eq. 6.45

d
(2 /3  )aw2em

Eq. 6.46
’E 1 + £m(w /a )2ln[l + £da/w]cosh[<p]’

a)d\2 tanhQ?] -  g Eq. 6.47
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with (ieff(ico) *  1 and eeff(i(o) > 1, whereas for higher frequencies the material acquires 

diamagnetic property with y.ê {io i)  < 1 and £ê (ico) ~ 1.

rs

3
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,d=2a
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U) x1015

Figure 6.13: The permittivity and the permeability of the wire media showing 
diamagnetic properties at high frequencies. The solid black lines denotes the first, 
second, and third Matsubara frequencies.

The diamagnetic property could be extended for a broad range of frequencies, 

especially for the first few vacuum modes, by changing the permittivity of the host 

medium, dimensions and separation of the nanowires, and material of the nanowires. From 

Figure 6.11 the material is diamagnetic for the higher order modes n > 1 and becomes 

strongly diamagnetic with an increase in the separation distance between the nanowires, 

from d = 2a to d = 5a.

In this section we have designed three potential electromagnetic metamaterials that 

manifest strong diamagnetic/paramagnetic across broad frequency ranges. These 

composite materials use nanoscopie resonators such as split ring resonators, parallel wires, 

and ferromagnetic nanoparticles that play a role similar to that of the atoms and molecules



120

in nature. Due to the relatively large sizes (compared to those of the atomic world), the 

nanostructured composites can manifest a much stronger electric and magnetic response at 

a pre-set frequency range. These materials can be utilized to realize (a) a system consisting 

of a pure dielectric material and a magneto-dielectric material, and (b) a system consisting 

of a diamagnetic plate and a paramagnetic plate satisfying Dzyaloshinskii’s condition. A 

detailed design of these two systems will be discussed in Chapter 7.



CHAPTER 7

PRACTICAL MATERIAL CONFIGURATIONS 
FOR CASIMIR FORCE REVERSAL

7.1 Introduction

In the previous chapters, we have developed several theories for the Casimir force 

repulsion by considering specific cases and provided the necessary and the sufficient 

conditions that would help us in designing materials with such properties. In Chapter 6, we 

have discussed some of the most promising artificial material designs with high 

permeability and diamagnetic properties that can be considered for designing a quantum 

levitation system. The practical realization of such system is a challenging endeavor. For 

instance, the material properties required for repulsion (sufficient condition) needs to be 

satisfied for both plates and for a sufficiently broad spectral range. For example, in the case 

of a system with a dielectric and a highly magnetic materials satisfying the sufficient 

condition, the EMM plates based on SRRs or ferromagnetic nanocomposites needs to be 

predominantly magnetic for the frequencies corresponding to at least a few low order 

vacuum modes; otherwise, the repulsive force may not be achieved. Similar requirements 

must be imposed in case of a system with a diamagnetic plate and a paramagnetic plate 

(Dzyaloshinskii’s condition) [17, 33].

Therefore, in this chapter we discuss some prospective material configurations and 

the possibility of satisfying the necessary condition for a sufficient number of vacuum

121
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modes, which can lead to force reversal. We also present a technique for achieving quantum 

levitation without involving an exceedingly strong magnetic response by designing the 

plates to have substantially dissimilar magnetic and electric resonant frequencies.

7.2 Materials with Dissimilar Magnetic and 
Electric Resonant Frequencies

We begin by discussing an important technique which relies on a mismatch 

between the magnetic and electric resonance frequencies to design quantum levitation 

systems with substantially relaxed requirements for the magnetic response. We have 

already established that the necessary condition for force reversal ju >  £ provided for one 

of the plates is purely dielectric. However, it is unphysical to assume that this condition 

can be satisfied for all Matsubara frequencies as materials are nonmagnetic at high 

frequencies and there is substantial mismatch between the magnetic and electric oscillator 

strengths for naturally existing materials. Hence, as discussed in the previous chapters, we 

focus on designing artificial optical materials such that the sufficient condition is satisfied 

for one or a few of the lowest order vacuum modes, preferably for n = 0 and n = 1. In the 

analysis that follows, again we use the Lorentz oscillator model to model the plate’s 

permittivities and the permeabilities (Equations 4.1 and 4.2).

First, we consider a case where the magnetic and electric resonance frequencies of 

the magneto-dielectric plate are the same. In this case, to satisfy the necessary condition 

we need a material with stronger magnetic dipole moments than the electric dipole moment 

or a higher magnetic plasma frequency than the electric plasma frequency, which is rather 

difficult to realize practically.

Figure 7.1 shows the permittivity and the permeability of the magneto-dielectric 

plate, assuming the magnetic and electric resonant frequencies are the same. In Figure 7.1
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we showcase two possibilities, one with n >  £ (corresponding to Oipm/cnpe > 1) and the 

other with fi < £ (corresponding to (opm/a>pe < 1).
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Figure 7.1: Permittivity and permeability of a magneto-dielectric material with equal 
magnetic and electric resonance frequencies. The dashed red line, blue, and black solid 
lines correspond to the permittivity, and the permeabilities with 0Jpm/ MPe = 1-2 
and (opm/o)pe = 0.8, respectively. We have also fixed the resonant frequencies oj0e = 
a)0m = 1.5 * 1015 rad/sec, the plasma frequency a>pe = 1.5o)0e and the relaxation 
frequencies ye — ym — 0.1 (o0e. The first few Matsubara frequencies are included with 
gray vertical lines.
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Figure 7.1 (b) shows the material parameters plotted for imaginary frequencies. 

Provided (t)pm/a)pe < 1 [solid black line in Figure 7.1 (b)], the permittivity is greater than 

the permeability £ > n for all frequencies. The first few vacuum modes corresponding to 

temperature T = 300 K are also shown in Figure 7.1 (b) as a reference. We must note that 

the necessary condition p > £ is satisfied for all vacuum modes if the magnetic plasma 

frequency is higher than the dielectric plasma frequency (Opm/ajpe > 1 [solid blue line in 

Figure 7.1 (b)]. However, having (opmfa)pe > 1 is practically challenging if not 

impossible. Hence, we seek an alternative approach based on magneto-dielectric materials 

with highly mismatched magnetic and electric resonant frequencies.

Figure 7.2 (a) shows a particular case where a)0e > <w0m. Figure 7.2 (b) clearly 

shows that for such materials the permeability is greater than the permittivity for the lower 

order vacuum modes even if the magnetic plasma frequency is less than the electric plasma 

frequency (*>pm/a)pe =  0.5. This suggests that it may be advantageous to design EMMs 

based on SRRs, parallel slabs, etc. with highly mismatched magnetic and electric resonant 

frequencies. This will relax the seemingly unphysical conditions for having a magnetic 

plasma frequency larger than the dielectric plasma frequency. There is thus high confidence 

that such metamaterial plates may provide the possibility of realizing quantum levitation 

in practice.
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Figure 7.2: Permittivity and permeability of a magneto-dielectric material with highly 
mismatched resonance frequencies plotted for (a) real and (b) imaginary frequencies 
with the parameters of the Lorentz model used in the plots are as follow: co0e = 1.5 * 
10 rad/sec, tUpg — l.SuiQg, O.Bcoq̂ , (i)pm 0.5cUpe, and Ye ~ Ym  O.lojQg.

7.3 A Dielectric Plate and a Magneto-Dielectric Plate

We have already studied this particular configuration in Chapter 4 and obtained the 

necessary and the sufficient conditions for force reversal. According to the analysis, it was 

clear that this is probably the most promising configurations for the realization of repulsive
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Casimir force in practice. Here, we study a system consisting of one of the plates being 

made of polystyrene ferromagnetic nanocomposites (metamaterial plate) and the other 

plate being a purely dielectric plate with M — 1- The polystyrene ferromagnetic 

nanocomposite was already discussed in Chapter 6. Figure 7.3 illustrates the parallel-plate 

configuration under consideration.

Polystyrene Nickel

D i e l e c t r i c

Figure 7.3: Parallel-plate system with one plate made of polystyrene ferromagnetic 
nanocomposites and the other being a pure dielectric plate.

The polystyrene ferromagnetic nanocomposites plate consists of nickel 

(ferromagnetic) nanoparticles embedded in polystyrene (fpo{ * 1.253) with the host 

material being air [32, 88]. As shown in Figure 6.11 (in Chapter 6), the permeability of the 

metamaterial plate is greater than the permittivity at low frequencies. Specifically, at 

ambient temperatures we have n(0) = 4.32 > e(0) = 1.92. However, in that particular 

example the necessary condition is no longer satisfied for the Matsubara frequencies with 

n > 1 (for instance ju(n = 1) = 1.013 > e(n = 1) = 1.911). More modes can be
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included by changing the volume fractions of the constituents, the temperature or the radius 

of the nickel nanoparticles so that we can tune the magnetic permeability.

Hence, to identify the parametric domain for which the necessary condition for 

force reversal is satisfied, we varied the size of the nickel nanoparticles aNi for the different 

vacuum mode number at T = 300 K. Figure 7.4 shows the parametric domain where the 

necessary condition for force reversal is satisfied (piê f > £e/y) as function of the size of 

the nickel nanoparticles aNi and mode number. Clearly, increasing the size of the nickel 

nanoparticles increases the number of modes that will contribute to repulsion.
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Figure 7.4: Parametric domain satisfying the necessary condition for repulsive Casimir 
force. In the calculations, we have fixed the volume fractions of the constituents = 
0.2 (nickel) and/2 = 0.1 (polystyrene).

The Casimir force calculated for three different nickel nanoparticle sizes is shown 

in Figure 7.5. In the calculations, the permittivity of the pure dielectric plate (plate 1) is set 

at £x = 2 ( =  1). For aNi = 60 nm, even though the material is strongly magnetic for 

the lower order modes, the Casimir force is attractive for all plate separations [case (a) in

M c f f  ^  ^ e f f
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Figure 7.5]. However, by increasing the size of the nickel particles, the force becomes 

repulsive for intermediate plate separation distances and with a further increase in the 

particle size, the repulsive window increases [case (b) & (c) in Figure 7.5]. As expected, 

for a parallel-plate configuration with one of the plates being purely dielectric, the force is 

attractive for large and small plate separations and quantum levitation can only be achieved 

for intermediate plates separations (refer to Chapters 4 and 5).
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Figure 7.5: Casimir force for different nickel nanoparticle sizes aNi. (a) 60 nm, 
(b) 80 nm, and (c) 100 nm.

Furthermore, a wider repulsive window and/or stronger force may be achieved by 

varying the filling fraction of the ferromagnetic inclusions and polystyrene. Alternatively, 

we can also consider using a variety of ferromagnetic materials such as yttrium iron garnet, 

magnetite, etc. Similarly, the polystyrene could also be replaced with other low permittivity 

dielectric materials.
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7.4 A Diamagnetic and a Paramagnetic Plate

Another promising parallel-plate configuration that can be used for Casimir force 

repulsion is a system consisting of a paramagnetic plate (plate 1) and a diamagnetic plate 

(plate 2) that satisfies the Dzyaloshinskii’s condition for /t, see Figure 7.6. For the 

paramagnetic plate, we can consider the polystyrene ferromagnetic nanocomposites 

studied above (with > 1) [32,88] while the diamagnetic plate can be engineered as 

a composite made of metal nanowires pairs (with n(i(o) < 1) [79], The nanowires 

composite was already studied in Chapter 6 (Section 6.4) where we showed that its 

magnetic and dielectric response can be modeled as a lumped RLC circuits. Since the 

magnetic and electric resonance frequencies depend on the geometrical properties of the 

metal nanowires they could be easily tailored in order to fit the requirements for Casimir 

force reversal.

Polystyrene Nickel

Dielectric

Figure 7.6: Quantum levitation system with a paramagnetic plate (plate 1) made of 
polystyrene ferromagnetic nanocomposites and a diamagnetic plate (plate 2) made of 
parallel nanowires dispersed in a dielectric host.
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The composite media made of parallel nanowires can be either 

paramagnetic [/r(co) > 1] or diamagnetic [yu(o>) < 1] for the complex Matsubara 

frequencies depending on the dimensions and spacing between the wires. Figure 7.7 shows 

the parametric domain for a nanowire composite with diamagnetic response. In the 

calculations we have we utilized a gold nanowire with the fixed diameter w = 10 nm.

Figure 7.7: Parametric domain for which the nanowire composite plate is diamagnetic.

The general design rule for achieving quantum levitation based on the above 

described configuration is as follows. Using the parametric domain calculated in Figure 

7.7, choose a set of geometrical parameters such that the metal nano wire composite is 

diamagnetic for a sufficient number of modes. We must note that the diamagnetic 

properties of the nanowire composite are stronger if the ratio of the nanowire’s length vs. 

diameter (a /w ) increases. We have already identified that the nickel polystyrene 

nanocomposites is paramagnetic for all frequencies and its permeability increases with the

D i a m a g n e t i c

00
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increase of the nickel nanoparticle’s size. It is thus expected that a large number of 

composite configurations may lead to quantum levitation.

As an example, we depict in Figure 7.8 the Casimir force as a function of the plate 

separation for three configurations, each having different nanowire sizes a.

fN

CO A*  -4

b -6
LL

10° 1

d/Xj

Figure 7.8: Casimir force for different lengths of the nanowire pairs (plate 2), (a) a = 
200 nm, (b) a = 400 nm, and (c) a = 600 nm. The fixed size of the nickel 
nanoparticles (plate 1) is fixed at aNi = 20 nm.

Our results show that the repulsive Casimir force increases with an increase in the 

diamagnetic response of plate 2 (increasing a /w  ratio) for small plate separations. For the 

ferromagnetic plate (plate 1), we have fixed the filling fractions of the nickel and 

polystyrene as f t = 0.2 and f 2 = 0.1, respectively. The diamagnetic plate (plate 2) is made 

of nanowires with equal diameters w = 10 nm and separated by distance d = 0.1a. When 

considering the dependence of the force on the plate’s separation distance, we note that at 

zero frequency the two plates are nonmagnetic. Hence, the Casimir force at large plate 

separations will always be attractive (see the large distance asymptotic result from
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Equation 2,37). The repulsion can only occur at plate separation less than a given critical 

value and increases with an increase in the nanowire size a.

Similarly, in Figure 7.9 we investigate the Casimir force for three different 

configurations of the paramagnetic plate (plate 1). Specifically, we vary the size of the 

nickel particles keeping in mind that an increase in size translates into a stronger magnetic 

response (see Figure 7.5). In the calculation we have fixed the dimensions of the gold 

nanowires (plate 2) (see Figure 7.9). As expected, the Casimir force is again positive at 

large plate separations, and it becomes negative below some critical separation distance. 

The force also increases with an increase of the nickel nanoparticle’s size.
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Figure 7.9: Casimir force for different nickel nanoparticle sizes (plate 1), (a)a Ni = 
20 nm, (b) am = 40 nm, and (c) am = 80 nm. The length and diameter of the
nanowires (plate 2) are fixed as a = 100 nm and w = 10 nm, respectively, and 
separated by d = 0.1a.

To conclude, in this section, we have proposed and studied a realistic quantum 

levitation system based on two parallel plates made of ferromagnetic and diamagnetic 

composites, respectively. We show that regardless of the composite’s geometry and hence



magneto-dielectric properties, the Casimir force is attractive for large plate separations and 

can turn into repulsive if the plate separation is smaller than a critical value. The critical 

plate separation distance is thus a stable (equilibrium) point of the system. This points 

toward possible applications such as frictionless transport in the nanoscale (nano- maglev) 

and contact free MEMS based actuators and mechanical micro machines.



CHAPTER 8 

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this dissertation we have performed a comprehensive study of the Casimir force 

reversal (quantum levitation) in parallel-plate configurations. We have considered the 

practically important case of air as a host medium and have obtained both necessary and 

sufficient conditions for force reversal. Practical achievable designs based on the current 

state of nanotechnology have been proposed.

Specifically, we have provided a general mathematical description of the effect of 

quantum levitation (repulsive Casimir forces) for both dispersive and non-dispersive 

material plates. We have established the necessary and sufficient conditions for force 

reversal as functions of the plate’s spectral response functions. For the case of non- 

dispersive plates, we have identified six universal types of the Casimir force based on 

which various types of devices such as sensors and actuators could be engineered. 

Considering the practical limitations on the permittivities and permeabilities of naturally 

existing materials as well as recently developed artificial electromagnetic material, i.e. 

metamaterials, we have concluded that the use of a dominantly magnetic non-dispersive 

plate in connection with a purely dielectric second plate is the most promising 

configuration for achieving quantum levitation.

134
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In the case of dispersive materials, we have studied two distinct configurations. 

First, we consider a system consisting of a non-dispersive dielectric plate (simulating a 

nanoscale device) coupled to a dispersive magneto-dielectric plate (acting as a substrate). 

For this configuration, we have derived an explicit upper analytical bound of the Casimir 

force. In using this bound, we have obtained a sufficient condition for quantum levitation 

in terms of the specular functions of the plates at zero and the thermal frequencies. The 

second configuration that has been considered consists of dispersive magneto-dielectric 

plate and dispersive dielectric plate.

Again, we were able to derive, for the first time, both the necessary and sufficient 

condition for quantum levitation. The complete parametric domains corresponding to 

Casimir force reversal have been investigated in details and possible directions for practical 

realization of quantum levitation have been outlined. Specifically, we have shown that (1) 

in both cases, the Casimir force is attractive for large and small plate separations, (2) if the 

two plates are identical, the Casimir force is always attractive, and (3) we have identified 

that the magneto-dielectric plate must be dominantly magnetic for a substantial frequency 

range encompassing at least a few of the low order Matsubara frequencies. Based on these 

conclusions, we have designed three potential electromagnetic metamaterials that manifest 

strong diamagnetic/paramagnetic across broad frequency ranges. These composite 

materials use nanoscopic resonators such as split ring resonators, parallel wires, and 

ferromagnetic nanoparticles that play a role similar to that of the atoms and molecules in 

nature. Due to the relatively large sizes (compared to those of the atomic world), the 

nanostructured composites can manifest much stronger electric and magnetic response at a
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pre-set frequency range. By using such designed metamaterials, we have presented two 

realistic quantum levitation systems.

The first system consists of a dielectric plate and a dominantly magnetic plate made 

of nickel polystyrene nanocomposites. The second system consists of a diamagnetic plate 

made of parallel nano wire composites and a second paramagnetic plate made of the nickel 

polystyrene nanocomposites. We have shown that for both systems, and regardless of the 

composite’s geometry and hence magneto-dielectric properties, the Casimir force is 

attractive for large plate separations. However, depending on the design parameters, the 

Casimir force can reverse into repulsive provided the plate separation is smaller than a 

critical value. The critical plate separation distance corresponds to a stable (equilibrium) 

point for both system, which allows for applications involving frictionless transport at the 

nanoscale (nano-maglev), contact free MEMS based actuators, and mechanical micro

machines.

8.2 Future Work

In this dissertation, we have provided a comprehensive theoretical investigation of 

quantum levitation systems based on magneto-dielectric materials in the parallel-plate 

configuration. While we have theoretically demonstrated that quantum levitation can be 

achieved using designed composite materials, an experimental verification of the described 

effects has not been provided. Furthermore, there are a number of reasonable assumptions 

that have been made as part of the developed theory that may need to be reconsidered when 

compared with actual experimental data. For example, in the theory the plates are assumed 

to be semi-infinite with perfectly smooth surfaces, which will be difficult to achieve in an 

actual experiment. Any surface discontinuities (roughness) will introduce a large number
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of scattering centers and hence the modes inside the plates cannot be modeled as plain 

waves (which is the basis of the main result of Equation 2.30). In what follows, we identify 

a number of possible issues that may rise in actual experiments and also provided possible 

research directions that may improve the overall performance of the quantum levitation 

system.

1. For all plate configurations discussed in this dissertation, we have assumed that 

the plates are semi-infinite in size (having a thickness much larger than the plate 

separation distance and for all practical purposes assumed to be infinitely large). 

However, in practice the plates will have a finite thickness and only if the 

electromagnetic modes are evanescent or strongly decaying (due to energy 

dissipation) within the plates the developed theory can be trusted. Otherwise, 

an analysis using the proper specular functions (for multi-interface 

configurations) must be performed.

2. From the point of view of practically designing a quantum levitation system, 

the use of an artificially engineered material may require another material as a 

substrate for achieving required mechanical strength for proper operation of a 

device. Furthermore, in some cases, the system may require the magneto- 

dielectric as a coating on the surface of other material. For such cases, the plate 

involving the magneto-dielectric material can be viewed as a multi-layered 

plate. Therefore, a detailed study of Casimir force reversal conditions for multi

layered plates are highly desirable.

3. The Casimir force reversal analysis presented for a system with a dielectric 

plate and a predominantly magnetic metamaterial plate (in Chapter 7, Section
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7.3), could be extended for other ferromagnetic materials like yttrium iron 

garnet, magnetite, etc. and the polystyrene could be replaced with other low 

permittivity dielectric host, such that a stronger repulsive force is achieved.

4. In all the analyses performed (in Chapters 4 and 5) for obtaining a condition for 

quantum levitation, we have omitted a material with optical gain, as the Lifshitz 

theory may not be applicable due to possible thermal fluctuations in the system. 

However, the Casimir force for thermally non-equilibrium systems has already 

been studied and a correction factor to the Casimir force based on Lifshitz 

theory, to account for the thermal fluctuations in an amplifying media, have 

been derived. Therefore, using the modified theory, the role of optical gain in 

the reversal of Casimir force could be investigated.

The above mentioned are the prospective areas of research, as an extension to our 

work, which would provide a comprehensive knowledge on the possibility of achieving 

quantum levitation. The resulting material conditions for Casimir force reversal for a single 

layered and/or multi-layered plates may include the effect of surface roughness and the role 

of amplifying media. Based on these knowledge, one can design a variety of Casimir force 

based actuators and/or sensors with a wide range of applications.
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