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ABSTRACT

In a local network or the Internet in general, data that is transmitted between 

two computers (also known as network traffic or simply, traffic) in that network is 

usually classified as being of a malicious or of a benign nature by a traffic authenti­

cation system employing databases of previously observed malicious or benign traffic 

signatures, i.e., blacklists or whitelists, respectively. These lists typically consist of 

either the destinations (i.e., IP addresses or domain names) to which traffic is being 

sent or the statistical properties of the traffic, e.g., packet size, rate of connection 

establishment, etc. The drawback with the list-based approach is its inability to of­

fer a fully comprehensive solution since the population of the list is likely to go on 

indefinitely. This implies that at any given time, there is a likelihood of some traffic 

signatures not being present in the list, leading to false classification of traffic.

From a security standpoint, whitelists are a safer bet than blacklists since their 

underlying philosophy is to block anything that is unknown hence in the worst case, 

are likely to result in high false rejects with no false accepts. On the other hand, 

blacklists block only what is known and therefore are likely to result in high false 

accepts since unknown malicious traffic will be accepted, e.g., in the case of zero-day 

attacks (i.e., new attacks whose signatures have not yet been analyzed by the security 

community).



Despite this knowledge, the most commonly used traffic authentication solu­

tions, e.g., antivirus or antimalware solutions, have predominantly employed blacklists 

rather than whitelists in their solutions. This can perhaps be attributed to the fact 

that the population of a blacklist typically requires less user involvement than that of 

a whitelist. For instance, malicious traffic signatures (i.e., behavior or destinations) 

are usually the same across a population of users; hence, by observing malicious ac­

tivity from a few users, a global blacklist that is applicable to all users can be created. 

Whitelist generation, on the other hand, tends to be more user-specific as what may 

be considered acceptable or benign traffic to one user may not be considered the same 

to a different user. As a result, users are likely to find whitelist-based solutions that 

require their participation to be both cumbersome and inconveniencing.

This dissertation offers a whitelist-based traffic authentication solution that 

reduces the active participation of users in whitelist population. By relying on activity 

that users regularly engage in while interacting with their computers (i.e., typing), 

we are able to identify legitimate destinations to which users direct their traffic and 

use these to populate the whitelist, without requiring the users to deviate from their 

normal behavior. Our solution requires users to type the destinations of their outgoing 

traffic requests only once, after which any subsequent requests to that destination are 

authenticated without the need for them to be typed again.

Empirical results from testing our solution in a real time traffic analysis sce­

nario showed that relatively low false reject rates for legitimate traffic with no false 

accepts for illegitimate traffic are achievable. Additionally, an investigation into the 

level of inconvenience that the typing requirement imposes on the users revealed that,



since users are likely to engage in this (typing) activity during the course of utilizing 

their computer’s resources, this requirement did not pose a significant deterrent to 

them from using the system.
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CHAPTER 1

INTRODUCTION

1.1 Background

Authentication plays a vital role in securing a system from potential intruders 

as it provides an avenue to guarantee the privacy and confidentiality of resources 

on the system. Recently, the term active (continuous) authentication [8] has been 

contrived in reference to the act of periodically authenticating the users of a system to 

ensure that no unauthorized users gain access to the system at any point. Although 

the use of this term is fairly recent in the authentication community, the underlying 

principle of continuous system monitoring has been in existence for some time in other 

authentication areas such as in real time network traffic monitoring and/or analysis. 

In this dissertation, we explore continuous authentication from the perspective of 

ensuring the data that is continually being transmitted from one computer to another, 

either in a local network or globally on the Internet, is authenticated. In the rest of 

this dissertation, we loosely refer to this data as (network) traffic.

In traffic-based continuous authentication, many systems have taken the ap­

proach of creating impostor (malicious traffic) templates based off of which to compare 

unknown traffic during classification. The disadvantage with this approach, though, 

is that the creation of a complete template is infeasible since the set of potentially

1
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malicious traffic is indefinite, thereby resulting in a significant number of malicious 

traffic going undetected. Although the use of templates that are built based on benign 

traffic eliminates this problem, this has not been fully explored in many solutions 

because it usually involves a significant effort on the part of users in the template 

building process, a scenario that is deemed undesirable to a user.

This dissertation proposes a benign traffic-based template generation approach 

that minimizes user participation in the template building process. The template used 

in our solution comprises the destinations to which users send traffic. The template is 

updated with new destinations after they have been authenticated by a user through 

typing. This signifies that those destinations are associated with benign traffic. In 

the authentication process, each destination to be authenticated, is accompanied by 

an authentication code whose integrity, in the face of possibly malicious traffic, is 

guaranteed using a recently proposed concept of dual channel approaches that are 

used for message authentication when one of the channels is assumed to be insecure.

In these dual channel protocols, information transmitted through one channel 

is authenticated using information transmitted over the other channel. The moti­

vation behind the use of dual channel authentication protocols is the assumption 

that in a properly designed dual channel protocol, impostors cannot authenticate 

themselves if, (i) just one of the channels is compromised, or (ii) both channels are 

compromised but attacks on them are not coordinated. Existing literature details two 

families of dual channel protocols, namely: non-interactive (e.g., [2, 16, 34, 27, 36]) 

and interactive (e.g., [37, 43, 28]) protocols.



The concept of using duality-based solutions to strengthen authentication 

systems is not unique to dual channel protocols. For instance, it has been previously 

explored in, among others, dual factor based authentication [1, 47, 7] and dual server 

based password management [5, 48, 24, 23]. The former propose the use of two 

factors in the authentication process. These factors can be chosen from something 

that the user knows e.g., a password, something that the user has e.g., a smart card, 

or something that the user is e.g., a biometric signature. This idea was proposed with 

the view that since impostors cannot easily gain access to both authentication factors, 

they (impostors) cannot be falsely authenticated as a genuine user.

The latter, on the other hand, consider scenarios where the server side compro­

mises are likely to occur. Generally in these solutions, the user (client) has access to 

and communicates with only one of the servers through a secure channel that can be 

realized via Secure Sockets Layer (SSL) [5]. Taking the example of a password-based 

authentication scheme, these solutions propose the splitting of a user’s password into 

two parts with each server keeping one of the parts. During authentication, the 

user is independently verified by both servers which communicate via a protected 

channel [48]. These solutions also provide for server integrity verification which is 

done through a series of cryptographic challenges that are sent back and forth between 

the client and server during the authentication process.

1.2 Research Focus

One of the primary threats of malware infection is the leakage of information 

from a compromised computer to an external malicious entity cooperating with the
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malware without the user’s knowledge or permission. We refer to this problem as 

“information exfiltration”. This scenario can be visualized for instance when a bot 

program is installed on a target computer and upon installation, the program accesses 

specific information (e.g., account passwords, credit card information) which it then 

remits to a predetermined destination such as the bot’s command and control server.

Bearing this scenario in mind, the work in this dissertation aims to avert this 

type of information exfiltration by authenticating the outgoing traffic from a user's 

computer. By visualizing the user’s computer as one entity and a proxy, through 

which traffic is filtered before it is sent to (and received from) the Internet, as 

another entity, we design a non-interactive dual channel protocol for authenticating 

the outgoing traffic. The choice of non-inter active over interactive protocols is made 

largely with the aim of minimizing additional overhead costs in terms of back and 

forth communication between entities during authentication, which implies that the 

protocol operation costs are reduced.

In literature, the non-interactive family of dual channel protocols, e.g., [16, 

34, 2, 27, 36, 33, 40, 26] use a narrow-band authenticated channel and a wide-band 

insecure channel for communication. A remote verifier authenticates the informa­

tion received through the wide-band insecure channel using a piece of brief infor­

mation received through the narrow-band authenticated channel that an adversary 

has no (or limited, for some protocol) control over. These protocols are called non­

interactive since, by design, information flow in them is unidirectional, which keeps 

them lightweight.
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However, the existing non-interactive dual channel protocols are only ideal 

for applications that do not require frequent transmission of information over the 

authenticated channel because the authenticated channel in these protocols is pre­

sumed to be human aided, implying that users are required to be explicitly engaged 

in each authentication event. An application example is the authentication of a 

computer to a wireless printer by entering the computer’s identification code to the 

printer, manually. If the manual authenticated channel is replaced by a non-manual 

authenticated channel, then remotely located verifiers become prone to a channel 

spoof attack, as explained in Chapter 2, defeating the protocols’ purpose.

In contrast, the solution presented in this dissertation infers implicit current 

or prior approval of a destination from the users before authenticating the traffic sent 

from the host computer to that destination. The underlying protocol ensures that 

such inference is not corrupted by the malware residing in the host computer. It 

authenticates each outbound user-request by analyzing the keys (not the keystroke 

timings) a user types during the normal course of computer usage.

Our solution uses two communication channels, an insecure one which connects 

to a host computer and an authenticated one that bypasses the host, and connects to 

a remote verifier. A string processor sits between these channels and the keyboard. 

It controls the flow of keys from the keyboard to the channels, but it does not accept 

any incoming data or execution requests other than the signals necessary for the basic 

operation of the keyboard. We assume that the keyboard and string processor are 

not pre-compromised during manufacturing or in the supply chain.
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The solution is non-interactive because it does not require the user to respond 

to any verifier-request for the authentication to take place. However, it requires that 

the user types a destination IP/domain name for the first time a traffic request is sent 

to that destination. This can affect user convenience, for instance, if all the external 

links in a Web page need to be typed. A possible tradeoff between security and user 

convenience, in this case, can be achieved by letting such links received in response 

to an authenticated request be considered as legitimate for a temporary period. We 

propose a protocol extension for this that can be integrated with the core dual channel 

non-interactive protocol executed in the verification server. We also propose another 

protocol extension to handle scenarios where exfiltration is done via external third 

party legitimate servers (e.g. Webmail servers). However, implementation of this 

extension requires the participation of the associated third party legitimate servers 

and hence is not covered in this dissertation.

The proposed protocol does require an auxiliary manual channel for synchro­

nizing certain operations between the communication parties. This is, however, a one- 

step process required during the initial setup. Subsequent continuous authentication 

does not require this manual channel’s involvement.

1.3 Contributions of this Dissertation

The contributions of this dissertation are outlined below:

1. We introduce the first non-interactive dual channel protocol for traffic authen­

tication purposes. This protocol is designed to be resistant to channel spoof
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attacks that existing non-interactive dual channel protocols suffer from when 

applied to continuous authentication scenarios.

2. Through a prototype deployment of the protocol, we empirically demonstrate 

its effectiveness in preventing information exfiltration. Specifically, we show 

that the protocol is able to achieve, for legitimate requests, a daily average true 

accept rate of 99.5% and a maximum false reject rate of 6%, while maintaining 

a 0% false accept rate for illegitimate requests.

3. Unlike existing protocols that typically base the security of the authenticated 

channel on the fact that it is human-aided, we introduce the concept of using 

secure, external hardware modules to realize the security of the authenticated 

channel. This is also in contrast to the use of internal hardware modules such 

as Trusted Platform Modules (TPMs) that have been relied upon in other 

security-related schemes, since their security benefits cannot be realized in our 

application context.

1.4 Definitions

For purposes of clarity to the reader, we provide some definitions of terms used 

in this dissertation and the context in which they are used.

Information exfiltration: This refers to the leakage of information, by malware 

residing on a possibly compromised computer, to an external entity cooperating with 

the malware.

Destination: This refers to either the domain name or Internet Protocol (IP) address 

to which a Web request is being sent.
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Typed requests: These refer to Web requests that are sent after their destinations 

have been typed by the user.

Non-typed requests: These refer to Web requests that are sent with no typing 

activity involved, e.g., requests sent after their destinations have been copied and 

pasted (e.g., from a document into the browser), selected from a drop-down list, auto­

completed by the Web browser, etc.

Legitimate requests: These refer to Web requests that are sanctioned by the user. 

They consist of both typed and non-typed requests.

Illegitimate requests: These refer to Web requests that are not sanctioned by the 

user and are presumed to be sent by a malicious entity on the user’s computer.

(a1, b') is consistent: In a two-party communication, when two pieces of information 

are received by the message recipient, (o', b') is consistent if the b that is independently 

computed by the recipient (using the received a') is the ^ame as the received b'. 

Embedded links: These refer to destinations that are contained (embedded) in 

responses to legitimate outgoing Web requests, e.g., links on a returned Web page. 

Enforced user response: This refers to a scenario where a user is compelled to 

type a destination of a previously rejected outgoing Web request.

1.5 Organization of this Dissertation

In Chapter 2, we present a review of the existing dual channel protocols (both 

the interactive and non-interactive ones), as well as the current traffic authentication 

schemes that relate to the work in this dissertation. We then introduce our protocol 

in Chapter 3 and present a prototype implementation of it in Chapter 4. In Chapter
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5, we provide discussions on some aspects of the protocol’s implementation such as an 

alternate placement design of the protocol’s second channel, and how optimization of 

the verifier’s workload can be achieved. Finally, we present concluding remarks and 

possible directions for future work in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.1 Dual Channel-based Solutions

The notion of using dual channel protocols arose out of a need to provide 

secure communication over insecure channels. This is especially desirable in ad hoc 

networks where Public Key Infrastructure (PKI) is non existent and/or undesirable. 

The general idea behind these protocols is the transmission of a short authentication 

bit (or string) over a narrow band authenticated channel in order to authenticate the 

message transmitted over the wide band insecure channel.

In literature, these protocols are categorized as being either interactive or 

non interactive, depending on whether the communication between the sender and 

recipient of information is one-way or two-way. We review some of the existing 

protocols below.

2.1.1 Interactive Protocols

Rivest and Shamir [37] are believed to have introduced the first interactive pro­

tocol in which they proposed using human voices in the authentication process when 

two parties wish to establish a secure key that is to be used in future communication 

instances. The idea behind their protocol was that the two communicating parties 

are able to identify each other’s voice; hence, an eavesdropper cannot impersonate

10
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any of the parties without being discovered. This protocol is also credited for hav­

ing introduced the idea of human assistance in the realization of the authenticated 

channel, a common scenario in dual channel protocols.

In general, subsequently proposed protocols have mainly differed in terms of 

the security tokens used and adversarial models considered. For instance, Vaudenay 

[43] proposed using extractable commitment schemes to secure the information sent in 

their protocol and considered the chosen random string adversarial model. Mashatan 

and Stinson [28], on the other hand, proposed utilizing Interactive Collision Resistant 

(ICR) hash functions in their protocol, considered the adaptive chosen plain-text 

attack model, and also allowed adversaries to have online computational power, a 

scenario that Vaudenay’s protocol [43] did not address.

Example applications of these protocols. As mentioned above, the 

interactive family of dual channel protocols uses the bi-directional flow of information 

between communicating parties over two channels [49, 1, 44, 22, 11]. In some authen­

tication systems, the second channel is used to transmit additional authentication 

factors that are required before authentication can be granted. For instance, in

a bid to improve security on many online systems today, it has become common
t

practice to use more than just a user password or Personal Identification Number 

(PIN) as an authentication factor when granting access to the system. Some of the 

additional factors typically used to authenticate users on these systems include either 

a user's biometric signature (e.g., fingerprint, keystroke, iris) or something in the 

user’s possession e.g., a secure token or mobile device that can be used to identify the 

said user as a legitimate user of the system.
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For example, Yang et a/.’s [47] work focussed on boosting the use of smart 

cards as a second factor in user authentication. In their work, they proposed new 

security requirements to improve existing smart card-based two factor authentication 

schemes. Among their proposed requirements is the ability for users to change pass­

words without involving the authenticating server and the elimination of a password 

database at the server side.

The choice of additional authentication factors for most systems usually boils 

down to the cost associated with implementing the chosen authentication factor. 

For instance, Aloul et al. [1] proposed using mobile phones to generate One Time 

Passwords (OTPs) that the user can enter into an online system in addition to his or 

her password or PIN. In their approach, the OTP can be generated either locally on 

the mobile phone or by requesting it, via SMS message, from a remote server. Their 

choice of mobile phones is driven by their availability to most users, hence reducing 

the implementation cost associated with their deployment.

Another practical example using mobile phones is Google’s 2-step verification 

that uses the text or voice channel in a phone to respond to an authentication request 

received over the Internet channel [17]. Upon receiving an authentication request from 

a host machine over an Internet channel, Google’s remote server sends back a PIN to 

the associated user’s phone that the user (reads or listens to and) sends back to the 

server using the Internet channel. The server authenticates the user upon receiving 

the exact PIN that it sent.

In other works [44, 33, 40, 26, 22], mobile devices have been used to send private 

information securely through untrusted terminals. In these studies, the trusted mobile
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devices establish connection to the terminals and send encrypted information through 

the terminals to remote servers, or wirelessly bypass the terminals and send this 

information directly to the remote servers. In one variation of these protocols [11], 

the authenticating Web server sends back a cryptographic challenge in the form of 

a two-dimensional picture to the browser and the user takes a picture of that image 

using a mobile phone. The user then sends a cryptographic response via wireless to 

the server. In another variation [22], a trusted proxy intercepts the login requests 

from untrusted machines to Web servers and asks the users, through their trusted 

mobile devices, to authenticate those requests before they are sent out; the proxy also 

removes any information from the responses that the users might not want to reveal 

to the untrusted machines.

Garriss et al. [15] and Dodson et al. [11] used a mobile device to determine 

the level of trust a user should place on the terminal before using its resources. In 

their work, the terminals were assumed to possess hardware security technologies 

such as a Trusted Platform Module (TPM) [18] that can be used to determine 

the trustworthiness of software on the terminal. The mobile device established a 

connection with the terminal, requested for an attestation of the terminal’s software 

and recommended to the user whether or not the terminal could be trusted.

The common thread among all these works is the requirement for users’ in­

volvement in every authentication request, hence rendering them unsuitable for ap­

plications requiring frequent authentication.
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2.1.2 Non-interactive Protocols

In contrast to the interactive protocols, the non-interactive protocols are de­

signed for only unidirectional flow of information, which keeps them lightweight. This 

makes them a more desirable option for message authentication because of the reduced 

operational cost of the protocol. Interactive protocols are therefore usually chosen 

over the non-interactive ones in cases where they (the interactive protocols) increase 

the security of the protocol such as when replay attacks on the authenticated channel 

are considered -  a scenario which non-interactive protocols are vulnerable to [28].

Below, we provide only a brief review of the existing non-interactive protocols. 

A tabular comparison of them, based on shared properties (e.g., security features 

used, assumed security of manual channel, etc.), is also given in Appendix B. For 

detailed descriptions of the protocols, we refer the reader to the respective cited works. 

In the accompanying protocol figures, a is added to information received by Bob 

(indicating that the information sent by Alice may or may not be the same as the 

information that is received by Bob). The insecure and authenticated channels are 

represented using and “=£•” , respectively.

Balfanz et al. (BSSW’02 in Figure 2.1) [2] proposed the first such protocol 

in which a message M  and its hash h are sent over the insecure and authenticated 

channels, respectively. In their protocol, they compute h from M  using a collision 

resistant hash function. However, their protocol was seen to be vulnerable to offline 

attacks (e.g., the birthday attack).
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BSSW'02
Alice M Bob
M -------------> M'

h
h=H(M) 1 .... h'

If h'=H(M')
Accept M'

Else
Reject M'

Figure 2.1: Balfanz et a i’s protocol.

To address this vulnerability, Gehrmann et al. (GMN’04 in Figure 2.2) [16] 

proposed the MANA 1 protocol. In the MANA 1 protocol, the hash of a message is 

computed by applying a random key to a universal hash function. The hash and the 

key are then sent over the authenticated channel and the message is sent over the 

insecure channel. This protocol assumes confidentiality of the authenticated channel. 

Further improvements to the MANA 1 protocol, that make different assumptions over 

the authenticated channel, have also been proposed in [30, 31].

GMN'04
Alice M Bob
M -------------> M'

Choose K h,K
h=Hi<(M) h 'X

If h’=H4M')
Accept M'

Else
Reject M ’

Figure 2.2: Gehrmann et al.’s protocol.

Pasini and Vaudenay’s protocol (PV’06 in Figure 2.3) [34] assumed an au­

thenticated channel in which an adversary is only restricted from modifying the 

messages. The security of their protocol is guaranteed by using trapdoor commitment
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schemes and second preimage resistant hash functions. A commitment is applied to 

the message and a key to produce commit “c” and decommit “cf values. The hash of 

“c” is transmitted through the authenticated channel and “c” and “d” are sent over 

the insecure channel.

PV'06
Alice c\\d Bob
(c,d)*-commit(K,M) -------------> M'<-open(K,c',d')

h=H(c)
h

h'
If h'=H(c)

Accept M'
Else

Reject M'

Figure 2.3: Pasini and Vaudenay’s protocol.

Mashatan and Stinson (MS’06 in Figure 2.4) [27] and Reyhanitabar et al. 

(RWN’07 in Figure 2.5) [36] proposed two protocols that are somewhat similar to 

each other. Both protocols send the message together with a randomly chosen key 

over the insecure channel and a hash of that message computed utilizing the key over 

the authenticated channel. However, while [27] utilizes a hybrid collision resistant 

hash, [36] uses an enhanced target collision resistant hash.

MS'oe
Alice Bob
M. |M|=/i 
Choose K

M,K 
-------— > M',K'

h=H{M\\K)
h

h '
If h'=H(M'\\K')

Accept M'
Else

Reject M'

Figure 2.4: Mashatan and Stinson’s protocol.
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RWN'07
Alice Bob
M M,K
Choose K -------------> M',K'

h
h=HK(M) i-----------o - h'

If h'=Hn{M')
Accept M'

Else
Reject M'

Figure 2.5: Reyhanitabar et a/.’s protocol.

In order for these protocols to be applicable to scenarios where frequent use 

of the authenticated channel is necessary, the manual authenticated channel in these 

protocols needs to be replaced by a non-manual channel. However, even with this 

modification, remotely located verifiers become prone to a channel spoof attack, as 

explained below, defeating the protocols’ purpose.

Adaptation of existing non-interactive dual channel protocols for 

frequent authentication. Since it is impractical for a human assisted channel 

to engage continuously in the authentication process, the manual channel in the 

existing non-interactive dual channel protocols needs to be replaced with a non- 

manual channel to facilitate continuous authentication by a remote verifier. Figure 2.6 

presents a generic representation of such an adaptation. Bob in this figure represents 

a remote verifier that authenticates Alice. Alice produces two sets of information, 

r\ and r2, and transmits them respectively over the insecure and authenticated non- 

manual channels. Bob perceives receiving r'x from sourcex and r'2 from source2. Upon 

receiving r\ and r'2, Bob determines if they are consistent, i.e., if r'2 authenticates r[.
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Alice Bob

Source:: Send r,
r,

— ► Receive r',

Source2: Send r>
ri

=C> Receive r '2
If (r't,r'i) is consistent 

Accept r'i
Else

Reject r'i
Endif

Figure 2.6: A possible adaptation of existing non-interactive dual channel protocols 
for frequent authentication.

This adaptation, however, opens up the possibility of a channel spoof attack; 

an adversary, Eve, residing at sourcei, can compute her own r\ and r2, transmit ri 

from sourcei, and spoof the identity of source2 to make it appear to Bob that r2 is 

transmitted from source2, thus defeating the scheme. To avoid this attack, Bob must 

have a way to know if an r2 is really generated by Alice, which a simple replacement 

of the manual channel with a non-manual one cannot ensure.

2.2 Existing Traffic A uthen tication  Schemes

One of the most prevalent security threats is the exfiltration of sensitive 

information (e.g., passwords, social security numbers, etc.) by malicious programs or 

entities. A recently reported example of this is the Heartbleed bug [6] that exposed a 

security flaw in the OpenSSL protocol [32] allowing would be attackers to access data 

(such as usernames and passwords, content of emails, instant messages, etc.) from 

the memory of servers using this protocol.
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Though this bug was not reported to be a deliberate attack on Internet 

communication, it nonetheless shows the vulnerability of online information to ded­

icated, unscrupulous individuals. In this work, we specifically address the scenarios 

where attackers deliberately target their victims’ information, and by exploiting 

compromises on the victims’ computers (e.g., through drive-by downloads), they are 

able to steal and exfiltrate sensitive information to external malicious entities under 

the control of the attackers.

To prevent this malicious exfiltration of users’ information, a number of schemes 

have been proposed to authenticate traffic being sent out of users’ computers. We 

categorize the existing approaches as: (i) statistical testing based methods [42, 4] in 

which observed statistical properties of both malicious and benign traffic (e.g., new 

connection establishment rates, packet sizes, upload/download bandwidth) are used 

to train classifiers for future classification of unknown traffic; (ii) keystroke/mouse- 

click association based methods [19] that rely on keystroke/mouse activity to catego­

rize traffic that is sent within a defined interval of such activity as being legitimate 

(benign) and all other traffic is categorized as being malicious; (iii) packet marking 

based methods [46] that introduce check points at different levels of the network 

protocol stack to mark and verify traffic (for the markings) as the traffic goes through 

the stack. The assumption is that malicious traffic does not go through the entire 

stack, and hence it will not be marked; (iv) heuristic rule based filtering (e.g., firewalls) 

[20] that employ a rule set (e.g., based on port numbers) that is used to distinguish 

between benign and malicious traffic depending on whether the traffic meets the 

specified rules; (v) blacklist based egress filtering [10, 38] that maintain a set of
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known malicious traffic characteristics (e.g., IP addresses/domain names) and block 

traffic whose characteristics match those in the set; and (vi) content sensitivity based 

filtering [12] that checks the content of data being sent to determine its sensitivity. 

The assumption made here is that the data is structured, and hence, its sensitivity 

can be determined based on its content.

However, even with these approaches being deployed, malware is still able to 

exfiltrate information due to certain limitations that the above approaches face e.g., 

the first four are vulnerable to malware’s adaptation to the associated filtering logics, 

the fifth one suffers from incomplete coverage of malicious recipients, and the sixth 

one fails to identify and prevent unstructured sensitive data from exfiltration.

Of the above approaches, the two that are most comparable to our work are [19] 

and [46]. The difference between these two approaches and ours is that malware’s 

adaptation to our scheme is unlikely to occur since authentication decisions are made 

based on typing activity on the keyboard in which host-based malware cannot engage. 

Additionally, unlike [46] that assume limited kernel malware, our solution does not 

impose any restriction on malware in the host.



CHAPTER 3

THE PROPOSED PROTOCOL

3.1 The Protocol

This dissertation presents, in Figure 3.1, a non-inter active dual channel pro­

tocol [21] that resolves the issue of a channel spoof attack, mentioned in Chapter 2, 

by utilizing a synchronization variable, E  which, unlike [16, 27, 36], is not randomly 

chosen, but generated by a function H  instead. In a practical deployment of the 

protocol, a system administrator initializes E  to both Alice and Bob. Alice and 

Bob, thereafter, individually computes the successive values of E  using H. Since 

for a specific instance of an authentication request Bob is aware of the expected E , 

Eve can no longer launch a channel spoof attack without knowing which E  Bob is 

expecting. For ease of reference, we present the notations used in the protocol and 

their meanings in Table 3.1.

Alice in this protocol can be realized as a keystroke parsing program partici­

pating in the protocol on behalf of the user and Bob as a verifier program located in 

a remote computer. Alice parses the keystrokes to extract rv, an IP/domain name 

that has been typed and computes hi = H(rv) and h2 = H(E) using a standard hash 

function H. Alice releases rv to the host using the insecure channel and transmits 

(hi, h2) to Bob using the authenticated channel. Not all the typed IP/domain names

21



22

Alice Admin

Initialize 
E, HQ, HQ

Bob

(a)

Alice 

Send rv

Bob

-► Receive r \

Send hi = H(n) ( h [ M
hi -  H(E) i..... . ■> Receive (h'uh'i)

Update E = H(E) If h'2=H(E)
Update E-H(E)

Endlf

Case 1: Both r \&  (h\,h'i) received
Block A: If (r'vji'i) is consistent

Accept r\.
S=Su{ r'v } u H y v

Block B: Else If r 'yB  S
Accept rV
S=SuIPr >v
h'„ij=h\

Block C: Else
Reject r',.
h'oifh'i

Endlf

Case 2: Only r \ received
Block D: If (r\,h'„u) is consistent

Accept r'v

S=Su{ r'v }uIPr ;
Block E: Else If r ' ve  S

Accept r',
S=SuIPr '„

Block F: Else
Reject r'v

Endlf

Case 3: Only (h 'tjt’i) rece:
Block G : Discard h'\

(b)

Figure 3.1: The proposed non-interactive dual channel protocol.

are intended to send a request (e.g., a user may type an IP/domain name while writing 

a report). If a user intends to send a request to rv, the host is supposed to forward 

that request to rv via the insecure channel.
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Table 3.1: Symbols used in the protocol and their meanings.

Symbol Meaning
rv request sent to the verifier (domain name or IP address)
E the synchronization variable used in the protocol
hi the hash value of rv
/i2 the hash value of E
H a standard hash function applied to rv to produce hi and to E  to 

produce h2
H update function used to produce a new E
IPrv a list of IP addresses returned in response to an accepted rv
S a set of all accepted rvs and IPr„ s
hold an unused and saved value of hi
x' Bob’s received value of x
->• insecure channel

authenticated channel

For this protocol, we assume that a malicious program residing in a host cannot 

remove, modify or stall information transmitted over the authenticated channel that 

bypasses the host. The protocol also assumes the following: (i) an hi can verify the 

associated rv; (ii) an adversary (Eve) can generate and replace the rv, but it is difficult 

for her to compute the associated hi from a given rv\ (iii) Bob can compute h[ from 

r ' . An r'v is accepted only if (r'v, h\) is consistent, i.e., the hash Bob computes for the 

r'v is the same as h\ . The protocol works in two phases: (i) the initialization phase 

(Figure 3.1(a)) and, (ii) the protocol phase (Figure 3.1(b)) as described below.

(i) In itia liza tion  phase

The initialization phase is a one step setup process required prior to the establishment 

of the rest of the protocol. During this phase, a human operator assigns the hash 

function H , and a pair of secret E  and update function H  to Alice and Bob. H  is 

used to compute hi from rv and function H  is used to update and synchronize E  by 

both Alice and Bob. Use of H  prevents an adversary from computing subsequent Es
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in the unlikely event of randomly guessing a right E. If, for instance, due to some 

failures E  is no longer synchronized, all authentication requests are rejected and E  

needs to be re-initialized.

(ii) Protocol phase

In the protocol phase, Alice transmits rv via the insecure channel and (h\, h2) via 

the authenticated channel to Bob. Alice updates her E, using the function H , after 

sending (h i,h2) to Bob. If h'2 =  H(E), Bob assumes that h'2 is computed by Alice 

and updates his E  to have the same value as that of Alice. Bob maintains a set S  of 

accepted IPs and domain names. The set of IPs returned by Domain Name Servers 

(DNS) for an accepted domain name r'v, denoted as 7Pr/, are also included in S  (we 

assume that the DNS are not compromised). Updating S  for an r'v or a set IPr'v 

refers to the inclusion of r'v or elements in I Prj to S, if they do not already belong to 

S. While checking if a given domain name matches with a domain name in S', Bob 

compares up to the third-level for country code domains, and up to the second-level 

for other domains.

3.1.1 Protocol Scenarios and Operation

In the three cases presented below, we discuss, in detail, the scenarios that 

are likely to arise during the operation of the protocol and their respective resolution. 

Figures 3.2 and 3.3, respectively, provide a summary of these scenarios and their 

resolution. The correspondence between a case resolution branch in Figure 3.3 and a 

leaf scenario in Figure 3.2 is represented by the type of their border lines.
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Only rv 
sent

Only rv 
sent

'Only (/ti,/t2)’ 
• sent i

,'Only (M,h2)' 
' sent i

In sync

Typed

Program

Program

Intent

User

No intent

Malicious

No action

Scenarios

Non-typed Legitimate

Compute
(hl.h2)

(hl,/)2 ) not 
computed

"Both ry ancf 
(hi ,t72) sent

Both rv and'' 
.(hi ,h2) sent

Out of sync Removed

Both rv and^fBoth rv and1 
L(/i1,/i2) sentj[(hi,fi2 ) sent,

Figure 3.2: Protocol scenario tree showing the different types of outgoing requests 
that are likely to be encountered during a protocol run and information sent to the 
verifier in each case.

Case
resolution

(r'v.h'i) not 
consistent

(r’v-h'l)
consistent

(r v-h'old)
consistent

(r'v.h'o/d) not 
consistent

Figure 3.3: Protocol operation tree showing how the verifier implements the protocol 
to accept or reject an outbound request based on the information received during a 
given protocol run.
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Case 1: r'v is received through the insecure channel and (h[, h'2) is 

received through the authenticated channel. All the possible scenarios for 

which this may occur include: (i) a user sends an authentication request by typing 

on the keyboard leading Alice to transmit (hi,/i2 ), and the host to forward an 

authentication request to the associated r„; (ii) a user types a domain name or IP 

without intending to send a request leading Alice to transmit (hi,/i2 ), but the host 

does not forward any authentication request; however, a legitimate program or a 

malicious program residing in the host sends an authentication request at the same 

time to an r„; (iii) a user sends an authentication request but an rv from a legitimate 

or a malicious program reaches Bob before the rv from the user, causing Bob to receive 

a wrong r ',  (h\ , h'2) pair; (iv) a malicious program computes (hi ,h2) for her own rv 

utilizing a random E  and transmits them both through the insecure channel, but she 

makes it appear that is transmitted through the authenticated channel by

spoofing the source IP; and (v) a malicious program replaces the rv belonging to a 

user or a legitimate program’s request with another rv.

For scenario (i), the condition in Block A (see protocol diagram, Figure 3.1) 

is satisfied, the r'v is accepted and Bob updates S  for r'v and IPr>v, the associated IPs 

returned by a DNS when r'v is a domain name.

For scenarios (ii) and (iii), either the condition in Block B is satisfied, or r'v 

is rejected in Block C; depending on whether the r ' is already included in S. Bob 

saves the h\ as h'old anticipating the arrival of an associated r'v due to scenario (iii). 

If the condition in Block B is satisfied, Bob accepts r'v and updates S  for IPT>;. It 

may, however, happen that the r'v that Bob receives from a legitimate or malicious
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program incidentally matches with the rv sent for a user’s request. In that case, the 

condition in Block A is satisfied, Bob accepts r'v and updates S.

For scenarios (iv) and (v), either Block C or the condition in Block B applies 

depending on whether r ' e  S  or not. Block C rejects r'v. However, if Eve chooses to 

use an rv £ S, the r'v is accepted, and S  as well as h'old is updated in Block B. We note 

that the update of S  and h'old does not affect the protocol’s operation as explained 

below.

Acceptance of an r'v received from a malicious program because it matches the 

rv a user sent a request to, or because r'v € S  does not constitute exfiltration to Eve’s 

choice of destinations because of the assumption that, for the purpose of exfiltration, 

the adversary’s choice of destinations do not include any legitimate destinations.

Case 2: Only r'v is received through the insecure channel. This is 

possible in the following scenarios: (i) a user sends an authentication request, but an 

rv from a legitimate or a malicious program reaches Bob before the rv from the user. 

This causes Bob to pair the user’s (hi, h2) with the legitimate or malicious program’s 

r„ and subsequently receiving the user’s rv without the corresponding (hi, h2)\ (ii) 

a user sends a non-typed request to a destination; (iii) a legitimate or a malicious 

program sends an authentication request; (iv) a malicious program replaces the rv 

belonging to a user’s non-typed request or a legitimate program’s request with another 

rv.

For scenario (i), if corresponding h\ is preserved as h'old, the condition in Block 

D is satisfied, the r ' is accepted and Bob updates S  for r'v and IPr>v. Otherwise (i.e., 

if Bob earlier received the same r ' from another source satisfying the condition in
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Block A and thus not preserving h[, however, updating S  for r'v), the condition in

Block E is satisfied, r ' is accepted and S  is updated.

For scenarios (ii), (iii) and (iv), either the condition in Block E is satisfied, 

or r ' is rejected in Block F, depending on whether the r’v is already included in S. 

If the condition in Block E is satisfied, Bob accepts r ' and updates S  for IPr>v. As 

explained in Case 1, the acceptance of an r'v received from a malicious program due 

to r'v £ S, does not constitute exfiltration.

Case 3: Only (h^h^) is received through the authenticated channel. 

This case is possible when Bob receives only (h'^h^) due to the following scenarios:

(i) a user types a domain name or IP without intending to send a request, leading 

Alice to transmit (hi, h2), but the host does not forward any authentication request;

(ii) a malicious program residing in the host removes the rv for a typed request sent 

by the user; (iii) a malicious program residing in the host randomly generates (h\, h2) 

and transmits them to Bob (making it appear that they are transmitted from Alice), 

hoping that h2 — H(E),  which would break the synchronization of E  between Alice 

and Bob. In all of these scenarios, Bob receives no r ' from any sources; Block G

applies to all of them and Bob discards the h[.

Frequent disruptions of communications due to the replacement or removal of 

rv by a malicious program (Case 1, scenario (v); Case 2, scenario (iv); Case 3, scenario

(ii)) will expose the presence of that malware, which defeats the malware’s objective 

of operating stealthily, and thus malware is unlikely to engage in such activity under 

this protocol.
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3.1.2 Security Analysis of the Protocol

Given the presented protocol, a malicious destination can only be authenticat­

ed if the malware on the host is able to make Bob think that the request sent to that 

destination was actually sanctioned by the user. We consider that a malicious agent 

Eve, residing in the host, can transmit her choice of an reve through the insecure 

channel and make Bob accept it in the following cases:

Case 1: Spoof attack. As mentioned, our protocol resolves the issue of 

channel spoof attacks by using the variable E  that is maintained separately by Alice 

and Bob and simultaneously updated by them. Both the Es are initialized with the 

same value before the protocol is deployed and their subsequent values, at a given 

instance, are computed independently by Alice and Bob using H. Since Bob is aware 

of the expected value of E  that Alice is using to compute h2 for a specific instance of 

an authentication request, an adversary (Eve), must be able to compute the correct 

H(E)  to make Bob believe that she is transmitting (hi, h2) through the authenticated 

channel, and not just spoofing the identity of Alice.

An attempt at such an attack, therefore, would require Eve to compute h2 

using a randomly chosen E' so that H(E)  = H(E')  where E  and E' may or may not 

be the same i.e., E'  is a preimage or a second preimage of E. To prevent this attack, 

the hash function, HQ,  is required to be resistant to preimage and second preimage 

attacks. Since the value of H(E)  is not known to Eve, she would launch a one-shot 

attack and hope for success. The probability of Eve launching a successful spoof 

attack is es + ep, where es and ep are the probabilities of successful second preimage 

and preimage one-shot attacks on HQ,  respectively.
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Case 2: Message replacement attack. In this attack, Eve does not 

compute her own Instead, she replaces Alice’s rv with her own reve and

is successful if reve is a second preimage, i.e., H(rv) =  H(reve). A second preimage 

resistant hash function, HQ is necessary to prevent such an attack. If Eve has a 

set of destinations, deve from which she attempts to find the reve, the probability of 

launching a message replacement attack using an element in deve is 1 — [1 — es]L where 

€s is the probability of a successful second preimage one-shot attack on HQ and L 

=  |deve|- If Eve does not check for H(rv) = H(reve), but simply replaces rv with a 

randomly chosen reve, then the probability of Eve successfully launching a message 

replacement attack is es.

3.2 Protocol Extensions

3.2.1 Protocol Extension 1: Embedded Links

A response to a legitimate request may contain links not listed in S. Although 

those are returned by a trusted destination, it is not unlikely that some of them may 

be injected by an adversary and are malicious in nature. Because of this uncertainty, 

we propose that requests to those linked destinations be accepted for a temporary 

period as well as the amount of data allowed to be transmitted to those destinations 

be restricted. An administrator can define these parameters to meet an organization’s 

security needs. Decision on embedded links mostly affects Web-browsing experience. 

We notice that the majority of these links require only simple connection requests. 

By restricting the amount of data allowed to be transmitted by the amount that an
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average connection request requires, we can minimize the “enforced user response” 

and prevent any significant exfiltration.

Considering this scenario, information can be exfiltrated if the embedded links 

are malicious. However, given that their acceptance is temporary, exfiltration can 

only occur during their temporary acceptance period. We can quantify the maximum 

amount of information exfiltration that is expected during this time as nhmtds where 

nh is the number of requests that are typed by the user, rntd is the number of embedded 

links that are accepted either during time, t or until a certain number, d of successive 

embedded links is reached, and s is the packet size (in bytes) of each request. These 

parameters can be adjusted by the system administrator to achieve the desired trade­

off between user-experience and acceptable amount of information exfiltration.

3.2.2 Protocol Extension 2: Final Destination Not Explicit

The protocol presented in Figure 3.1 can be implemented locally on a single 

host computer or in a subnet consisting of many computers. However, when the 

final destination of the outgoing request is not explicitly stated in the request, other 

entities such as mail servers (for the case of email) need to be integrated into the 

process of authenticating these requests. The second extension to the protocol, though 

not locally implement able, is proposed to address such a scenario where malware 

exfiltrates information to its cooperating entity through legitimate third party services 

as discussed below.

Adversaries may attempt to exfiltrate information by using legitimate third 

party services (e.g., webmails). To prevent this, we propose a Bloom filter based
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extension that requires participation of the associated third party servers. The 

proposed extension requires that if Alice notices a recipient ID v (e.g., xyz@gmail.com) 

for a legitimate server rv (e.g., gmail.com), she sends (/q, /t2, v, rv) to Bob. Bob then 

creates a Bloom filter Brv, maintaining the records for all associated v's he receives 

for rv. A Bloom filter is composed of an ra-bit array and a set of w different hash 

functions [3]. The array entries are initialized to zero. Upon receiving a n , all w 

hashes of v are computed and the array locations corresponding to the computed 

hashes are set to 1. If a traffic request is sent to rv, Bob constructs a new request 

to rv, concatenating the original request and Brv. The associated third party server, 

upon receiving this concatenated request, verifies if the intended recipients of the 

associated request have corresponding entries in BTv before it delivers the message 

to those recipients. A recipient has an entry in BTv if the associated array has a “1” 

in all the positions associated with the w hashes of its ID. A “0” in any of those 

positions indicates its absence in the filter, although all “1” entries do not guarantee 

its presence. If we assume that a hash function selects each array position with equal 

probability and the probabilities of each bit being set are independent, the asymptotic 

formula, (1 — e- “,(ri+0-5)/(Tn- 1))w [13], describes the expected false positive rate for a 

finite bloom filter with n elements. The advantage of using a Bloom filter is that its 

size does not grow with the number of entries of the recipients.

mailto:xyz@gmail.com


CHAPTER 4

A PROTOTYPE IMPLEMENTATION OF THE 
PROTOCOL

Having developed the protocol, we went ahead to test the suitability of this 

protocol for a real world network traffic scenario. This chapter details how a prototype 

of this protocol was developed and deployed. Specifically, the threat model that was 

considered while deploying the protocol is given, then the trusted external hardware 

device that was used in the protocol as well as its comparison with internal hardware 

devices on the market today is presented, and finally the experimental setup that was 

used and results that were obtained are described.

4.1 Threat Model

The threat model considered in this dissertation assumes that the computers 

under surveillance connect to the Internet via a secure proxy that hosts traffic filters, 

which is a common scenario in many organizations. As shown in Figure 4.1, the threat 

model considers that malware infecting a host is capable of exfiltrating information 

from that host to an external malicious entity, defeating the known traffic filtering 

mechanisms. It further considers that exfiltrated information can be transmitted to 

the external malicious entity in one of two ways: (i) using the malicious entity’s 

domain name or IP address as the destination, (ii) transferring information to a

33
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legitimate third party service provider, such as a webmail server, that the malicious 

entity has access to. In addition, the threat model assumes that malware residing in 

a host cannot remove, modify or stall the content on a traffic channel that does not 

run through the host.

i—

Malicious
entity

Filtering 
m echanism s 

in proxy

Compromised
Host

Legitimate 
third party 

server

—  Exfiltration via third party

*■ Direct exfiltration

Figure 4.1: A diagram of our threat model showing that host based malware can 
exfiltrate information to a malicious entity either directly or through a legitimate 
third party server, bypassing existing filtering mechanisms.

4.2 Trusted Hardware

4.2.1 Trusted Platform Modules

The use of Trusted Platform Modules (TPMs) in security solutions has gained 

traction in recent years because of their ability to satisfy security properties that are 

difficult to realize through software-only solutions. In addition, their low price and 

miniature size made them suitable as add-on devices. A TPM is a microcontroller 

chip that is attached internally to a computer motherboard for the purpose of securely 

generating and storing cryptographic keys and storing encrypted data either locally 

or in the hard drive [18]. A schematic representation of the components of a TPM is 

shown in Figure 4.2.
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Figure 4.2: A diagrammatic illustration of the TPM’s components.

TPMs can ensure a trusted boot procedure by facilitating each component 

in the boot sequence to attest to the integrity of the next component and thus 

establish trust on the OS kernel. Such trust can be extended beyond the kernel 

to applications by attesting the target applications while loading, and using a similar 

chain of attestations [45]. However, if an application is pre-infected, it would still be 

attested by this process and be considered as trusted. Additionally, for an application 

to be trusted, it cannot be loaded whenever it is required; rather, it has to be loaded 

during the boot process.

A TPM comes with a set of built-in cryptographic key and hash generation 

functionalities that are operated using a predefined set of commands (or instructions), 

hard-coded into its execution engine. This prevents adversaries from exploiting the 

TPM to perform unknown operations since the TPM is accessible from the host, which 

could be compromised. However, this also limits the TPM’s programming flexibility 

since no new instructions can be added to this set of instructions after manufacturing.
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4.2.2 Raspberry Pi

To address the above limitations and to satisfy lightweight operational needs 

required by continuous authentication applications, we build our solution around 

a conceptual external trusted hardware module that we realize using a Raspberry 

Pi (shown in Figure 4.3) as a prototype. The proposed hardware module requires 

fewer security assumptions than a TPM due to its isolation from the host. It is also 

programmable, allowing implementation of given logic.

Figure 4.3: A Raspberry Pi

The Raspberry Pi Model B is a miniaturized computing device with a RISC 

processor based on a 32-bit ARM architecture. It has two USB interfaces and one 

10/100 wired Ethernet port that can facilitate networking functionality. It uses a 

removable Secure Digital (SD) card as the default secondary storage device to store 

the OS (such as Debian “Wheezy” Linux) and other necessary files. In a conceptual
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design of a hardware module to be used in this protocol, the storage would be 

integrated into the module so that it is not readily physically accessible. Write 

access to this storage would be facilitated via a USB port and restricted through 

administrative control. The Raspberry Pi is powered through a 5V micro USB.

A typical solution to support the proposed continuous traffic authentication 

protocol using a TPM would require: (i) attestation of the source of the keystrokes 

to make sure that the keystrokes are generated by the keyboard driver and not by an 

unauthorized application [45, 46], (ii) interactive protocol operation to set up a shared 

key between the client and the remote server e.g., through RSA key exchange protocol 

[46], and (iii) signing of keystroke events [46]. Steps (i) and (iii) in the above process 

would be required for each authentication request making it highly impractical for 

frequent traffic authentication. The proposed external hardware module eliminates 

the requirement of steps (i) and (ii) since it is connected externally beyond the reach 

of the malware residing in the host and requires the use of cryptographic hashes to 

realize the desired security properties.

Additionally, some of the Raspberry Pi’s functionalities such as audio, RCA, 

HDMI and GPIO ports are not required by the proposed design; hence, this should 

translate to a lower cost realization of the conceptual external trusted hardware device 

than realizing it using a Raspberry Pi.

4.3 Setup

As shown in Figure 4.4, we designed a prototype implementation of our pro­

tocol, realizing the dual channels through the keyboard’s attachment to a Raspberry
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Pi (Alice). The insecure channel ran through the host to a verifier (Bob) while 

the authenticated channel was directly connected to the verifier, bypassing the host. 

Regular communication between the host computer and the Internet was channeled 

through a proxy in which the verifier was located.

Verifier in 
Proxy

InternetHost

Insecure
channel
Authenticated
channel

Figure 4.4: A prototype of the proposed protocol showing how a single computer’s 
keyboard (aided by a Raspberry Pi) is connected to both the host computer and the 
remote verifier through the insecure and authenticated channels, respectively.

In a regular setup, once a user sends an outgoing request by typing or copying 

and pasting a domain name or IP address (rv) into a Web browser, a Web request 

is generated and sent from the host via the proxy to the request’s Web server. A 

response from the Web server, containing the requested information is sent to the 

proxy, which then forwards the same to the requesting host. Additional processing or 

filtering of outgoing and/or incoming requests can be done at the proxy if desired. Our 

scheme modified this setup by capturing the rv, using the keystroke parsing program, 

before it was sent through the host. A hashed copy of the rv was then sent directly 

to the verifier through the authenticated channel. The verifier in the proxy inspected 

all outgoing requests it received from the host before forwarding them to the Internet 

to ensure that a corresponding rv had also been sent to it from the keystroke parsing
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program. A detailed description of the protocol operation including the procedure

for handling requests that were not typed is given in Chapter 3.

Based on the prototype, we set up a small subnet consisting of a Windows 

XP and three Windows 7 machines in a graduate student laboratory that seats ten 

students. The choice of operating systems for the four machines used was arbitrary 

and has no effect on the experiments or results obtained. The Windows XP machine 

served as a dedicated proxy (verification server) hosting the remote verifier. The three 

Windows 7 machines were assigned to three of the students in the lab for daily usage. 

However, other students in the lab also routinely used these computers during the 

experimentation period.

Since all HTTP/HTTPS and DNS traffic was channeled to the external world 

(i.e., Internet) through the proxy, we implemented our protocol logic for traffic au­

thentication as follows. We developed a verification program that was deployed in 

the user space of the proxy (see Figure 4.5).

Outgoing/Incoming 
HTTP/DNS requests

KERNEL SPACE 
(Windows) Network Adapter

NDIS Interm ediate 
Driver

WinpkFilter

Verification
program

USER SPACE

Figure 4.5: A windows-based implementation of the verification server.
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We used the WinpkFilter library to set up an interface between the user space 

verification program and the NDIS Intermediate Driver such that all outgoing traffic 

received from the three Windows 7 client machines was sent to the verification pro­

gram before being forwarded to the respective destination(s) if found to be authorized.

In the proxy, we also saved the outgoing packets’ session information (i.e., 

destination IP and port) for later comparison with incoming packets. Outgoing 

packets for which no was received (via the authenticated channel) were

checked to see if the destinations belonged to the set S  before their destinations 

could be authorized. If this were true, the associated destinations were authorized. 

Otherwise, they were marked as being unauthorized and rejected.

The respective destination servers, when contacted, responded with the ap­

propriate reply messages. At the proxy, the incoming packets’ session information 

was compared with previously stored session information from the outgoing packets 

before the legitimate responses were sent back to the appropriate requesting client 

machines. Any response packets that were received without a legitimate request (i.e., 

no session information recorded) were rejected.

As shown in Figure 4.6, a similar setup can also be achieved in a Linux 

environment by setting rules through IP tables for the built-in firewall, NetFilter, 

instructing it to send all packets (both incoming and outgoing) to the user space. 

Using the Libipq library, the user space verification program would receive packets 

from the kernel space and inspect them for their authenticity before sending the 

packets with verified recipient information back to the NetFilter for release to the 

network.
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Figure 4.6: A possible linux-based implementation of the verification server.

The keystroke parsing program (on the Raspberry Pi) was used to scan keystrokes 

as a user typed, identify domain names and IP addresses, compute hashes (h i,h2) 

and release the hashes through the authenticated channel; the normal flow of the 

keystrokes was released to the insecure channel. A subnet router, upon receiving 

any traffic through either of the channels, forwarded this traffic to the proxy. The 

verifier on the proxy continuously monitored the outgoing traffic and extracted the 

destination domain names and IPs (rv). It then followed the protocol described in 

Chapter 3 while granting authentication.

We maintained a shared IP/domain name set S  in the verification server for the 

traffic requests from all three host computers so that prior validations of a request from 

one host was effective for the other hosts, too. When cheeking if a given domain name 

matched with a domain name in S, we compared up to the third-level for country code 

domains, and up to the second-level for other domains. We also implemented protocol 

extension 1 to allow the embedded links only to establish connections. However, we 

skipped protocol extension 2 since it required participation of the third party external
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servers. Over a 90-day period, all the outgoing traffic requests from the Windows 7 

machines were stored in the verifier and the collected data during this time was 

analyzed to investigate the performance of the proposed protocol.

4.4 Experimental Results

To analyze the collected data and measure the protocol’s performance, we 

undertook two studies. In the first study, we measured the general performance 

statistics when using the protocol such as how many requests were sent, composition 

of these requests, acceptance (or denial) rates of the requests, among others. In the 

second study, we measured protocol performance from the users’ perspective, i.e., how 

convenient (or inconvenient) it was for the users to utilize this protocol. We present 

these two studies and the associated results below.

4.4.1 Accuracy

In this study, our objective was to recognize the outgoing network requests 

that were sanctioned by the users (through users’ activity such as typing, clicking, 

copying and pasting, etc.) or by non-malicious programs on the users’ computers 

(e.g., legitimate software’s auto update programs) as legitimate requests (i.e., accept 

them) and deny all other unsanctioned (illegitimate) requests.

We computed true accept rates as the ratio of the accepted requests to the total 

number of requests that had been typed at least once and hence had an associated 

entry in the set S  of accepted rvs and lP Tvs. We then computed false accept rates by 

either checking whether any of the embedded links had appeared in databases (e.g., 

DNSBL [10], SBL [38]) of known malicious sites or by manually inspecting if their
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IPs resolved to unverifiable or suspicious entities through Whois Lookup. Based on 

our protocol, false accepts are only likely to occur if S  is compromised or some of the 

embedded links are malicious. Since our threat model assumes that the verification 

server is secure, we assume S  to be secure too, and hence, our test for false accepts 

only consisted of examining the latter.

We computed true reject rates from those requests which were denied and 

either had no associated entry in S  (implying that they were never typed by a user 

during our experimentation period), or whose IPs resolved to unverifiable or suspicious 

entities through manual inspection.

We computed false reject rates from, (i) requests that were initially denied 

(because their destinations had not been previously typed) and were later accepted 

after having been typed by the user, meaning that they later had an associated entry 

in S, and (ii) requests that were denied whose IPs resolved to legitimate entities 

through manual inspection. Requests in (ii) included programmatic requests from 

legitimate software and rejected requests that users did not re-attempt to send by 

typing their respective destinations.

We observed that all illegitimate requests sent during the experimentation 

period were correctly identified and denied in accordance with the protocol. For the 

legitimate requests, though their acceptance rate varied daily, it was generally seen 

to improve with continual usage of the protocol. To better visualize this behavior, we 

divided the dataset into three subsets in order to show the performance improvement 

in each subset. The subsets were created as follows: The first subset contained data 

collected in the first 30 days, the second subset contained data collected in the next
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30 days (i.e., from the 31st day to the 60th day), and the third subset contained 

data collected from the last 30 days (i.e., from the 61st day to the 90th day). In 

each subset (time interval), we divided the legitimate requests into the typed and 

non-typed categories in order to observe the daily acceptance rates of each category 

(see Table 4.1 for a brief description of the dataset).

Table 4.1: Characteristics of the dataset used.

Period of traffic 
collection

No. of unique 
typed requests

No. of unique
non-typed
requests

1st 30-day period Nov’12 1488 18269
2nd 30-day period Mid-Dec’12 - Mid- 

Jan’13
1529 16372

3rd 30-day period Feb’13 1475 16736

The results from this study are presented in Figure 4.7. These results show 

that, on each day, every typed request was accepted. Some of the non-typed requests, 

however, were not accepted since these requests had not been typed previously (hence 

violated the protocol’s authentication requirement). Nonetheless, we observed that 

on average, the daily true accept rate for the non-typed category was approximately 

98.8%, 98.9%, and 99.5% in the three time intervals, respectively. Since this category 

dominated the typed category (as seen in plots (a), (b) and (c) of Figure 4.8), their 

acceptance rate greatly influenced the overall acceptance rate of the combined requests 

(both typed and non-typed) whose daily true accept rate was seen to be approximately 

98.8%, 99%, and 99.5% on average, in the three respective time intervals (see Table

4.2 for a summary of the average true accept rates in each period).
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Figure 4.7: Plots (a), (b) and (c) show, in 30-day intervals, the daily percentage 
acceptance rates of legitimate requests (both the typed and non-typed requests) 
during the period under study.
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Figure 4.8: The bar graphs in plots (a), (b) and (c) show, in 30-day intervals, 
the percentage-wise contributions of typed and non-typed requests to the overall 
legitimate requests seen daily during the period under study.
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Table 4.2: Percentage results during the 90-day period for, (i) daily averages of true 
accept rates for the non-typed as well as combined requests, and (ii) maximum false 
reject rates for all legitimate requests (i.e., both user and program requests) as well 
as only the users’ legitimate requests.

Average True Accepts (%) Maximum False Rejects (%)
Non-typed
requests

Combined
requests

All
legitim ate
requests

Only users’
legitim ate
requests

1st 30-day period 98.8 98.8 6 1.2
2nd 30-day period 98.9 99 5 0.92
3rd 30-day period 99.5 99.5 2 0.75

As seen from these results, the performance of the protocol improved in each 

successive time interval, implying that continual usage of the protocol led to an im­

provement in its accuracy measurements. This improvement is attributed to continual 

growth of the set, S, allowing non-typed requests (that had been typed previously by 

at least one of the users) to be accepted. During the entire experimentation period, 

we did not notice any false accepts.

4.4.2 Enforced User Response

In this study, our objective was to examine the impact of the requirement for 

destination requests to be typed at least once before they could be accepted. Since 

this requirement is central to the working of our protocol, the number of times a user 

makes a non-typed request, which is rejected, and the user has to re-send the request 

after typing its destination, is an important aspect to consider. To investigate this, 

we asked the users to maintain their natural browsing habits when using the machines. 

We also advised them to type a destination IP address or domain name if their non- 

typed requests were rejected. (It is likely that some cases of rejected requests arise due
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to the associated server being down or offline; however, our dataset did not include 

such cases.)

We present the observations from this study using Cumulative Distribution 

Function (CDF) plots that show the maximum observed quantities for, (a) accepted 

requests that were naturally typed, (b) legitimate non-typed user and program re­

quests that were denied, and (c) legitimate non-typed user requests that were denied. 

The results in this study are also shown in 30-day intervals (representing the same 

three subsets described above) of the entire 90-day period.

Interestingly, we observed that, in a number of instances, the users naturally 

typed the destinations without being asked. Plots (a), (b) and (c) of Figure 4.9 

show that in the three time intervals considered, accepted requests that had been 

voluntarily typed by users were 30%, 35% and 35%, respectively.

The CDFs of false reject rates for non-typed user and program requests, during 

the three 30-day intervals representing the entire 90-day period, are shown together 

in plots (a), (b) and (c) of Figure 4.10. They show that the maximum false reject 

rates for all non-typed legitimate requests on a given day were less than 6%, 5% and 

2%, in each of the three 30-day periods, respectively. We observed that as the set “S'” 

became populated over time, the number of false rejects dropped, leading to daily 

average false reject rates of approximately 1.2%, 1% and 0.5% in each of the three 

30-day periods, respectively. We point out that these false reject rates, however, do 

not relate to the ability of the protocol to prevent information exfiltration but rather 

simply reflect the usability of the protocol.
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Figure 4.9: CDF plots showing, in 30-day intervals, the accepted requests that were
typed during the period under study.
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Figure 4.10: CDF plots showing, in 30-day intervals, the legitimate non-typed user
and program requests that were denied during the period under study.
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Of the requests that were non-typed, some of these were rejected (because 

they had not been previously typed) and users were compelled to type these requests 

in order for them to be accepted. We refer to these requests as the non-typed user 

requests. Plots (a), (b) and (c) of Figure 4.11 show the CDFs of the rejected non- 

typed user requests. They show that the maximum false reject rate on a given day 

for non-typed user requests, during the three 30-day intervals representing the entire 

90-day period, were less than 1.2%, 0.92% and 0.75%, respectively (see Table 4.2). 

When the users typed those requests, all of them were accepted.

These percentages give a measure of the level of inconvenience that the users 

experienced due to the requirement set by the proposed scheme. However, we found 

that in comparison to the maximum percentages of requests that were naturally typed 

by the users (which was 30%, 35% and 35% of all accepted requests), the forced typing 

(which was 1.2%, 0.92% and 0.75% of only non-typed user requests) was not very 

significant. In addition, the forced typing requirement is akin to somewhat common 

scenarios that a user experiences when he/she deletes his/her browsing history, or uses 

a new Web browser and has to type the domain name/IP addresses before he/she can 

be assisted by the autocomplete feature of the browsers, and thus is not a significant 

deterrent from using the protocol.

In Appendix A, we provide the daily trends of these results, i.e., accepted 

requests that were typed, legitimate non-typed user and program requests that were 

denied as well as the legitimate non-typed user requests that were denied.
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Figure 4.11: CDF plots showing, in 30-day intervals, the legitimate non-typed user
requests that were denied during the period under study.
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4.4.3 Replicating these Results

Motivated by the results obtained over the entire 90-day period, we sought to 

investigate whether this performance was tied to the specific time frame of protocol 

usage or whether it could be replicated, say if protocol usage began on a different day. 

To achieve this, we repeated our experiments using different start dates of protocol 

deployment in order to observe the change in performance, if any. From the three 

subsets created above, we took each subset to represent a unique and independent 

30-day period of protocol usage, i.e., for each time period, we considered the protocol 

to have been in use only during that specific 30-day period. At the start of each 

period, therefore, the set S  was cleared (or emptied) such that there was no history 

of previously typed requests. This investigation revealed that the behavior of the 

protocol was fairly consistent irrespective of the initial date of deploying the protocol. 

For instance, when considering the daily acceptance rates of legitimate requests (see 

Figure 4.12), we found that the daily average of true accept rates for legitimate typed 

and non-typed requests during each of these 30-day periods was consistently above 

96% with no false accepts being observed.

Figures 4.13 and 4.14 provide a summary of the results obtained from this 

study. They show the averages of the daily percentages of legitimate requests that 

were accepted, accepted requests that were typed and non-typed, legitimate user and 

program requests that were denied, and legitimate user requests that were denied. 

To obtain these results, for each quantity being measured, we averaged the daily 

percentage results from the three individual periods, e.g., the percentage value on
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Figure 4.12: Plots (a), (b) and (c) show the daily percentage acceptance rates of 
legitimate requests (both the typed and non-typed requests) during the new first, 
second and third 30-day periods under study.
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Day 1 represents the average of the three percentage values obtained on Day 1 from 

each of the three 30-day periods.
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Figure 4.13: Percentages of, (a) legitimate requests that were accepted, (b) accepted
requests that were non-typed, (c) accepted requests that were typed, averaged from
the daily rates observed during the three 30-day periods under study.



Figure 4.14: Percentages of, (a) legitimate user and program requests that were 
not accepted, (b) legitimate user requests that were not accepted, averaged from the 
daily rates observed during the three 30-day periods under study.



CHAPTER 5

DISCUSSIONS

5.1 Alternative Placement of the Authenticated Channel

In this dissertation, the presented protocol has utilized an authenticated chan­

nel that is placed outside (i.e., bypasses) the host and therefore is presumed to be 

inaccessible by the malware inside a possibly compromised host computer. This serves 

not only to guarantee that the information transmitted through this channel is not 

tampered with, but also that it cannot be blocked (or removed) by the malware.

Before settling for this design, we considered the alternative of running the 

authenticated channel through the host. In such a design, the security of information 

transmitted through this channel would be guaranteed by transmitting the informa­

tion, for example, through commonly used secure sessions for data transmission such 

as the Transport Layer Security (TLS) Protocol [9]. In this way, the information 

sent through the authenticated channel would be encrypted using a secret key known 

only to the hardware module (Alice) and the verifier (Bob). This would guarantee 

that an adversary (Eve), located on the host, would neither be able to encrypt her 

own information nor discover the contents of Alice’s encrypted information without 

knowledge of the key.
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However, a drawback of such a design for our protocol is, there being no 

independent communication channel between the hardware module and the verifier 

(i.e., without going through the host), the adversary could potentially block all 

information being sent from the host to the verifier. Though this would not be 

beneficial to the adversary, in terms of exfiltrating information, it is likely to lead 

to a denial of service scenario for the user(s) since all Web requests will likely be 

denied. This in turn is likely to negatively impact on the user convenience aspect of 

our protocol. If such a scenario were to occur, it is likely to go on for a while without 

being detected, because the user may think that the Web server to which his/her 

request is being sent, is offline or busy.

By placing the authenticated channel outside the host, therefore, we are able to 

ensure that in such denial of service cases where the adversary blocks Web requests, 

the authenticating information for those requests can still be sent to the verifier. 

As a check mechanism, once the verifier receives several pieces of authenticating 

information, without corresponding Web requests, it could send a message to the 

system administrator informing them of a possible denial of service scenario that 

requires investigation.

5.2 Verifier Workload

In this protocol, the verifier is tasked with such a significant amount of work 

(i.e., continual updating of the set, S  of authenticated destinations, as well as scanning 

the set to check for the presence of an entry) that it needs to execute hastily so as not 

to slow down the authentication process. In a practical deployment of this protocol,
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care must be taken to ensure that the verifier is not bogged down by these operations. 

An important consideration when choosing a data structure to implement the set, 

S  therefore should be the need to minimize the time complexity of the insertion 

and searching operations. One way of achieving this is by using a hash table-like 

implementation of S  in which an m-bit array, employing a hash function, h to map 

an input, i into a position in the array (i.e., 0 <h(i) <m), acts as a pointer to the 

possible presence of an element in S. In this setup, all array indices are initially 

set to 0 and a particular index is set to 1 when the hash value of a given input is 

mapped to that index. Ideally, the hash values produced by h should be uniformly 

distributed such that there is an equal chance of an input being mapped to any of 

the array indices. This reduces the possibility of hash collisions (i.e., more than one 

input mapping to the same array index) occurring. However, given that, theoretically, 

there exists an infinite set of inputs that would have to be mapped into a finite set of 

array indices, hash collisions are still likely to occur. This could result in false positive 

results (an element being reported to be in the array when it is not) when searching 

for an element whose hash value corresponds to an index that has previously been 

set to 1.

An approach to avoid these false positives is to maintain a self-balancing binary 

search tree (e.g., a red-black tree) for each array index (see Figure 5.1 in which a red- 

black tree is shown for only index 0 of the array) such that the actual values of i are 

stored in the tree associated with the array index to which h(i) is mapped.
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0 1 2  ..... m

Figure 5.1: Hash table-like data structure in which, for each array index, there is a 
red-black tree to store the elements whose hash value corresponds to that index.

In this way, when searching for a specific element, computing its hash value 

only serves to locate the index under whose tree to search for that element. A self- 

balancing binary search tree is ideal for such an implementation because elements in 

the tree are always stored in a sorted manner; hence, the time required to perform 

insertion and search operations for tree elements is not adversely affected by the 

growth of the tree.

In the context of our protocol, when a destination (domain name or IP address) 

is to be added to the set S, the destination’s hash value would first be computed, after 

which the array index corresponding to the destination’s hash value would be set to 

1. The specific destination itself would then be stored in the red-black tree under 

the associated array index. When searching whether a given destination is in S  or 

not, the hash value of that destination would first be computed to determine which 

index of the array the destination’s hash value maps to. If the corresponding index 

is set to 0, this would directly imply that the destination is not in set S  (since there 

is no likelihood of false negative results). On the other hand, if the index is set to 

1, this would imply that the destination is possibly present in S. The red-black tree
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associated with that index would then be traversed to determine whether the element 

is actually stored or if it was simply a case of a false positive result.

Obviously, given that the expected number of entries (destinations) to be 

stored is bound to influence the anticipated size of the array (in order to further 

minimize the chances of hash collisions), choosing an appropriate size of m  is key to 

the use of such a data structure. Though the exact number of destinations that will 

be stored cannot be known a priori, we posit that in our protocol, the astronomical 

growth of set S  is not likely to occur since S' is a global set, implying that a destination 

authenticated for one user is considered authenticated for all users in the same network 

and, therefore, is only stored once. Additionally, since studies on user browsing 

behavior have shown that users tend to revisit the same pages (e.g., see [25], [41],

[29]), we expect that this will in turn limit the number of new entries to be added 

and subsequently the growth of S  over time. The choice of m, therefore, is mainly 

dependent on the application scenario (i.e., number of users for whom S  is maintained) 

and could be determined from the observation of the number of unique destinations 

to which users send requests in a given period of time (e.g., a week or a month).



CHAPTER 6 

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we have proposed a new non-interactive dual channel pro­

tocol that, unlike the existing protocols, is resistant to channel spoof attacks launched 

against the authenticated channel. This is especially important when applying the 

protocol to frequent or continuous authentication solutions that require replacement 

of the manual channel with a non-manual channel that is able to accommodate 

frequent transmission of authentication codes. We have shown how this protocol 

can be applied for authenticating network traffic and demonstrated its effectiveness 

in addressing information exfiltration with minimal user participation and/or inconve­

nience. Though our protocol requires that users type the destinations of their requests 

at least once before these requests can be authenticated, any subsequent requests to 

these destinations are accepted without the need for them to be typed again.

In the presented protocol, a malware can remove the traffic requests sent 

through the host, causing a temporary denial of service. This, however, does not 

affect information exfiltration as defined in this dissertation. In addition, since the 

protocol assumes that a legitimate user does not type a malicious IP or domain
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name, in cases where such typing may be required (e.g., during investigation of IPs 

by a malware analyst), the verifier should be made aware of such destinations.

To realize this protocol in practice, we developed a small scale laboratory 

prototype comprised of four computers. When this prototype was deployed for a 

90-day period of daily usage, we were able to achieve, on average, a 99.5% daily true 

accept rate for legitimate requests (i.e., requests sanctioned by the user) with 0% false 

accepts. During the same period, we also observed that the maximum percentage of 

false rejects was less than 6%, of which less than 1.2% of these were user requests 

that were denied for not having been typed.

Since our protocol requires that users type a request’s destination at least once 

before it can be accepted, we investigated the likelihood of users voluntarily typing 

destinations of their requests and discovered that this happened approximately 35% 

of the time. This was an encouraging discovery in the sense that the protocol’s 

typing requirement did not pose a significant encumbrance to the users (since typing 

was a part of the their normal browsing behavior). These results, though obtained 

from a small scale deployment of the protocol, offer encouraging insights that can be 

leveraged on for a large scale deployment of the protocol, if needed.

This dissertation has also proposed two extensions to the protocol in order to 

address unique scenarios that may arise during the implementation of the protocol. 

In the first extension, we proposed to address scenarios where information exfiltration 

occurs through links (which may be malicious) embedded in responses to legitimate 

requests. Since these links’ destinations may not have been typed previously, their 

authenticity cannot be verified and are only presumed to be safe because they are
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contained in the responses to legitimate requests. We propose the acceptance of these 

requests for a defined period of time (set by the network administrator) in order to 

achieve the desired trade-off between user convenience and prevention of information 

exfiltration.

The second extension considered exfiltration via legitimate third party services 

(e.g., webmail servers). This is a more complex scenario since the final destination 

of the request(s) can only be determined by the third party services. Our proposal 

to address these scenarios, therefore, requires the participation of these third party 

services and, as a result, is not implemented in this dissertation.

In this dissertation, we were able to realize the dual channels using a Raspberry 

Pi, which merely served as an example of an affordable option to realizing the dual 

channels. We postulate that the dual channel aspect of this dissertation can be in­

corporated into future designs of keyboards that support dual channel functionalities. 

In such designs, the functionalities of the Raspberry Pi that were utilized in this work 

(such as the Ethernet port, processing unit) could be built in the keyboard itself such 

that there is no need to attach an external hardware module to the keyboard.

6.2 Future Work

The work presented in this dissertation can be further explored in several 

ways. For instance, the typing requirement specified in this protocol is hinged on the 

assumption that a physical keyboard exists to which a secure hardware module can be 

attached to extract keystroke contents before they are passed on to the host operating 

system. While this assumption holds mainly for desktop computers and laptops, the
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proliferation of mobile devices (such as tablet computers, cell phones, etc.) that do 

not typically have physical keyboards, and yet are also connected to the Internet and 

thus are likely to be sources of information exfiltration, begs for the exploration of 

how the protocol presented in this dissertation can be applied to such devices since 

access to their keystroke contents before they are passed on to the operating system 

may not be as straightforward.

Another aspect worth investigating is how this protocol can be further adapt­

ed for continuous user authentication systems, specifically those that are based on 

behavioral biometrics (e.g., users’ keystroke patterns) since these systems, much like 

the traffic authentication ones, also face the risk of adversaries compromising the 

authentication efforts if the host is compromised (e.g., see [35], [39]). To the best 

of our knowledge, no defense mechanisms to prevent host-based compromises against 

continuous user authentication have been proposed to date. This is perhaps due to the 

belief that in a compromised host scenario, the user has already lost to the impostor

[14]; hence, continuous authentication has no merit under such a scenario. Contrary 

to this view, we postulate that with further research, the protocol presented in this 

dissertation can be a stepping stone for designing defense mechanisms that ensure 

successful continuous authentication in the face of possible host-based compromises.
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Figure A .l: Bar graphs (a), (b), and (c), respectively, show the daily percentages
of accepted requests that were voluntarily typed during the first 30 days, the next 30
days, and the last 30 days of the period under study.
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Figure A .2: Bar graphs (a), (b), and (c), respectively, show the daily percentages
of legitimate non-typed user and program requests that were denied during the first
30 days, the next 30 days, and the last 30 days of the period under study.



70

1.2

£ 1 .°

■o
C 0.8 
®

|  0.6

0.2 L  d i i  y  UL i L i I i
5 10 15 20 25 30

Day

(a)

£ - 0.8
■oa
|  0.6 
«n
i/i
0
3  0.4cr0
0S> 0.23

(b)
0.8r

■O 0 .6
.2 cd>

<04)
3O*
£
fc 0.2(03 NUUll

65 70 75 80 85 90
Day

(c)

Figure A.3: Bar graphs (a), (b), and (c), respectively, show the daily percentages
of legitimate non-typed user requests that were denied during the first 30 days, the
next 30 days, and the last 30 days of the period under study.
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Table B .l: Characteristics of existing non-interactive message authentication protocols.

Property BSSW ’02 G M N’04 P V ’06 M S’06 R W N ’07
Assumed 
security of 
manual channel

weak strong weak weak weak

Security feature 
used

collision resistan- 
t hash

universal hash second preimage 
resistant hash 
and trapdoor 
commitment 
scheme

hybrid collision 
resistant hash

enhanced target 
collision resistan- 
t hash

Key-based hash 
function used?

no yes no yes yes

Input to hash 
function

message message commit value message and key message



BIBLIOGRAPHY

[1] F. Aloul, S. Zahidi, and W. El-Hajj. Two factor authentication using mobile 

phones. In Proceedings of the IEEE/ACS International Conference on 

Computer Systems and Applications, pages 641-644, Rabat, Morocco, 2009.

[2] D. Balfanz, D. K. Smetters, R Stewart, and H. C. Wong. Talking to strangers: 

Authentication in ad-hoc wireless networks. In Proceedings of the Network and 

Distributed System Security Symposium, pages 7-19, San Diego, CA, USA, 

2002 .

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. 

Communications of the ACM, 13(7):422—426, 1970.

[4] K. Borders and A. Prakash. Webtap: detecting covert web traffic. In 

Proceedings of the 11th ACM Conference on Computer and Communications 

Security, pages 110-120, Washington, DC, USA, 2004.

[5] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach 

for authentication with short secrets. In Proceedings of the 12th Conference on 

USENIX Security Symposium, pages 14-14, Washington, DC, USA, 2003.

[6] Codenomicon. The heartbleed bug, 2014. http://heartbleed.com/. Last 

Accessed in April, 2014.

73

http://heartbleed.com/


74

[7] D. Coffin and D. Coffin. Two-factor authentication. In Expert Oracle and Java 

Security, pages 177-208. Apress, 2011.

[8] DARPA. Active authentication. 

http://www.darpa.mil/Our_Work/I20/Programs/Active_Authentication.aspx. 

Last Accessed in January, 2014.

[9] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol, 

Version 1.2. RFC 5246, August 2008.

[10] DNSBL. Spam database lookup, 2013. http://www.dnsbl.info/. Last Accessed 

in October, 2013.

[11] B. Dodson, D. Sengupta, D. Boneh, and M. Lam. Secure, consumer-friendly 

web authentication and payments with a phone. In Mobile Computing, 

Applications, and Services, pages 17-38, 2012.

[12] D. Duncan and D. Myers. Method and apparatus for automatically detecting 

sensitive information, applying policies based on a structured taxonomy and 

dynamically enforcing and reporting on the protection of sensitive data through 

a software permission wrapper, March 2006. US Patent App. 10/930,173.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable 

wide-area web cache sharing protocol. IEEE/ACM Transactions on 

Networking, 8(3) :281—293, 2000.

http://www.darpa.mil/Our_Work/I20/Programs/Active_Authentication.aspx
http://www.dnsbl.info/


75

[14] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Touchalytics: On the 

applicability of touchscreen input as a behavioral biometric for continuous 

authentication. IEEE Transactions on Information Forensics and Security,

8(1): 136—148, 2013.

[15] S. Garriss, R. Caceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang. 

Trustworthy and personalized computing on public kiosks. In Proceedings of 

the 6th International Conference on Mobile Systems, Applications, and 

Services, pages 199-210, Breckenridge, CO, USA, 2008.

[16] C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual authentication for 

wireless devices. RSA Cryptobytes, 7(1):29—37, 2004.

[17] Google. About 2-step verification.

http://support.google.com/accounts/bin/answer.py?hl=en&answer= 180744. 

Last Accessed in September, 2012.

[18] T. C. Group. Trusted platform module, 2014. 

http://www.trustedcomputinggroup.org/developers/trusted_platform_module. 

Last Accessed in March, 2014.

[19] R. Gummadi, H. Balakrishnan, R Maniatis, and S. Ratnasamy. Not-a-bot: 

improving service availability in the face of botnet attacks. In Proceedings of 

the 6th USENIX Symposium on Networked Systems Design and 

Implementation, pages 307-320, Boston, MA, USA, 2009.

[20] P. Gupta. Algorithms for routing lookups and packet classification. PhD thesis, 

Stanford University, 2000.

http://support.google.com/accounts/bin/answer.py?hl=en&answer=
http://www.trustedcomputinggroup.org/developers/trusted_platform_module


76

[21] D. Irakiza, M. Karim, and V. Phoha. A non-interactive dual channel 

continuous traffic authentication protocol. IEEE Transactions on Information 

Forensics and Security, 9(7): 1133-1140, 2014.

[22] R. C. Jammalamadaka, T. W. v. d. Horst, S. Mehrotra, K. E. Seamons, and 

N. Venkasubramanian. Delegate: A proxy based architecture for secure website 

access from an untrusted machine. In Proceedings of the 22nd Annual Computer 

Security Applications Conference, pages 57-66, Miami, FL, USA, 2006.

[23] H. Jin, D. S. Wong, and Y. Xu. An efficient password-only two-server 

authenticated key exchange system. In Proceedings of the 9th International 

Conference on Information and Communications Security, pages 44-56, 

Zhengzhou, China, 2007.

[24] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server password-only 

authenticated key exchange. Journal of Computer and System Sciences, 

78(2):651-669, 2012.

[25] R. Kumar and A. Tomkins. A characterization of online browsing behavior. In 

Proceedings of the 19th International Conference on World Wide Web, pages 

561-570, Raleigh, NC, USA, 2010.

[26] M. Mannan and P. C. Van Oorschot. Using a personal device to strengthen 

password authentication from an untrusted computer. In Proceedings of the 

11th International Conference on Financial cryptography and 1st International 

Conference on Usable Security, pages 88-103, Scarborough, Trinidad and 

Tobago, 2007.



77

[27] A. Mashatan and D. R. Stinson. Noninteractive two-channel message 

authentication based on hybrid-collision resistant hash functions. Information 

Security, IET, 1(3):111-118, 2007.

[28] A. Mashatan and D. R. Stinson. Interactive two-channel message 

authentication based on interactive collision resistant hash functions. Technical 

report, University of Waterloo, Canada, 2007.

[29] A. L. Montgomery and C. Faloutsos. Identifying web browsing trends and 

patterns. Computer, 34(7):94-95, 2001.

[30] L. H. Nguyen and A. W. Roscoe. Separating two roles of hashing in one-way 

message authentication. IACR Cryptology ePrint Archive, 2009.

[31] L. H. Nguyen and A. W. Roscoe. Authentication protocols based on 

low-bandwidth unspoofable channels: A comparative survey. Journal of 

Computer Security, 19(1):139—201, 2011.

[32] OpenSSL. Openssl cryptography and ssl/tls toolkit, 2014. 

https://www.openssl.org/. Last Accessed in March, 2014.

[33] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a remote 

terminal application with a mobile trusted device. In Proceedings of the 20th 

Annual Computer Security Applications Conference, pages 438-447, Tucson, 

AZ, USA, 2004.

https://www.openssl.org/


78

[34] S. Pasini and S. Vaudenay. An optimal non-interactive message authentication 

protocol. In Proceedings of the 2006 The Cryptographers ’ Track at the RSA 

Conference on Topics in Cryptology, pages 280-294, San Jose, CA, USA, 2006.

[35] K. Rahman, K. Balagani, and V. Phoha. Making impostor pass rates 

meaningless: A case of snoop- forge-replay attack on continuous 

cyber-behavioral verification with keystrokes. In Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition 

Workshops, pages 31-38, Colorado Springs, CO, USA, 2011.

[36] M. R. Reyhanitabar, S. Wang, and R. Safavi-Naini. Non-interactive manual 

channel message authentication based on etcr hash functions. In Proceedings of 

the 12th Australasian Conference on Information Security and Privacy, pages 

385-399, Townsville, Australia, 2007.

[37] R. L. Rivest and A. Shamir. How to expose an eavesdropper. Communications 

of the ACM, 27(4):393-394, 1984.

[38] SBL. The spamhaus block list, 2013. http://www.dnsbl.info/. Last Accessed in 

October, 2013.

[39] A. Serwadda and V. V. Phoha. Examining a large keystroke biometrics dataset 

for statistical-attack openings. ACM Transactions on Information Systems and 

Security, 16(2): 1-30, 2013.

[40] R. Sharp, J. Scott, and A. R. Beresford. Secure mobile computing via public 

terminals. In Proceedings of the Jfth International Conference on Pervasive 

Computing, pages 238-253, Dublin, Ireland, 2006.

http://www.dnsbl.info/


79

[41] L. Tauscher and S. Greenberg. How people revisit web pages: empirical 

findings and implications for the design of history systems. International 

Journal of Human-Computer Studies, 47(1):97-137, 1997.

[42] B. Thuraisingham. Data mining for security applications: Mining 

concept-drifting data streams to detect peer to peer botnet traffic. In 

Proceedings of the IEEE International Conference on Intelligence and Security 

Informatics, pages 29-30, Taipei, Taiwan, 2008.

[43] S. Vaudenay. Secure communications over insecure channels based on short 

authenticated strings. In Proceedings of the 25th Annual International 

Conference on Advances in Cryptology, pages 309-326, Santa Barbara, CA, 

USA, 2005.

[44] M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with mobile 

phones. In Proceedings of the DIM ACS Workshop on Usable Privacy and 

Security Software, Piscataway, NJ, USA, 2004.

[45] G. Xu, C. Borcea, and L. Iftode. Satem: Trusted service code execution across 

transactions. In Proceedings of the 25th IEEE Symposium on Reliable 

Distributed Systems, pages 337-338, Leeds, UK, 2006.

[46] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao. Data-provenance verification 

for secure hosts. IEEE Transactions on Dependable and Secure Computing, 

9(2): 173-183, 2012.



80

[47] G. Yang, D. S. Wong, H. Wang, and X. Deng. Two-factor mutual 

authentication based on smart cards and passwords. Journal of Computer and 

System Sciences, 74(7):1160-1172, 2008.

[48] Y. Yang, R. H. Deng, and F. Bao. A practical password-based two-server 

authentication and key exchange system. IEEE Transactions on Dependable 

and Secure Computing, 3(2): 105-114, 2006.

[49] H.-N. You, J.-S. Lee, J.-J. Kim, and M.-S. Jun. A study on the two-channel 

authentication method which provides two-way authentication in the internet 

banking environment. In Proceedings of the 5th International Conference on 

Computer Sciences and Convergence Information Technology, pages 539-543, 

Seoul, Korea, 2010.


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Fall 2014

	Dual channel-based network traffic authentication
	David Irakiza
	Recommended Citation


	00001.tif

