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ABSTRACT

Ang, Hodrick, Xing and Zhang (2006) document an anomaly in the cross-section 

o f stock returns. They show that high idiosyncratic volatility (IVOL) firms earn lower 

returns in the following month. Specifically, they find after sorting stocks in quintile 

portfolios based on the previous month’s IVOL that a zero-investment portfolio long the 

most volatile quintile o f stocks and short the least yields about -1% during the subsequent 

month. The evidence reported in Ang, Hodrick, Xing and Zhang (2006) is primarily 

puzzling because traditional asset pricing theories suggest that (i) only systematic risk 

should be priced, (ii) to the extent that markets are complete, frictionless with well 

diversified investors, idiosyncratic volatility should not matter, and (iii) for incomplete 

markets with under-diversified investors, idiosyncratic volatility should be positively 

priced (See Merton (1987)).

In my dissertation, I test the implications o f both the anchoring bias and investor 

sentiments for the idiosyncratic volatility puzzle. I posit that subjecting market 

participants to such behavioral biases can go a long way in helping us understand this 

puzzling volatility-retum relationship for which the recent empirical evidence is mixed. I 

consider in this study the possibility that investors are affected by anchoring bias. 

Employing George and Hwang (2004) measure o f Nearness to 52-week high, I form and 

investigate the two primary hypotheses.



If market participants do anchor on the 52-week high and stocks for which bad 

news recently reached the market are overpriced (as shown by George and Hwang 

(2004)) and idiosyncratic volatility is seen as a proxy for uncertainty (Johnson (2004)), 

short-sale constraints (Nagel (2005) and George and Hwang (2011)) or arbitrage risk 

(Ali, Hwang and Trombley (2003), then I should expect the negative relationship 

between idiosyncratic volatility and stock returns to be stronger for stocks that are the 

farther away from their 52-week high price. Further, I note that Veronesi (1999) proposes 

a model o f overreaction to bad news in good times. He argues and shows that in good 

times, bad news signals increased uncertainty and greater likelihood negative future 

performance, both o f which lower stock prices and lead to negative returns. I therefore 

hypothesize that the IVOL puzzle should be stronger when bad news reaches the market 

in good times.

I report robust empirical evidence consistent with my hypotheses using U.S data 

from 1965 to 2012. I first investigate the presence of the IVOL puzzle in my sample 

using a portfolio sorting approach. I find that the choice o f data frequency to estimate 

idiosyncratic volatility, weighing scheme and breakpoints all play an important role in the 

relationship between IVOL and future returns. After investigating whether anchoring on 

the 52-week high can explain the IVOL puzzle, I find a strong and robust negative 

relationship between IVOL and future returns for stocks that are away from their 52- 

week high. In addition, I also find that my previous results persist up to six months 

following portfolio formation. I also document that there exist, for stocks that are far 

from their 52-week high, an even stronger negative volatility-retum relationship in period 

where investors sentiments are at their highest. That is, the negative relationship between



V

IVOL and future returns is even stronger when bad news reaches the market in good 

times.

The evidence I present appear to be consistent with the notion that investors are 

affected by anchoring bias, a behavior that contributes to the overpricing of stocks that 

move away from their 52-week high prices as shown by George and Hwang (2004). My 

results are further consistent with the views in the finance literature suggesting that 

idiosyncratic volatility could serve as a proxy for uncertainty (See Johnson (2004)), 

short-sale constraints (See Nagel (2005) and George and Hwang (2011)) or arbitrage risk 

(See Ali, Hwang and Trombley (2003)). Moreover, I find that all my results are even 

stronger with the arrival o f bad news in good times; a piece o f evidence consistent with 

the proposition o f Veronesi (1999). Finally, all these results cannot be explained by other 

known risk factors, momentum, book-to-market, as well as the January effect.
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CHAPTER ONE

INTRODUCTION

In an influential article, Ang, Hodrick, Xing and Zhang (2006) (hereafter AHXZ) 

document an anomaly in the cross-section of stock returns: High idiosyncratic volatility 

(IVOL) firms earn lower subsequent returns. Specifically, they find after sorting stocks in 

quintile portfolios based on the previous month’s IVOL that a zero-investment portfolio 

long the most volatile quintile o f stocks and short the least yields about -1% during the 

subsequent month. This result is essential and primarily puzzling because traditional asset 

pricing theories suggest that (i) only systematic risk should be priced, (ii) to the extent 

that markets are complete, frictionless with well diversified investors, idiosyncratic 

volatility should not matter, and (iii) for incomplete markets with under-diversified 

investors, idiosyncratic volatility should be positively priced (See Merton (1987)).

Following this study, several researchers have examined the robustness o f their 

findings. Among others, Huang et al. (2010) argue that this negative relationship between 

IVOL and future returns is induced by the well-known short-term negative serial 

correlation that exists in monthly stock returns. However, Peterson and Smedema (2011) 

show that the findings of AHXZ are particularly robust in Non-January months, even 

after controlling for the previous month’s return.

1
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Tversky and Khaneman (1974) also report in their seminal work, that individuals 

tend to adopt heuristics to cope with uncertainty. However, adopting such heuristic for 

decision making can also lead to systematically skewed results. Among such heuristics, is 

their now well-documented anchoring and adjustment bias,1 an individual cognitive 

predisposition whereby, under uncertainty, individuals tend to form numerical estimates 

through adjustment from an initial (available yet potentially irrelevant) value known as 

the “anchor.”

In a recent study, George and Hwang (2004) demonstrate that traders do anchor 

on the 52-week high price when evaluating the potential impact o f news. They suggest 

that a stock that moves closer to its 52-week high price is one for which good news 

recently reached the market, and one that moves away from its 52-week high price is one 

for which bad news recently arrived. Further, they find that stocks for which bad news 

recently reached the market are overpriced because traders are unwilling to sell those

stocks whereas stocks for which good news recently arrived are underpriced because

• « • 2traders are reluctant to bid the price o f those stocks higher.

I posit that subjecting market participants to such behavioral biases can go a long 

way in helping us understand this puzzling volatility-retum3 relationship for which the 

recent empirical evidence is mixed. I consider in this study the possibility that investors 

are affected by anchoring bias. Employing George and Hwang (2004) measure of 

Nearness to 52-week high, I form and investigate the following hypotheses.

1 Several other studies document the robustness o f  this cognitive predisposition. Among others are Russo 
and Schoemaker (1989), Qu, Zhou and Luo (2008), Brewer, Chapman, Schartz and Bergus (2007).
2 See George and Hwang (2004) for more detailed explanation.
3 As volatility in this study refers to idiosyncratic volatility, volatility-retum refers to the IVOL-retum 
relationship.
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If market participants do anchor on the 52-week high and stocks for which bad 

news recently reached the market are overpriced (as shown by George and Hwang 

(2004)) and idiosyncratic volatility is seen as a proxy for uncertainty (Johnson (2004)), 

short-sale constraints (Nagel (2005) and George and Hwang (2011)) or arbitrage risk 

(Ali, Hwang and Trombley (2003), then I should expect the negative relationship 

between idiosyncratic volatility and stock returns to be stronger for stocks that are the 

farther away from their 52-week high price. Further, I note that Veronesi (1999) proposes 

a model of overreaction to bad news in good times. He argues and shows that in good 

times, bad news signals increased uncertainty and greater likelihood negative future 

performance, both of which lower stock prices and lead to negative returns. I therefore 

hypothesize that the IVOL puzzle should be stronger when bad news reaches the market 

in good times.

I report robust empirical evidence consistent with my hypotheses using U.S data 

from 1965 to 2012. I first investigate the presence of the IVOL puzzle in my sample 

using a portfolio sorting approach. I find that the choice o f data frequency to estimate 

idiosyncratic volatility, weighing scheme and breakpoints all play an important role in the 

relationship between IVOL and future returns. I next examine whether anchoring on the 

52-week high can explain the IVOL puzzle. In this case, I perform a double sort on the 

nearness to the 52-week high first, and then on IVOL. I find a strong and robust negative 

relationship between IVOL and future returns for stocks that are away from their 52- 

week high. In addition, my previous results persist up to six months following portfolio 

formation. I also document that there exist, for stocks that are far from their 52-week 

high, an even stronger negative volatility-retum relationship in period where investors
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sentiments are at their highest. That is, the negative relationship between IVOL and 

future returns is even stronger when bad news reaches the market in good times.

To summarize, I find that the arrival o f bad news exacerbates the negative 

relationship between idiosyncratic volatility and future stock returns. The evidence I 

present appear to be consistent with the notion that investors are affected by anchoring 

bias, a behavior that contributes to the overpricing of stocks that move away from their 

52-week high prices as shown by George and Hwang (2004). My results are further 

consistent with the views in the finance literature suggesting that idiosyncratic volatility 

could serve as a proxy for uncertainty (See Johnson (2004)), short-sale constraints (See 

Nagel (2005) and George and Hwang (2011)) or arbitrage risk (See Ali, Hwang and 

Trombley (2003)). Moreover, I find that all my results are even stronger with the arrival 

o f bad news in good times; a piece o f evidence consistent with the proposition of 

Veronesi (1999). Finally, all these results cannot be explained by other known risk 

factors, momentum, book-to-market, as well as the January effect.

While I pursue a goal similar to that of the previous studies attempting to 

understand the idiosyncratic volatility puzzle, this study adopts a fundamentally different 

perspective. To the best o f my knowledge, this study is the first of its kind attempting to 

understand the implications of such a cognitive bias for the volatility-retum relationship. 

Ultimately, the results I present in this study shed new lights on the idiosyncratic 

volatility anomaly, hence contribute in advancing my understanding o f financial markets. 

My findings therefore suggest that inquiries on such issues as the source o f the negative 

volatility-retum relationship documented in AHXZ (2006) and potentially other asset
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pricing anomalies should not ignore the importance of investors’ heuristics such as the 

well-documented anchoring bias and others.

The remainder o f this study is organized as follows. Chapter Two reviews the 

literature and discusses motivation and hypothesis development. Chapter Three describes 

the sample and discusses the definition o f the key variables I use in the various tests. 

Chapter Four presents and discusses the results o f the empirical investigations. In Chapter 

Five, I summarize the study and conclude with some general observations.



CHAPTER TWO

MOTIVATION AND HYPOTHESIS 
DEVELOPMENT

Following the influential work o f AHXZ (2006) documenting a negative 

relationship between idiosyncratic volatility and future returns, researchers have been 

relentless in their efforts to provide possible explanations to this anomaly. Among 

candidate explanations reported in the finance literature are those based on uncertainty 

(Johnson (2004)), illiquidity (Bali and Cakici (2008) and Han and Lesmond (2011)), 

growth options (Cao, Simin, and Zhao (2008) and Chen and Petkova (2012)), coskewness 

(Chabi-Yo and Yang (2009)), short-sale constraints (Nagel (2005) and George and 

Hwang (2011)) and one-month return reversal (Fu (2009) and Huang, Liu, Rhee, and 

Zhang (2010)).

Researchers such as Jiang, Xu, and Yao (2009) and Wong (2011) have also 

documented the role o f earnings shocks, expected idiosyncratic skewness (Boyer, Mitton, 

and Vorkink (2010)), investor attention (George and Hwang (2011)), maximum daily 

return (Bali, Cakici, and Whitelaw (2011)), retail trading proportion (Han and Kumar 

(2013)), financial distress (Avramov, Chordia, Jostova, and Philipov (2013)), average 

variance beta (Chen and Petkova (2012)), and prospect theory (Bhootra and Hur (2013) 

in helping us understand better this volatility-return relationship.

6
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While the empirical results reported on this issue are somewhat mixed, what 

remains clear is that this anomaly persists and is still evident in asset prices today. 

Nonetheless, a growing body of the literature in finance builds on the evidence reported 

in the psychology literature to foster our understanding o f the behavior o f asset prices. O f 

particular interest to this study are the findings o f George and Hwang (2004) who 

develop a trading strategy based on a stock nearness to its 52-week high. They attribute 

the success of their investment strategy to the “adjustment and anchoring” bias of 

Tversky and Khaneman (1974), and argue that this bias causes investors to underreact to 

positive (negative) information about stocks for which current prices are near (far from) 

their 52-week high prices. In their view, a stock that is near its 52-week high is a stock 

for which good news recently arrived in the market whereas a stock that moves away 

from its 52-week high is one for which bad news recently reached the market. An 

interesting fact documented in George and Hwang (2004) is that stocks whose current 

prices are far from their 52-week high are overpriced because investors are unwilling to 

sell those stocks and those whose current prices are near their 52-week high are 

underpriced because investors are reluctant to bid the price o f those stocks higher.

Putting these two strands of the literature together, I form the following two 

hypotheses. First, if  market participants do in fact anchor on the 52-week high price and 

stocks for which bad news recently reached the market are overpriced (as shown by 

George and Hwang (2004)), then I should expect the negative relationship between 

idiosyncratic volatility and future stock returns to be stronger for stocks that are the 

farther away from their 52-week high prices. With the arrival o f bad news in the market, 

idiosyncratic volatility could be seen as a proxy for uncertainty as suggested by Johnson
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(2004).4 This would explain the existence o f a possible stronger negative volatility-retum 

relationship for the high IVOL stocks that move away from their 52-week highs because 

uncertainty delays the reflection o f bad information into stock price, causing those stocks 

overpriced. Alternatively, idiosyncratic volatility could also proxy for short-sales 

constraints as suggested by Nagel (2005) and George and Hwang (2011).5 In this case, 

increased idiosyncratic volatility would limit the ability o f arbitrageurs to take advantage 

o f these already overpriced stocks, leading to further negative returns for stocks whose 

current prices are farther away from their 52-week highs. This later view would also be 

consistent with the notions that idiosyncratic volatility can be seen as a proxy for 

arbitrage risk (See Ali, Hwang and Trombley (2003)).

Hypothesis 1: The negative relationship between idiosyncratic volatility and 

future returns documented by Ang et al. (2006) should be concentrated in stocks that are 

the farther away from their 52-week high prices.

Next, Veronesi (1999) proposes a model of overreaction to bad news in good 

times. He argues and shows that in good times, bad news signals increased uncertainty 

and greater likelihood negative future performance, both of which lower stock prices and 

lead to negative returns. However, in bad times, bad news signals reduced uncertainty 

(confirming the bad state o f the economy), which has the opposite effect on prices. I 

therefore hypothesize that the negative relationship between idiosyncratic volatility and 

future returns for stocks that are far from their 52-week high price should be even

4 While Johnson (2004) demonstrate that forecast dispersion proxy for idiosyncratic risk, Diether, Malloy 
and Scherbuna (2002) argue that it is the uncertainty about projected earnings that gives rise to forecast 
dispersion.
A ccording to Nagel (2005), short sales are difficult for high volatility stocks because o f  the severe short 
sale constraints related to the low institutional holdings o f  these stocks.
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stronger when bad news reaches the market in good times (periods o f high investors’ 

sentiments).

Hypothesis 2 : For stocks that are far from their 52-week high price, there exist an 

even stronger negative relationship between idiosyncratic volatility and future returns in 

periods with high investors’ sentiments.



CHAPTER THREE

SAMPLE SELECTION AND DATA 
DESCRIPTION

My sample covers the period from January 1965 to December 2012.1 obtain daily 

and monthly returns, prices and shares outstanding for all the stocks traded on the NYSE, 

AMEX, and NASDAQ from the Center for Research in Security Prices (CRSP). I limit 

my sample to firms with common share code 10 and 11 and stocks worth $5 or more each 

month following Jiang, Xu and Yao (2009).6 This approach is common in the finance

*7

literature and is often used to eliminate the effects of small and illiquid stocks. I obtain 

monthly Fama-French factors returns, NYSE market capitalization decile breakpoints,

• , o
and monthly risk-free rates from Kenneth French’s website. I follow Brandt et al. (2010) 

to exclude the stocks with fewer than twelve daily observations in any given month at the 

end o f each portfolio formation month respectively.9

For each firm, I also compute the book to market ratio (BTM) using additional 

information collected from Compustat. Book-to-market is defined as the ratio o f fiscal 

year-end book equity plus the balance sheet deferred taxes in the prior year to market 

equity in December o f that year. As is common in the literature, I define firm size as the

6I find consistent results using a sample without price restriction.
7Jiang et al. (2009) argue that eliminating stocks with prices less than $5 helps avoiding market 
microstructure related issues.
8This data can be found at the following address: http://mba.tuck.dartmouth.edu/pages/facultv/ken.french/.
9Brandt et al. (2010) argue in favor o f  eliminating stocks with less than 12 daily observations in any given 
month to reduce the noise related to the computation o f  idiosyncratic volatility.

10

http://mba.tuck.dartmouth.edu/pages/facultv/ken.french/
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logarithm of market capitalization. I also follow Amihud (2002) in computing a measure 

o f illiquidity for every stock in my sample and for every month. My illiquidity measure 

(ILLIQ) is therefore defined as the ratio o f a stocks’ absolute monthly return to its dollar 

trading volume.

The 52-week high price o f a stock is the highest closing price o f the stock during 

the previous 52 weeks, as reported in the CRSP daily files. I follow George and Hwang 

(2004) in the identification o f the 52-week high prices and the computation o f their 

measure o f nearness to the 52-week high price. That is, I first make sure I adjust my price 

variables for stock splits and dividends using the CRSP price adjustment factor. I then 

compute the measure o f nearness to the 5 2-week high price (GH Ratio)10 at the end of 

every month for every stock in my sample as the ratio o f the stock’s current price over its 

52-week high price. It is given by:

„ . .  C u r r e n t  P r ic e  , .  .
'j n  — ----------------- ;---------;—  ( 1 )

52 - W e e k  H ig h  Price

The GH Ratio reaches its maximum at one when a stock’s month end price is the 52 

week-high price. As suggested in George and Hwang (2004), stocks with high GH are 

those for which good news recently arrived in the market, and those with low GH are 

those for which bad news recently arrived in the market.

We follow Bali and Cakici (2008) and use both daily and monthly stock returns to 

generate my idiosyncratic volatility measures. To obtain my first volatility measure 

(lvoldm,y), I first estimate each individual stock’s daily volatility as the standard deviation 

o f the residuals from the regression of the daily excess returns on the daily Fama-French

101 refer to the George and Hwang (2004) measure o f  nearness to 52-week high as the GH ratio or simply 
GH in the remainder o f  this study.
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three factors (Fama and French, 1993, 1996). That is, for every month t, I estimate the 

following equation from which I save the standard deviation of the residuals (£i>d) :

Ri .d ~  rf , d  = + P i { R m , d  -  rf , d )  + O i S M B d + S i H M L d + £ i d  (2)

Where Ri d is the rate o f return on stock / on day d, r^d is the risk free rate on day d,

Rm d,SM Bd,HM Ld are the return of market, Size, Book-to-Market factors on day d, 

respectively. Finally, £(d is the residual of stock / on day d.

Our stocks’ first monthly idiosyncratic volatility measures are then obtained by 

multiplying the standard deviation o f the residuals from the equation (2) above by the 

square root o f the number o f trading days for the given month.

lvoldall>' = JVar(atA)  X J d ~, (3)

Where Di t is the number o f trading days for stock i in month I. My second volatility

measure (\vo\monthly) is obtained using monthly stock returns following Bali and Cakici 

(2008), Lehmann (1990), and Malkiel and Xu (2002). Every month t, I regress the stocks 

excess returns on the monthly Fama and French factors. I then compute \\o \mnnIhly as the 

standard deviation o f the residuals from these monthly regressions over the previous 24 

to 60 months as available.

We focus the early discussion of this paper on verifying the existence o f the 

negative relationship between idiosyncratic volatility and future returns for my sample. I 

then investigate the role o f anchoring bias in the idiosyncratic volatility puzzle and finally 

consider the role o f the January effect as well as that of investor sentiments on this 

volatility-return relationship after controlling for anchoring bias.



CHAPTER FOUR

RESULTS

Idiosyncratic Volatility and Future Returns

We start my analysis with an investigation o f the presence o f the idiosyncratic 

volatility puzzle in my sample using both measures o f I VOL. Table 1 reports average 

equal and value weighted monthly returns o f quintile portfolios formed on my 

idiosyncratic volatility measures. In Panel A of this table, I report results from univariate 

sorts on Ivoldaily for my entire sample over the period between 1965 and 2012. VI (V5) 

is portfolio o f stocks in the bottom (top) quintile of I VOL. I find a strong negative 

relationship between Ivoldaily and equal-weighted returns when portfolios are formed 

using CRSP breakpoints.

Specifically, the equal-weighted return differential between V5 and VI is -0.62% 

per month, a difference that I also find to be statistically significant with a t-statistic o f - 

2.54. Moreover, the corresponding Fama-French alpha (FF-Alpha) is also found to be 

negative and statistically significant at -0.88% with a t-statistic of -5.60. However, when 

returns are value-weighted, the return differential between V5 and VI is -0.51% per 

month, yet only weakly significant with a t-statistic o f -1.76. Although the return 

differential between V5 and VI proves weakly significant in this case, I find the FF- 

Alpha to be negative (-0.74%) and statistically significant (t-statistic = -3.79).

13
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As in Bali and Cakici (2008), I also investigate the effect of the size (market 

share) distribution o f my CRSP-based idiosyncratic volatility portfolios on this volatility- 

retum relationship. I find similar to Bali and Cakici (2008) that although V5 and VI both 

contain 20% of the stocks sorted on Ivoldaily, V5 is mostly made up o f extremely small 

stocks (market share = 2.38%) whereas VI is made up of large companies (market share 

= 45.07%).“

To eliminate potential concerns about the noteworthy market share differential 

between V5 and V I, Bali and Cakici (2008) form portfolios based on NYSE breakpoints 

and “Equal” market share. I follow their approach and find results consistent with their 

findings. When portfolios are formed based on NYSE breakpoints, the market share 

spread between V5 and VI reduces but remains relatively important; VI contains stocks 

with a total market share o f 32.61% whereas V5 contains stocks with a total market share 

o f 9.19%. The value (equal) weighted return differential between V5 and VI is found to 

be -0.14% (-0.33%) per month with a t-statistic of -0.56 (-1.55). Yet, the corresponding 

FF-Alphas at -0.39% and -0.61% both prove to be negative and statistically significant 

with a t-statistics o f -2.30 and -4.77 respectively.

Forming portfolios based on “Equal” market share, I give up the equal 

idiosyncratic volatility distribution of my portfolios and allow each portfolio to contain 

the same fraction of the market share (20%). Doing this eliminates the strong negative 

equal-weighted return differential between V5 and VI previously documented in Bali and 

Cakici (2008), but the corresponding FF-Alpha (-0.40%) is negative and statistically 

significant (t-statistic = -3.12). I find no negative relationship between return and

11 Market share is available upon request.
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jvoidai*y for value-weighted returns. However, I find the FF-Alphas to be negative and 

statistically significant in five out of the six scenarios in Panel A o f Table 1.

Panel B o f Table 1 reports the results from a similar exercise using an alternative 

measure o f idiosyncratic volatility (lvolmonthly). When portfolios are formed based on 

CRSP breakpoints, I find negative but insignificant value and equal-weighted return 

differentials between V5 and V I. The corresponding FF-Alphas in this case are also 

negative, but only significant for equal-weighted returns (-0.41% with a t-statistic of 

-2.51). Using NYSE breakpoints, my results mirror those obtained with CRSP 

breakpoints. Here, the FF-Alphas are also negative and only significant for equal- 

weighted returns (-0.29% with a t-statistic o f -2.47). Finally, results obtained after using 

“Equal” market share breakpoints suggest no significant relationship between Ivolmonthly 

and future returns (both value and equal weighted), the corresponding FF-Alphas being 

negative and insignificant as well.

Overall, the results obtained from Table 1 closely replicate the findings o f Bali

1 7and Cakici (2008). My results confirm their proposition that the choice o f data 

frequency, weighing scheme and breakpoints all play an important role in the relationship 

between idiosyncratic volatility (however defined) and future returns. I therefore move to 

provide, in the following sections, evidence o f the role o f anchoring bias on the 

idiosyncratic volatility puzzle under these various setups.

12 These research findings do not exactly replicate the findings o f  Bali and Cakici (2008) because o f  $5 
price restriction and sample period.
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Table 1

Average Monthly Returns o f  Portfolio Sorted on Idiosyncratic Volatility

CRSP Breakpoints NYSE Breakpoints 20% Market Share
Value- Equal- Value- Equal- Value- Equal-

weighted weighted weighted weighted weighted weighted
Returns Returns Returns Returns Returns Returns

Panel A: Using Daily Data (Ivoldaily)
VI 0.82 1.09 0.83 1.08 0.77 1.01
2 0.90 1.29 0.95 1.28 0.95 1.20
3 1.05 1.33 0.96 1.32 0.90 1.26
4 0.93 1.19 1.06 1.35 0.89 1.29

V5 0.32 0.47 0.70 0.75 0.79 0.89

V5-V1
-0.51

(-1.76)
-0.62

(-2.54)
-0.14

(-0.56)
-0.33

(-1.55)
0.02

(0.08)
-0.12

(-0.56)
FF- -0.74 -0.88 -0.39 -0.61 -0.18 -0.40

Alpha (-3.79) (-5.60) (-2.30) (-4.77) (-1.12) (-3.12)
Panel B: Using Monthly Data (lvolmonthly)

VI 0.86 1.10 0.85 1.10 0.77 1.00
2 0.96 1.23 0.94 1.20 0.91 1.08
3 1.03 1.24 0.98 1.26 0.86 1.16
4 1.04 1.24 1.05 1.25 0.94 1.23

V5 0.75 0.92 0.91 1.07 0.94 1.12

V5-V1
-0.11

(-0.36)
-0.18

(-0.76)
0.06

(0.25)
-0.03

(-0.14)
0.17

(0.77)
0.12

(0.60)
FF- -0.28 -0.41 -0.13 -0.29 -0.01 -0.18

Alpha (-1.58) (-2.51) (-0.94) (-2.47) (-0.01) (-1.63)

This table reports value and equally-weighted monthly returns o f  the quintile portfolios formed on 
idiosyncratic volatility. Quintile portfolios are formed on idiosyncratic volatility every month from January 
1965 to December 2012. In Panel A, monthly idiosyncratic volatilities are the square root o f  the number o f  
trading days times the daily idiosyncratic volatility, the standard deviation o f  residuals from the regression 
o f  excess daily stock returns on the contemporaneous daily Fama-French factors in the month. In Panel B, 
monthly idiosyncratic volatilities are the standard deviation o f  residuals from the regression o f  excess 
monthly stock returns on the contemporaneous monthly Fama-French factors using the previous 24 to 60 
monthly returns (as available) each month. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  
I VOL. Newey-W est (1978) adjusted /-statistics are reported in parenthesis. Alpha reports Fama-French 
three factor alpha.
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The Role of the 52-Week High Price Anchor

The finance literature has struggled with the puzzling findings o f Ang, Hodrick, 

Xing, and Zhang (2006, 2009) that high idiosyncratic volatility stocks earn low future 

returns. Although this puzzle has been extensively investigated in the literature, an 

important and widely accepted aspect o f the behavior of investors has proven to be absent 

from this debate. In this section, I investigate the role of anchoring bias as it pertains to 

the 52-week high price on the idiosyncratic volatility puzzle.

George and Hwang (2004) suggest that stocks whose current prices are close to 

their 52-week highs are the ones for which good news recently arrived in the market 

whereas stocks whose current prices are far away from their 52-week high prices are ones 

for which bad news recently reached the market. They further argue that, because o f this 

anchoring bias, stocks with good news are underpriced while those with bad news are 

overpriced.

My primary hypothesis is that the high idiosyncratic volatility stocks that are far 

away from their 52-week high prices are more overpriced; a proposition consistent with 

the view o f high idiosyncratic volatility as a proxy for short sale constraint (See Nagel 

(2005) for details), arbitrage risk, Ali, Hwang and Trombley (2003), and uncertainty 

(Johnson (2004)). This implies that I should expect a stronger negative relationship 

between idiosyncratic volatility and future returns for stocks that move far away from 

their 52-weeh high. However, stocks close to their 52-week high prices are not affected 

by idiosyncratic volatility because short sale constraint does not affect underpriced 

stocks.
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To allow variations in IVOL to be unrelated to my measure o f nearness to 52- 

week high price (GH), I employ a double sorting portfolio approach. First, at the end of 

every month, I rank the stocks in my sample based on their respective GH ratio and form 

quintile portfolios. I then subdivide each GH quintile into five portfolios on the basis of 

the stocks’ respective idiosyncratic volatilities. I obtain 25 GH-IVOL portfolios. In the 

spirit o f Bali and Cakici (2008), I also set my breakpoints for each IVOL quintile 

portfolio using CRSP, NYSE and “Equal” Market Share. For robustness, I investigate the 

relationship between IVOL and future returns for measures o f IVOL computed using 

both daily and monthly data. Table 2 presents results obtained using CRSP breakpoints 

while Tables 3 and 4 do the same for both NYSE and “Equal” Market Share breakpoints, 

respectively.

To demonstrate the dispersion of stocks in my GH portfolios, Panel A of Table 2 

reports both value and equal weighted GH. While stocks in GH1 group have 0.51 and 

0.52 in terms of value and equal weighted average o f GH respectively, those in GH5 have 

0.96 o f GH in both value and equal weighted average. It implies that stocks in GH1 have 

current price close to half o f the 52-week high price, but those in GH5 are currently near 

their 52-week high price.
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Table 2

Average Monthly Returns o f  Portfolio Sorted on GH and Idiosyncratic Volatility: 
CRSP Breakpoints

Value-weighted Returns______   Equal-weighted Returns
GH1 2 3 4 GH5 GH1 2 3 4 GH5

Panel A: Average GH
0.51 0.72 0.82 0.89 0.96 0.52 0.72 0.82 0.89 0.96

Panel B: Using Daily Data (Ivoldaily)
VI 1.20 1.12 0.91 0.98 0.74 1.44 1.24 1.11 1.08 1.02
2 1.12 1.03 0.98 0.9 0.75 1.40 1.39 1.32 1.19 1.12
3 0.98 0.92 0.97 0.92 0.90 1.12 1.24 1.35 1.35 1.22
4 0.21 0.54 0.72 1.22 1.07 0.58 0.91 1.26 1.51 1.34

V5 -0.71 0.00 0.67 1.12 1.28 -0.49 0.3 0.92 1.28 1.38
V5-V1 -1.91 -1.12 -0.24 0.15 0.55 -1.93 -0.94 -0.19 0.20 0.36

(-6.34) (-4.22) (-0.96) (0.56) (2.05) (-9.06) (-4.90) (-0.93) (0.96) (1.75)
FF- -2.26 -1.31 -0.49 0.04 0.49 -2.11 -1.12 -0.43 -0.03 0.16

Alpha (-9.71) (-6.04) (-2.50) (0.19) (1.83) (-12.93) (-6.74) (-2.43) (-0.16) (0.86)
Panel C: Using Monthly Data (ivolmonth,y)

VI 1.11 0.95 0.91 0.91 0.71 1.4 1.36 1.27 1.07 0.86
2 0.95 0.89 0.83 0.89 0.71 1.28 1.23 1.19 1.15 0.97
3 0.79 0.95 0.77 1.12 0.91 0.98 1.06 1.19 1.2 1.12
4 0.50 0.90 0.91 1.21 1.31 0.66 1.07 1.22 1.34 1.36

V5 0.08 0.45 0.90 1.30 1.46 0.25 0.67 1.18 1.62 1.67
V5-V1 -1.03 -0.50 -0.01 0.39 0.75 -1.15 -0.70 -0.09 0.55 0.81

(-3.57) (-1.84) (-0.05) (1.40) (2.99) (-4.55) (-3.08) (-0.38) (2.38) (3.80)
FF- -1.24 -0.65 -0.24 0.25 0.65 -1.25 -0.82 -0.30 0.33 0.64

Alpha (-5.08) (-2.92) (-1.10) (1.06) (2.97) (-7.53) (-4.73) (-1.57) (1.58) (3.55)

This table reports value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility. Quintile 
portfolios are formed on GH first and then idiosyncratic volatility within each GH portfolio each month 
from January 1965 to December 2012. In Panel A, monthly idiosyncratic volatilities are the square root o f  
the number o f  trading days times the daily idiosyncratic volatility, the standard deviation o f  residuals from 
the regression o f  excess daily stock returns on the contemporaneous daily Fama-French factors in the 
month. In Panel B, monthly idiosyncratic volatilities are the standard deviation o f  residuals from the 
regression o f  excess monthly stock returns on the contemporaneous monthly Fama-French factors using the 
previous 24 to 60 monthly returns (as available) each month. VI (V5) is portfolio o f  stocks in the bottom 
(top) quintile o f  IVOL. Newey-W est (1978) adjusted /-statistics are reported in parenthesis. Alpha reports 
Fama-French three factor alpha.
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Panel B o f Table 2 presents results obtained using a measure o f IVOL computed 

using daily data ( I v o l^ ) .  I find that, after controlling for GH, both value and equal 

weighted return differentials between the V5 and VI are negative and strongly significant 

only for stocks that belong to the lowest and the second lowest GH quintiles. Specifically, 

I find that for stocks that are the farthest away from their 52-week high prices (those that 

belong to GH1), the value weighted return differential between V5 and VI is -1.91% per 

month with a t-statistic o f -6.34. Similarly, when returns are equally weighted, I find that 

for stocks that belong to GH1, the return differential between V5 and VI is also negative 

(-1.93% per month) and strongly significant (t-statistic = -9.06). In addition, I also find 

the corresponding FF-Alphas to be negative and strongly significant in both cases. For 

value-weighted returns and for the lowest GH quintile (GH1), I find the FF-Alpha to be 

-2.26% with a t-statistic o f -9.71. When equally-weighted, the FF-Alpha for this group of 

stocks also proves to be negative (-2.11%) and even stronger in significance (t-statistic = 

-12.93).

However, when I consider stocks that are closer to their 52-week high prices, 

those that belong to the highest GH quintile (GH5), I find that the value-weighted return 

differential between V5 and VI is positive (0.55% per month) and significant as well (t- 

statistic = 2.05). The corresponding FF-Alpha is also found to be positive (0.49% per 

month) but only marginally significant (t-statistic = 1.83). Likewise, the equal-weighted 

return differential between V5 and VI for GH5 also proves positive (0.36% per month), 

but only marginally significant (t-statistic = 1.75). I find the FF-Alpha in this case to be 

positive yet insignificant (0.16% with a t-statistic o f 0.86). The results I report so far are 

consistent with my first hypothesis, suggesting that there is indeed a strong negative
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relationship between idiosyncratic volatility and future returns only for stocks far away 

from their 52-week high prices.

Panel C o f Table 2 presents results obtained using a measure o f IVOL computed 

using monthly data (Ivolmonthly). These results are comparable to the ones I obtain in 

Panel B o f Table 2. The negative relationship between IVOL and future returns appears 

to be concentrated in stocks that belong to the lowest and the second lowest GH portfolio 

(GH1 and GH2) for both value and equal-weighted returns. For example, when value 

(equal) weighted, I find the return differential between V5 and VI for stocks in GH1 to 

be -1.03% (-1.15%) per month, with a t-statistic o f -3.57(-4.55). Similarly, I find the 

corresponding FF-Alphas to be negative (-1.24% and -1.25%) and strongly significant (t- 

statistic o f -5.08 and -7.53 respectively).

To provide robust evidence for my findings, I further investigate the volatility- 

retum relationship for GH-IVOL portfolios based on NYSE and “Equal” Market Share 

breakpoints. In Table 3 , 1 present results obtained using NYSE breakpoints. While Panel 

A of this table reports evidence using \vo\da,ly\ Panel B reports results obtained using 

Ivolmonthly.

Table 3 shows that forming my IVOL (however defined) quintile portfolios based 

on NYSE breakpoints does not eliminate my previous findings. In fact, I find strong 

negative relationship between IVOL and future returns for stocks in the lowest GH 

quintile (GH1). Using Ivof*"^ in Panel A of Table 3, I find that the value (equal) 

weighted return on VI exceeds that o f V5 by an average of 1.41% (1.50%) per month, 

with a t-statistic o f -5.00 (-6.94). I also find the FF-Alphas to be negative and strongly 

significant in both cases. However, for stocks in GH5, I find that the value (equal)-
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weighted return differential between V5 and VI is positive 0.50% (0.35%) per month and 

significant as well with a t-statistic o f 2.47 (1.99). The corresponding FF-Alpha is found 

to be positively significant 0.40% per month with a t-statistic o f 2.12 for value-weighted 

return, but it is insignificant 0.14% per month (t-statistic -  0.88).

Table 3

Average Monthly Returns o f  Portfolio Sorted on GH and Idiosyncratic Volatility: 
NYSE Breakpoints

Value-weighted Returns Equal-weighted Returns
GH1 2 3 4 GH5 GH1 2 3 4 GH5

Panel A: Using Daily Data (IvoIdaily)
VI 1.24 1.16 0.96 0.87 0.72 1.40 1.24 1.10 1.07 1.02
2 1.23 1.08 0.92 1.00 0.79 1.50 1.38 1.34 1.18 1.13
3 1.27 1.01 1.06 0.88 0.78 1.40 1.42 1.29 1.23 1.17
4 0.96 0.74 0.88 1.10 0.86 1.12 1.11 1.27 1.41 1.13

V5 -0.16 0.40 0.72 1.07 1.22 -0.10 0.52 1.02 1.32 1.36
V5-V1 -1.41 -0.77 -0.24 0.20 0.50 -1.50 -0.72 -0.08 0.25 0.35

(-5.00) (-3.38) (-1.12) (0.95) (2.47) (-6.94) (-4.25) (-0.46) (1.46) (1.99)
FF- -1.69 -1.00 -0.46 0.01 0.40 -1.67 -0.91 -0.32 0.01 0.14

Alpha (-8.07) (-5.48) (-2.65) (0.08) (2.12) (-10.50) (-6.62) (-2.38) (0.09) (0.88)
Panel B: Using Monthly Data (Ivolmonthly)

VI 1.15 1.00 0.90 0.91 0.74 1.43 1.38 1.28 1.08 0.85
2 1.09 0.94 0.96 0.85 0.64 1.44 1.32 1.22 1.11 0.94
3 1.03 0.94 0.74 1.01 0.80 1.25 1.18 1.22 1.18 0.97
4 0.79 0.96 0.75 1.15 0.99 1.06 1.16 1.19 1.20 1.18

V5 0.42 0.68 0.91 1.24 1.36 0.49 0.85 1.21 1.50 1.53
V5-V1 -0.72 -0.32 0.01 0.33 0.62 -0.93 -0.53 -0.08 0.43 0.69

(-2.65) (-1.31) (0.05) (1.47) (2.96) (-4.01) (-2.78) (-0.39) (2.19) (3.74)
FF- -0.90 -0.40 -0.17 0.18 0.53 -1.09 -0.69 -0.30 0.20 0.50

Alpha (-4.08) (-1.96) (-0.89) (0.97) (2.92) (-7.54) (-5.07) (-1.92) (1.19) (3.32)

This table reports value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility. Quintile 
portfolios are formed on GH first and then idiosyncratic volatility within each GH portfolio each month 
from January 1965 to December 2012. NYSE breakpoints are used to form portfolios. In Panel A, monthly 
idiosyncratic volatilities are the square root o f  the number o f  trading days times the daily idiosyncratic 
volatility, the standard deviation o f  residuals from the regression o f  excess daily stock returns on the 
contemporaneous daily Fama-French factors in the month. In Panel B, monthly idiosyncratic volatilities 
are the standard deviation o f  residuals from the regression o f  excess monthly stock returns on the 
contemporaneous monthly Fama-French factors using the previous 24 to 60 monthly returns (as available) 
each month. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est (1978) 
adjusted r-statistics are reported in parenthesis. Alpha reports Fama-French three factor alpha.
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The results reported in panel B of Table 3 using lvolmonthly are very similar to 

those I show in Panel A o f the same Table. For stocks in GH1,1 find a strong negative 

relationship between IVOL and future returns, both value and equal weighted. 

Specifically, I find that, when value (equal) weighted, the return differential between V5 

and VI is -0.72% (-0.93%) per month, with a t-statistic o f -2.65(-4.01). The 

corresponding FF-Alphas are also found to be negative (-0.90% and -1.09%) and strongly 

significant (t-statistics o f -4.08 and -7.54 respectively). However, there is a positive 

relationship between idiosyncratic volatility and future returns for stocks in GH5. These 

results are also consistent with my first hypothesis such that there is a strong negative 

relationship between idiosyncratic volatility and future returns only for stocks whose 

current price move far away from their 52-week high prices.

In Table 4 , 1 employ “Equal” Market Share breakpoints to form my IVOL quintile 

portfolios. I find, consistent with my previous results and also with Bali and Cakici 

(2008) that, although the volatility-retum relationship vary based on the choice of 

breakpoint and weighing scheme, there exists a strong negative relationship between 

IVOL (however defined) and future returns for stocks that belong to the lowest GH 

portfolio (GH1). Using Ivol'*" '̂ in Panel A, I find that the value (equally) weighted return 

differential between V5 and VI and the corresponding FF-Alpha both prove negative and 

strongly significant. For example, the value and equal weighted return differential 

between V5 and VI for stocks that belong to GH1 are -0.96% per month (t-statistic = 

-3.72) and -0.94% per month (t-statistic = -4.28) respectively. I find the corresponding 

FF-Alphas to be negative and significant as well. The results reported in panel B of Table 

4 using lvolmonthly are very similar to those I show in Panel A o f the same Table.
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Table 4

Average Monthly Returns o f Portfolio Sorted on GH and Idiosyncratic Volatility: “Equal” 
Market Share Breakpoints

Value-weighted Returns Equal-weighted Returns
GH1 2 3 4 GH5 GH1 2 3 4 GH5

Panel A: Using Daily Data (Ivoldaily)
VI 1.19 1.40 0.91 1.01 0.69 1.18 1.21 0.97 0.95 1.06
2 1.18 0.87 0.80 0.85 0.70 1.46 1.15 1.07 1.17 1.06
3 1.15 0.81 0.88 1.01 0.71 1.33 1.29 1.17 1.22 1.04
4 0.93 0.67 0.94 0.97 0.62 1.18 1.11 1.30 1.30 1.08

V5 0.23 0.50 0.87 1.16 1.05 0.24 0.8 1.32 1.49 1.35
V5-V1 -0.96 -0.91 -0.05 0.15 0.37 -0.94 -0.42 0.35 0.54 0.30

(-3.72) (-4.29) (-0.25) (0.72) (1.87) (-4.28) (-2.54) (2.09) (3.02) (1.76)
FF- -1.21 -1.00 -0.14 0.06 0.31 -1.14 -0.6 0.15 0.33 0.12

Alpha (-6.24) (-5.57) (-0.88) (0.31) (1-67) (-7.78) (-4.91) (1.20) (1.91) (0.75)
Panel B: Using Monthly Data (Ivolmonthly)

VI 1.15 1.08 0.88 0.92 0.72 1.33 1.31 1.13 0.82 0.88
2 1.05 0.95 0.73 0.81 0.57 1.25 1.28 0.98 0.72 0.93
3 1.06 0.76 0.88 0.92 0.50 1.33 1.30 1.10 0.87 1.04
4 0.98 0.82 0.88 1.01 0.66 1.23 1.17 1.14 0.93 1.10

V5 0.61 0.65 1.01 1.14 1.32 0.67 0.96 1.37 1.40 1.55
V5-V1 -0.53 -0.42 0.13 0.22 0.60 -0.66 -0.36 0.23 0.58 0.67

(-2.15) (-1.93) (0.57) (1.84) (2.51) (-2.59) (-1.98) (1.08) (3.02) (3.38)
FF- -0.62 -0.53 -0.02 0.01 0.40 -0.89 -0.56 -0.02 0.35 0.41

Alpha (-2.91) (-2.77) (-0.10) (0.04) (1.92) (-6.57) (-3.98) (-0.12) (2.09) (2.55)

This table reports value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility. Quintile 
portfolios are formed on GH first and then idiosyncratic volatility within each GH portfolio each month 
from January 1965 to December 2012. Equal market share breakpoints are used to form portfolios. In Panel 
A, monthly idiosyncratic volatilities are the square root o f  the number o f  trading days times the daily 
idiosyncratic volatility, the standard deviation o f  residuals from the regression o f  excess daily stock returns 
on the contemporaneous daily Fama-French factors in the month. In Panel B, monthly idiosyncratic 
volatilities are the standard deviation o f  residuals from the regression o f  excess monthly stock returns on 
the contemporaneous monthly Fama-French factors using the previous 24 to 60 monthly returns (as 
available) each month. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est 
(1978) adjusted r-statistics are reported in parenthesis. Alpha reports Fama-French three factor alpha.

The results so far lend support to my primary hypothesis that the negative 

volatility-retum relationship is concentrated in stocks that are farther away from their 52-
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week high prices and are shown to be robust to the propositions o f Bali and Cakici 

(2008). Figure 1 summarizes the results obtained in Tables 2, 3 and 4.
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Figure 1 Value and Equal Weighted Return Differential Between Ivol5 and Ivoll Under 
the Various Scenarios

I now turn my attention to the investigation of the robustness of my results after 

controlling for other known drivers o f the volatility-retum relationship. To provide such 

evidence, I perform a series of firm-level Fama-MacBeth cross-sectional regression tests 

that allow us to control for other variables. Each month from January 1965 to December 

2012, I run firm-level Fama-MacBeth cross-sectional regressions of stock returns in
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month t+\ on the lagged explanatory variables in month t. The full cross-sectional 

regression specification takes the following form:

Ri,t+ 1 = a t + /?iIVOLj t + y52IVOLi t * GHi>t + /?3GHj t + /?4REVtt  + 

(35MAXit  + /?6BETAj t + (37BTMit  + /?sSIZEit  + p 9M 0Miit + (310SKWiit + 

/?n ILLIQ+ ei(t+1, (4)

Where the dependent variable, Riit+1, is the return of stock i in month /+1. The lagged 

explanatory variables, computed in month t, include idiosyncratic volatility (IVOL), 

current price/52-week high price (GH: George and Hwang Ratio), the interaction term 

(IVOL*GH), monthly stock return (REV), maximum daily return (MAX), stock’s beta 

(Beta), book-to-market ratio (BTM), the natural log of market capitalization (Size), the 

holding period return from month t-12 to month t-2 (MOM), the idiosyncratic skewness 

(Skw) and illiquidity (ILLIQ).

Huang, Liu, Rhee, and Zhang (2010; HLRZ hereafter) suggests that the 

idiosyncratic volatility puzzle is attributable to the short-term reversals in returns 

documented in Jegadeesh (1990), Lehmann (1990), and Lo and MacKinlay (1990).13 

They find that in the cross-sectional regressions o f future returns o f stocks on 

idiosyncratic volatility that control for previous month’s return, the coefficient on 

idiosyncratic volatility is no longer statistically significant. We, therefore, control for the 

short-term reversal by monthly stock return (REV). I also control for maximum daily 

return (MAX) because Bali, Cakici, and Whitelaw (2011; BCW hereafter) finds a 

significant negative relationship between stocks’ maximum daily return (MAX) in a 

month and their returns in the following month. These authors find that after controlling

13Fu (2009) also documents a similar role o f  return reversals in the negative volatility-retum relationship.
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for MAX in the cross-sectional regressions of future returns on idiosyncratic volatility, 

the coefficient on volatility is insignificant in some specifications or even significantly 

positive in others.

Table 5 reports Fama-MacBeth cross-sectional regression results. In Models (1) 

through (3), IVOL is estimated using daily observations, and in Models (4) through (6), 

monthly estimates o f IVOL are employed. Models (1) and (4) investigate the existence of 

the IVOL puzzle in my sample in univariate regression settings. Model (1) confirms the 

negative volatility-retum relationship documented in Ang et al. (2006). I find in Model 

(1) that the mean coefficient estimate on my IVOL measure is negative (-0.047) and 

highly significant (t-statistic = -3.81). However, using my monthly estimate o f IVOL, I 

find in Model (4) that there exists no significant relationship between IVOL and future 

returns (coefficient estimate = -0.024, t-statistic = -1.24). These results in Model (1) and 

(4) are consistent with my previous findings in Table 1 and with those of Bali and Cakici 

(2008).

In Models (2) and (5), I include my measure o f nearness to the 52-week high 

(GH) as well as an interaction term (IVOL*GH) along with IVOL. I find in Model (2) 

that while the coefficient estimate on IVOL becomes -0.212 with a t-statistic o f -11.41, 

the coefficient on the interaction term is positive, 0.214, and statistically significant with 

a t-statistic o f 8.84. Given that IVOL is non-negative and GH is between zero and one, 

this evidence implies that the negative relationship between IVOL and next month’s 

return is stronger for stocks that are farther away from their 52-week high prices.
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Table 5

Fama-MacBeth Cross-Sectional Regressions

lvoidai,y iVoimonth|y
(1) (2) (3) (4) (5) (6)

IVOL -0.047 -0.212 -0.284 -0.024 -0.257 -0.321
(-3.81) (-11.41) (-12.19) (-1.24) (-9.95) (-10.28)

IVOL*GH 0.214 0.319 0.296 0.378
(8.84) (10.10) (6.93) (7.91)

GH -2.037 -2.606 -2.334 -2.836
(-4.65) (-5.84) (-4.37) (-5.82)

REV -0.049 -0.046
(-11.60) (-11.01)

MAX -0.007 -0.052
(-0.45) (-5.97)

BETA 0.049 0.033
(1.92) (1.24)

BTM 0.114 0.098
(2.12) (2.02)

SIZE -0.128 -0.146
(-3.19) (-4.01)

MOM 0.701 0.758
(6.32) (7.24)

SKW 0.099 0.165
(3.67) (6.78)

ILLIQ -0.011 -0.008
(-1.64) (-1.24)

Each month from January 1965 to December 2012, 1 run a firm-level Fama-MacBeth cross-sectional 
regressions o f  stock return in month t+ 1 on the lagged explanatory variables in month t. The explanatory 
variables include stock’s monthly idiosyncratic volatility (IVOL), current price/52-week high price (GH: 
George and Hwang Ratio), the interaction term (IVOL*GH), monthly stock return (REV), maximum daily 
return (M AX), BETA, the book-to-market ratio (BTM), the log o f  market capitalization (Size), the holding 
period return from month t-12 to month t-2 (MOM), the idiosyncratic skewness (Skw), and the illiquidity 
measure (ILLIQ). Common stocks with price greater than or equal to $5 from the NYSE/AM EX/NASDAQ  
are included in the sample. Newey-W est (1978) adjusted t-statistics are reported in parenthesis.

In Model (5) with IVOL computed using monthly data, I find consistent with the 

result reported in Model (2) that the negative return predictive power o f IVOL on future 

returns increases for stocks that move farther away from their 52-week high price
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(coefficient estimate for IVOL = -0.257 with t-statistic = -9.95 and coefficient estimate 

for IVOL*GH = 0.296 with t-statistic = 6.93).

Next, I control in Models (3) and (6) for other variables known in the recent 

literature for their ability to help explain the negative volatility-retum relationship. Using 

my first measure of IVOL in the full specification of Equation (4), I find in Model (3) 

that controlling for REV and for other variables such as MAX, MOM, ILLIQ and SKW 

as well does not change the negative relationship between the volatility and the return in 

the following month for stocks that are far away from their 52-week high. Specifically, 

the coefficient on IVOL is -0.284 with a t-statistic o f -12.19. The interaction term has a 

coefficient of 0.319 with a t-statistic of 10.10. Similarly, when I consider a measure o f 

IVOL computed using monthly data in the full specification o f Model (6), I find the 

coefficient on IVOL to equal -0.321 with a t-statistic of -10.28 and the interaction term 

has a coefficient of 0.378 with a t-statistic o f 7.91. Further, most of the control variables 

have expected signs: the coefficients on REV and firm size (SIZE) are negative and 

statistically significant, while coefficients on book-to-market (BTM), MOM, and 

idiosyncratic skewness are positive and statistically significant.

To summarize, the results obtained from my regression tests suggest that even 

after accounting for other important variables, it remains clear, as suggested by my 

previous findings, that the negative volatility-return relationship documented by Ang et 

al. (2006) is concentrated in stocks with low GH ratio, those stocks that are the farther 

away from their 52-week high prices. In addition to the preceding evidence on the 

robustness o f my findings, I also investigate in the following section the role of the 

January effect in the volatility-retum relationship after controlling for a stock’s nearness
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to its 52-week high price. Investigating this issue is particularly important given the 

findings o f Peterson and Smedema (2011) who provide robust evidence to the fact that 

the negative volatility-retum relationship is particular to every month o f the year other 

than the month of January. Doran, Jiang, and Peterson (2012) and Bhootra and Hur 

(2014) provide supporting evidence to their results. I turn to this investigation in the 

following section.

Controlling for the January Effect

In view o f the evidence presented by Peterson and Smedema (2011) and Bhootra 

and Hur (2014) among others on the role o f the January effect on the IVOL puzzle, it is 

important to ensure that my findings are not a simple artifact of the well documented 

January seasonality in stock returns. I start with an investigation o f the existence o f the 

January effect in my sample. In Table 6, I report average value and equal weighted 

monthly returns of quintile portfolios formed on IVOL for January and Non-January 

months. In Panel A, I present results from univariate sorts using my first idiosyncratic 

volatility measure (lvoldaiIy). For the month of January, I find the value (equal) weighted 

return differential between V5 and VI to be positive 1.19% (2.12%) per month with a t- 

statistic o f 1.13 (2.57); the corresponding FF-Alphas being -1.26% (0.11%) with t- 

statistic o f -1.67 (0.20). For Non-January months on the other hand, I find the value 

(equal) weighted return differential between V5 and VI to be negative -0.66% (-0.87%) 

per month and statistically significant with a t-statistic o f -2.20 (-3.41); the corresponding 

FF-Alphas being negative -0.79% (-1.02%) and highly significant with t-statistic o f -4.00 

(-6.39).
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Employing an alternative measure o f IVOL, computed using monthly data, the 

results in Panel B show that the value (equal) weighted return differential between V5 

and VI is positive 2.38% (3.18%) per month and significant with a t-statistic o f 2.58 

(3.82) in January; the corresponding FF-Alphas being equally positive 0.94% (1.56%) 

and significant with t-statistic o f 2.36 (2.42). For Non-January months, both value and 

equal weighted return differentials between V5 and VI are negative -0.32% and -0.49% 

respectively, yet only marginally significant when returns are equally weighted (t-statistic 

= -1.86). However, I also find the corresponding FF-Alphas to be equally negative - 

0.42% and -0.60%, and significant with t-statistics o f -2.26 and -3.81 respectively.

Overall, my results are generally consistent with prior studies. I find a positive or 

flat relationship between IVOL and future returns in the month o f January. However, for 

Non-January months, I find a strong negative relationship between IVOL and future 

returns, irrespective o f the weighing scheme employed and/or the frequency used in the 

computation o f my measures o f IVOL. I now turn my attention to the examination of the 

role o f the nearness to the 52-week high on the volatility-return relationship for January 

versus Non-January months. I repeat the analysis in Table 6 for January versus Non- 

January months. The results are presented in Tables 7 for my first measure o f IVOL 

(Ivoldaily), and Table 8 for the second measure o f IVOL (Ivolmonthly).
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Table 6

Average Monthly Returns o f Portfolio Sorted on Idiosyncratic Volatility:
January versus Non-January

January Non-January
Value-weighted

Returns
Equal-weighted

Returns
Value-weighted

Returns
Equal-weighted

Returns
Panel A: Ivolda,ly

VI 0.86 2.28 0.82 0.98
2 1.20 2.89 0.87 1.15
3 2.08 3.69 0.96 1.12
4 2.94 4.42 0.76 0.90

V5 2.05 4.39 0.16 0.12

V5-V1
1.19

(1.13)
2.12

(2.57)
-0.66

(-2.20)
-0.87

(-3.41)
FF-Alpha -1.26 0.11 -0.79 -1.02

(-1.67) (0.20) (-4.00) (-6.39)

Panel B: iv o lmonthly
VI 0.85 1.93 0.84 1.02
2 1.36 2.61 0.90 1.09
3 2.24 3.30 0.89 1.03
4 2.84 4.37 0.86 0.95

V5 3.23 5.11 0.52 0.54

V5-V1
2.38

(2.58)
3.18

(3.82)
-0.32

(-1.11)
-0.49

(-1.86)
FF-Alpha 0.94 1.56 -0.42 -0.60

(2.36) (2.42) (-2.26) (-3.81)

This table reports value and equally-weighted monthly returns o f  the quintile portfolios formed on 
idiosyncratic volatility for January and Non-January months. Quintile portfolios are formed on 
idiosyncratic volatility each month from January 1965 to December 2012. For panel A, monthly 
idiosyncratic volatilities are the square root o f  the number o f  trading days times the daily idiosyncratic 
volatility, the standard deviation o f  residuals from the regression o f  excess daily stock returns on the 
contemporaneous daily Fama-French factors in the month. For panel B, monthly idiosyncratic volatilities 
are the standard deviation o f  residuals from the regression o f  excess monthly stock returns on the 
contemporaneous monthly Fama-French factors using the previous 24 to 60 monthly returns (as available) 
each month. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est (1978) 
adjusted /-statistics are reported in parenthesis. Alpha reports Fama-French three factor alpha.
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Looking at both value and equal weighted return differentials between V5 and 

V I, my results in Panel A of Table 7 are generally consistent with the findings of George 

and Hwang (2008). I find that there exists a flat volatility-retum relationship in the month 

o f January. However, 1 also find the FF-Alpha of my lowest GH group (GH1) to be 

negative and highly significant, irrespective o f the weighing scheme employed. 

Specifically, I find that when returns are value-weighted, the FF-Alpha o f my lowest GH 

group is -2.66 with a t-statistic o f -4.74. When returns are equally weighted, the FF-Alpha 

of this group o f stocks (GH1) is also negative (-1.64) and significant (t-statistic = - 2.97).

In panel B o f Table 7, my focus is turned to Non-January months. Consistent with 

my earlier findings, I show, for my lowest GH quintile, that the value (equal) weighted 

return differential between V5 and VI is negative, -2.07% (-2.08%) per month, and 

highly significant, with a t-statistic o f -6.57 (-9.34). Conversely, this return differential 

between V5 and VI for my highest GH quintile (GH5) appears to be positive, 0.55% 

(0.29%) per month, yet only marginally significant or flat, with a t-statistic o f 1.95(1.37). 

I also find the corresponding FF-Alphas to follow a similar pattern. When returns are 

value (equal) weighted, the FF-Alpha for my lowest GH quintile (GH1) is negative, 

-2.28% (-2.18%), and strongly significant, with a t-statistic of -8.25 (-12.44). For my 

highest GH quintile, the FF-Alphas are found to be positive yet insignificant.



34

Table 7

Average Monthly Returns o f  Portfolio Sorted on Idiosyncratic Volatility: January versus
Non-January

Panel A : January
Value-weighted Returns Equal-weighted Returns

GH1 2 3 4 GH5 GH1 2 3 4 GH5
VI 1.70 2.49 1.73 1.62 0.46 4.49 4.15 3.10 2.18 1.11
2 2.97 2.70 1.96 1.37 0.39 5.12 4.57 3.21 2.35 1.29
3 3.18 2.50 2.15 1.69 0.25 5.96 4.9 3.50 2.46 1.32
4 2.43 2.97 2.66 2.02 0.98 5.55 4.77 4.05 2.78 1.59

V5 1.61 2.80 2.66 1.83 1.01 4.27 4.48 4.03 3.56 2.21

V5-V1
-0.09

(-0.10)
0.31

(0.31)
0.92

(1.04)
0.22

(0.19)
0.55

(0.62)
-0.23

(-0.33)
0.33

(0.47)
0.93

(1.40)
1.38

(1.77)
1.1

(1.46)
FF- -2.66 -2.01 -0.19 -0.58 -0.85 -1.64 -1.12 -0.45 0.02 -0.28

Alpha (-4.74) (-2.09) (-0.16) (-0.33) (-1.11) (-2.97) (-1.50) (-0.64) (0.03) (-0.39)
Panel B : Non-January

VI 1.15 0.99 0.84 0.92 0.76 1.17 0.98 0.93 0.99 1.01
2 0.96 0.88 0.89 0.86 0.78 1.07 1.11 1.15 1.09 1.11
3 0.79 0.78 0.86 0.86 0.96 0.69 0.92 1.16 1.25 1.21
4 0.02 0.33 0.54 1.15 1.07 0.14 0.57 1.02 1.40 1.32

V5 -0.91 -0.25 0.49 1.06 1.31 -0.92 -0.07 0.64 1.08 1.31

V5-V1
-2.07 -1.24 

(-6.57) (-4.54)
-0.34

(-1.32)
0.14

(0.53)
0.55

(1.95)
-2.08

(-9.34)
-1.05

(-5.29)
-0.29

(-1.35)
0.09

(0.43)
0.29

(1.37)
FF- -2.28 -1.43 -0.52 0.06 0.47 -2.18 -1.17 -0.45 -0.07 0.17

Alpha (-8.25) (-6.94) (-2.59) (0.39) (1.69) (-12.44) (-7.60) (-2.62) (-0.49) (1.08)

This table shows value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility, Quintile 
portfolios are formed on GH first and then idiosyncratic volatility within each GH portfolio each month 
from January 1965 to December 2012, Monthly idiosyncratic volatilities are the square root o f  the number 
o f  trading days times the daily idiosyncratic volatility, the standard deviation o f  residuals from the 
regression o f  excess daily stock returns on the contemporaneous daily Fama-French factors. VI (V5) is 
portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est (1978) adjusted /-statistics are 
reported in parenthesis. Alpha reports Fama-French three factor alpha.
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Table 8 reports results obtained after using a measure o f IVOL computed with 

monthly data. As in Table 7, Panel A o f this table focuses on the month of January while 

Panel B reports results for Non-January months. In Panel A, I find a positive and 

generally significant volatility-retum relationship for all my GH quintiles, irrespective of 

the weighing scheme employed for the computation o f returns. However, the 

corresponding FF-Alphas in this case are found to be significant when returns are 

equally-weighted and only for my highest GH groups (GH4 and GH5). In Panel B, the 

results confirm my previous findings that for Non-January months, the volatility-retum 

relationship is negative and strongly significant only for stocks that are far away from 

their 52-week high prices.

With value (equal) weighted returns, I find that the return differential between V5 

and VI for my lowest GH quintile (GH1) is negative, -1.33% (-1.46%) per month and 

highly significant, with a t-statistic of -4.49 (-5.59). On the contrary, the return 

differential between V5 and VI for my highest GH quintile (GH5) appears to be positive, 

0.62% (0.69%) per month and significant, with a t-statistic o f 2.37(3.12). Similarly, the 

FF-Alpha for my lowest GH quintile (GH1) is negative, -1.41% (-1.49%), and strongly 

significant, with a t-statistic of -6.05 (-8.40). For my highest GH quintile, the FF-Alphas 

(using both value and equal weighted returns) are found to be positive and significant.

The evidence I present in Tables 7 and 8 suggest that the findings I document in 

this study on the role o f anchoring bias on the IVOL puzzle are indeed robust to the well 

documented January seasonality in stock returns. Figure 2 shows a graphical summary of 

the results I report in Tables 7 and 8.
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Table 8

Average Monthly Returns o f  Portfolio Sorted on GH and Ivo lmonthly:
January versus Non-January

Panel A : January

Value-weighted Returns Equal-weighted Returns

GH1 2 3 4 GH5 GH1 2 3 4 GH5
VI 1.40 2.09 1.73 1.47 0.00 3.67 3.67 2.86 2.08 0.71
2 3.42 2.53 2.15 1.31 0.25 4.99 3.97 3.07 1.98 0.73
3 3.60 3.74 1.8 1.67 0.27 5.63 4.57 3.16 2.24 1.12
4 2.96 4.27 2.67 1.28 0.55 5.46 5.19 3.95 2.86 1.78

V5 3.57 3.48 3.17 2.84 2.04 5.91 5.3 4.73 4.16 2.76

V5-V1
2.17

(1.95)
1.39

(1.52)
1.44

(1.54)
1.37

(1.49)
2.03

(2.50)
2.24

(2.64)
1.62

(2.07)
1.87

(2.43)
2.08

(2.86)
2.05

(2.97)

FF- 0.65 0.41 0.47 0.64 1.04 0.97 0.82 0.86 1.14 0.89
Alpha (1.01) (0.63) (0.66) (0.81) (1.45) (1.36) (0.92) (1.34) (2.22) (2.00)

Panel B : Non-January
VI 1.08 0.85 0.83 0.86 0.78 1.20 1.16 1.13 0.98 0.87
2 0.74 0.74 0.71 0.86 0.75 0.94 0.98 1.02 1.08 0.99
3 0.53 0.69 0.70 1.07 0.96 0.57 0.75 1.03 1.11 1.13
4 0.28 0.62 0.75 1.19 1.39 0.23 0.71 0.97 1.20 1.33

V5 -0.25 0.19 0.69 1.18 1.40 -0.26 0.27 0.87 1.40 1.57

V5-V1
-1.33

(-4.49)
-0.67

(-2.35)
-0.14

(-0.48)
0.32

(1.08)
0.62

(2.37)
-1.46

(-5.59)
-0.89

(-3.82)
-0.26

(-1.09)
0.42

(1.73)
0.69

(3.12)

FF- -1.41 -0.73 -0.31 0.20 0.57 -1.49 -0.95 -0.40 0.28 0.60
Alpha (-6.05) (-3.48) (-1.39) (0.88) (2.63) (-8.40) (-5.75) (-2.16) (1.43) (3.46)

This table shows value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility for January and 
Non-January months. Quintile portfolios are formed on GH first and then idiosyncratic volatility within 
each GH portfolio each month from January 1965 to December 2012. Monthly idiosyncratic volatilities are 
the standard deviation o f  residuals from the regression o f  excess monthly stock returns on the 
contemporaneous monthly Fama-French factors using the previous 24 to 60 monthly returns (as available) 
each month. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est (1978) 
adjusted t-statistics are reported in parenthesis. Alpha reports Fama-French three factor alpha._____________
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To further support this evidence, I perform regression tests for which I present the 

results in Table 9. Specifically, I run cross-sectional firm-level Fama-MacBeth 

regressions of stock returns on lagged explanatory variables, differentiating between 

January and Non-January months. In Models (1) through (3), IVOL is estimated using 

daily observations, and in Models (4) through (6), monthly return estimates o f IVOL are 

employed. As stated earlier, for each one o f my Model specifications, I differentiate 

between January and Non-January months.
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Models (1) and (4) investigate the existence of the IVOL puzzle for my sample in 

univariate regression settings. Consistent with previous studies, the results in both 

Models (1 & 4) confirm the existence of a negative volatility-retum relationship for Non- 

January months only. In the month of January, the mean coefficient estimate on my 

IVOL measure in Model (1) is positive (0.084) and only marginally significant (t-statistic 

= 1.88). However, for Non-January months, I find the coefficient estimate on my IVOL 

measure to be negative (-0.058) and strongly significant with a t-statistic o f -4.46. Using 

a measure o f IVOL obtained with monthly data, I find in Model (4) that for the month of 

January, there exist a strong positive volatility-retum relationship; the coefficient 

estimate on IVOL in this case is 0.236 with a t-statistic o f 3.44. For Non-January months, 

the volatility-retum relationship proves negative (coefficient estimate = -0.047) and 

significant (t-statistic = -2.32). These results are consistent with my previous findings and 

also with those of Peterson and Smedema (2011) and Bhootra and Hur (2014).

In Models (2) and (5), I include GH as well as an interaction term (IVOL*GH). 

Interestingly, I find in Model (2) that controlling for GH in the month of January changes 

the nature o f the volatility-return relationship; the coefficient estimates on my IVOL 

measures become negative (-0.187) and significant (t-statistic = -4.63). It seems 

inconsistent with Panel A of Table 7 that shows no volatility-retum relationship even for 

stocks in GH1. However, using 0.50 as a reasonable number of GH in GH1 group (See 

Panel A of Table 2), the net effect o f IVOL on future return will be -0.032 (=-0.187 + 

0.290*0.5) which is negative and seems potentially insignificant, and thus is consistent 

with Panel A of Table 7.
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For Non-January months, I find a strong negative relationship between volatility 

and returns for those stocks that move away from their 52-week high prices; the 

coefficient on my IVOL measure in this case is negative, -0.215 and highly significant 

(t-statistic = -10.57) and the coefficient on interaction term is positive, 0.207 and highly 

significant (t-statistic = 8.06). As stock prices move away from their respective 52-week 

highs as in stocks in GH1, the net effect o f IVOL on future returns remains negative at 

-0.112 (= -0.215 + 0.207*0.50) and potentially significant. I obtain similar results in 

Model (5). These findings are consistent with Panel B of Table 7 and 8.

Next, similar to the analysis performed in Table 5 ,1 control in Models (3) and (6) 

for other variables known in the recent literature for their ability to help explain the 

negative volatility-retum relationship, differentiating this time between January and Non- 

January months. In Model (3), I find for Non-January months that, controlling for REV, 

MAX, MOM, ILLIQ and SKW does not change the nature o f the volatility-retum 

relationship that I document for stocks that are far away from their 52-week high. 

Specifically, the coefficient on my IVOL measure is -0.279 and highly significant (t- 

statistic = -11.10) and the coefficient on interaction term is 0.310 and highly significant 

(t-statistic = 9.13) for Non-January months. This finding is confirmed in Model (6) with 

IVOL estimated using monthly data.

Examining the Persistence of Results

The results I report up to this point suggest a systematic overpricing o f high IVOL 

stocks that move away from their 52-week high prices. George and Hwang (2011) argue 

that while pricing errors are just as likely to generate overpricing as they are to generate 

underpricing, only the overpricing is likely to persist due to short sale constraints. If this
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is true, I should expect the overpricing I document in this paper for high IVOL stocks that 

move away from their 52-week prices to persist. To provide such evidence, I perform the 

following analysis. Every month t, I form quintile portfolios based on my measure o f 

nearness to the 52-week high price (GH). Within each o f these quintile portfolios formed 

based on GH, I also form another quintile portfolios based on my various measures o f 

IVOL. For each o f the 25 portfolios I obtain, I then compute average value (equal) 

weighted returns during each of the six months following my portfolio formation month 

(i.e., from t+1 to t+6).

Tables 10 and 11 present the average monthly return difference between V5 and 

VI for the post-formation months from t+2 to t+6 as my previous results focus on the 

post-formation month t+1. In Table 10, I employ Ivolda,ly while Table 11 reports results 

obtained using lvolmonthly. Panel A.l (B .l) o f Table 10 reports the post-formation 

average value (equal) weighted return differentials between my highest (V5) and lowest 

(VI) portfolios formed on my measure of IVOL estimated using daily return only. Here, 

I find that although my lowest IVOL portfolios (VI) generally outperform my highest 

IVOL portfolios (V5) over the subsequent months, the return differentials between both 

groups o f stocks (V5-V1) are only marginally significant when returns are equally- 

weighted (See Panel B.l).
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Table 10

Average Monthly Returns in Post Holding Period Months (lvo ldaily)

t+2 t+2 t+4 t+5 t+6
Panel A: Value-weighted Returns

Panel A .l: Portfolio Sorted on IvoldaUy
-0.38 -0.22 -0.27 -0.26 -0.28

(-1.37) (-0.78) (-0.97) (-0.95) (-1.03)
Panel A.2: Portfolio Sorted on GH and Ivoldally

GH1 -1.36 -1.12 -1.11 -0.86 -0.59
(-4.20) (-3.43) (-3.46) (-2.71) (-1.99)

2 -0.24 0.04 -0.27 -0.17 0.07
(-0.81) (0.15) (-0.90) (-0.56) (0.21)

3 0.03 0.50 0.04 0.19 0.32
(0.11) (1.65) (0.15) (0.67) (1.10)

4 0.31 0.50 -0.02 0.37 0.35
(1.14) (1.69) (-0.05) (1.26) (1.23)

GH5 0.77 0.81 0.47 0.28 0.50
(2.77) (2.89) (1.57) (0.95) (1.61)

Panel B: Equal-weighted Returns
Panel B.l: Portfolio Sorted on Ivoldally

-0.43 -0.39 -0.38 -0.41 -0.36
(-1.82) (-1.66) (-1.63) (-1.73) (-1.53)

Panel B.2: Portfolio Sorted on GH and Ivoldally
GH1 -1.31 -0.99 -0.92 -0.71 -0.70

(-5.28) (-4.02) (-3.81) (-2.76) (-2.91)
2 -0.32 -0.06 0.00 -0.09 0.04

(-1.47) (-0.28) (0.01) (-0.41) (0.21)
3 0.17 0.29 -0.01 0.10 0.24

(0.81) (1.37) (-0.03) (0.47) G-13)
4 0.49 0.55 0.31 0.25 0.46

(2.16) (2.56) (1.48) (1.18) (2.15)
GH5 0.73 0.89 0.44 0.35 0.59

(2.90) (3.88) (1.85) (1.49) (2.40)

This table reports the average monthly returns o f  the V5 (firms with high idiosyncratic volatility) -  the VI 
(firms with low idiosyncratic volatility) portfolios during the post-holding period from month t+2 to month 
t+6 from January 1965 until June 2012. For Panel A .l and B .l, quintile portfolios are formed on 
idiosyncratic volatility each month. For Panel A.2 and B.2, quintile portfolios are formed on GH (George 
and Hwang Ratio: current price/52-week high price) first and then idiosyncratic volatility within each GH 
portfolio each month t. Monthly idiosyncratic volatilities are the square root o f  the number o f  trading days 
times the daily idiosyncratic volatility, the standard deviation o f  residuals from the regression o f  excess 
daily stock returns on the contemporaneous daily Fama-French factors in the month. Newey-W est (1978) 
adjusted t-statistics are reported in parenthesis.
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Table 11

Average Monthly Returns in Post Holding Period Months (Ivo lmonthly)

t+2 t+3 t+4 t+5 t+6
Panel A: Value-weighted Returns

Panel A.l: Portfolio Sorted on lvolmonth,y
-0.06 -0.05 -0.02 -0.04 -0.02

(-0.23) (-0.18) (-0.09) (-0.15) (-0.06)
Panel A.2: Portfolio Sorted on GH and Ivolmonthly

GH1 -1.10 -0.79 -0.95 -0.66 -0.60
(-3.43) (-2.51) (-3.01) (-2.10) (-1.96)

2 -0.08 0.19 0.12 -0.06 -0.35
(-0.26) (0.58) (0.39) (-0.17) (-1.07)

3 0.13 0.52 0.29 0.49 0.64
(0.40) (1.61) (0.93) (1.60) (2.06)

4 0.62 0.70 0.36 0.58 0.72
(2.11) (2.13) (1.08) (1.89) (2.36)

GH5 0.94 0.76 0.77 0.43 0.76
(3.15) (2.54) (2.63) (1.43) (2-41)

Panel B: Equal-weighted Returns
Panel B.l: Portfolio Sorted on ivolmonth,y

-0.10 -0.10 -0.09 -0.15 -0.15
(-0.42) (-0.41) (-0.38) (-0.60) (-0.59)

Panel B.2: Portfolio Sorted on GH and IvoImonth,y
GH1 -1.00 -0.73 -0.64 -0.60 -0.64

(-3.54) (-2.57) (-2.23) (-2.02) (-2.31)
2 -0.15 0.12 0.16 -0.06 -0.11

(-0.57) (0.48) (0.60) (-0.22) (-0.44)
3 0.29 0.52 0.25 0.26 0.38

(1.15) (2.08) (0.99) (1.05) (1.53)
4 0.68 0.71 0.50 0.47 0.55

(2.64) (2.79) (1.98) (1.89) (2.16)
GH5 0.81 0.91 0.66 0.43 0.74

(3.06) (3.63) (2.55) (1-69) (2.80)

This table reports the average monthly returns o f  the V5 (firms with high idiosyncratic volatility) -  the VI 
(firms with low idiosyncratic volatility) portfolios during the post-holding period from month t+2 to month 
t+6 from January 1965 until June 2012. For Panel A .l and B .l, quintile portfolios are formed on 
idiosyncratic volatility each month. For Panel A.2 and B.2, quintile portfolios are formed on GH (George 
and Hwang Ratio: current price/52-week high price) first and then idiosyncratic volatility within each GH 
portfolio each month t. Monthly idiosyncratic volatilities are the standard deviation o f  residuals from the 
regression o f  excess monthly stock returns on the contemporaneous monthly Fama-French factors using 
the previous 24 to 60 monthly returns (as available) each month. Newey-W est (1978) adjusted /-statistics 
are reported in parenthesis
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In Panels A.2 and B.2, I employ a double sort approach. Here, portfolios are 

formed based on GH first and then IVOL within each GH quintile. For each of my GH 

portfolios, I then report in Panel A.2 (B.2) the post-formation average value (equal) 

weighted return differentials between my highest and lowest IVOL portfolios. I find in 

Panel A.2 (B.2) that for my lowest GH portfolio (GH1), the value (equal) weighted return 

differentials between my highest and lowest IVOL portfolios (V5-V1) are significantly 

negative for up to six months following the portfolios formation months. I find similar 

results with idiosyncratic volatilities estimated using monthly data in Table 11.

Controlling for Investor Sentiments

In this section, I investigate the behavior o f the volatility-retum relationship o f 

stocks that are far away from their 52-week high prices in periods o f high and low 

investor sentiments. Veronesi (1999) shows that in good times, bad news signals 

increased uncertainty and greater likelihood negative future performance. Building on the 

propositions o f Veronesi (1999), it follows that if  nearness to the 52-week high serves as 

a proxy for a firm’s idiosyncratic information “quality” (good vs. bad news) as in George 

and Hwang (2004) and periods of high (low) investor sentiments are understood to be 

good (bad) times, I should expect, all else equal, that the negative relationship between 

IVOL and future returns o f stocks that are farther away from their 52-week high prices be 

stronger in periods of high investor sentiments.

We start with the investigation o f the behavior of the volatility-retum relationship 

in periods o f low, medium, and high investor sentiments. As stated earlier, I obtain the 

investor sentiment data is from Baker and Wurgler (2006). This data is only available for 

the period from July 1965 to December 2010, which limits my sample for the following
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analyses. The results o f this preliminary analysis are presented in Table 12 where I form 

quintile portfolios solely on idiosyncratic volatility. Panel B (C) o f Table 12 reports the 

results using idiosyncratic volatility estimated with daily (monthly) data. After assigning 

the various months to the sentiment categories (low, medium, high), I obtain 182 months 

for each sentiment category.

In Panel A o f Table 12, I report the average factor (market, size, and book-to- 

market) returns for my entire sample. While for low sentiments periods, market, size, and 

book-to-market factors have average monthly returns o f 0.65, 0.73, and 0.38% 

respectively, they are -0.06, -0.17, and 1.22% for high sentiments periods, respectively. 

In Panel B and C, I report for each o f my IVOL measures the value and equal weighted 

returns for quintile portfolios formed on IVOL only. I find in Panel B and C that, in 

periods o f low investor sentiments, there generally exists a strong positive relationship 

between IVOL and future returns.

However, in periods o f medium investor sentiments, I find that irrespective o f my 

definition o f IVOL, the volatility-retum relationship is generally flat. Finally, for my 

highest investor sentiments periods, I find strong negative relationship between IVOL 

and future returns. Specifically, I find in Panel B that for my highest investor sentiments 

periods, the value (equal) weighted return differential between V5 and V I, my highest 

and lowest IVOL portfolios, is negative, -1.75% (-1.83%) per month and statistically 

significant with a t-statistic o f -2.91 (-3.48). Here, I also find the FF-Alphas to be 

significantly negative. Similarly, the results in Panel C show that the value (equal) 

weighted return differential between V5 and VI is negative, -1.53% (-1.62%) per month 

and statistically significant with a t-statistic of -2.55 (-2.90).
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Table 12

Average Monthly Returns o f  Portfolio Sorted on Idiosyncratic Volatility Across Investor
Sentiments

LOW SENTIMENT MEDIUM SENTIMENT HIGH SENTIMENT
Panel A: Average Returns of Factors

MKT SMB HML MKT SMB HML MKT SMB HML
0.65 0.73 0.38 0.65 0.08 -0.18 -0.06 -0.17 1.22

Panel B: (Ivoldaily)
Value-

weighted
Returns

Equal-
weighted
Returns

Value-
weighted
Returns

Equal-
weighted
Returns

Value-
weighted
Returns

Equal-
weighted
Returns

VI 0.64 1.17 0.55 0.62 1.25 1.55
2 1.09 1.68 0.58 0.69 1.12 1.58
3 1.53 2.03 0.70 0.79 0.92 1.31
4 1.77 2.16 0.85 0.74 0.42 0.88

V5 1.66 1.79 0.08 0.22 -0.50 -0.28

V5-V1 1.02
(2.46)

0.63
(1.75)

-0.47
(-1.04)

-0.40
(-1.15)

-1.75
(-2.91)

-1.83
(-3.48)

FF- -0.08 -0.35 -0.75 -0.62 -1.19 -1.56
Alpha (-0.32) (-1.65) (-2.43) (-3.36) (-3.01) (-4.72)

Panel C: (iVolmonthl>')
VI 0.86 1.13 0.54 0.56 1.19 1.66
2 1.28 1.60 0.62 0.57 0.96 1.53
3 1.58 1.87 0.73 0.58 0.77 1.27
4 1.86 2.11 0.95 0.74 0.31 0.90

V5 1.97 2.17 0.69 0.64 -0.34 0.04

V5-V1 1.12
(2.76)

1.04
(2.86)

0.16
(0.34)

0.08
(0.19)

-1.53
(-2.55)

-1.62
(-2.90)

FF- 0.04 0.04 -0.12 -0.17 -1.06 -1.37
Alpha (0.16) (0.23) (-0.46) (-0.87) (-2.85) (-3.98)

This table shows value and equally-weighted monthly returns o f  the quintile portfolios formed on 
idiosyncratic volatility. Quintile portfolios are formed on idiosyncratic volatility each month from January 
1965 to December 2010. For panel B, monthly idiosyncratic volatilities are the square root o f  the number 
o f  trading days times the daily idiosyncratic volatility, the standard deviation o f  residuals from the 
regression o f  excess daily stock returns on the contemporaneous daily Fama-French factors in the month. 
For panel C, monthly idiosyncratic volatilities are the standard deviation o f  residuals from the regression 
o f  excess monthly stock returns on the contemporaneous monthly Fama-French factors using the previous 
24 to 60 monthly returns (as available) each month. The investor sentiment data is from Baker and 
Wurgler (2006) and downloaded from Wurgler’s website from July 1965 to December 2010. There are 
182 months for each Low, Medium, and High sentiments. VI (V5) is portfolio o f  stocks in the bottom 
(top) quintile o f  IVOL. Newey-W est (1978) adjusted /-statistics are reported in parenthesis. Alpha reports 
Fama-French three factor alpha.
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Next, I control for the stocks’ nearness to their respective 52-week high price 

using a double portfolio sorting approach. In Tables 13 and 14 ,1 report the results o f this 

exercise using Ivoldaily and Ivolmonthly, respectively. In Panel A of Table 13, I focus on 

periods o f low investor sentiments (or bad times). During periods o f low investor 

sentiments, the value (equal) weighted return differential between V5 and VI for stocks 

in GH1 is negative, -0.56% (-0.93%) per month. Nonetheless, I find these negative value 

and equal weighted return differentials between V5 and VI for stocks that belong to GH1 

to be significant only when returns are equally weighted; t-statistics o f -1.19 and -2.96 for 

value and equal weighted returns, respectively.

In Panel C of Table 13, I present similar results for periods o f high investor 

sentiments. In this case, I find consistent with my second hypothesis that, the already 

strong negative volatility-retum relationship I document in this paper for stocks that 

move away from their 52-week highs is even stronger in periods of high investor 

sentiments. Precisely, I find that for stocks that belong to GH1, the value (equal) 

weighted return differential between V5 and VI is negative, -3.50% (-3.29%) per month 

and highly significant with a t-statistic o f -5.63 (-6.83). I also find that the FF-Alphas in 

this case are negative and strongly significant. I obtain similar results in Table 14 using 

idiosyncratic volatility estimated with monthly returns (Ivolmonthly).
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Table 13

Average Monthly Returns o f Portfolio Sorted on GH and Idiosyncratic Volatility Across
Investor Sentiments: (lvo ldady)

GH1 2 3 4 GH5 GH1 2 3 4 GH5

Value-weighted Returns Equal-weighted Returns
Panel A: LOW SENTIMENT

VI 1.57 1.24 0.73 0.78 0.60 2.13 1.59 1.29 1.12 0.87

2 1.82 1.52 0.88 0.99 0.82 2.41 2.15 1.70 1.40 1.21

3 2.26 1.79 1.32 1.22 1.18 2.57 2.10 1.94 1.64 1.57

4 1.84 1.68 1.20 1.50 1.58 2.21 2.12 2.05 1.96 1.74

V5 1.01 1.37 1.61 1.58 1.81 1.20 1.72 1.92 1.77 1.76

V5-V1
-0.56

(-1.19)
0.12

(0 .31)
0.87

(2.15)
0.80

(2 .13)
1.21

(3 .45)
-0.93

(-2 .96)
0.13

(0.42)
0.63

(1 .94)
0.64

(2 .02)
0.90

(2 .87)

FF-Alpha
-1.29

(-4 .26)
-0.35

(-1 .10)
0.33

(0.90)
0.17

(0 .57)
0.48

(1 .59)
-0.87

(-4 .33)
-0.17

(-0 .69)
0.22

(0 .78)
0.23

(0 .94)
0.62

(2 .61)

Panel B: MEDIUM SENTIMENT
VI 0.70 0.67 0.57 0.65 0.42 0.75 0.58 0.50 0.60 0.71

2 1.30 0.59 0.72 0.52 0.55 0.76 0.67 0.61 0.63 0.79

3 0.71 0.26 0.44 0.54 0.60 0.53 0.58 0.70 0 .76 0.82
4 -0.38 0.12 0.64 1.07 1.10 -0.08 0.24 0.66 1.10 1.16

V5 -1.05 -0.23 0.32 1.06 1.54 -0.88 -0.17 0.50 1.22 1.58

V5-V1
-1.74

(-3 .46)
-0.90

(-2 .24)
-0.25

(-0 .60)
0.41

(0 .88)
1.11

(1 .92)
-1.63

(-5 .23)
-0.75

(-2 .57)
0.01

(0 .02)
0.62

(1 .72)
0.87

(2 .26)

FF-Alpha
-0.89

(-2 .40)
-0.23

(-0 .66)
-0.16

(-0.48)
0.39

(1 .22)
1.33

(4 .14)
-0.99

(-4 .47)
-0.71

(-3 .09)
0.05

(0.20)
0.85

(3 .05)
1.17

(4 .36)

Panel C: HIGH SENTIMENT
VI 1.44 1.48 1.48 1.47 1.18 1.54 1.59 1.60 1.57 1.54

2 0.39 1.08 1.45 1.28 0.92 1.19 1.43 1.69 1.60 1.44

3 0.07 0.72 1.23 1.06 0.95 0.41 1.09 1.49 1.69 1.38

4 -0.54 -0.11 0.33 1.28 0.64 -0.25 0.39 1.13 1.57 1.27

V5 -2.06 -1.12 0.10 0.85 0.65 -1.75 -0.68 0.40 0.95 0.95

V5-V1
-3.50

(-5 .63)
-2.60

(-4 .43)
-1.38

(-2 .72)
-0.62

(-1 .13)
-0.53

(-1.12)
-3.29

(-6 .83)
-2 .26

(-5 .61)
-1.20

(-2 .68)
-0.62

(-1 .47)
-0.59

(-1 .52)

FF-Alpha
-1.99

(-4 .89)
-1.73

(-4 .70)
-1.50

(-3 .89)
-0.45

(-1 .08)
-0.40

(-1 .21)
-2.10

(-5 .51)
-1.90

(-5 .85)
-1.73

(-5 .04)
-0.62

(-1 .86)
-0.16

(-0 .57)

This table shows value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility. Quintile 
portfolios are formed on GH first and then another quintile portfolios are formed on idiosyncratic volatility 
within each GH portfolio each month t from January 1965 to December 2010. Monthly idiosyncratic 
volatilities are the square root o f  the number o f  trading days times the daily idiosyncratic volatility, the 
standard deviation o f  residuals from the regression o f  excess daily stock returns on the contemporaneous 
daily Fama-French factors in the month. The investor sentiment data is from Baker and Wurgler (2006) 
and downloaded from Wurgler’s website from July 1965 to December 2010. There are 182 months for 
each Low, Medium, and High sentiments. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  
IVOL. Newey-W est (1978) adjusted /-statistics are reported in parenthesis. Alpha reports Fama-French 
three factor alpha.
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Table 14

Average Monthly Returns o f Portfolio Sorted on GH and Idiosyncratic Volatility Across
Investor Sentiments: (lvolmonthly)

GH1 2 3 4 GH5 GH1 2 3 4 GH5

Value-weighted Returns Equal-weighted Returns
Panel A: LOW SENTIMENT

VI 1.76 1.37 0.71 0.82 0.74 1.99 1.68 1.36 1.07 0.74

2 1.98 1.45 1.03 0.92 0.72 2.27 1.71 1.56 1.32 1.05

3 1.78 1.72 1.18 1.36 1.31 2.35 1.99 1.74 1.55 1.49

4 1.91 2.05 1.56 1.71 1.74 2.14 2.24 1.93 1.74 1.80

V5 1.62 2.03 1.92 1.90 1.90 1.91 2.22 2.39 2.16 2.07

V5-V1
-0.15

(-0 .31)
0.66

(1 .49)
1.20

(2 .84)
1.08

(2 .67)
1.17

(3.36)
-0.08

(-0 .22)
0.54

(1 .60)
1.04

(2 .88)
1.09

(3 .04)
1.33

(4.30)
FF-

Alpha
-1.29

(-4 .26)
-0.35

(-1 .10)
0.33

(0 .90)
0.17

(0 .57)
0.48

(1 .59)
-0.87

(-4 .33)
-0.17

(-0 .69)
0.22

(0 .78)
0.23

(0 .94)
0 .62

(2 .61)

Panel B: MEDIUM SENTIMENT
VI 0.76 0.37 0.60 0.59 0.41 0.69 0.67 0.58 0.50 0.45

2 0.77 0.46 0.46 0.63 0.49 0.55 0.53 0.52 0.51 0.56

3 0.39 0.48 0.44 0.49 0.64 0.22 0.27 0.58 0.60 0.73

4 0.31 0 .50 0.74 0.95 1.44 -0.04 0.46 0.54 0.99 1.26

V5 0.07 0 .34 0.68 1.21 1.97 -0.11 0.16 0.82 1.57 1.85

V5-V1
-0.68

(-1 .34)
-0.03

(-0 .07)
0.08

(0.17)
0.62

(1 .32)
1.55

(3.35)
-0.80

(-2 .07)
-0.51

(-1 .34)
0.25

(0 .65)
1.07

(2 .61)
1.39

(3 .52)
FF-

Alpha
-0.89

(-2 .40)
-0.23

(-0 .66)
-0.16

(-0 .48)
0.39

(1.22)
1.34

(4 .14)
-0.99

(-4 .47)
-0.71

(-3 .09)
0.05

(0 .20)
0.85

(3 .05)
1.17

(4 .36)
Panel C: HIGH SENTIMENT

VI 0.95 1.17 1.48 1.36 1.04 1.61 1.78 1.96 1.71 1.43
2 0.27 0.81 1.07 1.25 0.93 1.11 1.48 1.54 1.68 1.37

3 0.26 0.67 0.80 1.52 0.77 0.45 0.97 1.32 1.48 1.26

4 -0.57 0.30 0.41 1.03 0.90 0.02 0.56 1.16 1.34 1.20

V5 -1.39 -0.83 0.16 0.95 0.58 -0.93 -0.29 0.47 1.25 1.20

V5-V1
-2.34

(-4 .15)
-2.00

(-3 .72)
-1.33

(-2 .35)
-0.41

(-0.66)
-0.47

(-0 .91)
-2.54

(-4 .40)
-2.07

(-4 .42)
-1.49

(-3 .17)
-0.46

(-0 .96)
-0.23

(-0 .55)
FF-

Alpha
-1.99

(-4 .89)
-1.73

(-4 .70)
-1.50

(-3 .89)
-0.45

(-1.08)
-0.40

(-1 .21)
-2.10

(-5 .51)
-1.89

(-5 .85)
-1.73

(-5 .04)
-0.62

(-1 .86)
-0.16

(-0 .57)

This table shows value and equally-weighted monthly returns o f  the quintile portfolios formed on GH 
(George and Hwang Ratio: current price/52-week high price) and idiosyncratic volatility. Quintile 
portfolios are formed on GH first and then another quintile portfolios are formed on idiosyncratic volatility 
within each GH portfolio each month / from January 1965 to December 2010. Monthly idiosyncratic 
volatilities are the standard deviation o f  residuals from the regression o f  excess monthly stock returns on 
the contemporaneous monthly Fama-French factors using the previous 24 to 60 monthly returns (as 
available) each month. The investor sentiment data is from Baker and Wurgler (2006) and downloaded 
from Wurgler’s website from July 1965 to December 2010. There are 182 months for each Low, Medium, 
and High sentiments. VI (V5) is portfolio o f  stocks in the bottom (top) quintile o f  IVOL. Newey-W est 
(1978) adjusted /-statistics are reported in parenthesis. Alpha reports Fama-French three factor alpha.
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To provide further evidence in support of the findings reported in Tables 13 and 

14, I perform a series of regression tests. The results are presented in Tables 15 and 16 

using Ivolda,ly and Ivolmonthly, respectively. Specifically, I run cross-sectional firm-level 

Fama-MacBeth regressions o f stock returns on lagged explanatory variables, 

differentiating between periods of low, medium and high investor sentiments. In Models 

(1) through (3), the focus is on low investor sentiments periods whereas Models (7) 

through (9) focus on periods o f high investor sentiments. In both Tables (15 and 16), 

Models (1) and (7) investigate the existence o f the IVOL puzzle for my sample in 

univariate regression settings.

In summary, the negative relationship between IVOL and future returns are 

stronger during period of high investor sentiments for stocks that are far away from their 

52-week high prices. That is, the negative relationship between IVOL and future returns 

is even stronger when bad news reaches the market in good times.
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Table 15

Fama-MacBeth Cross-Sectional Regressions Across Investor Sentiments:(Ivoldaily)

LOW SENTIMENT MEDIUM SENTIMENT HIGH SENTIMENT

(1) (2) (3) (4) (5) (6) (7) (8) (9)
IVOL 0.001 -0.186 -0.292 -0.032 -0.189 -0.241 -0.109 -0.256 -0.295

(0.05) (-5.01) (-7.24) (-2.31) (-6.63) (-6.63) (-6.07) (-7.70) (-7.22)
IVOL*GH 0.221 0.407 0.217 0.264 0.199 0.271

(5.23) (8.64) (6.22) (5.76) (4.40) (5.02)
GH -3.038 -3.922 -1.643 -2.163 -1.469 -1.726

(-4.59) (-6.49) (-2.37) (-2.70) (-1.93) (-2.30)
REV -0.064 -0.032 -0.052

(-7.45) (-6.55) (-10.20)
MAX -0.072 0.019 0.025

(-2.86) (0.83) (1.21)
BETA 0.081 0.047 0.025

(2.71) (1.33) (0.40)
BTM 0.045 0.026 0.261

(0.50) (0.43) (2.63)
SIZE -0.234 -0.077 -0.072

(-3.45) (-1.45) (-1.04)
MOM 1.052 0.745 0.339

(5.54) (4.61) (1.79)
SKW 0.169 0.100 0.042

(4.11) (2.57) (0.80)
ILLIQ -0.027 -0.006 -0.002

(-2.80) (0.40) (-0.16)

Each month from January 1965 to December 2010, we run a firm-level Fama-MacBeth cross-sectional 
regressions o f  stock return in month t+1 on the lagged explanatory variables in month t. The explanatory 
variables include stock’s monthly idiosyncratic volatility (IVOL), current price/52-week high price (GH: 
George and Hwang Ratio), the interaction term (IVOL*GH), monthly stock return (REV), maximum daily 
return (M AX), BETA, the book-to-market ratio (BTM), the log o f  market capitalization (Size), the 
holding period return from month t-12 to month t-2 (MOM), the idiosyncratic skewness (Skw), and the 
illiquidity measure (ILLIQ). The investor sentiment data is from Baker and Wurgler (2006) and 
downloaded from Wurgler’s website from July 1965 to December 2010. There are 182 months for each 
Low, Medium, and High sentiments. Common stocks with price greater than or equal to $5 from the 
NYSE/AM EX/NASDAQ are included in the sample. Newey-W est (1978) adjusted /-statistics are reported 
in parenthesis.
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Table 16

Fama-MacBeth Cross-Sectional Regressions Across Investor Sentiments: (lvo lmonthly)

LOW SENTIMENT MEDIUM
SENTIMENT

HIGH SENTIMENT

(1) (2) (3) (4) (5) (6) (7) (8) (9)
IVOL 0.053 -0.288 -0.400 -0.011 -0.207 -0.257 -0.111 -0.264 -0.687

(1.41) (-4.72) (-6.67) (-0.48) (-5.72) (-5.94) (-4.33) (-7.92) (-6.27)
IVOL*GH 0.428 0.563 0.270 0.315 0.185 0.248

(5.35) (6.48) (5.68) (6.03) (2.98) (3.60)
GH -4.342 -4.687 -1.634 -2.331 -1.055 -1.489

(-5.22) (-6.44) (-2.19) (-3.33) (-1.37) (-1.98)
REV -0.063 -0.027 -0.046

(-8.18) (-6.90) (-8.37)
MAX -0.057 -0.034 -0.066

(-3.14) (-3.03) (-4.58)
BETA 0.050 0.023 0.001

(2.52) (0.61) (0.01)
BTM 0.103 0.035 0.156

(1.21) (0.61) (1.74)
SIZE -0.209 -0.077 -0.149

(-3.53) (-0.51) (-2.32)
MOM 0.983 0.808 0.507

(4.99) (4.98) (2.62)
SKW 0.166 0.185 0.153

(4.53) (4.66) (4.46)
ILLIQ -0.024 -0.004 0.001

(-2.34) (-0.32) (0.09)

Each month from January 1965 to December 2010, we run a firm-level Fama-MacBeth cross-sectional 
regressions o f  stock return in month /+  /  on the lagged explanatory variables in month t. The explanatory 
variables include stock’s monthly idiosyncratic volatility (IVOL), current price/52-week high price (GH: 
George and Hwang Ratio), the interaction term (IVOL*GH), monthly stock return (REV), maximum daily 
return (MAX), BETA, the book-to-market ratio (BTM ), the log o f  market capitalization (Size), the 
holding period return from month t-12 to month t-2 (MOM), the idiosyncratic skewness (Skw), and the 
illiquidity measure (ILLIQ). The investor sentiment data is from Baker and Wurgler (2006) and 
downloaded from Wurgler’s website from July 1965 to December 2010. There are 182 months for each 
Low, Medium, and High sentiments. Common stocks with price greater than or equal to $5 from the 
NYSE/AM EX/NASDAQ are included in the sample. Newey-W est (1978) adjusted /-statistics are reported 
in parenthesis.
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CONCLUSIONS

The finance literature has struggled with the puzzling findings o f Ang, Hodrick, 

Xing, and Zhang (2006, 2009) that high idiosyncratic volatility stocks earn low future 

returns. This puzzling relationship between idiosyncratic volatility and expected returns 

has been widely documented in international data, and continues to exist in the U.S data. 

Several theories both rational and behavioral have been suggested to explain this 

phenomenon. However, important and widely accepted aspect o f the behavior of 

investors has proven to be absent from this debate.

The main contribution o f this study is to provide evidence of the role o f anchoring 

bias on the relationship between idiosyncratic volatility and future returns. I posit that 

idiosyncratic volatility puzzle should be concentrated in stocks that move away from their 

52-week high prices. In other word, I argue that the limits o f arbitrage, short sale 

constraint, and uncertainty of high idiosyncratic volatility combined with the anchoring 

bias o f the 52-week high price can explain the low returns o f high idiosyncratic volatility 

stocks. The empirical results are consistent with this hypothesis. I find that the negative 

relationship between idiosyncratic volatility and expected returns documented by Ang et 

al. (2006) primarily exists in stocks for which bad news recently arrived in the market.
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In addition, I find that the idiosyncratic volatility discount documented in Ang et 

al. (2006) is even stronger for stocks for which bad news arrives in the market when 

investor sentiments are high. This finding is consistent with Veronesi (1999), showing 

that in good times, bad news signals increased uncertainty and greater likelihood negative 

future performance. Furthermore, I find that the negative relationship between 

idiosyncratic volatility and future returns for stocks that move away from their 52 Week- 

High prices persists up to six months following the portfolio formation.

Overall, the results presented in this paper are very robust to data frequency, the 

length o f time series used in the computation o f idiosyncratic volatility, and January 

seasonality. Ultimately, I contribute to the extensive literature on the idiosyncratic 

volatility puzzle by suggesting that attempts to understand the low returns o f high 

idiosyncratic volatility stocks can leverage on the growing strand o f the literature that 

identifies the role o f reference points and anchors in the decision making o f investors. 

Specifically, I argue in this paper in favor o f a focus on specific behavioral biases such as 

the tendency to anchor on publicly available information such as the 52 Week-High 

prices as possible explanations o f the idiosyncratic volatility puzzle.
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