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ABSTRACT

Nonviral gene delivery methods have been explored as the replacement o f viral 

systems for their low toxicity and immunogenicity. However, they have yet to reach 

levels competitive to their viral counterparts. Electroporation figured prominently as an 

effective nonviral gene delivery approach for its balance on the transfection efficiency 

and cell viability, no restrictions of probe or cell type, and operation simplicity. The 

commercial electroporation systems have been widely adopted in the past two decades 

but still carry drawbacks associated with the high applied electric voltage, unsatisfied 

delivery efficiency, and/or low cell viability. What we did was to improve electroporation 

performance by application of gold nanoparticles (AuNPs). By adding highly conductive 

AuNPs in an electroporation buffer solution, we demonstrated an enhanced 

electroporation performance (i.e., better DNA delivery efficiency and higher cell 

viability) on mammalian cells from two different aspects: the free, naked AuNPs reduced 

the resistance of the electroporation solution so that the local pulse strength on cells was 

enhanced; targeting AuNPs (e.g., Tf-AuNPs) were brought to the cell membrane to work 

as virtual microelectrodes to porate the cells with a limited area from many different 

sites.

The enhancement was confirmed with leukemia cells in both a commercial batch 

electroporation system and a home-made flow-through system using gWizGFP plasmid 

DNA probes. Such enhancement depends on the size, concentration, and the mixing ratio



of free AuNPs/Tf-AuNPs. An equivalent mixture of free AuNPs and Tf-AuNPs exhibited 

the best enhancement with the transfection efficiency increasing 2-3 folds with minimum 

sacrifice of cell viability. This new delivery concept -  the combination of nanoparticles 

and electroporation technologies -  could be widely applied in various in vitro and in vivo 

delivery routes of nucleic acids, anticancer drugs, or other therapeutic materials. In the 

second part of this dissertation, we further demonstrated its success in the enhancement 

of polyplex delivery o f DNA. Specifically, AuNPs were used to carry polyplex (a 

chemical approach) while electroporation (a physical approach) was applied for fast and 

direct cytosolic delivery. AuNPs of various sizes were first coated with polyethylenimine, 

which were further conjugated with DNA plasmids to form AuNPs-polyplex. The hybrid 

nanoparticles were then mixed with cells and introduced into cell cytosol by 

electroporation.

In this hybrid approach, cationic polymer molecules condense and/or protect 

genetic probes, while AuNPs help fix polycations to reduce their cytotoxicity and 

promote the transfection efficiency of electroporation. The delivery efficiency was 

evaluated with model adherent cells (i.e., NIH 3T3) and suspended cells (i.e., K562) 

together with their impact on cell viability. We found that AuNP-polyplex showed 1.5-2 

folds improvement on the transfection efficiency with no significant increase of toxicity 

when compared to free plasmid delivery by electroporation alone. Such a combination of 

physical and chemical delivery concepts may be further developed for the delivery of 

various therapeutic materials for both in vitro and in vivo applications. Thirdly, we tried 

nanoparticle enhanced delivery of small nucleotide including siRNA and miRNA as 

further proof o f our concept. AuNPs are used to enhance the strength of the local electric



V

field and conjugated with the polyplex to reduce the cytotoxicity. The RNA release, 

expression, and their effect in regulating the target genes were justified.
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CHAPTER 1 

INTRODUCTION

1.1 Research Hypothesis

1.1.1 Central Problems

A variety o f non-viral strategies are becoming favorable alternatives to viral 

transduction, having a low risk o f oncogenesis and inflammation [1,2]. Potent 

therapeutic molecules are condensed or protected by cationic polymer or lipid via 

forming complexes (e.g. polymer-DNA complexes, lipo-DNA complexes) which help 

overcome multiple delivery barriers. Several molecules or probes, including plasmids, 

oligonucleotides, ribozymes, or small interfering RNAs, have been successfully tested 

with these strategies [3-15]. However, many of them showed slow and inefficient cellular 

uptake, high cytotoxicity, and/or low expression efficiency.

Simultaneously, physical gene delivery methods, electroporation in particular, 

have been explored with attractive features including surgery-like treatment, quick 

delivery response, and almost no restrictions on cell type and exogenous material 

properties. They have been widely used to reveal biological functions and transport at 

cellular level as well as to facilitate the delivery of various molecular probes. 

Conventional electroporation has been reasonably successful, but it has several major 

drawbacks, including high required voltages, large DNA consumption, low transfection 

efficiency, and/or cell viability.

1
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1.1.2 Objectives

We hypothesized that the application of gold nanoparticles (AuNPs) in 

electroporation could improve the transfection performance of both electroporation and 

polyplex mediated DNA and RNA delivery strategies. With high conductivity, AuNPs 

could significantly reduce the potential drop consumed between the two electrodes 

needed in electroporation, and the local pulse strength on cells is highly focused. After 

tagging targeting molecules, AuNPs are brought to the cells to further limit the pulse 

induced polarization area within tiny spots on the cell membrane. In this way, the 

temporary permeable openings during electroporation will be greatly increased in number 

with each a limited size. This helps the following cell membrane recovery and the 

eventual cell survival rate.

Besides the enhancement of gold nanoparticles on electroporation, we also looked 

into their contribution to polyplex delivery. Because of their monodispersed size and 

consistent surface area and charge, gold nanoparticles help control the payload o f cationic 

polymer on individual particles and the dimensions of hybrid polyplex nanoparticles. 

Together with good protection of DNA and RNA probes in the serum, such hybrid 

structure helps minimize the free cationic polymers in polyplex samples and fix those 

dissociated ones during cytoplasmic release. As captured cationic molecules are found to 

be much less toxic to their free counterparts; this help reduce die common cytotoxicity 

issues associated with polyplex delivery [16]. Because of the presence of AuNPs, 

electroporation is also adopted to promote direct cytoplasmic delivery of polyplex to 

bypass the traditionally slow and inefficient endocytosis-mediated delivery route of the 

polyplex.



1.2 Approaches

Based on these hypotheses, AuNPs with various sizes and aspect ratios were 

applied in electroporation. AuNPs conjugated with transferrin (AuNPs-Tf) of various 

ratios were mixed with cells before electroporation. AuNPs-Tf were prepared by 

incubating AuNPs with transferrin that was thiolated by Traut’s reagent (Figure 1-1). 

This helps bring AuNPs to cells via conjugation of transferrin with transferrin receptors 

(TfR) on the cell membrane. The enhancement was evaluated in both a commercial batch 

electroporation system and a home-made flow-through system.

^ Sv^ NH2 Cl + r - nh2

Traut's Reagent Primary Amine Modification Producing a
Molecule Terminal Sulfhydryl Group

Figure 1-1: Reaction scheme of Traut’s Reagent with molecules containing primary 
amines.

Polyethyliemine (PEI) was fixed on AuNPs by electrostatic interactions 

(AuNPs/PEI) via incubation of AuNPs and free PEI solution. The original citric acid 

terminated surface o f AuNPs facilitates the deposition of PEI molecules through 

electrostatic interactions. Negatively charged DNA/RNA probes were conjugated to 

AuNPs/PEI to form AuNPs-polyplex.

We evaluated these hypotheses and concepts with model systems with DNA/RNA 

delivery to both adherent (e.g., NIH 3T3) and suspended cells (e.g., K562). The delivery 

enhancement was evaluated by measuring the cell viability and transfection efficiency of 

DNA and RNA probes.
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1.3 Structure

Chapter 1 introduces the central problems and objectives for this research project- 

the research approaches and the organization of this dissertation are shown. Chapter 2 

provides a literature review on relevant research work involving electroporation, 

polyplex, and other nanoparticles based DNA and RNA delivery. Chapter 3 demonstrates 

free and transferrin-grafted AuNPs enhanced electroporation in mammalian cell 

transfection. Chapter 4 demonstrates the advantage of AuNPs electroporation enhanced 

polyplex delivery to mammalian cells. Chapter 5 describes the AuNP enhanced RNA 

delivery to mammalian cells. Chapter 6 concludes the results of the dissertation and 

recommends some work worthy o f further exploration.



CHAPTER 2

LITERATURE REVIEW

2.1 Motivations

2.1.1 Genetic Therapy for Diseases

In September of 1990, a four-year old girl with adenosine deaminase (ADA) 

deficiency became the first gene therapy patient at the NIH clinical center [17]. 

Thereafter, gene therapy has become the research focus in many pharmaceutical, medical, 

biochemical and chemical labs over the world. In general, the technique of gene therapy 

includes identifying suitable nucleic acid sequences and cell types, as well as developing 

feasible methods to deliver enough genetic probes into these cells, while the therapeutic 

range involves the diagnosis of genetic diseases, depression of tumor development, 

fighting against viral infections, and so forth. During the last 30 years, hundreds of gene 

therapy studies have been conducted, while more and more efforts (more than 70%) o f 

genetic therapy were steered to cancer-related research [18].

Cancer development usually involves multiple alterations on the gene level of 

cancer cells [19]. The balance between oncogenes and tumor suppressor genes plays a 

pivotal role in carcinogenesis. The oncogenes facilitate cell proliferation, while tumor 

suppressor genes program apoptosis. Based on this understanding, anti-oncogenes and 

apoptosis related genes are usually used in cancer treatments.

5
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Among various therapeutic strategies, how to deliver genes efficiently remain one 

of the major challenges. Naked nucleic acids could be successfully delivered into tumors 

[20,21]; however, they can be easily cleared out and gain poor efficiency for systematic 

delivery [22]. Therefore, exogenous gene vehicles are needed with the purpose of 

protection. In general, those gene vehicles could be categorized as two groups: viral and 

non-viral systems. The viral delivery systems exhibit high efficiency while they also 

carry obvious limitations: viral vectors would be confronted by host immune responses 

and the size of inserted genetic materials is also limited by the carrier capacity [23]. The 

non-viral systems can avoid these limitations, while their delivery efficiency is not yet 

competitive to their viral counterparts.

2.1.2 Virus Vectors in Gene Delivery

In virus-mediated gene delivery, several viral vectors are popular, including 

retrovirus, adenovirus, herpes simplex virus (HSV), and adeno-associated virus (AAV). 

Retroviruses are small RNA viruses with DNA intermediate. They are developed by 

replacing the vital viral genes with therapeutic ones, which will be integrated into the 

host genome. Despite their high transfection efficiency, most retroviruses only infect 

actively dividing cells. This makes them not work well with tumors as all tumors contain 

some non-dividing or resting cells [21,24], Adenoviruses are viruses which carry double 

strands of DNA. They could infect both dividing and non-dividing cells. However, their 

transfection is transient since they cannot integrate into the host cell genome. Therefore, 

repetitive treatment is generally needed [25-27]. HSVs are usually utilized to deliver 

genes into brain tumors since they infect the ending o f sensory nerves and migrate to the 

neuronal cells [28,29]. AAVs can infect both dividing and non-dividing cells as
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adenoviruses, while integrating into the host genome like retroviruses. AAVs are less 

toxic than other virus vectors, but they usually need helper viruses which may bring 

contamination problems [30-32],

2.2 Polymers in Gene Delivery

Recent research interest in the field of gene delivery has been shifted greatly from 

viral vectors to non-viral systems because of the associated vector size limitation and 

immunogenicity issues. Among those non-viral transfection systems, cationic polymer- 

based polyplex nanoparticles are attracting much attention with acceptable efficiency and 

biocompatibility.

2.2.1 Polv-L-lvsine

Poiy-L-lysine (PLL) is a natural cationic polymer that has been widely used as 

genetic probe carrier in early polyplex synthesis. The size of PLL in the polyplex 

composition ranges from less than 20 to more than 1000 amine groups, typically with a 

size of less than 100 nm [33-39]. The main role o f PLL in polyplex is to condense 

negatively charged molecules (DNA or RNA) and bind proteins as target ligands. In 

1989, Wu et al. reported the modification of PLL with asialoorosomucoid (ASOR) which 

targets liver specific receptors, resulting in organ specific drug delivery [40], In 1998, 

Schaffer et al. conjugated PLL with epidermal growth factors (EGF), enabling delivery to 

cells expressing EGF receptors [41], Thereafter, several ligands have been used to modify 

PLL [42-44],

Nevertheless, the application of PLL polyplexes has been limited because of its 

poor stability in vivo [44-46]. Protein binding and salt aggregation might be the reasons 

for the rapid clearance o f PLL polyplexes from blood [43,47], Ward et a l showed that
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poor solubility, leukocyte stimulation, macrophage capture and complement activation 

might also contribute to poor blood circulation of PLL polyplexes [48], To improve the in 

vivo performance of PLL conjugates, PEG modification was performed to form a shell 

protecting polyplexes from proteins [49, 50]. The molecular weight of PLL has also been 

considered as a factor which influence its stability. Larger molecular weight resulted in 

better stability in blood and higher expression level [43,48],

2.2.2 Polvethvlenimine

Polyethylenimine (PEI) is a synthesized cationic polymer that could 

electrostatically conjugate negatively charged nucleic acids with primary amine groups. 

PEI could be synthesized as linear or branched with various molecular weight (e.g., 2 ,4 , 

25,50,70, 800 kDa). PEI can facilitate the endosomal escape based on its buffering 

capacity. The osmosis swelling happens when pH drops in PEI containing endosomes, 

which is the so-called “proton sponge effect”, resulting in release of PEI-nucleic acids 

complexes into cytoplasm [4, 51, 52]. Research has demonstrated that the transfection 

efficacy and cytotoxicity depend on molecular weight, compactness and modification of 

PEI [53, 54],

The traditional method of PEI-polyplex preparation is a simple bulk mixing 

process in which the adding order of reagents greatly influences the transfection 

efficiency. It has been demonstrated that adding the PEI solution to the plasmid solution 

results in 10-fold more efficiency than the opposite [4, 55]. The reason is that a single 

copy o f plasmid is complexed into a polyplex when plasmid is added to the PEI solution, 

whereas multiple copies of plasmids are incorporated into a polyplex in the opposite 

mixing order. Another consideration is the so-called “N/P ratio”, which is the ratio o f the
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molar ratio of nitrogen in the PEI to the phosphate in the nucleic acid. Studies have 

shown that plasmid is poorly condensed at N/P ratio around 3.3 leading to low 

transfection efficiency. Better efficiency could be achieved with an increase of N/P ratio; 

however, cell viability would be sacrificed [54, 56], In our previous study, cytotoxicity 

became increasingly significant while N/P ratio was above 6.6 [57-61],

Aside from being an independent delivery vehicle, PEI is also used to coat other 

nanoparticles to improve their transfection performance. Duan et al. studied the 

complexation of PEI with quantum dots to deliver plasmids, and PEI (linear and branched 

with molecular weight of 0.423, 0.6 - 0.8,1.2, 1.8 - 2, and 10-25 kDa) was chosen to 

enhance particle uptake and facilitate endosomal escape [62]. Xia et al. modified the 

surface of mesoporous silica nanoparticles with PEI and much higher affinity with 

nucleic acids was observed. The cellular uptake o f those PEI coated particles was found 

significantly enhanced, which enabled efficient delivery and a more satisfied expression 

[63]. Several studies have also been done with PEI-coated magnetic particles. They were 

either synthesized in a PEI solution or mixed with it, resulting in covalent or electrostatic 

binding to PEI molecules. All of these strategies promoted gene delivery [64-68].

Besides magnetic particles, PEI coating of gold nanoparticles has also attracted 

great attention in recent years. Gold nanoparticle had already been used to deliver nucleic 

acids directly into the cells [69-73], Elbakry et al. introduced a layer-by-layer strategy 

which provided a promising solution to the aggregation problem when AuNPs were 

assembled with nucleic acids [74]. Song et al. reported a new, simple method to prepare 

PEI-capped AuNPs by directly mixing HAuCU solution with PEI [75]. The delivery of 

siRNA with these complex nanoparticles showed much higher efficiency and cell
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viability compared to that when delivered with PEI alone. All of these studies indicate 

that the combination of PEI with AuNPs has great potential in gene delivery.

2.2.3 Chitosan

Chitosan is a biopolymer which is naturally produced by deacetylation of long- 

chain polymer, chitin [76, 77]. It is composed o f two subunits, N-acetyl-glucosamine and 

D-glucosamine linked by [J(l, 4)-glucosidic bonds. The amine groups in N-acetyl- 

glucosamine subunits, with a pKa value of around 6.5, provide high positive charge 

density from an acidic to a neutral pH range [78, 79], Studies have shown that chitosan 

has good biocompatibility as well as the ability to increase the permeability of the cell 

membrane [80-82], These properties enable chitosan as a favorable carrier for gene 

delivery.

Mumper et a l  first reported the application of chitosan as a plasmid delivery 

carrier [83]. Thereafter, interests in chitosan have increasingly risen. Roy et a l prepared 

chitosan/DNA nanoparticles with diameters of 200-300 nm and successfully transfected 

HEK293 cells [84]. Richardson et al. demonstrated the protection effect o f chitosan to 

plasmids from DNase in vitro [85]. There are also other studies on derived or modified 

chitosan for targeted transfection [86, 87],

Despite the gene condensation and protection functions, the transfection 

efficiency of chitosan complexes is relatively low [88], The degree o f acetylation and 

molecular weight o f chitosan are the two main factors that influence its transfection 

efficiency. Some studies have already shown that plasmid binding efficacy and cellular 

uptake of chitosan complexes decreased with decreasing acetylation [89-92], The 

influence of molecular weight could be explained by the chain entangle effect: the higher
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the molecular weight, the easier for chitosan to entangle the free plasmids. As a result, 

chitosan with lower molecular weight is less efficient at conjugating and protecting 

plasmids, resulting in a low transfection [89,92],

2.2.4 Polyethylene Glvcol

The application o f other cationic polymers in the polyplex is limited because of 

their cytotoxicity and poor in vivo stability. Polyethylene glycol (PEG) has been widely 

used as a copolymer in drug or gene delivery as an effort to overcome these limitations. 

Incorporation of PEG into polyplex formation, which is called PEGylation, has been 

reported to help increase stability o f the particles, achieve extended circulation, and 

protect the carried probes from enzymes [59,93-96],

Such an excellent feature of PEG is attributed to its popularity in copolymer 

construction. First, shielding the positive charges of polyplexes with PEG lowers the 

cytotoxicity and reduces the degradation of conjugated probes. The polymer-DNA/RNA 

complex is generally prepared with excess cationic polymers, which leads to a net 

positive charge. While it facilitates cellular uptake by interacting with negatively charged 

cell membrane, the high concentration o f positively charged polyplex could induce 

cytotoxicity. At the same time, intracellular proteins could bind to the polyplex, resulting 

in rapid clearance and lower the delivery efficiency [47, 59,97]. Kataoka et al. studied 

PEG-PLL block copolymer; the result showed that DNA was stable in vitro with the 

presence of DNase I in more than 60 min, while the transfection of DNA with this 

copolymer was higher than that with PLL only. In the in vivo tests with PEG-PLL 

complex, exogenous DNA was detected in the blood 30 min after the injection, while 

naked DNA was found degraded in 5 min [49,98-100]. Petersen et al. investigated the
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PEGylation of PEI and greatly reduced the cytotoxicity of PEI even if the transfection 

efficiency was not improved much [101]. Modifying the surface charge of nanoparticles 

with PEG could increase the water solubility since polymer-DNA/RNA complexes are 

kind of water resistant in their charge neutralized state [102]. A PEG-PLL dendrimer, 

synthesized by Choi etal. demonstrated that the water solubility o f PEG-PLL-DNA 

complex was higher than PLL/DNA because of the introduction of PEG [103]. PEG 

could work as a molecule spacer between polymers and ligands to assist the binding of 

ligands to their receptors. Successful examples include the use of peptide conjugated 

PEG-PEI, lipoprotein conjugated PEG-PLL and folate conjugated PEG-PLL [104-106],

In spite o f these advantages of PEG in polyplex formulation, some studies have 

shown that PEGylation reduced cellular uptake and decreased gene expression [93,107, 

108], To minimize this negative influence of PEG, some cleavable copolymer 

configurations were further synthesized and explored [95,109-112].

2.3 Application of Gold Nanoparticles in Gene Delivery

2.3.1 Historic Introduction

AuNPs are most stable nanoparticles with many favorable chemical and physical 

properties. This enables their applications in material science, electronics, or biomedical 

research. The extraction of gold started around the 5th century, and the early application 

of gold colloid was to make ruby glass or color ceramics. In 1857, Michael Faraday 

reported the reduction of an aqueous AuCl4" with phosphorus in CS2 to form colloid gold 

which was of a deep red color [113]. However, the term “colloid” was not proposed until 

1861 by Graham [114], Various methods in the preparation of gold colloids were 

reported in the last century [115-127], In the past twenty years, gold colloids (or AuNPs)
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have attracted much attention as a non-viral drug or gene delivery carriers because of 

their good biocompatibility, large area volume ratio, controllable size and shape, and 

other favorable properties [69, 116, 128-143].

2.3.2 Synthesis and Modification of Gold Nanoparticles

The ease o f surface modification led to an exciting development of AuNPs 

application in gene delivery. One of the most popular surface modifications of AuNPs is 

the citrate functionalization. Citrate-capped AuNPs could be steadily prepared with 

diameter ranges from 5 nm to 250 nm [116, 144], Based on this well-established 

technique, studies investigated the relationship between the particle sizes and cell uptake. 

For example, Chan et al. reported that the size of the citrate-capped AuNPs did affect the 

cellular uptake amount [138], Compared to AuNPs with diameters of 14 and 74 nm, 

AuNPs with diameters o f 50 nm were more favorable for the internalization by HeLa 

cells. They supposed the non-specific binding of citrate-capped AuNPs with proteins 

contributed to the uptake [138]. Further studies also showed that binding some positively 

charged proteins (e.g., transferrin) could facilitate the particle internalization via 

endocytosis [137, 140], Many other research work also used citrate functionalized AuNPs 

to construct more sophisticated complexes in order to increase the cellular uptake and 

affect cell response or target AuNPs to specific locations [71, 132,145-147],

AuNPs of 1-3 nm stabilized by a monolayer of amine-terminated alkanethiolates 

could be synthesized with the Brust-Schifffin method [148]. In physiological pH, 

positively charged amine groups could bind negatively charged nucleic acids. Retello et 

al. reported successful plasmids transfection by 2 nm AuNPs with the amine surface
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groups [132]. Thomas et al. used PEI as amine provider in AuNPs synthesis and the 

resulting particles delivered plasmids more efficiently than PEI alone [69],

Other modifications of AuNPs involve the coating of peptides, antibodies and so 

forth. Feldheim et al. reported the conjugation of peptides to AuNPs, showing that 

peptides with both receptor-mediated endocytosis and nuclear localization signal 

facilitated the entry of AuNPs into the nucleus [147, 149, 150], El-Sayed et al. 

demonstrated greater affinity o f antibody modified AuNPs to cancerous cells, which may 

improve photothermal therapy [151]. In some cases, nucleic acids were thiolated for the 

attachment to AuNPs surface since gold has a high affinity to thiol groups.

2.3.3 The Applications o f Gold Nanoparticles in Gene Delivery

Efficient delivery of nucleic acids often plays an important role in the treatment of 

various diseases [152, 153]. Its delivery involves the insertion o f healthy copies of DNA 

or RNA probes in specific cells, which relies on either viral infection or nonviral 

membrane perturbation [154], but have safety concerns associated with oncogenesis, 

immunogenicity, and toxicity [2, 155]. Nonviral delivery approaches, including chemical 

and physical approaches, have been explored as replacements to natural viruses, but do 

not reach competitive levels to their viral counterpart [74, 143, 156-176]. Among 

nonviral approaches, gold nanoparticles (AuNPs) have been extensively explored in 

DNA or RNA delivery for their gold biocompatibility and unprecedented combination of 

therapeutic and imaging capability [74, 143,162-165]. Through the unique gold-thiol 

chemistry and/or electrostatic interactions, AuNPs help improve the cellular uptake of 

molecular probes through similar internalization routes (i.e., endocytosis) as other 

nanoparticles. The long intracellular delivery barriers generally prevent many
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nanoparticles from reaching the cytosol or nucleus, with the aid o f cell penetrating 

peptides (CPPs), AuNPs-siRNA nanoconjugates were successfully demonstrated to reach 

cytosol directly to improve the delivery efficiency [166]. However, the low release extent 

o f siRNAs ffom AuNPs still leads to poor transfection efficiency due to the high affinity 

o f AuNPs and therapeutic agents [167].

2.4 Electroporation in Molecules Delivery

2.4.1 Introduction

Compared to nanoparticle-mediated delivery routes, physical approaches have 

been used in the past two decades to deliver drugs or gene probes directly to the desired 

intracellular locations (e.g., cytosol or nucleus) to attain impressive benefits in various 

biomedical research and clinic trials [168-176], Among them, electroporation figures 

prominently for their balance of simplicity, transfection effectiveness, fewer restrictions 

on probe or cell type, and operation convenience [172],

Electroporation or electropermeabilization has been known for decades and 

received increasing attention over the last thirty years. Electroporation is the application 

o f external electric pulses to induce transient and reversible breakdown of cell 

membranes to deliver a variety of molecule probes into the cells. Because it delivers drug 

or genetic bypassing endocytosis and endosomal escape, much more efficient transfection 

has been achieved with electroporation. The first report of reversible cell electroporation 

was in 1982 [170]. Thereafter, over the last decades, electroporation has been developing 

from a laboratory technique to a clinic application [174, 175,177-197],

In electroporation, transient pores are formed during electroporation, and 

molecules present around the cells get access to the cytoplasm [194]. After the pulses,
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cell membranes reseal within a time scale from seconds to minutes. The membrane 

breakdown is achieved when the transmembrane potential superimposed onto the resting 

potential is above a threshold [198]. The transmembrane potential initiated by the 

external electric field is usually estimated by:

3 t
bV  =  -rrEext cos 6[ 1 -  exp( )] Eq. 2-1

where r is the radius o f the cell, Eext is the field strength, 0 is the angle between the 

normal to the membrane and the direction of the field [199-202], r m is the membrane 

charging time constant, given by:

rem

where a*, am and ae are conductivities o f the cytoplasm, cell membrane, and 

extracellular medium, respectively, £m is the dielectric permittivity of the membrane, and 

d is the membrane’s thickness [203]. Because of the “cos 6” component in Eq. 2-1, 

electroporation induced permeabilization will first happen at points facing electrodes. A 

theory has been established in the last century that the permeabilized area is larger at the 

point facing the positive electrode and permeabilization degree is greater at the point 

facing the negative electrode. Small molecules incline to diffuse into the cell via the pole 

facing the positive electrode, while large, especially negative charged molecules 

(electrophoretic effect is involved) prefer to enter through the pole facing the negative 

electrode [204], Also indicated by Eq. 2-1, cells with a smaller radius require stronger 

external electric field to trigger permeabilization, further illustrating that intracellular 

organelles with a much smaller radius will not be easily permeabilized by the field, which 

is just sufficient for cell membrane poration.
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2.4.2 Explanations to Electropermeabilization

The effort to illustrate the mechanism of electroporation has been made 

consequently [198,205-211]. Considerable progress of understanding the electroporation 

process has been achieved (the most popular explanation is briefly described above), 

although it is far from being fully understood.

The intracellular liquid is rich in ions and therefore highly conductive. For animal 

cells, the external environment (either in vitro culture medium or in vivo fluids) is also 

conductive. However, the cell membrane, which is a lipid bilayer, is nonconductive and 

insulates the cell inside from the outside. Therefore, two opposite charges will be 

accumulated at both sides of the cell membrane when a cell is placed in an external 

electric field. This condition leads to a transmembrane potential. Some reports 

demonstrated that the transmembrane potential needs to be above a threshold for at least 

30-40 ps to make a complete membrane structural change. There were rapid changes in 

the conductivity o f the tissue in the electric fields, which might be the indication of 

electropermeabilization [212,213]. Therefore, compared to “electroporation”, 

“electropermeabilization” is actually a more exact term to define the change of the cell in 

the electric field; the membrane permeability of the treated cells is increased so that 

otherwise non-permeant molecules (usually large or hydrophilic and cannot diffuse 

across intact membranes) have a better chance of entering into the cytoplasm [213-215].

Formation of large hydrophobic pores was the first electroporation theory 

proposed by Eberhard Neumann [170]. It was confirmed later, to some extent, by some 

simulation studies [216-220], Besides, several other explanations exist for the change in 

permeability o f the cell membrane. Teissie et al. pointed out that the permeability change
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could result from the electrocompression force generated during the pulses with the 

assumption that the force brought the two lipid layers closer and disrupted the order of 

the bilayer [221], Lopez etal. demonstrated the increased permeability came from the 

change in orientation of lipids polar head [222]. These explanations support the theory of 

electropermeabilization without the formation of pores.

2.4.3 Electrical Factors in Electroporation

According to Schwan’s equation, referring to Eq. 2-1, the strength of the external 

electric field determines the surface area that could be porated [200], Afterwards, with 

the increasing understanding of the dynamic structured changes in the cell membrane, 

studies have examined the importance o f pulse duration [223, 224], Thereafter, many 

investigators made efforts to optimize these two electrical parameters so as to maximize 

the efficiency of delivery [170, 178, 179, 181,225-228].

To date, it has been generally agreed that combinations of high voltage (larger 

than 1000 V / cm) with very short pulse duration (less than 100 ps) and low voltage 

(lower than 200 V / cm) with longer pulse duration (longer than 20 ms) lead to effective 

electroporation. Some studies found that the sequential use of high voltage pulses and 

low voltage pulses worked even better with a possible explanation that high voltage 

porated the cell membrane while low voltage facilitated gene movements via 

electrophoretic forces [200,201], Satkauskas et al. also showed the advantages of using 

short high voltage pulses and long low voltages together [229, 230], Moreover, they 

demonstrated that it was not necessary for plasmids to be present during the high voltage 

electroporation, but they had to be involved before the low voltage pulses [229],
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For specific cell types or tissues, choices between high voltage and low voltage, 

long duration and short duration, single pulse and multiple pulses, or single set, and a 

combination of high voltage and low voltage are always the considerations for efficiency 

transfection. These factors need to be optimized according to other conditions.

2.4.4 Non-electrical Factors in Electroporation

Non-electrical factors should also be considered when establishing electroporation 

protocols because of their obvious impact on electroporation efficiency. These factors 

include the type of cells, and the size and formulation o f DNA/RNA. The electroporation 

performance is known as cell type dependent. Therefore, for in vitro transfection, specific 

electroporation protocol has been established through trial-and-error. However, there is 

little chance for in vivo studies to transfect a certain type of cells selectively. As such, 

properties and formulations of nucleic acids consist of the main factors that impact their 

delivery by electroporation.

For gene delivery, the most common property of DNA/RNA which will directly 

influence the transfection should be the sizes. In general, smaller nucleic acids enter cells 

via electroporation more easily than larger ones. This size dependence explains, to some 

extent, why some researchers cannot achieve the claimed efficiency with some 

nucleofectors when they use larger plasmids other than the suggested ones. Another 

factor that impacts gene delivery is the methylation. To date, the DNA plasmid we use in 

electroporation are usually generated from Escherichia coli, which are in a high 

methylation format. Spath et al. reported a negative impact of this methylation on 

transfection efficiency with electroporation to lactic acid bacteria [231]. Even though no 

evidence has been shown the same situation on mammalian cells, it is worthy of notice
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that methylation of promoter or surrounding regions may induce repression in gene 

expression because methylated plasmids might be restricted by methyl-dependent 

restriction enzymes [232,233].

Another factor that influences transfection efficiency is the formulation of 

DNA/RNA probes, which is the solution in which nucleic acid is suspended during 

electroporation. The most commonly used formulation is sodium chloride (150 mM) 

[234]. Other formulations involve OptiMem and some additives. Nicol et al. reported that 

formulations with the addition of glutamate had the potential to improve transfection 

efficiency with electroporation [235]. Other studies showed the improvement on 

electroporation performance with modified formulations [236-240]. Moreover, researches 

on the relationship between cell types and formulation additives have also been 

conducted [241,242].



CHAPTER 3

GOLD NANOPARTIELCE ENHANCED ELECTROPORATION IN 
MAMMALIAN CELL TRANSFECTION

3.1 Introduction

Current electroporation systems have been reasonably successful while still 

carrying several major drawbacks that are associated with the high applied electric 

voltage and/or the lack of uniformity of electric pulses on all treated cells. The low 

electrical conductivity of the electroporation solution (e.g., for PBS, it is -1.5 S/m) leads 

to the consumption of a large percentage of the overall applied voltage allocated on 

treated cells is much lower than expected, as illustrated in Figure 3-1 A. Because of the 

physiological condition requirements, increasing the ion strength (e.g., salt concentration) 

of the electroporation buffer is not allowed to avoid such additional voltage consumption. 

To achieve the desired probe transfection efficiency, harsh electroporation conditions 

(e.g., high-voltage pulses) are therefore necessary to ensure enough permeabilization to 

the majority o f treated cells. These conditions make electroporation inevitably 

accompanied with unwanted effects (e.g., strong electrochemical reactions, gas bubble 

issue, and Joule heating), which are harmful to the survival of treated cells [175], Current 

protocols are often established on the compromise between acceptable transfection 

efficiency and cell viability. The recent introduction of microtechnology in 

electroporation research is devoted to the reduction of these issues through closely

21
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patterning electrode pairs [182-193,243-247], However, these designs often sacrifice 

some favorite features o f electroporation systems, namely simplicity, low-cost, and 

operation convenience.

(A)
4- Buffer

+
Cell4

4

(B)

Rrrl
Ri Rj

■* i— — \ *
ii— cZj— | i— c3-

1— 11— ‘
Cert

V.'H
Vi Vi

Vo

t \
jVcrt

— >x

V ert

Vi

Vo

Vert'

Buffer

Cell+
AuNP

.  Red _ 
Ri* Rt*

Cert

V i

J ~L_

Figure 3-1: Schematic illustration on the mechanism of AuNPs enhancement on 
electroporation: (A) The pulse enhancement effect through minimizing the electric 
voltage consumed by the low conductive electroporation buffer during electroporation. 
By adding highly conductive AuNPs, more percentage of the overall electric voltage 
across the two electrodes is allocated on cells to have focused pulses when compared 
to the use of electroporation buffer alone; (B) localized electroporation when AuNPs 
are brought to the cell membrane through affinity binding with receptors there. The 
electric field is converged on the conductive AuNPs, and these AuNPs could serve as 
virtual electrodes to polarize only a limited area on the cell membrane when they stay 
nearby.
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Here, we present a simple approach to enhance the transfection performance of 

electroporation that is compatible to most commercial electroporation instruments as well 

as the emerging micro/nanoelectroporation systems. In this new approach, free 

therapeutic probes (e.g., DNA plasmids) are directly introduced into cell cytosol through 

electroporation while AuNPs are added to locally enhance the electric pulse strength and 

control the poration area on the cell membrane with minimum operation changes.

Because of the high conductivity of AuNPs (~4.5* 106 S/m), the electric voltage 

consumed by it is greatly reduced so that most o f the applied electric voltage is imposed 

on the cells. In addition, as the electric pulses converge in the vicinity of AuNPs, the 

particles work like many virtual microelectrodes when they are near the cells, with the 

focused field strength causing localized poration, as shown in Figure 3-IB. In contrast to 

bulk electroporation, where two large breakdown locations occur at the two poles of the 

cells facing the electrodes, electroporation with added nanoparticles is expected to cause 

multiple small poration sites on the cell membrane by AuNPs. The increased number of 

sites could benefit not only the recovery of the cell membrane and the survival of the 

cells, but also the uptake opportunity for the subjected probes from multiple sites.

To test our hypothesis on pulse focusing and localization effects of AuNPs, we 

added AuNPs to the electroporation solution, together with mammalian cells and DNA 

plasmids. Cells were then electroporated using both commercial bath-type electroporator 

(BTX 830 from Harvard Apparatus) and a home-made semi-continuous flow 

electroporator (SFE) [190,247]. The pulse strength focusing was evaluated from two 

aspects: (i) electroporate cells in the presence of AuNPs under standard electroporation 

conditions, in which the cell viability should get worse as the electric pulse is focused by
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AuNPs and cells received higher-than-optimal electric pulses; (ii) electroporate under 

less-effective conditions (i.e., low-voltage, more benign pulses), in which the focusing 

effect helps gain sufficient electrical strength for better transfection efficiency and/or cell 

viability. Human chronic leukemia cell line (K562 cells), a hard-to transfect cell line, was 

utilized in this investigation so that the localized electroporation with controlled 

polarization area and locations on the cell membrane could also be conveniently 

evaluated through ligand-receptor affinity binding. The electroporation enhancement 

evaluation was focused on the cell viability and transfection efficiency of a reporter gene 

(gWizGFP). Similar enhancement performance was also observed in NIH 3T3 cells, 

confirming the effectiveness of the enhancement roles AuNPs play in electroporation for 

both adherent and suspended cell lines.

3.2 Materials and Methods

3.2.1 Materials and Reagents

AuNPs o f 5 nm, 10 nm, and 20 nm were obtained from Sigma-Aldrich. The 

concentration of IX AuNPs refers to the stock solution, which has 0.01 wt% of Au (0.1 

mg/ml) while the particle number varies with the size of AuNPs. Other concentrations of 

AuNPs were prepared by either concentrating or diluting from the stock solution. DNA 

plasmids with gWiz™GFP reporter were purchased from Aldevron, Inc. The plasmids 

are driven by modified cytomegalovirus promotor that is followed by the intron A from 

human CMV early gene and terminated by a highly efficient artificial transcription 

terminator. All other chemicals were purchased from Sigma-Aldrich and the cell culture 

reagents were purchased from Life Technologies (Carlsbad, CA) unless specified.
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3.2.2 Cell Culture

K562 lymphoblast cells were also obtained from American Type Cell Culture 

(ATCC, Manassas, VA). K562 cells were cultured and maintained in R PM I1640 media 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 

100 g/mL streptomycin, and L-glutamine. For subculture, the desired amount of K562 

cell suspension was transferred to a new Petri dish with the addition of the appropriate 

amount o f fresh culture medium. All cultures were maintained at 37 °C with 5% CO2 and 

100% relative humidity.

NIH 3T3 cells were obtained from American Type Cell Culture (ATCC, 

Manassas, VA). They were grown and maintained in high-glucose DMEM supplemented 

with 10% newborn calf serum, 1% penicillin and streptomycin, 1% L-glutamine, and 1% 

sodium pyruvate. For subculture, culture medium was removed and discarded first. The 

cell layer was briefly rinsed with DPBS to remove the serum, which contains trypsin 

inhibitor. Then 1-2 mL trypsin-EDTA was added to a 100 cm2 Petri dish. Cell culture 

was then observed under an inverted microscope until the cell layer was dispersed 

(usually 5-15 min). Eight to 9 mL complete growth medium was added and cells were 

aspirated by gently pipetting. An appropriate aliquot of the cell suspension was 

transferred to a new culture dish with addition of more growth medium to make a total 

volume of 10 mL for 100 cm2 surface.

3.2.3 Thiol Modification of Transferrin

The desired amount of transferrin in 50 mM PBS buffer (with 5 mM EDTA, pH 

8.0) was dissolved to make a concentration of 10 mg/mL. EDTA in PBS helps chelate 

divalent metals (e.g., Ca, Mg) in the solution, preventing the oxidation of sulfhydryls.
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The Traut’s Reagent was dissolved in deionized water to prepare the stock solution at a 

concentration of 2 mg/mL or 14 mM; 46 pL Traut’s Reagent stock solution was added to 

the transferrin solution (ten folds molar excess of the protein solution) and the mixture 

was incubated for lh at room temperature. Then the solution was transferred to a dialysis 

cartridge (EMD Millipore, Amicon cartridge, Cat no. UFC805024) and centrifuged at a 

speed o f4,000 * g for 20 min * 2. The thiolated transferrin was collected from the top 

retentate by washing off with 50 mM PBS-EDTA solution, sterilized using 0.22 pm 

Whatman filters, and stored in an aliquot at 4 °C.

3.2.4 Preparation of Transferrin-AuNPs

500 pL of AuNPs aliquot of a desired size was centrifuged at 15,000 * g for 10 

min and supernatant was discarded. The AuNPs pellet was collected and dispersed in 

PBS (pH 7.4) to prepare AuNPs solutions of desired concentrations (0.001-0.1 mg/mL). 

The prepared AuNPs solution was mixed with sterilized thiolated transferrin solutions 

and incubated at 4 °C overnight. Then excess transferrin was removed by repeated 

centrifuge at 15,000 * g for 10 min. The purified Tf-AuNPs solution was re-diluted in 

250 pL HBS solution and immediately used or stored at 4 °C in aliquot.

3.2.5 Electroporation with Naked AuNPs

NIH 3T3 cells or K562 cells were counted using hemocytometer to determine cell 

density, pelleted by centrifuging at 200 x g for 5 min and then resuspended in fresh 

GIBCO OPTI-MEMI (a serum free medium) at desired densities of 0.5 * 106 - 0.5 x 107 

cells/mL. Cell suspensions were then mixed with naked AuNPs of various concentrations 

(0.01 - 1.0 mg/mL) and sizes (5,10, and 20 nm) along with 25 pg DNA. Electroporation
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with a commercial instrument (ECM 830, Harvard Apparatus) was done in 

electroporation cuvettes with a 2-mm gap, each containing a 100 pL sample solution.

Here, the pulse strength focusing was evaluated from two aspects: (1) 

electroporate cells / AuNPs mixture at a standard electroporation protocol (single 10 ms 

pulse o f 125 V/2 mm cuvette), in which the cell viability was supposed to get worse as 

the focused pulse cells received were higher than optimal; (2) electroporate cells / AuNPs 

mixture at more benign conditions (single 10 ms pulse of 95 V/2 mm cuvette), in which 

the focusing effect helped gain sufficient electrical strength for better transfection 

efficiency and similar or better cell viability. After electroporation, samples were 

transferred to 6-well cell culture plates, incubated in a fresh medium for another 24 hr, 

and then harvested for analysis.

3.2.6 Electroporation with the Mixture of Naked AuNPs/Tf-AuNPs

Cell samples were prepared with similar concentrations in GIBCO OPTI-MEMI 

medium, same as in section 3.2.5. Tf-AuNPs and cells were first incubated for 0.5-4.0 

hours. Immediately before electroporation, naked AuNPs were added in to obtain a total 

of 100 pL of cell suspension. The amount of naked AuNPs was adjusted to make 

appropriate mixing ratios of naked AuNPs and Tf-AuNPs (e.g., ~ 50% / 50%) and total 

gold concentrations (0.1 -  0.5 mg/mL) in the mixture. According to previous studies, it 

takes ~4 hr of incubation to accomplish complete affinity binding of transferrin to the 

transferrin receptors on the cells. For enhancement of the mixture of AuNPs / Tf-AuNPs, 

cells and AuNPs were incubated for 0.5 - 4 hr to check the difference [248], The same 

electroporation protocols established in section 4.2.5 were used here. After
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electroporation, samples were transferred to 6-well cell culture plates, incubated in fresh 

medium for another 24 hr, and then harvested for analysis.

3.2.7 Electroporation in Flow-Through Electroporation System

Cell samples were prepared with similar concentrations in GIBCO OPTI-MEMI 

medium, same as in section 4.2.5, and then pumped through the serpentine microchannel 

(length x width * depth = 37.5 mm * 150 pm x 150 pm) at a prespecified flow rate (1.8 

mL/h). Electric pulses (76 pulses with each at 16 V, 10 ms) were added simultaneously 

through embedded Pt electrodes. In this system, cell suspension flowed through the 

microchannel in which the Pt electrodes also served as two-sided walls o f the flow 

channels. When cells were pumped through, electric pulses were imposed in such a way 

that most cells only received one pulse inside the flow channel. This condition was 

accomplished by appropriately choosing the pulse frequency and the flow rate of cell 

suspension in the microchannel. Cells were then flushed out with Opti-MEM I medium 

and transferred to 6-well plates which were preloaded with a cell culture medium, 

incubated in a fresh medium for another 24 hr, and then harvested for analysis. Detailed 

SFE operation procedure can be found in our early publication [190].

3.2.8 Determination of DNA Delivery Efficiency

The transfection efficiency o f gWiz™GFP plasmids was evaluated both 

qualitatively by visualizing the number of cells with green fluorescence within a 

representative area selected from the entire culture surface under an inverted fluorescence 

microscope (Olympus, Japan) and quantitatively by counting cells using a four-color flow 

cytometry system (FACS Calibur, BD Biosciences, CA) 24 hr post transfection. Briefly, 

an amount o f 1.5 * 106 cells/mL was collected and the percentage of GFP-positive cells
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was calculated quantitatively via flow cytometer. The unstained samples were run first to 

adjust the voltage setting and compensation of the flow cytometer. Then the tested 

samples were processed by CellQuest. At least 10,000 events were collected for each 

sample.

3.2.9 Measurement o f Cell Viability

The cell viability was evaluated by an MTS cell proliferation assay (Promega, 

Madison, WI). Briefly, the cells in 100 pL/well of the medium were transferred to a 96- 

well plate and incubated; 20 pi of CellTiter 96 AQueous One solution (Promega, 

Madison, WI) was added to each well, and the cells were incubated at 37 °C for another 1 

hr. Absorbance was measured at 492 nm on an automated plate reader (Elx 800, Biotek, 

VT). Normally grown cell samples were used as negative control whose viability was set 

to 100%. Data points were represented as the mean ± standard deviation (SD) of 

triplicates, unless otherwise indicated.

3.2.10 AuNPs Imaging and Tracking In Vitro

The distribution, cellular binding, and uptake of AuNPs in K562 cells were 

examined by laser scanning confocal microscopy. The cells was washed twice with IX 

PBS after mixing with red fluorescence of AuNPs (from Nanopartz, Inc.), followed by 

fixation with 4% paraformaldehyde for 30 min. Nuclei were stained with 20 pM of 

DAPI for 5 min at room temperature. Cells from each sample were then mounted on 

cover glass slides. Images of phase contrast, red and blue fluorescence channels were 

taken on a Zeiss 510 META Laser Scanning Confocal microscopy (Carl Zeiss 

Microimaging, Inc., NY) and then the merged images were produced using the LSM 

Imaging software. As AuNPs are well known to quench the fluorescent signal from
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proximal fluorescent probes, a sandwich design o f AuNPs (from Nanopartz, Inc., having 

fluorophores separated from the gold surface with polymer spacer) was used to 

circumvent this problem. Fluorophore labeled AuNPs with a CH3 group terminated 

surface (FNPs, 10 nm for AuNP core) were used to represent free, naked AuNPs used in 

electroporation experiments. To visualize and track Tf-AuNPs, carboxylated AuNPs 

(FNP-COOH) were utilized. FNP-COOH nanoparticles (1 mg/mL in PBS) were first 

incubated with 1-Ethyl- 3-(3-dimethylaminopropyl) carbodiimide (20 mg/mL in PBS) for 

15 min at room temperature. Transferrin solution (0.4 mg/mL in PBS) was then added 

and incubated at room temperature for 24 hr to obtain FNPs with transferrin targeting 

probes (Tf-FNPs). Tf-FNPs particles were then purified by repeated centrifugation and 

resuspension in PBS for three times prior to the binding with transferrin receptors (TfR) 

on K562 cell surface.

3 .2.11 Simulation on the Focusing Effect o f AuNPs

A commercial fmite-element methods (FEM) software, COMSOL (Mathworks, 

Natick, MA), was used to calculate the electric field around the cell in the presence of a 

single AuNP. We considered an axially symmetric model with one AuNP (d = 20 nm) 

embedded in the cell membrane (5 nm in thickness). A K562 cell (D = 15 m) was placed 

at the center of the left side boundary (the symmetrical axis) in the computation domain 

(60 m x 20 m). A polar angle (0) with respect to the electric field direction was defmed 

and the AuNP was placed at the top of the cell where 6 = 180°. An electric field (E = 475 

V/cm) was assigned across the top and bottom of the computation domain and the right 

side boundary was set as the insulated wall. A three-layer cell model, divided as the 

external medium, the cell membrane, and the cell cytoplasm, was set up here [191,249].
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The electric field distribution around the nanoparticle and the cell was calculated by 

solving the Laplace equation using COMSOL:

V • (ctW ) = 0 Eq. 3-1

where a  is the electrical conductivity and V is the electrical potential. The electric field 

strength was then determined by E = - W . In this three-layer cell model, the electrical 

conductivity o f buffer, cytoplasm, membrane, and gold particle was set as 0.8,0.2, 5 x 

10~7, and 4 * 107 S/m, respectively.

3.3 Results and Discussion

3.3.1 AuNPs Enhancement on the Transfection of Mammalian Cells

We first electroporated K562 cells in both a commercial batch electroporation 

(labeled as “BTX”) system and a home-made semi-continuous microchannel system 

(labeled as “microchannel”), adopting the pulse conditions which were previously 

optimized with gWiz™GFP plasmids alone: 125 V (625 V/cm), single 10 ms pulse for 

the BTX system and 16 V (1067 V/cm), multiple 10 ms pulses for the microchannel 

system. Transfection was successful in all four cases: BTX without AuNPs, microchannel 

without AuNPs, BTX with AuNPs, and microchannel with AuNPs. Many cells in each 

case expressed green fluorescence protein (GFP) 24 hr after electroporation (Figure 

3-2A). More quantitative comparison was done by counting the percentage of GFP 

positive cells (Figure 3-2B) and cell viability (Figure 3-2C). Efficiency of pGFP 

transfection from the microchannel was generally much better than that from BTX (BTX:

27.5 ± 1.9%, SFE: 51.6 ± 4.5%), which is consistent with our earlier observations [191, 

247]. After adding AuNPs (5 nm at a concentration of 5X or 0.5 mg/ml), the transfection
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percentage was significantly increased to 50.8 ± 6.7% for BTX electroporator and to 61.1 

± 4.8% for microchannel electroporator, respectively.

MicroChannel

BTX + AuNPs MicroChannel + AuNPs

Figure 3-2: Gold nanoparticles enhancement on electroporation of K562 cells with a 
commercial batch electroporation (labeled as “BTX”) system and a home-made semi- 
continuous microchannel system (labeled as “microchannel”). Panel (A) exhibits 
fluorescence and phase contrast microscopic images of pGFP plasmid transfection 
through BTX, BTX with AuNPs, MicroChannel, and MicroChannel with AuNPs. The 
left side shows expression of GFP by the cells, and the right panel shows the cells 
under phase contrast microscopy. Panels (B) and (C) are the quantitative results of the 
transfection efficiency (B) and die cell viability (C).The concentration of AuNPs use 
here is 5X or 0.05 wt% (0.5 mg/mL). n = 6 and (***) represents p < 0.005.
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Some loss on the cell viability was observed (from 78.9 ± 2.9% to 57.4 ±5.1% 

for BTX electroporator and from 69.9 ± 4.7% to 52.1 ± 2.3% for microchannel 

electroporator), as shown in Figure 3-2C. This loss is not surprising considering the 

focusing effect o f AuNPs could shift away the electric pulses from the desired strength. 

As mentioned earlier, K562 cells in Figure 3-2 were excited at electroporation 

conditions optimized in the absence of AuNPs. Considering the high conductivity of 

AuNPs, their addition greatly reduced the resistance contributed by the buffer solution 

so that most electric voltage imposed between the two electrodes was allocated to the 

cells. The actual pulse strength on the cell membrane was therefore mitigated to a 

higher-than-optimal level, resulting in over perturbation to the treated cells. Such harsh 

conditions increased the percentage of irreversible breakdown of the cell membrane, 

making the loss of the cell viability inevitable. As this pulse strength focusing effect is 

generated from the presence of free AuNPs in the electroporation buffer, the cell 

transfection efficiency can be improved (when reversible breakdown still dominates) or 

worsen (when irreversible breakdown becomes the dominant-cells might have probes 

successfully delivered while not getting the subjected transgenes expressed prior to 

lysis), depending on the concentration and size of the added AuNPs.

From the data shown in Figure 3-2C, the field focusing level for 5 nm AuNPs at 

a concentration of 5X (0.5 mg/ml) belonged to the first case (i.e., reversible breakdown 

still dominated). The transfection of gWiz™GFP was improved while accompanied 

with lower cell viability. Nevertheless, this experiment confirmed the electric field 

focusing effect o f AuNPs to electroporation. (Note: the transfection percentage is 

defined as the number of transfected cell divided by the number of total living cells 24
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hr post transfection in each sample, and the cell viability is measured as the ratio of the 

living cells in each sample to that in the negative control samples.) These definitions 

might differ from some others used in literature (divided by the number of cells initially 

used or cells surviving right after transfection) and emphasize the fate of all survived 

cells, though they sometimes show low values o f transfection (or the cell viability) for 

their large number of the total living cells.

Our FEM simulation confirmed the enhancement effects of AuNPs to 

electroporation. The electrical potential distribution is plotted by colorful contours while 

the electric field lines through the buffer, the AuNP, and the cells are shown by blue 

lines in Figure 3-3. Because of the high conductivity, the electric field is clearly focused 

near the AuNP. Such localized focusing effect could also help attract charged DNA 

molecules from the surrounding area towards the focusing spot and enrich them there.

As transient pores will form later at the same location, we also compared the total 

current passing through the pore with and without the AuNP present. It was found that 

the current was enhanced 34% (from 1.77 nA to 2.38 nA) when a AuNP was around 

(Figure 3-3C). This enhancement suggests that the charged DNA plasmids could 

transport faster with AuNPs in close proximity and more of them could be delivered into 

the cells before the resealing of the cell membrane.
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Figure 3-3: Simulation of the electric field focusing effect of AuNPs in 
electroporation. (A) The model and mesh setup for one AuNP embedded in the 
membrane of a K562 cell. (B) The calculated electric field lines around the AuNP. (C) 
The electric field lines around a transient pore on the cell membrane in the presence of 
one AuNP present.
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As the presence of AuNPs greatly affects the pulse strength on treated cells, the 

size and number of AuNPs presented around each cell are critical to the electric pulse 

strength focusing level and the resulting electroporation performance (the transfection 

efficiency and cell viability). In the following sections, we evaluated the dependence of 

the pulse strength focusing effect on the size and concentration o f AuNPs.

3.3.2 Dependence of Electroporation Enhancement on the Concentration of AuNPs

AuNPs o f various concentrations (0.1 X-10 X of the stock solution) were used to 

evaluate the pulse strength focusing effect using the BTX electroporator. Similar to the 

aforementioned results, when electroporating cells at their standard pulse conditions (625 

V/cm, single 10 ms pulse), the transgene expression enhancement generally sacrificed 

some of the cell viability with the increase o f the AuNPs concentration (Figure 3-4A). 

After adding 5 nm AuNPs at a concentration of 0.1 X -l X ( IX = 0.1 mg/mL AuNPs), the 

cell viability retained at the same level (71.9 ± 51%-68.9 ± 29%) as in electroporation 

with naked DNA. However, that value dropped gradually when more concentrated 

AuNPs solutions (2.5 X-10 X) were used. Such cell viability loss endorsed the field 

enhancing effect of free AuNPs mentioned earlier. Because the buffer resistance was 

reduced when adding AuNPs, the local pulse strength on the cells was focused. When 

starting from the standard pulse conditions, some treated cells were over-perturbed to 

lethal levels. When increasing the concentration o f AuNPs, this pulse focusing effect got 

continuously enhanced and more cells were over-polarized or died. As a consequence, the 

cell viability dropped.

A threshold concentration of AuNPs existed for this pulse-focusing effect: it did 

not become obvious until the number of AuNPs reached a certain level (e.g., IX, 7.91 *
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1013 particles/ml for 5 nm AuNPs). Further increase in the pulse strength focusing effect 

led to loss o f cell viability, but it was beneficial to the improvement o f the transfection 

efficiency. For 5 nm AuNPs, the transfection efficiency increased from ~  25% (bulk 

electroporation with DNA only) to the maximum enhancement o f ~ 51% at the 

concentration of 5 X (0.5 mg/mL or ~  3.96 x 1014 5 nm AuNPs/ml) when increasing 

AuNPs concentration and started decaying afterwards due to the significant loss on the 

cell viability (Figure 3-4B).

■ 20nm ■ lO nm * 5nm■ 20nm »10nm a Snm

10X 7.5X 5X 2.5X IX 0.2X O lX DN A cr ty  »<>X 7 5*  5X 2.5X IX 0.2X 0 IX DNA only
Concentration of AuNPs Concentration of AuNPs

W  (D)
80

20nm » lOnm ■ Snm■20nm ■ lO nm a Snm

0  10X 7.5X 5X 2.5X IX 0.2X 0 IX DNA only ° l 10X 7.5X 5X 2 5X IX 0 2X 0 IX DNA only
Concentration of AuNPs Concentration of AuNPs

Figure 3-4: Dependence o f the pulse enhancement on the size and concentration of 
free AuNPs: panels ((A)-(B)) are the cell viability (A) and the transfection efficiency 
(B) with an overall pulse strength o f 625 V/cm and panels ((C)-(D)) are the results with 
an overall pulse strength of 475 V/cm (panel (C): the cell viability; panel (D): the 
transfection efficiency). The blue and red dashes refer to die cell viability and the 
transfection efficiency of electroporation with naked DNA at the optimal conditions 
(675 V/cm, single pulse of 10ms), respectively. IX AuNPs refers to 0.01 wt% or 0.1 
mg/mL gold content (n = 3).
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As the electric pulses were generally over-focused when concentrated AuNPs 

were introduced at standard electroporation protocols, such enhancement might be more 

beneficial when more benign conditions are used (at these conditions, transfection with 

naked DNA alone is less effective as the consequence). At these conditions, the cell 

viability is certainly high and the enhancement is mainly contributed to the improvement 

on the transfection efficiency of molecular probes. During our investigation, to ensure the 

local pulse strength was still effective for the majority of the cells, we lowered the overall 

electric voltage (while keeping the pulse duration unchanged) to a minimum field 

strength that was just enough to transfect a statistically meaningful number of cells with 

DNA probes alone. For K562 cells, this minimum condition was 475 V/cm (95 V when 

tested with 2 mm BTX cuvettes) with a 13.6 ± 15% transfection efficiency of naked DNA 

using the BTX electroporator. As shown in Figure 3-4C, for all three sizes of AuNPs, 

similar cell viability (±10%) was achieved within a broad concentration range o f AuNPs 

(0.1 X-10 X). Different from the enhancement performance at standard conditions, 

continuous increase on the transfection efficiency was achieved for all cases (Figure

3-4D). Such improvements were not only significant when compared to that using naked 

DNA (i.e., ~  14%) at the same pulse condition, but also much better than the best 

performance the BTX electroporator could achieve with naked DNA (i.e., ~  25%). This 

additional gain on the transfection efficiency at benign electroporation conditions 

confirmed from another viewpoint the focusing effect of free AuNPs-low-voltage pulses 

could be focused to high enough levels to provide the needed transmembrane field 

strength for better transfection efficiency (40.0 ± 4.1% for 5 nm, 45.2 ± 4.0% for 10 nm,
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56.1 ± 3.3% for 20 nm). More important, such delivery enhancement was attained with 

no or little sacrifice o f the cell viability for the application of low-voltage pulses.

3.3.3 The Dependence of Electroporation Enhancement on the Size of AuNPs

Besides the concentration effect, the size of AuNPs also contributes to the 

reduction of the buffer resistance and the pulse strength focusing level on the cells. 

Moreover, the size of AuNPs could affect the poration area on the cell membrane if 

AuNPs are brought close enough. As shown in Figure 3-IB and Figure 3-3B, AuNPs 

converge the electric field on their two poles and hang around the cells. The particles 

work as many tiny virtual electrodes with focused pulses pointing towards the cell 

membrane. This focusing could induce the polarization on the cell membrane within a 

limited area (i.e., localized poration), which has been found to be beneficial for the 

electroporation performance [185, 186, 191]. Therefore, the electroporation enhancement 

with various sizes of AuNPs reflects a combination of the pulse strength focusing effect 

and localized electroporation benefits. Three different sizes o f AuNPs (5 nm, 10 nm, and 

20 nm) were tested here and their effects on the transfection efficiency and the cell 

viability are included in Figure 3-4. Similar to AuNPs of 5 nm, AuNPs of 10 nm and 20 

nm exhibited similar concentration dependence on the transfection efficiency and the cell 

viability. As the concentration of AuNPs in Figure 3-4 were calculated based on the 

weight percentage of added AuNPs, their buffer resistance reduction effect or the pulse 

strength focusing level should be similar when the particle concentration is constant. In 

other words, at the same concentration of AuNPs, the enhancement difference for cases 

in Figure 3-4 reflected mainly the contribution of various particle sizes to the localized 

electroporation benefit.
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The enhancement difference on the transfection efficiency among various sizes of 

AuNPs was marginal at low AuNP concentrations and became significant only when 

more concentrated AuNPs were used. For 625 V/cm pulses, the effective AuNP 

concentration started from 1 X AuNPs, and for 475 V/cm pulses, it started from 2.5 X, 

due to their different pulse strength focusing levels and localized electroporation 

situations. This effect o f concentration is reasonable as the pulse strength focusing effect 

was weak at low AuNPs concentrations. Similarly, localized electroporation was very 

limited at low AuNPs concentrations, as only a small portion of the total free AuNPs 

could aggregate around the cells. In excess of the threshold AuNPs concentration, their 

contributions on the field focusing effect and localized poration became more 

pronounced so that the benefit on the transfection efficiency improvement showed up.

The larger the size of AuNPs, the better transfection efficiency was achieved. Large 

AuNPs of a relative lower concentration could also help gain better transfection 

efficiency than small AuNPs at a higher concentration. For example, electroporation with 

2.5 X and 5 X AuNPs of 20 nm help achieve similar or even better pGFP transfection 

than 5 X and 7.5 X AuNPs of 5 nm, respectively (Figure 3-4B and D). Among various 

particle sizes, the cell viability difference at the same pulse strength focusing level (i.e., 

the same AuNPs concentration) was marginal in most cases. Therefore, these AuNPs (5 

to 20 nm) are appropriate for the electroporation enhancement without extra addition to 

the cell toxicity.

However, these results also suggested that, with free AuNPs (i.e., AuNPs that are 

randomly dispersed in the electroporation buffer), the electroporation enhancement was 

mainly decided by the pulse strength focusing effect or the concentration of AuNPs.
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Localized poration only became beneficial at high AuNPs concentration when sufficient 

AuNPs were present around the cells during electroporation. However, this easily leads to 

over-perturbation if added AuNPs are all free AuNPs. To further enhance the localized 

poration effect, a sufficient number of AuNPs must be brought close to cells through 

some pre-concentration approaches.

3.3.4 Enhancing Localized Electroporation with Transferrin-AuNPs

As many transferrin receptors (TfR) are available on the cell membrane of K562 

cells, AuNPs were conveniently brought to the cells by grafting transferrin (Tf) 

molecules on their surface [250], This grafting was done with the help of the high affinity 

of sulfhydryl groups to the gold surface [251]. Specifically, sulfhydryl groups were 

introduced to transferrin molecules by converting a small proportion of their primary 

amine groups to sulfhydryl groups with Traut’s reagent. The modified transferrin with 

sulfhydryl groups were then incubated with free AuNPs to form transferrin AuNPs (Tf- 

AuNPs), as shown in Figure 3-5A. To evaluate how this transferrin-targeting mechanism 

affected the localized electroporation, we incubated Tf-AuNPs of 1 X with K562 cells for 

various incubation times and compared their performance on transfection enhancement. 

As shown in Figure 3-5B, the best improvement occurred in samples having 4-hr 

incubation time and the transfection efficiency reached 41.7 ± 3.2% when compared to 

that of BTX with naked DNA (26.4 ± 1.9%) and BTX with free AuNPs (34.4 ± 2.9%). 

Some 50% or less enhanced performance resulted from the gradual depletion of mobile 

AuNPs in the electroporation buffer because of Tf-AuNPs grafting on the cell membrane. 

As a consequence, though localized electroporation was improved, the pulse focusing 

effect from free AuNPs diminished.
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Figure 3-5: Localized electroporation enhancement with Tf-AuNPs: (A) schematics of 
grafting Tf-AuNPs as virtual electrodes on the cell membrane, (B) the localized 
enhancement with Tf-AuNPs alone at various binding stages. The AuNPs used here are 
20 nm with 1 X concentration (0.1 mg/mL). (n = 3)

To retain both the pulse strength focusing and localized electroporation 

advantages, we added free AuNPs to Tf-AuNPs at various mixing ratios (0%, 25%, 

50%, 75%, and 100% Tf-AuNPs). Based on other pioneering work on transferrin 

targeting, it took about 4 hr incubation to accomplish complete affinity binding of
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transferrin to the TfRs on the cells [248], Therefore, we first incubated K562 cells 

with Tf-AuNPs for 4 hr and then added the needed quantity of free AuNPs right 

before electroporation. As shown in Figure 3-6A, such a combination showed better 

enhancement o f the transfection efficiency under the standard electroporation 

conditions with only 1 X total AuNPs (free AuNPs + Tf-AuNPs) while the actual 

improvement varied with their mixing ratio: a sustained increase was seen on the 

transfection efficiency when more Tf-AuNPs were added until reaching a 50%/50% 

mixture o f free AuNPs and Tf-AuNPs (the transfection efficiency reached 58.2 ±

1.8%), followed by some declines. This combination provides ~ 2.5 folds increase on 

the DNA transfection when compared to electroporation with naked DNA only. 

Considering the low concentration of AuNPs used here (only 1 X), the electroporation 

enhancement with a combination of free AuNPs and Tf-AuNPs seems more effective 

than that using free AuNPs or Tf-AuNPs alone.

The best enhancement came from an appropriate balance on the pulse strength 

focusing and localized electroporation advantages AuNPs offered. It is worth 

mentioning that such a transfection efficiency improvement was achieved without 

sacrificing much o f the cell viability (Figure 3-6A). At more benign conditions (475 

V/cm), the enhancement was not very obvious, consistent with the free AuNPs 

enhancement result at low concentrations (0.1 X -l X). This insufficient pulse 

focusing level cannot provide the desired transmembrane potential to polarize the 

majority o f the cells. When more AuNPs were introduced (e.g., 5 X for the total 

AuNPs concentration), the enhancement on the transfection efficiency became 

significant for pulses of both 625 V/cm and 475 V/cm and die equivalent mixture of
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free AuNPs and Tf-AuNPs still offered the best transfection efficiency (Figure 3-6B). 

However, because of the over-focusing effect, obvious loss of the cell viability was 

found for the case with the pulse strength of 625 V/cm, consistent with our earlier 

observations.
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Figure 3-6: The combined enhancement o f the pulse strength focusing and 
localized electroporation effects using a mixture of free AuNPs and Tf-AuNPs of 
various mixing ratios with a total AuNPs concentration o f 1 X (A) and 5 X (B) with 
the pulse strength of 625 V/cm and 475 V/cm. AuNPs o f 20 nm were used here (n = 
3).
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3.3.5 AuNP Imaging and Tracking In Vitro

We tracked the cellular uptake of AuNPs before and after electroporation for both 

free, naked AuNPs and Tf-AuNPs using confocal microscope and the results were shown 

in Figure 3-7. As free AuNPs were mixed with cells right before electroporation, the 

short contact time did not provide enough time to allow endocytosis-based uptake of 

AuNPs and no obvious fluorescently labeled AuNPs (FNPs) were observed (Figure

3-7A). After electroporation, many FNPs were clearly found in the cell cytoplasm (Figure

3-7B), indicating that AuNPs transported into the cells after electroporation. As all 

samples were fixed shortly after electroporation, we believe the majority o f FNPs were 

taken through the transient openings on the cell membrane, not the endocytosis process. 

As mentioned in our FEM simulation, AuNPs around transient pores could enhance the 

cellular uptake of DNA plasmids because of the increase of electrical current (see Section 

AuNPs Enhancement on the Transfection of Mammalian Cells). Figure 3-7 C and D 

showed the distributions of Tf-FNPs before and after electroporation (Note: Tf-FNPs 

alone, not a mixture with free FNPs were used here). The accumulation of Tf-FNPs on 

the cell membrane was clearly found in the samples without electroporation treatment 

(Figure 3-7C), confirming the formation of ligand-receptor bonds after incubation. After 

electroporation, FNPs were also found in the cell cytoplasm (Figure 3-7D), consistent 

with what was exhibited in free FNPs electroporation. However, unlike in the free FNPs 

electroporation sample, many Tf-FNPs were also found on the cell membrane or regions 

nearby, suggesting that at least some Tf-AuNPs conjugates and the coupling of Tf-TfR 

could survive the electroporation process.
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Figure 3-7: The confocal microscope images of the cellular uptake of AuNPs before 
and after electroporation: ((A)-(B)) for free FNPs and ((C)-(D)) for Tf-FNPs. Images in 
panels (A) and (C) were taken before electroporation and panel (B) and (D) were after 
electroporation. FNPs of 10 X or 0.1 wt% (1.0 mg/mL) were used in all samples and 
Tf-FNPs were incubated with the cells for 4 hr.

3.3.6 Enhancement Performance of AuNPs in Fibroblast

Leukemia cells K562 was selected in the aforementioned experiments on the basis 

that it is hard to transfect the suspension cell line. At the same time, we also tested with 

an adherent cell line -  NIH 3T3 fibroblast.



47

Firstly, AuNPs of various concentrations (0.1 X -  2 X of the stock solution) were 

used to evaluate the pulse strength focusing effect with NIH 3T3 cells. Similar to the 

aforementioned results with K562, the transgene expression enhancement generally 

sacrificed some of the cell viability with the increase of the AuNPs concentration when 

electroporating cells at their standard pulse conditions (625 V/cm, single 10 ms pulse), as 

shown in Figure 3-8B. The cell viability tended to drop at higher AuNP concentrations 

(starting from 1 X). Such cell viability loss endorsed the field enhancing effect of free 

AuNPs mentioned earlier, that is, some treated cells were over-perturbed to lethal levels. 

The transfection efficiency increased from ~  25% (bulk electroporation with DNA only) 

to the maximum enhancement of ~  45% at the concentration of 2 X (0.2 mg/mL or ~

1.58 x 1014 5 nm AuNPs/ml).
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Figure 3-8: The pulse enhancement of free AuNPs (5 nm) on NIH 3T3 cells: panels 
(A) present phase contrast and fluorescence microscopic images of cells after BTX 
electroporation with naked DNA alone, with 0.4 X, 1 X, and 2 X AuNPs, respectively. 
Panel (B) is the summary of the quantified cell viability by MTS assay and the 
transfection efficiency by flow cytometry. A single pulse with 10 ms pulse duration 
and 625 V/cm overall pulse strength was imposed for all samples and IX AuNPs refers 
to 0.01 wt% or 0.1 mg/mL gold content, n = 3 and (***) represents p < 0.005.

Secondly, two different sizes of AuNPs (5 nm and 20 nm) were tested with 

both commercial batch electroporation (BTX) and home-made semi-continuous 

microchannel system (SFE); their effects on the transfection efficiency and the cell
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viability are included in Figure 3-9. According to our previous observation, the 

enhancement difference on the transfection efficiency among various sizes o f AuNPs 

was marginal at low AuNPs concentrations and became significant only when 

concentrated AuNPs were used. Moreover, the larger the size of AuNPs, the better 

transfection efficiency was achieved. Here, we chose to test with 1 X, 5 X 5 nm and 5 

X 20 nm AuNPs. The transfection efficiency grew with the increase of the particle 

size and concentration, while cell viability was reasonably scarified. Similar trends on 

the transfection efficiency and cell viability were found, consistent with those o f K562 

cells. This confirms the broad effectiveness of the enhancement roles AuNPs play in 

electroporation.

(A)
100;

EP+AuNPs EP+AuNPs EP+AuNPs EP alone
(B) 20nm, 5X 5nm, 5X 5nm, IX

EP+AuNPs EP alone
20nm, 5X 5nm, 5X 5nm, IX

Figure 3-9: The pulse enhancement o f AuNPs for electroporation of NIH 3T3 cells 
with a commercial batch electroporation (labeled as “BTX”) system and a home-made 
semi-continuous microchannel system (labeled as “SFE”). Panels (A) and (B) are the 
quantitative results of the cell viability and transfection efficiency, respectively (n = 3).
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3.4 Conclusions

AuNPs were used to enhance in vitro delivery of DNA probes for both batch-type 

and flow-through electroporation systems. Highly conductive free AuNPs were added to 

the electroporation buffer to reduce the solution resistance so that the pulse strength on 

the cells could be enhanced. Tf-AuNPs were brought to K562 cells through affinity 

binding with TfR receptors on the cell membrane, serving as many virtual 

microelectrodes to polarize cells locally from various sites, each affecting only a limited 

area. In this way, electroporation was enhanced with better transfection efficiency and the 

same or higher cell viability. With DNA plasmids carrying a gWiz™GFP reporter gene, 

we confirmed the pulse strength focusing effect after adding free AuNPs in the 

electroporation buffer and investigated its dependence on the particle size, concentration, 

and electroporation conditions. The enhancement difference among various sizes was not 

significant until higher concentrations were used, and the best transfection was achieved 

with 20 nm nanoparticles. At 125 V, a threshold concentration of AuNPs existed for 

pulse-focusing effect and the transfection efficiency increased to maximum at a 

concentration of 5 X. At 95 V, transfection efficiency was continuously increasing with 

concentration. We also observed the contributions o f localized electroporation with Tf- 

AuNPs.

An equivalent mixture o f free AuNPs and Tf-AuNPs was found to provide the 

best enhancement performance while the optimal concentration of AuNPs was decided 

by the original pulse conditions. This study offers a new approach to improve the 

delivery efficiency of nucleic acids or anticancer drugs through the combination of 

nanoparticles and electroporation technologies. AuNPs were adopted here for their low
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cost and easy accessibility while other forms of gold nanostructures, such as nanorod, 

nanoshell, or nanowires, in principle, could be used for similar purposes. As these gold 

nanomaterials have been widely explored in sensing, imaging, diagnosis, and therapeutic 

applications, our approach demonstrates a new function of these nanomaterials and/or 

broadens their potentials for multiple-function applications in drug discovery and clinical 

practice.



CHAPTER 4

GOLD NANOPARTICLES ELECTROPORATION ENHANCED 
POLYPLEX DELIVERY TO MAMMALIAN CELLS

4.1 Introduction

Polyplex serves as the favorable alternative to their virus-mediated counterparts 

and have been successfully tested for both in vitro and in vivo delivery of plasmids, 

oligonucleotides, ribozyme, and small interfering RNAs [3-15]. However, many of these 

systems still suffer insufficient delivery efficiency and cell viability, which often ties with 

their poor nanoparticle quality, slow and inefficient cellular uptake with endosome 

escape, and serious cytotoxicity from free cationic molecules after the unpacking of 

lipoplex or polyplex. As captured cationic molecules are much less toxic than their free 

counterparts, nanoparticles have been introduced to help fix cationic polymer [74],

AuNPs are favored in these applications for their good biocompatibility and multiple 

functionalities (i.e., targeting, therapeutic, and imaging) [74, 143, 162-165, 252], 

However, issues like ineffective cellular internalization remain.

Herein we introduce the use o f electroporation to bypass the slow and inefficient 

endocytosis process by directly delivering therapeutic probes into cell cytosol. A simple 

combination of lipoplex nanoparticles and electroporation has been explored early in the 

delivery of oligonucleotides in the format of lipoplex [247, 253]. However, negative 

impacts on both the delivery efficiency and the cell viability were found [253], We

52
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believe that the destroyed complex structure during electroporation released a large 

number o f free cationic molecules, which significantly lower the overall cell viability. To 

avoid a similar situation, we first immobilized the cationic polymer on AuNPs and then 

allowed conjugation with negatively charged therapeutic probes to form AuNPs-polyplex 

complex. In addition to the help on retaining cationic polymer on the surface, the 

presence of AuNPs also enhances the electroporation performance with focused electric 

pulses and localized poration [254], which was proven beneficial for not only the 

recovery of treated cells to gain high cell viability, but also the uptake of probes from 

multiple sites to facilitate the cytosolic delivery. Specifically, cationic polymer, 

polyethylenimine (PEI), was immobilized on AuNPs by electrostatic interactions (Figure

4-1). DNA plasmids were then conjugated with PEI molecules to form AuNPs-polyplex. 

The complex nanoparticles were then mixed with cells for electroporation. The delivery 

enhancement was evaluated by the cell viability and the transfection efficiency.

150mMNaCl

Poiyathytwwnine (PEI) 

*  Citric aad group 

DNA

AuXP plyplex 
* a

Figure 4-1: Schematic illustration on the procedure of AuNPs-polyplex synthesis and 
delivery.
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4.2 Materials and Methods

4.2.1 Materials and Reagents

Branched PEI (MW = 25 kDa), AuNPs of 5 -  40 nm were obtained from Sigma- 

Aldrich. The concentration of 1 X AuNPs refers to the stock solution, which has 0.01 

wt% of Au (0.1 mg/mL) while the number of particles varies with the size of AuNPs. 

Other concentrations of AuNPs were prepared by either concentrating or diluting from 

the stock solution. DNA plasmids with gWiz™GFP was purchased from Aldevron 

(Fargo, ND). All other chemicals were purchased from Sigma-Aldrich and the cell 

culture reagents were purchased from Life Technologies (Carlsbad, CA) unless specified.

4.2.2 Preparation of AuNPs-polvolex

To prepare AuNPs/PEI polyplex, 500 pL 0.5 mg/mL PEI (pH 7.0) was added to 

500 pL 0.01 wt% of AuNPs. The original citric acid terminated surface of AuNPs 

facilitates the deposition of PEI molecules through electrostatic interactions. The 

incubation was performed at room temperature for 20 min and the extra PEI was removed 

by centrifuging at 15,000 x g for 10 min. The PEI-coated AuNPs were resuspended in a 

desirable amount of PBS (pH 7.0) and 5 pL of nucleic acid solution (with a concentration 

of 5 mg/mL) was added to AuNPs/PEI of varying concentrations. The resulting mixture 

was mixed by pipetting and further incubated at room temperature for 20 min.

4.2.3 NIH 3T3 and K562 Cell Culture

NIH 3T3 cells were obtained from American Type Cell Culture (ATCC, 

Manassas, VA). They were grown and maintained in high-glucose DMEM supplemented 

with 10% newborn calf serum, 1% penicillin and streptomycin, 1% L-glutamine, and 1% 

sodium pyruvate. For subculture, culture medium was removed and discarded first. The



cell layer was briefly rinsed with DPBS to remove the serum which contains trypsin 

inhibitor. Then 1-2 mL trypsin-EDTA was added for a 100 cm2 Petri dish. Cell culture 

was then observed under an inverted microscope until the cell layer was dispersed 

(usually 5-15 min); 8 to 9 mL of complete growth medium was added and cells were 

aspirated by gently pipetting. Appropriate aliquot of the cell suspension was transferred 

to a new culture dish with an addition of more growth medium to make a total volume of 

10 mL for 100 cm2 surface. K562 lymphoblast cells were also obtained from American 

Type Cell Culture (ATCC, Manassas, VA). K562 cells were cultured and maintained in 

R PM I1640 media supplemented with 10% heat-inactivated fetal bovine serum (FBS), 

100 U/mL penicillin, 100 g/mL streptomycin, and L-glutamine. For subculture, a desired 

amount of K562 cell suspension was transferred to a new Petri dish with the addition of 

an appropriate amount of fresh culture medium. All cultures were maintained at 37 °C 

with 5% CO2 and 100% relative humidity.

4.2.4 Electroporation Setup and Procedure

NIH 3T3 or K562 cells were counted with hemocytometer to determine cell 

density, centrifuged at 200 x g for 5 min and then resuspended in fresh GIBCO OPTI- 

M EMI (a serum free medium) at the desired densities of 0.5 * 106 - 0.5 * 107 cells/mL. 

Cell suspensions were then mixed with AuNP-polyplexes of various concentrations and 

sizes while the amount of DNA plasmids was fixed at 25 pg/sample. Electroporation was 

done with a commercial instrument (ECM 830, Harvard Apparatus) in cuvettes with a 2- 

mm gap, each containing a 100 pL sample solution. The standard electroporation 

condition (single 10 ms pulses of 125 V / 2 mm cuvette) was applied with a single



56

unipolar pulse. After electroporation, the samples were transferred to 6-well cell culture 

plates, incubated in a fresh medium for another 24 h, and then harvested for analysis.

4.2.5 Determination of AuNPs-polvplex Delivery Efficiency

The transfection efficiency of gWiz™GFP plasmids was evaluated both 

qualitatively by visualizing the number o f cells with green fluorescence within a 

representative area selected from the entire culture surface under an inverted fluorescence 

microscope (Olympus, Japan) and quantitatively by counting cells using a four-color flow 

cytometry system (FACS Calibur, BD Biosciences, CA) 24-h post transfection. Briefly, 

an amount of 1.5 * 106 cells/mL was collected and the percentage of GFP-positive cells 

was calculated quantitatively via the flow cytometer. The unstained samples were ran 

first to adjust the voltage setting and compensation of the flow cytometer. Then the tested 

samples were processed by CellQuest. At least 10,000 events were collected for each 

sample.

4.2.6 Measurements of Cell Viability

The cell viability was evaluated by an MTS cell proliferation assay (Promega, 

Madison, WI). Briefly, the cells in 100 pL/well o f medium were transferred to a 96-well 

plate and incubated. Twenty microliters o f CellTiter 96 AQueous One solution (Promega, 

Madison, WI) was added to each well and the cells were incubated at 37 °C for another 1 

h. Absorbance was measured at 492 nm on an automated plate reader (Elx 800, Biotek, 

VT). Normally, grown cell samples were used as negative control whose viability was set 

to 100%. Data points were represented as the mean ±SD of triplicates, unless otherwise 

indicated.
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4.2.7 Cellular Uptake of AuNPs-polvplex Nanoparticles

The distribution of AuNPs-polyplex in 3T3 cells was examined using an inverted 

fluorescent microscope. As AuNPs are well known to quench the fluorescent signal from 

the proximal fluroprobes, a sandwich design of fluorophore-labeled AuNPs (FNP from 

Nanopartz, having Alexa Fluor 546) with fluorophores separated from the gold surface 

by polymer spacers were used to circumvent this problem. Plasmids were stained with 

YOYO-1 iodide (Life Technology) with a ratio o f 100 bp/dye. The mixture of cells with 

nucleic acids, AuNPs, or AuNPs-polyplex were washed twice with 1 x PBS (pH 7.0), 

followed by fixation with 4% paraformaldehyde for 30 min. Nuclei were stained with 20 

pM of 4’, 6-diamidino-2-phenylindole (DAPI) for 10 min at room temperature. Cells 

from each sample were then mounted on cover glass slides. Images o f the phase contrast, 

green (nucleic acids), red (AuNPs), and blue (nuclei) fluorescence channels were taken 

on an Olympus 1 x 5 1  inverted microscope (Olympus) with a 100 x objectives.

Note that in our nomenclature, symbols such as “A/B” or “A -  B” means 

materials A and B are conjugated together through electrostatic interactions after 

incubation; “A + B” means A and B are simply mixed without incubation before further 

treatment.

4.3 Results and Discussions

4.3.1 AuNPs-polvplex Size and Size Distribution

Current polyplex delivery vehicles have not yet shown competitive delivery 

advantages over natural virus-based counterparts. This result is at least partially attributed 

to their heterogeneous assembly conditions and poor synthetic quality of nanoparticles 

(i.e., relatively large variations in size, structure, and component quantity). As in our
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AuNPs-polyplex synthesis, cationic polymer molecules (i.e., PEI) were first immobilized 

on the surface o f AuNPs; their amount in individual AuNPs-polyplex should be more 

uniform than those synthesized through dynamic complexation of freely charged agents. 

This further determines the total dosage of genetic probes, which are condensed on 

AuNPs-polyplex later on. Therefore, the introduction of AuNPs in the polyplex not only 

helps fix free or dissociated polycations on a solid surface, but also provides better 

management on molecule assembly and multiple-agent packaging. As a consequence, 

nanoparticles o f better quality are produced.

As shown in atomic force microscopy (AFM) images in Figure 4-2, more 

homogeneous morphology was found for AuNPs-polyplex than polyplex synthesized via 

vortex mixing (Figure 4-2E) [4]. Their size was also much smaller and more uniform, 

which was further confirmed with quantitative measurements using dynamic light 

scattering (Figure 4-2F). Except for AuNPs-polyplex synthesized from 5 ran AuNPs, the 

average size of AuNPs-polyplex with various original sizes lies between 100 and 200 nm, 

an appropriate size range of nanoparticles for efficient cellular uptake. As the size of 

DNA plasmids used in this study is much bigger than that o f AuNPs, each DNA molecule 

is suspected to interact with multiple AuNPs-PEl nanoparticles simultaneously (Figure

4-3). Therefore, clusters (or aggregates from conjugation networking) of AuNPs-PEI- 

DNA, instead of many individual AuNPs-polyplex nanoparticles with the assembly 

structure schematically shown in Figure 4-1, are more likely to form. With smaller size 

and higher mobility, AuNPs o f 5 nm allow easier occurrence of such conjugation 

networking than other AuNPs with larger original size. As a result, such stable clusters
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might become the dominated population when small AuNPs are used in AuNPs-polyplex 

synthesis.
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Figure 4-2: The AFM images of AuNPs-polyplex morphology with the original size of 
AuNPs o f (A) 5 nm, (B) 10 nm, (C) 30 nm, and (D) 40 nm. Panel (E) is the traditional 
polyplex synthesized through the vortex mixing approach [4]. Panel (F) is the 
quantitative dynamic light scattering (DSL) particle size measurement.
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Figure 4-3: Schematic o f AuNPs-polyplex formation involving conjugation 
networking of multiple AuNPs with DNA probes.

4.3.2 Cellular Uptake of AuNPs-polvplex via Electroporation

To verify that PEI molecules remain on AuNPs during electroporation, 

fluorescence probes were tagged to track the locations and fate of AuNPs-polyplex 

during the cellular uptake. As AuNPs quench fluorescent signal from proximal 

fluroprobes, FNP with polymer spacer separating fluorophores from the gold surface was 

utilized. These nanoparticles are also carboxylated to match similar interaction capacity 

as those with citric acid terminated surface. After conjugating with PEI molecules, 

fluoroprobes are pushed back to the gold surface, and therefore, the fluorescent signal of
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FNP is quenched again unless most immobilized PEI molecules are gone. When DNA 

plasmids are condensed on FNP, the PEI layer underneath serves as the new thick spacer 

so that the YOYO-1 labeled DNA probes become visible and are used to track the uptake 

of AuNPs-polyplex.

Compared to the untreated sample (Figure 4-4A), samples o f simply mixing cells 

with YOYO-1 labeled DNA plasmids (Figure 4-4B) or FNP (Figure 4-4C) have weak 

fluorescent spots visible. This weakness is attributed to their tiny particle size and limited 

fluorescent signal when staying as individual nanoparticles. After the nanoparticles were 

capped with a layer o f PEI, even such weak fluorescent signals disappeared (Figure

4-4D), which confirmed that the original fluorophores were pushed back close to the gold 

surface. As the PEI layer serves as the new spacer layer, the condensed DNA plasmids 

labeled with YOYO-1 exhibited a similar fluorescent signal as free DNA plasmids 

(showing weak green fluorescence spots in Figure 4-4E), indicating that the location of 

AuNPs-polyplex was mainly outside the cells. After electroporation, stronger fluorescent 

signals were generally seen in electroporated cells with naked plasmids and FNP as 

nanoparticles accumulated in the cells (Figure 4-4 F and G). No fluorescent signal was 

observed for the sample using PEI-coated FNP (Figure 4-4H), though similar 

accumulation of AuNPs-PEI nanoparticles was clearly observed in the phase contrast 

image. This suggests that the electric pulses did not break the interactions between 

AuNPs and PEI molecules. For YOYO-1 labeled AuNPs-PEI-DNA polyplex, a strong 

green fluorescent signal was shown inside the cells (Figure 4-41). As the samples were 

fixed immediately after electroporation, this fluorescence clearly indicates the similar 

quick and direct cytosolic delivery of plasmids by electroporation.
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Figure 4-4: Phase contrast and fluorescence microscopic images of distribution and fate 
o f AuNPs-polyplex when mixing with NIH 3T3 cells (A-E) and immediately after 
electroporation (F-I): (A) untreated samples (negative control); (B) mixture o f cells and 
naked DNA plasmids (green); (C) mixture of cells and FNP (red); (D) mixture of cells 
with FNP/PEI nanoparticles; (E) mixture o f cells with FNP/PEI/DNA; (F) electroporation 
with DNA alone (green); (G) electroporation with FNP (red); (H) electroporation with 
FNP/PEI; and (I) electroporation with FNP/PEI/DNA. TTie 100 X objective was used.
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4.3.3 Plasmid DNA Delivery in NIH 3T3 Cells bv AuNPs-polyplex

We further explored the delivery of DNA plasmids from AuNPs-polyplex by 

electroporation. The electroporation was done with NIH3T3 cells with a BTX system 

using gWiz™GFP plasmids and the following pulse scheme was applied: 125 V (625 

V/cm), single 10 ms pulse. Successful transfection was observed 24 h after 

electroporation in all four cases: electroporation with DNA alone (no AuNPs), with 

AuNPs + DNA, with polyplex (no AuNPs), and with AuNPs-polyplex, as shown in 

Figure 4-5. However, a simple combination of electroporation and polyplex showed a 

significant negative impact on both the delivery efficiency and cell viability (Figure

4-5B), which is consistent with an earlier observation for lipoplex delivery using a similar 

approach [253], The poor quality and loose structure of the polyplex might have been 

destroyed to release a large number of free cationic PEI molecules. These free positively 

charged macromolecules, together with additional harsh electric pulses, further lowered 

the overall cell viability and transfection when compared to the electroporation of naked 

plasmids (Figure 4-5A). Electroporation of polyplex and AuNPs-polyplex with various 

N/P ratios was conducted as additional proof. As shown in Figure 4-6, with the increase 

o f the N/P ratio, which was an increase in the amount of PEI, more dead cells were 

observed for polyplex electroporation as well as extremely poor transfection (cells had 

probably died before gene expression). However, AuNPs-polyplex electroporation with 

various N/P ratios showed an insignificant difference in cell viability while successful 

transfection was observed in all these groups. Electroporation delivery of the plasmids 

together with AuNPs and AuNPs-polyplex showed better GFP expression (Figure 4-5 C
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and D), which confirmed again our early observation that the enhancement of AuNPs to 

electroporation performance [254],

(A) Naked DNA electroporation (C) AuNPs electroporation

(B) Polyplex electroporation (D) AuNPs-Polyplex electroporation

Figure 4-5: Fluorescence and phase contrast microscopic images of pGFP plasmid 
transfection to NEH 3T3 cells by electroporation.

(A) Polyplex electroporation (B) AuNPs-Polyplex electroporation 
N/P-1.1 N/P-1.1

N/P-3.3

N/P-6.7

Figure 4-6: Fluorescence and phase contrast microscopic images of pGFP plasmid 
transfection to NIH 3T3 cells by polyplex and AuNPs-polyplex electroporation.



65

More quantitative comparison was done by counting the percentage of GFP- 

positive cells using flow cytometry (Figure 4-7). Efficiency of pGFP transfection 

from AuNPs-polyplex ( using 5 nm AuNPs at a concentration of 1 x or 0.1 mg/mL) 

was about one and a half fold of that using naked plasmids and a simple mixture of 

DNA and AuNPs (DNA alone: 34.8 ± 2.0%; 5 nm AuNPs and DNA: 44.4%; 5 nm 

AuNPs-polyplex: 53 .4%). When large sized AuNPs (10-40 nm for their original size) 

were used, the transfection efficiency was further enhanced to about two-fold o f that 

using naked DNA alone. For comparison, the GFP transfection using electroporation 

with polyplex was only about one third o f that standard electroporation. Greater loss 

of the cell viability (i.e., 10%) was observed in AuNPs-polyplex electroporation 

samples than that using naked DNA. However, it is worth the sacrifice of using 

electroporation to bypass the endocytosis delivery route with direct cytosol delivery 

and 1 .5-2  folds increase in the transfection efficiency. When comparing cell viability 

of 40% (i.e., less than half of the standard electroporation of naked DNA, 90%) with 

polyplex in electroporation, our approach of introducing AuNPs to fix free or 

dissociated PEI is effective. This observation was also endorsed with further complex 

cytotoxicity analysis without electroporation (Figure 4-8).
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Figure 4-7: Quantitative measurement of electroporation enhanced AuNPs-polyplex 
delivery performance on 3T3 cells: (A) the flow cytometry results on transfection 
efficiency and (B) the cell viability via MTS assay. As comparison, results from 
electroporation with DNA alone, polyplex, and samples of a simple mixing of AuNPs 
and DNA are also shown. The error bars correspond to triplicate experiments made 
with independently produced batches, n = 3 and (***) represents p < 0.001.
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Figure 4-8: The viability of NIH 3T3 cells when incubated with AuNP-polyplex and 
polyplex determined by MTS assay. PEI is the cationic polymer used here and the 
incubation was performed at various N/P ratios. The cell viability o f commercial bulk 
electroporation (labeled as “BTX”) is also provided for comparison purpose (n = 3).

In this delivery improvement, the AuNPs core helps enhance the electroporation’s 

performance from two different aspects [254]: (i) reducing the resistance of the 

electroporation buffer solution so that the local pulse strength on the cells is enhanced;

(ii) serving as virtual microelectrodes to locally porate cells with a limited area from 

many different sites. Because of their high conductivity (4.5 * 106 S/m), AuNPs 

dispersed in the buffer and cytoplasm (the conductivity is 0.3 -1.5 S/m) help greatly 

reduce the potential drop so that the majority o f the electric voltage is imposed on the cell 

membrane indeed. The cell membrane disruption could therefore be done more 

effectively without altering the cell physiological conditions (i.e., salt concentration) or 

losing cell viability. When the electric field converges in the vicinity o f AuNPs, they
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work like many virtual nanoelectrodes to cause localized poration. Different from the 

traditional bulk electroporation with two large breakdown locations, multiple small 

poration sites are formed after adding AuNPs that benefit not only the recovery of the cell 

membrane, but also the cytosolic delivery o f plasmids from multiple sites.

The contribution of AuNPs-polyplex to the transfection improvement of DNA 

plasmids is also multifactorial: (i) they help fix PEI on the surface of AuNPs to 

significantly reduce the toxicity caused by the presence of free and/or dissociated cationic 

polymer molecules in the polyplex (Figure 4-8), (ii) they effectively produce polyplex 

nanoparticles with smaller average size than the naked DNA plasmids and narrower size 

distribution when compared to that from the vortex mixing synthesis (Figure 4-2F), (iii) 

the PEI molecules in AuNPs-polyplex help protect DNA plasmids and condense them 

near the vicinity of the cell membrane to promote the cytosolic delivery and also later for 

nuclear transport. These effects offer AuNP-polyplexes advantages over the use of the 

mixture of AuNP and naked DNA in electroporation (Figure 4-7) as well as many 

traditional transfection approaches (Figure 4-9) on the transfection efficiency and cell 

viability. The slight loss on cell viability (Figure 4-7B) probably results from the 

presence of some free PEI molecules to the electroporated cells.
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Figure 4-9: Comparison o f AuNPs-polyplex electroporation was compared to 
traditional transfection approaches PEI/DNA polyplex at two different N/P ratios (6.6 
and 10) and lipo2000 at two different dosages (“optimal” refers to the protocol 
recommended dosage; and “scaled up” refers to the case with increased lipo2000 dose 
to match the actual DNA amount use in electroporation) (n = 3).

4.4 Conclusions

In summary, we immobilized the polyplex on AuNPs and delivered them into the 

cells through electroporation. Conjugating with AuNPs helps minimize the cytotoxicity 

concerns from polyplex after cytoplasmic release while still retaining good probe 

protection. It also avoids poor nanoparticle quality existing in traditional polyplex 

synthesis, namely large size and broad size variations, by managing molecule interactions 

and assembly on the surface of AuNPs. Combined with electroporation, conjugated 

polyplex (AuNPs-Polyplex) showed quick delivery and significant enhancement of the 

transfection efficiency with no obvious increase of toxicity. Such a combination of 

physical and chemical delivery concept may stimulate further exploration in the delivery 

of various therapeutic materials for both in vitro and in vivo applications.
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The choice o f AuNPs in the enhancement of polyplex delivery lies on their high 

conductivity and excellent biocompatibility. Their other potential advantages, such as 

sensing signal enhancement via localized surface plasmon resonance or surface-enhanced 

Raman spectrum, have not yet been investigated with this gene delivery approach. Our 

approach however has a promising potential to integrate both diagnostic and therapeutic 

functions in one nanosystem (namely nanotheranostics) to accomplish both noninvasively 

tracking the targeting therapeutic probes and measuring their delivery performance 

simultaneously. This integration will surely help increase our understanding on the 

regulation mechanism of many therapeutic probes and quickly establish appropriate 

strategies to improve their delivery or treatment performance. Other forms o f gold 

nanostructures, such as nanorod, nanoshell, or nanowires, in principle, could also be used 

for the similar purposes. Their success will accelerate and broaden the applications of 

these nanomaterials in drug discovery, cancer diagnosis, and treatment, and/or 

regenerative medicine where quick and precise diagnosis and therapeutics is urgently 

needed.



CHAPTER 5

GOLD NANOPARTICLE ENHANCED SMALL NUCLEOTIDE 
MOLECULE DELIVERY BY ELECTROPORATION TO 

MAMMALIAN CELLS

5.1 Introduction

RNA interference is an endogenous process where small interfering RNA 

(siRNA) molecules regulate gene expression by silencing mRNA targets. Since the first 

report from Fire’s group that siRNA was responsible for gene silencing in C. elegans, 

RNA interference has been attracting attention in mammalian cell processes and as a 

treatment for diseases [255-263], Various carriers, such as cationic polymers, lipids and 

nanoscale materials, have been investigated for siRNA delivery [74,264-269]. However, 

the safety and delivery efficiency still remain as a challenge for clinical application of 

siRNA [270-273].

MicroRNAs (miRNAs) are small (contains approximately 22 nucleotides) 

endogenous non-coding RNAs that function in RNA silencing at the posttranscriptional 

level through base pairing with mRNA molecules [274,275]. They regulate a broad 

network of genes since this base pairing is not necessarily perfect. It has been recently 

demonstrated that down regulation of miR-29 family members in various cancer cells 

may contribute to the abnormal cell proliferation, apoptosis and migration [276-285]. 

Therefore, the miR-29 family has become a research focus o f miRNA-based therapy and
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attracted much attention as a new strategy in cancer treatment. However, delivery of 

miRNAs encountered critical hurdles including, but not limited to, poor stability, rapid 

blood clearance, and insufficient cellular uptake.

Polyethylenimine (PEI) has been used as a non-viral carrier for its ability to 

electrostatically interact with nucleic acids and protect them from intracellular enzymes. 

While the delivery of plasmids with PEI has been proven to be efficient, siRNA 

transfection with PEI has been shown to be less satisfying because of die stiffer nature of 

RNA molecules compared to DNA [4,286-289]. Moreover, the toxicity of PEI is 

associated with its positive charges, enabling it to interact strongly with cell membranes 

and result in damage. Therefore, modification of PEI to reduce the positive charge could 

be an option to improve its delivery performance.

In our study, we used electroporation to bypass the slow and inefficient 

endocytosis process by directly delivering therapeutic probes into the cell cytosol. As the 

followup of our previous study, we applied AuNP to enhance electroporation 

performance -  AuNPs were coated with cationic polymer and further conjugated with 

negatively charged RNA molecules to form AuNPs-polyplex. The presence of AuNPs 

helped to focus electric pulses and localize poration, which was proven beneficial for not 

only the recovery of electroporated cells, but also the uptake of probes from multiple sites 

to facilitate the cytosolic delivery. The AuNPs enhanced RNA delivery was evaluated by 

the cell viability and the down regulation of the targeted genes.
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5.2 Materials and Methods

5.2.1 Materials and Reagents

Branched PEI (MW = 25 kDa), AuNPs were obtained from Sigma-Aldrich (St. 

Louis, MO). The concentration of 1 X AuNPs refers to the stock solution, which has 0.01 

wt% of Au (0.1 mg/mL) while the actual particle number varies with the size of AuNPs. 

DNA plasmids with gWiz™GFP and gWiz™Luc reporter genes were purchased from 

Aldevron (Fargo, ND). siRNA used for silencing GFP (expressed by pMaxGFP 

purchased from Lonza) and luciferase genes were synthesized by Thermo Scientific 

(Pittsburgh, PA) and the sequences were as follows: siRNA for GFP silence, sense strand,

5-CGCAUGACCAACAAGAUGAUU-3; antisense strand, 5- 

UCAUCUUGUUGGUCAUGCGGC-3; luciferase GL3 duplex (Luc-siRNA); sense 

strand, 5-CTJUACGCUGAGUACUUCGA-3; antisense strand, 5- 

UCGAAGUACUCAGCGUAAG-3. miRIDIAN microRNA human hsa-miR-29b-3p 

mimic with mature miR sequence: 5-UAGCACCAUUUGAAAUCAGUGUU-3 was 

purchased from Thermo Scientific (Pittsburgh, PA). All other chemicals were purchased 

from Sigma-Aldrich (St. Louis, MO); the cell culture reagents, reverse transcription kits, 

universal master mix for qRT-PCR, and TaqMan® gene expression assays were 

purchased from Life Technologies (Carlsbad, CA) unless specified.

5.2.2 Preparation of AuNPs-polyplex

To prepare AuNPs/PEI polyplex, 500 pL 0.5 mg/mL PEI (pH 7.0) was added to 

500 pL 0.01 wt% of AuNPs. The original citric acid terminated surface of AuNPs 

facilitated the deposition of PEI molecules through electrostatic interactions. The 

incubation was performed at room temperature for 20 min and the extra PEI was removed
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by centrifuging at 15,000 * g for 10 min. The PEI-coated AuNPs were resuspended in 

desirable amount of PBS (pH 7.0) and desirable amount of siRNA/miR29b was added to 

AuNPs/PEI. The resulting mixture was mixed by pipetting and further incubated at room 

temperature for 20 min.

5.2.3 NIH 3T3 and K562 Cell Culture

NIH 3T3 cells were obtained from American Type Cell Culture (ATCC, 

Manassas, VA). They were grown and maintained in high-glucose DMEM supplemented 

with 10% newborn calf serum, 1% penicillin and streptomycin, 1% L-glutamine, and 1% 

sodium pyruvate. For subculture, culture medium was removed and discarded first. The 

cell layer was briefly rinsed with DPBS to remove the serum which contains a trypsin 

inhibitor. Then 1-2 mL trypsin-EDTA was added for a 100 cm2 Petri dish. Cell culture 

was then observed under an inverted microscope until cell layer was dispersed (usually 5- 

15 min); 8 to 9 mL complete growth medium was added and cells were aspirated by 

gently pipetting. Appropriate aliquot o f the cell suspension was transferred to a new 

culture dish with the addition of more growth medium to make a total volume of 10 mL 

for a 100 cm2 surface. K562 lymphoblast cells were also obtained from American Type 

Cell Culture (ATCC, Manassas, VA). K562 cells were cultured and maintained in RPMI 

1640 media supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 

U/mL penicillin, 100 g/mL streptomycin, and L-glutamine. For the subculture, a desired 

amount of K562 cell suspension was transferred to a new Petri dish with the addition of 

an appropriate amount o f fresh culture medium. All cultures were maintained at 37 °C 

with 5% CO2 and 100% relative humidity.
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5.2.4 Electroporation Setup and Procedure

NIH 3T3 or K562 cells were counted with hemocytometer to determine cell 

density, centrifuged at 200 x g for 5 min and then resuspended in fresh GIBCO OPTI- 

MEMI (a serum free medium) at desired densities of 0.5 * 106 to 0.5 * 107 cells/mL.

Cell suspensions were then mixed with AuNP-polyplexes o f various concentrations and 

sizes while the amount of DNA plasmids was fixed at 25 (ig / sample. Electroporation 

was done with a commercial instrument (ECM 830, Harvard Apparatus) in cuvettes with 

a 2-mm gap, each containing a 100 pL sample solution. The standard electroporation 

condition (single 10 ms pulses o f 125 V/2 mm cuvette) was applied with a single unipolar 

pulse. After electroporation, samples were transferred to 6-well cell culture plates, 

incubated in a fresh medium for another 24 h, and then harvested for analysis.

5.2.5 Measurements of Cell Viability

The cell viability was evaluated by an MTS cell proliferation assay (Promega, 

Madison, WI). Briefly, the cells in 100 gL/well o f medium were transferred to a 96-well 

plate and incubated. Twenty microliters of CellTiter 96 AQueous One solution (Promega, 

Madison, WI) was added to each well and cells were incubated at 37 °C for another 1 h. 

Absorbance was measured at 492 nm on an automated plate reader (Elx 800, Biotek,

VT). Normally grown cell samples were used as negative control whose viability was set 

to 100%. Data points were represented as the mean ±SD of triplicates, unless otherwise 

indicated.

5.2.6 AuNPs-polvplex Delivery Efficiency of Small Interfering RNA 

The GFP down regulation efficiency was determined by Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA). The fluorescence intensity of GFP
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was measured using Cell Assay Module with live cells stained with 

carboxynaphthofluorescein (CBNF). The results were analyzed with Agilent 2100 Expert 

Software and 500-1500 events were counted for each sample. The Luc-siRNA down 

regulation efficiency was quantified by One-Glo™Luciferase assay system (Promega, 

Madison, WI). Hundred microliters One-Glo™ reagent was added to the cell growth in 

100 pL of the medium in a 96-well plate. Luminescence was measured with a plate 

reader (FLUOstar OPTIMA, BMG LABTECH, Germany) after 10 min incubation at 

room temperature for complete cell lysis.

5.2.7 AuNPs-polvplex Delivery Efficiency of microRNA

The miR29b delivery efficiency was evaluated from two aspects: 1) expression of 

mature miR29b; 2) expression of target genes including CDK6, DNMT3B and MCL1. To 

measure expression levels, the total RNA was first transcribed into cDNA and qRT-PCR 

was conducted. The expression was determined by the AACt method and normalized to 

endogenous controls.

5.2.7.1 Total RNA Extraction

Total RNA was extracted using TRIzol® reagent (Life Technologies, Carlsbad, 

CA). Cells were harvested by centrifugation and culture media was removed, and 0.75 

mL TRIzol® reagent was added to every 0.25 mL sample (containing approximately 5-10 

x 106 cells). Samples were lysed by pipetting up and down several times and incubated 

for 5 min at room temperature, allowing the nucleoprotein complex to dissociate 

completely. 0.2 mL chloroform was added to every 1 mL TRIzol® reagent and the tubes 

were shaken vigorously for 15 s followed by 2-3 min incubation at room temperature. 

Then centrifugation with 12,000 * g for 15 min at 4 °C was conducted and the samples
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were separated into a colorless upper phase, an interphase and a lower red chloroform 

phase. The upper aqueous phase was transferred into new tubes by gentle pipetting 

without drawing any of the interphase, and 0.5 mL 100% isopropanol for every lmL 

TRIzol® reagent was added to the aqueous phase, followed by 10 min incubation at room 

temperature. Centrifugation at 12,000 x g for 10 min at 4 °C was conducted and 

supernatant was removed. To wash the RNA pellet, 1 mL 75% ethanol per 1 mL TRIzol® 

reagent was used. Samples were vortexed briefly and centrifuged at 7500 * g for 5 min at 

4 °C. We discarded the supernatant was discarded and air dried the RNA pellet for 5-10 

min; 20-50 pL RNase-free water was added and samples were incubated at 55-60 °C for 

10-15 min. Then the RNA was ready for downstream application.

5.2.7.2 Reverse Transcription PCR

The TaqMan® microRNA Reverse Transcription Kit (Life Technologies,

Carlsbad, CA) was used for miRNAs reverse transcription. The reagents were first 

allowed to thaw on ice. The total volume of 15 pL reaction was prepared in a 

polypropylene tube, including 0.15 pL dNTP mix (100 mM total), 1 pL Multiscribe™

RT enzyme (50 U/pL), 1.5 pL 10X RT buffer, 0.19 pL RNase inhibitor (20 U/pL), 4.16 

pL nuclease free water, 3 pL primer and 5 pL RNA sample (1 to 10 ng). The thermal 

cycler was programmed as follows: 30 min at 16 °C, 30 min at 42 °C, 5 min at 85 °C and 

finally hold at 4 °C.

The High-Capacity cDNA Reverse Transcription Kit (Life Technologies, 

Carlsbad, CA) was used to reverse transcribed mRNAs of CDK6, DNMT3B and MCL1. 

The total volume o f 20 pL reaction was prepared in a polypropylene tube, including 2 pL 

10 X RT buffer, 0.8 pL dNTP mix (100 mM), 2 pL 10 X RT random primers, 1 pL
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MultiScribe™ reverse transcriptase, 4.2 pL nuclease free water, and 10 pL RNA sample. 

The thermal cycler was programmed as follows: 10 min at 25 °C, 120 min at 37 °C, 5 min 

at 85 °C and finally hold at 4 °C.

5.2.7.3 qRT-PCR Amplification

The resulting cDNA from reverse transcription reaction was amplified by qRT- 

PCR with TaqMan® Universal Master Mix II (Life Technologies, Carlsbad, CA). The 

total volume of 20 pL reaction was prepared in a polypropylene tube, including 10 pL 2 

X TaqMan® Universal Master Mix n, 1 pL 20 X TaqMan® assay and 9 pL cDNA 

template (1-100 ng). The thermal cycler was programmed as follows: 10 min at 95 °C for 

polymerase activation, then 40 PCR cycles with 15 s at 95 °C for denature and 1 min at 

60 °C for anneal. The relative gene expression was determined by the AACt method. The 

mature miR-29b expression was normalized to endogenous control RNU48 and relative 

to the untreated control cells. The expression of CDK6, DNMT3B, and MCL1 mRNAs 

was normalized to endogenous controlled GAPDH and relative to the untreated 

controlled cells.

5.3 Results and Discussion

5.3.1 Gold Nanoparticle-Enhanced siRNA Delivery

To demonstrate the effectiveness of AuNPs electroporation on siRNA delivery, 

we chose siRNA with specific sequences to silence the expression of GFP when 

cotransfecting with pGFP by electroporation. K562 cells were cotransfected with 5 pmol 

siRNA and 10 ug pMaxGFP by electroporation, together with free 10 nm AuNPs. The 

bulk electroporated cells (BTX) were used as negative control. As shown in Figure 5-1 A, 

less GFP expression was seen when codelivering pMaxGFP and the corresponding
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siRNA. Electroporation with AuNPs turned off more GFP expressions than 

electroporation with free siRNA (Figure 5-IB).
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Figure 5-1: AuNPs electroporation enhanced siRNA delivery: (A) fluorescence images 
and (B) intensity measurement on GFP expression level, n = 3 and (***) represents p < 
0 .001.
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The enhancement of AuNPs-polyplex to siRNA interference performance should 

be better than what was shown in Figure 5-1. The presence of AuNPs enhanced the 

expression level of green fluorescent protein with the same mechanism demonstrated in 

Figure 4-7 o f Chapter 4. This enhanced expression means siRNA with AuNPs must shut 

off more GPF proteins than that using siRNA only to reach the similar protein expression 

level. Therefore, the enhancement of AuNPs to siRNA down regulation is better than 

what was shown in Figure 5-1 for their higher starting protein level.

5.3.2 Gold Nanoparticle-Enhanced mi RNA Delivery

K562 cells were electroporated with fluorescent AuNPs (FNP) or transferrin 

grafted AuNPs (Au-Tf), together with 200 pmol miR-29b. The bulk electroporated cells 

(BTX) were used as negative control. The cells that were transfected with 

Lipofectamine2000 (lipo) was used as the positive control. Compared to negative control, 

the mature miR-29b expression was increased ~1.45 folds in the cells that were 

electroporated with FNP, and ~1.97 folds in those that were electroporated with Au-Tf at 

24 hours after electroporation. This increase demonstrated that both free AuNPs and 

transferrin-grafted AuNPs have enhanced miR-29b expression (Figure 5-2A). As shown 

in Figure 5-2B, the expression of targeted genes DNMT3B and MCL-1 was more 

efficiently down-regulated in the cells electroporated with FNP and Au-TF compared to 

Lipofectamine2000 transfection. Moreover, the down regulation of the target genes is 

either more efficient or comparable with bulk electroporation (Figure 5-2B).
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Figure 5-2: Preliminary result for AuNPs enhanced miR-29b delivery in K562 cells: 
(A) mature miR-29b expression (all expression levels were normalized to bulk 
electroporation) (B) targeting genes expression.

5.3.3 siRNA Delivery bv AuNPs-polvplex

To demonstrate the effectiveness of AuNPs-polyplex electroporation on siRNA 

delivery, we chose siRNA with specific sequences to silence the expression of GFP and 

luciferase when cotransfecting with pGFP and pLuc by electroporation. Both adherent 

cells NIH 3T3 and suspension cells K562 were used for the tests.



As shown in Figure 5-3A and Figure 5-4A, less GFP expression was seen when 

codelivering pMaxGFP and the corresponding siRNA. Electroporation with AuNPs- 

polyplex (siRNA) turned off more GFP expressions than electroporation with free siRNA 

(Figure 5-3B and Figure 5-4B). Similar down regulation performance was found when 

cotransfecting pLuc and the corresponding siRNA GL3 into K562 cells, as shown in 

Figure 5-4C. Compared to the interference result of free siRNA GL3, an additional 15% 

drop of luciferase signal was found when siRNA molecules were conjugated in AuNPs- 

polyplex. Because siRNA have a much smaller size than plasmid DNA, delivery of 

neither free siRNA nor AuNPs-polyplex to cell cytosol through electroporation is very 

challenging. However, because siRNA rapidly denatures, studies of siRNA delivery often 

focus on their protection from enzyme degradation. Therefore, siRNA delivery with 

AuNPs-polyplex electroporation could be more beneficial when used for in vivo delivery.
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Figure 5-3: AuNPs-polyplex electroporation enhanced siRNA delivery in 3T3 cells: 
(A) fluorescence images and (B) intensity measurement on GFP expression level, n = 3 
and (*) represents p < 0.05, (***) represents p < 0.001.
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Figure 5-4: AuNPs-polyplex electroporation enhanced siRNA delivery in K562 cells: 
(A) fluorescence images and (B) intensity measurement on GFP expression level, and 
(C) the luminescence measurement on luciferase expression level for free siRNA 
(“pMax + siRNA” and “pLuc + GL3”) and siRNA from AuNPs-polyplex (“pMax + 
AuNP/PEI/siRNA” and “pLuc + AuNP/PEI/GL3”). n = 3 and (*) represents p < 0.05, 
(***) represents p < 0.001.
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As cotransfection of DNA plasmids and siRNA approach were adopted here, the 

interference of siRNA to the expression of the targeting reporter gene occurs 

simultaneously with that particular transgene expression in cells. The early presence of 

copious siRNA probes could silence the cotransfected targeting genes more efficiently 

than those that already maintain a sustained expression level in the cells. Therefore, both 

free siRNA and siRNA from AuNPs-polyplex showed efficient down regulation 

performance here, which allows only limited room for AuNPs-polyplex to further 

enhance this interference. Moreover, the presence of AuNPs during polyplex (siRNA) 

delivery simultaneously enhanced the expression level of green fluorescent protein or 

luciferase with the same mechanism demonstrated in Figure 4-7 of Chapter 4. This 

enhanced expression means siRNA molecules in AuNPs-polyplex must shut off more 

GPF or luciferase proteins than that using free siRNA to reach the similar protein 

expression level. In other words, the enhancement o f AuNPs-polyplex to siRNA down 

regulation is better than what was shown in Figure 5-3 and Figure 5-4 for their higher 

starting protein level than that using free siRNA probes.

5.3.4 miRNA Delivery bv AuNPs-polvplex

As shown in Figure 5-5A, higher mature miR-29b expression was achieved with 

AuNPs-polyplex electroporation. At 24 hours after electroporation, the mature miR-29b 

expression was ~2.7 folds more efficient than bulk electroporation, and ~82 folds more 

efficient than the expression for the sample in which the cells were incubated with 

AuNPs-polyplex without electroporation. This result indicates that both AuNPs-polyplex 

and electroporation contributed in the process of the miR-29b delivery. The expression of 

the targeted genes, DNMT3B, CDK6, and MCL-1 was more efficiently down regulated
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with AuNPs-polyplex electroporation. As shown in Figure 5-5B, for cells that were 

electroporated with AuNPs-polyplex, the target genes DNMT3B, CDK6 and MCL-1 

were down-regulated by 55%, 12%, and 40%, respectively, compared to the untreated 

cells, and 45%, 34%, and 35%, respectively, compared to the incubation only group.
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Figure 5-5: Preliminary results for AuNPs-polyplex enhanced miR-29b delivery in 
K562 cells: (A) mature miR-29b expression (B) targeting genes expression. 
“Au/PEI/miR29b incubation” stands for transfection with AuNPs-polyplex without 
electroporation. All expression levels were normalized to untreated cells (control).

5.4 Conclusions

This chapter focuses on the small nucleotide delivery with the AuNP-polyplex 

electroporation method. AuNPs are used to enhance the strength of the local electric field
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and conjugate with the polyplex to reduce the cytotoxicity during electroporation. The 

RNA release, expression, and their effect to regulate the target genes were justified.

Based on the higher expression efficiency of the AuNP-polyplex electroporation, we 

concluded that this method performs better than bulk electroporation and sole AuNP 

enhanced electroporation. These findings suggest favorable prospects for the practiced 

application of small nucleotide in genetic therapies. Unlike plasmids, the RNAs are rather 

fragile and the protections to prevent the RNAs from degrading in the process of delivery 

are necessary. We expect that our AuNP-polyplex provide a tool for in vivo genetic 

regulation with low toxicity and high delivery efficiency, and therefore serve as resource 

for novel therapies in regenerative medicine.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Electroporation is an effective nonviral cell transfection approach for its balance 

on the transfection efficiency and cell viability, no restrictions o f probe or cell type, and 

operation simplicity. In this dissertation, we investigated the improvement of 

electroporation performance through the introduction of AuNPs, transferrin grafted 

AuNPs, or AuNP polyplexes. Results are concluded as follows:

With the application of highly conductive AuNPs in electroporation solution, we 

demonstrated better DNA and RNA delivery efficiency and higher cell viability in 

mammalian cell electroporation. By adding free AuNPs in the electroporation system, we 

reduced the resistance of the electroporation solution so that the local pulse strength on 

the cells was enhanced. We have confirmed the pulse strength focusing effect and 

investigated its dependence on the particle size, concentration, and electroporation 

conditions. Transferrin-grafted AuNPs were brought to the cell membrane by affinity 

binding to TfR receptors to work as virtual microelectrodes to porate cells with a limited 

area from many different sites. The contributions o f localized electroporation with Tf- 

AuNPs were then evidenced. An equivalent mixture of free AuNPs and Tf-AuNPs 

exhibited the best enhancement, where the transfection efficiency increased 2-3 folds
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with minimum sacrifice of cell viability. These concepts enhanced in vitro delivery of 

DNA probes for both batch-type and flow-through electroporation systems.

We have also used AuNPs as carriers for PEI-DNA and PEI-RNA polyplex while 

electroporation was applied for fast and direct cytosolic delivery. In this case, cationic 

polymer molecules condense and/or protect genetic probes as usual, while the AuNPs 

help in aggregating and fixing polycations. The AuNP fixing helps to minimize the 

cytotoxicity from polyplex after cytoplasmic release without degrading probe protection. 

It also avoids the poor nanoparticle quality problem existing in traditional polyplex 

synthesis, namely oversized particles and broad size variations, by managing molecule 

interactions and assembly on the surface of AuNPs. This hybrid approach was evaluated 

with both model anchor cells (i.e., NIH/3T3) and suspension cells (i.e., K562). We found 

that AuNP-polyplex showed 1.5-2 folds improvement on the transfection efficiency with 

no significant increase of toxicity when compared to free plasmid delivery by 

electroporation alone.

6.2 Future Work

It has been demonstrated by several studies that microRNAs are actively involved 

in tumor development by functioning as tumor suppressors or/and oncogenes. Currently, 

miRNA-based therapy faces several challenges, including lack of tissue specificity, poor 

stability, and insufficient cellular uptake. AuNP polyplex can be used to protect 

microRNA in electroporation therapy by enhancing their intracellular stability. The 

availability o f versatile surface modification technologies for AuNPs allows for great 

opportunities to use AuNPs-polyplex to deliver miRNA with cell or tissue specificity.
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Gold nanomaterials have been widely used in sensing, imaging, diagnosis, and 

therapeutic applications. In this case, our approaches could be integrated with some 

diagnostic and therapeutic functions in a single nanosystem. Therefore, they could be 

used to noninvasively track the target therapeutic probes and to measure their delivery 

performance simultaneously.

The main objective of this dissertation thesis is to develop AuNPs carriers for 

electroporation-based therapeutic gene-delivery. Animal models should be used to 

investigate the in vivo behaviors of the therapeutic delivery, such as stability of 

therapeutic probes, toxicity of the delivered complex, route tracking and clearance rate of 

AuNPs.
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