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ABSTRACT

This dissertation addresses optimally estimating the amplitudes of 

superimposed sinusoidal signals with unknown frequencies. The Cramer-Rao Bound 

o f estimating the amplitudes in white Gaussian noise is given, and the m axim um 

likelihood estimator o f  the amplitudes in this case is shown to be asymptotically 

efficient at high signal to noise ratio but finite sample size. Applying the theoretical 

results to signal resolutions, it is shown that the optimal resolution o f  multiple signal* 

using a finite sample is given by the maximum likelihood estimator o f  the amplitudes 

o f signals.

iii
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NOTATION

Re(«) real part o f a complex number, vector, or matrix

ImO) imaginary part o f  a  complex number, vector, or matrix

( • ) r transposition o f  a  vector or matrix

( • ) ’ conjugate o f a vector or matrix

( • ) " conjugated transposition o f a vector or matrix

£ ( .) expectation o f a  random variable

w absolute value o f  a complex number

INI norm of a vector

I identity matrix

viii
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CHAPTER 1

INTRODUCTION

We deal w ith the problem o f optimally estimating the amplitudes o f 

superimposed sinusoidal signals in this dissertation, which occurs in a variety o f fields 

ranging from radar, sonar, oceanography, and seismology to medical imaging and 

radio-astronomy. The study o f  this problem has been the subject of numerous books 

and papers, and its history dates back at least 200 years.

In this chapter, we model and formulate the problem, review some o f  its 

classical methods, and present a summary o f the content and the contributions o f  this 

dissertation.

This chapter is organized as follows. Section l . l  presents several examples. 

Section 1.2 then presents a  detailed model and formulation o f  the problem. Section 1.3 

reviews the previous work on the problem. Finally, Section 1.4 presents an outline o f  

this dissertation.

1.1 Background

Our formulation o f the superimposed sinusoidal signal problem was motivated 

by Several specific problems that we now briefly describe.

1

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



2

1.1.1 The Passive Sensor Array Problem

Consider a passive sensor array composed o f N  sensors with arbitrary locations 

and arbitrary directional characteristics. Assume that K  radiating sources are located in 

the far-field o f  the array. The far-field assumption implies that the wavefronts received 

by the array can be well modeled as planewaves. Assuming for simplicity that the 

array and the sources are confined to a plane, it follows that the position o f  the £-th 

source is characterized by a single parameter—its direction-of-arrival 0k .

With this parameterization, the signal received by the /-th sensor can be 

expressed as

K
X,C0 = Z  a£0k)sk( t - r, (?,)) + w,(/) (1.1)

where sk (•) is the signal of the Ar-th wavefront as observed at a reference point in the 

array, at{9k) is the amplitude response o f  the /-th sensor to a wavefront impinging 

from direction 0k , r,-(04) is the propagation delay between the reference point and the 

/-th sensor for a wavefront impinging from direction Qk , and w, (•) is the white noise 

at the /-th sensor.

Certain simplifications o f (1.1) arise if  the signals are narrowband and have the 

same unknown center frequency, say <y0. In this case, the Ar-th signal can be expressed

as

sk (/) = uk {t) cos(*v + v* (0) (1 -2)

where ut («)and v4(«)represent slrw ly varying signals that modulate the amplitude 

and phase o f  sk(»). In the context o f  passive sensor arrays, there is a  more specific 

restriction; it is assumed that the modulating signals do not change significantly during
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3

the time it takes for the wavefront to propagate across the array, implying that the 

following approximation is valid:

**(*- rX ^)> * «*(OcosC<y0( r -  r,(0k))+vk(t)) (1.3)

The form o f  (13 ) is still not very convenient for our purposes. A simpler form 

results when the complex representation is used. For any real signal x(t), the Fourier 

transform o f x(t), X{a>) ,  is given by

40

X((o) = jx(t)e~Ja*dt (1.4)
—«

which has the following property:

X(a>)=(X(-a>)y (1.5)

As a result o f  (1.5), we restrict our attention only to the half line and define

[2X{o>) e> > 0
*■«.(*) = 1 « , - (1-6) [ 0 otherwise

The inverse function of X^(m)  is given by

* .( ')  = j  XX<o)ej“d a  (1.7)
o

With these definitions, the complex representation of the signal x(t), x ( t ) , is 

defined as

x{t) = e~j^ x A O  (1-8)

From (1.4) to (1.8), it follows that sk(t) = uk(t)eJ,t(l) which implies that (1.3)

can be rewritten as

sk(t -  T,(fik)) * (O e-"br (*‘) (1.9)
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Notice the simplicity resulting from the complex representation; the time-delay 

has been transformed to multiplication by an exponential.

Using (1.9), we can now rewrite (1.1) as

* /(') = X  w,(0i~l

= 'EaiC0k,t)e-J’<‘rl0') + wXO (1.10)

where

= £ (w ,(/)w *(0) = <r2S(i -  j )  (1.11)

£(wf(f)w,(0) = Eiw^Owjit)) = 0 (1.12)

where <?(•) is a  delta function, which is given below

fl 0  =  0 
w  = {o * * 0

Given a snapshot o f N  complex-valued samples, the passive sensor array

problem is to estimate the directions-of-arrival 9X,---9K and the amplitudes

a, (•),---, aK (•) o f the impinging wavefronts.

1.1.2 The Harmonic Retrieval Problem

Consider a signal x(«) composed o f  K  sinusoids with unknown frequencies 

G7,, - - - ajK embedded in additive noise,

*(0=  X a*cos(cr*r + ^ )  + K O  (1-13)
*-■

where ak and 4k are the amplitude and phase o f the k-th sinusoid.
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Let a tapped-delay-line with N  equally spaced taps D  delay units apart be used 

to sample the signal. The signal at the (z>l)-th tap is given by

K
x ( t - iD )  = 2 X  c o s ^  (/ -  iD) + ^*) + w,{t) (1.14)*-l

As in the sensor array problem, it turns out that the complex representation is 

more convenient. Using the complex representation, we can express (1.14) as

K

x i t - i D ) = X  ake~Jm,iD + w,(/) (1.15)
k=l

where ak = akeJ("i,'r*k) ,(1.11) and (1.12) still hold for w.(«).

Given a snapshot o f N  complex-valued samples, the harmonic retrieval 

problem is to estimate the frequencies ar,,-*-crKand the amplitudes ax, --,aK o f  the 

sinusoids.

1.13 The Pole Retrieval Problem

Consider a linear system that is excited by an impulse. Assume that the system 

has K  unknown poles at locations sx, - - , s K in the complex plane, st = a t + jtnk . 

Assuming that all the poles are distinct, the response o f the system can be expressed as

where ak is the residue at the Ar-th pole, $k is the phase at the Ar-th pole, and w(t) is the 

white noise. Assuming that the response is sampled by a tapped-delay-line with N  

equally spaced taps D  delay units apart, the output at the (z+l)-th tap is given by

jc
x{t) = ^  akea>' cos(erkt + j k)+ M.0 (1.16)

K

x ( t -  iD) = X  ake“tl" ,D) cos(ark(t -  iD) + ^ ) +  w,(r) (1.17)
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Transforming again to the complex representation, (1.17) can be expressed as

K
x ( t - iD )  = 2  ake~Jm,,D + w,(/) (1.18)

where ak = akeJls‘‘**t) , (1.11) and (1.12) still hold for iv((* ).

Given a snapshot o f  N  complex-valued samples, the pole retrieval problem is 

to estimate the locations s^ -^x^of the poles and the corresponding residues

1.1.4 The Echo Retrieval Problem

Consider a radar or sonar system that transmits a known pulse s(* ) and receives 

a backscattered signal. The backscattered signal can be modeled as a superposition of 

K  scaled and delayed echoes embedded in additive noise,

the received signal is sampled by a tapped-delay-line with N  equally spaced taps D 

delay units apart; then the complex representation at the (/'+l)-th tap is expressed as

K
x ( t -  iD) = 2] mks ( t -  iD -  rk)+ w(t -  iD) (1-20)

*~i

Given a snapshot o f N  complex-valued samples, the echo retrieval problem is 

to estimate the delays r,, • • •, rK and the amplitudes m,, • • •, mK o f the echoes.

K
(1.19)

where mk is the amplitude of the fc-th echo and u'(/‘) is the additive noise. Assume that
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1.2 Modeling and Formulating

Motivated by the examples presented in the previous section, in particular the 

passive sensor array problem, we now formulate the superimposed sinusoidal signal 

problem.

Let x ( 0 ) x (N  -  1) denote N  complex-valued samples or observations o f  a 

complex-valued process x(«),

K
x(n) = sin) + win) = £  akeJmtTl" + win), n = 1

* « i
d-21)

where ak is the complex amplitude of the 1th sinusoid having frequency , {w(/i)} 

are the observation noises, assumed to be statistically independent and white Gaussian 

noises with mean zeroes, and Ts is the sampling interval.

Stacking the observation data into vectors, we can rewrite the model (1.21) as 

x=  [s(arI),s(ar2),...,s(arJC)]a + w  = S(ar)a+ w  (1-22)

where x =

' x(0) ' f K 0 ) '
h i

( 1 ]
x(l)

* ii M<1) ne>•* az s(cr) =
eJ"T'

< x iN -  1), M V - l l

S(cr) = [s(ar,),•••,8 (^ )1  is a N x  K  matrix w ithK < N , and where the white noise 

satisfies

£ (w )=  0 , £(w w " )=  a 2\  and £ (w w r) = 0 (1.23)

The sample space associated with model (1.22) is (X ,3, P ) , where X = C ‘v , 3  

is the Borel set o f C * , and for any event B  in 3 , the probability /*(•) is given by
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K

exP(----------- ^ —2---------- )dx

||x-S(cr)a||'

The superimposed sinusoidal signal problem can be stated as follows.

Given a  snapshot o f observation data x described by equation (1.21) or (1.22), 

estimate the following three sets o f  unknown parameters,

1) The number of sinusoids K .

2) The frequencies er, ,..., erK.

3) The amplitudes ax,. . . ,aK .

In this section, we review some o f the existing methods to the superimposed 

sinusoidal signal problem.

As the classical method, Fourier transform,

can work on the problem. The number o f sinusoids K  can be estimated by the number 

o f local maxima o f \X(ar)\ which are over a threshold; the frequencies can be 

estimated by picking the K  values o f  co which locally maximizes |X(er)\, we denote 

the estimated frequencies as mk, k=  1,2,---, A"; and, the amplitudes can be estimated

13  Previous Method Review

W  #1*0

1
(1.24)

by ak = X (m k) ,  k=

Reproduced with permission ofthe copyright owner. Further reproduction prohibited without permission.



The classical technique is still popular even today bin is challenged by the 

following problems:

1) The window length T  = NTS is finite and imposes a limitation upon the resolution 

capability o f two sinusoidal signals. As is well known, two sinusoidal signals 

cannot be resolved by the classical method, i f  their frequency gap is less than yT.

2) In estimating the amplitude for one sinusoid, say <o,, all other sinusoids interfere 

with the estimation as clutters, possibly severely damaging the estimation.

These problems have motivated the modem developments in signal, array, and 

imaging processing such as maximum entropy spectral estimation, adaptive filtering, 

or adaptive antenna.

One method to improve upon the Fourier transform method was presented by 

Burg (1967, 1975). He attributed the poor resolution o f the Fourier transform method 

to the limited window length which yields only a finite number o f the spatial 

covariance lags while the other covariance lags are inadvertently assumed to be zero. 

To improve the resolution, he proposed to extrapolate the covariance function beyond 

the given segment. In principle, there is an infinite number o f such possible 

extrapolations; the “all zeros” extrapolation assumed by the Fourier transform method 

is one o f them, a very arbitrary one as a matter o f  fact. Burg proposed selecting that 

extrapolation for which the entropy o f the signal is maximized and showed that the 

maximum entropy is achieved by fitting an AR model to the data. If  the order o f  the 

AR model is p , the AR(/>) model

p

Z  &*,-* = (1-25)i«l
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amounts to solving for the AR coefficients {# } that minimize the expected prediction 

error

r
m in£|x, -  £ & x ,_ J 2 (1.26)

All the parameters can be obtained equivalently by solving the

following Yule-Walker equation:

r i )  u *
A

P'

'0 
o

l o

(1.27)

where R =

' * ( 0) 
R{ 1)

* (1) 
R( 0)

*0>) * (/> -!)

*(/>) 1 
/?(/>-1)

*(0) ,

is the true (p  + 1) x (/? + 1) covariance

matrix o f the complex-valued process x(«) and can be estimated using the sample- 

covariance matrix R . Thus, the equation (1.2-4) can be rewritten as

\ T p J

' f t '
0

I o ;

(1-28)

The spatial spectral density function is thus given by

/ ( » ) *
2t |I+ £

* - I

and the frequencies are determined as the peaks o f this spectrum.

(1-29)
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Noticing that the poor resolution is caused by undesirable contributions from 

the other sources, Capon (1969) proposed a different approach adaptively filtering the

interference so as to increase the resolution. His approach was as follows. Suppose we

want to estimate the £-th amplitude ak by a linear filter

ak = h[x (1.30)

where h4 is a N x  1 complex vector. Using (1.22) we can rewrite this as 

ak = a,hrs(er,) + a2h rs(«zr2)+-*H-a/chrs(crA:)+ hrw  

= a4hrs(at*) + X  fl;hrs((zr<)+  h rw (1-31)
m k

Note that the first term is a scaled version o f  the desired signal, while the other 

terms are contributions from the other signals and the noise. Regarding all but the first 

term as undesirable interference, Capon proposed selecting h4 so as to m inim ize the 

power o f the right-hand side, subject to the constraint that the desired signal be 

undistorted. More formally, he proposed selecting h4 as the solution o f the following 

minimization problem:

min £ ( |h rx|2) = m m (hrR h ’) (1.32)

subject to the constraint

h rs(gr4) = 1 (1.33)

The solution to this minimization problem is given by

hk = c4R"'s(®^) (1-34)

where ck is positive scalar given by

C‘ s//(ar4) R 'Is(ar4) 0*35)
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The directions-of-arrival can be estimated as the values, which locally 

maximize

c w =  A ^ - ' s W  ( U 6 )

Because the maximum entropy method was claimed to have the super 

capability o f frequency resolution over the Fourier transform, significant attention 

(Ligget, 1973; Pisarenko, 1973; Bemi, 1975; Schmidt, 1979, 1981; Bienvenu and 

Kopp, 1979, 1980, 1981) has been paid to frequency estimation. The eigenstructure of 

the covariance matrix R  o f  the observation vector x  has thus been extensively studied, 

and a class o f  approaches has been developed to estimating the frequencies. A 

representative member o f this class is the MUSIC (Multiple Signal Characterization) 

algorithm. Before we describe MUSIC, we point out certain properties of the 

covariance matrix R . From (1.22), assuming that the signals are uncorrelated zero- 

mean random processes that are independent o f the noise, the covariance matrix is 

given by

R = S(ar)AS//(ar) + <r2I (1.37)

where A is the K x  K  covariance matrix ofthe signals, A = diag{af , - , a 2K}

Let >i, > and w, > tv -->  vs,denote the eigenvalues o f  R  and

S(er)AS//(a r), respectively. From the structure o f R given by (1.37), these two sets of 

eigenvalues are related by

2,. = u, + <r2 (1.38)
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Assuming that the matrix S(sr) is o f  full column rank, it follows that the rank o f  

matrix S(ar)ASff(tzr) is K, implying that the N-K  smallest eigenvalues o f  

S(er)AS//(ar) are equal to zero

uk+\ =•• = oN = 0 (1.39)

Thus by (1.38), we have

^ . = - = ^  = * 2 0-40)

That is, the smallest eigenvalues o f R are equal to a 2 with multiplicity N-K.

Denote the unit-norm eigenvectors associated with kK by , and

those corresponding to by g ,,• ■ •,g^_^- - Also define

/* = ( / V ' / 'kW

8 n-k)n*in-k)

Next, observe that

RG = S(fir)AS*(ar)G + <r2G  = <r2G  (1.41)

which readily implies S ^ a r)G  = 0 , or equivalently

s/'(art )GG"s(ar4) = 0  * = 1 ,2 ,—, *  (1.42)

Since the normalized eigenvectors {//,, gy} are orthonormal,

HHH + G G W = I (1.43)

It follows that (1.42) can also be written as

s"(ar4) ( I - / / / r /')s(ar4) = 0 * = 1 ,2 , - ,*  (1.44)

It is not difficult to see that the true parameter values exx,...,mK are the only 

solutions o f (1.42) or (1.44).
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The basic idea of the MUSIC algorithm is the exploitation of the property 

(1.42) or (1.44) o f the true covariance matrix R that can be estimated by sample 

covariance matrix R .

Similar to the eigendecomposition o f R, let {fiXx, - , f i K, g lr>- , g s _K} denote the 

unit-norm eigenvectors of R , arranged in the descending order o f the associated 

eigenvalues, and let ft and G denote the matrices // and G made o f {/?,} and, 

respectively, {gj} . Define

f ( m )  = s//(ar)GG//s(fir) = s"(a rK I- fijlH)s(sr) (1-45)

The MUSIC estimates o f {mk} are obtained by picking the K values of co for 

which f  (&) is minimized.

There have been many other frequency estimation approaches proposed. Stoica 

et al. (1989) found the Cramer-Rao bound (CRB) o f estimating the frequencies. In 

principle, there is a large number o f  frequency estimators; thus a dispute arises since 

everyone claims his or her estimator takes some advantages over the others. The 

importance o f the CRB is that it provides a criterion for deciding the optimal 

frequency estimator, and puts the dispute to an end by comparing the performance of a 

given estimator to the ultimate performance corresponding to the CRB.

However, the challenging problems still remain unsolved. Most o f  the previous 

approaches paid significant attention to estimating the frequencies while assuming the 

number o f  signals is known. What happens if  the number o f signals is unknown?

Wax and Kailath (1985) indicated that the estimation o f  the number of signals 

is a prerequisite for signal detection and estimation. They applied the results o f the
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eigendecomposition o f  R  to the information theoretic criteria (ITC) for model 

selection introduced by Akaike (AIC) and by Schwartz and Rissanen (MDL), the 

number o f signals is determined as the value for which the AIC or the MDL criteria 

are minimized. According to the ITC, the number o f unknown signals in a  likelihood 

function f  (x| ar) is selected to minimize the ITC sequence as

ITC (m )= -21og /(x |< y (" ))+  P ( N, m) ,  m e[0,A /] (1.46)

where m{m) is the maximum likelihood estimate (MLE) when the number o f  signals is 

m, i.e., m+ 1 < k  < M , and m -  [ a r , , . . . , ^ ] 7̂ is a m -dimensional vector with arm *■ 0 ; 

and P(N,m)  is a  penalty function in the ITC.

A different approach to estimating the number o f signals was given by Gu 

(1998). He proposed that the estimation o f  the number o f signals was based on the 

resolution o f  multiple signals, and the latter is given by the amplitude estimation. In 

his approach, the nested maximum likelihood ratios that are given by

d 2m = 2 lo g /(x |er(m))~ 2 lo g /(x | af ("~1 ’) (1.47)

were shown to be asymptotically independent and sufficient for estimating the number

o f signals. It is also shown that the statistic dm is asymptotically normally distributed 

with a standard deviation o f  1 and a mean value dm. Thus, dm = 0, m -  K+  I,---, A /, 

and dK * 0 i f  and only if  the number o f  signals is K. As a result, estimating the 

number o f signals can be reduced to a sequence o f independent tests o f hypothesis 

dm -  0 against its alternative dm * 0 , which has the reject region

\dJ> D m m -  (1.48)
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Applying the sequence { dm } to estimating the number o f  signals in (1.22), it is 

noted that

-  2 1 o g /(x |^ (" )) = min m= l,---, A/ (149)i(v)eL, /  C

where L . i s  the subspace spanned by s{a^), --,s(crm) . Thus, from the Pythagorean 

theorem, it follows that

d 2m = 2 log f (x| (" )) -  2 log /  (x| (1.50)

where u„ is a unit vector in the subspace L„ and perpendicular to L ^ , . The linear 

processing x ru^ is the maximum likelihood estimator o f  the amplitude o f  signal 

s(c7m) . In other words, {dm} are given by the estimation o f  the amplitudes.

1.4 Dissertation Outline

The Cramer-Rao Bound (CRB) of estimating the frequencies was established 

by Stoica et al. (1989) while treating the amplitudes as nuisances; no CRB of 

estimating the amplitudes with unknown frequencies has been reported yet. However, 

the estimation o f  the amplitudes plays a significant role in signal resolution and 

detection. A question o f interest is what the performance bound and the optimal 

estimator are in the estimation o f  the amplitudes o f  signals using a finite sample. This 

question is the major concern o f this dissertation.

The organization o f  this dissertation is as follows. In Chapter 2, we derive the 

formula o f  the CRB o f estimating the amplitudes o f  superimposed sinusoidal signals 

with unknown frequencies in white noise after we present a brief review of the least 

square estimator (LSE) o f  the amplitudes of superimposed sinusoidal signals with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

known frequencies in white noise. In Chapter 3, the maximum likelihood estimator 

(MLE) o f the amplitudes with unknown frequencies in white noise is given and shown 

to be asymptotically efficient at high signal to noise ratio (SNR) but finite sample. In 

Chapter 4, we present the simulation results that illustrate the performance of the 

MLE. In Chapter 5, we present some concluding remarks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

CRAMER-RAO BOUND

As mentioned in Chapter 1, the amplitude estimation o f superimposed 

sinusoidal signals plays a significant role in signal resolution. In principle, there is a 

large number o f estimators o f the amplitudes such as the least square estimator (LSE), 

the weighted least square estimator (WLSE), and the matched-filterbank estimator 

(MAFI) which has been introduced recently (Stoica et al., 2000). Accordingly a 

natural question is which one is optimal. The Cramer-Rao Bound (CRB) o f estimating 

the amplitudes derived in this chapter can be employed to answer the question. The 

importance o f the CRB is that it provides a criterion for deciding optimal estimators of 

the amplitudes by comparing the performance o f  a  given estimator to the ultimate 

performance corresponding to the CRB.

In this chapter, we introduce the concept o f  the Constrained Matched Filter 

(CMF), then review some properties o f the least square estimator (LSE) o f  the 

amplitudes in model (1.22) when the frequencies are known and finally derive the 

formula o f  the CRB o f estimating the amplitudes when the frequencies are unknown.

2.1 Constrained Matched Filter

As an extension of the classical matched filters, the Constrained Matched Filter 

introduced in this section maximizes the signal to noise ratio (SNR) for a desired

18
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signal and cancels out unwanted signals in the input data.

In model (1.22), a weight vector h o f the CMF s(erm) against

(s(cr, ),/ = *■ m) must satisfy

h rs ( 0 = l  (2.1)

h rs ( ^ )  = 0 , i = 1,* -*,K , i  * m  (2 .2 )

and maximize the SNR for the desired signal s(crw)

|a Mh rs(orm)[2
SN R= (2.3)

To maximize SNR subject to (2 .1 ), break s(crJt) to pm + qm, where pm is the

projection o f  s(cr„) onto the subspace L „ spanned by {s(er,),z = 1,---,AT, / *■ m}, and

q„ is orthogonal to L „ . Thus, h Tp m = 0 because o f (2.1), p m e L . ,  and

_ \am*TqJ- \amf\b .Tq J  J a m?\qJ~
SN R“ <7'hwh = » V k  S “ ! " SNR-~  (24)

as a result o f  Schwarz inequality. The equality holds if and only if  h = c(jqm )*, where c 

is a constant complex number. Therefore, h is a  weight vector o f  the CMF o f s(crm) 

against (s(oT;),/ = I ,- - , K , i  * m } if  and only if  h = c(qm)* .

2.2 LSE of the Amplitudes with Known Frequencies

In this section, we review some properties of the LSE o f  the amplitudes in 

model (1.22) when the frequencies are known.

The least squares estimator (LSE) o f  the amplitudes a is given by

a = [d,,d2," - ,d k]r = argm in ||x -S (er)a || (2.5)a

= [Sff(cr)S(ar)]-IS / ,(cr)x (2.6)
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a  is an unbiased estimator of the amplitudes a , since E ( i)  -  a . 

a  is consistent, because lim a=  lim (a+ [S //(cr)S(cr)]',Sff(cr)w )= a, almosta-*0 <r-»0

surely.

The covariance matrix o f a is given by

I  = £ ([a  -  a][a -  a ]") = <r2[S"(ar)S(ff ) ] '' (2.7)

The matrix in (2.7) is the Cramer-Rao Bound (CRB) o f estimating the complex 

amplitudes o f the superimposed sinusoidal signals with known frequencies in white 

noise (Stoica et al., 2000 ).

Separating the amplitudes a into two parts, a = , then the model (1.22)U  2J

can be rewritten as

x = S,a, + S2a 2 + w (2.8)

where a, = [al,a2,- -,aM]r , a 2 = [aKM,aM+2,-~ ,aK]r , S,(er) = [s(ar,),•••,s(crA,) ] ,  and 

S,(cr) = [s(w*+I),—,§ 0 * ,)].

If  S,(er) and S2(cr) are mutually orthogonal, i.e., S"(cr)S2(cr) = 0 , then we 

have the following theorem (Gu, 2000):

Theorem 1: The LSE o f a, in model (2.8) can be obtained from the following model:

x = S ,a , + w (2.9)

while the LSE o f a 2 in model (2.8) can be obtained from the following model:

x = S2a 2 + w (2.10)

The LSE of a, and the LSE o f a 2are uncorrelated.
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Besides, the LSE a is a  bank o f filters, d, ,d 2 , . . . ,a K. For example, d, = h rx is 

a linear filter o f x with a weight vector hT. Since d, is unbiased, thus 

£(d ,) = £ (h rx) = n ,h rs(firI)+ a2h 7s(cr2)+-"+aJCh 7s(criC) = a,

and hence

h rs(ar,) = 1, h rs(cr2) =-■•= h rs(ar4) = 0 (2.11)

(2.11) means that the filter d, has nulls at o>2, ©3, Furthermore, it is

shown by Gu (1997) that the filter d, is a constrained matched filter which maximizes 

the SNR for the signal at ©, subject to the nulls in (2.7). The LSE perfectly solves the 

challenging problems with the Fourier transform if the frequencies are known.

2 3  CRB o f Estimating theAmplitiides with  
Unknown Frequencies

In this section, we are considering the model (1.21) or the vector version (1.22) 

with unknown frequencies m  and amplitudes a in the case o f white Gaussian noise. 

The CRB of estimating tn in this case has been established by Stoica et al. (1989); no 

CRB o f estimating the amplitudes with unknown frequencies has been reported yet. 

Before we derive the CRB o f estimating the amplitudes a in this case, let us introduce 

the linearization method proposed by Gu (2000).

We first generalize the model (1.22) as follows:

x = f ( 0 ) + w  (2.12)

where t(0)  is an jV-dimensional complex-valued vector with a K  -dimensional real­

valued unknown parameters 0 { K <  N ) ,  and the assumption for w in  (1.23) still 

holds.
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Expanding f  (0) to Taylor series at the true value 0° o f  0 , the nonlinear model

(2.12) can be transformed into the following linear model:

x = f{0)  + w = 1(0°) + ~ 0°) + w (2.13)

where

3t{0) 3f(0) 3f(0) 3T(0)
d0T 30, ’ 302 d0K 1

and

<xHm  _ ^ )
30 1 30, ’ 30-, ^  j

Letting y = x -  f  (0°), (2.13) can be rewritten as

y = ^ F ^ ‘ *°)+W  (2.14)

Gu (2000) proved the following theorem:

Theorem 2: The CRB o f estimating 0 in the nonlinear model (2.12) is given by 

computing the covariance matrix o f  the LSE o f ( 0 -0 ° )  in the linear model (2.14) 

when 0 is real-valued.

The theorem holds for real-valued parameters, But, how can we apply the 

theorem to the complex-valued amplitude parameters?

Extending 0 to the complex value, we obtain the following theorem:

Theorem 3: Theorem 2 holds when 0 is complex-valued

Proof: For any unbiased estimator o f 0°, we denote it by /  = ^  + j #2, we have,

9° , E i f o  = 0? and £ ( £ )  = 0° 

where 0° = R e(0°), 0° = lm (0°), and 0° = 0° + J 0 ° .
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We denote the LSE o f  0° by \p -  ipx + j p 2, so that

£ ( ( / )  = 0°, E(jpx) = 0X° and £ (* /,) = 0?

Obviously, 4 1 and ¥\  arc unbiased estimators o f  0° while f 2 and \p2 are

unbiased estimators o f 02 -

We also denote the covariance matrices o f I  and ip by I  and Q , respectively,

where I  = £ ( [ / -  0 ° ] [ / -  00]*) and £1 = E(\tp -  0°][jfr -  0 °]H) are positive definite 

Hermitian matrices.

To prove the theorem, for any ^-dimensional complex-valued vector 

C  = C, + jC 2, where C, and C2 are K-dimensional real valued vectors, we need to

show that the variance o f C Tj , which is a linear combination o f  p , must be equal to

or greater than the variance o f  the corresponding linear combination o f p , C rp , that 

is, we need to show that the following inequality holds,

£ ([  c Tu  -  9°y\[cr v  -  0O)Y)> E([CT(P -  0 Qy\[cTi v  -  *0>r) (2.i5>

or, equivalently,

C rZ (C T)H > C TCl(CT) H (2.16)

Noticing the fact that every complex number consists o f  two parts, real and 

imaginary, the model (2.12) can be considered as estimating 2K  -dimensional real-

( 0°
valued unknown parameters 0

\ 02
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Applying Theorem 2, the CRB o f  estimating the 2K  -dimensional real-valued 

unknown parameters can be easily obtained by computing the covariance matrix o f the

LSE o f
A 0)

in linear model (2.14).

The LSE o f

variance matrix o f

re *
A°J

W

in linear model (2.14) is exactly

by ¥  , which is given by

w
■ V'zJ

, and we denote the

f * n  ^ .2

v 2 -  e l

where

11/ _ 11/ 7~ m _ O/ 7" m _ m 7 m _ mT 
1 ~  1 ’ T  II  ~ T  I I  ’ 22 ~ 22 ’ *1 2  — 21

‘Fu = E ( [ ^ - ^ f [ r 1-^ ° ])

^.2 = ^ ([^ . ~ ^,°]r [^2 -  ^ ] )

^ 2, = £(1*2 -  4? jr[r, -  O

The vector is an unbiased estimator of
' d f
A 0,

in linear model (2.14), and

we denote the variance matrix o f ' 6 )- by d>, which is given by

jOi r> ( I  - < )  

k

< t)  <t> ^v l! V 12

^ 2 1  *22'

where
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4> = <Dr , <D„ =<Df,, 4>22 = <l>^, 4> 12 = <D2,

o n = £ ( M - O r t e - * ° ] )

4>u = £ ( W - ^ 0m - ^ ] )

By Theorem 2, the variance matrix o f the LSE f f A  .is exactly the CRB o f

estimating the unknown parameter ^ ' 0 j  in linear model (2.14).

Hence, the variance o f any linear combination o f an unbiased estimator o f

V0°)
[ 4  I

, say, I ~ I , is equal to or greater than the variance o f  the corresponding linear

combination o f

where

, or,

E\[Cl
’ 2\ A - 0 2°J

= £  i c r w - ^ ° ] + c 2r t t - C T

(2.17)

= £ (C ,r[ I  -  < ]  + C [ [£  -  -  t f f C ,  + t e  -  ^ ] r C2)

= £(C,r[* -  -  0,°]r C, + c r w  -  4 °][£  -  4 T C ,

+ C [[^  -  ^ ] [ *  -  4 T C ,  + C f r t  -  -  ^ f c 2)
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= C f £ t f  -  0?M  -  0 .T C , + c T £ t f  -  O t e  -  ^°]rc 2

+ c j £ [ i  -  0° M  -  0x°]Tc x + c j £ [ ^  -  «?][£ -  ^°]rc 2)

= cr«D, ,C, + C f t  I2C2 + C2<D 2IC, + C2rd> a C2 (2.18)

Likewise,

far - O
£ |[C f ,C 2r  j  ;  1 ' I2 = C ^ . C ,  + Cf'PjjC j + C j 'PjjC, + C2'F22C2 (2.19)

\yf2~ “z '

so that

C r o uC, + Cf<D 12C2 + Cf<D 2IC, + C[(D 2,0, >
Cf'P, ,C, + C,r,PI2C2 + C2rT 2IC, + Cf'F^C, (2.20)

We now calculate both sides o f  (2.15). The left-hand side o f the inequality is

given by the following:

£ ([C r (*f-  * ° ) ] [ C V -  o n  = £ ( |[ c r  + y c 2r ][* -  *° + y[£  -  O l 2)

= e ( ic,r w  -  o - c 2r[^; -  ^ ° ] + y ( c r t t  -  « ? ]+ c 2rw  -  0 1 2 >

= £ ( i c r w  -  o -  c i ^ ;  -  ^o]p+ic,rt t  -  *2°]+c 2rw  -  < ] p )

= E « c r w  -  4°3- -  O X M  -  t f f c ,  -  [£  -  ft°]r c 2)

+ ( c r t i  -  ^ ° i+ c 2rw  -  o x t e  -  ^ f c , +[#; -  o r c 2))

= £ (  c,rw  -  t f i w  -  ^°]r c ,  -  c r w  -  ^ 3 ^ 2  -  ^°]r c 2
-  c 2r[#; -  o w  -  t f .Y c ,+ c 2r ^  -  o w i  -  02°]rc 2 

+c,r[£  -  O t e  -  *2 ]rc ,  + CJW -  4 ° M  -  4 T C ,
+C,rt t  -  ^°]tt -  < ] rc 2 + < £[*  -  0 ° M  -  0x°]rC 2)

= C TxE [jx -  0,°]W -  4°]rC, -  C f£ [*  -  -  d?]rC2
-  C T2E[j2 -  02° M  -  0x°]rC x + c [ £ [ ^  -  0°][j2 -  tfj°]rC2 

+ c f £ [ ^  -  O t e  -  ^ ] rC, + C [£W  -  O t e  -  ^ ] rC, 
+ C f£ [^  -  tf2°]M -  < ] rC2 + C T2E[jx -  * “][* -  < ] rC2)
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= C[t> „C, -  C f *  l2C2 -  C2rd>21C, + C2rd) a C j

+ C, Q) 22^1 + ^21^-2 + ^2*^ 12̂ -1 + ^2*^ Û -2 (2-21)

Likewise, the right-hand side o f (2.IS) is given by the following,

E([cT(ip -  e ° m c T{ip -  0°)Y) =  c,r4*„c, -  c l v l2c 2 -  c 2r4*2,c , +  c ^ n c 2
+ C f'F^C , + C,r4*2,C2 + C [T 12C, + C24*,,C2 (2.22)

Noticing that (2.20) holds for any ^-dimensional real-valued vector, we 

exchange C, and C2 in (2.20), and obtain the following expression

Cl<t> n C x + C[d> 21C2 + C[(D I2C, + C2<b „C 2 >
C / ^ C ,  + C[V2lC2 + C[4*,2C, + C2r4*„C2 (2.23)

Replacing C, by -  C, in (2.20), we have

C fO , ,C, -  C f<D l2C2 -  C 2rd> 2,C, + C2<h >
C y uC x -  C y i2C2 -  C24*2,C, + C2'P22C, (2.24)

Combining (2.23) and (2.24), we obtain

c r *  nc ,  -  c r o  I2C2 -  C ^ . C ,  + C2d> j, C2 
+ C f0 22C, + cr<b2ic 2 + C20 12C, + c 2ro  „ c 2

> C ^ . C ,  -  C ^ C ,  -  C24*2,0, + C[4*„C2
+C,r4*22C, + C[4*2,C2 + C24*,2C, + C2*P„C2

that is,

£ ([C r (# -  ^°)][C r ( / -  0°)]*) > £ ([C r (!/ -  ^°)][Cr (i; -  0°)]*) 

which completes the proof.

With Theorem 1, Theorem 2, and Theorem 3, we can obtain the formula of the 

CRB of estimating the amplitudes in model (1.22) that is given by the following 

theorem:
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Theorem 4:The CRB of estimating the amplitudes in model (1.22) is given by

a 2[S ff( o 0)S(tn0)]- , + (tT2/2) D(t30)R "‘ D "(© 0) (2.25)

Proof: Applying the Taylor expansion, the model (1.22) can be linearized as follows:

x = S(cr0)a0 + S(fir0) [ a -  a 0] + S'(ar0)A0I> -  sr0]+ w
= S (© 0)a  + S '(© o )A o[® -® 0] + w (2.26)

where tn0 = t©,0,©,0,.--©^ ] r and a 0= [a ,° ,a? ,...,a£  ] r are the true values o f © 

and a ,  respectively; S ’(©0) = [s^© ,0),*^© ,0),..., §’(©£)], and s ‘(© ) is the 

derivative o f s (© ) with respect to © ; A 0 is the diagonal matrix {a° }.

Let P (m 0)=  S(© 0)[S " (© 0)S (© 0) ] - 'S " (© 0) (2.27)

and Q (® 0) =  I - P (® 0) (2.28)

From (2.26)-(2.28), it follows that 

x =  S (© 0) a  + P (© 0)S '(© 0)A 0[© -© 0] + Q (© 0)S '(© 0)A 0[© -© 0] + w 

= S (© 0){ a  + [S " (© 0)S (© 0) ]“‘ S //(© 0)S ‘(t30)A 0[© -© 0] }

+ Q ( r a 0 ) S ^ra0)A0 [©-©<,] + w

= S (© 0)b  + Q (© 0) S ( © 0)A 0 [© -© „] + w (2-29)

In (2.29), b =  a + D(©0)[© -© 0] (2.30)

and D (© 0) = [S H(©0)S (© 0) r '  S " (© 0)S '(© 0)A 0 (2.31)

Because S"(er0)Q(fir0) = S //(ar0) -  S H(er0)P(er0) = S"(nr0) -S " (e r0) = 0 , so

S"(Er0)Q(©0)S’(ar0)A 0 = 0, i.e., S (© 0)and  Q (© 0)S '(© 0) A 0 are orthogonal; by

Theorem 1, the LSE b and (© -©„) of the linear expansion (2.25) are uncorrelated 

and can be separately obtained from the following models:
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x = S O 0)b+ w (232)

and

x = Q ( o 0)S  (i3o)Ao [m -  er0]+w  (2.33)

From (2.32), we can easily obtain

h =  [S /f( o 0)S(tiT0) ]_I S //( o 0)x  (2.34)

As the real-valued LSE in the linear model (2.33), m - m0 can be explicitly 

given in a closed form. As a matter o f fact, let

X=Xr + JXi , w = w r + JW'

Q (m 0) S (© 0)A 0 = U+yV 

where xr , w r , and U are the real part, and x,, w ,, and V are the imaginary part. 

Thus, we have

xr = U(cr -  ar0) + wr , x, = V(er -  er0)+ w,

According to (1.23), w r and w, are independent Gaussian random vectors with

E (  w rw rr ) = E( w,w,r ) = ( -X)I  

It is straightforward to have

(m  - ®0)=(U rU + V rV )-'(U rxr + V rx.)

where

V TV  * V TV  = Re{ A ? (S ’(«>„) f  Q (ra„)S '(<n0) A „}

Ur», + V ri ,  = Re{ A * [ S ( h 0) ] "  Q (ra„)x>

Thus,

( g j- m0) =  R _,R e { A "[S '(© 0) ] / , Q (tn0)x }  (2.35)

where
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R  = Re{ A " [ S '(© „ )]"  Q ( t«t0)S (® 0)A 0 }, (2.36)

From (2.30) it follows that the LSE a is given by

a = b - D (tu0) [© -tn 0] (2.37)

and

a - a 0 = b -  b0 - D(tiJ0)[ tn -m 0] s  N +  C (2.38)

here

N =  b -  b 0 = [S " ( tn 0) S ( o 0) ] ' l S / ,(tiT0)w  (2.39)

and

X (N )  = £ ( N N W) = ct2[S w( ci0)S ( gt0)]_1 (2.40)

C  in (2.38) is caused by the error between cr and tn0. It is known (Stoica,

1989) that

E [c t- tit0][g j-ra 0] T =  (cr 2/2) (2.41)

where R  is given in (2.36), and where (2.41) is the CRB o f estimating tn .

Since N and C are uncorrelated, thus the covariance matrix o f  a is given by

E [ a - a 0] [ a - a 0 ]" = E N N " + E  C C "  =

= cr2[S //(cr0)S(tiT0)]_I + (<y2/2) D(ta0)R " ' Dw(m 0) (2.42)

By Theorem 3, the right-hand side in (2.42) is the CRB o f  estimating the

amplitudes with unknown frequencies in the case of white noise, which completes the 

proof.
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CHAPTER 3

OPTIMAL AMPLITUDE ESTIMATOR

In Chapter 2, we derived the formula o f the CRB o f  estimating the amplitudes, 

which should be very useful in practical applications and theoretical studies to 

compare the performance o f a given estimator to the ultimate performance 

corresponding to the CRB. We say an estimator o f a parameter is optimal if  it is both 

consistent and efficient. The LSE o f the amplitudes in Section 2.1 is optimal when the 

frequencies are known. It is not such a case that we can find an efficient estimator o f a 

parameter all the time; however, we can always find an asymptotically efficient 

estimator of the parameter; that is, the covariance o f the estimator asymtotically 

approaches the CRB o f estimating the parameter when the signal noise ratio (SNR) 

goes to infinity. The maximum likelihood estimator (MLE) o f  the amplitudes, as 

shown in this chapter, is consistent and asymptotically efficient.

We have organized this chapter as follows. In Section 1.1, we derive the MLE 

o f  the amplitudes in the superimposed sinusoidal signal model (1.21) or (1.22). Then 

in Section 1.2, we show that the MLE of the amplitudes is asymptotically efficient. 

Finally, in Section 1.3, we show that the optimal resolution o f signals using a finite 

sample is given by the MLE o f the amplitudes o f superimposed sinusoidal signals.

31
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3.1 MLE o f the  Amnlitiides

To evaluate the statistical model o f  the observed data, recall that the noise u<«) 

was assumed to be a complex Gaussian random process with zero mean and

covariance matrix o f  the form <r2I . Thus, it follows that the joint density function of 

the observed data x is given by

/ ( * )  = F I  J ^ T exP<~ 2cr -)

1 , | |x -S (« r ) a ||\
= T J S r f* * -5 ? — '  ( 3 1 )

The log-Iikelihood function o f (a, or) is given by

L (a ,m) = -  y  log(2/r<r2) -  (3.2)

The maximum likelihood estimates (MLE) o f the unknown amplitudes a and 

unknown frequencies or are the values that maximize the log-likelihood function in 

(3.2) or, equivalently, the values that minimize the following expression:

U (a,fi7)= ||x-S(cr)a||2 (3.3)

The minimization o f U(a,izr), for fixed m , can be achieved when the vector

x -S (c r)a is  orthogonal to the subspace 5(ar) spanned by s(crI), " ,s(criC) . The

orthogonality requires that the complex inner product of x -S (o r)a  with each o f 

s(®i),• • -,s{erK) be nullified, i.e.,

s"(flrfX x-S (ar)a )=  0 , /=  1 ,2 , - ,*  (3.4)

that is,

S w(arX x-S(ar)a)=  0 (3.5)
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The solution for a in (3.5), for fixed m , is then given by

a(cr) = [S "(ar)S (ar)r‘Sff(2r)x (3.6)

Applying the Pythagorean theorem to (3.3) leads to

U(a(ar), m ) = ||x -  S(ar)a(cr)||2 
= xwx-||S(izr )a(cr )[|2 

= x " x -  a"(fir)S"(ar)S(fir)a(cr)
= x//x -x "S (c r)[S "(e r)S (c r)r,S"(<zr)x 
= x //x - x wP(cr)x 

= x"Q (cr)x (3.7)

where P(er) = S(ar)[Sw(cr)S(cr)]_lS ff(cr) is the projection operator over the vector

space C N, Q(cr) = I -  P(ar) and Q(ar)S(cr) = 0.

To minimize U(a(ar),er) over m , the MLE nr needs to maximize xwP(cr)x ,

i.e.,

ra = arg max x H P(m  )x  (3.8)

and

a = [S " (m  )S (m  )]- ' S "(©  )x  (3.9)

3.2 Asymptotic Efficiency of the M LE

In this section, we are going to show that the MLE w  in (3.8) and the MLE a

are asymptotically efficient as the noise power <r 2 -+ 0, or, equivalently, as the SNR

is large. The white Gaussian noise w  = a  z and z satisfies 

£ ( z ) = 0 ,  £ ( z z ff) =  I a n d £ ( z z r ) = 0  

We define

C ( o ) S x " P ( tn )x = ||P (a r )x ||2
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F(ra ,gj0)se a "  S ff (tjJ0)P(BJ )S(nr0) a 0=||P(cr)S(cr0)a0||2 

Over the domain Q that is a  compact region in the m  -space containing ra0 as an 

interior point

The geometric interpretation of C(tn ) is the length o f the projection o f  x  onto 

the subspace S (sr ) . Obviously, F(tn ,bj0) has a unique maximum at ta0 in £2. 

Theorem 5: m is statistically consistent as a  —► 0.

Proof: When x  = S ( ta 0) a 0 + w =  S(tn0) a 0 + <y z , it follows from (3.8) that

C(® }= [S (n j0) a 0+CT z ]" P (m )[S (t3 0) a 0-i-cr z ]  -> F (o ,ra 0) (3.10)

uniformly in nr e  Q , as ct —> 0, almost surely.

Thus, for any e > 0, let

Q c = {tn, tn e Q and Ifra - tn0|| > e }

and

d = F(tn0,c j0) - max F(tsj ,nr0) > 0, (3.11)

Thus, almost surely, 3 5 > 0 such that whenever cr < 8 , we have , for all 

m e Q

|C (tn  ) -  F(© ,tn0)| <d/2 (3.12)

In particular, for m = tn0, we have

F(t30,t30) -d /2 < C (m 0) < F (tn0,nj0) + d/2 (3.13)

On the other hand, for tn in £2C, we have

C (tn ) <F(m  ,tn„) - d/2 < maxF(tn ,tn0) + d/2 =  F(©„,©„) - d/2 (3.14)IBeOc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

(3.13.) and (3.14) imply that o  e f i ,  maximizing C (tu ), cannot be in Q t . In 

other words, ||gj - rn0|| < e, when a  < 8 . This completes the proof o f  consistency. 

Theorem 6: © is asymptotically efficient as cr —> 0.

Proof: Expanding C ' (© ) in (© -©„ ) and noting C' ( in ) = 0 lead to

C '(© >- C '(© 0) =  C "(©  )(© -© „) = - C '(© 0) (3.15)

where © —> ©0 as © —► ©0 and where C ’ (© ) is the vector o f  derivatives of C(© )

and C" (© ) is the matrix o f  2nd derivatives o f C (© ).

From Theorem 5 and (3.10), it follows that, as cr —̂0,

C"(m  ) F "  (© „,© „), almost surely, (3.16)

Differentiate F(© ,© 0) with respect to m, in cr = [o-,, •••,©*]

-j^-¥(ar,m0) = a"S "(ar0)^ -P (a r)S (* r0)a0 (3.17)

Making use of general rules for differentiation, and letting

d
—— S(ar) = [0 ,---,0 ,s  (ar;),0 ,---,0 ] = D ^ (m ')
Otffj

Noting that

— [S"(©)S(©)]-, = [S/V )S (a r ) ] - , {D/S '/ (©)S(©) + S/V ) D <S (© )} [S 'V )S (© )r1ovji

we have

~ £ r¥(ar) = ^ t s < > ) [ s " ( a O S ( © ) r ,s /V ) ]

= D(S(ar)[S//(ar)S(ar)]-,S "(ar) + S(ar)[S//(ar)S(ar)]-'D>S"(cr) 
-S(flr)[Sw(ar)S(ar)]-1 {£>S"(©)S(er) + S"(ar)Z)<S(© )}[S"(ar)S(cr)r,S"(ar)

= ( I -  S(ar)[Sw(flr)S(ar)]",S #/(ar)}DiS(ar)[S"(ar)S(ar)]-IS w(ar) 
+S(fflr)[SH(fir)S(ar)r1 Z3»S"(cr){I-S(ar)[S"(ar)S(ar)r'Sw(Br)}
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= Q(cr)£>S(Br)[S/,(ar)S(ar)]-'S"(1zr) + S(ar)[S"(cr)S (cr)r,D<Sw(ay)Q(tzr) (3.18) 

Combining (3.17) and (3.18) leads to

£
— F(cr,ar0)= 2 R e{a"S "(ar0)S(ar)[S"(cr)S(cr)rl£>S//(«r)Q(cr)S(fir0)a 0> (3.19)
UUi t

Differentiating with respect to mj and noting Q(cr)S(er) = 0, we have

<?2
oW'dmj F(ar0,ar0) = -2R e{a0"A S "(ar0)Q (Cr0)D/S(2r0)a0}

and therefore

F '(© 0,© 0) = -2 R e { A "[S '(© 0) ] " Q ( m 0)S '( ra 0)A 0 }= -2R  (3.20)

Differentiating C(m ) with respect to mi in m = [mx, - - ymK\ and using (3.18),

we have

c  „ d
C(sr) = x  —— P(fir)x

dmt dm,

-- x"Q(cOAS(ar)[S"(ar)S(ar)]-,S"(cr)x + x"S(fir)[S 'V )S(fir)]-‘D/Sw(cr)Q(cr)x 

= 2 Re{x"Q(cr)DIS(cr)[S"(cr)S (cr)r,S"(i5r)x}

Hence,

-£~C (m 0) = 2Re{x"Q(fir0)D/S(fir0)[S"(ar0)S(cr0) r ,S//(ar0)x}

= 2 Re{(a0"S w(fir0) + w ")Q (Cr0)£)/S(cr0)[S//(ar0)S(tir0)]-1S//(er0)(S(cr0)a0 + w)}

= 2Re{w/,Q(ar0)AS(2r0)(a0 + [S 'V 0)S(ar0)r'S"K)w)}

Ignoring high order,

— C(fir0)«  2Re{w"Q(cr0)DiS(ar0)a0}= 2Re{a0"DlS"(ct0)Q(ar0)w}

Hence,
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C 'O 0) * 2 R e{A "[S ,(© 0) ] "  Q ( « 0)w }=2R e{A "[S’(OT0) ] lf Q (m 0)x} (3.21)

and (3.15) - (3.21) lead to, as <y —>0,

t£ - t30 =  R _IRe{ A " [ S '( ® 0)]"  Q(ra0)x}  (3.22)

A
and thus to is asymptotically nonnally distributed with mean tn0 and covariance 

matrix

E[T5-tJj0][tn-tsj0] r  = ( a 2/2) R -1 (3.23)

which completes the proof o f  Theorem 6.

Theorem 7: a is consistent as <x —> 0 .

Proof: From (3.9), it follows immediately that

a = [ S " ( © ) S ( © ) ] - , S //(m ) [S (m 0) a 0 + w ] (3.24)

The Taylor expansion o f S(cr) in (cr -  ar0) leads to

S ( o ) a 0 = S(tn0) a 0 + S ( F  ) A 0[ © - o 0] (3.25)

and

a = [ S " ( © ) S ( m ) ] - , S / ,( m ) { S ( m ) a 0 - S ' ( *  ) A 0[ ® - ® 0] + w }

= a 0+ [ S " ( m ) S ( m ) ] - , S " ( m ) w

- a [ S w(T 3 )S ( tn ) ] '1 S / , ( o ) S ' ( F ) A 0[t3j-Gj0] (3.26)

= a 0+ o - [ S " ( o ) S ( r a ) r ' S " ( r a > [ S /,( m ) S ( m ) ] - , S " ( m ) S ' ( 5 ' ) A 0[ o - o i 0]

where the interpolation —► m0 as o  —> nr0 .

By Theorem 5, ra -> cr0, almost surely at high SNR. Hence, a  -* a 0, almost 

surely, as a  -*■ 0, which completes the proof o f  the Theorem.

Theorem 8: a is asymptotically efficient as <x -> 0.

Proof: Neglecting higher order errors, (3.23) leads to, as SNR is large,
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* = *o+[S ,/( o 0)S (tii0)]" ! S ff( o 0)w*

[ S " ( o c)S(t!j0) r I S W(CJ0)S (tiJ0) A0[ o - c i 0]

= a 0 + N - D (tu0)[cj-m0] = a 0 + N +  C (3.27)

Equation (3.27) is exactly the expansion (2.38) except C is caused by the error 

between the MLE tn and the true value ra0. However, it follows from (3.19) that (tn -

gt0) has exactly the same expansion as (tn -tn0) when SNR are large. And it proves 

the asymptotic efficiency o f the MLE a at high SNR.

3 3  Optimal Resolution o f Signals in a Finite Sample

The potential capability o f signal resolutions using a finite sample and the 

optimal resolution has been a controversial issue (Kay, 1988; Marple, 1987). 

However, all agreed that the signal resolution, by its nature, is the detection o f each o f 

the multiple signals instead of the visual impressions o f a simulation (Kay, 1988; 

Marple, 1987; Gu, 1998). In the superimposed sinusoidal signal model (2.21), the 

signal at a), , for example, is the signal to be detected; then all other signals play a role 

of clutter or interference. The optimal filter o f detecting ai s(co,) against interference 

and noise is thus required to be the optimal unbiased estimator of the amplitude a , . 

The requirement o f  unbiasness is for rejecting or nulling the interference, and the 

requirement o f optimality is to minimize the noise variance or, equivalently, to 

maximize the SNR. As an immediate result o f  the asymptotic efficiency o f the MLE 

of amplitudes, the optimal unbiased estimator o f  the amplitude a, is given by its MLE 

a , . Hence, interestingly, the optimal resolution for each of the K  signals is given by 

the MLE o f the amplitudes, a .
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From (3.8), it can be seen that a, is a constrained matched filter (CMF) which

nulls the signals at the estimated frequencies: co2 ,...,cSK and maximizes the SNR for

the signal at <a,. In general, the mismatch between m and m0 causes a leakage o f the

interference at the output o f the filter bank a . The leakage is given in (3.24) by C , 

while N in (3.24) is the noise output. The output interference power and noise power 

are given in the CRB in (2.42). The CRB can be used to set up an optimal CFAR 

(constant false alarm rate) detection for each o f the K  signals.
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CHAPTER 4

SIMULATIONS

In Chapter 2 we derived the formula o f  the CRB o f estimating the amplitudes, 

and in Chapter 3 we showed that the MLE o f the amplitudes is asymptotically efficient 

and the optimal resolution o f  signals using a finite sample is given by the MLE. In this 

chapter, we present the simulation results that illustrate the performances o f  the MLE 

and the Fourier transform.

In simulations, we are considering the following model:

x(n) = A e ^ ' T*n + B eJ2x̂  + a e '2* 1> + w(n), n = 0,1,...31, (4.1)

or

x = A j ( f )  + B s ( ^ )  +  a s ( f ) + w  (4.2)

where As(<j>,) and B s ( ^ )  are two strong clutters with unknown frequencies, <f>,, ^ , 

and unknown amplitudes, A, B; a s ($  ) is a weak return echo with unknown Doppler 

frequency <f> and amplitude a; T, is the radar repetition interval and f s = (1 /T ,) =  320 

Hz, and w is vector o f white noise with mean 0 and covariance <r21.

40
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We now present some examples in which <7 2 = ■—  and the classical frequency 

resolution limit is ——  = 10 Hz. Note that this model is a  special case of the general
* *s

model presented in (1.21) or (1.22).

This chapter is organized as follows. In Section 4.1, we illustrate the 

performance of Fourier transform in signal resolution. Then, In Section 4.2, we 

illustrate the performance o f  the MLE.

4.1 Fourier Transform

In this section, we present three examples to illustrate the performance o f the 

Fourier transform. It holds for all three examples that the input SNR of the strong

clutters, \a \ 2 /<t 2, is 25.4 dB and the input SNR of the weak echo, ja |2 /cr2, is 5.4 dB.

In the first example, three frequencies are far apart beyond the classical 

frequency resolution limit 10Hz:

Amplitude o f  Clutter One A= lOOe^4, Frequency o f  Clutter One =32Hz; 

Amplitude o f Clutter Two B= 100ejr/1, Frequency o f  Clutter Two ^=64Hz; 

Amplitude o f Weak Echo a=ej3r/6, Doppler o f Weak Echo =96Hz.

The observation data x(n) are shown in Figure 4.1 while the Fourier transform

F(4>) = |a-(o>)| is shown in Figure 4.2. There are two peaks that are far apart and 

correspond to strong clutters, but the echo is too weak to be observed in F(4>) in 

Figure 4.2.
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Figure 4.1 Example one ( Observation vs Time)
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m

Figure 4.2 Example one ( Fourier Transform vs Frequency)
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In the second example, the three frequencies are closer to each other than they 

are in the first example, but they are still beyond the classical frequency resolution 

limit:

Amplitude o f  Clutter One A= 100ejxl*, Frequency o f Clutter One fa =32Hz;

Amplitude o f  Clutter Two B=100e-/*/3, Frequency o f Clutter Two ^= 48  Hz;

Amplitude o f  Weak Echo a=eJ*/6, Doppler o f  Weak Echo jt =64Hz.

The observation data x(n) are shown in Figure 4.3 while the Fourier transform

F(<|>)=|X(<0)| is shown in Figure 4.4. There are still two peaks that corresponds to 

the two strong clutters even though they are partly overlapped. The echo cannot be 

seen here just as in the first example in F($ ) in Figure 4.4.

In the third example, two strong clutters are much closer to each other than they 

are in the first two examples such that they fall into the classical frequency resolution 

limit 10Hz.

Amplitude o f Clutter One A= \QOejxl*, Frequency o f Clutter One fa =32Hz;

Amplitude o f Clutter Two B= lOOe7̂ 3, Frequency o f Clutter Two fa =35.2Hz;

Amplitude o f Weak Echo a.—eJT/6, Doppler o f Weak Echo I  =64Hz.

The observation data x(n) are shown in Figure 4.5 while the Fourier transform

is shown in Figure 4.6. At this time, we can merely see one peak in 

F(4>) in Figure 4.6.

Thus, the Fourier transform works only on signal resolution if  the signals are 

strong and the frequencies o f  the signals are far apart beyond the traditional frequency
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Figure 4.3 Example two ( Observation vs Time)
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Figure 4.4 Example two ( Fourier Transform vs Frequency)
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Figure 4.6 Example three ( Fourier Transform vs Frequency)
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resolution limit. Any weak signals cannot be detected since they are concealed by even 

the side lobes o f  strong signals.

4.2 Maximum Likelihood Estimator

However, the MLE can be employed to detect adaptively all signals if  the SNRs 

are reasonably given. The MLE o f <J>, and can be determined easily. The MLE o f <j> 

and a is given by the following model

x = A s(<j>,) + B s ( j^ )  + as((J>) + w (4.3)

Break s (4>) into two parts:

(4.4)

where sq(<(>) is orthogonal to the space spanned by s(<fr,) and s ( ^ )  while

sp(ff) belongs to the space. Thus, the equation (4.3) can be rewritten as

x = A s(<j>,)+ B s ( £ )  + a s f ( t )  + w (4.5)

The MLE o f  ij> and a can be determined as

<|> = arg max s  arg max c(<j») (4.6)

and

.  = s"(<|))x

k»)l! (4.7)

The optimal CFAR detection of the weak echo is given by

> Threshold (4.8)
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where <sa is the standard deviation o f a given in the CRB, and |dj = c(<fT )/js, (<jT)|.

In this section, we present three examples to illustrate the performance o f the 

MLE o f the amplitudes.

The fourth example is exactly the same as the third example in Section 4.1. 

There is a dominant maximum in Figure 4.6, so we assume here that there was only 

one signal in the observation data and that the frequency o f this assumed signal should

be 4> =33.6. The white noise should be left only after we cancel the interference caused

by the assumed signal with frequency <j>=33.6Hz if  there was really one signal. We 

cancel the interference caused by the assumed signal, then obtain Figure 4.7. There are 

two dominant maxima that are symmetrically located on <jT=33.6Hz in Figure 4.7 and 

significantly over the threshold in (4.8), which means the above assumption that there 

was only one signal in the data is not correct; that is, there are at least two signals 

contained in the observation data. We again assume here that there were two signals in 

the observation data, and that the frequencies o f these two assumed signals should be

<j>,=33.216Hz and =33.984. Starting with these two initial points, we try to find the 

stable points o f the maximum likelihood function c ( $ ). Our algorithm is to cancel the

interference caused by either o f the initial points, say, ft, =33.984, then find the point 

which maximizes c(<|>) as a  new initial po in t We cancel the interference caused by 

$,=33.984Hz, then obtain Figure 4.8. There is one dominant maximum in Figure 4.8; 

thus the new initial point is chosen as 4>, =33.544Hz. Again, we cancel the interference 

caused by this new initial point <{>,=33.544Hz, then obtain Figure 4.9. In Figure 4.9
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there is one dominant maximum, so another initial point is found as ^=35.232Hz. We 

continue this way in Figure 4.10 and Figure 4.11 until we find the stable points,

<(>, =32.064Hz and ^=35.232Hz. Again, there should be only the white noise left after 

we cancelled the interference caused by the assumed signals with frequencies, 

<j>, =32.064Hz and ^= 35 .232Hz, if  they were the only signals. We cancel the

interference caused by =32.064Hz and =35.232Hz, then obtain Figure 4.12. There 

is one dominant maximum coming up in Figure 4.12 even though it is very weak, but 

it is over the threshold in (4.8), so at least there were three signals in the observation 

data. We assume the frequency o f  the third signal as <j> =63.264Hz. We treat these 

three detected signals again as initial points, do the same convergent procedure 

described above, then obtain the stable points =31.968Hz, =35.232Hz. and

«j> =64.32Hz. We cancel the interference caused by these three signals, then obtain 

Figure 4.14, which is tested as a white noise. Finally, we detect all three signals 

although the two strong signals are very close and the echo signal is very weak. The 

amplitudes are estimated as follows:

A = 99M \2eJ0:a(anx,

£ =  99.4954^°J27229' ,  

a = 0.90636e'°1S3587jr.

In the fourth example, as is seen, that the weak echo signal can be detected i f  it 

is far away from the other signals beyond the classical frequency limit 10Hz. We will
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Figure 4.7 Example four (MLE vs Frequency)
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Figure 4.10 Example four
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Figure 4.11 Example four
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Figure 4.12 Example four
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Figure 4.14 Example four
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show in the fifth example that the echo signal still can be detected even though it is 

located in the classical frequency limit.

Amplitude o f Clutter One A= 1 OQeJX/*, Frequency o f Clutter One I, =32Hz;

Amplitude o f Clutter Two B= 100ey*/3, Frequency o f Clutter Two ^  =35.2Hz;

Amplitude o f Weak Echo a = e" /6, Doppler o f Weak Echo I  =41.6Hz.

The observation data x(n) and the Fourier transform F(<(>) =JX(<o )j look almost 

the same as in Figure 4.5 and Figure 4.6. We do the similar procedures as we did in 

Example 4 After we cancel the interference caused by the first two signals, we obtain 

Figure 4.15. There is one dominant maximum that is over the threshold in Figure 4.15, 

so we find the third signal even though it is concealed by the strong signals. After we 

cancel the interference caused by the three signals, we obtain Figure 4.16 that is a 

white noise.

Our sixth example is as follows:

Amplitude o f  Clutter One A= 100ey,/4, Frequency o f Clutter One =12Hz;

Amplitude o f  Clutter Two B= 60eJxfS, Frequency o f Clutter Two #2 =16Hz; 

Amplitude o f  Weak Echo a=ejx/6, Doppler o f Weak Echo I  =20Hz.

The observation data x(n) are shown in Figure 4.17 while the Fourier transform

is shown in Figure 4.18. What we can say about F(4> ) in Figure 4.18 is 

that there is merely one signal. We do the similar procedure as we did before. We first 

assume there was only signal in the observation data; the frequency o f the assumed

signal should be <(>=12.96. We cancel the interference caused by the assumed signal,
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then obtain Figure 4.19. There is one dominant maximum in Figure 4.19 that is 

significantly over the threshold, which implies that the above assumption is not 

correct. We again assume here that there were two signals in the observation data and 

that the frequencies o f  these two assumed signals can be obtained by canceling the 

interference caused by either o f these two assumed signals. Figure 4.20, Figure 4.21,

and Figure 4.22 describe the above-mentioned process, and, finally, <j>,=ll.904Hz and

^2—16.032Hz. We again cancel the interference caused by the two assumed signals, 

then obtain Figure 4.23. There is one dominant maximum in Figure 4.23 that is over 

the threshold, so we detect the third signal and the frequency o f this signal is 

(0=21.504Hz. We start with these three frequencies as initial points; at each time we 

fix two points and cancel the interference caused by them, then obtain a new point. We 

proceed this way until we find the stable points, which are = 12.000Hz,

=16.032Hz, and <f> =22.752Hz. Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26, 

and Figure 4.27 describe the above-mentioned process. After we cancel the 

interference caused by the three signals, we obtain Figure 4.28 that is a white noise. 

The amplitudes are estimated as follows:

A=  99.9905e>OJiiOM6' ,

B = 59.945 lej0J3OT67* , 

a  = 0.798866ejOI,5677jr.

Thus, the MLE o f  the amplitudes detects not only the strong signals that are far 

apart beyond the traditional frequency resolution limit, but also those that fall into the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

limit. Furthermore, the MLE can also detect the weak signals that are covered up by 

the side lobes of the strong signals.
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CHAPTERS

CONCLUDING REMARKS

The CRB o f  estimating the amplitudes o f  superimposed sinusoidal signals with 

unknown frequencies in the case o f  white Gaussian noise and the asymptotic 

efficiency o f  the MLE in this case at high SNR but finite sample have been 

established. Consequently, the optimal resolution o f K  sinusoidal signals with 

unknown frequencies in a finite window is given by the MLE o f their amplitudes.

It is well known that the detection o f a  signal from colored interference and 

noise can also be given by a  filter with the optimal weights (Brennan, L. and Reed, I., 

1973) as follows:

h = [ Z _1 s Y

where s is the signal to be detected and Z  is the covariance matrix o f  the interference 

and noise. In practice, Z  is unknown and needs to be estimated using extra data in 

another dimension which is supposed to be statistically stationary or homogeneous. 

Unfortunately, the extra data may not be available because o f a lack o f  homogeneity. 

Furthermore, the inversion o f Z  is also an obstinate problem if  the order o f Z is 

large. However, the colored interference can be approximated by a  superposition of 

sinusoidal signals with unknown frequencies and amplitudes because o f the spectrum 

theorem o f  a  stationary random process (Yaglom, 1972). Practically, the

63
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superimposed model (2.21) can be applied to the detection and estimation o f  signals in 

colored observation noise. In this approach, the unknown frequencies and amplitudes 

in the colored noise can be estimated without resort to a  covariance matrix or extra 

data in another dimension.
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