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ABSTRACT

The purpose of this study is to investigate one of the most interesting areas in 

computational fluid dynamics. The content of this paper is divided into three parts. The 

first part is the orthogonal grid generation. The second part is the non-reflecting boundary 

condition in curvilinear coordinates. The third part is parallel computation by Message 

Passing Interface.

The grid generation method is presented by solving elliptic partial difference 

equations. The elliptic grid generation method is based on the use o f composite mapping, 

which consists of a non-linear algebraic transformation and an elliptic transformation. 

The elliptic transformation is based on the Laplace equations for the domains or on the 

Laplace-Beitrami equations for surfaces. The algebraic transformation maps the 

computational space one-to-one onto a parameter space, and the elliptic transformation 

maps the parameter space one-to-one onto the domain or the surfaces. The composition 

o f these two mappings is a differentiable and one-to-one, which has a non-vanish 

Jacobian. Finally, some complicated test examples are given. Computation results show 

that the grids generated by these methods are smooth and orthogonal. The grid quality 

meets our requirement for high accuracy numerical simulation.

Numerical methods for time-dependent hyperbolic systems require time- 

dependent boundary conditions when the system is solved in a finite domain. The 

"correct" boundary conditions are crucial in solving such a system. The non-reflecting

nr
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boundary conditions based on the Navier-Stokes equations have been derived for 

curvilinear coordinates. High order scheme is used to discretize the non-reflecting 

boundary conditions. Several examples of non-reflecting boundary conditions are tested. 

The results are compared with the reference method based on extrapolation or Rieman 

invariants. It is found that this non-reflecting boundary condition is much more accurate 

and effective than the tradition methods used to impose boundary conditions.

A parallel spatial direct numerical simulation code is developed to simulate the 

spatial evolving disturbances associated with the laminar-to-turbulent transition in a 

compressible boundary layer. MPI (Message Passing Interface) is employed to parallelize 

all processes for a distributed memory parallel computer. Explicit time-stepping is used 

in the DNS code on IBM/SP2 to simulate the flow transition. The machine-dependent 

phenomenon* which is always being considered as a problem for parallel computation, is 

successfully avoided. A fundamental breakdown on a flat plate boundary layer transition 

at Mach 0.5 is then studied using this code. The results demonstrate the optimistic future 

of MPI to direct numerical simulation.

LV
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CHAPTER 1 

Orthogonal Grid Generation

Abstract

The present elliptic grid generation method is based on the use of composite 

mapping which consists of a non-linear algebraic transformation and an elliptic 

transformation. The elliptic transformation is based on solving the Laplace equations for 

the domains or the Laplace-Beltrami equations for surfaces. The algebraic transformation 

maps the computational space one-to-one onto a parameter space; then the elliptic 

transformation maps the parameter space one-to-one onto the domain or the surfaces. The 

composition of these two mappings is a differentiable and one-to-one and has a non­

vanishing Jacobian. Finally, some complicated test examples are given. Computation 

results show that the grids generated by these methods are smooth and orthogonal. The 

grid quality meets our requirement for high accuracy numerical simulation.

1.1. Introduction

In past decades, numerical generation of curvilinear coordinate systems has 

provided the key to the development of finite difference solutions of partial differential 

equations on regions with arbitrarily shaped boundaries. This system is an essential part 

of most numerical solutions of partial differential equations on regions with general 

boundaries. The system is classified into three basic classes: algebraic systems, conformal

I
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2

transformation, and partial differential equation systems in which, the coordinates are the 

solutions of these equations.

Algebraic grid generation is the fastest procedure among these classes. It 

generates the grid by propagating the boundary toward the interior domain and specifies 

the point distribution in the interior of the domain. The algebraic procedures allow the 

explicit control of the grid point distribution which is basically an interpolation among 

boundaries and intermediate surfaces in the field. This method is particularly attractive 

for use with interactive graphics because grids can be produced quickly. But, this method 

is suitable only for a simple geometry. For a complex geometry, it will be very difficult 

for this method to generate a smooth and non-folding grid.

Conformal mapping satisfies Laplace equations with boundary conditions from 

the Cauchy-Riemann conditions. It uses elementary transformation functions in the 

complex plane and then generates the coordinate systems about special boundary curves 

that are contours of the mapping. The Joukowski and Karman airfoils are examples of 

boundaries that can be treated in this manner. This method can generate an orthogonal 

grid in the domain. However, conformal mapping has little control over the coordinate 

system. So, it may not be possible to produce a system that is well adapted to the physical 

solution to be performed. The general 2-D configuration can be treated very well. But, the 

point distribution on the boundaries cannot be specified. Moreover, the internal structure 

cannot be controlled. The only real benefit from conformal mapping is the simplicity of 

the transformed partial differential equations. Meanwhile, the possibility of 3-D grid 

generation by conformal mapping is still questionable.

For partial differential equation systems, the equations can be either elliptic or
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3

hyperbolic. Among them, elliptic grid generation system is the most popular method. The 

pioneer work is given by J. Thompson. His system is known as the system o f second- 

order elliptic partial grid generation equations. The elliptic system produces the 

smoothest coordinates for general boundary point distributions. This method takes 

advantage of the smoothing tendencies inherited from elliptic operators that produce a 

relatively smooth coordinate system regardless of the boundary. Because the elliptic 

generating systems are based on partial differential equations, the application requires 

only the writing of the equations in the physical domain. With the introduction of 

composite mapping and the source term, there is great flexibility in this method to control 

the interior grid point distribution and the orthogonality of the grid. Practical problems, 

whether 2-D or 3-D, can be treated by this method very well.

The computational grid is an integral part of any numerical scheme; the grid can 

affect both the accuracy and the convergence rate of the numerical solution. Several 

decades of experience have led researchers in computational fluid dynamics to regard 

certain grid properties as favorable. The properties are generally associated with high- 

quality grids including orthogonal grid cells, smooth grid lines, smooth variation of grid 

cell volumes, and low-aspect-ratio grid cells. In addition, the grid should be clustered in 

regions where large numerical errors are expected. A grid that does not possess one or all 

of these properties may yield an unsatisfactory solution.

In our work, composite mapping was used to generate the 2-D, surface and the 3- 

D grid. This composite mapping is one-to-one and differentiable. Two steps are used for 

composite mapping: from the computation space to the parameter space by an algebraic 

transformation and from the parameter space to the physical space by solving the elliptic
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partial differential equations. By the property of elliptic equations systems, good 

orthogonality and smoothness are obtained. In this chapter, our work is divided into three 

parts: 1) 2-D grid generation; 2) surface grid generation; 3) 3-D grid generation. Finally, 

results generated by these methods are shown and analyzed.

1.2. Two-dimensional grid generation

We first consider a simply connected bounded domain D in a 2-D space with 

Cartesian coordinates x  = (x,y)T. Suppose that D is bounded by four edges 

£ ,,£ , .  £3 ,£ , .  Let (£ ,,£ ,)  and (£ 3,£ 4) be the two pairs of opposite edges as show in 

Fig. 1.1

1 4

Computational space C Parameter space P

y

X

Domain D

Fig.1.1 Transformation from the computational space C to the physical domain D

We define the computational space C as the unit square in 2-D space with 

Cartesian coordinates =(^,rj)r . Assume that a mapping x  :dCb-± dD is prescribed 

which maps the boundary of C one-to-one onto the boundary o f D. This mapping defines 

the boundary grid point distribution. Assume that
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•  £=0 at edge £, and £=1 at edge Ez ,

• T|=0 at edge E3 and q=l at edge Ex.

We hope to construct a mapping x : dC dD which satisfies the boundary 

conditions and is a differentiable one-to-one mapping. Furthermore, we require that the 

interior grid point distribution is a good distributation.

A natural mapping x:dCh*dD  exists which meets these requirements. This 

mapping will be the composition of an algebraic transformation and an elliptic 

transformation based on the Laplace equations. The algebraic transformation is a 

differentiable one-to-one mapping from the computational space C onto a parameter 

space P. The parameter space is also a unit square. We will see below that the algebraic 

transformation will only depend on the prescribed boundary grid point distribution at the 

four boundaries and is a differentiable one-to-one mapping from the computational space 

C onto a parameter space P. The elliptic transformation is used to transform from the 

parameter space P onto the domain D. Because of the elliptic transformation, the 

transformation is still one-to-one mapping. The transformation will depend only on the 

shape of the domain D and is independent of the prescribed boundary grid point 

distribution. The elliptic transformation may be considered as a property of the domain D. 

The composition of these two mappings defines the interior grid point distribution and is 

a differentiable one-to-one mapping from the computational domain C onto the physical 

domain D.

The parameter space P can be described with Cartesian coordinates ?  = (s,t)T. In 

2-D space, P is a unit square. The parameters s and t  should have the following
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properties:

• s=0 at edge £, and s=l at edge E2,

• s is the normalized arc-Iength along edge £3 and £ 4.

• t=0 at edge £3 and t=l at edge £ 4.

• t is the normalized arc-length along edges £, and £ , .

The transformation s:dDi-+dP is defined based on these requirements. In the 

interior of D, t and s are required to be harmonic functions of x and y. Therefore, they 

satisfy the Laplace equations:

= + = 0 (1-2-D
ax' ay~

A r = 0  + | ^  = O (12 2 )
ax' ay~

The above two Laplace equations, together with the above specified boundary 

conditions, define the mapping s:8Dh->dP. It should be noted that this mapping 

depends only on the shape of the domain D and is independent of the prescribed boundary 

grid point distribution. By interchanging the dependent and independent variables, a non­

linear elliptic partial differential equation can be derived for x : dP dD . In this way,

we have to solve the non-linear elliptic boundary value problem in P to define this

mapping. This mapping defines the elliptic transformation. This mapping is also 

differentiable and one-to-one mapping.

The algebraic transformation should be a differentiable one-to-one mapping from 

the computational space C onto the parameter space P. Because x:dC\-+dD is 

prescribed and x:dPt->dD is defined as above, it follows that s:dCi-+dP is also
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defined.

From the requirements we mentioned, the mapping between computational space

(5,1]) and parameter space (s,t) should satisfy

s(0,T|) = 0, s(I,q ) = l,

8(5,0) = r* (4) ,  8(5,1) = (4) (1.2.3)

and

t(5,0) = 0,t(5,I) = 1, 

t(0, n) = h, (^).t(U 11) = tE: (4) (1.2.4)

where the function sEt (4) >■*£* (#) (£) (4) ^  monotonicaily increasing. They

are defined by the boundary grid point distributation.

Define the two algebraic equations for the mapping s :dC\-*dP as

5 = r £,(# )( l-0  + ̂ ( # ) r  (1.2.5)

t = t ES m ~ s ) ^ s Et{4)s (1. 2.6)

From the above equations, we can see that a coordinate line 5=const is mapped to 

the parameter space P as a straight line: s is a linear function of t. In the same way, the 

line q=const is mapped to P as a straight line: t is a linear function of s. For given values

of 5 and r|, the corresponding s and t values are found to be the intersection point of the

two straight lines. This is the reason why the above mapping is called "algebraic straight 

line transformation" because it uses straight lines in the parameter space P. This mapping 

is also a differentiable one-to-one mapping since it has the positiveness of the Jacobian: 

> 0 -

The algebraic transformation s:8Ci-+dP and the elliptic transformation
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x:dPi-*dD  are differentiable and one-to-one. Therefore, the composite mapping 

x : dC i-> dD which is defined as x(£) = x(s(£)) is also differentiable and one-to-one. 

Actually, because of the properties of the basic mapping, we expect the interior grid point 

distributation to be a good reflection of the boundary grid point distribution.

The composite mapping satisfies the elliptic system of Poisson equations. This 

can be seen from Warsi and Thompson[1982, 1984]. The problem here is that equations

(1.2.1) and (1.2.2) are not useful because they contain control functions which depend on 

the derivatives of the inverse mapping £ : dP i-» 8C . Therefore, we need to do extra work 

to obtain the expressions of these control functions which depend only on the derivatives 

of the mapping s:dCv-> dP.

We define two covariant base vectors as follows: 5, = xf and a2 = xn.

The two contravariant base vectors are a' and a2. They are defined according to

where i,j =1,2. is the kronecker symbol.

The determinant J 2 of the covariant metric tensor is J 2 = aua-y, - a 22.

Now, consider an arbitrary function <j> = . Then <p is also defined in domain

D and the Laplace of <(> is expressed as follows:

the rules

(1.2.7)

+ J ra n«>,){ ■!•(/»% + (1-2,8)

Considering the special cases 0 = £  and ^ = i j . The above equation yields
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&T] = j { j a n \ + { j a - \ )

Hence, the Laplace of ̂  can be expressed as

A^ =  a"<P~ +  2 a '2<t>in + + A?0# + A?7<f>n

Substituting tp - s  and <ft = t , respectively, in the above equation yields: 

Ay = alls ir + 2a,zsc„ + an srm +  A£yc + A t is „'»'/ 77 •* * 7

A/ = a"r„  + 2a12r«„ + a~r77 +A<5r« +A^r„

(1.2.9)

(1.2.10)

(L2.ll)

(12 .12)

Because of the requirement that s and t are harmonic in the domain D, we have 

Ay = 0 and Ar = 0 . Using these equations, we obtain the equations for the Laplacian of £ 

andr|,

<A7
= anPn +2an Pxl+an Pv (1.2.13)

where

pu = -r -
rs 'J cc

.  Lc\  j
, = - r - ‘ %•<? 

v^7 y
rPr ,  = ~ T

-I f s '77 
\ lnn J

(1.2.14)

and the matrix T is defined as

r = (12.15)

The coefficients of the vectors PIt ={Pi\,PuJ ,Pn ={Piz>PnJ > P-n = (Pri*PnT ^  

control functions. The six control functions are completely defined and easily computed 

for a given algebraic transformation, s = s(£).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Finally, substitution of 0 = x in equation (1.2.10) yields

Ar = a ,,xSf + 2anxin +an xrm + A£c, + Arjxn (1.2.16)

Substituting equation (1.2.16) into equation (I.2.I3) and using the fact that 

Ar = 0 , we obtain the following Poisson grid generation system. 

a ux« +2 aaX:n + a~xm
(12 17)

+ (a11 Pt\ + 2a,2/>‘ + a ” 4  )c, + (altP* + 2 a l2/>2 + a 22?,; )c„ = 0

Using the well-known expression for the contravariant metric tensor components, 

we have the following:

/ V  =an =(xn,xn)

J 2an = -an = -{x ',x  J  (1.2.18)

J V 2 =an = (x,,x,)

The Possion grid generation system defined by equation (1.2.17) can be simplified 

by multiplication with J 2. Therefore, we obtain

0"x« +20,2x.„ +0n xmin nn / j
+ (9"?,', + 20I2/>,,I + 0 a P£)t. +(9‘,i,I2 +2dllp 2 + 9“ P2)c, =0

with

= (* ,,* ,), e a = -(s .,x ,) , e 22 =(*{ ,x{ ) < ii20 )

These equations, together with the expressions for the control functions P* given 

by equation (1.2.15), form the 2-D grid generation system.

1 J . Surface grid generation on minimal surface

Grid generation on a minimal surface is, in fact, a  straightforward extension of the
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grid generation in a domain of 2-D space. In 3-D space, four connected curved edges 

define a surface. A minimal surface is defined as a surface bounded by these edges with 

zero mean curvature. Therefore, the shape of the minimal surface is a soap film bounded 

by four curved edges.

As in the 2-D case, the situation is now in a 3-D physical space R3 with Cartesian 

coordinates x = (x ,y ,zjr . Again, we define four curved edges in R 3 as £ , ,£ , ,£ 3,£ 4. 

Let (£ ,,£ ,)  and ( £ 3, £ ,)  be the two pairs of opposite edges as shows in Fig. 1.2.

Computational Space C Parameter Space P Minimal Space S

Fig.1.2 Transformation from the computational space to a minimal surface

The parameter space P is the unit square in 2-D space with Cartesian coordinates 

s  = (s,t)T. s and t are required to satisfy the following properties:

• s=0 at edge Et and s=l at edge £ , ,

•  s is the normalized arc-Iength along the edge £3 and £ 4.

• T=0 at edge £3and t=T at edge £ 4.

• T is the normalized arc-Iength along edges £ t and £2.
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Furthermore, we require that

Ar =  0

At —0 (1.3.2)

H  = 0 (1.3.3)

where A is the Laplace-Beltrami operator for the surface and H is the mean curvature.

These three requirements, together with the specified boundary conditions, define 

a unique mapping x:dP  f-» dR3. By this definition, the mapping is a differentiable one- 

to-one mapping. The shape of the surface as defined by this mapping is a minimal surface 

because of the requirement that the mean curvature H is zero. The parametrization of the 

surface is defined by equations (1.3.1) and (1.3.2). The surface defined by this minimal 

space is independent of the specified boundary grid point distribution at the four edges as 

shown later in the results. For the mapping from the computational space to the parameter 

space, we use the same algebraic transformation as used in the 2-D case. So, the mapping 

s :dCh-> dP is defined by a straight line transformation with equations (1.2.5) and

Now, we defined all transformations. They are s : dC dP which is defined by 

equations (1.2.5)—C 1.2.6), and x : dP dR3 by equations (13.1) — (1.3.3). The

composite mapping x : dC dR3 is defined as x = x(s(g)) and describes the interior

grid point distribution on the minimal surface. This composite mapping is still 

differentiable and one-to-one.

The Laplace-Beltrami operator applied on r  satisfies the famous relation as

(1.2.6).

Ax = 2Hn (13.4)

where the mean curvature H is defined as
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H  = ^ (a"x«  +- 2a11 + a~xw,n) (1.3.5)

Because of using the minimal surface, the mean curvature is zero. Then we have

Ax = 0 (1.3.6)

Following the same derivation as described in the last section, we obtain exactly

the same non-linear system of elliptic partial differential equations as the 2-D grid

generation system. The only difference compared to the 2-D case is now x = (x,y,z)r 

instead of x = (x,y)r .

1.4. Three-dimensional grid generation

The 2-D grid generation method can be extended to 3-D grid generation. In the 3-

D space with Cartesian coordinates x = (x,y,z)r , domain D is bounded by six faces F{, 

F ,, F3, F4, Fs, F6. (Ft, F ,), (Fj,F4), and (FS,F6) are the three pairs of opposite 

faces. On these faces, there are twelve edges labeled as {F,, i=l...I2}. The positions of 

the face and edge are shown in Fig. 1.3

Computational space C Parameter space P Domain D

Fig.1.3 Transformation from the computational space to the physical domain D

Let the computational space C be the unit cube in 3-D space with Cartesian
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coordinate £ = . Assume that a mapping x'dCv+dD  is prescribed which maps

the boundary of C one-to-one onto the boundary o f D. This mapping defines the boundary 

grid point distributation. It meets the following requirements:

• £=0 on face FI and 4=1 on face F2;

• r|=0 on face F3 and r\=l on face F4;

• Q=0 on face F5 and Q=\ on face F6.

As in the 2-D case, we introduce the parameter space P as the unit cube 3-D space 

with Cartesian coordinates s = (s,/,u)r . We also require that the parameters satisfy the 

following properties:

• s=0 on face FI and s=l on face F2;

• t=0 on face F3 and t=l on face F4;

• u=0 on face F5 and u=l on face F6

• s is the normalized arc-Iength at edge E l, E2, E3, E4;

• t is the normalized arc-Iength at edge E5, E6, E7, E8;

• u is the normalized arc-Iength at edge E9, EI0, El I, E12.

The coordinates (s, t, u) are defined at all twelve edges of the domain D. The 

twelve edge functions sEi„ .sEa are monotonically increasing and defined by the

specified boundary point distribution at all twelve edges.

As in the 2-D case, the algebraic mapping from the computational space to the 

parameter space s : C i-» P is defined as

^ = + d.4.1)

c (1-4.2)
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U =  U E, (0(1 -^ )(1-<•)+«£„, (0-^(1 - 0  + «£„ (0(1 + U En  ( 0 s [  (1*4.3)

this mapping depends only on the boundary grid point distribution at these twelve edges 

of the domain D. From the above definition, we can see that the algebraic mapping is 

differentiable and one-to-one.

Because x : dC i-» dD is prescribed and dP is defined by the algebraic

bilinear transformation, (s,t,u) coordinates are specified at all boundaries of the domain 

D, including the interior of the six faces F1,...,F6. Require that (s,t,u) are harmonic 

functions in the interior of the domain D; then

. dzs dzs dzs AAs = —r  + —-  + —-  = 0 
dx1 dy2 dz2

. dzt d2t dztAt = — -  + — r  + —-  = 0 (1-4.4)
dx dy1 dzz

dzu dzu dzuAu - — -  + —r  + —-  = 0 
dr* dy~ dz~

Therefore, a linear elliptic boundary value problem defines the mapping 

s :dD\-± dP . The mapping s:dD\-+ dP is one-to-one, and the inverse mapping 

s :dPh+dD exists and is differentiable.

The algebraic transformation s:dCt-*dP  and the elliptic transformation 

x:dPv-±dD  are one-to-one mappings. Then, the composite mapping x:dCt->dD, 

defined as x=x(s(^)), is differentiable and one-to-one. The composite mapping 

x  :dC dD satisfies the elliptic Poisson system with control functions defined by the 

algebraic mapping r : 5C dP. Actually, this 3-D grid generation system is a 

straightforward extension o f the 2-D system. Therefore, we follow the 2-D grid
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generation method to derive the 3-D grid generation method. 

Define the three covariant base vectors as

a, = x?, a2 = x„, a3 =x,

The covariant metric tensor components are the following: 

a , = (a, ),/ = {1,2,3}./ = {1.2.3}

The three contravariant base vectors are defined to be the following: 

(a',aJ) = 5'l ,i = { U 3 } ,/  = {1A3)

(1.4.5)

(1.4.6)

(1.4.7)

Let J 2 be the determinant of the covariant metric tensor. For the arbitrary 

function <f> = , the Laplace operator for <j> can be written as

+ J a %  + J a '% \  +(ja'2<t>f +Jan <f>n 

+ { ja %  + J a %  + )

Substituting ^=<f, <f>=rj, <(>=£, we obtain the expression for A£, A/7, as

(1.4.8)b n = j  l J a '2 \  + iJ a ~  X  *  iJa7S U

Substituting (1.4.8) by (1.4.7), we have 

A ̂  +2a 12̂  +2a23̂ .  + a “ ^  + A£0, + A ^ 7 + A # C

(1.4.9)

Letting <j> = <f>(s,t,u) in the above equation and using the requirement that s, t, and 

u are harmonic in domain D, i.e., Aj = 0,A/ = 0 .A u- 0 ,  we obtain the following
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equations:

where

A/7
v& j

= allPn +2anPl2 +2aaPl3 + an Pn + 2a23P23 + an P33 (1.4.10)

p  = _ r - ‘ 
m i  1

r \

P-» = -T -i

s x

t « , pa =-r‘ P =-T~l* M3 1 ‘ x

\  *•» J

r o
(  \  

s «

f  \  

S K

m r " l n i
P = -T~l'  r 33 1

V m / <U« )

(1.4.11)

and the matrix T is defined as

r=
<s. S„ \s.*r *
t.* U
uc u„ UrK * n c J

(1.4.12)

The vectors PI 1, PI2, PI3, P22, P23, P33 are the control fimctions. The 

coefficients of the control functions are completely defined and can be easily computed 

for a given algebraic transformation mapping s=s(§).

Finally, let <f> = x and using the equation Ax = 0 , we have

auxs  +2  axzx ^  +2 allx ^  + a n x77 + 2a Bx<  + a 33%  

-t-A£x« +A^x7 +A£tj- = 0

The final form of the grid generation system can be written as

(1.4.13)
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Ol%* +2 0 % ,  + 20ax ^  +9*xm +20*xrK +033x #

+ {0nPl\ +2 0 lzP^ + 0 u/>‘ +0“ P i,+20* Pi; +033Ph)xc 

+ (o"P*+20n P3 +Ox3P3 +0~Pl + 29* P3 + 0*P3)cn 

+ {0nPl] +20lzPl\  + 0X3P3 +0n P l +20* Pis +033P ^  =0

where

0 = 2̂3 y 0 ~ = ̂ 13̂ 23 1̂2̂ 33

0 ~ a\za-!3~a\-$ar>-,0 ~ auaZi~a\i

0*  =al3an - a lla23,0 33 =anan -a ,2,

and

° U  =  (**>*')> a i 2  = ( v * J >  «I3 = ( % * * ( )

a22 = (v*,)>«23 = ( v ^ ) >  aX = (* -* ')

3-D grid is generated by solving the elliptic partial differential equations (1.4.14). 

All related control functions are well defined above.

l i .  Results and analysis

Results of grids in the 2-D domain are shown in Fig. 2-9. All grids are grid- 

folding free* and the interior grid point distribution is a good reflection of the prescribed 

boundary grid point distribution. An initial grid is required as the starting solution for the 

non-linear elliptic Poisson system. The final grid is independent of the initial grid* the 

quality of the initial grid is unimportant* and severe grid-folding of the initial grid is 

allowed. In our work* the algebraic method is used to generate this initial grid.

(1.4.14)

(1.4.15)

(1.4.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Fig. I .4 shows a region about an ellipse with the long axis located horizonally. The 

computational accuracy is set to IO"6. In this figure, we can see that the grid in the 

interior of the domain is smooth. Usually, in computational fluid dynamics, the solution 

is very sensitive to the grid quality near the object. Therefore, in our test, we specify the 

orthogonality on the surface of the ellipse. Fig. 1.5 shows the detailed grid near the surface 

of the ellipse. It can be seen clearly that the grid at the elliptic boundary is orthogonal.

In order to test the correctiness of our program, the same ellipse configuration 

with the long axis located vertically is generated in Fig. 1.6. The grid is also very smooth. 

Because we again specify the orthognality near the ellipse's surface, we drew the detailed 

grid in Fig. 1.7. We can see that the orthogonality near the surface of ellipse is being well 

kept.

In the 2-D case, we choose a complicated configuration for test purposes as shown 

in Fig. 1.8. The configuration is a section of the aircraft body. The boundary points are 

chosen from the reference paper, so it may not be smooth everywhere. But generally, it 

can be used to show the capibility of this method. This configuration is very difficult for 

the algebraic method. Our initial grid has severe grid-folding near the boundary of the 

object which is obtained by using the algebraic grid generation method. After applying 

this method, we got a very good grid with no grid-folding. Especially at the comer of the 

boundary, we see that good orthogonality has been well kept. Fig.1.8 shows the grid 

which is generated by this method. The grid is smooth, and the grid points are nicely 

distributed in the domain according to the boundary grid distribution. Fig.1.9 shows the 

details of the concave part of this configuration. Also, as we expected, it reflected 

boundary point distribution very well and shows that the orthogonality has been well
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kept.

Figures 1.10-1.13 show some examples for surface grid generation,. First, the 

configuration of the flat plate is given to verify the method. The four boundaries are given 

on a plane. Figure. 1.10 shows that the gererated grid is still a plane and that the grid 

distribution is a good reflection of the boundary condition.

An example of a grid on a characteristic minimal surface is shown in Fig. 1.11. 

This is the so-called square Scherck surface. The initial algebraic grid can be generated by 

the algebraic method. The four boundaries are specified. Using the method introduced in 

Section 1.3, Fig. 1.11 shows the generated grid. Fig.1.12 illustrates what happens when 

the prescribed boundary grid point distribution is changed. This figure shows clearly that 

the shape of the minimal surface is independent of the prescribed boundary grid point 

distribution.

Results of 3-D grid generation are shown in Fig.1.13-1.15. The wing 

configuration of an aircraft is chosen as our test case. The grid is a combination of both 

C-type and H-type grids. In the y direction, the H-type grid is used, and. in the (x,z) plane, 

the C-type grid is generated. The whole grid was generated by two blocks. One block is 

from wing root to wing tip. Another block is from the wing tip to the far boundary in the 

y direction. The initial grid was generated by the algebraic method. Actually, the initial 

grid does not affect the final grid. Fig.1.13 shows the boundary of the grid. In order to get 

a correct result near the boundary layer, the grid points close to the wing are very dense. 

At the far field, the grid points are distributed sparsely. The surface of the wing and the 

symmetric plane (x,z) can be seen in detail in Fig.1.14. In Fig.I.I5, the plane section (x,z) 

o f the grid is shown. Shown at the root of the wing is the symmetry plane, and in the
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middle is the interface between two grid blocks.

The grid is grid-folding free, and the interior grid point distribution is a good 

reflection of the prescribed boundary grid point distribution at the boundaries.

Generally, the elliptic grid generation method produces very excellent grids in the 

sense of smoothness, grid point distribution, and regularity. The elliptic grid generation 

method is based on the composition of an algebraic and elliptic transformation. The 

elliptic transformation is based on the Laplace equations for domain and the Laplace- 

Beltrami equations for surfaces. The composite mapping satisfies the familiar grid 

generation systems of the Poisson equations with control functions specified by the 

algebraic transformation. Results in 2-D, surface, and 3-D problems show that this grid 

generation system is very successful in high accuracy computation fluid dynamics.

Figure 1.4 2-D grid generation of a half-ellipse
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Figure 1.5 Detail of 2-D grid generation of a half-ellipse

Figure 1.6 2-D grid generation of a half-ellipse
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Figure 1.7 Detail of 2-D grid generation of a half-ellipse

■>: < v v > A -

Figure 1.8 2-D grid generation, for a complex boundary
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Figure 1.9 Grid generation of a concave boundary

2

Figure 1.10 Surface grid generation for a flat plate
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ml

Figure 1.11 Minimal surface of a square scherk surface (I)

r

Figure 1.12 Minimal surface of a square scherk surface (2)
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Figure 1.13 3-D grid generation of a wing configuration

Figure L14 Detail of 3-D grid generation of a wing configuration
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Figure 1.15 Detail of 3-D grid generation of a wing configuration
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CHAPTER 2

Non-Reflecting Boundary Condition in Curvilinear Coordinates

Abstract

Time-dependent numerical methods for hyperbolic systems require time- 

dependent boundary conditions when the system is solved in a finite domain. The 

"correct" boundary is a crucial problem in solving such a system. In this chapter, non- 

reflecting boundary conditions based on the Navier-Stokes equations have been derived 

for curvilinear coordinates. A high-order scheme is used to discretize the non-reflecting 

boundary conditions. Several examples of non-reflecting boundary conditions are tested. 

The results are compared with the reference method based on extrapolation or Rieman 

invariants. It is found that the non-reflecting boundary condition is much better than the 

traditional methods of imposing boundary conditions.

2.1. Introduction

Numerical solutions to hyperbolic systems of differential equations, such as fluid 

dynamic equations, are usually obtained over a finite region. The time evolution of the 

system is governed not only by the state in the interior of the region, but also by waves 

which enter the region from outside its boundary.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

The basic idea of aon-refiecting boundary condition is based on the characteristic 

analysis. As we know, for hyperbolic equations, the waves propagate along the 

characteristic line. Only the domain in the downstream region can be affected. Based on 

this phenomenon, the boundary condition must be specified carefully. An improper 

boundary condition will distort the results and corrupt the numerical solution.

Direct numerical simulation of the Navier-Stokes equations has been the focus of 

many recent studies. In the field of finite difference methods, a modem algorithm based 

on high-order schemes can provide spectral-like resolution and very low numerical 

dissipation (Thompson, 1987 and 1990). The precision and the potential applications of 

these schemes, however, are constrained by the boundary conditions which have to be 

included in the final numerical models. Most direct numerical simulations are performed 

with periodic boundary conditions. In these configurations, the reference frame moves at 

the mean flow speed, and flow periodicity is assumed. A periodic geometry is the only 

type of geometry for which the problem can be closed exactly at the boundary. The 

computation domain is folded onto itself, and no boundary conditions are actually 

required. The periodicity assumption considerably limits the possible applications of 

these simulations. Simulations in which no periodicity is assumed and the flow inlets and 

outlets must be treated are much more practical. Indeed, these simulations are strongly 

dependent on boundary conditions and their treatment. General boundary conditions for 

direct numerical simulation of compressible flows are needed. The new constraints 

imposed on boundary condition formulations by these unsteady computations performed 

with high-order numerical methods in non-periodic domains are the following.

1. Direct numerical simulation of compressible flows requires an accurate control of
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wave reflections from the boundaries of the computational domain. This is not the 

case when Navier-Stokes codes are used only to compute steady states. In this 

case, one is not interested in the behavior of the boundaries as long as a final 

steady state can be obtained. It is worth noting that the mechanisms by which 

waves are eliminated in many codes is somewhat unclear and very often due to 

numerical dissipation. As direct numerical simulation algorithms strive to 

minimize numerical viscosity, acoustic waves have to be eliminated by another 

mechanism such as non-reflecting or absorbing boundary conditions.

2. A large amount of experimental evidence suggests that acoustic waves are 

strongly coupled to many instability as well as acoustic waves (Bechert and Stahl, 

1988). This interaction may even lead to large flow instabilities as, for example, in 

the case of the edgestone experiment (Ho and Nosseir, 1981). In the field of 

reacting flows, combustion instabilities provide numerous examples of 

interactions between turbulent combustion and acoustic waves. The simulation of 

these phenomena requires an accurate control of the behavior of the computation 

boundaries. Many studies have been concerned with direct numerical simulation 

of combustion instabilities. But the identification of the acoustical behavior of 

boundaries is not explicit, and its effects on the results are unclear. The problem 

of the downstream boundary is often removed by considering acoustic outlets 

where all variables are obtained by extrapolation. Even in cases where physical 

waves are not able to propagate upstream from the outlet, numerical waves may 

do so and interact with the flow. For example, recent studies show that strong 

numerical coupling mechanisms between inlet and outlet boundaries can lead to
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non-physical oscillations for the 1-D advection equation (Vishnevetsky and 

Pariser, 1986).

3. Discretization and implementation of boundary conditions require more than the 

knowledge of the conditions ensuring well-posedness of the original Navier- 

Stokes equations. Other conditions have to be added to the original set of 

boundary conditions to solve for variables which are not specified by the 

boundary conditions. These additional conditions are often called "numerical" 

boundary conditions although they should be viewed only as compatibility 

relations required by the numerical method and not as boundary conditions. The 

computational results depend not only on the original equations and the boundary 

conditions but also on the numerical scheme and on the numerical conditions used 

at the boundaries.

The purpose of our work is to construct a systematic method for specifying these 

boundary conditions for the Navier-Stokes equations. The method presented here is an 

extension of methods developed for hyperbolic equations (Thompson. 1990). It allows 

control of the different waves which cross the boundaries.

The final results should meet the following requirements:

1. When the viscous term vanishes, the boundary conditions reduce to the Euler 

type boundary condition.

2. The method does not use any extrapolation procedure, thereby suppressing the 

arbitrariness in the construction of the boundary condition.

3. The number of boundary conditions specified for the Navier-Stokes equations 

is obtained through analysis.
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In this chapter, the theory and the derivation of a non-reflecting boundary 

condition in a curvilinear coordinate system are given in detail. Then, according to the 

problem we are interested in, some typical boundary conditions are given. Finally, the 

non-reflecting boundary condition was used in some practical cases to test the correctness 

and its superiority over the conventional boundary treatment.

22 , Theory and derivation of non-reflecting boundary conditions

We will call a boundary condition a physical boundary condition when it specifies 

the known physical behavior of one or more of the dependent variables at the boundary. 

For example, specification of the inlet longitudinal velocity on a boundary is a physical 

boundary condition. These conditions are independent of the numerical method used to 

solve the relevant equations. We expect the number of necessary and sufficient physical 

boundary conditions to be that suggested by theoretical analysis.

When the number of physical boundary conditions is less than the number of 

primitive variables, we should find some numerical methods to specify the boundary 

conditions.

An appealing technique for specifying boundary conditions for a hyperbolic 

system is to use relations based on characteristic lines, i.e., on the analysis of the different 

waves crossing the boundary. This method has been extensively studied by many authors. 

Our object here is to construct such a method for the Navier-Stokes equations. Such a 

method (Poinsot, and Lele, 1992) is called Navier-Stokes characteristic boundary 

conditions (NSCBC). This method is not only used for the Navier-Stokes equations, it 

can also be used in the Euler equations with a zero viscosity term.
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The key point of NSCBC is that hyperbolic systems of equations represent the 

propagating of waves. Some of the waves are propagating into the computational domain 

while others are propagating out of i t  The outward propagating waves have their 

behavior defined entirely by the solution at and within the boundary, and no boundary 

conditions are needed or so-called overspecified. The inward propagating waves depend 

on the solution exterior to the computational domain and therefore require boundary 

conditions to complete the specification of their behavior. Here, we discuss how to 

decompose the Navier-Stokes equations into wave modes and how to specify the 

boundary conditions.

First, suppose that all derivations are under the assumptions that the grid is static

d f  I >and the object is rigid. Therefore, —^ j = 0 , 4, = 0 ,7, =0  and 4, = 0 . 

The conservation form of the Navier-Stokes equations is

d(Q> rF' + A f £ ldt Wj 9ij{j j
Rel

f F ]* V +-1'Gv' d fH- -U J drj\.J J dd
(2.2.1)

These equations can be written in a non-conservative form as

!(f)+4 (e)+̂ (e)+4 (e)=rK (2.2.2)

where the term "Vis" represents all viscous terms. Let U =u<4z +v£y 

V =urjx +vrjy +wtj,, and W = u£z be the controvariables along q, C,

direction. Let $ = - - (k 2 + v 2 + w 2 ) .  From the definition of F, G, and H, we
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And A, B and C are

A = — 
J

0
& - u U  
Zj-vU_ 

— wU

U - l  7 - 1 J y - 1

6
# , « - £ 0' - 0>' 
(2 - y ) v ^ + U
#yW-#r(r~lV

r - i
- £ - ( y - l ) v £ /

£
£«-& 0'~ lV 

O'-iV
(2 - y )w £ + £ 7

a:

r - i

o

# > - 0
6 (r-i)
£(r-0

£-(y-Dwt/ yt/

(2.2.3a)

B = — 
J

- V

Q
7t -u f  
7j.-v F 
rj.-v>V

f  z -»a f-Z
v7r T” 7r i’<

n*
{2 -y)urjt + y  

W -lyiy-l)*  
7,w,-7 ,0 '-I)K

a: +$>
y - l

7, - 0 ' - I ) b K

7y«-7t0'-lV 
(2 -y)vrjy +V

7yM'-7rO, -lV 
aJ +0
y - l

-7v-(r-I)vK

7,
7.-«-7,(/-lK 
7r', - 7>0' - l V  
(2 -y)wrj. +V 

a1 +<j>
y - I

0

7,0' -0  
7,0 '-0 
7,0' ~0

7, - ( r - O w f '  yK

(2.2.3b)

c =  — 
y

-H '

0

Cy-vr
C: -wW 
a1 y -  2 

( y - I  y - l  *

£
(2-yX +fK  

a1 +<j>
7 ~ I

C,«-i»,0' - 0v

C,M'-4'r0'-lV
a: -t-0
y - I

r'•sr
C«-c,0'- i ) m'
£> -4 ,0 '-tV
(2 - y ) w ^ I + » r 

ef+#

0

fxO'-O
4',0'-t)
C.O'-t)

y - I ■£-(r-i)w»r r"'

(2.2.3c)

dq

l (  ̂—Ik
2 V

- <7 = [p.u. v.w, p f . Hence, we]

I 0 0 0 0
K P 0 0 0
V 0 P 0 0
W 0 0 P 0

7 7 )I 1
+  V ‘ +w J1 pu pv pw

r-1

(2.2.4)

From P, we can calculate the inverse of P.
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P-' =

L 2

1 0 0 0 0
u I 0 0 0
p p
V 0 1

0 0
p P
w

0 0 1 0
p P
+  v 2 +  w 2 ) - ( / - ! ) « - O '-  l)v O' l)w r - i

(2.2.5)

Rewriting the Navier-Stokes equations in a non-conversation form,

t 4 ( « ) +  BP ̂ -(q)+ C P  A ( ? ) = Vis
J  at ag or\ d £

(2.2.6)

^{q)+ JP -'A P j-{q)+ JP -,BP-f{q)+Jp-'CP-^-{q)=JP-'Vis (3.2.7)at ag at] ag

And calculating the following terms,

P~x A =  — 
J

0 4, 4y
1 r ..  rrt I

4:
U tf , -u u )  L\gA-r)u+u] o -r )-# . 0 - r ) - f ,  b - r ) - ( .
P P P P p

^ 4 y -vU \ (1 - r ) ^ 4 y ^ y ^ - r V + u ]  (i- r ) ^ 4 y (i- r ) j 4 ,

- ^ - w u ]  ( i-r)-4:  (i-r )-4 ;  -fe (i-rV + tf] 0 - y)-4-.
p  _ _ p  p  p  p

u > - r*P
{ \ - y )u U  + 4x—  Q.-y)vU +4y— (i-r)wu+4-— ( r - W

p  p  ' p

(2.2.8a)

P B = —

0 n, rjy n-. o

z -uu\  -[i7x0~r)«+^] 0 -r)—7* $ - r )—n, 0 -r)—7,
p  p  p  p  p

^ f i iy - v U  I (i-r)-^7y - -^ ( i- rV + c r l  ( i - r ) —ny (I —r)—7,
p  p  p

O-jO—7r — [7r(i-rV+^] 0 -r)—nz 
p  p  p

p ‘

~ y n j.-w u \  (i - r ) —nz 
p  p

u '-r-
P l

( \ - r )u U  + 7x —  O - r M /  +rj —  ( i- r )w c /  + 7 . —  0^—t)cr 
p  ^  ' p

(2.2.8b)
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p - ' c = -
J

C: 0

(I- r ) - e ,  (I - r ) - 4 .

o c, cy

Ife-.O-rV+^I 0 -r)-C ,p p  p p p
^ ] g f i - r y * n \  0 - r ) ^ f ,  (I -r)-p i ,

I r . _ r r T  / .  \  U  _  V _ 1 r  , V —1 . X I

P P
U

P

0 -r) -C  -[cO-/V+c/] (i-r)-C.p p p
(l-r)uU+cx— 0-r)vU + cy — ( . i - r W + C  — i y - W  

p p  ' p
(2.2.8c)

We obtain the following:

JP BP -

JP-'CP =

u P4, Pt> P4S 0

0 u 0 0 - 4 ,

0 0 U 0
p
~4y (22.9a)

0 0 0 u
P

k

0 YP4* yp4y yp4
P
u

y P7* p % P7.- 0

0 V 0 0 I
—7*

0 0 V 0
P
I

- 7 , (2.2.9b)

0 0 0 V
P
1

—7r

0 yp^x YPHy yprjz
P
V

~w PC P4y P4r 0

0 w 0 0 - 4 ,

0 0 w 0
p
k (22.9c)

0 0 0 w
p

k
0 ypCx JPCy ypZz

p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

( U - k f

he characteric value of above matrixs, let \JP~lAP

p-lcp - / t / |= 0 . In the % direction, we have

~U-JI P4> P4y p 4z 0

0 U - k 0 0 i f .
p

0 0 U - k 0 L i
P *y

= 0

0 0 0 U -
P

0 n>4x JP4y tp4 U - k

U - A 0 i . 
p* 0 u - -k  0

0 U - k - 4 0 0 U - k

JP4y yp4z
p

U - k
p

tp4,  w4y yp4z

(2.2.10)

=  0

( u - x ' t - x f  - a % ‘ +£'; ■*-£;)!= 0

Solving the above equation, we get the 5 eigenvalues of matrix JP~XA P :

X , = U - a j 4 ; + f ; +g

With the eigenvalue in matrix form as

A =

0 0 0
0 u 0 0
0 0 u 0
0 0 0 u
0 0 0 0

0
0
0
0

(2J2.Il)
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From the eigenvalue we obtained above, we can get the left and right eignvectors 

of the matrix JP~lAP as

& 0 _ J j _  i .
2|V£| pa |v ^|2 |V j|! 2|V£| pa x

P c2 . =2 C r e

2|V^|pcr ( v ^  |V£|2£r 2\V%pary

£  0 £ £  £  
2|V^/w |V£|2£  |V#|2̂  2| V£|por _

1 _ I

0 7P$r ip 4 v rp4 . I
a|V£| dV£| a|V£|

*»a~ 0 0 0 - I

0 - f v & 0 0
0 - 4 : 0 c 0

0 yp4* JP4y 7PS; I
ajV|j a|V£i

Other eigenvalues of JP~lBP, JP~'CP can be obtained similiarly. The only 

difference is that they are in different directions (q, Q.

The non-conservative form of the Navier-Stokes equations is

jfa)+ S A S -' ^ - ( q ) = R U  J j p - ' m - J p - 'B P - f ( q ) - J p - ' C P - ^ : ( q )ot do l dn dC

(2.2.14)

— i da
Let L = AS" —  be a vector; therefore, we have

S-l% )+AS-'-?-(q) = S - 'M  (12.15)
ot do

(2 2 .12)
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which is equivalent to

S~l — {q)+L=S~lRM (22.16)
dt

Now, we rewrite the Navier-Stokes equations in another form which contains the 

quantities L, which we will use to specify the boundary conditions. The only term which 

has relations in the § direction is L. The other terms are related to the transverse 

coordinates.

The purpose of specifying boundary conditions is to apply whatever information is 

needed at the boundaries of the computational domain in order to complete the definition 

of the behavior of the system. The number of boundary conditions which may be imposed 

depends on the physics of the problem and may not be specified arbitrarily. This is the 

wave nature of hyperbolic equations.

Each eignvalue X, obtained above represents the characteristic velocity at which a 

particular wave mode propagates (such as advaction waves, sound waves). At a point on 

some coordinate, some characteristic velocities describe outgoing waves, while others 

describe incoming waves. The behavior of the outgoing waves is completely determined 

by data contained within and on the computational domain, while the behavior of the 

incoming waves is specified by data external to and on the boundary o f a computational 

domain. The number of boundary conditions which must be specified at a point on the 

boundary is equal to the number of incoming waves at that point. We will specify the 

boundary conditions by determing the values of L for incoming waves, and compute the 

the other components of L fiom the interior of the domain.
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The component of L can be written as

L =

0 1
l dp #

1 'p£-- 
‘ d p #

1

A ,c r 0 0 0 - A ,

0 ~^4y ^4r 0 0

0 ~A*4; 0 Al4r 0

0 As A ^ As
dP# ’ ajV# 1 d p #

w5

dp
94
du
94
dv
94
dw'
949p_

yp4x 9u n>4y dv ypq. dw dp 
a\V$ etc a\V4\ dx o|V£| etc + d£

2 dp dpL., = A,

Z.3 — A-j

i 4 = a 4

or dx dx

;p<ft dw  ̂ yp4y dv t )p4; dw  ̂ dp

(2.2.17)

(22.18a)

(2.2.18b)

(2.2.18c)

(2.2.18d)

(2 2 .l8e)
a\V4\ dx a\V4\ dx ajV£| dx dg 

The element of Lt i= 1... 5 can be determined as follows: when the characteristic 

velocity A, points out of the computational domain, compute the corresponding I, from 

its definition by using one-sided derivative approximations. When A, points into the 

computational domain, specify the value of Lt from the boundary condition. Serveral 

useful boundary conditions will be discussed later in this chapter.

After we obtain the vector L, from the definition of L, we have —  = AS'lL ,
d4
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which can be written as:

dp _ I 1 f  L L 1H ! 5
d 4 ~ a ^ 2 [ u - d p $ U

(22.19a)

du A + —
U —a|V£| U+a\V4\

(22.19b)

dv
94 2H V ^|

A +
C/-a|V£| (/ + a|V£|

(22.19c)

dw _
d f  2

+  —
(7 -a)V^| U +a|V£|

<9p _ I 
9 4 ~  2

A -+=■ a

| [ / - o | v £| C/+ a |Vf|

Now, the non-conservative Navier-Stokes equation is the following:

=[ JP-lV is-Jp-lBP— (q)-JP~'CP— {q) 
dt  ̂ drjKI d £ K

(22.19d)

(22.19e)

(2.2.20)

Because matrixes S and L are already known, the term SL can be calculated from 

the above description. The right-hand term of the equation has no relation to the ^ 

direction and contains only the transverse direction. Therefore, the right-hand term can be 

calaulated by using just conventional difference schemes.

Let d=SL,then
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SL =
*z
d,
d>
d.

4 - U l , + l s) + l ,_ 
a ~ l_2

2pf î(is £,)Vf!i2?,^'+f'k  
^ 5 i ( i i  " £ , ) _ i v 4 F r ^ ;

| ( i > + £ s)

(2.221)

If we omit the viscous term, the non-conservation form of the Navier-Stokes

equation become

dp , rT dp —  + d, +V —  + p  
dt ' 5/7

du dv dw
7* — + 7„ —  + 7- . a?  dp ' dp)

+ W ? £  + p ( f x —  + f  —  + £\ —
a ^  H / ' a c  S y a ^  s - a ^

a « ,  rTau I dp =?du 1 _ dp . — + d, +V —  + —nr —  + W —  + —Cr —  = 0 
dt ~ dp p  dp d£ p  dC

dv frrdv I dp ==- dv I - dp .— + d ,+V  — +—p„ —  + W —  + — C„ —  = 0 
dt dp p  dp d £ p  dC

du , — dw I dp spdw I _ dp .—  + d ,+ V  —  + —p_ —  + W —  + —C- —  = 0 
ar dp p  ~ dp d£  p  ' d£

dv „ aw''

:+<‘ x
(2.2.22a)

(2.2.22b)

(2.2.22c)

(2.2.22d)

3u dv dw 
7r —  + 7„— +7- —  / x a7  /yap L dp)

fr dp f  du dv _ aw') r77 dp
+ V -r~+yp 4\  — — +C- —  -fPP —  

a 7 *y d£ ' d £ )  dC

(2.2.22e)
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From Eqs.(2.2.22a) to (2.2.22e), we have

yM‘ r I dp p  dp'  
p  dt p 2 dt J

+ yM2 -d, -A-d,
P P

+yM2

fj d T  ,+■ V —  + yM 
drj

( r - i ) p fs- &L+ r  —
p  {^x d£ ^-v dC d g )

xr ■ — , P , dT yM2 dp yM2p dpNote that T - y M '  — and —  = ------- — —r ~ —
p  d£ p  d£ p '  d4

du dv dw 
p  ,7x drj+T,y dTj+TJz dr}

+ W —  = Q
ac

(2.2.23)

. Then we have the similar

expression can be obtained for the temperature T:

dT M—  -i------
dt p

i ( r - l \L ,+ L t ) -L , + yM2 iy-^)p

jT dT+ V — Jt-yM 
drj

du dv dw 
7 , — + 7, — + 7.- —  I dr\ drj drjj

+ IV —  = Q
dC

(2.2.24)

23. Some typical non-reflection boundary conditions

For computational fluid dynamics, the boundaries of a physical domain are of 

interest. Typically, there are several types of boundary conditions. The most useful 

boundary conditions (Jiang and Shan, 1999) we are interested are described below:

1. No-slip boundary condition

On a no-slip wall, not only is the normal velocity component zero, but also 

friction causes the transverse velocity component to be zero. The initial data must have all 

zero velocity components at the wall. Here, we specify that T=const. Therefore, we have

u = v = w = 0 then U —V =W =0 

Assume ̂  is the normal direction. From equations (2.2.22b) to (2JL22d), we have
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^  ( l s -  £,)----------------- + £ -A )= - -7 *  — - - C —  (2-3.1)
2pa|V £| lK7jr|2V - - 47 o  /?n n xp  drj p  d<;

(2.3.2)

Solving equations, we obtain

(2.3.3)

1 3 = 1
P 07 3C

(2.3.4)

I4=i
P

fa.?, - 7 , ^ , ) ^ - + ( « ,
37 3^_

(2.3.5)

At the wall surface, = ( / -  a| V£| < 0, 22>34 =U = 0, J.5 = U + a |V£|>0.

Therefore, corresponding to 2,, I, is determined by the interior point by using one-sided 

difference. While I 5, which corresponds to 2S, must be specified by the boundary 

condition. From (2.3.1), we have

£, I 37
(23.6)

Using the equation for the temperature T, then

A + = -
U  -ojVfj u  +a|V£{

(2-3.7)
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2. Subsonic inflow

Assume the fluid flow along the 4 direction as shown in Fig.2.1, with the 

characteristic values

A, = U - d \ V $ < 0  X2-5,4 =£7 X, =U+a\V%\>Q
9 9

▲y

L5 (u+c)
L5 (u+c)

>- L2(u) 
*  L3 (u) 
► L4(u)

LI (u-c)

L2(u)
L3(u)
L4(u)

Computation
domain

LI (u-c)

Fig 2.1 Waves leaving and entering the computational domain 

Because 2, < 0 , Lx can be obtained from the interior computational domain by 

one-sided difference. The other four characteristic values are greater than zero, so they 

must be specified at the inflow boundary. The formula of L, corresponding to each X, can 

be found from the above considerations. They are

du dv
~dt

(23.8)
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(2.3.9)

(23.10)

(2.3.11)

3. Subsonic outflow boundary condition

Assume the fluid flow along the 4 direction. For the subsonic outflow, the static 

pressure is given. At the boundary, characteristic waves I , , I 3, 14, Z,s are going 

outward from the computational domain, while Lx is entering the computational domain. 

Therefore, L2>L3,LX,Ls are calculated from the interior points of the computational 

domain by one-sided difference, and Lx is given by Poinsot and Lele, 1992.

4. Far field boundary condition

Assume that 4 is the normal direction of the far field. The direction of the 

characteristic waves are defined automatically by the local field values. The outgoing 

waves Lt are calculated from the interior points of the computational domain, while the

inward waves L, are set to zero.

L , = K ( p - p . ) (23.12)

Meanwhile, K  = <?(l -  M 1 , and 5 is a constant.

(2.3.13)
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2.4. Results and analysis

Using the non-reflecting boundary condition, we calculate some test cases. The 

first one is the simulation of a subsonic steady laminar boundary layer over a flat plat 

This is a typical test problem because it has a theoretical solution. The Navier-Stokes 

equations are solved, because it is a time-dependent problem, the local time step 

technique is used to get the maximum time step at each grid point Although the function 

value at local time step is not accurate, it will approach a steady state. The computational 

domain is constructed as a 3-D rectangular box. Because the flow is symmetric in the 

direction vertical to the paper, the periodic boundary conditions are used in this direction.

Far field 
boundary

Inlet Outlet
Computation domain

Inflow [
Surface of 
flat date

Fig 2.2 Illustration of computational domain and boundary of a flat plate.

As shown in Fig. 2.2, the computational domain is bounded by boundaries. Four 

non-reflecting boundary conditions are used here. At the inlet of the computational 

domain, the incoming boundary condition is specified by using (2.3.8) to (2.3.11). At the 

outlet of the computational domain, the outflow boundary condition is specified by using
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(2.3.12) and the method described in last section. At the far boundary, equation (2.3.13) is 

used to obtain the non-reflection boundary condition. At the surface of a flat plate, the 

velocities in three directions are specified as zero. Here the boundary conditions are 

obtained by using (2.3.4) to (2.3.7). The Mach number of the incoming flow is =0.1 

and Reynolds number is 1.0e+6. The incident angle of the incoming flow is zero. Fig. 2.3 

shows the computation grids for the flat plate. The grid size is 65x97. The flow is laminar 

flow over the flat plate. We choose two very sensitive variables (velocities om the x and 

y directions) as our comparison parameters. Fig 2.4 and Fig 2.6 compared u by showing 

the u contour. We can see there are some waves entering the domain from the boundary. 

It is the same for the v contour. These are the unexpected physical waves entering the 

computation domain.

1.2

1.1

Q.9

0.8

0.7 naai
> - 0.6

uni
0.5

0.4 I U
I U
IBM

I I I !
IU I0.3
IU I
IU I

0.2 IU I IU I
IU I

0.1

0.5
X

Fig. 23  Computation grid
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> 0.6

Fig 2.4 Contour of velocity along the x direction for a flat plate.

1.2

1.1

1

0.9

0.8

0.7

> 0.6

0.5

0.4

0.3

0.2

0.1

0

-  I

\

Fig 2.5 Contour of velocity along the y direction for a flat plate.
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0.8
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-<

0.4

0.2

0.4 0.6 0.8

X

Fig 2.6 Contour of velocity along the x direction for a flat plate 
using conventional boundary conditions

S

0.8

O.S

-<

0.4

0.4 0.6 0.8

X

Fig 2.7 Contour of velocity along the y direction for a flat plate 
using conventional boundary conditions
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The second example was tested for a cylinder with infinite length in the span-wise 

direction. As mentioned in the first case, the periodic boundary condition was used in this 

direction. The grid size for this problem is 151x101x11. The grid in the (x,y) plane is 

shown in Fig.2.8. Usually, in computational fluid dynamics, the far field boundary is 

about 5 to 10 times the characteristic length from the object surface. Here, in order to 

show the advantage of the non-reflecting boundary condition, we choose the far field 

boundary which is quite close to the object. As we see in Fig.2.8, the characteristic length 

of this configuration is the radius of the cylinder (characteristic Iength=I). The far 

boundary is just about one characteristic length away from the object surface.

r

X

Fig 2.8 Section of grid for a cylinder o f the (x,y) plane

First, the conventional boundary condition which uses I-D Rieman analysis to 

specify the boundary condition is used at the for field boundary. In order to compare the 

results, we use the non-reflecting boundary condition at the for field boundary. On the
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surface, because the flow speed at the solid wall surface is zero, we use the non-slip non­

reflecting boundary condition as we derived in the last section. The effect of the boundary 

condition can be seen in Fig.2.9 to Fig 2.12. Fig 2.11 is the calculation result by using l- 

D Rieman analysis as boundary condition, and Fig 2.9 is the calculation result by the non­

reflecting boundary condition. Both of these figures show the velocity contour in the x 

direction. In Figure 2.11, it is clear that at the far boundary there are some waves entering 

the computational domain. But Figure 2.9 shows the results of the non-reflecting 

boundary condition, which have no reflection of waves because the flow field is very 

clean. It is obvious that the result using a non-reflecting boundary condition is much 

better than the one using a conventional boundary condition. Fig 2.10 and Fig 2.12 show 

a similar comparison. The only difference is that they are velocity contours in the Y 

direction. From these two figures, we can get the same conclusion.

r

2

0

-2

0.5 N

X

Fig 2.9 Velocity contour (X direction) 
using a non-reflecting boundary condition
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0.5 ISI

Fig 2.10 Velocity contour (Y direction) 
using a non-reflecting boundary condition

Fig 2.11 Velocity contour (X direction) 
using I-D Rieman analysis at the boundary
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0.5 N

Fig 2.12 Velocity contour (Y direction) 
using 1-D Rieman analysis at the boundary

From the above tests, it is obvious that the non-reflecting boundary condition is 

superior to the conventional boundary conditions, especially for high accuracy numerical 

simulation like the DNS.

2.5. Appendix: compution of derivatives

The calculation of time derivatives in the interior consists simply of 

approximating the spatial derivatives in the above equations (2.2.18a)—(2.2.18e) with 

suitable numerical schemes. There are many approximation methods available, but we 

choose finite difference methods here. The accuracy of the finite difference method is 

described by orders. The higher the order, the more accurate the approximation.

A globally 4-th order accurate scheme may be achieved by using the 4-th order
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approximations

K.
94

= 7 - f - m l  i = X . . . ,N -2  (2.5.1)
>.j* *

1 .
94

1 .94

= - /„ .  J + 2 ^  - f 0jJc)] (2.52)
0 .jjc $

= 7 ~  [2(Am -  A m )+<A m  -  Am ) -  3(4m  -  A.m I P-5-3)
I.7.* ^

£
v-l ,/> 6A£ [̂ (/jv./Tt /v-l.yj»)+ (̂/A'-I.y7k fv-l.jjt) ifs~l.j.k fH-l.,.k )]

(2.5.4)

= AE MOaT.7.* ~ f )~ ̂ (/v-l.yj: ~  )+ (̂/w.7jk ~ fS-l.jJc. )l
V.7.* 0ii<»

(2.5.5)

Similar expression can be obtained in x\, C, directions.

At the boundary, the normal derivatives are subsumed into the definitions of the 

L, quantities. Those Lt , for which the corresponding characteristic velocities X, are 

directed out of the computational domain, are evaluated from their deinfition using one­

sided approximation which is shown above. The remain L, values are determined from

the boundary condition fomulas in the last section.
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CHAPTER 3 

Parallel Computation by MPI

Abstract

A parallel spatial direct numerical simulation code is developed to simulate the 

spatial evolving disturbances associated with the Iaminar-to-turbulent transition in a 

compressible boundary layer. MPI (Message Passing Interface) is employed to parallelize 

all processes for a distributed memory parallel computer. Explicit time stepping is used in 

the DNS code on IBM/SP2 to simulate the flow transition. The machine-dependent 

phenomenon, which is always considered a problem for parallel computation, is 

successfully avoided. A fundamental breakdown on a flat plate boundary layer transition 

at Mach 0.5 is then studied using this code. The results demonstrate the optimistic future 

of MPI to direct numerical simulation.

3.1. Introduction

The demands of both the scientific/engineering and the commercial communities 

forever increasing computing power have led to dramatic improvements in computer 

architecture. Initial efforts were concentrated on achieving high performance on a single 

processor, but the more recent past has been witness to attempts to harness multiple 

processors, with massive power being obtained through replication.

56
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For the most part, users of parallel computing systems tend to be those with large 

mathematical problems to solve, with the demand for power reflecting a desire to obtain 

results faster and/or more accurately. Unfortunately, the existing numerical algorithms, on 

which we have come to rely were developed with a single processor in mind, and the 

transition from a serial to a parallel environment is therefore not straightforward.

3.1.1 Parallel computer

Until relatively recently, the standard architecture model for most digital 

computers was introduced by von Neumann. The von Neumann model assumes that the 

programs and data are held in the store of the machine and that a central processing unit 

(CPU) fetches instructions from the store and executes them. The instructions result in 

either the store being manipulated or information being put or output. Machines based on 

this model are entirely sequential in operation — one instruction is executed in each time 

interval.

The first general-purpose electronic digital computer, called the ENVIC, was 

developed at the University of Pennsylvania in 1946. The past five decades have been 

witness to dramatic improvements in computer technology. The improvements were 

partly the result of advances in semiconductor technology, but also arose from an 

evolution of the original von Neumann model in which the requirement of purely serial 

processing was abandoned.

The development of parallel computers has been at two levels, both of which have 

attempted to enhance the performance of a particular class of machine. Early efforts 

centered on the development of high performance supercomputers to solve very large
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scientific problems, such as fluid dynamic simulation, weather forecasting and so on. The 

most popular supercomputer was the Cray series. The eight-processor Cray Y-MP and the 

four-processor Cray-2 of the late 1980s are capable of Gflops (gigaflops, or thousands of 

Mflops) performance. These machines exhibit limited parallelism with just a small 

number of powerful processing units operating in parallel.

The second strand of parallel computer development has centered around the 

desire to produce machines that are capable of performance approaching that of a 

supercomputer, but at a considerably reduced cost. These machines achieve their 

performance either by using vector processing capabilities, or by including a number of 

parallel processing units, or both. Thus, parallelism in computing is not only present in 

supercomputers, but also increasingly common in less powerful machines.

It is instructive to relate these developments in computer architecture to the 

computer solution of numerical problems. Throughout the decades 1950—1990, the 

architectural development was, for the most part, invisible to the user. Programs which 

worked optimally on one machine were likely also to work well on other systems. The 

only hardware feature of which the programmer might need to be aware of was the 

available memory. Virtual memory aided portability; programs simply had to mtnfmf?e 

the amount of data transfer between main and secondary storage. The development of 

units possessing vector processing capabilities affected the performance of an 

implementation. By making the vector structure of the algorithm visible to the compiler, 

significant improvements could be obtained over a corresponding code for which this 

structure was not apparent. The impact of the computer on the user is considerably greater 

in the case of a multiprocessor system and is compounded if  its memory is distributed
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over the individual processors. Such architectural considerations crucially affect the 

choice of algorithm and the way that an algorithm is expressed [Freeman, 1992]. It is this 

aspect of parallel processing that we take as our principal theme.

The demand for increased performance may result from a desire

• to decrease the execution time of certain programs so that results can be 

obtained in a reasonable time, or

• to run programs for the same amount of time but obtain higher accuracy or 

more accurate modeling of the underlying physical problem by increasing the 

problem size in some way, or

• to solve a problem previously considered too large for existing architectures.

One of the standard ways of classifying computer systems is that proposed by

Flynn in 1968 according to the number of instruction streams and the number of data 

streams. The classical von Neumann machine has a single instrument and single data 

stream and is identified as single-instruction single-data (SISD) machine. At the 

opposite extreme is the multiple-instruction multiple-data (MIMD) system, in which a 

collection of autonomous processors operates on their own data streams.

The classical von Neumann machine is divided into a CPU and main memory. But 

no matter how fast the CPU is, the speed of execution of programs is limited by the rate 

at which we can transfer the sequence of instructions and data between memory and the 

CPU.

Multiprocessor systems consist o f a number of interconnected processors. Each of 

them is capable o f performing complex tasks independently of the others. An individual 

processor, or node, may be a scalar or vector processor, or even a multiprocessor. Fig-3.1
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is one of MIMD systems in which each processor has its own memory and can be 

regarded as a single machine. They are called the distributed-memory MIMD. In 

particular, this system is asynchronous. There is often no global clock. The processors are 

specifically programmed to synchronize with each other if processor needs to be 

synchronous. Processors are connected by the interconnect network. Through the 

network, the processors can communicate with each other. It can be seen directly that the 

speed for a processor which needs only local memory data is much faster than the speed 

of a processor which needs data stored in an other processor's memory. Since the data 

must be gotten from an interconnect network, the communication will slow down the 

process speed of the processor. Therefore, it is a good strategy to use as much local 

memory as possible.

Memory Modules

Processors

Interconnect network

Figure 3.1 MIMD Structure

Because the inter-connected network is much slower than the processor itself, 

scientists spend a lot o f time studying the structure of the network. Physical connection 

between processor and memory may take the form of a common bus, or the processors 

themselves may have communication capabilities which allow them to be directly 

connected together. Alternatively, some sort o f a  switching mechanism may be employed.
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The most commonly used networks are cross bar, clos connection, hypercubes, and fat 

tree. They are used depending on the purpose of the computer via a cost and speed factor. 

Switch is one that is able to connect a number o f inputs with a number of outputs 

according to specified permitted combinations.

3.1.2. Software support

As numerical problem solvers, we have become accustomed to the provision on a 

uni-processor of a number of sophisticated tools to aid program development. In a 

multiprocessor environment we expect to have these and more. At the very least, we 

anticipate

• an operating system,

• high-level programming languages supporting parallelism,

• compilers which generate efficient code from programs written in these 

language, and

• libraries of numerical software.

From the operating system, we might expect the capability to allocate processes to 

processors dynamically. From the programming languages, we must be able to express 

the parallelism for our problems which will help to identify parallelism inherent in 

existing sequential codes. If a numerical library is provided which itself exploits 

parallelism, then we may be able to develop a parallel code by writing a sequential main 

program which simply makes calls to appropriate parallel routines. In our work, we 

choose this one as our tools to do the parallel computation for DNS.

For any parallel language designed for use of a local memory system, we expect
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facilities for process creation, destruction, and identification. In addition, we require the 

ability explicitly to communicate between processors. Specifically, we may wish to

• send a message from one processor to another, and

• receive a message in one processor from another

where a message involves some transfer o f data. For example, we might wish to 

accumulate a sum of values, each of which is determined by a separate process. Assume 

that a single process is to form the sum; then all other processors must forward their 

values (pass messages) to that process. Besides these one-to-one message-passing 

primitives, it is likely that we will also require facilities to

• send a message from one process to all other processes (broadcast or scatter)

• receive a message in one process from all others (gather).

We carefully distinguish two types of communications, synchronous 

communications and asynchronous communication. By synchronous communications, the 

sending process is held until the corresponding receiving process is ready. Similarly, the 

receiving process is held until the corresponding sending process is ready. By 

asynchronous communication, the sending process is not held waiting for the receiving 

process. If the receiving process is not ready, then the data to be transferred are put into a 

buffer until the message transfer can be completed.

Associated with the creation of processes is the placement o f each process on a 

given processor. In a local memory environment, this placement is usually undertaken by 

the programmer, rather than left to the system software. Hence, additionally, we might 

expect facilities to

• associate a process with a specified processor, and, possibly,
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• associate an inter-processor communication link with physical inter-processor 

link.

This process-to-process allocation implicitly maps data requirements to local 

memory.

When developing parallel programs within a message-passing environment, the 

physical structure o f the computer system on which the code is to run may need to be 

borne in mind, although it is desirable to minimize the dependence of the code on the 

structure's topology. Communication between processes resident on adjacent processors 

is straightforward and takes place along the link between the processes running 

intermediate processors to pass the message on. Ideally, we would like the need for such 

throughrouting to be hidden from the programmer. With throughrouting communication 

software, the programmer can nominate a process to receive the message and then leave it 

to the system to ensure that the message arrives at the correct destination.

3.2 Message-passing stvle parallel programming with MPI

MPI stands for Message Passing Interface. MPI uses different approaches to 

achieve parallel computation. Unlike High Performance Fortran, MPI does not develop 

any new languages. It specifies a library o f functions that can be called from a C or 

Fortran program. The foundation of this library is a small group of functions that can be 

used to achieve parallelism by message passing. A message-passing function is simply a 

function that explicitly transmits data from one process to another. Message passing is a 

powerful and very general method of expressing parallelism. A message-passing program 

can be used to create extremely efficient parallel programs, and message-passing is
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currently the most widely used method for programming in many types of parallel 

computers. Its principal drawback is that it is very difficult to design and develop 

programs using message-passing. Indeed, it has been called the "assembly language of 

parallel computing" because it forces the programmer to deal with so many details. In 

spite of this, the history of parallel computing suggests that it is sufficiently deliberate. It 

does not take an undue effort to design extremely sophisticated programs. Furthermore, as 

more and more software is developed that uses MPI, more and more sophisticated 

algorithms will be encapsulated in portable MPI libraries. The inclusion of these 

algorithms into a program will be simply a matter of calling a function.

The reason we choose MPI as our parallel tool is because it has the following 

characteristics:

• a standard library for message-passing (communication) among multiple processors,

• portability, which supported by almost all parallel computers (including network of 

PCs and workstation),

• Efficiency, which is more efficient than a shared-memory style programming,

• Program re-usability, where a significant portion of an existing program needs to be 

modified.

3 J . Basic operation of MPI

MPI is the most commonly used method for programming distributed-memory 

MIMD systems. But a characteristic which should be noted here is that MPI is a  kind of 

single-program multiple-data program (SPMD). It means source code written on different 

processors is the same. But when they are executed, the programs will be executed in
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different ways. The effect o f running different programs on different processors is 

obtained by the use of conditional branches within the source code. This is the most 

common approach to program MIMD systems.

In basic message-passing, the processes coordinate their activities by explicitly 

sending and receiving messages. The process must specify the communication processes 

when it wants to communicate with them. The communication between processes can be 

either in blocking type or non-blocking type. For example, when process I calls function 

"receive" if the message for process 1 is still not available, process 1 will remain idle until 

the message is available. This is the block type communication. An alternative 

communication type is non-blocking communication, that is, the process returns 

immediately after the call. The system would be responsible for the remained work. The 

use of non-block communication can provide dramatic improvements in the performance 

of message-passing programs. If a node of a parallel system has the ability to compute 

and communicate simultaneously, the overhead caused by communication can be 

substantially reduced. For example, if  each node of the system has a communication 

coprocessor, then we can start a non-block communication and perform computations that 

do not depend on the result of the communication, and when the computations are 

completed, finish the non-block communication. While the computations are being 

carried out, the communication co-processor can do most of the work required by the 

non-block operation. Since communication is very expensive relative to computation, 

overlapping communication and computation can result in tremendous performance gain.
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The most commonly used MPI functions are listed in the appendix.

3.4. Finite differences solver for DNS

The mathematical model for the DNS problem is to solve the Navier-Stokes 

equation. The 3-D, compressible, time-dependent Navier-Stokes equations under the 

general curvilinear coordinate system can be written as below:

dq dF SG dH i f  dFv dGv dHv)
—  + ------ + ------ + -------- =  -  +  — H----------

dt dx dy dz Re ̂  fir dy fir ,

Because of the sensitivity of physics, DNS code must meet the requirement of 

both high accuracy and strong numerical stability. High-order discretizations have been 

developed by several researchers (Orszag, 1971; Lele, 1992; Rai and Moin, 1993). Here, 

we use the standard 6th-order central difference for convective terms and 4th-order 

central difference for viscous terms. The 4th and 6th order o f the difference formula are 

as follows.

~  / ( X»! ) + ) -  8 /(* ,-l) + /(* ,-! ))

& = }  + 7 S / ( X' *' } "  7 5 f ( x - '  >+ 9 / ( x - !  > - / ( x « ))

where f  can be any of the flux vectors and x can be one of three coordinates.

For time integration, we adopt the classical 4th-order Runge-Kutta scheme. We 

can rewrite the semi-discrete Navier-Stokes system as

R is the convection and diffusion term. By the Runge-Kutta method, the Navier- 

Stokes equations can be expressed as follows, where At is the time interval, and the upper
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index n is the time at nAt:

ylO) = £/<">

£y(l) _  * gi°)
2

£/<-) _  y W  ^  * ̂ (l)
2

( /(3) =C/(0) - M * R a)

Cjw = uw _^ *(*«» +2R " + 2R™ + Rt3))
£y(n+l) _ j y ( 4 )

It is obvious that the system is parabolic. When we want to calculate variable 

values at time step n+1, we need only variable values at time step n. Therefore, this 

method can be efficient in memory utilization by a careful arrangement of the array of the 

code. Also, by this parabolic property, we can merge the solver with the parallel method 

smoothly.

The above system can be solved with proper specifications of boundary 

conditions. In general, all flow quantities can be specified at the inflow boundary. The 

prescription of the inflow boundary condition depends on the ways that the disturbances 

are introduced into the base flow. Because we use a flat plate as our calculation example, 

all the boundary conditions are specified for this case.

At the wall, we give the no-slip and isothermal boundary condition. At some 

position from the inflow boundary, the blowing/suction condition is enforced to simulate 

the flow transition. At inflow, outflow, and far field boundary, sponge lay is used to 

eliminate the wave reflection. In the span-wise direction, the periodic boundary condition 

is imposed. This boundary condition can be specified during solving the system by the 

Runge-Kutta method.
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3.5 Parallel implementation of flow solver

There are essentially two approaches to design parallel programs. In the first, 

called the data-parallel approach, we partition the data among the processors, and each 

processor executes more or less the same set of commands on its data. In the second, 

called the control-parallel approach, we partition the tasks we wish to carry out among the 

processes, and each processor executes commands that are essentially different from 

some or all of the other processors.

Data-parallel programming is more common. Perhaps the most important th ing  is 

that data-parallel is scalability, that is, this approach can be used to solve larger problems 

with more processes. Here, we choose this approach to do parallel computation.

Because of the nature of the explicit flow solver, variables at a grid point can be 

solved independently. The parameter it needs is the variables' value at the last time step. It 

can be seen from the algorithm of the forth-order Runge-Kutta method we used. Even it 

has 4 stages, but each stage uses at most the last time step/stage's variables' value. 

Therefore, for each grid point, its variables can be solved individually. Since the method 

is explicit, for a fixed time step (n+l), we let IDM, JDM, KDM be the grid point numbers 

in the r\ and C, direction, respectively. The approximate solution values U(n+l, i jjc ) , 

i=I,...JD M ; j=l,...,JDM ; k=l,...,KDM are independent of each other, and may be 

computed concurrently. A natural work-sharing strategy is to employ some forms of 

domain decomposition in the space dimension. Typically, we would organize the grid 

points into blocks. The beginning of the computation at each time step imposes a 

synchronization point which, in a local memory environment, requires process 

intercommunication of the approximate solution values at the edges o f the space
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discretization blocks.

Based on the above analysis, we perform a domain decomposition. This means 

assigning grid points to different processors. Each processor is responsible for the 

calculation of some grid point's variables' value. In order to maintain a good load balance 

among multi-processors, the amount of computation processed by each processor should 

be as equal as possible. Here, because the computation is related to each point o f the grid, 

how to distribute these points among processor, or how to partition the computational 

domain is a very important aspect in our parallelism. By the finite difference method 

which we adopted, the 3-D computational domain can be considered as a box in the (§, q, 

Q space. The physical coordinates at each corresponding point are consistent during the 

calculation. That means the problem can be distributed among processors by simply 

partitioning the entire domain and assigning the sub-domain to each process. Each 

process performs all the calculation that is almost the same as that of the original serial 

program. The only difference is that the computation in each processor will be in a small 

scale — a subset of the global domain.

A 3-D grid in the computational (§, q, Q space is shown in Fig.3.1. In the flat 

plate problem, because we use less grid point in span-wise (J-direction) than the other 

two (I, K) directions, so we do not partition data in the J-direction.

Domain decomposition can be done in several ways (C.F., Vidwans, and 

Kallinders, 1993). hi the present work, we considered the following two instances of grid 

partition.
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1. "Strip" partition (Fig.3.2(a)):

In this kind of partition, the global domain is divided along one of the coordinates. 

Data in different sub-domains are distributed to different processors. Data are not 

partitioned along the other two directions. The cutting planes are all along one o f (I,J,K) 

directions.

2. "All-round" partition (Fig.3.2(b)):

The global domain is divided along I and K directions into smaller sub-domains. 

Each sub-domain contains part of the original data and is assigned to different processes.

K K.

-f- -t-

P0 PI

Pn

Fig.3.2 Domain partition: (a) strip partition, (b) all-round partition.
P0 ... Pn represent for the process

By defining a suitable number of processes in each axis of the coordinates, we can 

achieve a good load balance. Both kinds o f partition can be obtained without significant 

problems. Definitely, the first partition is easy to achieve good load balance, while the 

second one needs some considerations before domain partition. Load balance can be 

achieved in the same way. The only difference is that the interface of a sub-domain may 

have a variable number of grid points. In the following sections, we will see that the area 

o f interface is related to the amount o f communication. Therefore, this area is critical for
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efficient computation. Each process does the same calculation as the serial program* but it 

does the calculation on the sub-domain, a smaller region than the original domain. That 

means that each process will spend less time to get the results in the sub-domain. Because 

all processes do the computation in parallel, the computation time will be significantly 

saved compared to a serial program running on one process.

3.6. Communication and load balance

If we wish to optimize the efficiency of a particular applications program, then it 

is essential to ensure that all processors are doing useful work for as much time as 

possible. This means that, as far as possible, we must avoid processors being held at 

synchronization points waiting for information from other processors before they are able 

to be processed. Clearly, in this sense, a sequential program running on a single processor 

is 100% efficient. The aim is to implement an algorithm in such a way as to employ as 

many processors as possible while at the same time ensuring that all the processors are 

sufficiently usefully active. We refer to this action as load balancing.

Communication is a big issue in parallel computation. Compared to the serial 

program, a parallel program has three main sources of overheads:

1. communication;

2. idle time;

3. extra computation.

Idle time and extra computation can be minimized by the arrangement of domain 

decomposition. But communication cannot be avoided. Among the three overheads, the 

communication is the main contribution of overheads, especially in large scientific
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computation when communication is repeated over and over. So we must carefully design 

our parallel algorithm before solving the problem. Because we use a high-order difference 

scheme to do DNS, which has a larger stencil as the order of numerical scheme increases, 

the need for data communication will also increase because o f the expanding of the 

stencils. By using the explicit scheme, only the information at neighbor processors at a 

previous step is needed. Because of the characteristics of an MIMD machine, each 

processor has its own local memory. At the end of each time step, values at certain grid 

points will need to be transferred to an adjacent processor. A common situation is that 

each processor holds (m*JDM*n) grid points. Here, m, n are dimensions of a sub-domain 

in T, K directions. We denote by "internal boundary values" for those values that are 

needed by other processors at the next time step and must be transmitted. This is 

illustrated in Fig. 3.2.

The shaded areas are these internal boundary values which need to be transferred 

to adjacent processors. The arrows indicate the transfer direction. For the internal grid

Internal Boundary values

Internal grid points

*  I

Fig.3.3 Communication o f internal boundary
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points in Fig. 3.3, one still can use a serial algorithm to obtain the values. But, for the grid 

points in the above shaded areas, when one calculates the value at these points, one also 

needs the neighbor points' values which are stored in the adjacent processors. Therefore, 

for these points, there are two actions that must be done: I) sending their values to their 

adjacent processors, 2) receiving values from their adjacent processors. After these two 

steps are finished, their values at a new time step can be obtained as a normal difference 

algorithm implementation. In our program, because a 6th-order or a 4th-order difference 

scheme was used, more grid points' values need to be transferred. We can see this in 

Fig.3.4

PO ooo

[-3 [-2 I- l [ 

•  •

•  • • •
I

PI

I+l 1+2 1+3

O O O

Fig 3.4 Communication between adjacent processors

PO and PI are adjacent processors. If we want to calculate the value of grid point 

(cross with a circle in Fig.3.3) near the boundary of the sub-domain, seven points at the 

last time step are needed. We label this point with "1" and the other points with 1-3,1-2,1- 

I, I+1,1+2, and 1+3. It can be seen that, if  we want to calculate the T  point's value at 

processor PO, I+i, 1+2 and 1+3 points are in the processor PI. Therefore, they must be
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transferred to PO. The problem is similar for the point I at processor PI. Since the 

communication takes a lot of time, it will be very time consuming if we transfer data 

point by point. Here, we use data type in MPI. The internal boundary values for an 

adjacent processor are packed together as a data type. Usually, we define two data types 

in MPI to send and receive several rows or columns of data. In this way, data transfer 

between processors will be performed just by sending or receiving the defined data type 

only once. Typically, one sub-domain has north, south, east, and west neighbors. For each 

processor, at least four communications must be made in order to calculate the spatial 

derivatives in the I and K. directions.

As we have seen, the data amount for communication is proportional to the 

intersection area between neighbor processors. For strip partitioning, the area between 

processors is always the same. This means that no matter how many processors we use, 

the communications between two adjacent processors are the same. Therefore, efficiency 

is low and will become the bottleneck for our problem as the number of processors 

increases. For all-round partitioning, as the number of processors increases, the sub­

domain become smaller and smaller. Thus its interface area will become smaller and 

smaller. The data communication between this processor and other adjacent processors 

will decrease as the number of processors increases. Therefore, the total overhead time 

will be reduced. Hence, based on the above analysis, we use this kind of partitioning in 

our present work.
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3.7. Parallel efficencv and performance

The efficiency of a parallel code is a measurement to verify how well the code 

utilizes the available processors to solve the problem. The best way is to make all 

processors work in exactly the same size in order to avoid the situation that some 

processors are busy while the others are idle. One way to consider the efficiency is to hold 

the global problem size and let the number of processors increase. The wail-clock time 

for solving the problem is measured as the number of processor increases. Another way to 

measure the efficiency is to hold the size of the problem and check the total run time.

Let Tp be the execution time for a parallel program on p processors. We define the 

following terms:

1. Sp, the algorithm speed-up ratio on p processors, is given by

This quantity measures the speed-up to be gained by the parallelization of a given 

algorithm. It thus directly measures the effects of synchronization and communication 

delays on the performance of a parallel algorithm. Ideally, we would like S  to grow

linearly with p. Unfortunately, even for a good parallel algorithm we can only, at best, 

expect the speed-up initially to grow at a close to linear rate. Eventually, it will decline 

because the overhead will increase as the number o f p increases.

2. £ ,the efficiency on p processors, is given by

e = Tl/{p*Tp)

Note that efficency is compared by dividing time consumed on one processor with 

the total time consumed on p processors, hi practice, the efficiency should decrease as p
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increases. Because, in parallel computation, there are some overheads as compared to 

computation on one processor. The more processors, the more overheads occur. However 

even though there are some overheads for parallel computation, the total computation 

time can be decreased significantly.

To test the performance of our MPI parallel code, several combinations of 

processors and grid sizes are used. Fig. 3.4 shows the efficiency versus the number of 

processors for the grid size of 481*32*81. Very good performance is achieved when the 

number of processors increases to as many as 64.

The timing results with different grid sizes are depicted in Fig. 3.5, from which 

we can see that the acceleration is almost proportional to the number o f processors.

0.8

0.6

0.4

0.2

1 2 84 16 32 64
Number of Processors

Fig. 3.5 Computing effiency
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Another test is to use different grid sizes with fixed number of processors. Fig. 3.6 

describes the performance of the current MPI code under the IBM/SP2. Here, the basic 

grid size Ng0 is set to 61*32*41. A series o f multiple grid points, Mg =61 *32*41,

121*32*41, 121*32*81, 241*32*81, 481*32*81, are assigned. Three curves with 4, 16, 

and 64 processors respectively, are plotted in Fig. 3.7. Again, the acceleration is found to 

be almost proportional to the number o f processors.

The performance of fixed per-processor grid size is also tested. Though it is 

expected that only a slight decrement in the performance occurs, it is difficult to get all 

the processors dedicated when the number o f processors increases to a certain number, 

which might be the major reason of slowing down, as shown in Fig. 3.8
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Fig. 3.8 Computing time with a fixed per-processor grid size 

Besides the above tests, a Sun Enterprise 3000 with shared memory and six 

processors is also used to test the portability o f our MPI code. A similar performance is 

observed.

3.8 Numerical Results

The MPI code is first validated with the Mach number 0.5 for the flat plate 

boundary layer transition. A sketch o f the computational domain is given in Fig. 3.9. The
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base flow is obtained by solving the compressible similarity system (Stewartson, 1964) 

using shooting method. The solid wall is assumed to be adiabatic for the base flow and 

isothermal for the perturbation. The Reynolds number is set to Re = 875 ( based on 5), 

and cold =0.1. Compressible linear stability theory (LST) provides an eigenvalue 

a  = 0.2636-/0.005623.

inflow

sponge layer

boundary layer

buffer

outflow

Fig. 3.9 Computational domain of a boundary-layer transition problem 

The whole computational domain is set to 15 T-S wavelengths to ensure the 

development of the least stable mode. The grid is l6/wave*51*l, with the last 

wavelength used as the buffer domain (sponge layer). Also, one T-S period is divided into 

1000 time steps. The base flow is assumed to be parallel. Fig. 3.9 depicts the disturbance 

amplitude of ur and v', showing that the least stable mode is picked up very well and 

grows as LST predicted. Also, we can see that the sponge layers successfully eliminate 

the reflecting waves in all directions to keep the physical domain very clean. 

Eigenfunctions of this case are also compared with LST and found to agree very well 

(Fig. 3.10).
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A K-type transition in a 2-D subsonic flat plate boundary layer is then simulated 

by using the same code. A 353*51*32 grid, which includes an inflow sponge (first 16 

stream wise grid points), a suction/blowing slot (near 24 stream wise grid points), an 

outflow buffer domain (the last 16 streamwise grid points), and an approximately 9 T-S 

wavelengths physical domain, is used. The height of the computational domain is 30 

(based on the 8 at the end point of suction/blowing slow, x2), theTn =300K. The 

amplitude of disturbance is set to cou  — 0.005, <oJa = 0.001, the spanwise wave number 

is p  = 0 .2 , and the angular frequency a  = 0.1.

Amplitude of the second mode eigenfunctions
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Fig. 3.11 Comparison o f DNS and LST results 
for the amplitude eignfunctions of subsonic flat plate boundary layer

One forcing period is divided into 1000 time steps. By using a 3*2 partition, it

takes about 4.7 seconds per time-step, or 8.16 fjsec per grid point per time-step.

Fig. 3.11 depicts the instantaneous contour plots of perturbation velocity
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Fig.3.12 Instantaneous contour plots of perturbation (a) velocity amplitude and (b) 
vorticity emplitude. for the K-type breakdown o f a Mach 0.5 flat boundary layer
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Amplitude and pertubatioa vorticity magnitude on the y=0.3727(x, z) planes after 

9 forcing periods. It shows that the transition process is very similiar to that of 

incompressible flow, except that the "let" o f the so-called lambda waves are longer. Also, 

even after the lambda waves break into smaller scale eddies, the major splitting appears in 

the spanwise direction, where the length scale in the streamwise direction is relatively 

longer.

3.9. Conclusion

MPI is applied to perform parallel computations for DNS. By using the 

parallelized code, the current approach shows the ability of DNS to simulate the whole 

process o f compressible flow transition with medium Reynolds number. The MPI code 

shows the flexibility of using different parallel machines, which was a problem 

encountered by researchers for a long time.

From the performance we obtained, we found that the computing time can be 

reduced substantially. The current code obtained nearly ideal linear speedup up to 64 

processors. The advantage of a parallel machine in CPU and memory storage makes it 

very attractive for large-scale computation.
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3,10 Appendix

1. Point to point communication functions

MPI_Recv(void* message, int count, MPI_Datatype datatype, int source, int tag, 

MPI_Comm comm, MPIjStatus* status)

MPIJSend(void* message, int count, MPI_Datatype datatype, int dest, int tag, 

MPI_Comm comm)

MPI_Irecv(void* message, int count, MPI_Datatype datatype, int source, int tag, 

MPI_Comm comm, MPIJRequest* request)

MPI_Isend(void* message, int count, MPI_Datatype datatype, int dest, int tag, 

MPI_Comm comm, MPI_Request* request)

Int MPI_Wait(MPIJRequest* request, MPIjStatus status)

2. Derived datatype functions

int MPIJType_commit(MPI_Datatype* datatype)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype newtype) 

int MPI_Type_stuct(int count, int blocklengthQ, MPI_Aint dispIacementQ, 

MPI_Datatype typesQ, MPI_Datatype* newtype)

Int MPI_Type_Vector(int count, int blocklength, int stride, MPIDatatype oldtype, 

MPIDatatype* newtype)

Int MPI_Pack(void inbuf, int incount, MPI Datatype datatype, void* packjbuf,

Int packjbufjsize, int* position, MPIjComm comm) 

bit MPI_Unpack(void* packjbuf, int pack_buf_size, int* position, void* outbuf,
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Int outcount, MPI_Datatype datatype, MPIComm comm)

3. Collective communication functions

int MPI_Bcast(void buffer, int counter, MPI_Datatype datatype, int root,

MPI_Comm comm)

Int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, 

int recvcount, MPIjdatatype recvtype, int root, MPIjComm comm)

Int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, 

int recvcount, MPI_datatype recvtype, int root, MPI_Comm comm) 

int MPI_Reduce(void* operand, void* result, int count, MPI_Datatype datatype,

MPI_Op operator, int root, MPIjComm comm)

4. Environmental management

int MPI_Comm_create(MPI_Comm comm, MPIjGroup new_group,

MPI_Comm* new_comm)

Int MPI_Comm_rank(MPI_Comm comm, int* rank)

Int MPI_Comm_Size(MPI_Comm comm, int* size) 

int MPI_Init(int* argc_ptr, char** argcjptrQ) 

int MPI_FinaIize(void)
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