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A B STR A C T

A scheme is presented to  regain a finite number of lost samples from a Nyquist- 

rate-sampled band-limited signal /  of finite energy by replenishing new sample values 

of the same number. The result can also be viewed as the solution to  a special 

non-uniform sampling problem.

A scheme is also presented to recover a band-limited function /  of finite energy from 

its sampling values on real sequences with an accumulation point. The result given 

here can also be viewed as an approach to the extrapolation problem of determination 

a band-limited function in terms of its given values on a finite interval. An error 

estim ate is also obtained.

The existence of two kinds of frames, Weyl-Heisenberg frames and affine frames, is 

studied. The conditions given in this dissertation improve the known conditions and, 

in addition, are easy to verify.

A parallel algorithm for the two-dimensional forward fast wavelet transform is 

developed and implemented on the AP1000 multiprocessor system. The algorithm 

is carefully analyzed before implementation. Experiments are performed on different 

input sizes on different numbers of processors. The results from the experiments 

coincide with the theoretical analysis. The parallel algorithm gains expected speedup 

on the mesh architecture. Further work is suggested.

ii
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NOTATION

In this dissertation, Z and R  denote the set of integers and the  set of real numbers, 

respectively.

L2(R) denotes the Hilbert space of all complex-valued square-integrable functions 

on the real line R  with the inner product

(.f , 9 ) =  f R m W ) d t . (i)

The Lebesgue measure of a set E  C R  is denoted by |£].

A function (signal) f ( t )  is said to be of finite energy and IV-band-limited if /  € 

L2(R) and

/ ( u ) = 0  (u e [ - W ,W \ )  (2 )

i.e.,

/(«) =  5 T r  /(« -)« " * »  (t 6  R). (3)

where

f (w )  =  f{t)e-«*dt (w e  R) (4)
J  — oc

is the Fourier transform of f.

Bn- denotes the set of all IV'-band-limited functions of finite energy.

ix
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C H A PT ER  1

IN T R O D U C TIO N

An important problem in signal processing is to  reconstruct a  signal from its sample 

values taken at non-uniformly spaced sampling points. Irregular sampling arises in 

many scientific fields, such as geophysics, astronomy, oceanography, medical imaging, 

spectroscopy, and speech processing. The concentration of this dissertation is to 

develop algorithms for signal recovery from non-uniform samples and to study frames 

and wavelets that are closely tied to signal processing and signal reconstruction. In 

this introductory chapter, some background on related fields is presented.

1.1 The Irregular Sampling Problem

The sampling problem is one of the standard problems in signal analysis. Since a 

signal / (x )  cannot be recorded in its entirety, it is sampled at a sequence {x„ : n €  Z}. 

Then the question arises how /  can be reconstructed or at least approximated from 

the samples /(x „ ).

In most applications, it is the case that the signal is band-limited and is of finite 

energy.

If the samples are equally spaced, then the famous sampling theorem by Shannon, 

W hittaker, Kotel’nikov, and others provides an explicit reconstruction. The Shannon, 

W hittaker, and Kotel’nikov sampling theorem [3, 27, 34, 41, 46] ensures that the

1
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finite energy W-band-Iimited signal f{ t )  can be represented in terms of its uniformly 

sampled values f ( n / 2 W ) n^z  as

In practice, the samples are more likely non-uniformly spaced; this makes the 

irregular sampling problem a very important issue in signal processing, the irregular 

sampling problem was studied by many researchers [6 , 18, 35, 36, 49]. The iterative 

reconstruction methods, spline interpolations, are employed to  reconstruct signals 

from their non-uniform samples.

In Chapter 2, we present a  scheme to regain a finite number of lost samples from 

a Nyquist-rate-sampled band-limited signal /  of finite energy by replenishing new 

sample values of the same number. The algorithm is constructive and the result 

can also be viewed as the solution to a special non-uniform sampling problem. The 

advantage of the scheme is th a t it is programmable; therefore, it is easy to implement 

the algorithm in computer languages.

It is often important to recover a \V-band-limited function /  of finite energy from 

its sampling values a t a convergent sequence of different points x „ ,n  =  1 , 2 ,..., with 

at least one limit point a €  R . In Chapter 3, a scheme is presented to deal with this 

form of irregular sampling problem. The result given in Chapter 3 can also be viewed 

as an approach to the extrapolation problem of determ ining a band-limited function 

in terms of its given values on a finite interval. An error estim ate is also obtained.

/ « =  £  / ( ^ 7)sinc(2 W t - n ) ( 1.1)

where
sin(?rx)

( 1.2)
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3

1.2 Frames

Given a complex Hilbert space H , it is often advantageous to find a family {/in}n€z C  

H  such that every element h €  H  can be written as

h =  ^2onhn (1.3)
n

for some complex scalars c„. This kind of expansion is obviously available if the 

family {/i„}n€z is chosen to be an  orthonormal basis of H . However, the requirement 

of orthogonality and the basis property is so restrictive that it is sometimes difficult to 

find an orthonormal basis for practical purposes. As an alternative, a generalization 

known as frames was introduced which has the property [1 0 , 1 1 , 26] that the expansion

(1.3) is always possible.

D efin itio n  1.2.1 A set of functions {hn}n€ z in a Hilbert space H  is a frame i f  there 

exist constants A, B  > 0 so that for  all h €  H ,

AIWIa <  £ ! ( * .* .>  Is <  BUM’- (i.4)
n

The constants A and B  are called the frame bounds.

Frames were introduced by Duffin and Schaeffer [15] for use in non-harmonic 

Fourier analysis. An excellent treatm ent of non-harmonic Fourier analysis can be

found in Young’s research [48]. Since then, there have been many contributions by

Daubechies, Grossmann, Meyer, and others [10, 11, 26] developing the wavelet theory, 

emphasizing applications of frames in signal processing and finding conditions on the 

existence of frames for a Hilbert space H.

Frames are closely tied to the irregular sampling problem. One of the existing re­

construction methods is to reconstruct signals from non-uniform samples using frames 

as the base technique [37].
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4

T heorem  1.2.1 ([Marvasti]) Suppose that

A l l /H i  <  £  l / ( ( i ) | 2 <  B l l / l l i  ( 1 .5 )
j=i

twY/i r  >  2 H7 +  1 and assume 7  <  7 ^ 5 , Then f  can be reconstructed iteratively by

fo =  0, f n+l =  /„  +  y S ( f  -  /„). (1 .6 )

And  lim „_ao /„  =  /  in L2{R) norm for  /  €  Bw- where Sx is defined as

T

Sx(t)  =  53  X (t;)«nc»r(t ~  ty). (1.7)
J= 1

VV'e are not deeding directly with the reconstruction algorithms using frames but 

providing schemes to form new frames. In chapter 4, the existence of two kinds of 

frames, Weyl-Heisenberg frames and affine frames, is studied. Precisely, we provide 

conditions on a function g €  L2(R) such that the regular Weyl-Heisenberg system 

{e2*imi>xg(X — na)}m rie2  or the semi-irregular Weyl-Heisenberg system {e2*irnbxg(x — 

On)}m,n€z with an arbitrary real sequence {an}n6z forms a  Weyl-Heisenberg frame

for L2 (R ). Also, conditions are given on g €  L2 (R) such that the affine system

{a~n/2g((x  — mban)a~n)}m,n€z  forms an affine frame. The conditions given in this 

dissertation improve the know-n conditions and. in addition, are easy to verify.

1.3 W avelets

The Fourier transform has been used as a powerful tool in application domains such 

as signal processing for many years. Nevertheless, it suffers from certain limitations. 

The Fourier transform of a signal /  can only provide information of the frequency 

content of / ;  it provides little information concerning time-localization of the signal 

/ .  Small frequency changes in th  Fourier transform will produce changes everywhere 

in the tim e domain. The Fourier transform provides poor time locality.
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The Wavelet transform is a  new tool that overcomes the weakness of the Fourier 

transform. A time-domain function (signal) can be transformed into a representation 

th a t is localized not only in the frequency domain (like the Fourier transform) but 

also in the time domain.

Wavelets are used in many fields such as chemical engineering [40], sub-band coding 

[1, 38], signal and image processing and compression [32. 44], and other applications 

[4, 7, 17, 39].

Functions can be represented using wavelets in a compact way. For instance, func­

tions with discontinuities or sharp spikes usually take fewer wavelet terms than the 

sine-cosine basis functions th a t are used in Fourier analysis to  achieve a comparable 

approximation. Therefore, in application domains such as d a ta  compression, wavelet 

transforms are more powerful than Fourier transforms.

The wavelet transform is used to decompose data  or signals into different fre­

quency components {wavelets). The original signal can be studied in terms of simpler 

wavelets. Informally, a wavelet is a “little wave;" the wavelet technique is to represent 

the “big wave” (signal) in term s of a set of well-chosen “little waves” so that the signal 

can be thoroughly studied through the study of simpler “little waves.” Information 

about the original signal can therefore be extracted from the “little waves” which are 

actually functions built up with the translations and dilations (or modulations) of a 

signal function called the mother wavelet (sometimes it is also called the analyzing 

wavelet). Figure 1.1 shows the famous order-4 Daubechies mother wavelet.

Once the mother wavelet w is fixed, the translations and dilations of the mother 

wavelet {ip({x — b)/a) : a > 0 . b 6  R} form the wavelet family which is used as the 

basis in representing other signals or functions. Different mother wavelets generate 

different wavelets. Different applications require different wavelets. Depending on 

requirements, one can choose among smooth wavelets, compactly supported wavelets,
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or wavelets with simple mathematical expressions, etc. Different wavelet families 

make different trade-offs between smoothness and compactness of basis functions.

0.5
x

'tn
Q_

-0 .5

-1
0 1 2- 1 3x

Figure 1.1 : Daubechies order-4 mother wavelets

Another advantage of the wavelet transform over the Fourier transform lies in the 

fact th a t the fast wavelet transform (FW T)  is faster than the widely used fast Fourier 

transform (FFT). It is well known tha t the computational complexity of the FFT is 

0 (n  • log(n)) for an n-point transform. For the FWT, the computational complexity 

is 0 (n )  for an n-point transform.

Despite its favorable computational complicity, FWT becomes a time-consuming 

task when the data size becomes large. For example, video processing applications 

require processing of large amount of d a ta  within a specific time frame. To make a 

movie visually smooth, the interval between video frames should be short enough, 

thereby demanding a high image processing speed to compress and decompress the 

video data. Therefore, it is im portant to develop applicable parallel FW T algorithms.
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The inherent parallelism of two-dimensional FW T is another important indication 

tha t parallel FW T algorithms deserve more attention.

In the FW T parallel algorithm we designed, p  processors are applied to input data 

of size n. The mesh formulation is used, and the n  input data  is equally partitioned 

into y/p x y/p sub matrices. Each of the processors is assigned to process one of 

the sub-matrices. Each processor computes row-wise and column-wise 1 -D FWT' 

alternatively. Before each 1-D FW T computation, each processor communicates with 

a number of other processors (the number depends on the choice of wavelets) to  get 

the data needed to perform the corresponding computation. The detailed algorithm 

and analysis will be presented in Section 5.2 and Section 5.3.
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CH APTER 2

R EC O N ST R U C T IO N  OF B A N D -LIM ITE D  SIGNALS  

W ITH  LOST SAM PLES AT ITS N Y Q U IST  RATE

2.1 The Problem

Band-limited signals of finite energy must be reconstructed from their sample val­

ues in many scientific and engineering problems. The Shannon. Whittacker, and Ko- 

tel’nikov sampling theorem [3, 27, 34, 41. 46] ensures that a finite energy band-limited 

signal uniformly samples at or above its Nyquist rate can be uniquely determined by 

its sample value. However, in practical digital recording of th e  sample values of a 

given signal, there is always a  possibility of loss of samples. T he lost samples have to 

be recovered some way if the signal is to be reconstructed completely. When a band- 

limited signal of finite energy is sampled beyond its Nyquist rate, various techniques 

developed by several authors [35, 36, 37] can be employed to restore a finite number 

of lost samples in terms of the remaining known samples. When a  band-limited signal 

of finite energy is uniformly sampled exactly at its Nyquist ra te , each signal sample 

is independent of every- other sample value. With some of its samples lost, the signal 

cannot be uniquely determined only from the knowledge of th e  remaining samples. 

Here, we give a remedial measure and present a scheme for regaining a finite number 

of lost samples from a Nyquist-rate-sampled band-limited signal of finite energy by 

replenishing new sample values of the same number. The result can also be viewed

8
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as the solution to a special non-uniform sampling problem [19. 28. 38].
9

2.2 A  Lemma

In order to properly state and prove our main result for the chapter, it is necessary 

to establish the following lemma, which is itself of interest from the mathematical 

point of view.

L em m a 2.2 .1  Let N  > 0 be an integer. I f  m i , ..., m s ,  k \ , ..., k s  are integers, a i , ..., a s  

are real numbers within the open interval (0,1). Then the matrix

S{N) =  [sij]Nx.v =  +  a, -  fc_,)_1]/vX:v

is non-singular, i.e.. the determinant of S{N)

det{S{N)) ^  0

i f  and only i f

1 1 I
m i + a i - f c i m i + o i - f c j m i + a i — fc.v

1 1 1
m j + a j - i j m j + o j —1̂ 2 m 2 + a 2 —k \

1 1 1
m . v + a . v —fc l

. . . m .v  -t-a .v  —fc.v

m , +  a, ^  nr, +  a, (i #  j ,  1 <  i, j  < N)

and

ki ±  kj (i ^  j ,  1 <  i , j  < N)  

Proof. Using mathematical induction, we first prove that

det(S{N))  =  A iA 2...As

(2 .1)

(2 .2)

(2.3)

(2.4)

(2.5)
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with

and

=  n r = i1( fc» -  fcn )  • n U ( m n  +  q »  -  ^  ^ )

n r = l ( m « +  a « -  * n )  • 117=1 ( m n +  <*n “  fCj)

A \ = 1
77ii -+- ai — fci

(a) If N  =  1 (2.5) follows directly from (2.1).

(b) Suppose (2.5) is true for N  — K  — 1, i.e.,

det(S (K  -  1)) =  A ^ . - . A k - i 

Applying the elementary operations to  det(S(K)).  we get 

det(S(K )) = det{{[mx +  a, -  A:,-)“ V * * )

(2 <  7i <  Ar) (2.6)

(2.7)

(2 .8)

n jL i ( m j+ a j  -  kK)

mi +ai —k i f  
mi+ai — ki

m jf - i - t - a y - i— k f c  

mfc-i+aic-l—'1

mie+aK-ktc
mK+<*K—k’L

m n-ai-fcxr ^
m i+ a i - t j c - i

^K-l+aK-l—̂K J
m/c-1 +QK-1 — fc/C-1

m K + a K - k K  J

mff+a/c-lff-i

(fcl— »l) 
(mi+ai-fci)(m/f+o#c— fcj)

(ki-kfc)(mK—mK-i+<iK—*K-i) 
( " » I f - i + a  I f - i - * l  ) (" » * •+ < *  I f - * i )

(fcy-i—fr/cMmy—mi +ay —ai) 
(mi+Oi-tff.1)(mK+«/c-lif-i)

!ty-i-lK)(mK-m/c-i+OK'-ay-i) q
( " »  i f  - 1 + a # r  - 1 -  k  i )  ( m  k  + « K —'k |C  - 1 )

m K + a K - k K  m K + a K - k K

™ K + a K ~ k \  m i c + a / c — k K - l

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



11

= A K d e t ( S ( K - 1)). (2.9)

It follows from (2.9) and (2.8) that

det(S (K )) =  A k A k - x- .A x (2.10)

It means that (2.5) is also true for N  =  K  if it is supposed true for N  =  K  — 1. Thus, 

based on the principle of the mathematical induction, (2.5) is true for every integer 

N  >  1.

For the uif! part of the lemma, we need to prove that (2.2) can be deduced from

(2.3) and (2.4). It is easy to see that

nii + a i -  kj ^ 0  (1  <  i j  < N) (2 .1 1 )

because the 771,’s and k / s  are integers while the a, 's are decimals within (0 ,1 ). If (2.3) 

and (2.4) are true, then we can conclude from (2.11), (2.7), and (2.6) that

A n #  0 (1 <  n  <  Ar) (2.12)

Therefore, (2.2) follows from (2.5) and (2.12).

For the "only i f  part of the lemma, we need to  deduce (2.3) and (2.4) from (2.2). 

From (2.5), we know (2.2) ensures (2.12). And now (2.12) and (2.6) imply (2.3) and

(2.4).

2.3 The Solution

Let 5  =  {n.j : 1 <  j  <  N }  be a  finite set of N integers. When a  W-band- 

limited signal /  of finite energy is sampled at its Nyquist rate, if the set of samples
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{ f (n /2 W )  : n  €  Z — 5} is known while the samples { /(n J/2H/ ) : 1 <  j  < A'} are 

lost, Then the problem at hand is to recover the missing samples so that the signal 

/  can be rebuilt by means of (1.1). We realize this by way of adding Ar new samples 

other than { / ( n /2W) : n €  Z}.

Take arbitrarily A~ different points y l t .... y.v from the set R  — {n /2 W  : n  €  Z}. 

For 1 <  j  < N ,  Let

kj ~  nj ~  n i. mi =  [2 Wj/j — rii] and

aj = 2 Wy2 — ni — m.j (2-13)

where [x] denotes the largest integer less than x. It follows from (2.13) that

2 W y i - n j  = m t + a , - k j  (1 <  i , j  < AT). (2.14)

Let U be the matrix

U =  [sinc(2\Vyi -  nj)]N-XN =  [sinc(mj +  aj -  kj)]NxN*. (2.15)

Since {yj : 1 < j  < N }C \{n /2 W  : n €  Z} =  0, we know the a /s  defined in (2.13)

satisfy

0  <  aj < 1 (1  <  j  < A')- (2.16)

It can also be verified that the integers m i,.... m/v, fci,..., k,\- and the real numbers

a lt ... ,a lV defined in (2.13) satisfy (2.3) and (2.4).

Applying the lemma in the last section, we get

det{U) =  d e f ( ( ( - l )m,_K’-'sin(7rai)/(m i -h ai -  kj))NxN)

.v
=  ( _ 1 )m l + ...+ m.v—fci-.-fc*-. J J s in ( 7rai)det(5 (AT))

1=1

¥■ 0 (2.17)
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Let /  be the A~-dimensional vector of the lost samples arranged in increasing order 

of index, i.e..

/  =  ( f ( n i /2 W ) , ..., f { n N/2 W ))T (2.18)

where xT denotes the transpose of the vector x. Let

A - ( / ( » . ) . - . / ( v a t ) ) 1 (2.19)

and ho be the vector of linear combinations of the samples { /(n /2 W ) : n G Z — S} 

as follows
r £ „ €z-s/(n /2W 0sinc(2W yi -  n)

h0 —

£ „ e z - s / ( * / 2 W r) s in c (2 \V y N -  n) 

Now the problem is to  represent /  in terms of /o and ho-

Theorem  2.3.1 I f y j  G R  — {n /2 W  : n G Z} (1 <  j  < N ) ,  then

f  = U~l ( f o - h 0)

where U is the matrix defined in (2.15).

Proof. Take t =  y, in (1.1) for i =  1,.... A', respectively, we get

f(Vi) = 52 f M 2Wr)sinc(2Wyi -  nj)
7=1

(2 .20)

(2 .21)

• 52  / ( n /2VT)sinc(2Wyi — n).
n € Z - S

(2 .22)

By the definition of f , fo ,h o  and U, we can write the system of linear equations (2.22) 

in the form

U f  = f 0 -  hQ. (2.23)
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Equation (2.23) reveals tha t the matrix U is non-singular. Thus, we have

(2.24)

We obtain (2.21), and the proof is complete.

2.4 A  Non-Uniform  Sampling Problem

The result obtained in the above section can be viewed as the solution to  the 

special non-uniform sampling problem of reconstructing constructively a finite energy 

W -band-limited signed fit') from its Nyquist-rate-sampled values { f (n /2 W )  : n € 

Z — 5} U{/(y.) : 1 <  i <  A'}, where N  is a positive integer, S  is a set of N  integers, 

and y ,(l <  i <  N)  are arbitrarily chosen numbers other than n/2W (n  G Z).

C o ro lla ry  2.4.1 The signal f ( t ) is uniquely determined and can be represented by it 

samples at the non-uniform sampling set

V  = {n /2 \V  : n  € Z -  S } U (y , : 1 < i < N } (2.25)
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C H A PT E R  3

R ECO NSTRUCTIO N OF BA N D -LIM ITED  FU N C T IO N S  

FRO M  VALUES ON REAL SEQUENCES W ITH A N  

ACCUM ULATION PO IN T

3.1 The Problem

Let /  : R  —► C be an W-band-limited complex-valued function of finite energy on 

the real line R, i.e., /  G L 2(R) and /( tr )  =  0 outside [—IV, W], where W  > 0 and

f(w )  =  r  f{t)e~itwdt (w € R) (3.1)
J - X

is the Fourier transform of / .  We have

m  =  ^  r  f { w ) ^ d w  (t G R). (3.2)

By the Palev-Wiener theorem [5. pp. 103], /  can be viewed as the restriction of the 

entire function of exponential type at most W:

1 r w  -/ ( z )  =  —  /  f (w )e>wxdw (z G C, the complex plane) (3.3)7̂T J—W

to the real line R  (so a band-limited function is always continuous). Theoretically, the 

uniqueness theorem for analytic functions implies that /  can be wholly determined 

by its values a t any sequence of different (interpolating) points with accumulation 

points in R. The goal of this chapter is to present a scheme to recover a W -band- 

limited function /  of finite energy from its sampling values a t a  convergent sequence 

of different points x „ ,n  =  1,2...., with limit a G R

15
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This can be viewed as an approach to  the (irregular) sampling problem of band- 

limited functions which asks under which conditions and how a band-lim ited function 

can be rebuilt if it is known only a t a  discrete set of points. Because of its great 

importance in information theory, signal processing and other application fields, a 

significant body of work has been carried out on (regular and irregular) sampling 

problems [3, 6 . 19. 42]. We note th a t sampling theorems in literature demand that 

the sampling points are dense enough and well scattered for the regular case or "rel­

atively well scattered" for the irregular case on the whole line R. T he discrete set 

of sampling points is equally spaced for the classical Shannon, W hittaker, and Ko- 

tel'nikov (regular) sampling theorem, and some kind of density (e.g., d-density used 

in [19]) for the sampling set is required for irregular sampling problems. O ur case is 

quite different: this kind of requirement is not demanded here. This is one character­

istic of the scheme presented in this chapter. Because our sampling (interpolating) 

points z„, n =  1 . 2 ,... converge to a limit a, all but finitely many sampling points will 

be within an interval, say [a, 0\. Thus, our result can also be viewed as an approach 

to the extrapolation problem of determining a  band-limited function in terms of its 

given values on an interval [a,/?] C R  [43]. So, another characteristic of the recover}' 

scheme presented here is that it can be used to rebuild the function from its value on 

any non-empty interval. As the referees pointed out, this scheme has drawbacks: to 

calculate the first n coefficients of the series, one needs to solve n linear equations in 

n unknowns, and the stability cannot be ensured. From this point of view, it would 

be proper to view our scheme more as an extrapolation method th a n  as a  sampling 

method.
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3.2 The Solution

Suppose {xn : n =  1,2....} C  R , X j  ^  x k( j  ^  k ), and x„ —* a(n —► oo). If 

{/(x„) : n =  1. 2 , ...} are known, we hope to  reconstruct /  from { /( x„) : n =  1, 2 , ...}.

Since we can consider / a(x) =  / ( x  +  a) with the sampling points {x„ — a ,n  =  

1 , 2 ,...}, we may assume a =  0 without loss of generality. Furthermore, we m ay 

assume {xn} to be monotone decreasing because otherwise we can consider a mono­

tone decreasing convergent subsequence of {xn} or a  monotone decreasing convergent 

subsequence of {— xn} and /~ (x )  =  / ( —x).

T h e o rem  3.2.1 Let f  : R  —* C be a W-band-limited function of finite energy, {x„ : 

n =  1 . 2 ,...} be a monotone decreasing sequence and x n —► 0 (n —» oo): then

om(t) =  Y i  E m{k)e'kWt/me~iWt (3.4)
i

converges to f ( t )  uniformly on each compact subset S  C R  when m  —*■ oc, where the 

coefficients E m(k)'s are chosen so that the interpolation equations

f ( x n) = 0m(xn) (1  <  n < m) (3 .5 )

are satisfied, i.e., {E m(k) : k  = l ,. .. .m }  is the solution of the system of linear 

equations

f M  =  E  E m{k)e'kWx"/me - iWxn (1  <  n  < m). (3.6)
i

Proof. For simplicity, we only prove the theorem for x„ =  l /n (n  =  1,2....). The 

general case can be proven similarly.

Under the above assumption, (3.6) becomes

/(1 /n )  =  E  Em(k)e'kw/(mn)e - 'w/n (1 <  n <  m). (3.7)
i

It is easy to verify th a t the determinant of coefficients for (3.7) is non-singular, so the 

system of linear equations (3.7) has a unique solution {£■„,(&) : k  =  1, ...,m}.
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Take real numbers r t and r 2 such that

0 <  rj <  r 2 <  1 and 0  <  — ^  <  1. (3.8)
r2 —

For each m  >  1, the function

1 r w  -
9-.W  =  J w f(v> )z™ l"dw  (z €  C) (3.9)

and the polynomial

Pm(z ) =  H  E m{k)zk (2  e C) (3.10)
i

are analytic on D2 = {z  : \z — 1| <  r 2} D Z?i =  {z : \z — 1| <  r x}.

Take a positive integer M  such th a t the complex numbers

=  e'Vmmn) (1 < n < m )  (3.11)

are in D\ when m > M . It follows from (3.9), (3.2). (3.7), and (3.10) that

9m{zm.n) =  (zm_nr  ■ / ( w ^ n r ^ d w
Z ~  J —W

1 r w  - 
=  e,w'/n ■ —  /  f(w )e iw/ndw

2 tt J - w  v ’

=  e'w ' nf ( l / n )

=  e,w/n £  Em(k)e,kW/{mT,)e~iW/n
k=1

=  Pm(Zm.n)- (3-12)

Thus pm(z) is the interpolating polynomial of degree at most m  with the values 

{Sm(2m.n),n =  1, • • •, m} a t the points n =  l....,m } . By the Hermite theorem

[14, p.68], we have for m  > M  and z  €  D\

9 ..W  - Pm{z) - ± [  f * ~  ~' (313)27TZ Jc2 \ t  Zmtl)(^ ^m,2)

where C2 =  {z : \z — 1| =  r 2} is the boundary of Z)2. It follows directly from (9) that 

l9mWI <  (1 +2~  C w  l /W K 1 +  r , r W " '< f o
1 rw  - 

< ( l  +  r2)2- — y _ ^ |/M |d u ;
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=  4(1 +  r2)2m (m >  M . t  €  C2) (3.14)

with the constant

A = h l - w  S  I - l  l / M 2!* " )1' 2 - (2H') ‘/2 S  «  (3.15)

based on the Cauchy-Schwarz inequality and the fact that /  is of finite energy. Fur­

thermore. we can verify for m  > M , 1 < n < m, t €  C2 and z € D x that

\z -  2m.nl <  2rl? |f -  2m.nl > r2 -  r lT \t -  z\ > t 2  -  rx. (3.16)

Combining (3.14). (3.15). (3.16) and (3.13), we obtain

IgrnW - p m(;) | < ( ^ r ) ( 2T-v; 1-t ^ - r -  (3.17)r2 — r x (r2 — r x)

Thus it follows from (3.8) and (3.17) that

aolffmW -  P m ( ^ ) |  =  0 (3.18)

uniformly for z €  D x.

For any fixed compact subset S  C R, take a positive number T  such that S  C 

[—T, T). It is not difficult to find a positive integer N  > M  such that |e*lVt//m —1| <  r x 

for all m > N  and t €  [—T, 7~j; this means

z (m ,t)  = eiWt/m e  D x (3.19)

for ail m  > N  and t €  [—T, T\, Thus it follows from (3.18) and (3.19) that

h m m^ x \gm(z(m , t)) -  pm(z(m, t)| =  0 (3.20)

uniformly for t €  5 . But from (9) and (2), we have

1 r w
gm(z(,m, ()) =  e ■ ±  I  f{w )e"”iw  =  (3.21)

Z7T J —W
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and, from (3.10) and (3.4), we have
m

(3.22)
i

Thus (3.20), (3.21), and (3.22) tell us that

Zz'mm_ 00|«?m(t) -  f ( t )  | =  0 (3.23)

uniformly for t  €  5  C [—7\ T \.

3.3 Error Estim ate

We deal with the special case for {xn} =  {1/n} because we can handle the general 

case similarly.

T h e o rem  3.3 .1  The assumptions are the same as those in theorem 1 with \ / n  re­

placing x n{n =  1, 2,...). For any 0 <  A <  1 and T  > 0, we can find a positive integer 

N  such that, fo r  any m  > N , we have the error estimate

It follow’s from (3.21), (3.22), (3.17), (3.26), and (3.15) that there is a positive integer 

N  such tha t, for any m  > N , and t €  [—T, T],

l«wt) -  m \  < (t e (3.24)

where E  is the energy of f ,  i.e..

(3.25)

Proof. Take r!

(3.26)

l<w t) -  m \  < - ^ r - vr 2 — n

(3.27)
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C H A P T E R  4

O N  T H E  EXISTENCE OF W EYL-H EISENBERG  A N D  

AFFINE FR A M ES IN  L 2 {R)

4.1 The Problem

In some applications in quantum mechanics (e.g., the theory of coherent states) 

and in signal analysis, the natural choice for the Hilbert space H  is L2(R ), and the 

following three kinds of expansions for /  6  L 2{R) are often useful:

1. for some fixed g 6  L2(R ),a ,6  £ R ,

/ (x )  =  £ a m » ( e 2' imte!>(:r-"<■)), (4.1)
m .n

2. for some fixed g £ L2(R ),a  >  1 and 6 >  0,

/(x ) = 22 fc™ (e2""""'1*n/Va"i)) , (4.2)
m.n

3. for some fixed g £ L2(R), a >  1 and 6 >  0,

/(* ) =  XI (a _n/2^((x -  mban)a~n)) . (4.3)
m,n

We are therefore interested in finding conditions on the function g such th a t the 

set of functions leading to the expansion in (4.1), ( 4.2); or (4.3) forms a  frame. The 

set {e2x,m6xp(x — na)}m,„sz used in expansion (4.1), generated from the translations

21
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and modulations of a function g, is referred to as a Weyl-Heisenberg (W-H), Gabor, 

or windowed Fourier system. If a Weyl-Heisenberg system forms a frame for L2(R), 

it is called a  W-H frame. The functions a~n,2g({x — m6an)a_n) ,m ,n  €  Z . used in 

expansion (4.3), are often called wavelets, which arise as translations and dilations of 

a function g. If the set {a~nf2g({x — m6an)a-n )}mfTlgz forms a frame for L2(R), it is 

called an affine frame.

In this dissertation, we generalize the sufficient conditions of existence found by 

Daubechies and Walnut [10, 27). Our proofs are elementary, and the conditions we 

find are easy to verify- In Section 2 we deal with the Weyl-Heisenberg case. The 

affine cases associated with the expansions (4.2) and (4.3) are handled together in 

Section 3. Finally, in Section 4 we consider semi-irregular W-H frames of the form 

{e2Timfexg(x — an)}m,nez or (e2]TtanXg(x — m6)}m,nez with an arbitrary’ real sequence

{ “ n } n £ Z -

4.2 The W eyl-Heisenberg Case

4.2.1 Definitions and Som e Known Results

To study the set of functions {e2*'mhx g{x — na)}m ,n€z, it is convenient to introduce 

the following operators:

• Modulation : Ea/(x )  =  e2inaxf{x )  (a € R),

•  Translation : T&/(x) =  / ( x  — b) (6 6 R),

D efin ition  4.2.1 Given g e  L2 (R ) and a, b > 0, we say that (g.a,b) generates a 

W-H (Weyl-Heisenberg) frame fo r  L2(R) i f  {(EmtT na^)}mtn€z is a frame fo r  L 2(R ). 

The function g is the W-H generator. The numbers a and b are the time and frequency 

step size.
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D efinition 4.2.2 The amalgam space W{L°°,£l ) is the collection o f all functions g 

such that

l l^ llw .a  =  )  ] ]|<7 '  X [ n a ,( n + l ) a ) | |o o  
n

for some a > 0.

Existence conditions for W-H frames can be found in the research of Daubechies 

[10, 12], the research of Daubechies, Grossmann, and Meyer [13], or the research- 

tutorial of Heil and Walnut [27]. Among those results, we state the following:

T h eo rem  4.2.1 [10, 27] Let g G L 2 (R ) and a > 0 be such that

(1) There are constants A  and B  such that

0 < A < ^ 2  |<?(x — na)|2 <  B  <  oo a.e., (4-4)
n

(2) lim b^ 0 (3(k/b) =  0, where

/3(s) =  esssupxeK ]T p(x  -  na)g(x -  na -  s) (4.5)

Then there exists bo > 0 such that (g, a, 6) generates a W-H frame for  I<2(R) fo r  each

0  < b < b 0 .

T h eo rem  4.2.2 ([27]) I f  g 6 W (L°°,£l ) satisfies condition (1)  of Theorem 4-2.1 for  

some a > 0, then there is a bo > 0 such that (g , a, b) generates a W-H frame for  

L2(R) for all 0 < b < bo.

4.2.2 Conditions for W -H  Generators

We now state and prove our theorems about conditions on a function g €  L2(R) 

such that (g ,a ,b ) generates a W-H frame for L2(R ).
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T h e o re m  4.2.3 Let g 6  L2(R) and a, b > 0 be such that condition (1)  o f Theorem 

4-2.1 is satisfied. Assume there exists a constant 0 <  A < A  such that

Y  l^(x ”  na)9(x  - n a -  k/b) | <  A a.e. (4.6)
MO n

Then (g , a, b) generates a W-H frame fo r  L 2( R ) with the frame bounds (A —A )/b , (B +  

A)/b .

Proof. First, assume that /  is continuous and compactly supported. This guar­

antees th a t all subsequent interchanges of summation and integration are justified. 

Define the 1 / 6-periodic function

fn (t)  = £ / ( * -  k f b) ~ n a ~  k/b).
k

Using the techniques of Theorem 4.1.5 in [27]. in particular, the fact tha t {b1/2e~2~imbt}meZ 

is an orthonormal basis for L2[0,1/6] and the Plancherel formula, one can show that

£ 0 / . E m*Tnap> |2
n  m

= b' 1 f  \ f ( t ) \2 £  |g{t -  n a ) |2 dt
J R  n

+ 6_1 ^ 2  f  f { t ) f { t  -  k/b) g(t -  na) g(t -  na -  k/b) dt 
MO R «

=  6 '1[(*) +  (« )] .  (4.7)

Applying the Cauchy-Schwarz inequality twice, we have

lt**)l S E E / .  1/(01  (|T„s||T„„V69 |) ''iT t/t/ | (|TmS| i t
M O  n  J R

< E l ( j ( ,  ! / ( 0 l 2 IT ..9I |T na+fc/69| d t ) 1/2 ( f  | / ( t ) l2|T „ .s | |T „ ._ v k 9 |<it)1/2

s  ( £ £  L (l/W I2 |T ~ s l |T M.»/i9 |<ft) ('£ .'£  L 1/(01’ |T „ P | |T n. . i/tS |d t)
\ M O  n  /  \ m o  n  )

=  ( i  l/COI* £  £  ITnaffl |T „ „ t /»S |d t)  (  f  | / ( t ) |2 £  £  |T „ .9 | |T  na+ k/b9\
\ J t L  kjtO n  )  \ J R  MO n /
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Thus it follows from (4.6) that

(4.8)

Making use of (4.7). (4.8), and inequality (4.4), we obtain

j : Y , \ ( f ^ r n bT na9) \ 2 < b~ l (B  + A ) \ \ f f (4.9)
n  m

and

I(/t EmfcTna^ ) ! 2 >  b~l (A -  i ) | | / | | 2. (4.10)
n  m

We have shown that inequalities (4.9) and (4.10) are satisfied for any function /  in 

Cc(R ), the space of continuous and compactly supported functions on R . Since Cc(R) 

is dense in L2(R), it follows that (4.9) and (4.10) hold for any function /  €  £ 2(R).

I f  the series Yin 19(x  — n a )l converges uniformly fo r  almost all x  6 [0, a], then there 

exists 0 < bQ < 1/a  such that (g.a,b0) generates a W-H frame for L2(R ).

Proof. F irr‘ we prc tha. e e. : constants A ,B  > 0 such th a t g satisfies 

condition (1) of Theorem 4.2.1. riy hypothesis, there exists a subset V  of [0,a] with 

| V\ =  0 such that the series Yin \9 (x  ~  na)| converges uniformly on [0, a] \  V, and such 

that A\ < Yin 19(x  ~  n a )l ^  f°r all x 6 [0, a] \  V. So we can find an integer No > 0 

such th a t

Therefore, for any 1 6  [0, a] \  V  there must be an integer N x such that |iVr | <  N0 and

Hence. (g , a. b) generates a W-H frame with (A  — A )/b , (B + A )/b  as the frame bounds.

T h e o re m  4 .2 .4  Let g €  £ 2(R) and. a > 0 be such that

0 <  Ai < Y  |<?(x — na)| <  B \ < oo a.e. (4.11)
n

Y  19(x  ~  rca)| > A i/ 2 f o r x  e  [0, a] \  V.
W<A«0

^ (x -A ^ a ) !
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If we set A = ( 2(2/v£+Tj) ■ t ^en for any x €  [0. a] \  V  , we have

0 <  A  <  |g(x -  A'xa)|2 <  Y  1s(x ~  na)\2- (4-12)
n

Since 52n \g{x — na)| is an a-periodic function, inequality (4.12) holds for almost all 

r G H  On the other hand, it is obvious that

2

5 3 |^ i x - n a ) |2 <  ^ | ^ ( x - n a ) | ^  <  B \ =  B < oo,

from which condition (1) of Theorem 4.2.1 is ensured.

Second, by Theorem 4.2.3 we only need to prove that for any A < A there exists a

constant 6o such that 0 <  bo <  1/a and

~  na)li0(x “  na “  k / bo)\ ^  A. a.e. (4-13)
M0 n

Let c0 =  A /(-B \)  and let the integer A\ > 0 be so large that

Y  I$(x -  na)| <  5o (4.14)
|n|>.V!

for all x G [0,a] \  V. If we take bQ =  l/(2iVla), then for any |n| <  Ni we have

|n + 2kAW > A\ for all integers k ^ 0. Therefore, for x  G [0, a] \  V  we have

] T | 0 ( x - n a - f c / 6o)| =  H  l^(x ~  na ~  2*Aria )|
MO MO

< Y  ls(x ~ n a)l ^  £0- (4.15)
|n|>iVi

Thus, for any x G [0, a] \  V , we have

H  H  ls(x “ na)llff(z - n a -  k/bo)\
MO n

=  E  E  |p ( x - n a ) | |^ ( x - n a - f c / 6 0)l
M O  |n |> i V x

+  1 2  Ig(x -  na)l\g(x -  Tia -  k/bo)\
MO |n|<jV,

=  ] £  (l9 (x -n a ) |5 3 |9 (x -n a -2 A rA T la)M 
l"l>Afi \  MO /
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/

+  51 ( l^ (x - Ra) l 5 I ^ ( z “ n a _ t /M I
|n|<A*i \  t/0

^  51 \g { x - n a ) \B l + 53 \9 (x  ~  n a )l-o
|n|>A', |n|<A'j

< B ico +  Bi£q =  2 B\So = A.

This completes the proof.

Daubechies showed in [9] that condition (1) of Theorem 4.2.1 is a necessary con­

dition for (<7, a, b) to generate a frame for L2(R). In particular, |^| must be bounded 

above. Since

5 3  19(x ~  na ) | 2 <  ^53 19(x  ~  .

the inequality

0  <  A  <  5 3  l5(x ~  n a)l a e- (4-16)
n

is also a necessary condition for (<7. 0 . 6) to generate a frame for L2 (R). Certainly, 

if there exists a constant A > 0 such that |^(x)| >  A  a.e. on [na. (n -t- l)a] for 

some integer n. then the inequality (4.16) holds. On the other hand, if the series 

Yln \g{x  — na)| converges uniformly for almost all x  €  [0 , a] and |^| is bounded above, 

then we have the upper bound for Yin |g(x — na)|. Indeed, for any M i >  0 there exists 

a N  > 0  such that for almost all x  G [0 ,a],

5 3  \9 { x - n a ) \  < Mi.
\n \> N

Since | <7) is bounded above and there are only finite terms in the summation £ |n |< v  

na)|, there exists A/ 2 > 0 such that esssup[0aj H |n|<jv \g{x — na)| <  M 2 . Note that 

Y l n  19{x — uq)| is an a-periodic function. Hence,

5 3  — n£t)l — & = Mi +  M^ a.e.
n

C o ro lla ry  4.2.1 Let g 6  T2(R) and a > 0 be such that
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(1)  there exists a constant A  > 0 such that A  <  \9 (x  ~  na)\a.e. and |g| is

bounded above,

(2) the series |g(x — na)| converges uniformly fo r  almost all x  € [O.a].

Then there exists 0 <  bo <  1 /a such that (g , a, bo) generates a W-H frame for  L2(R).

From the proof of Theorem 4.2.4, we see that there exists an integer Ni > 0 such 

that (g,a,bo) with bo =  1 /(2A'la) generates a W-H frame for L2 (R). Following the 

lines of the proof, we have th a t for any integer N  > 2A'i, (g ,a ,b ) with b — 1/(N a )  also 

generates a W-H frame for L2 (R). The technique used for the proof of Theorem 4.2.4 

leads to the following corollary.

C o ro lla ry  4.2.2 Let g €. L 2(R ) satisfy the conditions o f Corollary 4-2.1 for some 

a > 0. Then for any fixed integer q > 0 there exists 0 <  6o <  l / a such that (g,a. b) 

generates a W-H frame fo r  £ 2 (R) for all 0 <  b = q/{pa) <  bo, where p > 0 is an 

integer.

Proof. We only need to show- that for any A < A  there exists a  constant 0 <  60 < 

1/a  such that for all 0  <  b =  q/(pa) < b0,

~ na)\\9 ix  ~ n a - k /b ) \  < A  a.e., (4.17)
fc/o «

where A  is the lower bound in (4.12). Let s0 =  A /(2qB )  and let the integer A'i > 0 

be so large that

]T  l s ( x - n a ) | < £ 0
\n \> \  i

for all x  6  [O.a] \  V. Set 60 =  l / ( ( 2 Ar1 + l)a ). If q/{pa) < bo then p > (2Art +  l)g. 

For each integer k  ^  0, we can write kp — 71*7 +  i for some integers and 0 < 

i < q. When k > 0, kp  =  n^q +  . >  k (2 .\\  +  l)q >  (2Ar1 +  1 )q, which implies that 

ft* > 2Arj +  1. Similarly, when k  < 0, we have kp =  nkq + i < —(2AX -I- 1)<?, which
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implies that nk <  —(2 iNTt +  2). Hence if jrzj < A\, then we have both |n +  n t | >  Ari 

and |n +  nk — 1| >  N x for all integers k  ^  0 and p > (2N X -F l)q. Now for each 

x €  [0, a] \  V, 0 <  i < q, we either have 0 <  x< =  x  — ia /q  < a when x >  ia/q, or 

0 < x, =  x — ia /q  + a < a when x < ia /q  . Thus we either have

x — na  — nka — ia /q  =  x, — (n -F n k)a

or

x — na — n ka — ia /q  = x, — (n + nk — l)a

Note that for some x €  [0, a] \  V, x t may be in the set V , but the set containing 

all such x has measure zero because x is either in the set ia /q  +  V or in the set 

ia /q  — a +  V  for 0 < i < q. Thus, for almost all x £ [0, a] and 0 <  b = q/(pa) < bo, 

we have

^ 2 \g (x  - n a  -  k/b)\ =  JZ  |g(x -  na -  A:pa/g)|
k^O k*0

q - 1

=  5 Z 5 Z ls(x ~ n a ~  W  ~  ia /q)  |
i=0 fcjiO 
q - l

< YL H  19{xx -  ia /q  ~  n a )l <  qeo-
i=0 |n|>Vi

Following the lines of (4.16), we see tha t the inequality (4.17) holds.

R e m a rk  4.2.1 It is easy to see that i f  g 6  defined in Theorem 4-2-2.

then Yin \g{x — rcu)| converges uniformly for almost all x  €  [0,a]. To compare with 

Theorem 4-2.2. we construct a function g 6  L2(R) such that g £  W (L x ,£l) but g 

does satisfies all the conditions o f Theorem 4-2-4 fo ra  = 1.

E x a m p le  4.2.1 Let

/ x I 1 /n  : |x | €  [n -  1 / 2 - 1, n -  1/2"] = Un,n  > 1 
9(x ) =  <

I 1/2" : |x | €  [n — 1 , n] — Un, n  >  1
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It is not hard to prove that g €  L2 (R) and that

l < £ l s ( * - n ) | < 3 ,  * € [0 ,1 ] . (4-18)
n

For any c >  0, if we take N 2 > 0 such that 1 /A r2 +  2  £n>A '2 1/ 2 ” <  e. then

£  |g{x -  n)| <  1 /N 2 +  2 £  1/2" <  s, x € [0,1]. (4.19)
n>A *2  n >  A/2

This means that the series \g{x — n)| converges uniformly on [0.1]. So, g satisfies 

all the conditions of Theorem 4.2.4 for a =  1 .

On the other hand, it can be verified that

IMIw'C/,*,/1) =  2 ~  =  00- (4-20)

This means that g £  £l).

4.3 The Affine Case

4.3.1 D efinitions and Some K nown R esults

For d >  0 let D<* denote the dilation operator

D  df( x )  =

The Fourier transform of g is g{7 ) =  /  g(x)e~2niyx dx. We now have the following 

definitions related to dilations and translations of a  function g:

D efin ition  4.3.1 Given g € Z-2 (R ) ,a  > 1 and b > 0, we say that (g ,a ,b ) generates 

a affine frame for L 2 {R) i f  {DanT m6g}m n 6 2  is a frame for L 2(R). The function g 

is called the affine mother wavelet. The numbers a and b are the wavelet parameters.

D efin ition  4.3.2 Given g €  £ 2 (R ),a  > 1 and 6 >  0, we say that (g .a ,b ) generates a 

dual affine frame for L 2 {R ) i f  {Em6anDa--.p}m n6z is a frame for  L2(R ). The function  

g is called the dual affine mother wavelet.
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Since

(D anTmig)T= E -m jjD j-iij.

we know that (<7, a. 6 ) generates an  affine frame for £ 2(R) if and only if (g ra.b) 

generates a dual affine frame for L2(R ). Because of this fact, we only need to consider 

the affine mother wavelet case.

The following conclusion was given by Daubechies [9j.

T h eo rem  4.3.1 Let g €  £ 2(R ) ,a  >  1 be such that

(1) there are constants A  and B  such that

0 <  A  < ^ 2  |^(a'*T' ) | 2 <  B  <  oc, fora.e. 7  6 /2 , (4-21)
n

(2 )  ( im M E MOW 6 ) 1/2 3 ( - ^ ) 1/2 =0., where

3{s) =  esssuyh ^[Ua] £  l£(a"7 )||$(an 7  -  s ) |. (4.22)
n

Then there exists bo > 0 such that (g, a, b) generates an affine frame fo r  L2(R) for

each 0  < b < bo.

To prove Theorem 4.3.1, one can. use the following inequality (see, for example, 

the proof of Theorem 5.1.6 in [27])

'£ 'L \ U , D .n T mhg ) \ 2
n  m

/  \  1/2
< 6 - lB | | / | | l  +  6~l £  £  [  I/I2 |#(a"7 )| |$ ( « " 7  -  k/b)\

\ k * 0  h  /

(S?i
=  » - ‘B | | / l l i  +  » - ‘ E E i (  l /T  l9(“"7 -  k/b)  | (4.23)

k? 0 n JK
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and the fact that esssup^e R Yln lff(an7 )||£(a ,l7  — s)| =  /3[s) because for 7  ^  0 there 

exists an integer m  such th a t 7  =  am£ with |£| G [l,a]. In analogy to Theorem 4.2.3. 

a  slight generalization of Theorem 4.3.1 can be obtained:

P ro p o s itio n  4.3.1 Let g G L2 (R ) ,a  >  1 and b > 0 be such that the condition (1)  o f 

Theorem 4-3.1 is satisfied. Assume there exists a constant 0 < A < A such that

H  51  l£(an7)ll$(an7 -  k /b )| <  A  a.e. (4.24)
Jfc#0 n

Then (g,a ,b ) generates an affine frame for L 2{R ).

4.3 .2  Conditions on  Affine M other W avelets 

T h e o re m  4.3.2 Let g G L2 (R , a  >  1 be such that

1 . there are constants A \ and B i such that

0 < A i < l£(a"7 )| < B x < oc a.e. 7  G R, (4.25)
n

and the series |5 (an7 )| converges uniformly fo r  almost all [7 ! G [l a].

2 . there is a constant c > 0  such that

-nc)| <  oc
n

fo r  any sequence {x„} C [0, c] \  V  with |V\ =  0.

Then there exists bx > 0 such that (g,a.bi) generates an affine frame for L 2{R ).

Proof. Following the proof of Theorem 4.2.4, we see that inequality (4.25) implies 

that there exist constants A, B  > 0 such that condition (1) of Theorem 4.3.1 is 

satisfied. By Proposition 4.3.1. we must show that there exists a constant 61 >  0 such 

that

51 5Z l£(a"7)||p(an7 ~  */&i)l <  A  a.e. (4.26)
fc*0 n
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for any constant 0 <  A  < A.

It is easy to see from condition 2 of Theorem 4.3.2 that g G \V {L °°,tl ). Indeed, 

for each integer n  there exists x„ G [0. c] \  V  such th a t ||gx(o,c)||oo <  !£(xo)| +  1 for 

n  =  0  and such that

||^X [en ,c(n+ l))l|ao  <  I j ( J n  +  7 ic ) | ■+• 1 /2 ^

for n  ^  0. Then

£  ll$X [« .e< n+ I» liao  <  £  19 ^ - n  -  7lC) |  +  3  <  OO.
n n

Now we set

& 2 — ll5X[en,e(n-t-l))l|oo- (~̂ -2T)
n

For any n G Z. |̂ y| €  [l.a], we can find uniquely 2 (71, 7 ) G Z and 0{n, 7 ) € [0. c) 

such that

a 'l 7  =  2 ( 71. 7 ) 0  +  0 {n, 7 ).

Define A =  [l,a] U [—a, —1]. Let W  be the subset of A with measure | =  0 such 

tha t the series ls(an7 )| converges uniformly on A \  W . Define Wn as the set of

all elements 7  G A such that /?(n,7 ) €  V, then \Wn\ =  0 for all n €  Z. If we set

U =  W  U (UnW,,), then U C A and \U\ = 0 .  It follows that for any 7  €  A \ U. we 

have 0(n, 7 ) 6  [0, c] \  V  for all n G Z.

For £1 =  A /(B \  +  B i)  with 0 <  A < A, it follows from condition 1 of Theorem 

4.3.2 that there is an integer N\ >  0 such that £|ni>ATi i0 (a"7 )l < e i for all 7  € A \  £7 

. By the definition of 2 (71. 7 ) and (4.27). we know there exists a sufficiently large 

integer N2 > 0 such th a t 5Z|n|>Ar2 I§ { x n  — t i c ) |  < for any sequence {x„} C  [0, c] \  V  

and such th a t |2 (n ,7 )| <  AT2 for any |n| <  N i: 7  G [l,a |-

If we take bx =  l/2AT2c, then for any |n| <  Ai and 7  G A \  U we have

H l$ ( c n7 - f c /M I
k*Q
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=  51  l$(#(n »T,) +  z ( jin )c  -  2kN 2c)\
&  o

<  51 !^(/?(n,7 ) - m c ) |
|m |> J V 2

<  5 l  (4.28) 

Thus, for any 7  G A \  U, it follows from (4.25), (4.27), and (4.28) that

E £ l s ( ° n7>ll9(°',7 -* /< '.) l
Mo n

=  51  51 ls(aT,7)ll2(an7 -fc /6 i) l
MO |nf>Ati

+  E E  l»(an7)||#(aB7 - fc /6 i) l
MO |n|<Wi

<  51  l£(an7)l (5 1  l5(an7 ~  h/bi)\ )
|n |> ^ i  \ m o  /

+  5Z
I n K ^ l  \ M 0  /

< B 2E1 + Sjci = .4.

The theorem is proved by Proposition 4.3.1.

With condition 2 of Theorem 4.3.2 and { (̂7 ) | <  C |7 |Q for |7 | <  S < 1 and some 

constants C, a  > 0, we see tha t the series |^(an7 )| converges uniformly for almost 

all I7 1 6  [l.a]. First, 2 (71, 7 ) >  z(n, 1 ) for 7  € [l,a] because

an 7  =  (2 (71, l)c  +  j3{n. 1 ) )7

=  2 (71, l ) c + ( 7  -  1)2 (77, l)c  +  /3(n, 1 ) 7

> 2 (71, l)c.

Second, there exist positive integers Mo and tto such that a >  1 +  l/A /0 and 2 (770,1) >

Mq. S o ,  we have 2 (770, 7 ) >  Mo, which gives the inequality 2(77 +  1 , 7 ) > 2 (77, 7 ) +  1

for 77 > 770 because

a n+17  =  0 (2 (77, 7 )0 4 - / 3(77, 7 ))
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> az{n,~()c >  (1  +  1/M 0 )z(n,7 )c 

=  (2 (71. 7 ) -F z{n.-y)/M 0)c

> (2 (71, 7 ) + l ) c .

The similar arguments yield 2(71 +  1 , 7 ) <  z in J 7) — 1 for 7  E [—a. —1] and n > 

n0. Thus, we conclude that for |7 | E [ 1 .  a ]  and all integers n > n0. the intervals 

[z{n, 7 )c. (2 (71, 7 ) 4- l)c) are mutually disjoint and that

£  l$(a"7)l =  £  “f )c "*■ 7))l
n>no n>no

<  5 1  ||^X [nc.(n+l)c)|| t t .e .,

n>A/o

which implies that the series 5D„>o converges uniformly for almost all [7 I E

[I,®]-

For the series 5Zn<.o |p(Qr‘7)l we êt n i be a negative integer such that |an7 | < 

|a"+1| < <) for 7i <  Tix and |7 | €  [l.a]- The condition that 1*7(7 ) | <  C |7 |a for 

|7 | <  8  < 1 and some a  > 0  implies the uniform convergence of £„<o l$(an7 )| for 

almost all [7 I E [l.a]:

£  l$(a”T>l < C £  |a"7|° < c  £  a(n+1)o.
n<nj n<ni n<ni

Therefore, the series |g(an7 )| converges uniformly for almost all 7  E [l,a].

4.4 The Semi-Irregular W -H  Frames

The main condition we have provided in this dissertation is the uniform conver­

gence of the series £ n |g(x —  71a )  | tha t is easy to verify. In this section, we will apply 

the techniques similar to the ones ased in previous sections to derive some condi­

tions on g E L 2(R) under which the set {E mbTang}m,nez or {EanTmbg}m,n€z  with an 

arbitrary real sequence { a n }„€z  forms a W - H  Frame and will make few remarks on
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the necessary conditions on W-H Frames. Since (EbTag) =  TbE -ag and the Fourier 

transform is a unitary map of L 2 (R) onto L 2 (R), it follows that {EanTmbg}m<n&z is a 

W-H frame for L2{R) if and only if {TanE - mbg}m,n€z is a  frame for L 2{R). Thus, we 

consider only the set {E mbTang}m<nez- Here, we consider irregular translates of g and 

the set {Em hT^gjm nzz  is a ‘"semi-irregular” W-H Frame. The irregular W-H frames 

are useful for irregular sampling and time-frequency analysis.

Let b > 0 and let f  be continuous and compactly supported. For fixed n, consider 

the 1/ 6 —periodic function given by

Fn(t) = £ / ( * -  k/b)9(t - O n -  k/b).
k

Following the lines of the proof of Theorem 4.1.5 in [27], we have

n m

= b- 1
n

+b 1 Z g ( t -  an)g(t - a n — k/b) dt. (4.29)
Jt# " 1

In analogy to Theorem 4.2.3 , we have

P ro p o s itio n  4.4.1 Let g €  L 2 (R ).b  > 0 be such that

1 . there are constants A. B  >  0 such that

A < T T \ g ( x - a n) \ 2 < B (4.30)
Tt

for a real sequence {an}„ez-

2 .

S I T  9(x ~  &n)g(x -  On -  k/b) < A  < A a.e. (4.31)
n

Then {E mbTang}mtn&z  form s a frame for L 2(R).
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D efin itio n  4 .4 .1  A sequence o f real numbers {a„}n€z is called uniformly discrete i f  

6  =  minn?tm [an — am| > 0. The number 5 is the separation constant.

T h e o re m  4.4 .1  Let {an}n6z be a uniformly discrete real sequence with a separation 

constant S. I f  g £  W (L°°,£l ) satisfies A  <  En |g(t — a„)|2 fo r  some constant A > 0; 

then there exists bo > 0 such that {E mbTang}m,nG.z forms a frame fo r  L2 (R) for all 

0  < 6 <  6o-

Proof. Since g €  W (£°°,£l ), E «  ||$ • X[cn.e<n+i)>|| ^  finite for all c > 0. We

refer to Proposition 4.1.7 in [27] for the proof. We choose c <  S/2  and show that 

E n  19{x -  a n ) |  <  En ||p • X[cn,c(n+i)) || for almost all x  e  R . W ithout loss of generality 

we assume an < an+1.

For any x £  R , we can find uniquely m x.z{x, n) € Z and 0Xla (x ,n )  £  [0. c) such 

that

x =  mxc + d x. 3X — an = z(x ,n )c  + a (x ,n ) .

Then

\ z ( x ,n ) c - z ( x ,n  + l)c\ =  |an+I -  am + a(x, n +  1) -  a (x , n)|

>  |a n+.i -  an| -  |a (x ; n -+- 1) -  a ( x Tn)|

>  5 — c>  c.

Hence x —a„ =  (m x+ 2 (x.n))c+Q (x, n) lie in different intervals [(m x -k-z{x,n))c, (mx +  

z{x, n ) -4- l)c) for all n and

=  5Zl^((m I +  2 (x,n))c +  Q (x,n))|
n  n

— ||^  ' Xlcn,c(7t-I-1)) ||
n

Now let E n ||^  * X[cn,c(n+l))||oc =  # 1- It *S obvious that E n l^ ( i - a n) | 2 <  B  with

B  =  £?i, which means that condition 1 of Proposition 4.4.1 is satisfied. Next we show
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that condition 2 of Proposition 4.4.1 also holds. For 0 <  A < A. we let e0 =  A /(2 B \)  

as before. Choose the integer N \ >  0 so large that

5 3  |pX[cn.c(n+l))|j ^ - 0  (4-32)
|n|>^

and define bo =  l/((2A ri -+- l)c). For 0 <  b < 60 and an integer k ±  0, we can set 

6 =  l/((2iV 1 4 - l)c  -+- 6 ) with 6  >  0. It is easy to see that for fixed i g R .

x  — an — k/b  = {mx + z(x ,n ))c  + a { x ,n ) — 2 kN ic  — k(2 c + 6 )

= (jnx +  z(x, n)) — 2 kNiC — j(n , k)c +  A(n, it),

where j{n ,k )  €  Z has the same sign as k  and A(n, k) €  [0, c) and both j ( n , k ) and

A(n,A:) depend on a(x, n),0, c, and k. Thus, for any \mx ■+• z{x ,n ) | <  N \ ,k  ^  0,

|m x +  z(x , n ) — 2 kN i — j(n , fc)| >  i \\  holds. It follows that for almost all x  €  R  and

for an with \mx -+- z{x,n)\ <  N x, we have

53 lff(x _  a« ~  k / b)\ =  53 I j t K  +  z(x , n))c -  2kN lC -  j(n , k)c + A(n, A:))|
kjtO k* 0

— 5 3  1^ ' Xlen.cfn+l))!^ — 50 -

Therefore.

51 5 3  ls(x ~  an)ll3(* ~  a„ -  k/b)\
kjtO  n

=  5 3  5 3  19(x -  an) 11g(x - a n -  k/b) |
fcjiO |mx-t-i(x,n)|>Afi

+  5 3  5 3  !^ (x  - a " ) l l s ( x  -  a n  -  k /t>) l
k i t 0  |ms 4-<(x,n)|<A*i

<  B ^ o  +  Bico =  2B iSq =  A  a.e.

The proof is complete.
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C H A PT E R  5

DEVELO PM ENT A N D  IM PLEM ENTATION OF A  

PARALLEL 2-D FORW ARD FW T ALG O RITH M

5.1 W avelets Basics

Although wavelet theory has its roots in pure mathematics, we are not going to 

s ta rt with detailed mathematical description. Interested readers may want to check 

other references [7. 10. 40]. This section briefly introduces basic wavelet concepts and 

explains how wavelets work.

5.1.1 Continuous W avelet Transform

As mentioned above, a wavelet expansion makes use of translations and dilations 

of a  mother wavelet t- € L2(R). If the translations and dilations parameters vary 

continuously the wavelet transform is said to be continuous wavelet transform. In

other words, the continuous wavelet transform uses the basis functions

=  a _ l/V ( - — -)  a > 0 , 6  €  R . (5.1)a

The continuous wavelet transform (C W T) of a  function /  €  L2(R) is then defined by

C\VTf {a,b) =  f  f{x)il>a,b{x)dx 
JR

=  « " l/2 f  (5.2)
J R a

39
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where {r£'a,&(x), a >  0, b E R} axe the family of “little waves" which are generally time- 

localized. i.e.. each of them  is zero outside the supporting interval. The continuous 

wavelet transform C W T f(a .b )  measures the content of the signal /  at time locale b 

and scale a. In o ther words, the continuous wavelet transform C \V Tf(a , b) reveals 

details of where and at what scales lives the information of the signal / .

Most importantly, under the admissibility condition

Ct. =  f  <  oo, (5.3)
J r . uj

the original signal /  can be reconstructed from its continuous wavelet transform 

CW T/(a.b) by the inverse continuous wavelet transform:

=  f  C W T f {a,b)rl;a,b( x ) ^ .  (5.4)C,;. Jr J r  a-4

5.1.2 D iscretized  W avelet Transform

In the case of the continuous wavelet transform, the basis of wavelets is an un­

countable set of functions because the parameters a and b vary continuously in the 

range of R + and R , respectively. Therefore, continuous wavelet transforms are not 

suitable for applications because it is hard to use computers to handle an uncountable 

set of functions and the basis of uncountable many functions is highly redundant. In 

practice, it is preferable to follow the basic idea of wavelet analysis and to write the 

signal /  as a discrete superposition. To accomplish this goal, the parameters a and 6 

can be discretized,

a =  a™. b = nb0a™. m, n €  Z,a0 > 0, &o >  0. (5.5)

With this discretization, the corresponding wavelet decomposition (5.4) becames

/(* )  =  H  cm,n(/)V'm,„(x) (5.6)
m,n
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where

^ m,n(x ) =  ^ .n io B y W  =  <hm,2^ a ^ mt -  nbo), (5.7)

and

Cm,n =  [  f{x)Tpm,„(x )dx. (5.8)
J R .

In this case, the recovery' of /(x )  from the wavelet coefficients {cm,„}mi„6z is possible 

when {ibm,n{x)}m,nez form a frame for L 2 (R), i.e., there exist constants A  > 0, B < oc 

so that, for all /  €  L2(R),

A l l / f  <  £  l< V .|2 <  B | | / f  ■ (5.9)
m,n

This issue has been discussed in detail in [6 . 7, 13, 23].

5.1.3 M ultiresolution

Multiresolution representation of functions (signals) is well suited to many applica­

tions because it is often practical to process information in successive approximations. 

In image processing, for instance, an image can be compressed in such a way that 

different resolution information is grouped into different layers. According to applica­

tions and purposes, various amounts of detailed layers are added to the coarse layer. 

Multiresolution analysis is also a useful tool for a  constructive description of wavelets.

Starting with the space L2(R), the multiresolution analysis (M RA) is an increasing

sequence of closed subspaces {V}}j€Z which successively approximate L2 (R):

l- v;■ c vj+l.

2. v(x) 6 Vj v(2x) e v;+1.

3. v(x) €  VQ < = >  v(x  — n) €  Vo for all r i  €  Z.

4- Ui6z Vj = L 2 (R )  and Dj€z  Vj =  {0}.
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5. <t> € Vo and the collection of functions {0o,n =  <t>{x — n) : n € Z} forms an 

orthonormal basis of V0, where <p is the scaling function.

It is immediate that the collection of functions =  2m^2<p(2mx  — n) : n € Z}

constitutes a orthonormal basis of Vm. For any /  € L2{R ), if we use f m to denote 

the orthonormal projection of /  in Vm, i.e..

/m (l) =  53 <  0m.n, f  > 0m,n(x): (5.10)
n€Z

then the /  can be successively approximated by / m:

f ( x )  =  /i'mm_ o0 / m(x) (5.11)

Now we explain how the wavelets relate the multiresolution analysis. Because V0 C Vi, 

any function in V0 can be expressed as a linear combination of the set of functions 

{0i,n =  21/2©(2x — n) : n €  Z}, the basis of Vi:

0(x) =  y / 2 ^  hk<t>{2x -  n). (5.12)
k

If we let Wj be the orthonormal complement of Vj in V}+1, i.e., V)+1 =  V}® Wj, and 

define

0(x) =  V 2 Y K ~ l )kfl( - k  + l)0(2x -  Ik), (5.13)
k

then the set of functions =  \/20(2x  — fc) : fc 6  Z} is an orthonormal basis of

Repeatly, the similarity property of MRA gives that the set of functions {ipj.k =  

2 j /2ty(2 j x  — k) : k  €  Z} forms a  orthonormal basis of IV,. Since

©  Wj = u  Vj =  i 2(R), (5.14)
>€Z j€Z

the section of functions {0 ,,* =  2 -,/20 (2Jx — k) : j , k  €  Z} forms a orthonormal basis 

of L2 (R). The function 0  is the mother wavelet, and the set {'ipj.k =  2^ 2^h{2?x — k ) :
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j ,  k  €  Z} is the wavelet (little wave) family. Having these wavelets, we can decompose 

any function (signal) /  & Z,2 (R) as a  linear combination of the orthonormal projection 

of /  on W j , j  €  Z, i.e.,

/(*) =  (515)
j

■with

9j(x ) =  <  t j* ,  f  > 4>j,kix)- (5-16)
k € Z

If we stop at a certain scale m , then the signal f {x)  can be decomposed into a  coarse 

part / m(r:) and some detailed parts g j { x )  € > m, i.e.,

/ (* )  =  /m(x) +  5Z 9j{x)  (5.17)
j=m

=  +  51 dj'k1pj'k(x)., (5.18)
n j=m

where

Cm,n = ^ 2  < 4>m,n;f  >= f  f  (t)<pm,n(l)d t, (5.19)

d3,k =  Y i  < /  > =  L  f ( t)tj.k(x)dt. (5.20)
n

5.1.4 D iscrete W avelet Transforms

In [9], Daubechies made a significant contribution to the wavelet theory. She

presented a scheme to construct wavelets of compact support from certain mother

scaling function <£ which, in turn, is determined by a finite set of scaling constants 

{hk : k  =  0 ,1 ...., M  — 1, where M  is even } by the dilation equation

M- 1
=  J2  hk<t>(1x  ~  k). (5.21)

k= 0

and the constant coefficients {hk : k  =  0 ,1 ,..., M  — 1} satisfy the conditions

=  =  1 (5-22)
k k
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y ~ .  h k h k + 2q  =  2 5 , , o ,  ( 5 . 2 3 )

k

where

In this case, any /  G L 2 (R) can be recovered via the inverse transform

f (.x ) =  51  c^ ( x  -  k ) +  51  5T dm,nt&(2mx -  n), (5.24)
Jfc€Z m>0 fcez

where

c* =  f  -  *)dt, (5.25)
J R

dm.n = 2m f  f(t)<p(2mt -  n)dt. (5.26)
J R

Daubechies’ construction of wavelets from a set of scaling constants plays an impor­

tant role in discrete wavelet transforms. A discrete wavelet transform (D W T) is to 

apply wavelet theory to  discrete data (discrete signals). Given a discrete signal

S  =  {co, cv,.... cs - i } j  (5.27)

we construct a continuous signal

/ ( * ) =  Z c M t - j ) -  (5.28)
j = 0

As contrasted with (5.18), the signal /  is composed of only the s-terms, and the d- 

coefficients are all 0. Multiresolution analysis can be employed to cast the signal /  as 

successively scaled superpositions, and more d terms will be involved in the wavelet 

expression of / .

For 0 <  k  <  M,  <p(t — fc) G Vo, so it can be w ritten as

0 (f -  k) = ^ 2  c,ifc0 (t/2  -  i) +  d m ^ i t / 2  -  m), (5.29)
fcez »>»

where

r. i. — 2* - i , k  —  2> j  d f n j t  —  — (  1 )  1 _ k + - 2 m -  (5.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

If we insert (5.29) into (5.28). then we get a  wavelet representation of /  that has some 

d. term s and fewer s terms. This procedure can be applied repeatedly to produce a 

practical wavelet representation of the form

F  =  Co,o<P +  y  djjcj/jik. (5.31)
j , k

And, the result of the discrete wavelet transform is the following vector of wavelet 

coefficients:

D W T S  =  {co,o, do,o> di.o, di,i, d2.o---> ̂ 2.3 , —, d,v-i,o? (5.32)

5.1 .5  How Do W avelets Work?

In this section, we use the oldest and simplest Haar wavelet family to illustrate 

how wavelets work. The Haar (mother) wavelet k(x)  is a step function taking values 

1 and -1  on the intervals [0 , 1/ 2 ) and [1/ 2 , 1 ), respectively:

1 : 0 <  x  <  1 /2

AoW  =  - 1  : 1/2 <  x  <  1

0  otherwise

The set of dilations and translations of h(x),  {hj,k(x) =  2-?/2 /i(2Jx — k ) . j , k  6  Z}. 

forms an orthonormal basis of L2 (R ). The scaling function for the Haar wavelet basis 

is simply a constant function with value 1 on the interval [0 . 1 ), i.e.,

<t>(x) =  x(0 < x  < 1 ), (5.33)

where x ( /)  is the character function of the interval I, i.e., x(*) is 1 for all 0 < x < 1,

and 0  for all other x.

Let Y  =  (l/o 1 l/i; — * i/2n—1) be the data vector of size 2". The data  vector can be 

associated with a piece-wise constant function F  on [0,1] :

F{x)  =  2] £  yk ■ x (*2-" < x  < ( k +  1)2-"). (5.34)
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The (data) function F is in L2([0 ,1]. and it has the wavelet decomposition

F ( i)  =  Co,od(x) +  (5.35)
7=0 *=0

The sum with respect to j  is finite because F  is finite step function. For each level, 

the sum with respect to A; is finite because the domain of /  is finite.

Let us assume we have data vector Y  =  (1,0, —3,2 ,1 ,0 .1 ,2). Figure 5.1 is the 

graph of the corresponding function F.

-1 -

- 2 -

Figure 5.1 : the "data function’7 F on (0,1)

To approximate F  using of the Haar wavelets, eight wavelets from the Haar wavelet 

family are needed. They are functions <■>, h0t0, h^o, h ltl. h2,o, h2,i, /12.2, h2<3 which are 

depicted in Figure 5.2. Among the eight Haar wavelets,

In Figure 5.2, there are four functions that code the highest resolution detail, two 

functions that code the coarser resolution detail, one function that codes the even 

coarser detail, and another function that codes the “average function level.”
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:b  -

 %  -

.......................

 %

C
r

i

i .

Figure 5.2 : Functions from the Haar wavelet family

When calculating the wavelet transform, the above function groups are weighted 

by 2 . y /2 , 1, and 1.

To express initial function F  by use of the Haar wavelets, we have to solve the 

following system of linear equations:

1 1 1 V 2 0 2 0 0 0

0 1 1 0 - 2 0 0 0

- 3 1 1 - y f t 0 0 2 0 0

2 1 1 - y / 2 0 0 - 2 0 0

1 1 - 1 0 y /2 0 0 2 0

0 1 - 1 0 V 2 0 0 - 2 0

1 1 - 1 0 - v / 2 0 0 0 2

2 1 - 1 0 - V 2 0 0 0 - 2

*
Co,0

do.o

<fl,0

d i . i

<̂2,0

d-2.\

d-2,2

d-23

The vector on the left side is the initial function "F "; the m atrix displayed in the
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middle contains the weights, and on the right is the resulting wavelet vector. Thus, 

the equation to be solved is

Function =  Weight_Matrix * Wavelet.Vector .

The solution is

Co.o 1
2

do.o _ l2

d i,o 1
2i/2

du x
1

172

di.Q 1
4

2̂.1 5
4

d i,2
1
4

d i,3
1
4

Thus, F  has the decomposition

F  -  -  5*M> +
1, 1, O , 1 , 1

*1 ,0  — X * l , l  +  7 * 2 ,0  — 7 * 2 ,1  +  7 * 2 ,2  — 7 * 2 ,32 4 4 4 4 (5.36)

The first value, ĉ ,o, represents the wavelet factor for the basic “grey level” of the 

image. The second value, d0 ,o, represents the coarsest detail. The third and fourth 

values, d\jo and du , stand for the “middle resolution detail.” The last four values 

contain the wavelet factors for the four “highest resolution functions."

5.2 Design and Analysis o f Parallel 2-D Forward 

FW T A lgorithm s

In this section, the design of a two-dimensional (2-D) parallel forward FW T al­

gorithm is presented, the communication complexity and computation time are ana­

lyzed, and a formula is given to indicate the total execution complexity in terms of
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the  problem size n  and the number of processors p.

In Section 2.1, the 1-D FW Ts (forward 1-D F\VT and inverse 1-D FW T) are 

introduced, and the 2-D FW T algorithm is studied in Section 2.2.

5.2.1 1-D FW T

1-D  Forward FW T

A 2-D forward FW T is actually a combination of one-dimensional (1-D) forward 

FW Ts on both rows and columns of the 2-D input data array. Therefore, it is neces­

sary' to introduce the 1-D forward FW T first.

As described in Section 4.1, an n-point discrete wavelet transform can be modeled 

mathematically as a linear system. It can be defined as a linear transform VVn from 

S  to D W T S , the discrete wavelet transform of 5:

D W T S  =  \Vn - S. (5.37)

where Wn is an n x n matrix.

Because the transform matrix Wn is not sparse in general, the complexity of solving 

the linear system is 0 ( n 2). However, the transform matrix \Vn can be decomposed 

into the following form:

W n =  T2T4 ...Tn/2Tn: (5.38)

where the Tt(i =  2 ,4 ,.... n) are sparse matrices of some special properties determined 

by the original discrete wavelet bases which, in turn, are determined by a finite set 

of constants hk(Q < k < M ) with a  fixed M  [4, 10].

If we take n =  8, then the forward DWT cam be implemented as follows:

S  =  Si S2 S3 S4
Ts Ta T2
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More precisely,

S =

Co c c C

Cl c c d

Cl c d d

c 3 - c - d - d

Ca To d Ta d t 2 d

c 5 d d d

Co d d d

C7 d d d

where c’s are used to  denote the coarse coefficients and d's are used to denote the 

detail coefficients.

If we choose the famous Daubechies order-4 ( M  =  4. see Figure 1.1 ) wavelet for 

which the scaling constants are

1 +  y/3 3 + \ / 3  3 - V 3  l - y / 5 ,
{hk} = 'h4 4 4 4

then the length-8 forward D\VT is associated with the following T-matrices:

(5.39)

Ts =

ho h i h 2 h 3 0 0 0 0

0 0 ho h i h-2 h 3 0 0

0 0 0 0 ho h i h 2 h 3

h 2 h 3 0 0 0 0 ho h i

h 3 —h 2 h i —ho 0 0 0 0

0 0 h 3 - h 2 h i —ho 0 0

0 0 0 0 h 3 —h 2 h i —ho

h i —ho 0 0 0 0 h 3 ~ h 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

r 4 =

To =

ho hi h2 h3 0 0 0 0

h2 h3 ho hi 0 0 0 0

h3 —h2 hi -h 0 0 0 0 0

hi n•H©-c1 - h 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

+  h2 hi +  h3 0 0 0 0 0

+ h —ho — h2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

The properties of T-matrices make the fact that once a d term  is created, it is never 

again affected (we study only the normal wavelet transform here; for some applications 

the detailed terms need to be decomposed further using wavelet packet transforms. 

We will discuss wavelet packet transforms briefly in Section 4.4). This leads to a O(n) 

fast algorithm.

We now implement the 1-D forward FWT algorithm using a pseudo language.

ONE_D_FFWT (x : the 1-D input array;
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size : the size of the input data; 

d : the number of iterations)

BEGIN 

len =  size; 

for i :=  0 to d-1 do 

begin 

hlen := len/2;

for j := 0 to hlen-1 do /*first half */ 

begin

x\j] :=  h0 * x[2j] + hi * x[2j 4- 1] 4- h2 * x[(2j  4- 2)%/en] + h3 * x[{2j + 3)%len]: 

end

for j := 0 to hlen-1 do /*second half */ 

begin

x jj 4- hlen] := h3 * x[2j] — h2 * x[2j  4-1] +  hx * x[(2j -f- 2)%Zen] — h0 * x[(2j  + 3)%len] 

end

len =  len/2; 

end 

END

To compute the wavelet transform for the Ifc-th element, we need information of 

the elements at positions 2k, 2 k  +  1 ,2k +  2, and 2k +  3 (the last two terms may be 

wrapped around to 0 and 1 if 2A: 4- 2 and 2A: 4- 3 are greater than the size).

1-D Inverse FW T

For completeness, we discuss 1-D inverse FWT briefly. Similar to the 1-D forward 

DWT, the 1-D inverse DWT can also be defined as a linear transform  1 from S  to
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I  D W T S ,  and the transform matrix W ~l can be decomposed into the following form

w - x =  (5.40)

If we take n =  8: then the inverse FW T (IFWT) can be implemented as follows:

- - -
c c c Co

d c c Cl

d d c C2

d - d — c - c3

d T f 1 d T T l d T f l C4

d d d C5

d d d ce

d d d c7

where

ho 4- /12 h \ +  /13 0 0 0 0 0 0

h i +  /13 1 <r 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0
+  h? +  /i| +  h i 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
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ho h-2 h 3 h i 0 0 0 0

hi h 3 h 2 - h o 0 0 0 0

h2 he h i h 3 0 0 0 0

1 h3 h i - h o —h2 0 0 0 0

h* -F h \  +  h% +  h i
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

ho 0 0 h 2 h3 0 0 h

hi 0 0 h 3 ~ h 2 0 0 —ho

h2 ho 0 0 hi h3 0 0

1 h3 hi 0 0 —ho —h2 0 0

h i  +  h \  +  h i  +  h i
0 h2 ho 0 0 hi h3 0

0 h3 h i 0 0 -h o ~h2 D

0 0 h-z ho 0 0 hi h 3

0 0 /13 h i 0 0 -ho — h2

The following is the 1-D IFVVT algorithm w ritten in a pseudo language.

ONE.D JF W T  (x : the 1-D input array ;

size : the size of the input data; 

d : the number of iterations)

BEGIN

len =  size :»  (d - 1); /*  start from smallest length */ 

for r :=  d-1 downto 0 do
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begin

hlen :=  len/2; 

hsum := ti$ +  h\ +  h* 4- h\ 

begin /*  first two are special * f  

x[0] :=  h ^ ( h o  * x[0] +  h2 * x[hlen -  1] +  h3 * x[hlen — 1] -+- hi * x[len\)\

x[l] :=  * x[0] - i -  h3 * x[hlen — 1] — h2 * x[hlen — 1] — h0 * x[/en]);

end

for i :=  len-1 downto 3, step 2 do 

begin

z bl =  * x [hlen ~ 2 ] + h i*  x[hlen -  1] -  h0 * x[i -  1] -  h2 * x[i]);

x[i — 1] =  * x[hlen — 2] +  ho * x[hlen — 1] +  hi * x[i — 1] + h3 * x[i]);

end

len =  2* len; 

end 

END

5.2.2 A  2-D Parallel FW T  Algorithm  and Analysis

We assume the input data are organized as an y/n x y/n square matrix. The algo­

rithm then checkerboard partitions the 2-D data into y / p  x v/p processors :

P 3,0 P 0 .X . . . . . . P 0 .y /P

P x .0 P i .  1 . . . . . . P l . y / P

. . . . . . . . . . . . . . .

P y /p ,  0 P y /p .  1 . . . . . . P y /P .y /P

Figure 5.3 : Partition of 2-D data
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Each processor computes y/m  x s/m  =  m  elements, where

m  =  - .  (5.41)
P

We make the assumption that y/m > 4 because a very small task for each processor 

will make the communicational overhead too expensive with respect to the  com puta­

tional time.

5.2.3 T he Algorithm

Assume the input data are stored in an array x[0 : y/n — 1] [0 : s/n  — 1], and 

assume Ptj  be the processor at the z'-th row and j - th  column. For 0 <  i < p  and 

0 < j  <  p. the processor Ptj  keeps two local arrays xrow[0 : y/n — 1] [0: y/m  — 1] and 

xcol[0 : y/n — l](0 : y/m  — 1] that are used to store temporarily the corresponding 

rows of the data x  from i * m -th row to ( ( z  -+- 1) * m  — l)-th  row and columns of the 

the data  x  from j  * m-th column to ((j +  1) * m  — l)-th  column and keep track of the 

changes with the process of execution.

Let tw denote the time required to transfer a unit data for one hop, and let tc be the 

time required to perform a multiplication or an addition.

First, each processor sends and receives d a ta  row-wise to get the data required to  com­

pute the row-wise 1-D FWT. For each i, j ,  the data  in processor PtJ areshowrn below':

. . . . . . . . .

. . .

x[iy /m .jy/m \ ... x[iy/m, (j  +  l ) s /m -1 ]  

x[(i + \)y /m  — l,jy /m \  . . .  x[(z +  \ )s /m  — 1, (j +  l)\/m  — 1]

. . .

. . . . . . . . .

Figure 5.4 : T he da ta  in P,j
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When i  < y / p / 2 ,  the data from position (i y / m , 2j y / m ) ,  ( i y / m ,  2j y / m  +  1), ( i y / m , 2 j y / m +  

2). and ( i y / m ,  2 j y / m  + 3) which are located in processor P,,2j are needed to compute 

the 1-D FW T at position ( i y / m , j ^ m ) ,  and the data from position ( i s / m ,  2 ( j + \ ) y / m —

2), (iy /n i, 2( j  +  l ) y / m  — 1). ( i y / m ,  2 ( j  + 1) v/m), and ( i y / m ,  2 ( j  +  l ) y / m  + 1) which are 

located in processor P.^j+i and P i , 2 j + 2  are needed to compute the FW T at position 

( i y / m ,  (j  +  1 ) y / m  — 1). Thus, the data in the top rows of the three processors Pli2j, 

Pi,2j+1, and Pi.2j +2 are required to compute the 1-D row-wise 1-D FW T for the top 

row of elements in processor P jj. Similarly, the data  in the second rows of the three 

processors P,,23, P,,2j+i, and P, 2j+2 are required to compute the 1-D row-wise FW T 

for the second row' of elements in processor And so on. Therefore, the data in 

processors Pi,2j, P , , 2 j + i ,  and Pl 2j+2 need to be sent to processor PtJ to compute the 

first step 1-D row-wise FWT. In fact, only the first two columns of Pl 2j+2 are really 

needed in this step. We will have two implementations; in one of them the exact data 

needed are sent and received, and in the other more data  than necessary are sent and 

received. It is done in this way because the branch statem ent overhead may be large 

if we try to send only part of the data  from a PE. Section 4.3 will discuss these two 

implementations and compare the performance. Based on the above observation, the 

communication can be scheduled as follows:

for k :=  2 to y/p — 2, step 2 do in parallel 

begin 

P,,* sends to P.,*/2 

end

for k := 1 to y/p — 1, step 2 do in parallel 

begin

Pi,k sends to Pi,(k- \ ) / 2
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end

for k :=  4 to y/p — 2, step 2 do in parallel 

begin

Plt* sends to Pi,(k-2)/2 

end

In the first “for” loop, for each k  G {2,4..... y / p  — 2}, m units of da ta  are moved k / 2  

hops, so k m t w / 2  time is taken. The maximum of them is { y / p  — 2 ) m t w / 2 .  In the 

second “for" loop, for each k  G {1,3,..., y / p — 1}. m  units of data  are moved (fc + 1 )/2  

hops, so (fc +  l ) m t w / 2  time is taken. The maximum of them is y / p m t w / 2. In the 

third “for” loop, for each k  G {4 ,6 , ..., / p  — 2}, m  units of da ta  are moved (A: +  2)/2 

hops, so { k  4- 2 ) m t w / 2  time is taken. The maximum of them is y / p m t w f  2. Together, 

the time taken for this communication is (3 m y / p / 2  — m / 2 ) t w . Similar analysis can 

be applied to cases of i < y / p :  it follows that the communication time between PEs 

in each of the rows of the mesh is 3 m / p t w / 2  — m t w . Because each row of PEs is 

independent of the others, the communication can be done in parallel. Therefore, the 

total communication time for step 1 row-wise 1-D FW T is 3m v/ptu,/2 — m t w .

The computational time for the step 1 row-wise 1-D FW T is 7m tc because each 

PE calculates y/m  x y/m  =  m 1-D FW T coefficients and the calculation of each 1-D 

FWT coefficient needs four multiplications and 3 additions, and all the PEs do their 

calculations in parallel.

Thus, the execution time taken for step 1 row-wise 1-D FW T is

3 m y / p t w/ 2  — m tw + lm tc. (5.42)

Similarly, the execution time taken for step 1 column-wise 1-D FW T is also

Z m /p tw/2  — m tw + 7  m tc. (5.43)

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



59
Thus, the execution time taken for the first iteration of the 2-D FW T is

3my/ptw — 2m ttL. 4- 14mtc. (5.44)

For the following iterations, the analysis is the same as above except tha t the size

is halved for each next iteration. So, the execution time taken for the second iteration

of the 2-D FW T is

3m y/p txilf2  — 2m tw -I- 14mtc, (5.45)

and so on. The to tal execution time is derived by adding the terms from each iteration:

T̂para

=  — 2m tw 4- 14mtc) 4- (3my/ptw/2  — 2mtw 4- 14m tc)

+ ... 4- (3m tw — 2mtw 4- 14mtc)

=  3m y/p tw(l  4- 1/2 4- 1/4 4- ... 4- 1 /y /p ) — 2 mlog(p)tw 4- 14 mlog{p)tc

< 6 m y / p — 2 mlog(p)tw 4- 14mlog(p)tc

=  6t  . - 2 = -  +
y / P  P  P

=  Tcommumcation “F ĉomputation •

where

T  _  C n t *  O f -  n l ° 9 ( P )J- communication — O — Ztu, ,
V p  p

and
^  yAnlog(p)tc , c ^
* com putation  —  ^ D .4* I )

Because the best sequential FW T algorithm runs in 0{n)  time, the speedup is 0 ( v/p) 

based on the formula

Speedup =  . (5.48)
I p a r a
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To be more precise, Tseq as 14n, so

14£,
Speedup  ~  —— \/p  =  (5-49)vCy;

where C  is a constant.

5.3 Experiment

The algorithm developed in Section 5.2 is implemented on the Fujitsu AP1000 

machine. The C code is written and tested in CASIM simulation environment; then 

it is sent to run in the real parallel machine.

In Section 5.3.1, we give a brief description of the AP1000 machine and the CASIM 

simulator. The experimental results are presented and analyzed in Section 5.3.2.

5.3.1 A B rief D escription of A P 1000 and CASIM

The AP1000 is an experimental large-scale distributed multiprocessor parallel com­

puting system developed by Fujitsu Laboratories, Japan. Individual processors or 

‘"cells" are connected in the form of 2-D mesh, and they communicate with each other 

by sending and receiving messages via three separate high-bandwidth communications 

networks: the B-net. T-net, and S-net. AP1000 is a MIMD parallel computer, and 

the cells do not share memory. The AP1000 is connected to and controlled by a host 

computer which is typically a Sun SPARCServer.

Programs for the AP1000 are written in either C or FORTRAN. Library calls 

are used for communication over the networks mentioned above. An application 

program usually consists of a  host program running on the host machine and a cell 

program running on the cells. The host program initiates the configuration of the 

system, assigns tasks to cells, passes input data  to cells, and receives messages from
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cells. The cell program communicates with the host and other cells and performs the 

computation. For more detail about AP1000 programming refer to [22, 23, 24, 30].

CASIM [21] is a simulator tha t simulates AP1000. Programs written for AP1000 

can be tested in a CASIM environment. A host and a number of cells (depending on 

the size of available memory) can be simulated in CASIM. When the CASIM runs, 

we have one window to represent the host and one for each cell. So, it is easy to trace 

the control of the program.

5.3.2 Experim ental R esu lts and Conclusions

The input data we use for our experiment are matrices of floating point numbers. 

The sizes of the matrices are 64 x 64, 128 x 128, 256 x 256, 512 x 512 and 1024 x 1024. 

All the input data are randomly generated by a C program (the raw data of 512 x 512 

lena image is used, and the result is the same as using the 512 x 512 random data). 

Experiments on 2 x 2 processors, 4 x 4  processors, and 8 x 8  processors with different 

sizes of input data are performed.

Tw o Different Im plem entations

Results from two different implementations are compared. In the first implemen­

tation, each processor gets three whole blocks of data from three other processors, 

i.e., processor PltJ receives da ta  from processors P,,2j- P&j+i, and Pt,2j +2 for row-wise 

1-D FW T computation, and from processors P2, j ,  P h+ ij, and Pk+2j  for column-wrise 

1-D FW T computation. Thus, more information is transferred than necessary.

In the second implementation, each processor transfers two blocks of data and two 

columns or rows of data from the third block. In other words, processor p j  receives 

the data blocks in processors Pl,.J , P ,2>+i and the first two columns of data  from
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processor Pi,2j +2 for row-wise 1-D FW T computation, and receives the data blocks 

in processors P21J • Pti+ij and the first two rows of d a ta  from processor Pii+zj for 

column-wise 1-D FW T computation. Thus, only the required data  are transferred.

Tables 5.1, 5.2, and 5.3 list the experimental results from implementation 1 for 

different sizes of data on 2 x 2, 4 x 4, and 8 x 8  processors, respectively. Tables 5.4, 

5.5, and 5.6 list the experimental results from implementation 2 for different sizes of 

data on 2 x 2, 4 x  4, and 8 x 8  processors, respectively. Comparing the corresponding 

results, the result from implementation 2 is better than from implementation 1. This 

coincides w ith the expectation because a smaller amount of data is transferred in 

implementation 2 than in implementation 1 and the branch overhead is less than the 

overhead of transferring the extra data.

R esults w ith  Different N um bers o f Processors

From Tables 5.1 and 5.4. we get the constant C  ~  0.77 for the speedup formula 

(5.48) derived in Section 4.2, i.e.,

speedup «  0.77y/p (5.50)

From Tables 5.2 and 5.5, we get the constant C  ~  1.0 for the speedup formula (5.48), 

i.e..

speedup a  1.0y/p (5.51)

From Tables 5.3 and 5.6, we get the constant C  a; 1.5 for the speedup formula (5.48),

i.e.,

speedup a  1.5y/p (5.52)

The above derivations seem to conflict with each other, but careful analysis reveals the

reason. WTien the number of processors is small, the parallelism in the communication

pattern of the  algorithm can not be fully explored. As the number of processors
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is increased, the parallelism can be more fully explored. As the processor number 

increases, the communication overhead decreases compared with the computation 

time, resulting in the overall increase in speedup. From this analysis, the constant C  

in the speedup formula (5.48) should be at least 1.5. Figure 5.5 shows the difference 

between the ideal speedup and the actual speedup.

R esults w ith  Sm all N um ber o f  Iterations

In many applications, it is often the case that we do not need to compute all logn 

iterations of the FWT, but only two or three iterations of the 2-D FW T may be 

sufficient. Tables 5.7, 5.8, and 5.9 show the results from three iterations of implemen­

tation 2 on different sizes of data on 2 x 2, 4 x 4, and 8 x 8  processors, respectively. 

These results show that more speedup is achieved when a smaller number of itera­

tions is used. This is due to the fact that the number of processors used in the actual 

computation decreases as the number of iterations is increased.

R esults w ith  Different Sizes o f  Input

From any of the nine tables, we can conclude that the speedup increases as the size 

of the input data  increases. In fact, when the size of input data is small, the commu­

nication overhead dominates the execution time because the amount of computation 

done by a processor is small. Figure 5.6 also shows the fact just mentioned.
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Table 5.1 : Implementation 1 on 2 x 2 PEs

size ite ra tio n P E p a ra seq sp e e d u p

64 x 64 6 2 x 2 0.488925 0.728275 1.49

128 x 128 7 2 x 2 1.904083 2.986986 1.57

256 x 256 8 2 x 2 7.612872 11.631505 1.53

512 x 512 9 2 x 2 30.788989 47.312410 1.54

1024 x 1024 10 2 x 2 124.497876 188.434409 1.51

Table 5.2 : Implementation 1 on 4 x 4 PEs

size ite ra tio n P E p a ra seq sp e e d u p

64 x 64 6 4 x 4 0.246280 0.728275 2.96

128 x 128 7 4 x 4 0.788887 2.986986 3.79

256 x 256 8 4 x 4 2.980293 11.631505 3.90

512 x 512 9 4 x 4 11.816582 47.312410 4.00

1024 x 1024 10 4 x 4 48.121094 188.434409 3.92

Table 5.3 : Implementation 1 on 8 x 8 PEs

size ite ra tio n P E p a ra seq s p e e d u p

64 x 64 6 8 x 8 0.319232 0.728275 2.28

128 x 128 7 8 x 8 0.641096 2.986986 4.66

256 x 256 8 8 x 8 1.236428 11.631505 9.41

512 x 512 9 8 x 8 4.217318 47.312410 11.22

1024 x 1024 10 8 x 8 16.180682 188.434409 11.65
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Table 5.4 : Implementation 2 on 2 x 2 PEs, exact data  transferred

size ite ra tio n P E p a ra seq sp eed u p

64 x 64 6 2 x 2 0.487405 0.728275 1.49

128 x 128 7 2 x 2 1.903066 2.986986 1.57

256 x 256 8 2 x 2 7.613414 11.631505 1.53

512 x 512 9 2 x 2 30.801409 47.312410 1.54

1024 x 1024 10 2 x 2 124.547476 188.434409 1.51

Table 5.5 : Implementation 2 on 4 x 4 PEs. exact data transferred

size ite ra tio n P E p a ra seq sp eed u p

64 x 64 6 4 x 4 0.235471 0.728275 3.09

128 x 128 7 4 x 4 0.772334 2.986986 3.97

256 x 256 8 4 x 4 2.931493 11.631505 3.97

512 x 512 9 4 x 4 11.640385 47.312410 4.06

1024 x 1024 10 4 x 4 47.224833 188.434409 3.99

Table 5.6 : Implementation 2 on 8 x 8 PEs, exact data  transferred

size ite ra tio n P E p ara seq sp eed u p

64 x 64 6 8 x 8 0.297807 0.728275 2.45

128 x 128 7 8 x 8 0.469157 2.986986 6.37

256 x 256 8 8 x 8 1.193738 11.631505 9.74

512 x 512 9 8 x 8 4.104928 47.312410 11.53

1024 x 1024 10 8 x 8 15.785377 188.434409 11.94
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Table 5.7 : Implementation 2 on 2 x 2 PEs, only 3 iterations

size ite ra tio n P E p a ra seq sp e ed u p

64 x 64 3 2 x 2 0.473999 0.732229 1.55

128 x 128 3 2 x 2 1.844659 2.852886 1.55

256 x 256 3 2 x 2 7.373729 11.435084 1.55

512 x 512 3 2 x 2 29.860538 46.183462 1.55

1024 x 1024 3 2 x 2 120.682095 185.348481 1.54

Table 5.8 : Implementation 2 on 4 x 4 PEs, only 3 iterations

size ite ra tio n P E p a ra seq sp eed u p

64 x 64 3 4 x 4 0.224600 0.732229 3.26

128 x 128 3 4 x 4 0.713379 2.852886 4.00

256 x 256 3 4 x 4 2.694941 11.435084 4.24

512 x 512 3 4 x 4 10.684133 46.183462 4.32

1024 x 1024 3 4 x 4 43.400305 185.348481 4.27

Table 5.9 : Implementation 2 on 8 x 8 PEs, only 3 iterations

size ite ra tio n P E p a ra seq sp ee d u p

64 x 64 3 8 x 8 0.294290 0.732229 2.49

128 x 128 3 8 x 8 0.406810 2.852886 7.01

256 x 256 3 8 x 8 0.961462 11.435084 11.89

512 x 512 3 8 x 8 3.150642 46.183462 14.66

1024 x 1024 3 8 x 8 11.969213 185.348481 15.49
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5.4 W avelet Packets

Wavelet packets [8] are extensions of wavelets. In each iteration, the wavelet 

transform only expands the coarse coefficients from the last iteration into a coarse 

part and a detailed part and leaves the detailed coefficients from the last iteration 

unchanged. Wavelet packets expand both the coarse coefficients and the detailed 

coefficients into a coarse part and a detailed part.

A wavelet packet transform can also be modeled mathematically as a linear trans­

form Wn from 5  to W P S , the wavelet packet transform of 5. If every detailed term 

is further decomposed, then the transform matrix Wn can be decomposed into the 

following form:

W n =  ±n±n/7 ...±4±2 , (5.53)

If we take n =  8. then the wavelet packet transform can be implemented as follows

Co c c C

Cl c c d

C2 c d c

C3 — c - d - d

C4 t 8 d t 4 c T2 c

c5 d c d

c« d d c

C7 _ d d d

where c's and d's are used to denote the coarse and detailed coefficients, respectively.

If we choose the Daubechies order-4 wavelet for which the scaling constants are

rt , ,1 +  ^ 3  +  n/3  3 - V 1  1 - V 3 ,
( M  =  ( — 3— * — 7—  - — i—  ’ — ;— } ’ c5 -5 4 )
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then the length-8 wavelet packet transform is associated with the following T-matrices:

ho h i h i h3 0 0 0 0

0 0 ho hi h i h 3 0 0

0 0 0 0 ho h \ h i h 3

h i h 3 0 0 0 0 ho h i

h 3 —h i hi —ho 0 0 0 0

0 0 h 3 —h i h, - h 0 0 0

0 0 0 0 h 3 —h i hi -h ,

hi —ho 0 0 0 0 . h3 - h ,

ho hi h i h 3 0 0 0 0

h i h 3 ho h i 0 0 0 0

h 3 —h i h i —ho 0 0 0 0

h i —ho h 3 - h i 0 0 0 0

0 0 0 0 ho hi h i h 3

0 0 0 0 h i h 3 ho h i

0 0 0 0 h 3 —h i h i —h

0 0 0 0 h i —ho h3 - h -
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t 2 =

ho +  h 2 h i -F h 3 0 0 0 0 0 0

/13 4* h i —ho — h 2 0 0 0 0 0 0

0 0 ho +  h 2 h i +  h3 0 0 0 0

0 0 h3 +  h i M11 0 0 0 0

0 0 0 0 ho 4- h 2 h i 4- h 3 0 0

0 0 0 0 h3 4- h i —ho — h 2 0 0

0 0 0 0 0 0 ho 4- h2 h i 4- h3

0 0 0 0 0 0 h 3 4- h i 1 S' 0 1 s-

We now implement the wavelet packet transform algorithm using a pseudo lan­

guage.

WPT (x : the 1-D input array ;

size : the size of the input data; 

d : the number of iterations)

BEGIN 

len =  size; 

for i := 0 to d-1 do 

begin

hlen ;= len/2;

for k :=  0 to d-1 do

begin

for j :=  0 to hlen-1 do 

begin

x \j  4- k * len ] := h0 * x[2j 4- k  * len] 4- hi * x[2j 4- k  * len 4- 1]4- 

h2 * x[(2j  -I- k *  len 4- 2 )%len] -I- h3 * x[(2j 4- k  * len  -I- 3)%Zen];
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end

for j := 0 to hlen-1 do 

begin

x[j + k * len  -F hlen] := /13 * x[2j + k  * len] — h% * x[2j  ■+■ k * len -F 1]-F 

hi * x[(2 j  +  k  * len  +  2)9oZen] — ho* x[(2j + k * len +  3)%/en]; 

end

len =  len/2; 

end 

end 

END

If d = logn. then the complexity of the above implementation is 0{nlog(n)). Our 

parallel algorithm described in Section 4.2 can be modified to fit wavelet packet trans­

forms: the complexity is still CHnf y/p). Therefore, the speedup will be 0(y/plog(n)) 

in parallel wavelet packet transform implementation using our algorithm.
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C H A P T E R  6

CONCLUSIONS A N D  F U T U R E  RESEARCH

6.1 On Signal Recovery

Two schemes are developed to reconstruct signals from their sample values. One 

of the algorithms is to regain a finite number of lost samples from a Nyquist-rate- 

sampled band-limited signal /  of finite energy by replenishing new sample values of 

the same number. The other is to recover a band-limited function /  of finite energy 

from its sampling values on real sequences with an accumulation point.

Although the two algorithms are both constructive and very programmable, im­

plementations have not been provided. It could be a very interesting future research 

project to put the algorithms into real-world use.

Another interesting topic is worthy to be mentioned. Although the recovery 

schemes derived from sampling theory are closely related to complex function the­

ory, the comparison between the classical complex function theory- and the sampling 

schemes deserves some discussion To our suprise, very- few references of this kind 

can be found in the literature although many authors pointed out th a t the sampling 

theory is rooted deeply in classical complex function theory. The following statem ent 

can be found in [9]: “Cardinal series has found favor in signal-processing applications, 

undoubtedly because of the neat way in which it fits into the accompanying Fourier 

analysis."

72
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Although the sampling theory has the complex function theory as its solid back­

ground, it was originally introduced ([7], [8], [11]) from the application domain. The 

sampling recovery schemes are more application-oriented while the methods th a t come 

directly from the classical complex function theory are stricter. The fact is that the 

two approaches are getting closer and no clear boundary currently exists.

6.2 On Frames

The existence of two kinds of frames, Weyl-Heisenberg frames and affine frames, 

is studied. Precisely, we provide conditions on a function g £ L2(R) such that the 

regular Weyl-Heisenberg system {e2*imbzg(x  — na)}m,n£z or the semi-irregular Weyl- 

Heisenberg system {e2*imbxg(x  — an)}m-n6z with an arbitrary real sequence {an}„ez 

forms a Weyl-Heisenberg frame for L2(R). Also, conditions are given on g G L2(R) 

such that the affine system {a~n̂ 2g((x — mban)a~n)}m n̂€z forms an affine frame. The 

conditions provided improve the known conditions and, in addition, are easy to verify. 

Some remarks on W-H frames are in order.

1. Theorem 4.4.1 still holds if {a„}„gz is a finite disjoint union of uniformly discrete 

sequences of real numbers. One can write £ n l<7(x —an)| as a finite sum of infinite 

series. The proof is analogous to the one of Corollary 4.2.2.

2. If there exist constants A. 3 0 > 0 such that

V /  €  L \R ) ,  A  I /I ll  <  £ \U, Em iT'.g )]2 ,
m,n

and |<7(x)| <  B0 a.e., then

^ \ g { x  -  an) \>  A /B q a.e.
n

To see this, we assume ess supieR ^ n  l<7(x ~  an)l < A/Bo. We can find a set 

E  C /  C R. where /  is an interval of length 1/6, such that |£ j  > 0 and
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Hn |p(x — a„)| <  A /B 0 on E. If we set /  =  \E  then it follows from (4.29) that

n  m n

^  B 0  -  a n ) \  d t
JE a

<  A  I l f  111

This is a contradiction.

3. We conclude immediately from Remark 2 that, if there exists a  constant A  such 

that

V /  G £ 2(R), A Il/H* <  £  !(/, Ban W | 2 ,
m,n

and |g(7 )| <  Bq a.e.. then

5Z IsC"' -  fln)i >  A /B o a.e.
n

4. So far as we know, no "if and only if " conditions on mother wavelets have yet 

been obtained. It deserves more attention to search for sufficient and necessary 

conditions on g so that the irregular W-H system {EbnTang } m ,n€Z is frame for 

L2(R), where A =  {(an,fen)}„ez is a discrete subset of R  x R .

6.3 On Fast W avelet Transformation

A parallel algorithm of fast wavelet transform is developed. The algorithm  is imple­

mented on the Fujitsu AP1000 multiprocessor machine. Experiments are performed 

on different input data sizes using various numbers of processors. The experimental 

results support our analysis.

To be more precise, with p  processors working on an input of size n, the overall 

execution time is 6twn /y /p+ 14 tcnlog(p)/p, where tw denotes the tim e used to transfer
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a unit data for one hop, and tc the time needed to perform a multiplication or addition. 

The speedup is 0(y/p). The experiments show that the constant in the speedup term 

is about 1.5.

A parallel algorithm .s developed only for the 2-D forward FW T. A similar algo­

rithm  may be developed for a 2-D inverse FWT. The algorithm can be modified for 

wavelet packet transforms.

To get good performance on a distributed data architecture, an algorithm must 

be implemented such that communication overhead is minimized. For an efficient 

parallel 2-D FWT, hypercube architecture may provide a better intercommunication 

topology.
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