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ABSTRACT

In this study free molecular flow in a micro-channel was modeled using a 

stochastic approach, namely the Kolmogorov forward equation in three dimensions. 

Model equations were discretized using Central Difference and Backward Difference 

methods and solved using the Jacobi method. Parameters were used that reflect the 

characteristic geometry of experimental work performed at the Louisiana Tech 

University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of 

the distance traveled by a particle in the micro-channel. From this distribution we 

obtained the distribution of the residence time o f a particle in the micro-channel. 

Knowledge of Residence time will aid both chemical and biomedical engineers in the 

study of micro-reactors and biological systems, respectively. From the transition 

probability density obtained in our model and the initial particle density (or number 

concentration), one can calculate also the distribution of particle or solute concentration 

in the micro-channel. Model prediction of the distribution o f distance traveled by a 

particle can be applied to experimental data on micro-channel flow being gathered at 

the Institute for Micromanufacturing at Louisiana Tech University.

ii
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NOMENCLATURE

a half the length of the y  and/or z distance

f(y,z) linearized Navier-Stokes equation

b/ continuously differentiable function on the (y,z) plane

b2 continuously differentiable function on the (y,z) plane

V point volume

H, h channel height

Kn Knudsen number

L flow characteristic length

p  pressure

P probability

t time

Re Reynolds number

Pr Prandlt number

U characteristic velocity

-v the Cartesian coordinate in the stream-wise direction

y  the Cartesian coordinate for width

z the Cartesian coordinate for height

nx grid points in the x  direction
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ny grid points in the y direction

nz grid points in the z direction

At time interval

Ax grid spacing in the x  direction

Ay grid spacing in the y  direction

Az grid spacing in the z direction

d Differential operator

P Density

<P diffiisivity of dispersion coefficient of water

Po Flow velocity in the center o f the channel

Py 0.000 \*fM>

Pz 0.0001 *no

Superscripts

n+1 current iteration step 

n previous iteration step

Subscript

/ index o f grid in the x  direction

j  index o f grid in the y  direction

k index o f grid in the z direction

x
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CHAPTER 1 

INTRODUCTION

1.1. General Overview

Although the concept o f modeling flow in micro-channels is not new, extensive 

experimentation has been impossible until recently, as methods for creating micro­

environments have become available. Modeling o f capillary flow as a field is, 

therefore, relatively new.

Micro-mechanics technology originated over 20 years ago. Many devices are 

under development such as flow sensors, valves, pumps, separation capillaries, and 

chemical detectors. An increasing demand exists for both theoretical and experimental 

work on fundamental physical and chemical phenomena. Another phenomenon 

important to liquid flow in small channels is gas bubbles. In principle bubbles can be 

avoided, but in order to do so, it is important to understand how a gas bubble moves in a 

micro-channel. Pressure drop across a liquid gas interface o f a gas bubble in a capillary 

tube, as well as the pressure difference needed to move the gas bubble in a straight 

channel, increases with decreasing channel dimension. Finite Element analyses, finite 

difference, and boundary element modeling are suitable for micro-fluidic simulation. 

Only a few applications of finite element analysis for micro-fluids have been reported.

Dosing systems can be part o f a transport system in a chemical analysis system 

or can be used in a drug delivering system. The demands of drug delivery systems 

correspond to the properties o f micro-mechanical systems with small size, chemically

l
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2

durable materials, robust construction, and the delivery o f small precise doses o f drugs. 

Medical applications could imply disposable systems, which sets strong limitations on 

the cost of the total system. Most o f what we need to know about fundamental micro- 

fluidics has yet to be learned. Special phenomena—including rarefaction due to the 

mean free path o f gas molecules, velocity in laminar flows, change o f  liquid viscosity 

with channel dimension, and surface tension effects encountered with gas bubbles in 

liquids—need to be considered in establishing fundamental material properties and valid 

models (Gravesen, Branebjerg, and Jensen, 1993).

Other applications o f  micro-technology exist. Small accelerometers, with 

dimensions measured in microns, are now used to deploy air bag systems in 

automobiles. Tiny pressure sensors for the tip of a catheter are smaller than the head of 

a pin, and micro-actuators are moving scanning electron microscope tips to image 

single atoms. New fabrication techniques such as surface silicon micro-machining, 

bulk silicon micro-machining, LIGA (Lithographie Galvanoformung Abformung), and 

EDM (Electro Discharge Machining) are making these micro-devices possible. 

Inherent with these new technologies is the need to develop fundamental science and 

engineering o f small devices. Micro-devices tend to behave differently than the objects 

we are used to handling in daily life. The inertial forces, for example, tend to be quite 

small and surface effects tend to dominate their behavior. Friction, electrostatic forces, 

and viscous effects due to the surrounding air or liquid become increasingly important 

as the devices become smaller (Beskok, Kamiadakis, and Trimmer, 1996).

Advanced micro-components currently in development include micro-channel 

heat exchangers, gas absorbers, liquid-liquid extractors, chemical reactors, and micro­
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3

actuators for pumps, valves and compressors. These micro-components show the 

potential for high performance and capacity. These systems will be more compact than 

conventional, “macro” chemical processing systems, suggesting the potential for 

distributed and mobile applications. The micro-scale phenomenon should be exploited 

more effectively to significant advantage in terms of heat and/or mass transport. Cost 

economies as with the electronics industry, offer economies o f mass production. Much 

o f the US investment in micro-system technology is directed toward the development o f 

MEMS for micro-sensor applications. Some micro-sensors are commercially available, 

and the overall prognosis for the micro-sensor market was recently estimated at SMB in 

worldwide sales, enabling S200B o f new product sales. Typical scales for micro­

mechanical devices range from microns to millimeters, spanning the range o f scales that 

also includes micro-electronics, ultrasonics, visible and infrared radiation, and 

biological cells and tissues. Figure 1.1 shows the general comparison between these 

compact systems with their conventional counterparts (Wegeng et al., 1996).

Epstein, et al. (1997) proposed a new class of MEMS devices, “power” MEMS, 

characterized by thermal, electrical, and mechanical power densities equivalent to those 

in the best large-sized machines produced today, thus producing powers of 10 to 100 

watts in sub-centimeter sized packages. These devices would have significantly 

different behavior from, but equivalent performance to, their more familiar full-sized 

embodiments. They could find widespread applications as mobile power sources,
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Typical M crochannel Widths

.Mem Pumps and Valves

SBcrumotor Rotors M krochanncl Reactors

M cro Therm al and Chemical Systems

Single T ransistor on 1C IC  C hip Personal C om puter

1 A  1 nm I tun 1 mm 1 m  1 km

Smog

Gas Molecules Tobacco Smoke Beach Sand Conventional Pumps and Valves

Atmospheric Dust

Bacteria

Conventional Reactors &  H eat Exchangers

Virus Conventional Therm al S t Chemical Plants

Radius o f Mast Cells Human Hair Man j

Figure 1.1 Sizes/characteristics o f micro-components 
comparison to other items

propulsion engines, and coolers. The realization o f power MEMS presents new 

challenges both to micro-machining and to the traditional mechanical and electrical 

engineering disciplines of fluid dynamics, combustion, and electric machinery design.

Ho and Tai (1996) reviewed some o f the emerging micro-machining technology, 

which enables us to fabricate mechanical parts on the order o f micron size. Micro­

machining technology provides us with micro-sensors and micro-actuators, which 

facilitate the exploration of all areas o f science. Furthermore, these miniature 

transducers can be integrated with micro-electronics. An integrated system allows the 

completion o f the loop of sensing, information processing, and actuation. This type of 

system enables real-time control of time varying events, common in fluid dynamics. 

One opportunity for applying MEMS to flow control is the knowledge that shear flows 

are sensitive to perturbations.
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What has stimulated the development o f micro-mechanical components is that 

manufacturing techniques originally developed for micro-electronics have been 

extended to micro-mechanical structures and actuators. Researchers thus realize that 

the same economies o f  scale enjoyed in the mass production o f micro-chips can apply to 

mechanical systems. However, very little is known about two-phase micro-flow, micro- 

evaporation, or micro-condensation.

The micro-compressor presents the largest technical challenge in developing a 

micro-heat pump system. Work is underway on micro-actuators to enable them to 

power a micro-compressor. Accordingly, the technical question is not whether micro- 

compressors can be developed, but how powerful and efficient they can be.

Advanced component design for compression and power generation must be 

developed. In addition, we have to improve our understanding o f the physical 

phenomena that occur in micro-scale processes, including phase-change phenomena, 

fluid dynamics, and heat transfer. Although first generation micro-mechanical 

applications generally consist of micro-sensors for the automobile and biotechnology 

industries, further development activities should yield significant energy applications. 

The next generation o f micro-actuators, designed to provide compressors or other work- 

to-work conversions, should enable the demonstration o f  efficient effective micro and 

sheet heat pumps. In some cases, applications o f these products in a distributed mode 

are expected to reduce or eliminate energy losses associated with central processing. In 

addition there is the potential to use more efficient methods and improved thermal 

cycles not available on the macro-scale. Economies o f  scale, which have already been 

demonstrated for micro-electronics, will apply, resulting in sheet heat pumps and
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engines that have lower capital costs than their macro alternatives (Wegeng and Drost, 

1994).

Other practical applications o f micro-scale fluid flow include cooling of 

electronic chips and devices, heat transfer augmentation, aerospace technology, reactors 

for modification and separation o f biological cells and selective membranes. Research 

on fluid flow in these small channels is consequently necessary to identify the 

fundamentals and characteristics o f fluid forced flow. Analysis and comparison show 

that the experimental data and results currently available in the literature do not have a 

high correlation and that some conclusions exist contrary to current theories. As noted 

in previous investigations, the flow and heat transfer in extremely small or micro-scale 

flow passages exhibit some unusual behavior and unique performance enhancement 

(Peng, Peterson, and Wang, 1994b).

Devices having dimensions of the order o f microns are being developed for use 

in cooling o f integrated circuits, biochemical applications, and cryogenics (Kavehpour, 

Faghri, and Asako, 1997). Micro-fabricated channels were also suggested for integrated 

cooling o f electronic circuits, miniature gas chromatographs built on single silicon 

wafers, and small high-frequency fluidic control systems. In order to design such 

devices effectively, it is necessary to establish physical laws governing flow in small 

conduits (Harley, Huang, Bau, and Zemel, 1995).

There is very little fundamental understanding o f  the behavior o f micro-flow. 

Consequently, there is a need for establishing mathematical models to characterize such 

flow. One o f the biggest questions regarding flow in micro-channels is whether or not 

the flow can be modeled adequately using the Navier-Stokes equations. Should these
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equations be modified and if  so, how? When modeling macro-fluid flow, researchers 

normally neglect several effects. Should the same effects be neglected when modeling 

flow for micro-channels? Should others be considered?

The fundamental concepts of the continuum field approach to the treatment of 

matter had their origin well over two centuries ago in the works o f Euler and later 

Cauchy. Classical continuum mechanics is based on the idea that all material bodies 

possess continuous mass densities, and that the laws of motion and the axioms of 

constitution are valid for every part o f the body regardless o f  its size. Inherent in the 

classical viewpoint are drastic limitations on the extent to which continuum descriptions 

of macroscopic behavior can successfully mirror the fine structure of matter. As 

limitations become more acute and more refined, more complete descriptions of 

material behavior are sought.

The inadequacy of the classical continuum approach to describe the mechanics 

of complex fluids has led to the development of theories o f micro-continua. Through 

these theories continuous media are now regarded as sets o f structured particles 

possessing not only mass and velocity but also a substructure with which is associated a 

moment-of-inertia density and a micro-deformation tensor. This extension of fluid 

mechanics required a complete reappraisal o f classical concepts in order to account for 

the local structural aspects and micro-motions. In fact, while many o f the principles of 

classical continuum mechanics remain valid for this new class o f  fluids, they had to be 

augmented with additional balance laws and constitutive relations. The presence of 

microscopic elements in a fluid give rise not only to classical Cauchy stresses but also 

to couple stresses due to the micro-element interactions.
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Although the various theories are quite diverse in their applicability, they all 

take into account the couple stress so that the continuum under consideration is polar, 

exhibiting an asymmetric stress tensor. Note that, while a statistical averaging process 

is employed in the development, the theory itself is based solely on the principles of 

continuum mechanics and not on molecular or statistical mechanics. By definition, a 

simple micro-fluid is a fluent medium whose properties and behavior are affected by the 

local motions of the material particles in each of its volume elements. Such a fluid 

possesses local inertia. Eringen’s simple micro-fluids are isotropic, viscous fluids. In 

the simplest case of a constitutively linear theory, twenty-two viscosity and material 

coefficients characterize these fluids. However, a serious difficulty is encountered 

when the theory is applied to real, nontrivial flow problems.

Even for the linear theory, a problem dealing with simple micro-fluids must be 

formulated in terms of a system of nineteen partial differential equations in nineteen 

unknowns and the underlying mathematical problem is not easily amenable to solution. 

This difficulty has led Eringen and other researchers to consider subclasses of these 

general micro-fluids, which are more easily amenable to solution and will still allow 

description o f  the effects arising from particle micro-motions. Some other theories 

related to generalized fluid mechanics have been developed in recent literature from a 

statistical mechanical approach (Ariman, Turk, and Sylvester, 1973).

1.2. Objectives

The emphasis o f this research will be to explore free molecular flow. The three- 

dimensional Stochastic Komolgorov Forward equation (or the Fokker-Planck equation) 

will be used to investigate micro-flow in rectangular channels. These equations are
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perhaps suitable for micro-flow because the model deals with motion at the particle or 

molecular level. The theory can characterize the flow system through description of 

distribution o f motion or displacement o f  the micro-particles, which can be verified 

experimentally at the Louisiana Tech University Institute for Micro-manufacturing.

1.3. Organization of the Dissertation

This dissertation is organized as follows: In chapter2, a review o f related 

research is presented. In chapter 3, the equations and boundary conditions for a model 

based on the Kolmogorov three-dimensional forward equations are presented. In 

chapter 4, the numerical method including numerical schemes and various computation 

details are discussed. In chapter 5, specific simulation problems and computational 

results are described. In chapter 6, a conclusion and discussion are provided.
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RELATED RESEARCH

Several effects normally neglected when considering macro-scale flow may 

exist in micro-scale convection. The first o f these micro-scale phenomena are two- and 

three-dimensional transport effects. Another micro-scale effect is that o f temperature 

variations o f the transport fluid, which can cause a significant variation in fluid 

properties throughout a micro-system. In liquids, the influence o f molecular polar 

forces increases. The rarefied dynamics model is based on flow of molecules near a 

surface, which may be classified as specular or diffuse. Free molecular flow represents 

the other extreme where interaction between molecules rarely occurs. There is little 

build-up o f molecules near the wall, as in continuum flow. Slip flow occurs between 

these extremes when there are slight rarefaction effects. The aforementioned effects 

and conditions are not new, but none o f them have been studied extensively in relation 

to micro-scale flow. Too few experimental data exist to determine if slip flow becomes 

important as fluid convection systems are reduced in size. Research into micro-systems 

is just now beginning to shift into areas other than fabrication (Bailey, Ameel, 

Warrington, and Savoie, 1995).

The laws o f hydrodynamic flow developed for a macro-scale continuum fluid 

(i.e. the Navier-Stokes Theory) may no longer be applicable to micro-scale flow. The 

currently available experimental data for micro-scale tubes and channels with 

characteristic dimensions of one to tens o f micro-meters are inconclusive. When the

10
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external characteristic length (e.g., Him thickness, channel depth) becomes comparable 

with the internal characteristic length (e.g., molecular dimension, radius o f gyration of a 

polymeric molecule, gas mean free path), the classical Navier-Stokes theory cannot 

explain the flow behavior. Eringen and Okada introduced a lubrication theory for fluids 

with micro-structure. This theory produces an excellent fit for data collected by other 

researchers for film thickness o f up to 300nm and is capable o f predicting viscosity 

changes with addition o f trace amounts of water to some organic polymers (Papautsky, 

Brazzle, Ameel, and Frazier, 1998).

Applications o f couple stress and micro-polar theories to the problems o f 

Couette and Poiseuille flows between two parallel plates were discussed and compared 

by Ariman and Cakmak (1967). Comparisons were made with the results given by 

Stokes. The micro-polar fluid theory presented gave two independent equations to 

describe the velocity and the micro-rotation velocity fields, thus allowing the 

specifications o f both the velocity and micro-rotation velocity at the boundaries 

independently.

Ariman, Cakmak, and Hill (1967) analyzed the flow o f micro-polar 

fluids between two concentric cylinders, first for the use o f Couette flow and the 

toroidal pressure gradient being zero, then for the case o f Poiseuille flow due to the 

pressure gradient in the axial direction. Results were presented graphically and 

compared with classical results and a discussion of the differences was provided.

Eringen (1969) derived equations o f motion, constitutive equations, and 

boundary conditions for a class o f micro-polar fluids, which can stretch and contract. 

Eringen conjectured that the model constructed had applications in liquid crystals, fluids
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with polymeric additives, and turbulent motion of Newtonian fluids. The most general 

of this class is the simple micro-fluids in which the fluid, in addition to its classical 

translatory degrees o f  freedom, represented by a velocity field v, possesses three 

gyration, vector fields v*. These latter degrees o f freedom provided the necessary 

instrument to account for the intrinsic rotary motions and stretch o f the local fluid 

elements. Because o f these additional degrees of freedom, the theory o f simple micro­

fluids was believed to have many important applications in the fields of structural 

continuum, such as anisotropic fluids, liquid crystals, fluids carrying additives, fluids 

with surface tensors, etc. The governing equations obtained for such fluids were 

complicated, and the mathematical treatments of various important fluid notions still 

remain unstudied.

Ahmad (1976) studied boundary layer flow of micro-polar fluid over a semi- 

infinite plate and discussed the theory o f micro-polar fluid and its application to the 

dynamics o f low concentration suspension flow. Some estimates o f the coefficients of 

viscosity were given in terms o f concentrations and length scale o f suspension. For 

variable micro-inertia it was shown that it is possible to find a self-similar solution. The 

partial differential equations of motion were then reduced to differential equations. 

Numerical solutions o f the equations were then obtained and the distribution of 

velocity, micro-rotation, shear and couple stress across the boundary layer were plotted. 

The velocity profile was observed to change slightly in the range o f  the values studied 

but the gyration and couple varied appreciatively with small changes in parameters. 

Different coefficients are used for particles with intense rotational Brownian motion and
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for relatively large particles whose orientation is not influenced by the Brownian 

motion.

Eringen (1980) introduced a continuum theory o f anisotropic fluids. Balance 

laws were based on the micro-polar continuum mechanics. Properly invariant 

constitutive equations were established and restricted by the second law o f 

thermodynamics. The field equations were solved for the share flow o f rod-like 

suspensions in viscous fluids. Eringen was interested in the development of a theory 

which considered the fluid orientable at the outset rather than the classical approach 

based on building the theory from interactive motions of its constituents. Eringen’s 

work established properly invariant constitution equations for anisotropic micro-polar 

fluids. Together with the basic laws o f micro-polar mechanics, these equations 

provided the necessary field equations for the treatment of physical problems in this 

field.

Olmstead and Majumdar (1983) considered the Oseen linearization o f  the 

equations governing steady, incompressible flow o f a micro-polar fluid in two- 

dimensions. Attention was focused on the problem o f determining the fundamental 

solution of these equations. The fundamental solution of these equations was reduced 

to that of finding two scalar functions, each o f which satisfies a fourth-order partial 

differential equation. Since this fundamental solution represents the basic element for 

all two-dimensional flows, Olmstead and Majumdar foresaw applications such as 

solving flows past obstacles, investigating various boundary behaviors and examining 

injection-suction problems. One of the principle applications o f the fundamental 

solution was to obtain an integral for the flow variables.
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Kolpashchikov, Migun, and Prokhorenko (1983) deduced formulae for micro- 

polar fluid viscosity coefficients on the basis o f some viscometric and thermal 

measurements. Results o f  viscometric measurements allowed the determination o f  two 

characteristic parameters o f  a micro-polar fluid, which were applied for the description 

of its flow in channels in the majority o f cases. The subsequent measurement o f fluid 

heating due to energy dissipation permitted the viscosity coefficients and form o f  the 

boundary conditions for the micro-rotation vector to be determined.

A perturbation method to investigate analytically the nonlinear stability behavior 

of a thin micro-polar liquid film flowing down a vertical plate was used by Hung and 

Leschziner (1984). The conservation o f mass, momentum, and angular momentum 

were considered and a corresponding nonlinear generalized kinematic equation for the 

film thickness was derived. Results showed that both supercritical stability and sub- 

critical instability were found in the micro-polar film flow system. This analysis 

showed that the effect o f the micro-polar parameter R (=k/fj) was to stabilize the film 

flow, that is the stability o f  the flowing film increased with the increasing magnitude of 

the micro-polar parameter R. Also, the analysis showed that the micro-polar 

coefficients, A(=h02/j) and X(=y/fjj), had very little effect on the stability of the micro- 

polar film.

The principle o f exchange of stabilities was shown to hold for the convection 

motion in a micro-polar fluid. The convection motion was less stable for micro-polar 

than for Newtonian viscous fluid. Can, Huy, and Cau (1989) performed this study of 

convection motion in a micro-polar fluid.
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Das and Sanyal (1990) discussed unsteady flow o f a micro-polar fluid with 

periodic pressure gradient. They obtained and depicted through figures the expressions 

for velocity and the micro-rotation components.

Micro-polar fluids are models for rheologically complex liquids such as blood 

and dilute suspensions introduced by Eringen. Easwaran and Majumdar (1990) 

explicitly constructed fundamental singular solutions for the non-steady (causal) 

Stokes-linearized two-dimensional equations o f  micro-polar flow. The resulting 

solutions required the factorization o f a fourth-order partial differential operator into 

two quadratic operators. This factorization was achieved under a certain condition on 

the parameters of the problem. The use o f the fundamental solutions in unsteady flow 

problems was discussed.

Ciarletta (1995) was concerned with the linear theory o f heat-conducting micro- 

polar fluids. His study presented the fundamental system o f fluid equations and derived 

a linear theory appropriate to small departures from an equilibrium state. Ciarletta 

established a representation of the Galerkin type and derived the fundamental solutions 

in the case of steady vibrations. A uniqueness result and a variational theory were 

presented.

Rees and Bassom (1996) considered the Blassius boundary-layer flow of a 

micro-polar fluid over a flat plate. A full derivation of the boundary-layer equations 

was given. The resulting non-similar equations were solved using the Keller-box 

method and solutions for a range o f parameters were presented. Rees and Bassom 

found that a two-layer structure developed as the distance downstream increased. An 

asymptotic analysis o f the structure was presented, and the agreement between the
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analysis and the numerical solution was excellent. A wide selection of numerical 

results were presented giving the evolution o f  the velocity and gyration component 

profiles, and the shear stress and rate of change of gyration components at the solid 

surface.

Guohua Liu (1999) modeled fluid flow in micro-channels using the Navier- 

Stokes equations. A micro-fluid model was developed to investigate the influence of 

micro-effects, such as gyration, in micro-scale flows. This model was based on 

Eringen’s simple micro-fluid, and was simplified for an incompressible, two- 

dimensional, isothermal, and micro-isotropic case.

Beskok and Kamiadakis (1992) developed a spectral element methodology to 

simulate unsteady two- and three-dimensional flows in complex micro-domains. 

Simulation tests were performed for a variety o f  prototype internal and external flows 

that demonstrate the validity and flexibility o f the developed methodology in modeling 

fluid dynamics and transport in complex micro-geometries. The effort o f  slip-flow on 

skin friction reduction and associated increases in mass flow rate as well as the variation 

o f the normal stresses is investigated as a function o f the Knudsen number. Results 

demonstrate that a “stand-alone" simulation approach free of numerical artifacts can be 

employed to efficiently predict momentum and energy transport in micro-devices.

Gas flow in micro-channels is typically classified into one o f  four flow regimes: 

continuum flow, slip flow, transition flow, and free molecular flow. Chen, Lee, and 

Sheu (1998) presented a numerical study of gas flow in micro-channels in terms o f  slip 

flow. The model they proposed assumed the fluid is a continuum with a slip boundary 

condition on the channel wall. Results revealed interesting features o f micro-channel
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flows. The pressure gradient was smaller at the inlet and increased gradually toward the 

outlet. Chen et al. reasoned that as the fluid proceeds along the channel, fluid pressure 

drops due to friction against the walls. This pressure drop reduces the density but 

increases the velocity since the continuity equation has to be satisfied. Two channels 

with dimensions o f 3000fm  by 40/i/w by 1.2fxm and 7500fjm by 52.25fjm by 1.33fjm 

were used. Because o f the extraordinarily small dimensions, a large pressure gradient 

was required to drive the flow. Although the pressure gradient is large, the velocity 

remains very small in the cases studied owing to the high shear stress at the wall. 

(Nitrogen maximum velocity =1.16 m/s mass flow rate=4.60xl0'9 for a pressure ratio of 

2.701) Since the Reynolds numbers were small ( 10"3 to 10'2) for the flows simulated, 

they were safely assumed to be laminar.

Beskok and Kamiadakis (1995) presented models and a computational 

methodology for simulating gas micro-flows in the slip-flow regime for which the 

Knudsen number is less than 0.3. The formulation was based on the classical 

Maxwell/Smoluchowski boundary conditions that allow partial slip at the wall. A high- 

order slip boundary condition developed in previous work was modified so that it could 

be easily implemented to provide enhanced numerical stability. This modification also 

extends a previous formulation for incompressible flows to include compressibility 

effects primarily responsible for the nonlinear pressure distribution in micro-channel 

flow. Beskok and Kamiadakis focused on the competing effects o f compressibility and 

rarefaction in internal flows in long channels. Several simulation results were presented 

and comparisons were provided with available experimental data. A  specific set of 

benchmark experiments was proposed to systematically study compressibility,
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rarefaction, and viscous heating at the micro-scale level in order to provide validation to 

numerical models and the slip flow theory in general as well as to establish absolute 

standards in the relatively young field o f fluid mechanics.

Kavehpour, Faghri, and Asako (1997) used a two-dimensional flow and heat 

transfer model to study gas compressibility and rarefaction in micro-channels assuming 

a slip flow regime. The numerical methodology was based on the control volume finite 

difference scheme. To verify the model, the mass flow rate was compared with the 

experimental results of helium through a micro-channel. It was seen that the effect of 

rarefaction and compressibility is a function of Reynolds number. The mass flow and 

friction coefficient results were compared with the available experimental results. The 

friction coefficients and Nusselt number (for both constant wall temperature and 

constant wall heat flux) were reduced in comparison with the continuum results. Also, 

it was found that rarefaction and compressibility were related and had a pronounced 

effect on fluid flow characteristics. For higher Reynolds numbers, the effect of Mach 

number was more important than the effect o f Knudsen number, and for lower Reynolds 

numbers, the effect o f Knudsen number was dominant.

Arkilic, Breuer, and Schmidt (1994) measured helium mass flows through 

micro-channels (52.25 micro-meters wide 1.22 micro-meters deep and 7500 micro­

meters long) for inlet pressures ranging from 1.2 to 2.5 atmospheres with outlet 

pressures at atmospheric level. The effect o f the slip velocity on the mass flow 

prediction o f the Navier-Stokes equations was investigated and compared with the 

measured flow results. It was found that the no-slip solutions o f  the Navier-Stokes 

equations failed to adequately model the momentum transferred from the fluid to the
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channel walls and therefore underestimated the mass flow for given inlet and outlet 

pressures. However, by including a slip-flow boundary condition at the wall, which 

was derived from a momentum balance, one can accurately model the mass flow- 

pressure relationship. Even at atmospheric conditions the ratio o f  the mean free path to 

the characteristic dimension was found to be appreciable. This ratio, known as the 

Knudsen number, increased and the exchange o f energy and momentum between the 

systems and the environment exhibited behavior that was attributed to the discrete 

molecular composition of the environment: the gas exhibited non-continuum dynamics. 

Arkilic, Breuer, and Schmidt (1994) developed a simple model that predicted an 

increase in the mass flow (decrease in friction factor) for micro-channels. They also 

demonstrated a model that predicted an increase in the mass flow for given inlet and 

outlet pressures for micro-channel flows that was based on the no-slip solution to the 

Navier-Stokes Equations. Arkilic, Breuer, and Schmidt designed and fabricated a 

micro-machined device that allowed verification o f this model. It was shown that, for a 

large Knudsen number, flows that flow in micro-channels may not be modeled with the 

no-slip boundary condition.

Choi, Barron, and Warrington (1991) measured the friction factors, inner-wall 

surface roughness, and convective heat transfer coefficients for flow of nitrogen gas in 

micro-tubes for both the laminar and turbulent flow regimes. The experimental results 

indicated significant departures from the thermofluid correlation used for conventional­

sized tubes. In turbulent flow, the experimental results indicated that the Colburn 

analogy, jH=f/8, was not valid for micro-tubes having inside diameters less than 90 

micro-meters. The measured Nusselt numbers for convective heat transfer in micro­
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tubes in turbulent flow were as much as 7 times the values by the Colburn analogy. The 

L/D ratio for the tubes was between 640 (81-micro-meter tube) and 8100 (3-micro- 

meter tube), so the flow was fully established both hydraulically and thermally. The 

measured friction factors in laminar flow were less than those predicted from the 

macro-tube correlation, and the friction factors in the turbulent flow were also smaller 

than those predicted by conventional correlations. No roughness dependence was 

observed from the micro-tube data obtained in this study. The measured heat transfer 

coefficients in laminar flow exhibited a Reynolds number dependence in contrast to the 

conventional prediction for fully established laminar flow, in which the Nusselt number 

is constant. Neither the Colbum analogy nor the Petukhov analogy between momentum 

and energy transport was supported by the present data for micro-tubes. One suggested 

reason for this result is the suppression o f  the turbulent eddy motion in the radial 

direction (but not in the axial direction) due to the small diameter o f the channels.

Beskok and Kamiadikis (1997) studied backwards-facing step channel as 

complex prototype geometry for separated micro-flows. This test case was important in 

quantifying the behavior of rarefied flows under severe adverse pressure gradients and 

separation in the slip flow regimen (Knudsen number Kn <0.1), with the objective of 

investigating the validity o f continuum-based slip models under separation. Solutions 

o f compressible Navier-Stokes equations subject to various velocity slip and 

temperature jump boundary conditions are compared against predictions of direct 

simulation Monte Carlo (DSMC) method, employing a variable hard sphere (VHS) 

model.
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Pong, Ho, Liu, and Tai (1994) measured the pressure distribution along a 

micron-sized channel by using a surface micro-machined micro-flow system. Both 

nitrogen and helium were used as a working medium in order to examine the effects o f 

the Knudsen number. Two generations o f micro-flow systems were manufactured and 

examined. The pressure distribution was found to be a nonlinear function inside a 

micro-channel having a uniform cross-sectional area. The distribution was affected by 

the viscous dissipation. As the Knudsen number changed the nonlinear pressure 

distribution also changed, possibly a Knudsen number effect. An integrated micro- 

channel/pressure sensor system was fabricated using combined surface micro­

machining and bulk micro-machining.

Stokes (1966) considered the effects of couple stresses in fluids. Linearized 

constitutive equations were posed for force and couple stress. A series of boundary- 

value problems were solved to indicate the effects o f couple stresses as well as for 

experiments measuring the various material constants. Stokes found that a size effect 

comes in which is not present in the non-polar case (couple stresses absent). A size- 

dependent effect, not existing in the non-polar case, was predicted. The effects o f 

couple stresses were quite large for small values of the non-dimensional number a = h/l, 

where h = typical dimension o f the flow geometry, and / = the material constant 

l=(r\/li)ia. If I was a function o f the molecular dimensions o f  the liquid, then it varied 

greatly for different liquids. Stokes expected couple stresses to appear in noticeable 

magnitudes in liquids with very large molecules. He recommended experimentation on 

fluids having very different molecular sizes in order to search for the existence o f 

couple stresses experimentally.
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Pfahler (1992) experimentally measured flow resistance o f  the channels. A 

viscosity model that included wall effect to explain the data was developed but had 

limited success. Non-Newtonian fluids such as serum, plasma, washed blood cells, and 

whole blood were used. Experimental methodology was developed to examine the 

behavior of Newtonian and non-Newtonian fluids in extremely small channels.

Experiments were conducted by Peng, Peterson, and Wang (1994b) to 

investigate the flow characteristics o f  water flowing through rectangular micro-channels 

having hydraulic diameters of 0.133-0.367 mm and H/W  ratios o f  0.333-1. As the size 

of channels and/or tubes diminished to the order o f several hundred to 0.1 micro-meters, 

the fluid flow behavior in these micro-channels or tubes was strongly influenced by the 

wall effect, and deviated from the normal situation described by the Navier-Stokes 

equations. The experiments indicated several aspects significantly different from the 

flow in conventional-sized channels. First, the flow mode conversion from laminar to 

transition regime occurred at much smaller Reynolds numbers, and the transition region 

was limited in a smaller Reynolds number zone than for normal channels. Accordingly, 

the fully developed turbulent flow took place at lower Reynolds number. The 

conversion Reynolds numbers were heavily dependent on the hydraulic diameter of the 

micro-channel. Second, the friction behavior for both laminar and turbulent flow 

deviated from the classical theories. Finally, experiments and analyses indicated that 

the geometric parameters of micro-channels, especially the hydraulic diameter and H/W  

ratio, had a critical effect on liquid flow through micro-channels, and determined the 

flow friction performance.
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Harley, Huang, Bau, and Zemel (1995) presented compressible gas flow in 

channels as an experimental and theoretical investigation o f low Reynolds number and 

high subsonic Mach number. Nitrogen, helium, and argon gases were used. The 

measured friction factor was in good agreement with theoretical predictions assuming 

isothermal, locally fully developed, first-order, and slip-flow. Numerical simulations 

were performed assuming pressure to be uniform in the conduit cross-sections 

perpendicular to the direction of the flow and neglecting the transverse velocity. 

Consequently, the ‘locally fully developed’ approximation led to predictions, which are 

in reasonable agreement with the Navier-Stokes equations, and with experimental 

observations.

Stanley (1997) investigated the fluid mechanic and heat transfer characteristics 

of two-phase, two-compartment flow in rectangular micro-channels. Both single-phase 

and two-phase experiments were performed. Dimensional analysis was used to 

determine the important pressure drop and heat transfer parameters. These parameters 

were curve-fit against experimental data, using multiple linear regression techniques. 

Two flow models were considered. One was for homogenous flow, which considered 

the fluid properties to be averages, based on the quality o f the two components. The 

other was separated flow, which considered each component o f the flow separately. 

Flow experiments were conducted on an apparatus built by Stanley and Darin Bailey 

(1996). Yu, Warrington, Barron, and Ameel (1994) investigated fluid flow and heat 

transfer characteristics o f dry nitrogen gas and water in micro-tubes, with diameters of 

19,52, and 102 micro-meters, for Re ranging from 250 to over 20,000 and P r ranging 

from 0.7 to 5.0. The friction factor results confirmed the findings o f  earlier
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investigators who reported a lower value for the product, f* R e , for laminar flow in 

micro-tubes than for larger tubes (e.g., 53 instead o f 64). In the turbulent regime, the 

heat transfer was enhanced, and the Nusselt number was considerably higher than 

would be predicted for larger tubes. A theoretical scaling analysis indicated that 

turbulent momentum and energy transport in the radial direction was significant in the 

near wall zone in a micro-tube. By considering the turbulent eddy interacting with the 

walls as a frequent event, an analogy was developed that could account for the lower 

friction factors and increased heat transfer in the turbulent flow regime for micro-tubes. 

However, these research efforts did not adequately explain the heat and momentum 

transfer processes in micro-tubes or micro-channels in terms o f the governing 

parameters. There appeared to be a lack o f systematic research on this subject. 

Measurements o f the flow rate and inlet pressure were sufficient to determine the 

friction factor both for compressible (nitrogen gas) and incompressible (water) flow. 

From the previous scaling analysis, it was reasoned qualitatively that the friction factor 

should be lower in micro-tubes than in larger tubes. In the laminar zone, flow friction 

was lower than that predicted by the Navier-Stokes equations, but the relation between/  

and Re remains linear both in compressible and incompressible flow. In the turbulent 

flow regime, flow friction was also found to be reduced compared with large tubes. In 

the turbulent regime, heat transfer was enhanced, and the Nusselt number was much 

higher than that predicated by conventional relations for a large tube.

The experimental measurements by Peng, Peterson, and Wang (1994a) indicated 

that the upper bound o f the laminar heat transfer regime occurred at a Reynolds number 

o f 200-700, and fully turbulent convective heat transfer was reached at Reynolds
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numbers o f 400-1500. The transition Reynolds number diminished with a reduction of 

the micro-channel dimensions, and the transition range was observed to become smaller 

in magnitude. The geometric parameters were found to be important variables that 

could significantly affect the flow characteristics and heat transfer. Practical 

applications involving the thermal control o f high-density electronics, bioengineering 

devices, and mini heat exchangers have all used micro-structures capable of unusually 

high levels of heat removal. New empirical correlations for the predictions o f heat 

transfer were suggested based on this additional experimental data. The experiments 

demonstrated that the laminar convective heat transfer had maximum value when the 

aspect ratio H/W  was approximately equal to 0.75. Decreasing the hydraulic diameter 

caused the turbulent heat transfer transition to diminish to nearly zero as the aspect ratio 

approached unity.

A micro-flow sensor for fluids, which operates over the Sfdm/min to 500 fum/min 

range, allowing the detection of minute volumes, down to nanoliter resolution was 

reported by Gass, Van der Schoot, and De Rooij (1993). To meet the ever-increasing 

demand in high-precision flow control, Gass proposed a new approach based on drag 

force measurement that will allow easy integration with other micro-fluid elements such 

as silicon micro-fabricated pumps. The flow sensor was also presented, explaining the 

operating principle, the manufacturing process and the experimental result obtained.

When a soluble substance is introduced into a fluid flowing slowly through a 

small, bore tube it spreads out under the combined action o f molecular diffusion and the 

variation o f velocity over the cross-section. Taylor (1953) showed analytically that the 

distribution of concentration produced in this way is centered at a point, which moves
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with the mean speed o f flow and is symmetrical about it in spite of the asymmetry of 

the flow. The dispersion along the tube was governed by a coefficient o f diffusivity, 

calculated from the observed distributions o f concentration. Since the analysis related 

the longitudinal diffusivity to the coefficient of molecular diffusion, observations of 

concentration along a tube provided a new method for measuring diffusion coefficients. 

The coefficient obtained was found, with potassium permanganate, to agree with that 

measured in other ways. The results were believed to be useful to physiologists who 

may wish to know how a soluble salt is dispersed in blood streams.

Aris (1955) presented a new basis for Taylor’s analysis, which removed the 

restrictions of solute in terms of its moments in the direction o f flow. Aris showed that 

the rate of growth of the variance was proportional to the sum o f the molecular 

diffusion coefficient, D, and the Taylor diffusion coefficient ka2U2/D, where U  is the 

mean velocity and a is the dimension characteristic of the cross-section o f the tube. An 

expression for k  was given in the most general case, and it was shown that the 

distribution of the solute is normal.

Bhattacharya and Gupta (1984) presented a new derivation of Taylor’s theory of 

solute transport in a straight capillary. The results involved Brownian motion and the 

integral of an ergodic Markov process that was asymptotically a Brownian motion.
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CHAPTER 3 

MODEL

3.1. Introduction

Typically, a flow is considered to be in one o f  four regimes according to its 

Knudsen number. Different authors defined these regimes using slightly different 

Knudsen number ranges. For gas flow, Beskok & Kamiadakis (1992) proposed the 

following classification:

Kn < 0.001 Continuum Flow

0.001 <Kn  <0.1 Slip Flow

0 .1 < /fn < 1 0  Transition Flow

Kn > 10 Free Molecular Flow

We follow this classification as have other researchers (Bailey et al., 1995; Kavehpour 

et al., 1997; Chen et al., 1998).

In most applications o f fluid mechanics, the physical dimensions of the bodies 

about which a flow may be taking place are very large compared to the size o f the 

molecules themselves and to the distance between molecular interactions. In such a 

case, the density and other fluid properties will vary smoothly from one point to another. 

The term continuum describes this idea, and such fluids are considered continuous in 

this sense (Sabersky, 1999).

Slip flow and transition flows are additional classifications for rarefied gas,

27
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which cannot be considered an absolutely continuous medium nor a free-molecule flow 

in the Knudsen number range between 10'3 and 10 (Beskok, Kamiadakis, and Trimmer, 

1996). At normal pressures, a gas may be considered a continuum, but when the 

pressure is sufficiently low, the average distance between molecules may become large 

compared to the size of an object over which the flow takes place. Such a tenuous, or 

rarefied, gas is still a fluid, but it does not fulfill the requirements o f  a continuum fluid 

(Sabersky, 1999).

For continuum flow, the Navier-Stokes equations govern the flow. In the slip- 

flow regime, deviations from the state of continuum are relatively small, and the flow is 

?tJll governed by the Navier-Stokes equations. The rarefaction effect of the flow is 

modeled through the partial slip at the wall using Maxwell’s velocity slip and von 

Smoluchowski’s temperature jump boundary condition. The validity o f this kind o f 

model was assessed by various authors (Beskok, 1996; Chen et al., 1998). For flows in 

the high transition or free molecular regimes, the Navier-Stokes equations break down 

and have to be substituted either by the Boltzmann equation, which is valid at the 

microscopic level, by continuum approximations (Liu, 1999), or by stochastic models.

The aspect ratio, defined as channel length to channel height or width, o f  a 

micro-channel often is large. If  we neglect flow change in the direction o f width, usually 

achieved when the aspect ratio is greater than 7, then the flow can be reasonably 

assumed to be two-dimensional in the streamwise direction. It can be shown that for 

flows with a large aspect ratio, the three-dimensional flow rate is calculated by 

£?3d = QzoO - h 2 / wz), where h and w are channel height and width, respectively (Chen 

etal., 1998) .
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3.2. Equations and Boundary Conditions

In the classic work of Taylor (1953) continued by Aris (1956), it was 

shown that when a solute in low concentration is injected into a liquid flowing through 

an infinite straight capillary o f uniform cross-section with a steady convective velocity, 

the concentration along the capillary (averaged over the cross-section) is asymptotically 

Gaussian. Let the .r-axis be taken to be a line inside the capillary parallel to its length 

and thus the direction o f flow; the cross-section E  is the (y, z)-plane bounded by a 

smooth curve i". Let C(x,t) denote the solute concentration at the point x=(x, y, z) at 

time t. Taylor's starting equation is

^  = z> ̂ odt
r d 2C d2C 8 ZC^  -1 1--------- - U j { y , z ) ^ ~  for .r e /?' x E°, t > 0 (3.1)

oxdx2 dy2 3z

= 0 for .r e /? ' x f , t > 0 .  (3.2)
dv

Here (i) Do is the Einstein molecular diffusion coefficient, (ii) (U(f(y,z),0,0) is the 

velocity field of the liquid, Uo being the maximum velocity in the direction o f flow at 

the center o f the channel, (iii) d /ov  denotes differentiation along the outward normal to 

the capillary boundary. E° is the interior o f the cross-section E. The case explicitly 

dealt with by Taylor (1953) was that of a circular cross-section £  = { r + z’ < < r },

where the velocity at a distance r = ^ y 1 + z 2 from the centerline o f the channel is

U ,f( y ,z )  = Uc
r -> ■> >

i - ^
v a ~ J

(3.3)

This equation is modified for an assumed velocity field o f 

(Uof(y,z),bi(y,z),b2(y,z)), where bi and are continuously differentiable functions on
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the cross-section E. Do is replaced by <p, the diffusivity or dispersion coefficient o f 

water. The modified Taylor equation expressed in terms of particle motion instead o f 

concentration gives rise to the Fokker-Planck or Kolmogorov forward equation:

BP
Bt

'  8 2P d 2P d 2P
= <P

I u  r  ( j  r  i ,  \  u r
T  + "T T  + ~ Po/iy* z )~Z----

dP d(Jb{P) B(b2P)
Bx~ By' dz' dx By Bz

for .r e  /?’ x E°, t > 0 (3.4)

and

BP
<p P(b • v) = 0 for .? e  /?' x T , t > 0.

dv
(3-5)

where P=P(x,y.z;t) is the transition probability density that a particle starting at the point

xo, yo. zo at time to is in position x, y, z  at time t. <p d2P d2p  d2P N
   "I 7" H 7"dx' By' dz'

represents the

diffusion part o f the equation, {uQf( y ,  z )—  -  represents the convection
dx By Bx

part o f the equation, and b ■ v = bxvx + b2v2 is the velocity at the boundary in the 

direction o f the unit normal (Bhattacharya and Majumdar, 1980, eq. [4.21]).

For the rectangular channel the linearized Navier-Stokes equation is modified to:

/(>',-) =
f

i - A
a ' j

2  ̂
1 - ^ ra'

(3.6)

The drift or convective part o f  the equation resulting from this modification is

6> =Pv
f  2 \

1 - A
V J

(3.7)

1 - - (3-8)
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Mv = Mr and indicate the velocities in the y and z directions respectively. fJ-y and

f i : are one or two orders of magnitude smaller than Mo -

The modeled channel has geometric dimensions x = 10 mm and y = z = 0.1mm. 

The initial conditions for x=0 are

P (x ,y ,z ,tQ) = y (3.9)

where V = ArAy(/iy — l)Az(«z - 1); ny and nz represent the number o f grid points in the y  

and z  directions. The boundary conditions for the x  direction are

when.r = 0 (entrance) when.v =10mm (exit)

( p - P - H o J P  = 0ox
P = 0

The boundary conditions for the y and z directions are symmetrical.

The boundary conditions for the y direction are

when v = -0.05mm when y  = 0.05mm

(p —  P + Pbx -  0
3y

cp —  P - P b t = 0
dy

The boundary conditions for the z direction are 

when z = -0.05mm when z = 0.05mm

-<p— P+Pb, =0 
dz

<p - P - P b , = 0  
dz
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CHAPTER 4 

NUMERICAL METHOD

4.1. Introduction

As stated in chapter 3, the modified Fokker-Planck or Kolmogorov forward 

equation in 3-D is

dP d~P d-P  d - P \  , ,  xdP 5{bxP ) d(b,P)

for .r e  R l x E°, t > 0, where .t = (.r,y ,z;t)  (4.1)

and

d P
<p P(b • v) = 0 for x  e  R 1 x T , t > 0. (4.2)

dv

Equation (4.1) was discretized using the Central Difference and Backward Difference 

methods described by Strickwerda (1989). The Jacobi method was used to solve the 

equation.

4.2. Discretization

Using the Central Difference and Backward Difference methods Equation (4.1) 

becomes:

32
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dp p ;:x- p ; k
dt
1
2 V

At
p»*i  i  p«+i , p"

i-*-l jk  ijk T  r i - \ j k

\
Ax'

+ - „
P" — 2Pn + P"* i+l jk  ijk ^  * i - I  jk

1+  - „
f  o'**! j n + 1  , D rt+ l  ^n f l + i   prt+l ,  p n

tj+\k i;k ^  r i j- \k

V
(  n n -r\

Ay
+  - „

*/J+l , Drt + l NP n+*   *} pn+i i p n
r tjk+1 * r tJk ijk—I

~ P jjk

Az'
pn+1 _ pn+\ 
r i)k * i - l  jk

1+ 1<p

Ax* )
f  p n

r ij* lk -2P& , p n
+  r i j - \ k

\ Ay2

( P"* i/k+l — 2 P ,"k
, p "  >^ r „ k - \

Az*

A c

h Pn*1 —h Pn*[  ̂
Ay Az

(4.3)

where P"jk = P(iAc,jAy,kAz;nAt) = P (x ,y ,z ,t);  Ax. Ay, and Az are the grid sizes in the 

.r, y, and z directions. Here / = 1, 2, .... nx; j  = /, 2, ...ny; k = I, 2, ...nz.

4.3. Treatment of Boundary Conditions

The discretized boundary conditions for the x direction are:

Entrance: when x  = 0 (i =0), the first-order discretized boundary condition is

9
P — P* I jk  * 0 jk

Ax P o fo jk ^ O jk  ~  0 (4.4)

Exit: when x  = 10mm ( i — nx)

n̂x)k ~ 0 (4.5)

We consider the center line in the x-direction of the channel to have (x,0,0) coordinates. 

As such y  — — a + j *  Ay and z = -a  + k  * Az . Here, nyAy = nzAz = 2a = 0.1 mm.

Hence, the discretized boundary conditions for the y direction are 

when y  = -a (j = 0)
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Ay

at j  = a, b/(0)=0 and = />u 

when y  — a Q — ny)

<PP„yk -<PP,ny-Xk

P,o*b, = 0 (4.6)

Ay

at j  = ny, b,(ny)=0 and Pmyk = Pmv_lt

The discretized boundary conditions for the z direction are 

when z = -a (k = 0)

= 0  <4 -7>

ffj,,
+ n o \ .  = °  <4 -8>Az

at k = 0, b2(0)=0 and PijQ = Pjn 

when z = a (k = nz)

VPijn; - <P_P-j«L± _ p  h  = 0  (49)

Az

at A: = nz, b,(nz)=0 and Pijnz =
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CHAPTER 5 

THREE-DIMENSIONAL MICRO-CHANNEL FLOW

5.1. Description o f Simulation

To illustrate the use o f the present methods, we apply them to a developing flow 

in a three-dimensional micro-channel, as shown in Figure 5.1.

Figure 5.1 Physical domain for micro-channel flow

The channel length was considered to be 100 times its height and width with a 

length of 10mm in the x direction and 0.1 mm in both the y and z directions. In the x 

direction 1001 grid points were used. In the y and z directions 11 grid points were used. 

The grid size for the x, y  and z directions, Ax, Ay, and Az respectively, was 0.01.

The diffusivity coefficient of water, <p, was set at 0.125 based on velocity 

measurements o f flow in a bubble column (Nassar, Schmidt, and Luebbert, 1992). 

When 0 was held constant at 0.125 the coefficient o f variation for each velocity was less 

than or equal to 5% (see Table 5.1).

35
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Table 5.1 Calculations for the coefi
<t)=cf/2 a2 a CV
0.125 0.25 0.5 10 0.0500
0.125 0.25 0.5 50 0.0100
0.125 0.25 0.5 100 0.0050
0.125 0.25 0.5 200 0.0025
0.125 0.25 0.5 500 0.0010

icientofvariation, CV

The velocity, Uo, in the x direction at the middle o f the channel was given values 

on the interval (0,bound] where bound is the length o f the channel in the x direction. 

The velocities for the y  and z directions, fjLy and were multiples of po. Since the 

velocities in the y  and z  direction are usually much smaller than the velocity in the x 

direction, /J.y and ^  were set equal to 0.001 *fUo.

The value o f a in Equation (2.6), represents ha lf the length in the y and z 

directions given that the channel is symmetrical in the y and z direction. The value of At 

was 0.001. Calculations were performed for various lengths o f  time t to model the flow 

based on the average time o f passage for a particle to exit the channel (see Table 5.2). A 

tolerance level o f 10'2 was used.

Numerical computations were performed for the stochastic model using the SGI 

0rigin2000 parallel computer with 16 CPU at the Louisiana Tech University Center for 

Numerical Simulation and Modeling. C++ and Fortran were used in programming and 

Excel in data post-processing. A grid of 1001x11x11 nodes was used for all 

computations (Ax=0.01, Ay=0.01, Az=0.01, nx=1000, ny=10, nz=10). The time step 

was At=0.001.
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Table 5.2 Times t, used in the numerical simulation based on twice the average time, t , 
till exit.

Iength=1 Omm time in seconds for each 10th of 21

c•ii gth/velocity
Velocity
(mm/s)

t
(*)

21 
(*>

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10

10 1.00 2.00 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000
50 0.20 0.40 0.040 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.360 0.400
100 0.10 0.20 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200
200 0.05 0.10 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100
500 0.02 0.04 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040

time steps for dt=0.001 for each 10th of 2/
10 1.00 2.00 200 400 600 800 1000 1200 1400 1600 1800 2000
50 0.20 0.40 40 80 120 160 200 240 280 320 360 400
100 0.10 0.20 20 40 60 80 100 120 140 160 180 200
200 0.05 0.10 10 20 30 40 50 60 70 80 90 100
500 0.02 0.04 4 8 12 16 20 24 28 32 36 40

5.2. Simulation Results and Discussion of the Stochastic Model

d

Table 5.3 presents the probability integral \ p ( x  ;t)dx for the distance x  traveled
-oo

in the 1-D case at time t (Cox and Miller, 1965, p221, Eq[71]) for different particle 

velocities, p. An IMSL integration routine was used to integrate P(x;t). As seen in 

Table 5.3, the total probability is equal to or less than one. The probability sum can be 

less than one because the distribution is truncated at the exit "d" as a result o f the 

boundary condition P (d;t)=0.

Figures 5.2 shows the probability distribution for a homogenous diffusion 

process with t=l, one absorbing barrier at d=10mm, and velocity fx=2,4,6,8, and 10. It 

can be seen in the figure that the variance er/ is constant, but as expected, the 

distribution shifts with an increase in the mean, fu. Figure 5.3 shows the probability
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d

Table 5.3 Probability integral J P(x;t)dx  o f  the one-dimensional time homogeneous
—<a

diffusion process, P(x;t), with a  =0.5 and an absorbing barrier at d=10mm.
d

\p {x ,t)dx
-<3C

t(sec) u=2 u=4 u=6 u=8 u=10
0.25 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1 .OOE+OO
0.50 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
0.75 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
1.00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
1.25 1.00E+00 1.00E+00 1.00E+00 4.89E-01 3.42E-06
1.50 1.00E+00 1.00E+00 9.45E-01 4.92E-04 1.28E-16
1.75 1.00E+00 1.00E+00 2.15E-01 6.10E-10 3.05E-30
2.00 1.00E+00 9.97E-01 2.10E-03 8.24E-18 6.95E-46

distribution for a homogeneous diffusion process with t between 0.25 and 2.0, p=4, and 

one absorbing barrier at d=10mm. As indicated in the figure, variance err increases 

with time as expected. As predicted by Taylor (1953) and Aris (1956) the distance 

traveled seems to be Gaussian for low p when the barrier is not reached. As expected, 

the probability density varies with the velocity, p. For p = /0 , the density is not normal, 

but is truncated at the absorbing barrier (or exit to the channel) where P(x;t)=0.

The distance p  each particle traveled from the center of the channel entrance,

(0,0,0), was calculated using the distance formula p = -Jx 2 + y 2 + z2 . Considering the 

three dimensional nature o f the channel, there are many possible non-unique p values. 

The values of P(x,y,z;t) for equal p  values were summed to calculate the probability a 

particle would travel a particular p  regardless of the direction o f this distance. Figures 

5.4 - 5.8 show the probability distributions o f p for different times, /. Because o f the 

boundary condition at the exit, it is important to note that these distributions may not
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add to one as was shown for the 1-D case. The numerical solution is known to be 

stable, but due to numerical errors, it is possible that for a given At, Ax, Ay, and Az the 

sum of probabilities could exceed one. In such a situation, one needs to modify At, Ax, 

Ay, and Az in order to obtain more accurate results. It is seen from these figures that 

according to expectation, the distribution shifts towards larger p values with an increase 

in time, t. As for the 1-D analytical solution (Figure 5.3), for a small p  value o f 4 the 

distribution appears to be symmetric. For larger velocities, the distributions are skewed 

to the right and the variance of a distribution increases with an increase in velocity, p/ 

(see Figure 5.8). Distributions are truncated at the absorbing boundary (or exit to the 

channel) where P (x,y,z;t)—0.

The probability distributions of time until first passage from entry to a cross- 

section x are presented in Figures 5.9-5.18. It is seen, as expected, that the time to first 

passage increases as x  increases. Also for a given x, the time to first passage decreases 

with an increase in the velocity p.

Figures 5.19-5.37 present probability distributions of the (y, z) positions of a 

particle within a given cross-section x  for different velocities and times, t. It is seen 

from these figures, that the distributions are symmetric due to the symmetry in 

parameters and boundary conditions at the wall. However, due to the imposition of 

boundary conditions, the distributions are not bivariate normals as would be the case in 

a boundary-free situation.

For most of these figures the leading edge (or farthest x  cross-section reached by 

the particles for a given time) was selected except in the case where a slight amount of 

probability was present in that cross-section.
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The .t cross-section graphs are typically rounded except for the \x=l0 case, 

Figures 5.19-5.22, where the velocity is at its lowest. This outcome would indicate that 

the probability distribution moves faster at the center o f the channel for larger velocities 

than smaller velocities, which would be expected.

In general the probability distributions o f  the (y, z) positions o f a particle within 

a given jc cross-section appear higher in the middle of the cross-section. This 

characteristic is not the case in Figure 5.34. Here the cross-section is the very last 

possible cross-section, x=9.99, and time corresponds to twice the average time for exit. 

In this figure most o f  the probability distribution has exited the channel. The concave 

nature of the graph indicates that the probability distribution is higher in the comers and 

at the walls o f the channel, due to the reflective boundaries at the walls. The difference 

has been exaggerated for graphing purposes but is not very dramatic in reality.

For comparison purposes, the code was modified for the 2-dimensional case for 

<p= 0.125. Figures 5.38-40 show plots of the distribution o f the distance p traveled at 

different times, t, for n=50, 100, and 500, respectively. These plots give results similar 

to the 3-D cases shown in Figures 5.5, 5.6, and 5.8, respectively.
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CHAPTER 6 

CONCLUSION AND FUTURE WORK

Micro-channel flows have been modeled stochastically to investigate the 

characteristics o f  free molecular flow.

Results o f the model by Taylor (1953) showed that when a solute in low 

concentration is injected into a liquid flowing through an infinite straight circular tube 

of uniform cross-section with a steady convective velocity, the concentration along the 

capillary (averaged over the cross-section) was asymptotically Gaussian.

The present work utilizes a stochastic approach based on particle motion to 

model flow in a micro-channel with finite boundaries. The parameters p>, and in 

our model represent the velocities o f the flow in the x, y, and z directions. These 

parameters can be measured in future micro-flow experiments at the Louisiana Tech 

University Institute for Micro-manufacturing (IFM). In this study, hypothetical values 

for the velocities were made to investigate the various characteristics o f the micro-flow. 

It is hoped this research can accurately predict the distribution of distance traveled by a 

particle in a three-dimensional channel. The experiments being performed at the IFM 

have been designed so that particles are tracked through the channel. Images of the 

particles are photographed at t=t0, t=t0+At, t=t0+2At, etc. From these images one may 

calculate px, p- and <j>. This information can then be applied to the model to predict 

the distribution o f  distance traveled by the particle and to determine the adequacy of the

80
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model by comparing predicted and observed results. The model also predicts the 

residence time distribution in a flow channel or reactor. Knowledge o f the Residence 

Time Distribution, or the distribution of the time a particle stays in a reactor, will be 

useful information in studies involving chemical reactions. Residence time determines 

the reaction yield o f the product. From the transition probability density obtained in our 

model and the initial particle density (or number concentration), one can calculate also 

the distribution o f particle or solute concentration in the micro-channel.

In terms o f future work, it would be of interest to run computations for complex 

geometric configurations, and for straight channels with an orifice. Experimental work 

is also strongly suggested to verify the current model and improve model parameters. In 

fact Dr. Hegab (personal communication) has been performing some related flow 

measurements which will help to achieve this goal. Another interesting branch from 

this work is the extension to circular micro-channels. Circular micro-channels are 

comparable to numerous biological systems. Experimentation and modeling in this area 

using stochastic processes could be quite beneficial. For example, knowledge of the 

probability distribution of the distance drugs travel in the blood stream as a function o f 

time could effect the quality o f  drug therapy and dosing systems.
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APPENDIX A

FORTRAN CODE FOR THE STOCHASTIC MODEL

c Hilda Black August 2000
c
c the purpose of the code is to numerically solve 
c a partial differential equation related to fluid flow
c using the central and backward (i and i-1) difference methods,
c
c Parameters based on the physical parameters of Dr. Hegab's 
c experiments at the Louisiana Tech Institute for Micromanufactoring 
c
c prints Final Iteration only 
c
c make sure nx*hx=10, ny*hy=.l, nz*hz=.l 
c unit of measure is mm. 
c the x length is approximately 10 mm.
c the y and z lengths are approximately 10 0 micrometer or 0.1 mm
c *****************************************************************

dimension u k (0:5001,0:11, 0:11),
* Ukpl(0:5001,0:11,0:11),
* Ukp2 (0:5001,0:11, 0 : 11) ,
* f (0:11,0:11) , b l (0:11) , b2(0:ll),
* al (0:5001,0:11, 0:11) ,dd(0:5001,0:11,0:11) 
double precision uk,ukpl,ukp2,f,bl,b2,al,dd,

* hx, hy, hz, dt, dtxx, dtyy, dtzz, dtx, dty, dtz,
* a,aa,v,y,z,x,y,z,un,rho3D,rho2D,prob 

c number of grid points
c from 0 to nx, 0 to ny, 0 to nz 

nx=1000 
ny=10 
nz = 10 

c grid size
hx=0.01 
hy=0.01 
hz=0.01

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c parameters see page 3 of proposal 
c diffusivity coefficient of water, should = 1/re.

phi = 0.125 
c velocity

uo = 500.0 
c half of the length of y and/or z 

a = (ny*hy)/2.0 
aa=a*a

c  * ■ * * * * * * * * * * * * * * * * * . ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dt=0.001

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

dtxx=dt*phi/(2.0*hx*hx) 
dtyy=dt*phi/(2.0*hy*hy) 
dtzz=dt*phi/(2.0*hz*hz) 
dtx=dt*uo/(hx) 
dty=dt/(hy) 
dtz=dt/(hz)

c *****************************************************************
c used to check convergence 

tol = 0.001 
maxsteps = 40

c *****************************************************************
c initial conditions
c this group sets inner values to 1/v when i=0 so that only the first 
c cross section has 1/v for the inner values. 1/v is the point volume 

do i=0,nx
do j=0,ny 
do k=0,nz 
uk(i,j,k)=0 

enddo 
enddo 

enddo
c Original initial conditions 

do j=l,ny-l 
do k=l,nz-l 
v=hx*(ny-1)*hy*(nz-1)*hz 
uk(0,j,k)—1/v 

enddo 
enddo

c
1 format(lx,14,lx,12,lx,12)

Write(*,2)
2 format(lx, 'NX',lx, 'NY',lx, 'NZ')

Write(*,1) nx,ny,nz 
Write(*,3)

3 format(lx,'HX',lx,'HY',lx,'HZ')
Write (*, 9) hx,hy,hz 
Write(*,4)

4 format(lx,'V',lx,'1/V',lx,'PHI')
Write(*,9) v,1/v,phi 
Write(*,5)

5 format(lx,'U0',lx,'a',lx,'tol')
Write(*, 9) uo,a,tol 
Write(*,6)

6 format(lx,'NX*HX',lx,'NY*HY',lx,'NZ*HZ')
Write(*,9) nx*hx,ny*hy,nz*hz 
Write(*,7)

7 format(lx,'DT',lx,'MAXSTEPS')
Write(*,8) dt,maxsteps

8 format(lx,f12.6, lx, 13)
9 format(lx,f12.6,lx,f12.6,lx,f12.6)

print *, ************************************************
c *********************************************** 
c function for f see page 3 of proposal 

do j=0,ny 
do k=0,nz 
y=-a+j *hy 
z=-a+k*hz
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yy=y*yzz=z*z
f (j , k) = (1.O-yy/aa)* (1.0-zz/aa) 

enddo 
enddo

c
do j=0,ny 

y=-a+j *hy
yy=y*ybl (j)=0.001*uo*(1.0-yy/aa) 

enddo
c

do k=0,nz 
z=-a+k*hz 
zz=z*z
b2(k)=0. 001*uo*(1.0-zz/aa) 

enddo 
c iteration

12 do i=0,nx
do j=0,ny 
do k=0,nz 
ukpl(i,j , k)=uk(i,j,k) 

enddo 
enddo 

enddo
do i=l,nx-1 

do j=l,ny-l 
do k=l,nz-l 
dd(i,j,k)=uk(i, j,k)

* +dtxx*(uk(i+1,j , k) -2.0*uk(i,j,k)+uk(i-1,j,k))
* +dtyy*(uk(i,j +1,k)-2.0*uk(i,j,k)+uk(i,j-1,k))
* +dtzz*(uk(i,j,k+1)-2.0*uk(i,j,k)+uk(i,j,k-1)) 

enddo
enddo

enddo
do i=l,nx-1 

do j=l,ny-l 
do k=l,nz-l
al (i,j,k)=1.0 + 2.0*dtxx + 2.0*dtyy + 2.0*dtzz

* + dtx*f(j,k)
* + dty*bl(j)
* + dtz*b2(k)

enddo
enddo

enddo
count=0 

new calculation method 
15 count =count+l 

do i=l,nx-1 
do j=l,ny-l 
do k=l,nz-l
if ( (j.le.((ny-1)/2)).and. (k.le.((nz-1)/2))) then 
un=dtxx*(ukpl(i+1,j,k)+ukpl(i-1,j,k))

* +dtyy*(ukpl(i,j+1,k)+ukpl (i,j-1,k))
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+dtzz*(ukpl(i,j,k+1)+ukpl(i,j , 
+dtx*f(j,k)*ukpl(i-1,j,k)
+bl(j +1)*ukpl(i,j +1,k)*dty 
+b2 (k+1) *ukpl (i, j , k+1) *dtz 
+dd(i,j,k) 

else if (j .le.((ny-1)/2)) then 
un=dtxx* (ukpl(i + 1,j ,k)+ukpl(i-1 
+dtyy*(ukpl(i,j +1,k)+ukpl(i, j - 
+dtzz*(ukpl(i,j,k+1)+ukpl(i, j , 
+dtx*f(j,k)*ukpl (i-1,j,k)
+bl(j +1)*ukpl(i,j +1,k)*dty 
+b2(k-1)*ukpl(i,j ,k-1)*dtz 
+dd(i,j,k) 

else if (k.le.((ny-1)/2)) then 
un=dtxx*(ukpl(i+1,j,k)+ukpl(i-1 
+dtyy*(ukpl(i,j +1,k)+ukpl(i, j - 
+dtzz*(ukpl(i,j,k+1)+ukpl(i, j , 
+dtx*f(j,k)*ukpl(i-1,j,k)
+bl(j-1)*ukpl(i,j-1,k)*dty 
+b2 (k+1) *ukpl (i , j , k+1) *dtz 
+dd(i,j , k) 

else
un=dtxx* (ukpl (i + 1, j , k) +ukpl (i-1 
+dtyy*(ukpl(i,j +1,k)+ukpl(i, j - 
+dtzz*(ukpl(i,j,k+1)+ukpl(i, j , ] 
+dtx*f(j,k)*ukpl(i-1,j,k)
+bl(j-1)*ukpl(i,j-1,k)*dty 
+b2 (k-1) *ukpl (i, j , k-1) *dtz 
+dd(i,j , k) 

end if
ukp2(i,j ,k)=un/al(i,j,k) 

enddo 
enddo 

enddo
c boundary conditions 
c boundary points walls 

do i=l,nx-1 
c y direction

do k=l,nz-l
c y= -a

j=0
ukp2(i,j,k) = ukp2 (i, j+1, k)

c y=a
j=ny
ukp2(i,j ,k) = ukp2(i,j-1,k) 

enddo 
c z direction

do j=0,ny
c z= - a

k=0
ukp2(i,j, k) = ukp2(i,j,k+1)

c z=a
k=nz
ukp2(i,j ,k) = ukp2(i,j,k-1) 

enddo 
enddo

k-1) )

, j , k) ) 
1, k) ) 
k-1) )

, j , k) ) 
1, k) ) 
k-1) )

, j , k) ) 
1, k) ) 
k - l )  )
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c boundary points - enter - exit c check these 
do j=0,ny 

do k=0<nz
c x=0

i=0
ukp2(i,j,k) = (phi*ukp2(i + 1, j ,k))/(phi+hx*uo*f(j,k))

c x=nx
i=nx
ukp2(i,j , k) = 0 

enddo 
enddo

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c convergence test (global max) 
diffmax = 0.0 
do i=0,nx

do j=0,ny 
do k=0,nz 
diff=abs(ukpl(i,j,k)-ukp2(i,j , k) ) 
if (diff.gt.diffmax) then 
diffmax=diff 

end if 
enddo 

enddo 
enddo

if (diffmax.le.tol) goto 20 
c grid computation(copy new values to old values) 

do i=0,nx
do j=0,ny 
do k=0,nz 
ukpl(i,j,k)=ukp2(i,j,k) 

enddo 
enddo 

enddo 
goto 15

20 nt=nt+l 
do i=0,nx

do j=0,ny 
do k=0,nz 
uk(i,j,k)=ukp2(i,j,k) 

enddo 
enddo 

enddo
c

if (nt.eq.maxsteps) goto 3 0 
goto 12 

c printing 
3 0 sum=0.0

print *, 'final iteration after', nt, 1 steps:'
ProbCount=0 

Write(*,110)
110 format(lx, 'X ',lx, 'Y ',lx, 'Z ',2x, 'rho2D',2x, 'rho3D',2x, 'PROB')
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111 format (lx, f 12 .3 , lx, f 12 . 3 , lx, f 12 .3, lx, f 14 .2 , lx, f 14 .2, lx, f 14 .7) 
114 format(Ilf14.6) 

c inner summation
do i=l,nx-1 
do j=l,ny-l 
do k=l,nz-l 

x=i*hx 
y=-a+j *hy 
z=-a+k*hz

rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z) 
prob=uk(i,j,k)*hx*hy*hz 
if(prob.gt. 0 .000001) then 
sum=sum+prob

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount = ProbCount +1 

end if 
enddo 

enddo 
enddo 

c wall summation
do j=l,ny-l 
do k=l,nz-l 
i=0 

x=i*hx 
y=-a+j *hy 
z=-a+k*hz

rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z) 
prob=uk(i,j,k)*hx*hy*hz/2.0 

if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i=nx 
x=i*hx
rho2D=sqrt(x*x+y*y) 

rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/2.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
enddo 

enddo 
do i=l,nx-1 

do k=l,nz-l 
x=i*hx 
j=0
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y=-a+j *hy 
z=-a+k*hz

rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/2.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+1 

end if 
j =ny

y=-a+j *hy
rho2D=sqrt(x*x+y*y) 

rho3D=sqrt(x*x+y*y+z*z) 
prob=uk(i,j,k)*hx*hy*hz/2.0 

if(prob.gt. 0.000001) then 
s um= s um+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
enddo 

enddo 
do i=l,nx-1

do j=l,ny-l 
x=i*hx 
k=0 

y=-a+j *hy 
z=-a+k*hz

rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/2.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount = ProbCount+1 

end if 
k=nz
y=-a+j *hy 
z=-a+k*hz

rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/2.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+1 

end if 
enddo 
enddo
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c edge summation
do i=l,nx-1 
j=0 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 

rho3D=sqrt(x*x+y*y+z*z) 
prob=uk(i,j,k)*hx*hy*hz/4.0 

if(prob.gt. 0.000001) then 
s um=sum+p rob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j ,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
j=0 
k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 

rho3D=sqrt(x*x+y*y+z*z) 
prob=uk(i,j,k)*hx*hy*hz/4.0 

if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if (uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount = ProbCount+1 

end if 
j=ny 

k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if (uk(i,j ,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
j =ny 
k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j ,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob
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write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
enddo 

do j=l,ny-l 
i=0 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.00 00 01) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount +1 

end if 
i=nx 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i = 0 

k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z ,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+1 

end if 
i=nx 

k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
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rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j , k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt. 1) then 
ProbCount=ProbCount+l 

end if 
enddo 

do k=l,nz-l 
i=0 
j=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i, j , k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
s um= s um+p rob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i=nx 

j=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+1 

end if 
i = 0 

j =ny 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x, y, z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if
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i=nx 
j=ny 
x=i*hx 
y=-a+j *hy 

z=-a+k»hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/4.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt. 1) then 
ProbCount = P robCount +1 

end if 
enddo 

c corner summation 
i = 0 
j=0 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z»z)

prob=uk(i,j,k)*hx*hy*hz/8.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i = 0 

j=0 
k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt (x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i, j ,k)*hx*hy*hz/8 . 0 
if (prob.gt. 0.0 00001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j , k) *hx*hy*hz.gt.1) then 
ProbCount=P robCount +1 

end if 
i = 0 

j =ny 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)
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prob=uk(i, j , k) *hx*hy*hz/8.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+1 

end if 
i=0 
j=ny 

k=nz
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt (x*x+y*y) 
rho3D=sqrt (x*x+y*y+z*z)

prob=uk(i, j , k) *hx*hy*hz/8.0 
if(prob.gt. 0.000001) then 
s um= s um+p rob 

write(*,111) x, y,z,rho2D,rho3D,prob 
end if

if (uk (i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i=nx 
j=0 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i, j , k) *hx*hy*hz/8.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=P robCount+1 

end if 
i=nx 
j=0 
k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i, j , k) *hx*hy*hz/8.0 
if(prob.gt. 0.0 00001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if (uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i=nx
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j =ny 
k=0
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k)*hx*hy*hz/8.0 
if(prob.gt. 0.0 0 0001) then 
sum=sum+prob 

write(*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if 
i =nx 
j =ny 
k=nz 
x=i*hx 
y=-a+j *hy 

z=-a+k*hz
rho2D=sqrt(x*x+y*y) 
rho3D=sqrt(x*x+y*y+z*z)

prob=uk(i,j,k) *hx*hy*hz/8.0 
if(prob.gt. 0.000001) then 
sum=sum+prob 

write (*,111) x,y,z,rho2D,rho3D,prob 
end if

if(uk(i,j,k)*hx*hy*hz.gt.1) then 
ProbCount=ProbCount+l 

end if
print *,'Over-all summation= sum 
print *,'ProbCount>1 is ', ProbCount 

print *,'*************************<
end
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APPENDIX B

C++ PROGRAM FOR PROCESSING X CROSS-SECTIONS

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* HILDA BLACK Spring 2 0 00
* code for data processing of research results
* This program inputs the relevant data from a text file called
* "output.txt". Looks for the observations with cross-section
* x=val, where val is a value input by the user. Prints a
* report listing the x, y, z, and Prob values for this
* cross-section in a file called "out.out” .
ie'k'k-k-kic'kieieiririricirieieieicicieieicie-ir'k'kititie'kitieir'kirie-kieieieirititicitie'k'kiticieic'kir'kieie'k'kieir-kic

#include <iostream.h>
#include <string.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

FILE *fp;

void main()
{

// Variable and function declarations
int getlnputO;
int count =getlnput();

}

int getlnputO 
{

fp = fopen ( "out.out","w") ; 
if(fp != NULL)
{
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ifstream inFileCoutput.txt", ios : : in) ; 
if ( !inFile)
{

c e r r «  "Cannot open input f ile . " <<endl ; 
e x i t (0);

}//end of if 
int count = 0;
double x,y,z,r2d,r3d, Prob,val;
cout « " E n t e r  a cross-section value."<<endl
cin >> val;
inFile>>x>>y>>z>>r2d>>r3d>>Prob; 
while (inFile.good() )
{

inFile>>x>>y>>z>>r2d>>r3d>>Prob; 
if(x==val)
{ fprintf(fp, "%.2f %.2f %.2f

%.7f\n",x,y,z ,Prob);
}
count++;

} ;
return count;

}//end of if(fp != NULL) 
else 
{ cout<<"File error. "«endl; 

return -1;
}
fclose(fp);

}
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APPENDIX C

C++ PROGRAM FOR PROCESSING 
DATA ACCORDING TO RHO VALUES

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* HILDA BLACK August 2000 *
* code for data processing of research results *
* This program imputs the relevant data from a text file *
* "lastd.txt", sorts data by Rho in increasing order, and then *
* prints out a report listing the Data for which the field *
* Y is different from 0. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

#include <iostream.h>
#include <string.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void m a i n ()
{

// Variable and function declarations 
int getlnputO; 
int count =getInput 0 ;

}

//int getInput(struct DataType *Dat) 
int getlnputO 
{

ifstream inFile("lastd.txt", ios::in); 
i f (!inFile)
{

cerr«"Cannot open input file."<<endl; 
exit(0);
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}//end of if 
int count = 0; 

double R h o ,TempR,TempP,Prob; 
inFile>>Rho>>Prob;
TempR=Rho;
TempP=Prob; 
double sum=TempP;

while (inFile.good() )
{ inFile >> Rho>>Prob; 

if(Rho!=TempR)
{

printf("%.3f %f\n",TempR,sum) ; 
sum=Prob;

}
else
{ sum=sum+Prob ;
}
TempR=Rho;
TempP=Prob; 
count++;

};//end of while (inFile.good()) 
return count;

}
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APPENDIX D

C++ PROGRAM FOR ORDERING DATA 
IN A SINGLE CROSS-SECTION

^iciciririeicieiciririritirie'kicirieieicieitiriticieieieie'kiriritie’kifitirieieirititieitieiric^eirle'kieit'leieieieieicitirie

*  HILDA BLACK August 2 0 00 *
* code for data processing of research results *
* Data is represented by a record of the form *
* struct DataType *

{ *
* double X; *
* double Y; *
* double Z; *
* double Prob; *

}* This program imputs the relevant data from a text file *
* "out.out", sorts data by Y value and then Z value in *
* increasing order, and then prints out * * a report listing *
* the newly ordered Data for the required cross-section. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

#include <iostream.h>
#include <string.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

struct DataType 
{

double X; 
double Y; 
double Z; 
double Prob;

};
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void main()
{

// Variable and function declarations
struct DataType Data[1000];
int getInput(struct DataType *dat);
void outputData(struct DataType *dat, int records); 
void sortData(struct DataType *dat, int records); 
void sortDataZ(struct DataType *dat, int records); 
void Swap(struct DataType& datl, struct DataTypefc dat2) 
int count =getlnput(Data); 
int records = count;

sortData(Data, count); 
sortDataZ(Data, count); 
outputData(Data, count);

int getlnput (struct DataType *Dat)
{

int count = -1;
ifstream inFile("out.out", ios::in); 
i f (!inFile)
{

cerr«"Cannot open input file."<<endl; 
e x i t (0);

}//end of if 
else 
{

count = 0;
while (inFile.good())
{ inFile >> Dat[count].X >> Dat[count].Y >>

Dat[count].Z >> Dat[count].Prob;

count++;
};//while (inFile.good()) ;

}
return count-1;

}

void Swap(struct DataType& Datl, struct DataTypeS; Dat2)
{

// Can only refer to Datl.X, etc. (no array [] things)
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// Swaps two out-of-order structure elements 
// makes use of text book algorithm
// swap(x, y) ---> Temp = x, x = y, y = Temp
//creates comparable variable Temp to be used as a 

"holding" spot
struct DataType Temp;
Temp = Dat1;
Datl = Dat2;
Dat2 = Temp;

}

void sortData(struct DataType *Dat, int records)
{

// This function allows the use of Dat [i] .Y and such 
// Sorts the data by Y value in increasing order 
for(int i = 0; i < records; i++)
{

for(int j = 0; j <= i; j++) 
if(Dat[i].Y < Dat[j].Y)

Swap(Dat[i] ,Dat [ j]) ;
}

}

void sortDataZ(struct DataType *Dat, int records)
{

// This function allows the use of Dat [i] .Z and such 
// Sorts the data by Z value in increasing order 
for(int i = 0; i < records; i++)
{

for(int j = 0 ;  j <= i; j++)
{

if(Dat [i] .Y==Dat[j] .Y)
if(Dat[i].Z < Dat[j].Z)

Swap(Dat [i],D a t [j ]) ;
}

}
}

void outputData(struct DataType *Dat, int records)
{

// Can refer to Dat[i].X in here, etc.
// Accepts pointer to Data array as argument 
// so looping on the array index is possible, 
for(int i = 0; i < records; i++)
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1
printf("%.3f %.3f %.3f 

%.7f\n",Dat[i] .X,Dat [i] .Y,Dat[i] .Z,Dat [i] .Prob)
}

}
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APPENDIX E

FORTRAN CODE FOR THE IMSL INTEGRATION ROUTINE

// EXEC VSF2CLG,PARM.GO='NOXUFLOW'
//FORT.SYSIN DD *
C HILDA MARINO BLACK
C PAGE 221, EQ (71) FROM THE THEORY OF SIOCHASTIC PROCESSES 
C BY COX AND MILLER 
C
C INTEGRATE ON INTERVAL (-INF,A"
C
C MODIFY VALUES FOR A, MU, SIG, AND T 
C A=10
C MU=2 , 4, 6, 8, 10 
C SIG=.5
C T=0.2 5,0.5,0.75,1.0,1.25,1.5,1.75,2.0 
C BOUND=A 
C
C EXACT VALUE FOR INTEGRAL IS UNKNOWN 
C CODE MODIFIED FROM IMSL EXAMPLE FOR QDAGI 
C MIGHT NEED TO USE DQDAGI FOR DOUBLE PRECISION

INTEGER INTERV, NOUT
REAL ABS, ALOG, ATAN, BOUND, ERRABS, ERREST, ERROR,

& ERRREL, EXACT, EXP,F, PI, RESULT, CONST,MUVAL, MU
INTRINSIC ABS, ALOG,EXP
EXTERNAL F, QDAGI, UMACH, CONST
COMMON /INDATA/ A, MU,SIG,T 
DIMENSION MUVAL(5),TVAL(8)
DATA MUVAL/2,4,6,8,10/,

& TVAL/.25, .50,.75,1.0,1.25,1.50,1.75,2.0/
CALL ERSET(0,1,0)

C GET OUTPUT UNIT NUMBER
CALL UMACH (2, NOUT)

C SET LIMITS OF INTEGRATION
A=10 
SIG=0.5 
DO J=l,8 

T=TVAL(J)
DO 1=1,5

MU = MUVAL(I)
BOUND = A
WRITE(NOUT,1000)A.MU,SIG,T,BOUND 
INTERV = -1

C SET ERROR TOLERANCES
ERRABS = 0.0
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ERRREL = 0.001
C ERREST IS THE ERROR ESTIMATE WHICH IS USEFUL FOR COMPARISON 
C IF A SOLUTION FOR THE INTEGRAL IS KNOWN

CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST)
C PRINT RESULTS

PI = CONST(1 PI’)
WRITE (NOUT,999) RESULT, ERREST 
ENDDO 
ENDDO 
STOP

999 FORMAT (' COMPUTED =',1PE10.3, 13X, 'ESTIMATE =', 1PE10.3)
1000 FORMAT(//,5X,'A=1,F5.1,/,5X,' MU= ',F5.1,/,5X,

& 1SIG=',F5.1,/,5X,'T=1,F5.3,/,5X,'BOUND=',F5.1,/)
C99999 FORMAT (' COMPUTED =', F8.3, 13X, ’ EXACT =', F8.3//' ERROR '
C & 'ESTIMATE =', 1PE10.3, 6X, 'ERROR =', 1PE10.3)

END
C

REAL FUNCTION F (X)
REAL X,PI,SIG,MU,T,A,FRAC, EXP1,EXP2
REAL ALOG
INTRINSIC ALOG
COMMON /INDATA/ A,MU,SIG,T
PI=CONST('PI')
FRAC=1.0/(SIG*SQRT(2*PI*T))
EXP1=EXP(-(X-MU*T)* (X-MU*T)/(2* SIG*SIG*T))

C EXP1=EXP(-((X-MU*T)* * 2 ) / (2*(SIG**2)*T))
C

EXP2=EXP(2 *MU*A/(SIG*SIG)
& -( X-2*A-MU*T)*( X-2*A-MU*T)/ (2*SIG*SIG*T))

C EXP2=EXP((2*MU*A/(SIG**2))
C & -((X-2*A-MU*T)**2)/(2*(SIG**2)*T))

F = FRAC*(EXP1-EXP2)
RETURN
END

//LKED.SYSLIB DD DSN=DA.IMSL.LIBRARY.IMSL2 0,DISP=SHR
/ /
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