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ABSTRACT

Encouraged by potential applications in rust coatings, self-healing composites, 

selective delivery of drugs, and catalysis, the transport o f molecular species through 

Halloysite nanotubes (HNTs), specifically the storage and controlled release of these 

molecules, has attracted strong interest in recent years. HNTs are a naturally occurring 

biocompatible nanomaterial that are abundantly and readily available. They are 

alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 

600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The 

lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame- 

retardant agents, drugs, or proteins, allowing for a sustained release of these agents for 

hours. The release times can be further tuned for days and months by the addition of tube 

end-stoppers. In this work a three-dimensional, time-quantified Monte Carlo model that 

efficiently describes diffusion through and from nanotubes is implemented. Controlled 

delivery from Halloysite Nanotubes (HNT) is modeled based on interactions between the 

HNTs inner wall and the nanoparticles (NP) and among NPs themselves. The model was 

validated using experimental data published in the literature. The validated model is then 

used to study the effect of multiple parameters like HNT diameter and length, particle 

charge, ambient temperature and the creation of smart caps at the tube ends on the release 

of encapsulated NPs. The results show that release profiles depend on the size 

distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT



lumen and length. The effect of the addition of end-caps to the HNTs, on the rate of 

release of encapsulated NPs is also studied here. The results show that the release profiles 

are significantly affected by the addition of end caps to the HNTs and is sensitive to the 

end-cap pore lumen. A very good agreement with the experiment is observed when a 

weight averaged release profile is compared to the experimental profile. Although the 

NP dynamics is temperature dependent, the effect is minimum within the range of 

temperatures relevant to biomedical applications, but will be relevant for other 

applications at temperatures significantly different from room temperature. This model 

can be used to predict the best conditions for a particular delivery need. One of the 

possible outcomes of this work is the development of more complex models for HNT-NP 

interaction various materials used in bioanalytical devices. These models will then be 

introduced into continuum models of transport in such devices. This work will leverage 

interaction potential development efforts under the LA-SiGMA grant, to enable multi­

scale simulations involving interactions between biomaterials for which such potentials 

are unknown.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Background

Nanotechnology gave scientists a number of materials that enabled the 

experimental realization of concepts that could previously only be realized as thought 

experiments. No other nano material has proven more valuable in this regard than 

nanotubes (NTs). Since their discovery in 1991, carbon nanotubes (CNTs) have attracted 

considerable interest due to their exceptional mechanical, chemical, optical, and 

electronic properties that make them suitable for a wide variety of applications including 

catalysis, electronics, and molecular sensing [1], and of particular interest to this work, 

molecular storage and controlled release [2-15]. Indeed, there is an increasing amount of 

ongoing research to produce functional nano containers for their use, among other areas, 

in biomedical applications, particularly drug delivery [5-7,16-19], However, the use of 

different NTs of various types (not just CNTs) has been proposed beyond the biomedical 

field. There are therefore several motivations to develop controlled release systems.

Conventional encapsulation approaches, based on bulk emulsification, have 

significant limitations on their applicability as these methods achieve only limited 

encapsulation efficiency, thereby wasting valuable active agents [1]. To overcome the 

shortcomings of conventional approaches and achieve advanced functionalities, effort

1
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has to be made into designing, understanding, and implementing nano carriers [2]. There 

has been a lot of interest in using nano materials to develop sustained release vehicles to 

deliver active cargo such as proteins [1,3,4], cells [5,6], drugs [7, 8], anti-corrosives 

[9], and other such agents at specific sites at a controlled rate either in response to an 

external stimuli or continuously over time in a zero order release. There are various 

potential candidates for such carrier vehicles like nano particles (self-assembled or 

otherwise) [10,11], porous m a t e r i a l s  (porous silicon and meso-porous silica)[12- 

15], soft drug delivery systems (micelles, liposomes, emulsions, emulsion drops) [16-22], 

capsules (nano-gels, polymer hydrogels and polymer complexes) [23-26], and micro and 

nano cylinders - nanotubes (functionalized, single and multi-walled).

1.2 Nanotubes

Microcylinders and nanocylinders are an interesting geometry for the 

encapsulation and release of active agents [27]. Micro/Nano cylinders or tubules range in 

size from 1000 pm to a 1-2 nm. From carbon nanotubules, lipid tubules in the submicron 

regime, to hollow or porous polymers or glass in the millimeter range. Even though some 

of these systems have high loading capacities, they have release mechanisms that are 

difficult to regulate. Every application requires specifically designed carriers to fully 

achieve its goals. For example, in drug delivery applications, the size of a vehicle is 

critical as it determines the ability to pass through a narrow channel in an organ, and its 

shape is important for determining the interactions among vehicles and cells [28]. The 

targeted delivery and stimulated release of drugs at a desired rate are very important for 

maximizing the effects of a drug [2,15,16,29]. Among the various potential candidates 

for such carriers, certain nanotubes like halloysite nanotubes(HNTs), CNTs, and
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lipid nanotubes rank highly due to their unique p h y s ic a l, chemical, and  

physiological properties [30].

While CNTs have very interesting physicochemical properties such as an  

ordered structure with high aspect ratio, light weight, high mechanical strength, 

and high surface area [30], they have been limited to no applications as drug delivery 

vehicles due to their cytotoxity. Nanotube-based nano carriers provide for the dynamic 

encapsulation and release of materials [7,29-33], Indeed, there is an increasing amount of 

ongoing research to produce functional nanometer-scale containers at the time that there 

is growing demand for their use, among other areas, in biomedical applications, 

particularly drug delivery [31-37]. However, the use of different NTs of various types 

(not just CNTs) has been proposed beyond the biomedical field in a variety of 

applications such as the controlled release of anti-corrosives [38,39], water purification 

[40], polymer composites [41,42], and antimicrobial coatings [43]. All of these 

applications serve as motivations for developing controlled-release systems, which 

besides improving systemic availability, alter the temporal and localization release 

patterns and availability of molecular species of interest.

For instance, NPs can be incorporated into nano carriers that have access to the 

whole systemic circulation, but are delivered less rapidly than free NPs. Nanotubes can 

effectively protect entrapped drug molecules against denaturation or degradation over the 

delivery process [44]. Furthermore, nanotubes have large inner volumes that can allow 

for loading of more than one therapeutic agent [45]. Last, but not least, some nanotubes 

like HNTs have separated inner and outer surfaces, which can be differentially 

functionalized to load the desired molecules, but impart chemical features to the
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outer surface allowing for site-specific drug delivery [46]. The combination of these 

characteristics makes nanotubes a unique material with the potential for diverse 

applications, including fundamental studies of biological systems, drug delivery, tissue 

engineering, molecular sieves [47], nano-test tubes [48], hydraulic actuators [49], 

hydrogen storage [50], selective catalysis chemical sensors [51], biosensors [52, 53], and 

molecular/ion channels [54-56].

The adaptation of HNTs for entrapment and controlled release was the result of 

the work of Burke and Singh [57]; Price et al. [58] reported the entrapment of 

oxytetracycline HC1 in copper coated microcylinders utilized in antifouling coatings for 

delivery of hydrophilic and hydrophobic active agents [59]. Price et al. [58] also reported 

the use of microcylinders for the delivery of proteins and growth factors.

1.3 Controlled Release

When designing controlled-release systems, it is important to identify and 

understand particular mechanisms involved in the release process. Often, more than one 

mechanism is involved at a given time or different mechanisms may dominate at different 

stages o f the NP delivery process. There are several modes of controlled NP delivery, and 

it is important to study and identify associated mechanisms. Among the many 

applications this work focuses on a particular area of interest: smart sustained-release 

delivery systems. A sustained release dosage form can overcome the problem of the need 

for frequent intake of medication for it to be therapeutically effective [60]. Such a dosage 

form normally contains the drug dose required to maintain a therapeutic concentration of 

the drug in the body for the needed durations [60].With most drugs there is a high risk if 

dose-dumping occurs. Dose dumping is the release of the entire dosage in a short span of
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time and can cause severe and sometimes lethal side effects [60] .The probability of dose 

dumping is dependent on the environment surrounding the delivery container [60].

1.4 Diffusion

Nanochannels, nanopores, and nanotubes can be treated as porous media and the 

movement of fluid through them can then be described as diffusion through a porous 

material. Diffusion is a very important component of many controlled-release systems.

All molecules constantly undergo random collisions with other molecules. Molecules in 

nanotubes, therefore, undergo constrained random thermal motion. At any step, the 

direction of motion of a molecule is random, and it repeatedly changes due to collisions 

with other molecules. Over time, the displacement of the molecule from its point of 

origin is the result of a multitude of such random steps. Macroscopically, the independent 

random walks taken by a large number of drug molecules lead them from regions of 

higher concentration to regions of lower concentration. Thus, diffusion of a substance 

occurs down its concentration gradient.

The mechanism of diffusion through pores is further classified as Knudsen 

diffusion [61,62], molecular diffusion [63], surface diffusion [64], and hydrodynamic 

flow [65]. Diffusion is classified as Knudsen diffusion when the mean free path of the 

fluid is of the order of magnitude of the channel’s size. In this case, diffusion is governed 

by the collisions of molecules with the channel wall. Knudsen diffusion occurs in nano 

systems where the diameter of the channel is only a few times the molecular diameter of 

the fluid, and the ratio o f the channel diameter to the mean free path o f the molecules is 

less than 0.2 [61,66]. When the diffusion is dominated by inter particle/molecular 

collisions, the diffusion is called molecular diffusion [63]. When the fluid is adsorbed to
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the channel surface and diffuses along the surface, the diffusion is called surface 

diffusion [64], Hydrodynamic or Poiseuille flow occurs due to the presence of a pressure 

gradient [65]. Essentially, diffusion can be broadly classified as either self-diffusion (the 

motion of the molecules in absence of a gradient) or transport diffusion (the motion of the 

molecules due to a concentration gradient) [67,68].

Many predictive theories have also been applied to understand the diffusion of 

particles along the surface and through the pores at the ends of the nanotubes, and 

through the surrounding media [69-73]. One approach has been to employ classical 

diffusion theory, which neglects velocity effects, but this approach shows discrepancies 

in the early stages of particle motion [70]. In nanotubes the effect of the wall on the 

motion and the restrictions they impose have to be considered [74,75]. The initial 

condition of the system and the boundary conditions play important roles. The dynamics 

of a particle are determined based on the variations in the total energy of the system.

When the interaction between the encapsulated particles and the wall is repulsive, 

diffusion is down the center, whereas when the wall-particle interaction is attractive, 

diffusion is along the wall. The model is valid for channel sizes larger than the diameter 

of the particles. In nano scale molecular channels as described in [72, 73], site to site 

hopping describes the motion of the particle motion better than continuous diffusion 

paths. The behavior o f the diffusing species in the nano regime differs from macro scale 

systems and as the complexity of the system increases, it gets smaller. Several factors, 

some of which are neglected while simulating larger systems like the electro kinetics, 

viscous heating [76], and surface forces like van der Waals, electrostatic forces, steric 

forces and gas surface properties start playing dominant roles [77,78]. Diffusion through
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nano channels is generally modeled using either direct simulation Monte Carlo (DSMC) 

or the MD approaches [69, 70,72,77].

The continuum approach is used for many applications, and it is based on finding 

the macroscopic properties of the media the nanotube is immersed in (the permeate) [79]. 

In the nano regime there is a marked departure in behavior from the predictions of the 

continuum approach with no-slip boundary conditions [66]. To characterize this 

departure from the continuum regime, the Knudsen number kn, which is defined as the 

ratio of the mean free path to the characteristic length scale, is used. Tsien et al. [80] in 

their work further classified diffusion based on the value of the kn into continuum flow 

for kn < 10~3, the somewhat rarefied slip flow regime with 10_1 > kn > 10-3, the 

intermediately rarefied transition regime with 10 > kn > 10-1 , and the highly rarefied 

free molecular regime with kn > 1 [81]. The continuum flow regime can be accurately 

described by the Navier-Stokes equations with appropriate boundary conditions. The 

Navier-Stokes equations with appropriate partial slip boundary conditions also describe 

the slip flow regimes. The Boltzmann equation (no collisions) accurately models free 

molecular flow.

Diffusion in nanotubes occurs in the region with kn > 10-1 and can neither be 

totally described by molecular flow nor can they be described by totally continuum flow 

since the characteristic length is equivalent to the mean free path and rarefaction effects 

cannot be ignored any longer [76, 77]. This is further illustrated by Arkilic et al. and 

others [77,78, 80, 82] in their papers in which they studied the flow of low Reynolds 

number (Re) gases through the micro channels. DSMC method is used extensively 

nowadays to investigate gas diffusion in micro geometries [81, 83]. However this method
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has limitations in that it requires a large number of particles to be accurate, and this is 

expensive in both computational time as well as memory requirements, especially for the 

low-speeds in nano devices [82]. A prerequisite for DSMC is that the time steps need to 

be smaller than the collisional time scale. For a moderately practical system this 

translates to extremely expensive computational resources, thereby limiting the use of 

DSMC to solve small-scale problems.

DSMC simulations are further limited by the fact that for high aspect ratio 

geometries (micro and nano channels) a minimum of 500,000 cells are required [84]. The 

error in DSMC is inversely proportional to the square root of the number o f simulated 

particles; therefore, decreasing the number of particles in the computational cell increases 

the error in the solution [76]. While there are quite a few methods to describe the slip 

flow regime, the diffusion in the transition regime are studied using MD and other 

statistical methods [69, 74, 76, 85]. The free molecular approach like MC and MD 

considers the fluid to be a collection of discrete particles [69,85]. This can be modeled 

using either deterministic [74] or statistical approaches [72], both of which are capable of 

providing the position and energy of all the individual molecules at all times.

The molecular approach utilizes a Boltzmann distribution (at a given 

temperature), which is ideal for predicting small-scale interactions in this regime to 

evaluate individual particle dynamics. The evolution of particle positions is obtained by 

numerically integrating Newton’s equations of motion. The choice of the potential is 

arbitrary. Notwithstanding the theoretical relevance of MD models for modeling small- 

scale interactions, it is unfeasible to simulate a realistic nano flow problem using present 

day supercomputers. Most MD calculations are limited to femtosecond time steps
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required to represent fast vibrations occurring in molecules, thereby limiting the results to 

short time scale (picoseconds to nanoseconds) phenomena [69,74]. A one second real 

time simulation of transition flow is expected to take thousands of years of CPU time 

using MD [80]. MD is computationally expensive probabilistic models like DSMC 

provide accurate solutions as the time step decreases and the number of particles in the 

cell is sufficiently large. Both MD and DSMC have extremely slow convergence rates 

compared to continuum models. As an alternative, higher-order extended or generalized 

hydrodynamic equations have been proposed which perform equally well in both the 

continuum and slip/transition regimes [77]. The Bumett equations represent a second 

order correction to the equilibrium distribution function of gas diffusion [86]. Fubing et 

al. [87] used the Bumett equations to study gaseous diffusion in micro/nano channels. A 

pressure driven plain Poiseuille flow, backwards facing step flow and flow through filters 

were modeled. But their study was limited to two-dimensional cases. The Bumett 

equations are numerically unstable, which implies that convergent results in Poiseuille 

flow can only be obtained at small Kn [86].

The diffusion behavior of the NPs confined in the nanotubes in a liquid or 

gaseous media is dependent on the surface chemistry of the nanotube and the NPs, and 

has been found to be crucial for effective encapsulation o f the NPs in nanotubes and their 

controlled release [15]. However, due to the lack of suitable instruments, it is still a big 

challenge to carry out experiments to investigate the diffusion behavior o f the NPs in 

nanotubes in details. Fortunately, simulations can be utilized to study the diffusion/flow 

behaviors in the nanotubes. Computational studies of the mechanism of diffusion through 

nanotubes and nanopores have begun fairly recently and the work done in this field is
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described here. Mao and Sinnot [74] studied the self-diffusion of methane, ethane and 

ethylene through SWNT of various diameters and helical structure at room temperature.

They also studied the diffusive flow of binary mixtures of methane and ethane, 

methane and n-butane, and methane and iso-butane through SWNT’s using MD. Duren et 

al. [88] computed the transport diffusion coefficients for CH4 & CF4 mixture in multi­

walled carbon nanotubes with three layers with an innermost lumen diameter of 2.978 

nm. Sholl et a l [89] studied the diffusion of gases like SnBr4, Ar, Kr, Xe, SF6, SnC14, 

CH4, CF4, CC14, and Ne through A1P04 -5 molecular sieves. Keffer [90] carried out 

MD diffusion studies of methane and ethane in a ID molecular sieve of A1P04-5 to study 

the temperature dependence of the diffusivities of the constituents of a binary adsorbed 

mixture. Simulations were performed to study the transport of these species as single 

adsorbed species and binary mixtures. Nicholson [91] investigated the transport 

selectivity of CR» and CO2 through cylindrical carbon pores with walls that were 

structureless. Tuzun et al. [92] studied the flow of Helium and Argon through carbon 

nanotubes to study the effect of the rigidity of the tube on the behavior of the fluid using 

MD. Seo et al. [93] used a dynamic Monte Carlo simulation to calculate transport 

diffusion of hydrogen and hydrocarbons in nano porous carbon membranes with slit-like 

pores. Ten Bosch used Brownian dynamics to study the wall effects and time dependent 

particle concentration induced flow in adsorbing nanopores [94].

As a means of achieving numerically effective small-scale diffusion predictions 

with reasonable computational time, a Monte Carlo based model for small flow 

applications has been applied to diffusion simulations through nano-geometries and 

nanopores. These studies consider the slip and transition regimes with 10 >  kn > 10-1 .
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The aim of this work is to help develop systems which enable active agents to be 

encapsulated, targeted to a specific region and released “on demand” in response to an 

external stimulus. Such systems provide a means of controlling the NP concentration and 

reducing the risk of reservoir depletion.

1.5 Halloysite Nanotubes

Due to the toxic nature of CNTs, researchers look with interest into more natural 

options like clay. Most common clay structures possess a nano-layered morphology, for 

example, kaolin and montmorillonite [95], while other naturally occurring nanoclays 

show a hollow tubular structure [32,95]. Two such promising nanoclays that can be used 

as nano containers with controlled release properties are Imogolite nanotubes (INTs) [95] 

and natural Halloysite nanotubes (HNT) [32,96]. INTs, however, present some level of 

toxicity [97]. HNT clay is a two-layered aluminosilicate, chemically similar to kaolin, 

with a hollow tubular structure in the sub-micrometer range. HNT is abundant, durable, 

and biocompatible; furthermore, it is cheap compared to synthetic nanomaterials with 

similar morphology. HNT is formed naturally when kaolin sheets roll up on themselves 

[96], Kaolin sheets are rolled into tubes because of the strain caused by a lattice 

mismatch between adjacent silicone dioxide and aluminum oxide layers [96].

As with most naturally occurring materials, HNTs size varies from HNT to HNT 

in a batch, and the external diameter varies from 50 to 70 nm with lumen inner diameters 

from around 5 nm to as large as 40-50 nm [96]. The length of HNTs varies from 0.5 -1.5 

fim. HNTs have a specific density of 2.53 g/cm3, a refractive index of 1.54, a pore volume 

of 1.25 mL/g, and a specific surface area of 65m2/g [96,98]. The outer surface of the 

HNTs has properties similar to SiC>2 with negative charge at pH 6 -  7 while the inner
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cylinder core is A I 2 O 3 ,  which is positively charged for a pH of less than 8.5 [99-101]. The 

positive charge of the inner lumen promotes loading of HNTs with negative 

macromolecules within void spaces, while at the same time they are repelled from the 

negatively charged outer surfaces [96,99-101]. HNTs are capable of entrapping a range 

of active agents within the inner lumen, followed by their retention and slow release.

Price et al. [6,7] and Levis and Deasy [8,9] were pioneers in studying the 

loading and release behaviors of various pharmaceuticals (e.g. dexamethasone) from 

HNTs. HNTs lumen produce a large capillary force in polar liquids which helps in 

loading NPs within the tubes. At pH above 2.5, HNTs have a negative SiC>2 outer surface 

with an electrical zeta-potential of -35 mV. This allows for its good dispersibility in 

water, alcohol, acetone, and polar polymers. Control over loading and release has been 

achieved using several methods such as silanization of lumen to increase the 

hydrophobicity o f the inner tube for higher adsorption of low water soluble drugs [6, 7], 

lumen enlargements by etching [6,7], and tube encapsulation by the formation of 

polymeric coating and caps at the tube’s ends [6,7], It has been shown that loading 

efficiency can be increased up to 30 weight % with lumen enlargement using acid etching 

of the internal alumina [8].

These modified HNTs can be loaded with drugs at 10-30 weight % and used for 

sustained release o f chemical agents [1 ,3,5, 8-11]. HNTs are biocompatible as was 

demonstrated on different cell cultures and micro worms [2,12,13]. While the 

biocompatibility of halloysite has been confirmed [10], its medical use might be 

restricted to oral dosing, dermal application or dental uses [10], due to the non- 

biodegradability o f the aluminosilicate. Consequently, increasing attention is now being
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paid to the usage of halloysite as a substrate for the loading and sustained release of 

agrochemicals (herbicides, pesticides and fertilizers) [10,11], anticorrosion agents [10,

12] and bio-actives agents (e.g. enzymes) [1,13-15]. Surface chemistry, tubule 

morphology, submicron size and biocompatibility make this nanomaterial an excellent 

candidate for nanopore-controlled release of antiseptics, drugs, and proteins with delivery 

times of a few hours to several hundred hours [8-10]. Halloysite nanotubes provide good 

encapsulation for chemicals allowing longer release time. Larger and precisely 

controllable release times are important for application like smart halloysite-polymer 

composites and can be accomplished by synthesizing the tube’s end stoppers. It has been 

shown that stoppers are effective at extending the release time of corrosion inhibitors and 

drugs [16-17].

The adaptation of HNT microtubules for controlled release was the result of the 

work of Burke and Singh [57]. HNTs were found to be a viable and inexpensive 

nanoscale container for encapsulation of drugs and other NPs [32,35,101-110]. This was 

first demonstrated by Price, Lvov, and Kelly [33,111,112]. HNTs physiochemical 

characterization as a novel drug delivery system was also reported by Levis et al. [34,

36]. HNTs strong surface charge has been exploited by Lvov et al. [32,33,35, 53,96, 

101, 102,105-107, 110, 113-116] for the design of a nano-organized multilayer using 

layer-by-layer assembly and for use in sustained release experiments. An in vivo drug 

delivery system using HNT for the treatment of periodontitis has been demonstrated in 

studies by Kelly et al. [37]. Lvov et al. [101,117] reported the entrapment of 

oxytetracycline HC1 in copper coated microcylinders utilized in antifouling coatings for 

delivery of hydrophilic and hydrophobic active agents. Price et.al. [35] reported the use
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of microcylinders for the delivery of proteins and growth factors.

To further delay/control the release, CdS and Fe3C>4 NP have been used as 

end caps for HNTs to regulate the opening/closing of the pore entrance of meso- 

structured materials [118]. The covalent modification of the inner surface of HNT, to be 

able to incorporate more ferrocene than pristine nano clay, was reported by Cavallaro et 

al. [119]. Cavallaro et al. [119] also reported the modification of HNT lumen by 

incorporating perfluoroalkylated anionic surfactants to obtain stable colloidal dispersions 

in water with enhanced oxygen solubilization ability. Biocompatible HNT-based 

fluorinated surfactants have been proposed as oxygen carriers in biomedical applications 

[120]. Finally, the possibility to adjust the HNT’s inner diameter between 15 and 30 nm, 

by selective etching, while maintaining the outer diameter unchanged, was demonstrated 

in reference [121].

Therefore, experimentalists, could have short ca 0.5 pm (milled HNT) and long 1- 

1.5 pm clay nanotubes with an inner diameter between 15 to 30 nm, can vary the inner 

and outer surface potential of HNTs by adsorption of charged molecules, and are 

empirically trying to optimize these parameters to have controlled sustained release 

without the possibility to predict and optimize these tubule carrier properties [96]. The 

ability to simulate the process can certainly assist in this task.

1.6 Motivation

Experimentalists are empirically trying to optimize these parameters to have 

controlled sustained release without the possibility to predict and optimize these tubule 

carrier properties [2]. The ability to simulate the process can certainly assist in this task.
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When designing controlled-release systems, it is essential to ascertain and comprehend 

particular mechanisms involved in the release process. Even though different 

mechanisms dominate at different stages of the NP delivery process, each stage may have 

more than one mechanism acting at the same time. The past decade represented a period 

of concerted experimental and theoretical research efforts to elucidate several of the 

hitherto incompletely understood aspects. The need to control the release rates accurately 

and be able to predict controlled delivery/release characteristics consistently, such as 

release times, motivates this research. Thus this paper highlights controlled delivery from 

HNT by modeling the associated interactions between the HNTs and the NPs. To achieve 

optimal release profiles for a given set of initial and boundary conditions, like initial 

molecular concentration or pH and temperature of the surrounding media, only a few 

simulations parameters need to be tested. The results obtained from the simulations can 

then be translated to the experiments which in turn can produce the necessary data to 

calibrate and validate the computational models.

When designing controlled-release systems, it is important to identify and 

understand particular mechanisms involved in the release process. Often, more than one 

mechanism is involved at a given time or different mechanisms may dominate at different 

stages of the NP delivery process. The past decade represented a period of concerted 

experimental and theoretical research efforts to elucidate several o f the hitherto 

incompletely understood aspects. The need to control release rates accurately and be able 

to predict controlled delivery/release characteristics consistently, such as release times, 

motivates this research, thus this work highlights controlled delivery from HNT by 

modeling associated interactions between the HNTs and the NPs. To achieve optimal
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release profiles for a given set of initial and boundary conditions, like initial molecular 

concentration or pH and temperature of the surrounding media, only a few simulations 

parameters need to be tested. The results obtained from simulations can then be translated 

to the experiments which in turn can produce the necessary data to calibrate and validate 

the computational models. In the next section, the model developed for this work is 

presented, then the results are described with appropriate discussions of the virtues and 

limitations of the model, and finally conclusions are offered.

1.7 HNTs with Endcaps

A number of experimental techniques can be used to form the end caps at the end 

of an HNT ends. In one of those techniques, HNTs are exposed to urea-formaldehyde 

pre-polymer solution. Rapid cross-linking of the pre-polymer causes the formation of a 

thin polymer shell that also plugs the tube’s endings. Another approach consists of the 

formation of copper-inhibitor clogs due to the chelation of Cu (II) ions [18]. Corrosion 

inhibitors form 2D polymer films that cover the entire HNT surface and effectively seals 

the tube’s endings and any other leakage defects. HNTs are rinsed with CuSC>4 solution 

for a few seconds for the formation of the stoppers and the removal o f extra material.

Starch stoppers at HNT’s ends is another option. These stoppers are formed by 

mixing halloysite with starch and heating it at 200°C in a thermal reactor. However, this 

method cannot be used for proteins and drug encapsulation due to the high temperatures 

involved. The fourth approach is to form a thin coating on the halloysite’s external 

surface through sequential adsorption of the film-forming components A and B. A is an 

insoluble film forming compound and B is a complexation compound that covers the 

entire surface of the HNTs and clogs the tube’s openings and any other defects.
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Alternatively, component A may be loaded into the HNT lumen and then the tubes may 

be rinsed with component B.

Another approach is to encapsulate HNTs via polymer deposition. This method 

was demonstrated for release of diltiazem-HCl in reference [19]. Coating with chitosan 

and poly (ethyleneimine) reduces the release rate of diltiazem 2-3 times. Further cross- 

linking the HNTs with glutaraldehyde provides additional retardation in the release; 

however, this method also significantly reduces the loading efficiency of the HNTs [19].

Having a negative surface, HNTs can be effectively coated by sequential 

adsorption of positively and negatively charged polyelectrolytes (layer-by-layer, LbL- 

technique). Polycation /polyanion multilayers form a shell on the halloysite providing a 

diffusion barrier and slowing down the release. HNTs readily adsorbs polycations, such 

as chitosan, polyethyleneimine (PEI), polylysine or polyallylamine hydrochloride (PAH), 

forming a thin positively charged layer on the surface. Then negatively charged 

polyelectrolytes, polystyrene sulfonate (PSS), polyacrylic acid (PAA), or heparin can be 

deposited to form a strong polycation/polyanion complexation. Such LbL coating allows 

inverting halloysite surface potential to be positive [20].

Immobilization of proteins, DNA and other biopolymers on HNTs were also 

demonstrated [20,21]. Coating HNTs with large molecular weight polyelectrolyte shells 

allowed for a decrease in the release rate of dexamethasone drug from 6 hours to 15 

hours. The release profiles were significantly affected by the type o f polyelectrolytes 

used to generate the shell [20]. Coating HNTs with thicker stoppers at the tube’s ends 

was achieved by the interaction of triazoles and imidazoles with transition metal ions. 

These complexes form thin films which cover the entire external surface of the HNTs
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also forming stoppers at the tube’s ends [22]. Such coated halloysite may contain loaded 

chemical with a much longer release (e.g. corrosion inhibitors and antifouling agents) and 

may be doped into polymers to provide additional functions [6,7 ,9 ,14].

Chapter 4 of this work highlights controlled delivery from HNT by modeling 

associated interactions between the HNTs, the end caps, and the NPs. Here, the model is 

extended to include porous end caps and the release profile as a function of end caps 

characteristics is described. In the next section, the model developed for this work is 

presented, then results are described with appropriate discussions of the virtues and 

limitations of the model, and finally conclusions are offered.

To understand the interaction of nanoparticles on a molecular level, calculation of 

interaction potential is of great importance. However, different states of the system are 

separated by high barriers which impede the exploration of phase space to obtain a valid 

average force on the particles. There exist various methods which have been proposed for 

efficient calculations of interaction potentials by applying different strategies to try to 

better sample the phase space.

In chapter 5 of this work, the interactions of dexamethasone (our NP of interest), 

with the inner lumen wall of HNTs, with respect to HNT length, temperature and pH is 

investigated. Experimental observations show that dexamethasone can be taken as a non- 

polarizable entity, and it is pretty hydrophobic. Therefore, the typical tendency of the 

dexamethasone molecules is to evade the water and sticks to the walls. We can subjugate 

the shielding due to the media by using an adaptive biasing method which corrects the 

total potential experienced by an NP in the HNT.
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In chapter 6 we offer conclusions and summarize the results of the effect of 

different parameters like temperature, pH, HNT size and NP size on the release of the 

NPs from the HNTs.

In chapter 7 we offer two possible uses of our research namely the diffusion of 

NPs through concrete pores and the study of diffusion through hydrogels.

In the next section, the model developed for this work is presented, then the 

results are described with appropriate discussion and finally conclusions are offered and 

suggestions made for possible future work.



CHAPTER 2

METHODOLOGY

2.1 Model and Simulation Method

Nanometer-scale tubules of HNT introduce the prospect of observing purely non- 

Knudsen transport (because the radius of the nanotube is around 15 nm) at atmospheric 

pressure and temperature. Here, we present a rather unique 3-D coarse grain Monte Carlo 

(time -quantified) model that uses the classic kinetic theory coupled with Guy-Chapman- 

Enskog theory and Poisson-Boltzmann theory to describe the molecular transport in HNT 

channels and highlights the role of surface effects on molecular diffusion to determine 

transport efficiency. This model uses several basic assumptions about the nature of 

molecules, molecules-wall interactions, and the influence o f collisions on the NPs’ 

displacement. It is proposed that the model can be used as is in other types of nano- 

porous channels as long as the channel’s wall can be considered smooth, rigid, and defect 

free. With minor modifications, less uniform wall surfaces can also be modeled.

For sufficiently large cylindrical structures (pores or nanotubes), in the 50-100 

nm range (e.g. HNTs), investigation can focus on the interaction of the permeate with the 

inner charged surface of the NT. SEM and STM images of HNT and a schematic of the 

cylindrical nanotube are shown in Figure 2.1.

2 0
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a b c

Figure 2.1: a) TEM and b) SEM images of a clay nanotube batch, c) Schematic cross 

section of a charged cylindrical nanotube with ions inside used as a model for this work.

The model, implemented by utilizing MATLAB [122], was designed to simulate 

NP diffusion in long, defect free NTs and out of the ends of the NTs. The hydrodynamic 

radius, the effective radius of a hydrated NP in the solution, is considered in these 

simulations, rather than the actual gas phase radius. NPs are considered to be spherical in 

shape and are initially distributed uniformly throughout the cylindrical channel except at 

the tube’s ends where the density is larger to account for the experimentally observed 

initial burst (see below for more details) with the media in the channels being either a 

dielectric vacuum. The NP’s motion is simulated as a random walk to sample the 

configuration space subject to interactions among NPs and between the NPs and the HNT 

walls. Particles are moved one at a time in an arbitrary direction and an arbitrary length 

up to an upper limit that depends on the kinematics of the system. The move is allowed as 

long as it is energetically viable and there is no overlap with the walls or with 

neighboring NPs along the line connecting the initial and final position of the NP. A 

move is considered energetically viable if the total energy of the system is either reduced 

or stays the same. If the energy increases, however, the move can still be accepted with
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Boltzmann probability. A simulation step is the event where every particle in the system 

has either moved or attempted to move once.

2.2 NP-Wall Interaction

The NPs are modeled as soft core spheres with hydrodynamic radius R and a zeta

potential (the potential at R). The NT’s walls are positively charged with a pH-dependent

surface charge density. Due to the structure of the HNTs, a soft wall composed of

Lennard Jones (LJ) atoms is chosen accordingly. Thus, the ion-wall interaction consists

of a coulombic plus a van der Waals (VdW) term with a cutoff for the VdW interactions

set to 6 R. The total energy of the system is given by

-  $u vdw +  ucb r  < 6 R  
U(r) ~  r  >  6fi ’ (2 l)

where u CB is the energy contributions due to Columbic interactions and u vdw are the

contributions due to VdW interactions.

The VdW ion-wall interaction can be computed by integrating the VdW potential

over the wall surface. An analytical expression for the VdW experienced by small

charges inside a cylindrical nanotube is given by Afansiev et al. [123] as Equation (2)

uvaw =  — (2-2)xO

where x0 is the distance from the wall along a radius and c3 =  — is the VdW12(ec+er)

constant, d  is the average dipole length, while ec and er are the permittivity o f the wall 

and the media, respectively. In this work C3=0.04 and (J. is

V = ¥ i ~ Z Z ~ ~ ^ X V L i « r )  + 2 l l ( k r )  + I l+ i(k r )}k 2dk, (2.3)
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where Km(x) and Im(x) are modified Bessel functions, with r the distance between the 

center of the NP and the center of the nano channel, which accounts for the curved shape 

of the cylinder wall. For further details see reference [123].

The Columbic interaction between the NP and the inner surface of a HNT lumen 

in a solvent is considered here to correspond to that of a charged spherical NP with the 

inner part of a charged cylinder of infinite length, except when the particles are at the 

ends of the tube (for the solution at the ends see below). Utilizing a basic model of 

electrolyte, the solvent is treated as a uniform background with a dielectric constant 

containing charged spheres.

Equation (7) describes the potential energy landscape for a charged NP with 

electrical potential %  in a charged, very long, hollow dielectric cylindrical channel with 

surface potential \f)w immersed in a medium of relative permittivity er . This is obtained 

by solving the linearized Poisson-Boltzmann equation for the cylindrical nanotube 

immersed in a medium of uniform dielectric [124,125].

In cylindrical coordinates the Poisson Boltzmann equation is

^ S  +  S  =  ^ sinh ( ( P ) - ^ ,  (2.4)

where A0 is the Debye length and <p is the potential. The boundary conditions for the 

charged sphere and the cylindrical lumen of the HNT are <p =  if,p at the particle surface 

and <p = ipw at the inner surface of the cylinder’s wall. if>w in turn depends on the pH of 

the system which implies that the surface charge density depends on the pH of the

medium. The variation of zeta potential « HNT) with pH for HNTs has been published by 

Lvovef al. [113].
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The remaining boundary conditions are:

(2.5)

where,

(2.6)

Solving Eq. (2.5) gives us the Columbic interaction energy, given by Eq. (2.7)

in this implementation, was represented by (P, which is consistent with the NP’s

between the axis of the cylinder and the NP, XD is the Debye length and A is calculated 

using Equation (8)

where ew is the permittivity and nw is the refractive index of the HNT wall, ep is the 

permittivity, n p is the refractive index of the NPs, and em is the permittivity while is 

refractive index of the surrounding medium. At the HNT entrance, the infinity tube 

approximation is discarded in favor of the interaction between the NP and a rounded 

HNT pore entrance as schematically represented in Figure 2.2 [126].

neRiliy,

(2.7)

radius being the hydrodynamic radius R. Ro is the HNT radius, r is the radial distance

cw ~cm 6p~£m 
ew+ em fp+Cm

3/tVe

8 V2
(nw-nmXnp-nm) (2.8)
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Figure 2.2: Geometry considered as a model for this work.

Eq. (2.10) describes the potential energy landscape for this situation [124,125]. 

The boundary conditions here are

fcT
g l n . o - 0  and, (2.9)

which implies,

yj'' ^Rc,K fio+ V

K 1 + e x P ( - i ) ) ( x + e x P i ) ) ] - ^ ( ? - ; ; ) ! '  <2 -10)

where /?c is the radius o f the pore rounding, and

, = W ( ( ^ - j ) 2 + ( « + C )  (2 U )

(2.12)
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2.3 NP-NP Interaction

The interaction energy between two ions is expressed as

( UVDw  + Ucb r ij < (2.13)

where t/vdw is the VdW interactions between a pair of particles accounted for by the 12- 

6 Lennard-Jones Potential [ 127] given by Eq. (2.14)

where £i; is the depth of the energy well, <ri7- is the distance at which the energy is equal 

to zero, and ri;- is the distance between the 2 particles.

Ucb is the screened electrostatic potential for a spherical charged particle of 

radius R immersed in an electrolyte with positive and negative ions. According to the 

DVLO theory (named after Deijaguin, Landau, Verwey and Overbeek), the screened 

potential is given by Eq. (2.15) [128]

where qt and are the charges of the individual particles, is the distance between the

molar concentration, z t is the charge number o f the ith ion and e is the elementary charge,

VDW (2.14)

(1+KR)rij (2.15)

two particles, R is the radius of the molecule, Xb =
47ie0erkB T

is the Bjerrum length, and

XD is the Debye length given by Eq. (2.16) [129]

yf{8nAbNAl) 2NAe2l (2.16)

where NA is the Avogadro number, /  =  ctz f  is the ionic strength, where c* is the
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£r is the permittivity o f the medium, e0 is the dielectric constant of the vacuum, kB is the 

Boltzmann constant, and T is the temperature.

The Monte Carlo Algorithm as described above does not provide time correlated 

sequence of events. Kinetic/dynamic Monte Carlo algorithms have time incorporated 

explicitly, but they require the process rate to be known.

The approach to introduce time to the algorithm presented here is as follows. The 

maximum hop distance of the molecules is taken to be the mean free path as described by 

the Chapman-Enskog theory for fluids and molecular gas flow for Eq. (2.17) [130].

where R is the gas constant, T is the temperature, p  is the combined density o f the NPs 

and the permeate inside the NT, and x c is given by Eq. (2.18)

where <f) is the NPs volume fraction, KB is the Boltzmann constant, e is the maximum 

energy of attraction, 2r  is the collision cross section, and 0) is the Chapman-Enskog 

collision term.

In the ideal case of completely elastic specular collisions in a completely smooth 

cylinder, molecules will translocate through the NT in a billiard-ball-like series of 

collisions and the NT would introduce no resistance to transport. In reality, non-bonded 

interactions among NP and between NP and the tube’s wall, as well as surface defects 

and charges in the NT’s openings, can act as scatterers or anchors and randomize the

2.4 Introducing Time in the Algorithm

2.6693 e ( m T ) 2

106 4 r 2 a ) K B T
(2.18)
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molecular velocity. Therefore, the mean free path of NPs in the nanotube depends on the 

nanotube diameter and the average distance between the regions/points inducing scatter. 

All these factors are accounted for in Equation (17).

In molecular transport, the mean square displacement of transported particles 

scalos nonlinearly with time. This kind of transport is observed in many physical 

processes and often leads to a broad-ranged particle distribution density, both in space 

and time. The random walk formalism as implemented here, offers an attractive 

framework to understand and model such transport. This approach assumes that transition 

times associated with particle displacements are independent of each other. So the 

velocity of successive jumps are not correlated.

The velocity of the particles during hops has contributions from thermal velocity 

and a potential-energy-dependent drift velocity. The average total velocity is given by Eq.

where M  is the mass of the NP and R is the molar gas constant.

In the simulations presented here, there is no contribution from an external 

electric field, as there is no electric field present in the condition under which delivery is 

carried out in the experiment, but the model can account for an external field by including 

such contribution in Equation (19).

(2.20)

= c r  w d v = 4*  /,

(2.20)
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Elapsed time at each simulation step is then calculated by dividing the mean 

displacement by the average total velocity for that time step

tn = tn. 1 + T- ^ ,  (2.21)
vn

where, tn is the time at step n, tn_t is the time at the previous step n-1, TMDn is the 

average displacement o f all particles during timestep n, obtained as the square root of the 

Mean Squared Displacement, and Vn is the total velocity, from Eq. (2.20), at that time.

2.5 Modelling Pores/ Endcaps at Tube ends

In HNTs purely non-Knudsen transport (because the radius of the nanotube is 

around 15 nm) at atmospheric pressure and temperature is observed. Here, we present a 

rather unique 3-D coarse grain Monte Carlo (time -quantified) model that uses classic 

kinetic theory coupled with Guy-Chapman-Enskog theory and Poisson-Boltzmann theory 

to describe the molecular transport in the HNT channels with endcaps or pores near the 

tube’s openings. The model, implemented using MATLAB [122], was designed to 

simulate NP diffusion in long, defect free NTs and out o f the ends of the NTs. The 

hydrodynamic radius, the effective radius of a hydrated NP in the solution, is considered 

in these simulations, rather than the actual gas phase radius. NPs are considered to be 

spherical in shape and are initially distributed uniformly throughout the cylindrical 

channel except at the tube’s ends where the density is larger to account for the 

experimentally observed initial burst, with the channels immersed in a  dielectric medium.

NP’s motion is simulated based on a concentration-dependent random walk to 

sample the configuration space subject to collisions and interactions between the NPs and 

between the NPs and the HNT walls. The motion of the NPs inside the nanotubes is
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based on their interactions with their immediate neighborhood; this includes other 

particles and the surrounding nanotube walls or the nanotube pores/endcaps. Particles are 

moved one at a time in an arbitrary direction and an arbitrary length up to an upper limit 

that depends of the kinematics of the system. The change in energy of the system due to 

the move is calculated to determine if the move is energetically viable at a given 

temperature. The move is allowed as long as it is energetically viable and there is no 

overlap with the walls or with neighboring NPs along the line connecting the initial and 

final position of the NP. There are two ways to model the endcap/pore. Figure 2.3 

presents the two distinct geometries considered for this work.

Po

.... Rc

a) b)

Figure 2.3: a) Single opening pore b) Perforated pore.

At the HNT entrance, the infinity tube approximation is discarded in favor of the 

interaction between the NP and a rounded HNT pore entrance as schematically
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represented in Figure 2.3a. Perforated pores as seen in Figure 2.3b are defined by their 

total open area which is the ratio of the open area of the disk to the total area of the disk.

2.6 NP- Pore Wall Interaction

The NPs are modeled as soft core spheres with hydrodynamic radius R and a 

surface potential (the potential at R). The NT’s walls are positively charged with a pH- 

dependent surface charge density. Due to the structure of HNT pores, a soft wall 

composed of Lennard Jones (LJ) atoms is chosen accordingly. As the NPs approach the 

pore region at the tube’s ends, they experience a Columbic and a VDW interaction with 

the spherical pore wall. The total energy experienced by the NPs is

u (r)  =  uVdw + u CB Z < 0 and Z > L and x 2 +  y 2 < 2Rp> (2.22) 

where uCB is the energy contributions due to Columbic interactions and uvdw the 

contributions due to VDW interactions.

The VDW ion-wall interaction can be computed by integrating the VDW 

potential over the wall’s surface. An analytical expression for the VDW experienced by 

small charges inside a cylindrical nanotube is given by Eq. (2.23).

A  [  2RRP 2RRP f _________ 4 RRp 1 1
U V dW  6  [ D2+ 2 (R + Kp) D D2+4RRp +2(R +R p )D ”  [  D2+4RRp +2(R +R p )D J J ’ * ' '

where Rp is the radius of the curvature of the pore and D is the distance of separation of 

the NP from the pore wall, and A is the Hamaker constant and is given by Eq. (2.24).

^  _  3 (ew ~cm 6p ~ cm\  3/tVe__________ (ww~n m )(n p ~ TOm)___________  ^
4 V w + e m e p + e J  8 V2 J (n 2/+ ny (n 2+ n 2i) j K ^ M ^ + n 2,) '
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where ew is the permittivity and n w is the refractive index of the nanotube wall, ep is the 

permittivity, and np is refractive index of the NPs, and em is the permittivity while is 

the refractive index of the surrounding medium.

The potential energy landscape due to the Columbic interaction between the NP 

and the inner surface of an endcap/pore is described by Eq. (2.25).

« c . =  ( S ) tanh © )  e* P ( -K° ) .  <2-25>

where xpp is the surface potential of the endcap, and n m is the bulk density o f the ions in 

the endcap.

When the pore is formed by crosslinking of the HNTs with polymers or by any of 

the other methods described in the introduction, its shape resembles that of the pore as 

shown in Figure lb. For these kinds of pores, the above equations for energy cannot be 

used. The VDW ion-endcap wall interaction can be computed by integrating the VDW 

potential over the wall’s surface. An analytical expression for the VDW experienced by 

small charges inside a cylindrical nanotube is given by Eq. (2.26)

uvdw — ^  • (2.26)

The potential energy landscape due to the Columbic interaction between the NP 

and the inner surface of an end cap/pore is described by Eq. (227)

. .  _  eP£0>l»pSinh(Kr)

“  * l r c o s h ( « ( S |, - S ) )  ( 2 ' 2 7 )

For inert non-polar surfaces the VDW potential energy is given by Eq. (2.28)

Uvaw=:z£ zz  (2-28>



33

where D0 is the cut off distance of separation between the NP from the pore’s wall and A 

is the Hamaker constant.

Time is introduced into the model using the method presented above. We have 

used dexamethasone for all of these simulations. The relevant physical properties used in 

our simulations can be found in Table 2.1. The properties o f all NPs studied in this work 

are given in Table 2.1.

Table 2.1: Physical properties of the four different NPs used in this work.

Molecules CjjHj^FOs c 9®6̂
Dexamethasone Nifedipine Furosemide 2-Acetoxy benzoic Add

? (pH 7.5) (mV) -35 -45 -40 -4

Refractive Index 1.592 1.559 1.658 1.551

Refractivity 

(cm )

102.493 87.9 75.8 44.5

Molar Volume 

(m )
296.2x10* 272.3x10* 205.8x1 O'6 139.6x1 O’6

j
Density (g/cm) 1.3 1.35 1.6 1.3

Polarisability
]

(cm )
39,7x10 M 34.8x10 M 30x10 24 17.7 xlO

24

Molecular 
Weight (Da)

392.47 346.33 330.74 180.04

MolecularRadius
-9

(xlO m)

0.207 0.198 0.195 0.159

Solubility
(mg/mL)

0.1 0.05 0.1 3

Structure OH

V
HO

rUVrJ ■ 

o-u.%* "

°-

v Y r o / MO

OyOK

c f r
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2.7 Experimental Conditions: Nanotube Loading/Release

All the work reported here is a result of computer simulations; however, in order 

to give the reader a clear picture of how the simulations represent the experiment, the 

conditions under which the experiments are conducted are reported here. It is worth 

mentioning that we have used experimental data and results from Dr. Yuri Lvov’s group 

to validate the simulation.

In order to load the HNT, saturated solutions of drugs is mixed with a dry HNT 

powder and sonicated for 15 minutes. The samples are transferred into a vacuum jar, 

which is then evacuated using a  vacuum pump. A slight fizzing indicates the removal of 

air from the HNT lumens. The expelled air is replaced with the saturated solution of 

drugs. The process is repeated three times for most efficient loading, which is typically 6- 

8 wt. %. After loading, the samples are separated from the solution by centrifugation, 

washed and then air dried.

All release experiments are performed in water, at pH 7.5 and room temperature 

(sink release conditions). The samples are stirred and the supernatants are collected 

periodically. Concentrations of released drugs are determined using UV-Vis 

spectrophotometer. At the end of the release study, a high power sonication is performed 

to ensure the complete release of loaded corrosion inhibitors and to calculate the loading 

efficiency for the kinetic normalization. More experimental details are given in 

[113,134,139].



CHAPTER 3 

RESULTS AND DISCUSSION

In this chapter we validate the simulation model presented in Chapter 2 using 

published experimental data. The validated model is used to study the effect o f various 

parameters like HNT’s lumen size and length and NP’s charge on the release of NPs from 

HNTs. We discuss in detail the different regions of the release profiles, and the different 

diffusion mechanisms that govern the motion of the NPs in each of these regions. We use 

well established mathematical models to obtain the diffusion coefficient in each of these 

regions.

3.1 Validation of the Model

The results shown in Figures 3.1-3.12 feature the spontaneous release of NPs 

from HNTs immersed in a medium of constant dielectric properties (water). The term 

spontaneous release indicates that the NPs motion in the HNT is not driven by externally 

applied forces or potentials. The diffusion of NPs is driven only by interactions between 

NPs and HNT and a concentration gradient. Four different NPs, 2-acetoxy benzoic acid, 

dexamethasone, nifedipine, and furosemide were chosen to validate the model; the 

experimental release profiles for these molecules from HNTs were obtained from the 

literature. In the pH range of 4-8.5, surface charge in the HNT tubule lumen is positive 

and the surface charge on the external surface is negative. This surface charge difference 

promotes the loading of negatively charged molecules inside the lumen and is expected to

35
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limit their adsorption onto the negative outer surface of the tubules. All the simulations 

presented here were conducted in an environment consistent with a pH of 7.4 selected to 

match the experimental conditions to which these simulations are compared to, which 

replicate physiological conditions for drug release [133].

The release profiles from 12 nm and 15 nm lumen HNTs, in comparison 

experimental results are shown in Figures 3.1 and 3.2, respectively. Each point is the 

average of 30 independent simulations under identical conditions.
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Figure 3.1: Simulation results compared to experimentally available release profiles for a) 
2-acetoxy benzoic acid [134] b) dexamethasone [113], c) furosemide [113] and d) 
nifedipine [113], from a 12 nm lumen HNT.
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Figure 3.2: Simulation results compared to experimentally available release profiles for a) 
2-acetoxy benzoic acid, [134] b)dexamethasone [113], c) furosemide [113] and d) nifedipir 
[113] d), from a 12 nm lumen HNT.

There is a significant difference between the different batches of HNTs used in the 

experiments where lumen and length distributions vary from one sample to another, 

particularly between samples mined from different locations [135-138]. The two lumen 

diameters selected for the calculations presented above were chosen because the 

experimental sample for the first three molecules, to which the results are being compared, 

has a distribution (presented in Figure 3.3) with a peak at 12 nm and average lumen 

around 15 nm.
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Figure 3.3: Experimentally determined HNT inner lumen diameter distribution [134].

Experiments show that NP release from the Halloysite tubules is typically 25 

(nifedipine) -  75 (furosemide and dexamethasone) times longer than that from the micro

"Xftcrystals. Table 3.1 shows the time taken for maximum release reported in the 

experimental work for the four molecules subject of this study. The times reported 

correspond to 90% release for 2-acetoxy benzoic acid, 70% for dexamethasone, 50% for 

furosemide, and 45% for nifedipine respectively.

Table 3.1. Comparison of release times from micro-crystals and HNTs [113,134]

Molecule Release time from 
Micro-crystals (Hours)

Release time from HNTs 
(Hours)

2-Acetoxy benzoic acid [134] 0.05-0.083 3
Dexamethasone [113] 0.16-0.25 14
Furosemide [113] 0.083-0.11 18
Nifedipine [113] 0.25-0.33 6

Figure 3.1a and Figure 3.2a show a comparison between the release profile of 2- 

acetoxy benzoic acid and experimental results reported by Wenbo Wei [134]. 2-acetoxy 

benzoic acid has the lowest (negative) zeta potential of the 4 molecules (at pH 7.4), and 

thus it does not feel as strong a pull towards the walls as the other three molecules 

leading to the fastest delivery of all. This is clearly shown in Figure 3.1a and Figure 3.2a

K O N 9 < 6 0 0 O N < 9 1 0 < M O O
' r - 4 W f H l - 4 « H N N N N r 0 9 < A

Nanotube Lumen (nm)



39

where more than 85% of the molecules are released within the first hour. The release 

profile shows an initial burst followed by a longer saturation phase. The saturation phase 

is due to the surface diffusion of the molecules adhering to the walls.

Figure 3.1b-d and Figure 3.2b-d provide a comparison between the release 

profiles for dexamethasone, furosemide, and nifedipine with the experimental release 

profiles obtained from Veerabadran et al. [113]. These figures show a good correlation 

between the experimental and simulation profiles. For these cases, simulations also 

predict an initial burst followed by a saturation face; however, unlike the case of 2- 

acetoxy benzoic acid, the experimental release stops at a smaller delivery percentage and 

no experimental verification of the saturation face is provided. These three molecules 

bear a significantly larger zeta potential than 2-Acetoxy benzoic acid and thus the 

delivery profile takes longer.

All release profiles have three distinct regions or features. In most release profiles, 

one of the features is washed out by the other two. These features o f the release profile 

can be explained in terms of molecular interactions. The NPs, being negatively charged, 

adhere to the HNT’s walls and form a layer, similar to a stem layer, near the wall 

effectively shielding other negatively charged molecules inside the HNT from the HNT 

wall. These shielded molecules are no longer attracted to the wall, but are driven towards 

the center of the HNT. Here, they encounter similarly charged NPs. These NPs then 

diffuse out of the HNT due to intermolecular repulsion. We call this phase the 

intermediate or axial phase.

These NPs behave like they are in a nanotube made up of like charged NPs with a 

much smaller lumen. The molecules that stick to the wall diffuse out more slowly,
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causing an elongated saturation phase. A large number of NPs aggregated near the HNT 

openings and in this case the endcap pores diffuse out during the burst phase. Due to this 

massive diffusion of particles out of the HNTs, the contribution to the total energy of the 

system due to NP-NP repulsive interactions is greatly reduced, the velocity of the NPs 

also reduces, and this in turn reduces the NP’s release rate in the intermediate phase as 

time passes. This results in a three-phase release: an initial burst phase or phase I, an 

intermediate or axial diffusion phase or phase II, and the slower saturation phase or phase 

III. The presence of phase II is corroborated by the results presented in Figure 4.7 and the 

release profile of 2-acetoxy benzoic acid in Figure 3.1 and 3.2.

The intermediate/axial diffusion phase is pronounced and prolonged in HNTs 

with endcaps, as the presence of the endcaps slows down the entire release process. An 

inspection of the simulation results show that around the concentration where phase III 

starts, most of the remaining NPs are near the walls. Phase III is therefore governed by 

surface diffusion along the wall. Phase II is governed by the molecular diffusion of NPs 

at the center of the tube that are shielded from the wall. In the experiments, phase I is 

governed by multiple release processes. The first may be attributed to the dissolution of 

NPs from the HNTs and the endcaps outer openings. The second is the release of NPs in 

the natural gaps/defects on the cylinder surface at the end of the rolled clay sheet and the 

NPs accumulated near the pores in the endcaps [139].

In the model, these effects are simulated by setting up a higher NP density at the 

ends of the tubes than in the center as explained earlier, followed by the release of NPs 

inside the HNT lumens, shielded from the wall by other NPs. This process is governed by 

molecular diffusion. The actual concentration at the ends was calibrated a-priori, and it is
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not used as an adjustable parameter. No single mathematical model can describe the 

entire release process satisfactorily, but the two phases can be independently described by 

two distinct mathematical models. Both release phases are concentration-dependent and 

follows first order kinetics.

The burst phase can be best described by the Korsmeyer-Peppas model [131]

Z L = k t 1- " ,  (3.1)Moo

where Mt /M* is a fraction of the NPs released at time t, k is the release rate constant, and 

n is the release exponent. The value of n indicates the type of diffusion dominating the 

procees. 0.45 < n corresponds to a Fickian diffusion mechanism, 0.45 < n < 0.89 to non- 

Fickian transport, n = 0.89 to Case II (relaxational) transport, and n > 0.89 correspond to 

super case II transport [131]. This is summarized in Table 3.2. The Korsmeyer-Peppas 

model was first introduced by Korsmeyer etal. [131] in 1983 as a simple relationship 

describing drug release from a polymeric system. This model was used to study the 

release kinetics of data obtained from in vitro drug release studies.

Table 3.2. Interpretation of diffusional release mechanisms from cylindrical channels 
[131]. ____________________ ___________ _ _ ___________

Release exponent (n) Drug transport mechanism

0.5 Fickian diffusion

0.45 < n <0.89 Non -Fickian transport

0.89 Case II transport

Higher than 0.89 Super case II transport

While the Korsmeyer-Peppas Model accurately describes the initial burst phase 

release, it is claimed to be accurate up to approximately 60% release. A different model
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introduced by Weibull and others [132] is better suited to describe the saturation phase 

release. The Weibull model best describes release profiles and dissolution of drugs from 

the cylindrical delivery matrixes.

£ - [ l — - £ ] .  0-2)

where M, is a fraction of the NPs released at time t and AT® is the total amount of NPs 

released. Parameter a denotes a scale parameter that describes the time dependence while 

b describes the shape of the dissolution curve progression. For b = 1, the shape of the 

curve corresponds exactly to the shape of an exponential profile with the release rate 

constant k = 1/a.

The release curves corresponding to a 12 nm lumen HNTs are described below by 

using the two different mathematical models of first order kinetics discussed above. The 

results are presented in Figure 3.4 and the fitting parameters are presented in Table 3.3.
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Figure 3.4: Diffusion models compared to simulated release profiles for a) 2-Acetoxy 
benzoic acid [134] b) dexamethasone [11], c) furosemide [11], d) nifedipine [11].

Table 3.3: Parameters from fitting different models to the release profiles from HNTs. 
(These parameters are consistent with t in hours)

Burst Phase Saturation Phase
Molecule k n b a K=l/a
12 nm HNTs 
Dexamethasone 0.258 0.42 2.1 0.45 0.47
Furosemide 0.219 0.5519 4.9 0.6 0.2
Nifi dipine 0.215 0.519 0.406 3 0.33
2-Acetoxy benzoic 1.915 0.001 0.2 0.6 5
Acid

It is observed that as the zeta potential of the NPs becomes more negative (see 

Table 2.1), the more the release profiles deviate from Fickian diffusion in the initial burst
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phase, as evidenced by the values of n = 0.001 for 2-acetoxy benzoic acid (the less 

negative) and 0.S5 for furosemide (the most negative).

3.2 Effect of HNT Lumen

As discussed earlier, there is an important variation in HNT and NP properties in 

the experiment that may affect the release and therefore the effect of each of these 

parameters on the release profile is studied independently. In this subsection the effect of 

the inner lumen diameter is addressed. The NP chosen for this study is dexamethasone 

(see Table 2.1 for this particle’s properties). All o f the simulations are run at 300 K and 

the results are presented in Figure 3.5. The HNT lumen varies from 10 nm-50 nm. Error 

bars are not shown here for clarity, but they are within the same magnitudes as those 

shown in all other plots.
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Figure 3 .5 : a) Simulated release profiles of dexamethasone molecules from HNTs 
of different radii, b) Time needed for a given percentage of particles to be releases vs 
lumen diameter.

Experimentally, the HNT length varies from 0.5 to 1.5 pm with an average of 1 

pm; thus, for this study the tube length was selected to be 1 pm. The NPs were placed 

inside the HNT such that 55-65% of the NPs were placed within the 25% outermost 

region of the HNT on both sides of the HNT. The diffusion/release profile shows an
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increase in the delivery rate with the HNT diameter. In all o f these cases, the 

dexamethasone particles experience surface diffusion at the end of the release, but as the 

HNT lumen increases, the effect of the walls on particle diffusion is less pronounced and 

the release profile evolves towards free diffusion. In all cases, the particles that are near 

the wall are attracted to it shielding the other particles from feeling a similar attraction, 

but for the smaller HNT, fewer molecules are able to cross a given cross-sectional area at 

once, thus delaying diffusion.

In addition, for larger HNT a smaller percentage of NPs are near the wall. Thus 

the saturation phase is reached after a larger percentage of particles are released. Since in 

the experiment a distribution of HNT lumen size rather than a single NHT size is found, a 

weighted average following the lumen experimental distribution was considered and the 

result is presented in Figure 3.6 in comparison with samples with a single lumen size of 

12 nm and 15 nm and other distributions of lumen sizes, namely uniform and normal 

distribution, the latter centered at two different lumen sizes (15 nm and 25 nm). The 

normal distribution was centered at 25 nm because experimentally HNT have lumens up 

to 50 nm. Thus, a normal distribution centered at 25 nm is symmetric, while the normal 

distribution centered at 15 nm was chosen as this is the average experimental lumen size. 

The results are compared to the experimental release profile obtained from literature. As 

can be seen, there is a large variation with lumen size distribution. In situations like this, 

simulations can be of assistance as the data obtained from simulations can be used to 

predict the release profiles from the different samples of HNT mined at different 

locations across the globe if the size profile is known.
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Results show that although 12 nm and 15 nm lumen tubes are a better fit, the short 

time portion of the curve, the data obtained when the experimental distribution was used 

(light blue curve in Figure 3.6) better accounts for the entire 70% release data, showing 

that the presence of larger tubes is responsible for the larger time section of the curve.
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Figure 3.6: Weighted average release profiles of dexamethasone molecules from HNTs 
of different radii, for various inner lumen diameter distributions.

3.3 Effect of NP Charge

NP’s charge undoubtedly has a strong effect in the delivery profile. To address 

this issue the effect of charge sign (leading to attractive or repulsive interactions) and 

charge magnitude are studied. Results reported in Figure 3.8 show the variation in 

release profiles of NPs from HNTs with diameters between 10 nm and 50 nm. The 

magnitude of the NP’s charge is that of dexamethasone (Table 2.1) but with opposite 

signs. All other properties o f the NPs are kept the same (i.e. similar to dexamethasone). 

The negatively charged NPs experience an attraction towards the nanotube walls, 

whereas the positively charged NPs experience repulsion. Figure 3.7a shows that for 

repulsive interactions, the time taken to release decreases with the radius. The particles
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experience a squeezing effect and are forced away from the walls towards the center of 

the nano channel where particle-particle repulsion forces the particles out of the HNT. In 

Figure 3.7b, the release profiles for attractive interaction from HNT of different radii are 

shown. The effect in this case is exactly the opposite. The HNT with smaller radii exert a 

stonger attraction pulling the particles towards them. Once at the wall, the NPs stay there 

and move along the surface of the wall resulting in surface diffusion. In both cases, the 

smaller the tube diameter the more pronounced is the effect.
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Figure 3.7: a) Release profiles for repulsive interactions between the wall and the 
particles for different radii, b) Release profiles for attractive interactions between the 
wall and the particles for different radii.

Next, the magnitude of the NP’s charge is considered. All other properties are 

those of dexamethasone. Changing the net charge of the molecule is experimentally 

possible by either using layer-by-layer functionalization, or encapsulating the NPs in 

micelles. All of the simulations are run at 300 K. The NP charge is varied from +3 to -5. 

The results are shown in Figure 3.8. An increase in the charge on the NP leads to a 

stronger interaction among the NPs and between the NPs and the charged inner wall of 

the nanotube. In the case of attractive interactions, the NPs experience a pull towards the 

wall and the mechanism of diffusion that occurs in all such cases is surface diffusion. As
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expected, the particle with the largest charge diffuses more slowly than the less charged 

particle. In the case of repulsive interactions, NPs experience a push away from the walls 

and the mechanism of diffusion that occurs in all such cases is normal mode diffusion. 

Once more, the NPs with the largest charge diffuse faster than the less charged particle. 

Figure 3.8b shows the time taken for a certain percentage of the particles to be released 

from the HNT as a function of the charge. For positively charged particles, the release 

time is very small in the time scale appropriate for negatively charged particles and all 

points seem to overlap each other making evident the fast diffusion.
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Figure 3.8: a) Release profiles of dexamethasone-like particles with different charges 
from HNTs of lumen 15 nm. b) Time needed for 20%, 50% and 90% release o f NPs Vs 
NP charge.

3.4 HNT Lumen Corrected Release Profiles

As a corollary of this work, Figure 3.9 shows the release profile of the 4 

molecules from a HNT sample weighted for different lumen diameters with a distribution 

presented in Figure 3.3. A much better agreement with experimental results is observed 

compared to what is shown in Figure 3.1 and Figure 3.2. Accounting for the experimental 

distribution of HNTs length, may improve the agreement further.
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Figure 3.9: Comparing the experimental and weighted average simulated release profiles 
of a) 2-acetoxy benzoic acid [134] b) dexamethasone [113], c) furosemide [113] and d) 
nifedipine [113].

3.5 Effect of HNT Length

A disadvantage of HNTs is that the lumen volume is only 10-14% of the total 

volume so loading efficiency is limited. To increase loading, the lumen properties such as 

lumen volume, internal charge, etc. can be tuned. Lumen volume is determined by two 

parameters: the lumen diameter and HNT length. Figure 3.10 shows the effect of tube 

length on the release profile of dexamethasone NPs from 15 nm lumen HNTs at 300 k. 

The initial concentration density in all tubes is the same. As can be seen, the release is 

slower for longer HNT; however, notice that in all the cases, the saturation phase starts at 

about the same concentration. In this case after 60% of the particles have been released.
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This clearly contrasts with the effect of lumen radius where the saturation phase starts 

after a larger percentage of particles has been released for larger HNT. The larger HNTs 

release the NPs faster. There is a direct correlation between the length of the tubes and the 

rate of release of NPs.

Figure 3.10: a) Simulated release profiles of dexamethasone molecules as a function of 
tube length b) Length distribution of a sample of HNT.

As a corollary of this work, Figure 3.11 shows the release profile o f the four 

molecules from a HNT sample weighted for different lumen diameters and lumen lengths 

with distributions presented in Figures 3.3 and 5.4b, respectively. A much better 

agreement with experimental results is observed compared to what is shown in Figure 

3.11. Accounting for the experimental distribution of HNT length clearly improves the 

agreement between experimental data and simulation results.
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3.6 HNT Lumen and Length Corrected Release Profiles
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Figure 3.11: Comparing the experimental and weighted average simulated release 
profiles of a) 2-acetoxy benzoic acid [134] b) dexamethasone [113], c) furosemide 
[113] and d)nifedipine [113].



CHAPTER 4

SUSTAINED RELEASE FROM HNTS WITH ENDCAPS

In the previous chapter, we validated the simulation model and studied the effect 

of various parameters like HNT lumen size and length and NP charge on the release of 

NPs from HNTs. In this chapter, the modification of the release profile by static blocking 

with inert endcaps to obtain long-term release of NPs from HNTs is studied. Endcaps 

help ensure the NPs inside the HNTs are released in a much more prolonged and 

sustained manner, with release times of hundreds of hours. Two basic endcap 

geometries, spherical and planar, have been considered for this study. Single pore and 

multi pore are considered for the case of planar endcaps 2 configurations.

4.1 HNTs with Spherical Endcaps

Figure 4.1 contains a schematic of the typical formation of endcaps at HNT ends. 

One of the more commonly used endcap material is silica.

Particles forming endcaps

NPs for storage

Figure 4.1: Schematic depicting typical end cap formation.
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Results shown in Figure 4.2 feature the spontaneous release of NPs from HNTs 

with end caps, immersed in a medium of constant dielectric properties consistent with 

water. The term spontaneous release indicates that the NPs motion in the HNT is not 

driven by any externally applied forces or potentials, but driven only by interactions 

among NPs and between NPs the HNTs’ walls and endcaps, and a concentration gradient. 

In the pH range of 4-8.5, surface charge in the HNT tubule lumen is positive and surface 

charge on the external surface is negative. This surface charge difference promotes the 

loading of negatively charged molecules inside the lumen and is expected to limit their 

adsorption onto the negative outer surface of the tubules. All the simulations presented 

here were conducted considering a pH of 7.4 which replicate physiological conditions for 

drug release. The HNT’s lumen was 12 nm in diameter [26].
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Figure 4.2: Release profiles of dexamethasone Molecules from HNTs with neutral 
spherical endcaps with a single pore of different pore’s radii.

Considering an attractive interaction between the particles and the wall (as is the 

case), and with neutral or uncharged porous endcaps, the particles experience a pull 

towards the HNT walls. Figure 4.3 shows how the release profiles of dexamethasone 

changes as a function of the endcap pore radius; as it can be seen, the smaller the endcap
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radii the slower is the out diffusion of particles. The effect in this case is due to the 

smaller opening at the tube’s ends. These smaller openings lead to a decreased diffusivity 

and a slower release of the drug from the nanotube. The NPs naturally accumulate near 

the tube’s openings and as the concentration of NPs near the tube’s endcaps increases, the 

other NPs inside the nanotube are repeled from the openings. At the same time NPs near 

the pore opening are pushed out by the particles in the main part of the HNT. The 

intermolecular repulsion is then what drives out most of the NPs near the tube’s opening.
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Figure 4.3: Release profiles of dexamethasone Molecules from HNTs with charged 
spherical endcaps for different single pore with different radii.

In the case of charged endcaps, with charges that are similar to that o f the HNT’s 

wall, the effect of the pore on the release profile is even more pronounced (Figure 4.5). 

The NPs are attracted to the wall and stick to it. A very slow surface diffusion along the 

pore’s walls is reponsible for NP’s release. This results in a marked increase in release 

times enabling a more sustained and controlled release of the drug from the nanotubes. 

As in the previous case, a smaller pore’s radius leads to a much slower release of NPs 

from the HNT that is now further delayed by the repulsion caused by the caps extending 

the release to thousands of hours.
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4.2 HNTs with Planar Endcaps

Figure 4.4 shows the release profile from HNT comparing flat with spherical caps 

with a single 3 nm pore in both cases. The release from the HNT with the flat disk pore is 

slower than for the spherical pore because the spherical pore allows charges to 

accumulate near the pore with the cap acting like a funnel; therefore, more NPs are able 

to get closer to the pore’s opening and are pushed out of the pore due to the dominating 

NP-NP repulsion.
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Figure 4.4: Release profiles o f dexamethasone Molecules from HNTs with spherical 
endcaps and flat endcaps with pore of diameter 3 nm.

For planar endcaps, with several as opposed to one pore, the rate of diffusion 

depends on the number of pores in the endcaps and the radius o f those pores. To study the 

dependence of the release profile with these parameters, release profile is calculated as a 

function of a factor .4 that determines the percentage of the cap that is open through 

which the NPs diffuse out,

. T o t a l  a r e a  o f  a l l  t h e  h o l e s  . ,A= ~ "    ■ - -  *100. (4.1)
T o t a l  a r e a  o f  t h e  d i s k
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A is varied by first varying the number of pores while keeping their area constant 

and then by varying the area of these pores but maintaining their fixed number. All of the 

pores, however, have sizes larger than the diameter of the NPs.

In Figure 4.5a, A varies by increasing the number of pores but keeping the area of 

these pores equal to 1 nm, while in Figure 4.5b, A varies by changing the pore size, but 

the number of pores is constant (two).

a) b)
Figure 4.5: a) Release profiles of dexamethasone molecules from HNTs with perforated 
endcaps for different values of A by changing the number of pores by keeping the radius 
to 1 nm b) Release profiles of dexamethasone molecules from HNTs with perforated 
endcaps with fixed number of pores (2) but different radii.

As expected, release time decreases with an increasing value o f A. In the first case, the 

larger number of pores allow for more NPs to be released simultaneously. Increasing the 

pore size seems to produce a similar effect as curves look rather similar. In order to 

establish the relative importance of pore size vs. number of pores, two different caps with 

nearly the same value of A (A~50%) are studied. Figure 4.6 shows the release profiles of 

both these cases. The results show a significant overlap of the release profiles. Factor A 

seems to be a significant parameter. However, with smaller pores, release occurs faster 

than with less but larger pores. This could be explained by the reduced competition (NP- 

NP repulsion) as they go through the pores, larger pores allow more particles to go
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through but they will be closer to each other than if they go simultaneously through 

different pores. The simulations are stopped when 90% of all NPs are released or when 

there is no significant change in number of particles released for 100 hours.
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Figure 4.6: Simulated release profiles of dexamethasone NPs for two distinct 
configurations o f planar endcaps.

4.3 Charged Endcaps

The effect of thecharge on the caps is also studied here. Planar endcaps are 

considered; with a charge similar to the HNT walls, an attractive interaction between the 

NPs and the endcap walls develops.

All release profiles have three distinct regions or features. In most release profiles, 

one of the features is washed out by the other two. In the release profiles shown in 

Figures 4.7a and b, it is observed that for smaller values of A, the presence o f the three 

phases in the release discussed in Chapter 3 are more evident, particularly in phase II 

where it shows up more clearly than in other cases.
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Figure 4.7: Release profiles of dexamethasone from 2 different perforated pore 
openings for both charged and uncharged pores.

The intermediate/axial diffusion phase is pronounced and prolonged in HNTs 

with endcaps, as the presence of the endcaps slows down the entire release process and 

accentuates each phase.

Simulations show that NP release from the HNTs with endcaps is typically 200- 

400 (dexamethasone) times longer than that from the micro crystals and 25-75 times 

longer for HNTs without endcaps.



CHAPTER 5 

DELIVERY DUE TO EXTERNAL STIMULI

In the previous chapter we studied the further delay in the release profiles realized 

by static blocking with inert endcaps which provides limited control on release profile.

To obtain long-term release, as well as on demand delivery, however, new mechanisms 

that provide sustained delivery and controllability are desired. The introduction of 

stimuli-sensitive materials into delivery systems improves their controllability and is 

helpful to realize on-demand release [141-147]. HNTs are well suited for use as stimuli- 

responsive controlled release systems. HNTs respond to several external stimuli, 

including pH and temperature. These stimuli have been proposed as triggers for releasing 

the NPs from the HNT lumens on demand. To obtain extended release times, but 

particularly on demand controlled delivery, the effect of various control parameters, such 

as pH and temperature, need to be studied.

5.1 Effect of HNT Length

In the previous chapters, it was shown that the simulated release profiles for NPs 

from a HNT sample show a better agreement when calculations are weighted for different 

lumen diameters with an experimentally obtained distribution. This was the case for all 

four NPs studied in that work. However, in naturally occurring HNT samples, along with 

lumen size, the HNT length also varies. In Figure 5.1 a), a TEM image of HNT batch, the
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diversity in the HNT lumen size can be appreciated, while in Figure 5.1b), the SEM 

image shows the diversity in the HNT length for a similar sample.

a) b)
Figure 5.1: a) TEM images of HNTs showing diversity in HNTs Lumen distribution, b) 
SEM images showing the diversity in HNT size.

Figure 5.2 shows the effect of tube’s length on the release profile of 

dexamethasone NPs from 15 nm lumen HNTs at 300 k. Figure 5.2b shows the 

experimentally determined HNT length’s distribution [134]. The initial concentration in 

all tubes is the same. As can be seen, the release is slower for longer HNTs, with the 

saturation phase starting at about the same concentration: in this case, after 60% of the 

particles have been released. This contrasts with the effect of the lumen radius where the 

saturation phase starts after a larger percentage of particles have been released for HNT 

of a larger diameter.
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a) b)
Figure 5.2: a) Simulated release profile of dexamethasone molecules as a function of 
tube length b) Experimentally determined HNT sample length distribution.
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Figure 5.3 shows the release profile of the dexamethosone molecules from 

different HNT samples. The first release profile is from 1 pm long 12 nm lumen HNTs; 

the second release profile is from 1 pm long 15nm lumen HNTs; the third release profi’? 

is weighted for different lumen diameters (as in Chapter 3); and the fourth release profile 

is weighted for different HNT diameters, with a distribution of diameters as reported 

elsewhere [44] and for different lengths, with a distribution presented in Figure 5.1b. 

Table 5.1 shows the mean squared deviation obtained for HNTs with different lumen and 

length distributions when compared to the experimental release profiles. Figure 5.3 

shows the release profiles compared to the experimental data. Simply considering a 

distribution of HNT lumen improves the release profile by decreasing the error more than 

15 times compared to the release profile from 15 nm lumen HNT, which is the case that 

provides the best agreement with the experiment when only a single radius and length are 

considered. When a distribution of lengths is also incorporated in the average, the 

deviation decreased another 5 times, about 2 orders of magnitude compared to a uniform 

HNT size distribution.

Table 5.1: Mean square deviation from the experimental prediction of the 
release profile for dexamethasone. For the first three cases, all HNTs are of a 
1 pm in lenght.____________________ _______________________________

% Released 12nm
Diameter

15nm
Diameter

Average
(Lumen Distribution)

Average
(Lumen and Length 
Distribution)

10 0.065 0.006 0.012 0.0023
20 0.014 0.009 0.048 0.010

30 0.004 0.096 0.133 0.027
40 0.022 0.017 0.163 0.033
50 0.067 0.0004 0.345 0.069
60 1.903 0.417 0.384 0.077
70 26.953 18.046 0.037 0.0078
Average Error 4.147 2.656 0.160 0.032
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Figure 5.3: Experimental vs simulated release profiles for dexamethasone a) from 1 pm 
long 12 nm lumen HNTs. b) from 1 pm long 15 nm lumen HNTs, c) from 1 pm long 
HNTs and release profile weighted for different lumen diameters and d) release profile 
weighted for different lumen diameters and lumen lengths.

5.2 Three Phase Release

NP-NP and the NP-surface interactions determine the release rate of NPs from the 

HNT. Two phases experimentally identified in the release profile, namely the initial burst 

phase, governed by molecular diffusion, and the saturation phase, which is mostly surface 

diffusion, have been previously characterized and explained in Chapters 3 and 4. 

However, when the particle-wall interaction is attractive, an intermediate axial diffusion 

phase is predicted which has been overlooked to this date. At a given concentration, 

enough particles will already be near the walls to shield the others from the wall. The
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particles in the HNT that are not near the wall are then near the axis of the HNT, shielded 

from wall attraction, and will diffuse faster due to intermolecular repulsion. This is 

illustrated in Figure 5.4 which shows the release profile of dexamethasone from a HNT at 

a pH of 12. It is important to note that when NP-wall interaction is attractive, all release 

profiles in general have the three regions described here; however, in many cases the 

intermediate axial regime overlaps with the other two phases, particularly the burst phase, 

and it is not easily discemable.

90
80

Saturation Phase

Axial Phase

Burst Phase

Time inHours

Figure 5.4: Release profile of Dexamethasone-like particles highlighting the 3 different 
phases.

5.3 Effect of Ambient Temperature

Because temperature stimulus can be easily designed and controlled, it is 

important to understand the thermal response of HNT delivery systems; therefore, the 

effect of temperature on the release profile is studied. The temperature in some systems 

can only be varied by a few degrees, especially for application such as drug delivery, so 

in the first part of this study changes of ± 10 K from 300 K were studied. In these 

simulations only the temperature is varied, all other parameters, like HNT surface charge 

density (consistent to that at pH 7.4) or HNT lumen diameter and length, are maintained



64

constant. The NP used in these simulations is dexamethasone. Figure 5.5 shows the effect 

of temperature on the release rate. An increase in temperature increases the total energy 

of the system and the thermal velocity o f the particles. From the point of view of the 

simulation, the increase in temperature allows some of the rejected hops to become 

energetically viable/accepted, which in turn results in an increased net displacement of 

the molecules reducing the transit time. Two competing effects come into play, NPs can 

go farther faster due to thermal stimuli, but they are still constrained by the geometry of 

the nano channel and the presence of the surrounding media. From Figure 5.5b it can be 

seen that a change temperature by ±10 K has no significant effect on the release profile. 

This indicates that the increase in temperature by these trivial amounts is expected to 

produce a negligible effect in the experimental profile.
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Figure 5.5: a) Release profile for dexamethasone from 15 nm lumen HNTs as a function 
of temperature, b) Time needed for 90% release o f NPs vs Temperature. The inset shows 
the same information but at a scale needed to accommodate the simulation error showing 
that all points are indeed within the statistical error.

Temperature is either set by the delivery conditions (like in physiological 

systems) or it could be controlled to optimize the process. Temperature in some systems 

can only be varied by a few degrees. For application such as drug delivery, in Figure 5.5
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the effect on the release profile of changes in temperature of ±10 K around 300 K was 

studied and it was observed that the effect on delivery is negligible. It is expected then 

that temperature will not be a factor for delivery in live physiological tissues. However, 

larger changes in temperature may happen or may be desirable for other application, for 

instance temperatures in the range of 350-400 Kelvin is justified when HNT loaded with 

antioxidant molecules is used for antiaging doping of rubber tires [52] or antimicrobial 

geo-polymer concrete, for example [140]; thus, the study is extended to temperatures 

from 200 K to 600 K. Results are shown in Figure 5.6. Release profiles are clearly 

different at different temperatures, particularly, above room temperature (400 K- 600 K), 

the release speeds up by several hours, from 20 hours at 300K, to less than 10 hours at 

400 K to less than 1 hour at 600 K. Thus, if release is expected to be controlled at such 

high temperatures, other mechanisms may be necessary to extend release times. 

Consistent with this is the observation that at 200 K, the release increases by a factor of 

about 3 over the release at room temperature._____
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Figure 5.6: Release profiles for dexamethasone from a 15 nm lumen 1 pm long HNTs as a 
function of temperature.
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5.4 Effect of Surface Potential and pH

Negatively charged NPs experience an attraction towards the walls, whereas 

positively charged NPs experience repulsion. For a given HNT inner surface charge, the 

magnitude of the NP’s charge determines the strength of the interaction among NPs and 

between NPs and the HNT walls. When in a dielectric media, the zeta potential (z) is 

however a more appropriate way to characterize interactions. Z is the difference in 

electrostatic potential between the surrounding media and the stationary fluid layer 

attached to the particle, and it depends on the surface charge density, the dielectric media, 

and the pH. The relation between these values is captured through the Grahame equation 

[148]

ad = j8 k T e e 0n  sinh , (5.1)

where ad is the surface charge density, i is the charge of the protons in the solution, z is 

the zeta potential, and n  is the ionic density in the surrounding solution. Changing the 

surface charge of the molecule, the zeta potential is experimentally possible by either 

using layer-by-layer functionalization, or encapsulating the NPs in micelles.

In this study, z is varied from -10 to -55 (the zeta potential of dexamethasone is - 

35mV in water at pH 7.4) and the results are shown in Figure 5.7. An increase in the 

NP’s surface potential leads to a stronger repulsion among NPs and a stronger interaction 

between the NPs and the charged HNT inner wall. In the case of attractive interactions, 

as is the case for dexamethasone, the NPs experience a pull towards the wall, and as 

expected, the particles with the largest surface potential diffuse more slowly than the ones
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with the smaller surface potential. Figure 5.7 shows the release profile until 90% of 

particles are released for different values of the zeta potential.
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Figure 5.7: Release profiles of dexamethasone-like particles with zeta potentials from 
HNTs of lumen 12 nm.

Another reason the zeta potential can change is the pH; however, the surface 

potential of both the HNTs wall and NPs changes with a change in pH as opposed to just 

a change in the z of the particle as considered in the previous case. In Figure 5.8 the 

results are presented to capture the effect of pH. Four different values for the pH, 

namely 1,6.8,7.4 (neutral), and 12 were tested to sample pH from acidic to basic.
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Figure 5.8: Release of dexamethasone like particles for different pH.
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At pH 1, the media is acidic, and both the HNT surface and the NPs become 

protonated, and thus more positively charged. Dexamethasone NPs, which have negative 

values of z at a pH of 7.4 bare a positive z at lower pH, and the interaction potential with 

the wall becomes repulsive; NPs are forced away from the walls and inter particle 

repulsion dominates by propelling them outwards. At pH 12, the HNT lumen is still 

positively charged and the surface potentials of the NPs are more negative than at 7.4. 

They then experience a stronger attraction to the HNT-lumen walls.

Among the two stimuli studied, pH-responsive HNT systems are more suitable for 

use as drug delivery vehicles to cancer cells and inflamed tissues. For instance, it is 

known that the environment in cancer cells is more acidic than in the blood and normal 

tissues; thus, the zeta potential in the HNTs inner wall o f the HNT and that of the NPs 

can be adjusted by functionalization so that at neutral pH (7.4) the interaction is 

attractive, while in the acidic media of a cancer cell, both of them become positive for 

immediate release. Such systems can also be used to treat clinical disorders like diabetes 

as the pH of blood changes with sugar content. Certainly, more research (particularly 

experimental research) need to be conducted to determine the limitations in the ability to 

control the release and clinical studies conducted to confirm this behavior; however, 

these simulations show that some control in the trigger mechanism and delivery rate is 

possible.

The model was used to simulate the diffusion/release profiles of NPs from rigid, 

defect-free HNTs to study the effect o f temperature, zeta potential, and pH on the release 

of dexamethasone NPs from rigid cylindrical HNTs. When the particle-wall interaction 

is attractive, an intermediate phase between the already known and characterized burst
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phase and saturation phase, that has been hinted in our previous work, but overlooked in 

the literature to this date, is verified and further explained here. Particles near the walls 

shield the others and diffusion is now dominated by NP-NP repulsion near the HNT axis.

In terms of release controlled by environmental conditions, the effect of 

temperature on the release was studied in the large range of temperatures from 200 K to 

600 K, relevant to delivery of anticorrosive and antiaging agents in materials (particularly 

the high temperature end) and demonstrate a significant effect, unlike what was 

previously predicted for physiological systems, where NP delivery is shown insensitive to 

temperature due to the much smaller range of temperatures relevant to those processes.

To control particle delivery at high temperatures (100 K above room temperature or 

more), other mechanisms may be necessary. Finally, it is found that in acidic 

environments, the release of dexamethasone and like molecules is faster when compared 

to the release profile at pH around 7.4, as the NPs become positive and repulsed from the 

wall. At higher pH (basic condition), however, a much more sustained release is 

observed. These results show that the pH of the surrounding media can be used as a 

control parameter to vary the rate of diffusion of molecular species from multi-walled 

nanotubes.



CHAPTER 6

CONCLUSIONS

A model to simulate the diffusion/release profiles of NPs from rigid, defect-free 

HNTs is presented; 2-acetoxy benzoic acid, dexamethasone, nifedipine, and furosemide 

are chosen as case studies to help validate the model, which in turn has helped identify, at 

a microscopic level, the relevant interactions controlling the release process and their 

relative importance in the release outcome. Complete release of non-encapsulated micro 

crystal dexamethasone is experimentally observed to occur within 10-15 minutes, while a 

70% release of this drug takes 14 hours when released from HNTs. Similar behavior can 

be observed for the other NPs studied (Refer Table 2.1).

The NP-NP and the NP-surface interactions determine the rate of release of NPs 

from the HNT. Two phases, experimentally identified in the release profile, namely the 

initial burst phase and the saturation phase, has been characterized and explained. The 

first one is governed by molecular diffusion and can be best described by the Korsmeyer- 

Peppas model. The saturation phase is mostly surface diffusion and is mathematically 

described by the Weibull model. However, an intermediate phase was predicted that has 

been overlooked to this date. When the particle-wall interaction is attractive, at a given 

concentration, enough particles will already be near the walls to shield the others from 

the wall. These shielded NPs will diffuse faster due to intermolecular repulsion as well as 

the repulsion they experience from the molecules on the wall.
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It is found that tunable controlled release can be achieved by varying the HNT 

lumen diameter and length. Increase in lumen radius leads to a progressive evolution 

towards free diffusion shifting the saturation phase that occurs after a larger percentage of 

particles has been release for wider HNTs. Changes in H N Ts length also change the 

release speed, but the beginning of the saturation phase is not affected. Key results show 

that the diversity of HNT sizes in experimental samples is a main factor in explaining 

experimental profiles; particularly, a better agreement between simulation and 

experiment is observed when a similar distribution of HNT lumen diameter and length 

are considered in the simulation. Other factors affecting the release rate from HNTs such 

as ambient temperature, pH, and particle charge and zeta potential o f the particle were 

analyzed in detail to determine their effect.

The release rate depends on the NP’s charge. Positively charged NPs are released 

much faster due to repulsive interactions with the lumen walls which are positively 

charged at pH 7.4: the larger the charge the faster the release. Negatively charged NPs 

see the opposite effect: the larger the charge the longer it takes for the NPs to be released. 

Both cases i.e. attractive and repulsive interactions show a radius-dependent diffusion. 

Varying the ambient temperature by ± 10 K from 300 K does not lead to an appreciable 

change in the release profile, whereas doubling the temperature of the system decreases 

the time required for the NPs to exit the HNT significantly. This indicates that for high or 

low temperature applications, release profiles will be significantly different than at room 

temperature. Simulation studies show that a pH-dependence exists and that pH of the 

surrounding media can be used as a control parameter to vary the rate of diffusion of 

molecular species from multi-walled nanotubes.
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The model was then used to simulate the diffusion/release profiles of NPs from 

rigid, defect-free HNTs with endcaps. Simulation results show a marked delay in the 

diffusion of dexamethasone from HNTs when the end stoppers are introduced when 

compared to normal release profiles and instantaneous powder dissolution. Simulation 

studies also show that release can be controlled or tuned by adding end caps with 

different types of pores with varying properties such as pore type (spherical with single 

opening, flat with single opening and flat perforated), pore sizes and charge. Simulations 

show the release of dexamethasone from 15 nm tubes takes about 25 hours for 90% of the 

content to be released. The addition of 3 nm and 5 nm pores delays the release to several 

days to months. Increase in pore radius leads to a progressive evolution towards diffusion 

from uncapped CNTs as expected. When the caps and the NPs are oppositely charged, 

the delay in release is even more significant. Similar results can also be observed when 

perforated pores are used.

This work lays out the ground for further studies in fields such as drug delivery 

and self-healing composites. This study is expected to lead to a recipe where the diffusion 

rate can be then controlled as needed. The effects of external parameters like pH on the 

release profiles were also studied.



CHAPTER 7

FUTURE W ORK

One possible disadvantage of using HNTs for sustained release is that the lumen 

volume is about 10% of the total volume. This limits the loading efficiency of the HNTs. 

One possible work is using a sulfate acid etching of the halloysite lumen to increase the 

lumen diameter. However, while increasing the diameter does allow for loading greater 

quantities into the lumen, it also leads to the faster release of the loaded substance. It 

would be highly advantageous if this model could be modified and used to study the 

loading of NPs into the halloysites from different media and compare them to the release 

of the same particles in the same or different media to assess the loading and containment 

of the loaded NPs.

In this work, water is used as the media. A much-needed future work is the study 

of the release of NPs in different media and into solids. It is possible that when the HNTs 

are loaded and dried, under the right conditions, the NPs inside the HNTs coagulate and 

crystallize. This model can be extended to study the occurrence of this in HNTs. If 

present, this phase transition after loading would significantly impact the release profiles 

and is an area of interest for experimentalists working in the field.

This work concentrates on the diffusion of NPs from HNTs. Other nanotube like 

CNTs as well as liposomes, etc. can also be used. Another possible improvement to 

model can be made by incorporating porous tube walls for the NTs. HNTs have porous
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walls and to be able to study the diffusion of NPs through the walls, the model needs to 

be modified significantly. In this model, the experimentally observed burst phase is 

accounted for by increasing the density of the NPs near the tube’s openings. A detailed 

study of the geometry of the tube’s opening and the mechanisms of NP released from 

tube’s openings will lead to a better understanding of the exact nature of the burst phase.

Besides the possible extensions of this model to other applications of NP release 

from NTs, the algorithm that was developed can be slightly modified to apply to 

seemingly unrelated processes. One of the possible applications is the prediction of 

diffusion of NPs through hydrogels as they swell or collapse. The entire mechanism of 

particle diffusion can be applied as it follows the MC formalism developed in this 

dissertation. The modification that needs to be implemented in order to study hydrogels 

is in the geometry o f material where the NPs are diffusing.

Another application is the prediction of diffusion of NPs through concrete pores 

under the influence of an externally applied electric or magnetic field. The NP binders are 

driven into the concrete pores to fill them up, and thereby not only making the concrete 

stronger, but also filling up the pores and stopping the influx of dangerous rust causing 

ions through the pores. This, in turn, protects the rebar and keeps the concrete structure 

strong for longer periods of time. The necessary computational model is almost identical 

to the one developed here, except that the interaction of the NP with an external field is 

necessary and that can be added with minor problems. Also, diffusion from outside of a 

cylindrical cavity as opposed to from the inside is necessary.
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FLOW CHART OF THE ALGORITHM

Figure 1 shows the flow chart of the algorithm used in our code for the model.

Figure A.1: Flow chart of the algorithm used in the model.
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