
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2016

Detecting and Screening of the Prostate Cancer by
Using an Optical Nanoporous Thin-Film Sensor
Salah Eldeen Mofleh Alzghoul

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Biomedical Engineering and Bioengineering Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.latech.edu%2Fdissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages


DETECTING AND SCREENING OF THE PROSTATE CANCER 

BY USING AN OPTICAL NANOPOROUS 

THIN-FILM SENSOR

by

Salah Eldeen Mofleh Alzghoul, B.S., M.S.

A Dissertation Presented in Partial Fulfillment 
of the Requirements of the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

May 2016



ProQuest Number: 10301328

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10301328

ProQuestQue

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

MARCH 30,2016
Date

We hereby recommend that the dissertation prepared under our supervision by

Salah Eldeen Mofleh Alzghoul, B.S., M.S.____________________________________

entitled Detecting and screening of the prostate cancer by using an optical_______

nanoporous thin-film sensor.________________________________________________

be accepted in partial fulfillment of the requirements for the Degree of 

Doctor of Philosophy in Engineering_____________________

-Supervisor of Dissertation Research

/  Head of Department
iomedical Engineeringiomedical Engineering

Department

Recommendation concurred in:

S,^iVctMtM/Vc fe-r Long QujL'

Advisory Committee

Approved: Approved:

Director of Graduate Studies •ean of the Graduate School

Dean of the College

GS Form 13
(8/10)



ABSTRACT

Prostate cancer (PC) affects elderly men more than young men. The currently 

used cancer biomarker, prostate-specific antigen (PSA), highly overestimates PC 

population. Men with high PSA levels often have to go through unnecessary, but 

physically painful, and expensive prosesses, such as prostate biopsies. Finding a prostate 

cancer marker that is produced selectively by cancer, but not by normal prostate cells will 

increase the reliability of PC test. In 2006, our collaborator (Dr. Girish Shah) discovered 

a novel protein, referred as neuroendocrine marker (NEM), secreted only by malignant 

prostate cells and released in blood circulation.

To examine whether the combined NEM-PSA test can improve the reliability for 

early PC detection, we have developed a nanoporous thin film sensor that can reliably 

detect PSA and NEM in patient samples. The thin film sensor is fabricated from 

nanoporous anodic aluminum oxide and uses an optical Fabry-Perot intereferometric 

technique. This optical sensor has been tested for several assay paradigms, including non­

specific binding, reliability, accuracy, precision, and sensitivity. The results demonstrate 

that the optical nanoporous thin film sensor is reliable and extremely sensitive when used 

with only 0.5 pi of patient serum (or even less) to measure levels of the PSA and NEM, 

even in a non-cancer individual. When compared with the traditional ELISA test for 

PSA, the nanosensor assay is several-fold more sensitive, and it elimnates the need for 

labeled antigen, sample processing, complex equipment, and highly experienced



iv

individuals. These benefits, along with the low cost, should make the technology suitable 

for Point-of-Care application to accurately screen elderly male populations for PC and to 

monitor the progress of patients undergoing PC treatment. Nanoporous thin-film sensor 

was able to detect prostate cancer markers concentrations as low as 1 pg/ml for NEM and 

20 pg/ml for PSA.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Nanosensors for Biodetection

Technology is growing rapidly, and this affects our lifestyle. As a result, we need 

to keep pace with developments that accrued in our world. Biomedical engineering is an 

engineering field that concerns engineering methods such as electrical, optical, 

mechanical, and chemical to medical and biological applications [1].

Biomedical engineering has many aims and goals, such as to develop amended 

kinds of animals and plants for food manufacturing, to design new diagnostic tests 

methods for diseases, to improve drug release devices, to improve the safety and the 

efficiency of medical devices, to improve diagnostic imaging systems, to give better 

solutions for neuro system defects, as well as many other goals [1].

Also, Biomedical engineers are working on connecting new technologies to 

medical and biological fields in many ways like innovating new diagnostic and treatment 

methods and improving existing biosensing capabilities. Reliable solutions are needed to 

reduce the cost and the demand on the health care system and to minimize the number of 

deaths.

In general, biosensors consists of four major components (Figure 1-1) [2]. The 

first component is the analyte, which is a biological or chemical compound that will be

1



easured and/or monitored. The receptor is the second component of the biosensor. It has a 

crucial role in immobilizing the component that will be detected (analyte) over the sensor 

surface. To make sure that the sensor is accurate and reliable, the receptor should only 

bound to the analyte. Antigens, which can be defined as foreign substances that catalyze 

the body to produce antibodies [3], are examples of analytes. Antigens have a significant 

part to which antibody attached to; this part is called an epitope.

PC or detector

Electric*!
tignel

Figure 1-1. Schematic of biosensor four major components (analyte, receptor, transducer, 
and detector) [4].

Antibodies are an excellent example of bioreceptors. An antibody is a large 

protein that is generated by plasma cells. It has a Y-shape, with the two upper arms called 

fragment antigen binding (Fab) regions, which make contact with, and bind to, the 

antigen.

By knowing that each antibody antigen binding site (paratope) is specific to each 

antigen epitope, we can consider that the binding relation between paratope and epitope is 

like a lock-key relation. The antibody base region is called fragment crystallizable region 

(Fc), and its primary function is to make and provide an extra binding with the antigen.

Since enzymes have specific binding properties, they could also be used as a 

receptor for biosensing applications, especially for the DNA detection.
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The transducer is the third component of the biosensor. It transforms signals from 

one form to another. For example, a Quartz Crystal Microbalance (QCM) device converts 

the pressure applied over a quartz surface into a change in frequency [5]. The fourth 

component of the biosensor is the detector, which is the part that identifies the stimulus 

[6].

Biological analytes are often small in size, ranging from a few nanometers to a 

few micrometers, and they are often low-weight. As a result, there is a significant need 

for sensors that can work at micro or nanoscale. Microscale and nanoscale biosensors 

include nanoparticle-based biosensors [7], acoustic wave biosensors [6], magneto­

nanosensor biosensors [8], electrochemical biosensors [9], carbon nanotube-based 

sensors [10], nanowire based sensors [11], surface enhanced Raman spectroscopy [12], 

and fluorescence and light scattering [13].

Biomolecules can be detected through two methods, attached to a tag or a label 

like epitope tags, radioisotopes, fluorescent dyes [14-16], or not attached to a tag (label- 

free). However, the labels could affect the properties of the analyte; they can be 

expensive or toxic and require a skilled person to work with them. On the other hand, 

label-free biosensing technique will reduce the cost of the experiment, and analyte 

specifications will not be affected since it has no connection to any external compound.

The label-free technologies are currently used for biological, environmental and 

biomedical applications [5, 6, 17-19], Label-free biosensors are grouped into three 

classes: optical, mechanical, and electrical [20-23].

1.1.1 Electrical Label-Free Biosensors

Carbon nanotubes and nanowires are good examples of electrical label-free 

biosensors [10, 11, 24]. An amperometric carbon nanotube (CNT)-based sensor is
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illustrated in Figure 1-2 [24]. In general, electrochemical amperometric sensors have 

three electrodes [25]: a working electrode, a reference electrode, and a counter electrode. 

This method is sufficient for detecting proteins or DNA, does not consuming much 

energy, and is cost-effective.

By applying voltage bias between working and counter electrodes, an oxidation- 

reduction reaction took place in a solution that contains biomolecules. As a result, 

electron transfer reactions take place over the surface of a working electrode. Since CNTs 

encourage electron transfer reactions more effectively than traditional metals [26], CNTs 

were incorporated to a Platinum (Pt) working electrode by using thermal chemical vapor 

deposition method.

Maehashi et al. used this type of sensor to detect prostate specific antigen (PSA); 

he immobilized PSA monoclonal antibodies (mAb) over CNTs via crosslinkers, and he 

recorded the electrochemical signal by using differential pulse voltammetry (DPV).

After the PSA marker was immobilized, DPV showed a significant increase in 

electrochemical signal and thus indicated the formation of the antigen-antibody complex.

PSA mAb
PSA mAb + PSA (1ng/mL)potentiostat

Ag/AgCI 
(Rifmnci 
■loctredo) \

Pt
(Counter v 
doctrodo)

Si CNTt
(Working otoctrodo)(Working dwtrod*)

(a) (b) Potential (V)

Figure 1-2. Amperometric carbon nanotube (CNT) Based sensor, (a) Device setup, (b) 
The electrochemical signal measured by using DPV. The red dashed line represents the 
signal measured when only PSA-mAb immobilized over CNTs; the blue line is the signal 
after PSA is attached to PSA mAb and forming the antigen-antibody complex [24].
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1.1.2 Mechanical Label-Free Biosensors

Mechanical label-free biosensors provide a sensitive method for detecting the 

accumulated analyte mass over receptor. QCM is a mechanical label-free biosensor that 

can measure the change in mass even in pg or ng level.

The operating principle of QCM is based on measuring the changes in quartz 

piezoelectric resonant frequency. When a small mass of matter binds to the surface of the 

quartz, the resonant piezoelectric frequency decreases according to the following relation:

A/  = -C f  Am, Eq. 1-1

where A/  is change in resonant piezoelectric frequency, Cf is crystal sensitivity factor, 

and Am is a change in mass over quartz piezoelectric sensor [5],

QCM has a wide range application, such as biosensors, gas sensors, 

environmental monitoring, and the interactions of surface molecule.

A surface-stress mechanical biosensor with a cantilever is another type of the 

mechanical label-free biosensors [27]. The weight of a biomolecule attached to the 

surface of the sensor and band biomolecules to functional groups on the surface of the 

device lead to stress on cantilever, which causes a deflection of a cantilever. (Figure 1-3).
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Figure 1-3. Schematic of cantilever surface-stress biosensor [27].

1.1.3 Optical Label-Free Biosensors

Optical biosensors have many features such as high sensitivity and accuracy, 

ability to provide a real-time monitoring, negligible environmental noise, electrical 

passiveness, multiplexing capability, and minimum electromagnetic interference. These 

properties enable a wide sensing range, high resolution, and resistance to high 

temperatures, as well as a chemically reactive environment.

The constant improvements of the quality and functionality of optical components 

such as light probes, optical lenses, and mirrors, and advancements in the area of the 

signal processing, make the optical sensing methods attractive for environmental and 

biomedical applications, especially in molecular studies and early biomarker detections, 

because of the high sensitivity. Optical sensing is also compatible with micro and nano 

thin-film devices that are based on silicon or anodic aluminum oxide [28, 29],

Optical sensors can measure and sense many physical, chemical and biological 

components such as pressure, temperature, strain, liquid level, vibration, acceleration,
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rotation, PH level, magnetic field, flow rate, liquid level, displacement, radiation level, 

humidity level, velocity, electric field, acoustic field, or force, or distinguish between 

chemical species, proteins, or biomolecules, [30-34].

Change in beam intensity for one or multiple light beams, or interacting and 

interfacing between light beams, which cause changes in signal phase, are two principal 

optical sensing methods. All optical sensors have two principal parts: an emitter for 

emitting and transmitting light beams, and a receiver for collecting and receiving signal.

Fabry-Perot Interferometer (FPI) is an optical device that was invented in 1899 

and worked on the principle of multiple-beam interference (Figure 1-4). As shown in 

Figure 1-4, the incident light It is the input signal, the reflected light signal is /r , while the 

transmitted signal is /t .

Fiber probe is used to emit and collect the reflected light. The same fiber probe 

sends the signal to the spectrometer. As a result of a light interference, fringes can be 

observed in different shapes such as rings, strips, and curves.

The path differences between two sequential beams is 6 = 2nd cos 9 , where 6 is 

the angle of incidence. The ratio between the reflected light intensity and the incident light 

intensity can be expressed as:

/ 4 Rsin2 j
7 =  -----------------   g . Eq. 1-2

( 1 -  R)2 + 4Rsin2^

where R is the surface reflectance, /r is the intensity of the reflected light, and It is the 

intensity o f the incident light [35].
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Figure 1-4. Schematic of FPI operating principle [35].

Porous silicon can be used as an FPI sensing platform to sense biomolecules. The 

sensor detects the change in optical thickness (2nd) of the same biological thin film 

layers.

2nd = m \,  Eq. 1-3

where n is the effective refractive index of the porous silicon with all other attached 

biological layers, d is the physical thickness of the porous silicon with all other attached 

biological layers, m is the spectral order of the optical fringes and A is the light 

wavelength [36, 37] in vacuum. Fringes are produced by the interference of light 

reflected from multi interfaces accrued in the structures [37].

Finesse (F) is an important parameter of FPI that reflects FPI resolution. This 

parameter is defined as a numerical value that describes the sharpness of the wave 

maxima. Mathematically, finesse is the ratio between peaks distance AA, to the full width 

half maximum (FWHM) 8A.

7T VF
F = Eq. 1-4

1 -  R ’

Using nanopore platform in FPI sensor (Figure 1-5) has many advantages, such as 

an increased sensing surface area, extended penetration depth of the excited light, and 

amplified optical transducing signal [38], Nanopore platform in FPI sensor, with specific
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characteristics like nanopore diameter of 50 nm and a gap size of FPI cavity of 50 pm, 

provides 20 times improvement in a free spectral range, which is the frequency or 

wavelength spacing between two sequential transmitted or reflected optical intensity 

maxima, and two times improvement in finesse [38].

Broadband light source

pFP cavity

Figure 1-5. FPI device cross-section with a microfluidic channel [39].

1.2 Prostate Cancer Biomarkers

1-2.1 Prostate-Specific Antigen (PSA1

Prostate cancer (PC) is the second most common cause of cancer deaths in the US 

men [40]. According to the American Cancer Society, 233,000 new prostate cancer cases 

appeared in the year 2015, and the mortality rate will be around 13% (30,000 people) 

[41].

There are three options to reduce the number of prostate cancer fatalities and the 

demands on the healthcare system of such disease: 1) decrease the incidence of illness, 2) 

better treatment, and 3) early detection [40].

Modem surgical processes and radiation methods have been improved lately, but 

since PC is a hormonal metastatic disease, the improvement of therapeutic techniques did 

not reduce the mortality of PC.



10

The third method to minimize the number of deaths is to improve early prostate 

cancer detection. In order to detect PC early, the most common used method is the serum 

screening of prostate-specific antigen (PSA), followed by the transrectal ultrasound 

guided biopsy. Since these existing methods are not efficient to detect the PC early 

enough, new methods for early detection are needed.

The PSA is a blood serum tumor marker and is the most widely used marker for 

the PC. The PSA was introduced for the first time in the 80’s of the second millennium at 

Roswell Park Cancer Institute in Buffalo, NY by Wang and associates. The PSA is 

classified as one of the most important tumor markers, since it has a substantial role in 

managing men’s lifestyle [40].

The normal level of PSA is less than 2n g/ml. The threshold value for cancer 

detection is < 4.0 ng/ml of PSA in serum, and the gray zone is between 4.1-10 ng/ml 

(meaning that the patient may have a prostate inflammation or a benign prostatic 

hyperplasia (BPH), which increase serum PSA levels of up to 10 ng/ml [42,43], or 

prostate cancer). The PSA is not an ideal marker for PC since it is secreted by normal as 

well as malignant prostates, and PSA levels reflect the size of the prostate rather than 

cancer. An elevated level of PSA might be due to PC or benign diseases, such as BPH 

[40, 44, 45]. Also, the PSA screening test gives too many false positive or negative 

results. The false-positive results lead to an additional test called transrectal ultrasound 

(TRUS)-guided biopsy procedure, and this procedure is invasive, repetitive, and costly.

A man of age 40-50 years has a 34% chance of early occult PC [46], but after 

repeated screening, only one eighth of men will be diagnosed with cancer during his life
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period. The chance of detecting PC clinically for a man who is younger than 50 years old 

is less than 0.3% [44,47].

Although PSA screening is the standard method to detect PC, debate continues as 

to whether to perform the test, at what age a man should have it performed, the 

recommended threshold for the PSA levels, and at what age to stop the screening [45].

In order to improve and enhance the PSA test in the diagnostic of PC, some 

hidden features of the PSA, called PSA derivatives tests, are added to the traditional PSA 

screening. The common PSA derivatives are: PSA velocity, PSA density, age-specific 

PSA, and the ratio of total to free PSA [40].

PSA circulates in the blood in two different forms, freeform and complex form. 

When PSA is attached to proteins, it is called complex PSA, if PSA is not attached to any 

other proteins, it is called free PSA. Total PSA is the amount of free PSA and complex 

PSA combined.

PSA velocity is a method that measures the changing of PSA levels over time.

The PSA levels rise slowly in healthy men and rapidly in PC patients. This method can 

be applied to both PSA and free PSA serum levels. When PSA levels increased at a rate 

more than 0.75 ng/ml per year, it indicates that this person is at higher risk of having 

prostate cancer. Other researchers suggested that the increasing rate threshold of PSA 

levels must be around 25% increment in PSA concentration compared to their previous 

test. For free PSA, any change over 36% in their previous test ratio must be considered 

dangerous [40, 48].
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PSA doubling time (PSADT) is defined as the time needed for levels of PSA in 

the blood to have the double amount. A PSADT less than ten months could indicate 

metastatic disease [49-52].

PSA density is the second concept that can help in enhancing PSA prostate cancer 

screening. PSA density is calculated by dividing the PSA level by the volume of the 

prostate. For example, if  a person has 80 cm3 prostate volume with 8 ng/ml PSA level, 

the calculated density will be 0.1 ng/(ml cm3), and if another person has 40 cm3 prostate 

volume with 8 ng/ml PSA level, the calculated density will be 0.2 ng/(ml-cm3). As a 

result, the individual who has larger PSA density will have more chance to have PC, and 

the person with larger the prostate volume (lower PSA density) will show benign 

histology (see Figure 1-6).

Age-specific PSA is also known as an age-adjusted PSA. It is a concept that 

determines the threshold level of PSA that will indicate that the man of a certain age has 

prostate cancer.

This cutoff level will change over years. According to an age-specific PSA 

concept, a man who is younger than 50 years old should have PSA screening level less 

than 2.5ng/ml, but after 30 years, average levels could be between 0 to 6.5 ng/ml.

PSA: 8.0 ng/ml PSA: 8.0 ng/ml
M m e :8 0 «  Volume: 40 a
PSA Density: 0.1 PSA Density: 0.2

Figure 1-6. PSA density. The right prostate has a volume of 40 cm3 with PSA level 
8ng/ml, and the one on the left has a volume of 80 cm3 and PSA level of 8ng/ml. The 
prostate with higher density might have cancer, while the prostate on the left showed 
benign histology [40].
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PSA circulates in the blood in two different forms, freeform and complex form 

with protein, such as alpha-1 antichymotrypsin and alpha-2 macroglobulin, most of the 

blood PSA is bound to alpha-1 antichymotrypsin [40, 53]. When PSA is attached to 

alpha-1 antichymotrypsin, it can be detected by immunoassays (a method used for 

detecting proteins, for example enzyme-linked immunosorbent assay (ELISA)) because 

two epitopes are remaining free, when PSA is attached to alpha-2 macroglobulin, all 

epitopes will be attached, and available assays cannot detect this form of complex PSA. 

Free PSA levels are higher in men who do not have prostate cancer [40, 54, 55].

The PSA test is significantly enhanced when the PSA and the free PSA (f-PSA) 

levels are combined together, and the ratio of the free to the total PSA, or the free to the 

complex PSA, is calculated [40]. This test is helpful for men that have PSA levels in the 

gray zone (4.0 to 10 ng/ml) and a negative result from ultrasound biopsy. Catalona et al. 

tested the ratio of free to a total of 773 men who had PSA levels in the gray zone and 

negative ultrasound biopsy, 49% of which had prostate cancer [40, 56].

An important analytical problem appears in calculating the free PSA to total PSA 

ratio because of the difference between PSA manufactured arrays. Some manufactured 

PSA arrays show lower PSA levels than the other, but this issue did not hinder the fact 

that the f-PSA level, combined with the PSA levels, improves the PSA traditional test by 

calculating the probability that a patient has cancer (see Tables 1-1, 1-2) [40, 57]. 

Although PSA screening is the common test for prostate cancer, it is a controversial 

tumor marker. PSA levels are not controlled only by cancer, but it can also change in a 

non-malignant disease like BHP. The patient’s age and race also influence the PSA 

levels in a patient’s blood [44],
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Table 1-1. The relation between PSA blood serum levels and the probability of having 
PC [40].

PSA blood serum concentration (ng/ml) Probability of having PC (%)

< 2ng/ml 1%

2-4 ng/ml 15%

4-10 ng/ml 25%

>10 ng/ml >50%

Table 1-2. The relation between free to total PSA ratio for men who have PSA blood 
serum levels in the gray zone (4-10 ng/ml) and the probability o f having PC [40].

Ratio of free to total PSA (%) Likelihood of having PC (%)

0-10% 56%

10-15% 28%

15-20% 20%

20-25% 16%

>25% 8%

Moreover, highly aggressive cases of PC, which often have neuroendocrine 

features and do not display a significant increase in serum PSA levels, cannot be detected 

by the PSA test. As many as ~15% of PC patients exhibit PSA levels below the adopted 

threshold 4 ng/ml [45].

Because of the poor reliability of the PSA blood test, some new reliable prostate 

cancer markers are needed. The markers should clearly discriminate PC from other 

prostate diseases, predict tumor formation at a very early, preferably premalignant, stage, 

and distinguish aggressive tumors from indolent ones at an early stage [58].
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As a result, the disadvantages of the PSA test are:

1. The PSA test does not give a good idea about progression cancer levels.

2. The PSA test does not reflect the aggressiveness of prostate cancer.

3. The PSA test does not predict the clinical nature of cancer. [59].

1.2.2 Neuroendocrine Marker (NEM)

Neuroendocrine Marker (NEM) is a novel transcript and was recently identified 

from the prostate cancer complimentary DNA (c-DNA) library in our collaborator’s (Dr. 

Shah) laboratory at the University of Louisiana at Monroe (ULM) [60]. NEM produced 

by sub-cloning the complementary DNA in a vector. Then, the genetic structure 

containing NEM c-DNA was applied to a prostate cancer cell line, and after incubation 

and culturing, affinity chromatography obtained the expressed protein [59, 60].

In situ hybridization and immunohistochemistry studies suggest that NEM is 

selectively localized in malignant, but not benign, prostate epithelium [60]. The 

expression of NEM is increased with cancer progression. NEM immunoreactivity (NEM- 

ir) detected in sera of elderly men; serum NEM-ir level in PC patients was three-fold 

greater than those in non-cancer individuals [60-62], suggesting that NEM, either alone 

or in tandem with PSA or other markers, can serve as a valuable tool to reliably diagnose 

populations at risk, and monitor the patients undergoing anticancer therapy. 

Immunohistochemistry of primary prostate tumors has revealed that 47-100% of PCs 

demonstrate foci of neuroendocrine differentiation [59].

Secretory products of neuroendocrine (NE) cells may support growth or increase 

the survival of neighboring tumor cell populations because the cells adjacent to NE cells 

have been shown to display increased expression of mitogenic markers, such as 

proliferating cell nuclear antigen [59] (Figure 1-7).
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NEM Ex

NEM Expression NEM Expression

Figure 1 -7. NEM Immunohistochemistry (IHC) in biopsy samples. (A) Prostate Cancer is 
an epithelial cancer, and NEM Expression is also epithelial. (B) NEM expression is not 
detected in the benign epithelium. (C) NEM expression is detected in early stages of the 
disease. (D) NEM expression increases with tumor progression [59].

To detect NEM, antibodies were prepared in rabbits by injecting them with 

antigens. After immune response took place, blood samples were removed from the 

rabbits and the immunoglobulin fraction of blood sample serum were filtered and used as 

antiserum [59, 60].

Polyclonal and monoclonal antibodies help in NEM detection in both blood and 

tissue, and they give useful information about the cancer grade, whether the cancer is 

metastatic or not, especially for patients with low PSA serum levels [60],

Current evidence also suggests that the tumors of PC patients with “low or 

normal” serum PSA levels usually display high NEM secretions and aggressive growth,
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raising a possibility that the genes associated with neuroendocrine features of the prostate 

may be useful in detecting PC and may also stratify aggressive tumors from the indolent 

ones. In addition, NEM is working as a cancer growth factor too; when NEM binds to its 

receptors located in prostate tissue, cancer will grow and overrun. Blocking the linkage 

between the NEM and its receptors by using an antibody directed against the NEM or its 

receptor would reduce the growth of cancer cells and give some therapeutic benefits [59, 

60, 63, 64] (see Figure 1-8).
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Figure 1-8. The prostate cancer therapy by using NEM. (A) Prostate cancer cell 
surrounded by NEM. (B) NEM bounded to its receptors. (C) Cancer cells, growth and 
proliferation. (D) Prostate cancer cell surrounded by NEM. (E) NEM is blocked by an 
antibody directed against. (F) Cancer cell did not grow or proliferate [59].
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The NEM is detected by several methods such as radioimmunoassay, enzyme- 

linked immunosorbent assay (ELISA), fluoroimmunoassay, immunohistochemistry, 

sandwich ELISA, and any other peptide detection techniques [59, 60].

NEM has been found in relatively high levels in blood serum samples from prostate 

cancer patients. NEM novel biomarker can detect cancer in early stages as well as high- 

grade tumors, NEM also may help at the beginning of PC detection, and it could reduce 

additional biopsy procedure (up to 75%). A study sample that consists of 69 samples from 

PC and non-cancer patients exposed that NEM levels of PC serum samples are three times 

higher than in non-cancer patients [65].

NEM also proposed as more reliable PC marker than PSA incorrectly detecting PC 

with less false positive and negative diagnostic. The larger sample size consists of more 

than 500 patients investigated, and the results showed that prostate cancer patients have 

higher NEM levels in blood serum than men who do not have PC [66].

There is a correlation with high PSA levels and NEM levels in the prostate cancer 

patients’ serum. Some prostate cancer patients have low PSA serum levels and higher 

NEM levels. Therefore, NEM could be useful in cancer detection in parallel with a PSA 

test and could help in detecting PSA false positive or negative results.

1.2.3 Other Prostate Cancer Biomarkers

Several novel biomarkers to detect and screen prostate cancer have been 

discovered and tested lately. Those biomarkers are classified according to the source of 

the biomarker: serum biomarkers, tissue biomarkers, and urine biomarkers [49].

1.2.3.1 Blood Serum Biomarkers

Human prostatic acid phosphatase (PAP) is one of the oldest serum biomarkers 

for PC. PAP was discovered in the 1930’s; researchers showed that high levels of PAP
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could indicate the metastatic PC [49]. Other studies concluded that PAP levels are related 

to lymph node disease and metastases. Once the PSA was discovered, the PAP screening 

was stopped.

Early prostate cancer antigen (EPCA) is a series of proteins in blood serum that 

promotes PC in its early stages. These proteins reflect the relation between PC and the 

changes that occur in the nuclear matrix of the prostate. The levels of EPCA proteins are 

higher in adjacent areas of a prostate tumor and exist only in PC patients [49].

In 2005, EPCA had proven to have a high detection sensitivity and selectivity, as 

shown in a Kagawa University study, in which 50 men with PC and ten controls with 

bladder cancer but not prostate cancer. The EPCA method detected malignancy in 94% of 

PC patients and was negative in all controls [49, 67]. Two years later [49, 68], another set 

of proteins that is related to nuclear changes due to the PC were discovered and called 

EPCA-2. The newly discovered proteins were able to detect aggressive PC, as well as 

differentiate men with the organ-confined disease.

Prostate-specific membrane antigen (PSMA) is a 750 amino acid Type 2 trance 

membrane that has three dimensions: intracellular, transmembrane, and extensive 

extracellular sequence [69].

The PSMA is present in very aggressive cancers, and it can better detect high- 

grade tumors than PSA. After several studies on PSMA, assays for that protein were 

developed, such as immunoassays and Western block assays [40].

Pro-PSA is another prostate cancer biomarker. It is similar to PSA in 80% of 

DNA sequences and can have several forms [40]. One form is the enzymatically inactive 

(i-PSA) and another form is the B-PSA found in patients with the BPH. The Pro-PSA
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may reduce the unnecessary biopsy procedures for men with PSA levels in the gray zone 

[40,49],

Prostate cancer biomarkers are not limited to blood serum; Some PC markers are 

discovered from prostate tissue, like Glutathiones-transferase n (GSTP1), which is 

unmethylated in normal human tissue and hypermethylated in prostate cancer samples 

[40, 70].

1.3 Previous Work

Label-free optical sensors based on anodic aluminum oxide (AAO) technology 

apply to several fields, such as environmental studies (gas sensors) and biosensing 

applications. In general, this method is easy to maintain, has a low cost and is simple to 

operate. The operating principle is based on detection of changes in light interference 

within the sensor’s Fabry-Perot cavity. The sensor’s surface changes (analyte binds to 

AAO surface) due to chemical reactions which take place and change the effective index 

of refraction and the surface reflection coefficient (Figure 1-9) [71, 72].

Reflective interference spectroscopy is a label-free optical sensing method based 

on interference of white light over a thin film, and it depends on the product of the 

effective refractive index and accumulated layer thickness. When an analyte binds to the 

sensor surface, a change in the refractive index of the surface layer is detected by 

measuring the shift in the interference pattern [72]. Reflective interference spectroscopy 

usually uses a microfluidic cell to confine the liquid.
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Figure 1-9. Schematic of reflective interference spectroscopy. White light from tungsten 
lamp transmitted and received by fiber optic probe, the reflected signal processed by 
spectrometer appeared on display as fringes, when fast Fourier transform applied to the 
reflected signal, effective optical thickness vs. time graph generated [72].

Many studies showed and approved high AAO sensitivity, according to G. Wang 

et al. [73], An AAO sensor is precise and able to detect small concentrations of 

biomolecules, and this advantage will help in detecting certain diseases that have very low 

biomarker levels [73]. They detected biotin diluted in the buffer at different concentrations 

by using electrochemical impedance spectroscopy. This device has two electrodes 

submerged in a buffer solution. The working electrode was made of AAO (see Figure 1-

10), and Ag/AgCl was a reference electrode. When small amplitude of AC signal is applied 

to the electrodes that are submerged in a buffer solution, the impedance is measured as the 

actual system’s response. After biotin is added to the buffer solution and the same AC 

signal is used, it is found that system impedance increased with increasing biotin 

concentration, and the lowest level measured by the sensor is 4 ng/ml [73]. The same group 

also used that device to detect dust mite antigen Der-P2. Der-P2 activates respiratory 

epithelial cells innate in Toll-like receptors (TLRs), which cause acute respiratory disease. 

The dust mite monoclonal antibodies (IgG) were immobilized over the AAO sensor by
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making a self-assembled monolayer. The sensing range was from 1 pg/ml up to 5 pg/ml 

[74].

Electric wire

Parafilm

AAO/Au

Figure 1-10. Schematic of working electrode that is made of AAO, The electrode are 
used in the detection of the dust mite antigen Der-P2 [74],

The 16-nucleotide DNA oligomers were detected by using the optical nanopore 

sensor [28]. This method showed a high efficiency in detecting both single and multiple 

layers of molecules immobilized over the sensor. When a white light is reflected from the 

sensor surface, interferometric reflectance spectra is detected as Fabry-Perot fringes (see 

Figure 1-11). When biomolecules attached to the sensor surface, Fabry-Perot fringes shift 

due to a change in the effective optical thickness of the porous silicon surface [28].
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Figure 1-11. The Fabry-Perot fringes before (red line) and after (blue line) applying DNA 
over nanoporous sensor [28].

The optical nanopore sensor is efficient in real-time monitoring, especially for gas 

detection. Volatile sulfur compounds (VSCs) causes halitosis, or, in other words, oral 

malodor. VSCs generated when oral cavity proteins disintegrated by bacterial activity. 

Detecting gasses by using a nanoporous optical sensor is less complicated than a traditional 

method of UV-visible and fluorescence spectrophotometry, and it is not as expensive as 

listed methods [75],

1.4 Objectives

The primary goal of this research is to develop a fast, low cost, simple to operate, 

sensitive, specific, and selective PC detection device by using a nanopore thin-film sensor 

biased on nanoporous Anodic Aluminum Oxide (AAO) label-free biosensor, and to test the 

novel biomarker known as neuroendocrine marker (NEM) in parallel with prostate-specific 

antigen (PSA) in PC serum samples.

To reach our goal, we will test nanoporous thin film sensor sensitivity, specificity, 

and accuracy, and then compare human blood serum PSA and NEM levels results from
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nanopore thin-film biosensor with ELISA test results. Finally, we will use the nanosensor 

to determine the levels of NEM and PSA of pathologically confirmed PC human blood 

serum samples.



CHAPTER 2

MATERIALS, INSTRUMENTS, AND METHODS

2.1 Materials

To detect prostate cancer biomarkers by using nanopore thin film, we need 

concrete materials that match experimental protocol [71], which includes 11- 

Mercaptoundecanoic acid (HSC10COOH,99%), N-(3-Dimethylaminopropyl)-N'-ethyl 

carbodiimide hydrochloride (EDC), N-Hydroxysuccinimide (NHS), bovine serum 

albumin (BSA), and glycine. All the materials were purchased from Sigma-Aldrich 

(Milwaukee, WI) and used without further purification. Mouse anti-human prostate- 

specific antigen (PSA) monoclonal antibody (detector mAb) (cat. # ABIN969369, 

clone#5Al 1E9) was purchased from Antibod-Online Inc., Atlanta, GA. The synthetic 

PSA peptide containing the middle region of PSA,was purchased from AVIVA Systems 

Biology, San Diego, CA.

2.1.1 11-Mercaptoundecanoic Acid

Eleven-Mercaptoundecanoic acid (MUA) (Figure 2-1) is an alkanethiol 

commonly used as a foundation for layer-by-layer coatings on gold surfaces. The 

protocol is straightforward and inexpensive. Adsorption to a gold surface requires 

approximately 18 hours [76]. Several parameters control MUA adsorption, such as 

incubation time, the type of the solvent, and MUA concentration. Due to a low toxicity 

and solubility, ethanol is the universal solvent for alkanethiols. Several studies show that

25
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we can use other solvents instead of ethanol to reduce incubation time, such as hexane. 

However, the results also show that the layer formed is not as organized as the layer 

formed when using ethanol as the solvent [77].

MUA

Figure 2-1. Structure of 11-mercaptoundecanoic acid (MUA) [78].

2.1.2 Phosphate Buffered Saline (PBS)

Phosphate buffered saline (PBS) is the most common buffer solution used in 

biologically related research. This balanced salt solution keeps solution osmolarity and 

pH constant. The primary function of PBS is to maintain biological molecules in perfect 

condition while they are outside their normal growing environment by maintaining pH 

between 7 to 7.6, which is a typical biological range.

To prepare one liter of PBS, start with 800 ml of distilled water, then add 8 g of 

NaCl, 0.2 g of KC1, 1.44 g of Na2HP04, and 0.24 g of KH2P 04. To adjust the pH to 7.4, 

use aliquots of HC1 as needed. Finally, add distilled water to make up a total volume of 1 

liter.

PBS is non-toxic and has identical osmolarity to human fluidics. It is commonly 

used as a wash solution for protein and cell culture experiments [79].

2.1.3 Bovine Serum Albumin (BSA) and Glycine

Bovine serum albumin (BSA) is a protein prepared from serum albumin obtained 

from cow’s blood. It is a large protein comprising 607 amino acids and has a molecular 

weight of 66.5 kDa. Many biological research protocols use BSA due its stability and
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weak affinity during biochemical reactions. It is also used to mimic human fluids. BSA

plays an essential role in blocking nonspecific immunoglobulins during

immunohistochemical reactions [80, 81].

2-1.4 N-( 3 -DimethylaminopropvD-N '-ethyl Carbodiimide 
Hydrochloride (EDC) and N-vdroxvsuccinimide 

(NHS) Carbodiimide Crosslinkers

Two methods can be used to connect proteins or biomolecules over a gold 

surface: passive absorption and covalent bonding using crosslinkers. Passive absorption 

does not provide a stable connection, and biomolecules continuously disconnect from the 

surface and occasionally lose their properties after surface absorption. On the other hand, 

covalent bonding via crosslinkers provides a strong and stable connection that results in a 

controllable protein coat layer. Carbodiimide compounds connect the amino or carboxyl 

groups on antibodies to the free carboxyl or amino groups on bioanalytical platforms.

EDC is the carbodiimide compound used as a crosslink layer in this study. EDC is 

a water-soluble, zero-length carboxyl-to-amine crosslinker. It reacts at biological pH, but 

is most active at pH 4.5. When a protein comes into contact with EDC, an unstable 

reactive o-acylisourea ester bond is formed. To improve EDC efficiency in physiological 

pH media, we add NHS to EDC (Figure 2-2).



2 8

y
V/ l '

xc|;
*NH

EDC'

HO
Sulfo-NHS

NHS

HO

NHS

NHSm Mt

Figure 2-2. EDC linked to the carboxyl group on an antibody in aqueous solution 
generates an unstable, short-lived o-acylisourea ester bond. This bond breaks down in the 
presence of water. The addition of NHS stabilizes the amine-reactive intermediate by 
converting it to an amine-reactive NHS ester, thus increasing the efficiency of EDC 
coupling reactions [82].

NHS is a water-soluble compound that increases EDC workability by providing a 

more stable bond between the protein and crosslinker, called an amine-reactive NHS 

ester bond [82].

2.1.5 SU8

SU8 is a negative photoresist epoxy-based polymer. SU8 (Figure 2-3) is used in 

applications such as electroplating molds, sensors, actuators, micro-to milli-scale 

structures, microfluidic channels, and microelectromechanical systems (MEMS) and it is 

prepared by soft lithography [83, 84].
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0 0 0 0

Figure 2-3. Chemical structure of SU8 comprising eight reactive epoxy functional groups 
[85].

The numeric eight in SU8 refers to the eight epoxy groups. Upon exposure to UV 

light, this polymer undergoes a photochemical reaction to produce an acid. The acid 

formed in the photochemical reaction acts as a catalyst in the exposed regions during 

post-baking exposure, thus promoting the crosslinking reaction. During crosslinking, a 

zipping process occurs between the epoxy groups that creates a three-dimensional 

network. A broad range of thicknesses (750 nm to 500 mm) with high aspect ratios can 

be obtained from a spin coater [86].

2.1.6 Polvdimethvlsiloxane (PDMS)

Polydimethylsiloxane (PDMS) is a bio-compatible silicon-based organic polymer 

used for fabricating and prototyping microfluidic chips, food additives (e.g., E900), 

contact lenses, medical devices, shampoos, and as an anti-foaming agent in beverages 

and lubricating oils. The PDMS is non-toxic, non-flammable, and inert,and thus useful 

for many biomedical applications [87, 88]. The PDMS empirical formula is (C2H60Si)n
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and its fragmented formula is CH3[Si(CH3)2 0 ]nSi(CH3)3, where n is the number of 

monomer repetitions (Figure 2-4). PDMS is hydrophobic, with contact angles from 90°-

120° with a melting point over 40 °C. PDMS is synthesized from dimethylchlorosilane 

and water by the following reaction:

n Si(CH3)2Cl2 + n H20  -+• [Si(CH3)20]n + 2n HC1.

Besides biocompatibility, PDMS has many advantages, such as low cost and easy 

fabrication, especially for micro-channel modeling [89, 90]. Microfluidic applications of 

PDMS are challenged by aging; that is, the mechanical properties of PDMS can change 

after a few years; thus, it is difficult to permanently deposit this material over metals or 

electrodes. This issue is minimized by attaching the metal to glass, then bonding PDMS 

over the glass after plasma treatment [91].

\  I .o/l X)\ I /
Si [Si [Si
\ \\ \

'  'n

Figure 2-4. The chemical formula of PDMS [92].

2.2 Instruments

Figure 2-5 displays the experimental setup for the optical biosensor testing that 

includes a white light source, optical probe, stage, spectrometer, and data analysis 

system.
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Figure 2-5. Experimental setup for optical testing on nanoporous thin-film biosensors.

2.2.1 White Light Source

A versatile tungsten white light source (Figure 2-6) LS-1 model, purchased from 

Ocean Optics, Inc. was optimized for use in the visible and near-IR (NIR) range (360

nm-2500 nm). This light source offers high color temperature (3100 K bulb), efficient

output, and extended bulb life (around 900 hours). The LS-1 is connected to Teflon® 

diffusion discs from the inside to create a diffuse light source optimized for coupling 

fibers as well as for attenuating the source when spectrometer saturation is an issue.

To enhance the spectral envelope in the blue region relative to the red and NIR 

regions (Figure 2-7), we attach a 12.7 mm blue filter called BG-34. The LS-1 is 

distinguished with an SMA 905 connector for simple coupling to the optical fiber and 

spectrometer.
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Figure 2-6. LS-1 white light source.

m m m m

Figure 2-7. LS-1 white light source signal output with (blue line) and without (red line) 
the BG-34 filter.

2.2.2 Spectrometer

The USB 4000 (Figure 2-8) used in our experiments was purchased from Ocean 

Optics, Inc. (USA). Its 3,648-element CCD array detector has powerful high-speed 

electronics support for high spectral response and optical resolution in a single package. 

The resolution of the spectrometer is 0.21 nm and the smallest integration time is 3 ms. 

This model is perfect for experiments that need enhanced electronics, high resolution, and 

fast integration times.

USB 4000 is connected to an optical fiber probe by an SMA 905 connector and 

coupled to the computer via USB 2.0 or serial port. The spectrometer is controlled by a
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Java-based spectroscopy software platform called Ocean View, which works on a range 

of operating systems, such as Macintosh, Windows, and Linux.

Figure 2-8. Photograph of USB 4000 spectrometer.

2.2.3 Probe Holder

To make sure that the angle of the probe and the distance between the probe and 

the sensor is fixed, optomechanical components like a probe holder (Panavise Inc, USA, 

model number PV-301) (Figure 2-9) are needed.

Figure 2-9. Probe holder.
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2.2.4 Optical Probe

The optical probe is connected to the light source and to the spectrometer via an 

SMA 905 connector. The model used in our experiments is QR400-7-VIS-NIR (Figure 2-

10) and the optical probe was purchased from Ocean Optics, Inc. (USA).

This probe is useful for applications that need fast measurements for small sample 

size. The bottom side of the probe is in charge of illuminating and detecting light from 

the same spot. The illumination probe stage has active cooling to minimize the 

overheating risk, which makes this probe suitable for bio-applications and especially for 

molecules with low melting points.

The reflection probe collects light at the same angle as it illuminates and can be 

used for both specular and diffuse reflection applications. The QR400-7-VIS-NIR has six 

illumination fibers around a single collector fiber and a 25° field of view angle (Figure 2-

11). Each illumination fiber generates a cone-shaped light that overlaps at the center of 

the sample and is accurately perpendicular to the read fiber.

Figure 2-10. Photograph of the optical probe.
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Figure 2-11. Schematic of illumination stage of the QR400-7-VIS-NIR probe and the 
cross-section of the optical probe.

2.2.5 Oxygen Plasma Cleaner

The oxygen plasma cleaner (Figure 2-12) uses an oxygen plasma to strip organic 

films (grease, oil, and photoresist materials) from substrate surfaces. By applying the 

oxygen plasma for a short period of time (15 min), any unwanted materials or thin layers 

of photoresist are removed from the sensor top surface and edges.

The oxygen plasma cleaner removes unwanted materials by applying low- 

pressure; in addition, heating over the sensor surface causes partial evaporation of 

contaminants. After that, plasma-abundant energy particles break down unwanted 

particles into smaller sizes that can be sucked off the surface.
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Figure 2-12. Photograph of oxygen plasma cleaner.

2.2.6 Sputter Coating Machine

A sputter coating device is used to coat the sensor with gold. The one used in this 

experiment was manufactured by Cressington Scientific Instruments, Inc. (UK). This 

model has two operating modes: automatic and manual. The automatic mode has two 

options: time controller mode and multi-thickness mode.

2.3 Methods

These experiments are based on optical, biological, statistical, and signal 

processing principles. For optical methods, we describe Fabry-Perot interference from a 

thin nanopore film. In the biological part, the relation between antibody and antigen will 

be noted. Statistical methods, such as linear regression, Person’s coefficent, and the 

coefficient of variation (CV), will be explained. Finally, we further elucidate on cross 

correlation signal processing technique.
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2.3.1 Optical Methods

Fabry-Perot interfemometer (FPI) works on the principle of multiple beam 

interference (Figure 2-13) [93]. FPI is used in other sensing application as well 

(ultrasonic, chemical, biomolecules, and gas) [94, 95]. FPI can also be coupled with 

thermal and electrostatic actuators invested in optical communications by multiplexing 

wavelength division [96], surface plasmon resonance [97], and spectral endoscope optical 

imaging [98].

I f

Figure 2-13. Schematic of Fabry-Perot interferometer work principle [35].

Emitted light lt is the input signal, Ir is the reflected light signals, and It is the 

transmitted signal. A fiber probe is used to emit and collect the reflected light, and the 

same probe sends the signal to the spectrometer. As a result of light interference, fringes 

can be observed in different shapes, such as rings, strips, and curves [93]. This method is 

effective in measuring and monitoring changes in optical thickness.

If the wavelength of applied light is larger than the pore size of nanofilm, then 

optical interference of emitted light will be generated [99,100]. Assuming that the film is

optically transparent, and using the Fabry-Perot effect, the optical reflectivity spectrum 

model is as follows [101]:
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Z /  2nLn\3 /  2nLn\  1 /  2nLn\‘‘ /  4nLn\  _  .
/r = itv cos I )  l sin“ ) + s ( cos— ) r - sin— )■ Eq- 2_1

where Ir is the intensity of reflected light of wavelength X, L is the thickness of the film, 

and n is the refractive index of the film.

When light is applied perpendicularly to the nanopore film surface (Figure 2-14), 

each fringe will have the following relation [36,101-107]:

2neffL = mA, Eq. 2-2

where neff is the effective refractive index of all the layers of nanopore substrate with 

thin biological films on top of it, L is the optical thickness of the film, m is the spectral 

order of the optical fringe, and X is wavelength.

From Eq. 2-2, the term 2neffL is called the effective optical thickness (EOT). 

EOT is a function of optical thickness as well as effective refractive index.

The effective refractive index neff is a unitless number and is a function of the 

materials and the porosity (P) of the nanopore thin film structure [108]. Using 

Bruggeman’s equation, neff can be calculated as follows [109]:

1 ^ , 0 ,  Eq. 2-3
n A l 20 ,  +  1 % /  1  +  K f f

where nAl2o3 is the refractive index of alumina with a value of 1.67.
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Figure 2-14. Interference fringes when the light is applied perpendicularly to the silicon 
nanopore film [101].

Localized surface plasmon resonance (LSPR) is a useful method to detect small 

changes that accrue to the sensor surface refractive index [110]. When an analyte is 

applied over a sensor surface, the refractive index and optical thickness will change. As a 

result, in comparison with the original signal (Ir l), the reflected Fabry-Perot fringe 

signal is shifted (Ir2) due to changes in the surface characteristics (Figure 2-15) [28],

We can measure the changes in nanopore thin film surface characteristics using 

three different methods [111]. The first uses the nanopore thin film as a waveguide, with 

the congruous modes as transduction variables [112-114], The second method finds

optical changes by measuring the shift that occurs at the Fabry-Perot fringes peaks [110].

The last method measures the effective optical thickness (EOT) by applying Fourier 

transform to the reflected spectrum [115-117].
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Figure 2-15. Wavelength shift (AX) due to change of surface characteristics of nanopore 
thin film. Irl represents the reflected fringe signal after applying antibody. Ir2 represents 
the reflected fringe signal after biomarker attached to antibody. AX is the difference 
between Irl and Ir2 [65].

2.3.2 Anti gen-Antibody (Ag-Abi Relation

An antibody is a large molecular weight protein that has a Y-shape and relates to 

the family of globular proteins called immunoglobulins (Figure 2-16). Antibodies can 

attach to and mark foreign targets (antigens) like viruses and bacteria for destruction by 

the immune system [118].

Antibodies (Ab) generated by an individual for a specific antigen have the same 

structure, but they are unique in function since they comprise different amino acid 

sequences. Antibodies are the most diverse proteins known [118]. They are composed of 

three fragments, two of which are identical and used as antigen (Ag) binding sites.

These identical fragments consist of one heavy chain and one light chain polymer 

connected to form the paratope, which is the antigen binding site. The two identical 

fragments are called the antigen-binding fragments (Fab). The third fragment (Fc) forms 

the base of the Y-shaped macromolecular structure and is crystallized during low- 

temperature storage [116, 118].
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Figure 2-16. Schematic 3D model of an antibody [118].

The antigen-antibody reaction can be described as follows [119,120]:

Ag + Aft —* AgAfo. Eq. 2-4

The association rate [va) of the antigen-antibody reaction is calculated as:

v a = ^[A^tAf,], Eq. 2-5

where k a is the association rate constant, is the concentration of the antigen, and 

[Ab] is the concentration of the antibody.

At equilibrium, the mass action law states:

= kd , Eq. 2-6

where kd is the dissociation constant and [A^A*,] is the concentration of the antigen-

antibody complex. This simplifies to:

Eq. 2-7
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The lower that magnitude of kd, the higher the affinity of antigen-antibody binding.

The total concentration of antibody [Ab]T is the summation of [Afc] and [ A ^ ] :

[ A b l r  = Mi>] + • Eq. 2-8

As a result, the mass action law can be rewritten as:

1 s J l  + k u [Aa]
Eq. 2-9

When [A5] equals k d, half the antibody binding sites are saturated (Figure 2-17).

m

■oc(B
J?
T3
C3O
CD

[Free ligand]Kd

Figure 2-17. Antigen-antibody saturation binding curve [119].

2.3.3 Statistical Methods

Linear regression is one of the most commonly used statistical methods. Using 

linear regression to find Pearson’s coefficient, we can find the relation between two 

variables and their closeness of fit [121].

In this research, we plot a linear regression curve to find the relation between 

levels of prostate cancer markers (PSA and NEM), detected using a nanopore thin film
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method, and marker levels, detected using the enzyme-linked immunosorbent assay 

(ELISA). Mathematically, we perform a linear regression as:

y  = Bq + Bxx , Eq. 2-10

where B0 is the y  intercept and B1 is the slope. This is rewritten as:

B0 = Y - B 1 X,  Eq. 2-11

n

Y
i = l

= . Eq. 2-12

n

x
i=i

2 " = i W
Bl = -----   ■ Eq- 2-14V71 v 2 _ tZii=iA) 

n

We also use confidence of determination (/?2) to find how close the data points 

are to a line of best fit:

R2 = — , Eq. 2-15
55T 4

where SSR is the sum squared regression and SST is the sum squared total. Pearson’s 

coefficient is the square root of confidence of determination.

To validate nanopore thin film precision, we use the coefficient of variation 

method (CV) [121], which assesses the performance of the assays.

The CV is a dimensionless numeric calculated by dividing the standard deviation 

of duplicate measurements of biomolecules over a sensor at certain concentrations, i.e., 

PSA prostate cancer serum marker at concentration 160 pg/ml divided by the mean of the 

duplicate measurements. If we have a poor coefficient of variation, then the error may be
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caused by poor experimental techniques, such as pipetting [122], thawing and freezing, 

vortexing, or centrifugation.

2.3.4 Signal Processing Techniques

To find the diffemce between two reflected signals from porous AAO sensor

surface we measured the shift that occurred on the Fabry-Perot fringes peaks (Figure 2-

18), and we compared them (Figure 2-19) with the results that generated by using cross­

correlation MATLAB code (Appendix).

The cross-correlation between two signals x and y is given by:

where x is the time shift between signals x and y.

Figure 2-18 shows the difference between the signal generated when white light is 

reflected from the porous AAO nanosensor after PSA antibody immobilized (red signal), 

and the signal that is generated when white light reflected from the porous AAO 

nanosensor after PSA biomarker attached to PSA antibody (blue signal). The difference 

between fringe peaks maxima are AM= 7.62 nm, AM= 7.02nm and AM=7.29 nm. The 

average of AM, AX2, and AM is 7.312 nm. (The standard deviation of AM, AM, and AM 

-  0.3, CV= 0.041). From the cross-correlation method, the difference between both 

signals is 7.4405 nm. The average wavelength shift calculated as the difference between 

maxima and was highly correlated with that calculated from the cross-correlation method 

(Person’s coefficient = 0.901).

C x y i T )  = f  x(t )  y ( t  -  t )  d t ,
J — OO

Eq. 2-16
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Figure 2-18. The wavelength shift between Fabry-Perot fringes (PSA antibody (red 
signal)) and PSA biomarker (blue signal). The average of wavelength shifts (AA.1, AX2, 
and AA.3) = 7.31 nm.
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Figure 2-19. Comparison between the cross-correlation method and the peak estimating 
method for finding the wavelength shift between two signals (Pearson’s coefficient = 
0.901).



CHAPTER 3

SENSOR DESIGN AND FABRICATION

3.1 Sensor Design

Figure 3-1 shows the block diagram for the entire sensor construction process.

UV light exposure.

IT0 glass substrate.

AAO patterns 
generated.

Etch the remaining 
extra Allayer

Patterned AAO 
nanopofous sen

Apply a mask over 
the sensor that has 
patterns shape.

Porous AAO 
formed all over 
ITO glass.

Deposit 8 |im of 
aluminum (Ai) 
over ITO glass.

Deposit an extra 
Allayer (250 nm) 
to make patterns.

Two step anodization 
process applied to Al 
coated n o  glass.

Etch the extra Al 
layer that is not 
covered by 
photoresist layer.

Etch the AAO 
layer under the 
etched extra Al 
layer.

Apply positive 
photoresist layer 
over the extra Al 
layer.

Remove the 
photoresist layer 
that was not 
protected by the 
mask.

Clean ITO glass 
by sonicating it 
inaction, 
isopropyl 
alcohol, and DI 
water for 5 
minutes for each 
solution.

Figure 3-1. The block diagram for patterned AAO nanoporous sensor fabrication.

Anodic aluminum oxide (AAO) nanopore thin films are used in many applications, 

such as energy conservation and storage devices (due to its high surface area structure), 

nanomaterials, biosensors, and gas sensors [108]. Porous silicon surfaces with AAO thin 

films are used as label-free optical biosensors, although many studies show that porous 

silicon sensors have drawbacks, such as, rapid degradation and poor stability [72]. AAO

46



47

nanopore sensors have a vertically organized and highly ordered pore structure in a nearly 

hexagonal pattern [123]. AAO pore diameter is controllable and has a range of 20 nm-300 

nm. Other surface characteristics, such as pore distance and pore depth, are controllable as 

well, with a range of 25 nm-500 nm and 1 pm-200 pm, respectively [72]. Compared with 

porous silicon, porous AAO sensors have greater thermal and pH stability, and greater 

flexibility in controlling pore structure [72,116].

When porous AAO is used as an optical biosensor, we apply white light over the 

sensor surface. The reflected interference signal depends on the pore characteristics, such 

as diameter, length, surface adjustment, and pore wall thickness [72].

In general, an AAO membrane can have one of two morphologies that have been 

established based on the chemical nature of electrolytes (Figure 3-2) [124, 125], For 

example, electrolytes with a pH range between 5 and 7, like oxalate, generate nonporous 

AAO [126]. However, acidic electrolytes, such as oxalic acid, will form porous AAO 

[127].

\ !

AAO membranes PorousNonporous

Figure 3-2. Two different AAO morphologies formed by an acidic electrolyte (porous) 
and a natural electrolyte (nonporous) [108].
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An anodic oxide layer over aluminum has a uniform thickness and does not degrade 

in the electrolyte solution. During anodic oxide layer formation under constant voltage, the 

current density of anodization [/) decreases with time (t) in an exponential manner.

The term (J) is the summation of ionic current (Ji) and electronic current (Je). When 

high electrical field (£) is applied over the oxide layer, J approximately equals Ji. As a 

result, the relation between and E can be written as [108,128]:

where J0 and (J are temperature-dependent material constants. E is a function of anodization 

voltage (I/) and is inversely proportional to barrier thickness (tb) as in the following 

relation [129]:

The anodic oxide layer thickness does not depend on applied anodization voltage 

(V) and can reach several micrometers [108]. At constant V the current density-time 

curve can be split into four major phases (Figure 3-3). Phase one starts directly after 

applying constant voltage V over an aluminum sample. At the moment V is applied, /  

immediately reaches a maximum value and a thin layer of oxide barrier begins to 

establish on the aluminum surface that has contact with the electrolyte solution.

Then, the thickness of the oxide layer increases quickly. As a result, surface 

resistance increases and the value of J decreases to reach its minimum value [130].

Eq. 3-1

Eq. 3-2
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Figure 3-3. Current density of anodization versus time curve for the four phases of AAO 
formation under constant voltage [108].

In phase two, straight parallel-aligned initial pores form in the oxide barrier layer 

[130]. The mechanism of primary pore formation can be described by showing that the 

current density of anodization, J, attacks the weak positions at the oxide layer surface 

caused by cumulative tensile stress [126, 131, 132].

During phase two, some initial pores continue to grow while others stop growing. 

Additionally, the total surface resistance decreases in phase two, which leads to 

progressively increasing values of J to the regional maximum [108].

In Phase 3, pores continue growing. Finally, in Phase 4, the current density of 

anodization J decreases from the local maximum to a stable value and a dynamic 

equilibrium of a forming and dissolving anodic oxide layer is established [108, 132].

The AAO membrane has a unique unit cell structure that consists of three major 

parts (Figure 3-4). The first part is the skeleton of the hexagonal inner layer. This part is 

made by the mutual internal walls between the unit cells. The second part, which is 

located between the inner layer and the central pore, is called the outer layer. The last part 

is the internal rod, which is located inside the inner layer [108].



50

Porous AAO unit cell structure parameters, such as pore diameter Dp, pore wall 

thickness dw, pore length lp, pore density pp, interpore distance Oint, barrier layer 

thickness tb, and porosity P have relationships as follows:

Dint ~ Dp + 2 dw , Eq. 3-3

/  2 \
Pv = Eq. 3-4

Eq. 3-5

These parameters primarily depend on anodization voltage, V, anodization time, 

electrolyte type, and anodization process temperature [108,133,134].

,* 1 Outer layer Interstitial rod (1*1 CL

Inner layer Barrier layer

Figure 3-4. a) Porous AAO unit cell structure major parts; (b) cross-sectional view of 
porous AAO that shows unit cell structure parameters [108].

Pore diameter Dp, pore wall thickness tw, and pore length lp are the most 

important parameters of porous AAO and have a strong impact on reflectometric 

interference spectroscopy (RIfS) signals [72]. Pore diameter Dp is controlled by changing 

the anodization voltage [135, 136]; for example, anodization voltage of 30 V-70 V 

generates AAO pore diameter of 20 nm-60 nm, with pore distance ranging from 60 nm- 

100 nm. The relationship between Dp and the anodization voltage is linear (Figure 3-5) 

[72].
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Pore length lp can be adjusted by changing anodization time since pore growth is a 

time-dependent process. Nonetheless, the rate of AAO pore growth is not fixed at different 

anodization voltages; however, we can find the rate of pore length growth at constant 

anodization voltage (Figure 3-5) [136].

5 «o
I) M

Anodisation time /minAnodsation vokage/V

Figure 3-5. (A) Pore diameter is controlled by anodization voltage with a linear relation. 
(B) The impact of anodization time over pore length at constant voltage (50 V) [72].

3.1.1 The Effect of AAO Pore Diameter (Dr) on the White 
Light Reflected Signal

To find the relation between pore diameter and white light reflected signal, we 

must eliminate other parameters, such as pore length, by keeping it at a constant value.

The significant impact found was the number of Fabry-Perot fringes obtained from AAO

surfaces (Figure 3-6).

The increments in the number of fringes due to pore diameter increase are 

measured as the increments in the number of reflected light beams from the AAO 

surface.
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There is no typical pore diameter for a porous AAO sensor, and Dp depends on 

the size of molecule to be detected. For small molecule detection, a higher shift in Fabry- 

Perot fringes is expected, with better sensitivity when a small Dp is used.

—  21 nm 10 fringes
—  25 nm 13 fringes
—  40 nm 18 fringes

m TOO
Wavelength /nm

Figure 3-6. Increase in fringes as the AAO pore diameter Dp is increased from 21-40 nm 
[72].

Controlling Dp by changing anodization voltage affects pore wall thickness dw and 

interpore distance Dint. As a result, it is hard to evaluate the effect of those parameters 

separately. Pore wall thickness is decreased by applying 10% wt phosphoric acid over the 

AAO surface in a process called “pore widening,” which is time-controlled.

Reducing the value of dw leads to increasing in Dp (Figure 3-7). Experiments show 

that after applying a widening solution over AAO for more than 65 mintues, the pore walls 

are completely removed [72]. As a result, no fringes can be detected from such types of 

AAO sensor surfaces.
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Figure 3-7. SEM images of AAO nanoporous sensor, (a) AAO sensor with Dp= 30 nm. dw 
is decreased after applying 10%wt phosphoric acid over AAO surface for (b) 20 minutes, 
(c) 40 minutes, and (d) 50 minutes, (e) Obtained Fabry-Perot fringes during the pore- 
widening process[72].

3.1.2 The Effect of AAO Pore Length (lr ) on the White 
Light Reflected Signal

Pore length lp of AAO has the same effect on the white light reflected signal as 

AAO pore diameter Dp. The Fabry-Perot interference fringe patterns increase as lp 

increases (Figure 3-8). AAO, with lp less than 2.5 pm, shows few or no Fabry-Perot 

interference fringe patterns. The best lp range to have significant number of fringes with 

high intensity is 2.5 pm-5 pm. When lp is more than 5 pm and less than 10 pm, the 

number of fringes increases; however, this increase affects the intensity of the signal by 

decreasing amplitude intensity, thus making it hard to analyze the generated signal. If lp 

is more than 10 pm, then fringes will be very small (“baby fringes”). For AAO with lp 

more than 12 pm, no fringes are observed using RIfS. The relation between the 

increasing number of fringes and changes to intensity by increasing lp can be clarified by 

the increment in the number of reflected light within AAO pore, which leads to more
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fringes. However, the light intensity is reduced due to lost energy caused by multiple 

light-trapping inside the AAO pore [72].

Baby fringes

12|im

9.6pm
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4.8pm

3.2pm

2.9pm

0.7pm
0.32pnNo fringes

400 900 800 700 800 900

Wavelength /nm

Figure 3-8. Relation between pore length lp and the white light reflected signal over the 
AAO sensor surface. At lp less than 2.5 pm, few fringes are generated. With increased lp, 
the number of fringes is increased with decreasing reflected signal intensity [72].

3.1.3 The Effect of AAO Pore Surface Modifications

The reflectivity of the AAO sensor surface affects both the light reflectance from 

the surface and the interference signal [137]. Coating our sensor surface with ultra-thin 

metal modifies the fringe shape and the reflected signal intensity (Figure 3-9).
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Figure 3-9. Improvement of reflected signal before and after coating AAO sensor with 
gold. (A) Reflected signal from non-gold-coated AAO sensor surface before (black line) 
and after (red line) applying biomolecules. (B) Reflected signal from gold-coated AAO 
sensor surface before (black line) and after (red line) applying biomolecules. Compared 
with B, it is hard to find the difference between the two reflected signals from the gold 
and non-gold-coated AAO sensors [108].

Many metals are used as a coating layer over AAO top surfaces, such as gold, 

silver [78, 138], platinum [72], and copper [139, 140]. Gold (Au) is the most common 

metal used to make a thin layer AAO sensor surface [78] because it is inert and does not 

form any oxide layer below its melting temperature [141], Au provides excellent 

chemical stability to the sensor surface.

One more advantage that makes Au more attractive as a surface coating is the 

ability to make extraordinary contact with alkanethiols, which are the building blocks of 

the self-assembled monolayer [101, 142,143].

The best enhancement of the reflected signal occurs when the thickness of the 

gold surface coating is between 4 nm and 10 nm. A gold layer with a thickness of more 

than 10 nm will not enhance the signal.
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After the AAO is coated with gold, the pore diameter is reduced. Au thickness, 

therefore, is optimized to ensure the gold does not block the sensor pores. This research 

uses an AAO sensor with the following characteristics:

Pore diameter Dp = 55 nm, pore length lp = 5 pm, pore density = 5.5 * 109 pores per cm2, 

pore period = 145 nm, poricity = 34.4%, and Au coat thickness = 5 nm.

3.2 AAO Sensor Fabrication

We use indium tin oxide (ITO) glass (Nanocs, Inc., IT100-111-25) to fabricate a 

patterned AAO sensor (Figure 3-10). ITO glass is used because it is a conductive material 

(sheet resistance value 100 O/square) and helps transport electrical current through the 

surface smoothly [144]. Patterned AAO sensor fabrication goes through three major 

steps: anodization, photolithography, and etching.

ITO GlassAAO patterns

3 inches

Figure 3-10. Fabricated AAO patterns over ITO glass.

3.2.1 AAO Sensor Fabrication

The first step in the anodization process is to wash the ITO glass by sonication for 

five minutes in deionized (DI) water, then five minutes in acetone, followed by five
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minutes in isopropyl alcohol, and finally, sonication for five minutes in DI water again. 

Then we bake the cleaned ITO glass for five minutes.

In the next step, we deposit an aluminum layer with a thickness of 8 pm over the 

ITO glass surface using an E-beam evaporation device. We consider surface smoothness 

after the aluminum layer is deposited, since it is a significant factor in the fabrication 

process [145,146].

After that, two anodization processes (Figure 3-11) are applied to the aluminum- 

coated ITO glass.

Calibration Electrodei

working electrode 

Electrolyte
mletai 5 "C

M^ncma

Figure 3-11. Schematic of two-step anodization instrument [147].

During anodization, a chemical reactions take place. The chemical reaction during 

alumina (A120 3) formation is:

2A1 + 3H20 ±7 A120 3 + 6H+ + 6e~. Eq. 3-6

Part of A120 3 at the alumina-electrolyte interface is dissolved by the following 

reaction:
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A120 3 + 6H+ -» 2A1+3 + 3H20 . Eq. 3-7

At the barrier layer, aluminum will dissolve:

2A1 -> 2A1+3 + 6e~ . Eq. 3-8

At the cathode, hydrogen gas (H2) will develop:

6H+ + 6 e ~ -» 3H2 . Eq.3-9

The two-step anodization process procedure is as follows. First, we apply the Al- 

coated ITO glass inside the anodization device (Figure 3-11) for 10 minutes with 0.3 M

oxalic acid as the electrolyte and apply DC voltage (45 V) at 2 °C. This process is called

step-one anodization. Second, we etch the sample using 0.2 M chromic acid and 0.4 M 

phosphoric acid at 65 0 . At this stage, no voltage is applied. Finally, the nanopores are 

developed in step two anodization and etched in 0.3 M oxalic acid for 40 minutes under 

the same conditions applied in step one anodization. After the two-step anodization 

process is complete, we rinse the achieved AAO sensor (Figure 3-12) with DI water.

Figure 3-12. SEM of porous AAO sensor surface.

3.2.2 Photolithography

Since the whole surface of the ITO glass will be covered by a porous AAO layer 

by the end of the two-step anodization, photolithography is applied to make a patterned 

AAO device.
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We start the photolithography process by depositing a thin film of aluminum (150 

nm thick) over the porous AAO surface by thermal evaporation. Then, a positive 

photoresist (AZ 1512) is applied to the sensor surface and spin-coated at 4,000 rotations 

per minute (rpm), followed by soft-baking for 50 seconds at 95 °C.

Afterwards, patterns are transferred to the photoresist layer by applying a 416 nm 

light at an exposure dose of 70 mj/cm2 through a photomask, followed by baking for 50 

seconds at 105 °C.

The photoresist layer not covered by the photomask during light exposure is 

removed by submerging the sample in an AZ developer for 25 seconds. By this step, 

patterns are implanted over the AAO sensor surface at the spots protected by the 

photomask.

3.2.3 Etching

The etching process starts when we apply the sample in an aluminum etching 

solution for 35 seconds. This step removes the unprotected A1 layer. The etching solution 

consists of H3P04:CH3C00H: HN03: H20 (80:5:5:10 by weight %).

Then, the unwanted AAO layer is etched out by submerging the sample in a 

mixture of 0.2 M chromic acid and 0.4 M phosphoric acid for 1.5 hours.

Finally, we remove the remaining photoresist using acetone and etch out the 

deposited aluminum layer using an aluminum etching solution. The patterned AAO 

fabrication process is showen in Figure 3-13.
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Figure 3-13. Patterned AAO fabrication process, (a) Clean ITO glass, (b) Deposit 
aluminum thin film, (c) AAO generated after two-step anodization process, (d) Deposit 
another aluminum layer to create patterns and apply photoresist layer and light exposure 
through a photomask, (e) Etch unprotected aluminum layer using an aluminum etching 
solution, (f) Etch unwanted AAO layer, (g) Remove photoresist layer by action and etch 
the second deposited aluminum layer.

After the fabrication process is completed, we coat the sensor with a 50-A gold 

layer. To evaluate if our sensor is fabricated precisely, we apply white light over the 

sensor surface and observe the reflected signal generated (Figure 3-14). A poorly 

fabricated sensor generates low-intensity fringe signals and sometimes no fringe signal, 

whereas a well-fabricated sensor will produce bright fringes with high amplitude.

9ec
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Figure 3-14. Well-fabricated AAO sensor (red line) versus poorly fabricated AAO sensor 
(blue line). Fringes generated by a well-fabricated sensor have better reflected intensity 
than those produced by a poorly fabricated sensor.



CHAPTER 4

PROSTATE CANCER BIOMARKERS DETECTION

4.1 Experiment Protocol

The flow chart of the experimental setup is shown in Figure 4-1.

Emitted light through
optical probe

Reflected light 
collected by 
optical probe

Spectrometer

White light source

Data analysis system

Nanopore thin-film sensor (the specimen 
to be tested is immobilized over sensor 
surface 1

Optical
transducing
signal

Figure 4-1. Flow chart of the experimental setup.

4.1.1 Antibody Immobilization and Antibody Detection

The gold-coated AAO surface was first cleaned with O2 plasma for 15 minutes. 

This step was followed by a self-assembled monolayer (SAM) process (Figure 4-2), in 

which the sensor is incubated in a mixture of 1 mM HSCIOCOOH and HSC80H with a 

molar ratio of 1:10 in absolute ethanol solution overnight. The SAM was activated by 

incubation in phosphate buffer solution (PBS; 10 mM, pH 7.0) containing 0.5 mM of 

EDC/NHS for 2 hours. The activated SAM was rinsed with the 10 mM PBS, and then 

incubated with a freshly prepared 10 mM PBS solution containing 10 pg/ml of the

61
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detector mAb for 18 hours at 4 °C. The device was then rinsed with the PBS, followed by 

0.2 M glycine-PBS solution for 10 minutes to deactivate the remaining active sites at the 

SAM. This step avoided non-specific binding between the SAM and the antigens. It was 

followed by measuring the reflected single from the sensor surface after the antibody 

immobilized. Then, different concentrations of biomarker solution was applied to the 

antibody-coated AAO sensors and incubated for 60 minutes at room temperature. Then, 

the sample was rinsed with PBS to wash away unbounded biomarker molecules. This 

step was followed by measuring the reflected single from the sensor surface after 

biomarkers applied. Finally, we measured the shift of the optical fringes for each sensor.

a  ; _ r  ; f
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Figure 4-2. Illustration of the protocol for the self-assembled monolayer (SAM) 
formation on the Au-coated AAO surface, antibody (Ab) immobilization and NEM 
detection.

4.1.2 Nanosensor Surface Functionalization and Characterization

The nanosensor was subjected to a step-by-step surface functionalization 

procedure of the Au-coated AAO surface. This well-established method allows the
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formation of a mixed SAM of alkanethiols by the adhesion reaction of the thiol group on 

the Au-coated surface [148]. After EDC/NHS is added on the surface, the carboxylic 

groups of amine-reactive intermediate is formed. Due to their positive charge at 

physiologic conditions, primary amines are usually the outward-facing components of the 

proteins. Hence, they are generally accessible for conjugation without denaturing the 

protein structure. As a result, the detector mAbs for NEM or PSA can be covalently 

attached to the top of the mixed SAMs. In order to eliminate or mitigate the non-specific 

biological binding, the remaining active amine-reactive intermediate groups are 

deactivated by the amino acid glycine. Thereafter, the mAbs are conjugated to the 

nanosensor surface and ready for detecting NEM or PSA.

4.2 Nanosensor Validation

For the validation of the nanosensors, key assay parameters such as specificity, 

sensitivity, accuracy, and precision were critically evaluated as per the requirements of 

international guidelines [149,150]. First, we tested whether the presence of a high 

concentration of unrelated protein(s) influences the binding between the detector 

antibody and the sensor. We compared the binding of NEM mAb or PSA mAb with the 

sensor in the presence/absence of BSA (0.15 mg/ml). Second, multiple sensors were used 

to determine the standard curve for NEM or PSA, and the results of different batches of 

sensors were compared to ascertain the reproducibility of the sensors. Third, aliquots of 

human serum samples were tested in multiple dilutions to determine the upper and the 

lower serum volume detection limits. All samples were tested in duplicate and only the 

results with a coefficient of variation (CV) <20% were accepted.
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Sensor efficiency: To determine the accuracy of nanosensor measurements, 

known amounts of NEM or PSA antigens were added into pooled serum aliquots. The 

amount of the antigen(s) determined by nanosensors was compared with the expected 

amounts of antigen.

Comparison of nanosensors with ELISA: The serum samples left over from an 

earlier study [115] that used ELISA to detect the antigens were used in nanosensor 

assays. The results from both studies were compared by using Pearson’s correlation 

method.

Comparison of the detection ability of NEM and PSA by using nanosensor tests 

applied to pathologically confirmed prostate cancer blood serum samples (cancer blood 

serum samples and negative control blood samples were provided from ULM College of 

Pharmacy).

We used one site-specific binding (Y) equation to generate standered curves 

(Figure 4-3) for antibodies and biomarkers. To use this equation, we must have already 

subtracted off any nonspecific binding. At high biomarker concetration, all of the binding 

sites become occupied. As a result, the standard curve reached the saturation point.

Bmax%
E<" 4-1

where X is the concentration of the ligand, Bmax is the maximum binding in the same 

units as Y, and kd is the dissociation constant.

After we generated the standered curves, we converted the x-axis into a 

logarithmic (Log10) scale to find the linear region of the curve.
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Figure 4-3. One site-specific binding saturation curve.

4.2.1 Antibody Optimization

Before we start detecting biomarkers, we selected the antibody concentration that 

we are going to immobilize over porous AAO sensor surface. This step is important 

because all experiments should be applied under the same conditions.

To optimize NEM antibody (Figure 4-4), we immobilized different NEM 

antibody concentrations over different porous AAO sensors, and we measured the 

reflected signal from porous AAO sensor; then we applied fixed concentration of NEM 

biomarker (8 pg/50 pi) over the sensors. After 60 minutes of incubation, we measured the 

reflected signal again and calculated the wavelength shift between antibody signal and 

biomarker signal.

I
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Figure 4-4. NEM antibody optimization.
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To optimize the PSA antibody (Figure. 4-5), we used the same method of NEM 

antibody optimization.

><

Figure 4-5. PSA antibody optimization.

When the concentration of antibody is increased, the shift between antibody 

signal and biomarker signal is increased. The selected concentration of PSA and NEM 

antibodies is 10 pg/ml.

4-2.2 Porous AAO Nanosensor Detecting Limits

After we selected the concentrations of PSA and NEM antibodies, we will 

measure the lowest and the highest concentration of NEM (Figure 4-6) and PSA (Figure 

4-7) biomarkers that porous AAO sensor can detect. NEM biomarker concentrations 

tested were 0, 0.025, 0.05, 0.1,0.2, 0.4, 0.8,1.6, 3.2, 6.4,12.8,25.6, 51.2 and 102.4 pg/50 

pi. The lowest concentration of NEM detected by AAO porous nanosensor was 0.1 pg/50 

pi (2 pg/ml), and the curve reaches the saturation point at 25.6 pg/50 pi (0.512 ng/ml).

For PSA, the lowest concentration detected by AAO porous nanosensor was 1 pg/50 pi 

(20 pg/ml), and the curve reaches the saturation point at 50 pg/50 pi (1 ng/ml).
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Figure 4-6. NEM biomarker detection limits by using porous AAO nanosensor. The 
lowest concentration and the highest concentration detected were 0.1 pg/50 pi and 25.6 
pg/50 pi, respectively.

Figure 4-7. PSA biomarker detection limits by using porous AAO nanosensor.

4.2.3 Biomarkers Standard Curves

To generate a standard curve for NEM and PSA biomarkers, different 

concentrations of NEM and PSA were prepared from stock solution. NEM and PSA 

concentrations in stock solution are 5 mg/ml and 1 mg/ml, respectively.

The concentrations that we prepared to generate standard curves were 32,16, 8,4, 

2, 1 and 0 pg/50 pi for PSA (see Figure 4-8), and 16, 8, 4, 2, 1, 0.5 and 0 pg/50 pi for 

NEM (see Figure 4-9). All diluted solutions were prepared by using serial dilution

•  .2
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PSA Momariwr conconration pg/SOpI
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method. PSA and NEM standard curves show the relationship between biomarker 

concentration and wavelength shift between the signal that generated from antibody 

coated sensor surface and the signal that generated after antigen-antibody complex 

formed. The relation between biomarker concentration and wavelength shift is nonlinear; 

to approximate it as a linear relationship, the x-axis scale is changed to a logarithmic 

(Log10) scale.
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Figure 4-8. PSA standard curve.
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Figure 4-9. NEM standard curve.
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4.2.4 Reproducibility

To test the reproducibility of the nanosensors, the assays with normal standard 

curves were performed on three randomly selected sets of chips and run under the same 

conditions on three different days. Figure 4-10 demonstrates the reproducibility of the 

response. The standard deviation over the mean of each point were 0.08 at 1 pg, 0.12 at 2 

pg, 0.09 at 4 pg and 0.13 at 8 pg for NEM.
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Figure 4-10. NEM standard curves using three separate sets of sensors on different days. 
Sensors 1, 2, and 3 were the fabricated AAO nonporous thin film (Figure 3-9).

4.2.5 Specificity

To test the specificity of this detection method, we compared the shift of the 

fringes when NEM solution was applied to the sensor versus concentrated bovine serum 

albumin (BSA) solution (15 mg/ml). After 1 hour incubation, the sensor was rinsed with 

PBS buffer. The measurements in Figure 4-1 IB demonstrate no clear shift of the 

transducing signals before and after the BSA applied. In contrast, NEM solution gave a 

clearly observable shift (Figure 4-11 A), demonstrating that the sensor can specifically 

detect the antigen even in the presence of large protein concentrations as long as the
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antibody is specific. Also, we applied NEM biomarker over PSA mAb and PSA over 

NEM mAb to check if any unspecific binding occur (Table 4-1).

The results indicated no shift of the fringes when NEM biomarker was applied 

over PSA mAb, or when we applied PSA biomarker over NEM mAb.

Table 4-1. Specificity test.

Sample tested
Average wavelength 

shift (nm)

PSA antibody (5 pg/ml) + NEM biomarker (8 pg/50 p i ) 0.14

PSA antibody (2.5 pg/ml) + NEM biomarker (8 pg/50 pi) 0.067

NEM antibody (10 pg/ml) +PSA biomarker (2 pg/50 pi) 0

NEM antibody (10 pg/ml) +PSA biomarker (4 pg/50 pi) 0.047

NEM antibody (10 pg/ml) + BSA (1.5 mg/ml) 0.107

NEM antibody (10 pg/ml) + BSA (0.15 mg/ml) 0.075
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Figure 4-11. (A) Typical transducing signals (average shift of interference fringes 4.81 
nm) from the optical sensor after the NEM (16 pg/50 pi) is applied, incubated, and then 
rinsed using the buffer solution PBS in the sensor. (B) Specificity and selectivity test: 
transducing signal from the sensor after BSA solution is flowed, incubated, and then 
rinsed using buffer solution PBS in the sensor is negligible (average shift 0.017nm).

4.2.6 Accuracy

To test the accuracy of nanosensor, we prepared pools of sera obtained from 

normal subjects and added known amounts of antigen (either NEM or PSA). We then 

measured the concentrations of NEM or PSA in all pooled sera in the same assay (Table 

4-2). The detected value of added antigen was determined. The accuracy (the ratio of 

measured amount to calculated amount) of the detection of the known amounts of added 

antigen varied from 93% at the lowest added concentrations (1 pg added PSA) to 76.7% 

at the highest added concentration (4 pg added PSA).
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Table 4-2. Accuracy test.

Tested sample Average 
wavelength 
shift (nm)

Calculated 
PSA amount 

(pg)

Measured PSA 
amount (pg)

Accuracy %

0.5pl serum + 
49.5pl PBS

0.504 0.978 0.978

0.5pl serum + 
lpg PSA + 
48.5pl PBS

0.898 1.978 1.84 93

0.5pl serum + 
2pgPSA + 
47.5pl PBS

1.215 2.978 2.64 88.6

0.5pl serum + 
4pg PSA + 
45.5pl PBS

1.565 4.978 3.82 76.7

4.2.7 Comparison of NEM Nanosensor Assay with NEM ELISA

We then compared our earlier NEM ELISA standard curve (Figure 4-12a) with 

the NEM nanopore thin-film sensor standard curve (Figure 4-12b). To generate NEM 

ELISA standard curve ELISA microtiter plates were coated with 23 ng NEM antibody 

per well overnight at 4 °C, followed by washing of the plates and the addition of BSA 

solution (2%) as blocking solution. Then the samples were added and incubated for one 

day. The next day, the biotinylated NEM was added to the wells and incubated for 3 

hours at 37 °C. After that, we added and incubated streptavidin-horseradish peroxidase 

conjugate [164] for an hour at 37 °C. Finally, chemiluminiscence was read on a plate 

reader. The results suggest that the nanopore thin-film was approximately 50 fold more 

sensitive than the corresponding non-equilibrium ELISA. When considered together with 

the simplicity of the method, label-free assay, and a very short incubation period of 60
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minutes, the nanopore thin-film sensor offers significant advantages over the ELISAs for 

biomarker measurements.
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Figure 4-12. Comparison between immunosensor assay and ELISA: (a) a typical standard 
curve of NEM in an ELISA assay [65]; (b) a typical NEM standard curve by using porous 
AAO nanosensor.

4.2.8 Blood Serum Dilution Curve

Before we tested human blood serum, we found out the minimum and the 

maximum serum volume that porous AAO sensor can detect (Figure 4-13). The serum 

volumes tested were 0.3, 0.6125,1.25, 2.5, 5,10, and 20 pi of blood serum in total buffer 

solution with volume of 50 pi. The minimum blood serum volume detected was 0.125 pi 

and the saturation point was approximately at 4 pi.
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Figure 4-13. Human Blood serum dilution curve. The saturation point is at 4 pi blood 
serum volume.

4.2.9 Assay Validation with Human Serum Samples

We then analyzed 10 different serum samples from 10 different patients who 

visited the urology clinic for either BPH or PC leftover from the earlier study [151]. The 

protocol for the use and analysis of the sera was approved by the Institutional Review 

Boards (IRB) at University of Louisiana at Monroe (ULM).

The freezed blood serum samples were thawed in an ice bath; then, we vortexed 

the samples and centrifuged them for 20 seconds, followed by taking 2 pi of the serum by 

using micropipette and adding it into 398 pi of PBS. The serum NEM and PSA results 

obtained by the porous AAO nanosensors were then compared with those obtained by 

NEM and PSA ELISA (Figure 4-14). Serum NEM/PSA values determined by the sensor 

were highly correlated with those determined by the ELISA (for NEM, Pearson 

Coefficient: 0.9507, for PSA, Pearson Coefficient: 0.9431). More importantly, all PC 

samples with > 4 ng/ml PSA (PSA < 4 ng/ml serum are considered non-cancer whereas 

PSA > 4 ng/ml serum are considered as potentially cancer) were also predicted to be the 

same by the current porous AAO nanosensor. Then, the NEM and PSA levels measured 

by the sensors in these samples were compared with the clinicopathological status of the



75

patients (Figure 4-15). As expected, confirmed PC patients (Sample numbers #4, #6, #9) 

displayed high PSA (>4 ng/ml) as well as NEM (>4 ng/ml) levels (see Table 4-3).

Among the remaining patients, we observed some divergences between NEM and PSA 

levels. For example, patients #7 and #10 displayed 4.59 and 4.39 ng PSA/ml respectively 

(Table 4-3). Based on the current cut-off, these patients are considered as potential cancer 

patients. However, their NEM levels were low (1.762 and 2.096 ng/ml respectively) 

(Table 4-3). In contrast, patients #1 and #2 displayed normal PSA levels (2.46 and 2.20 

ng/ml respectively). However, their NEM levels were high (6.523 and 13.187 ng/ml 

respectively). Although these results are very preliminary, and a much larger number of 

patients needs to be evaluated, the results raise a possibility that NEM may detect PC 

earlier than PSA (perhaps in cases of #1 and #2) or may detect indolent PC (in the case of 

#7 and #10).
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Figure 4-14. Comparison between porous AAO nanosensor and ELISA assay; (a) linear 
regression curve between porous AAO nanosensor vs. ELISA for NEM (Pearson 
Coefficient: 0.9507; P0.0001); (b) linear regression curve between porous AAO 
nanosensor vs. ELISA for PSA (Pearson Coefficient: 0.9431; P<0. 0001).
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Table 4-3. NEM and PSA levels in 10 different human serum samples measured by using
porous AAO sensor and ELISA.

Patient
number

PSA level by 
using AAO 
nanopore 

sensor

ELISA 
PSA level

NEM level by 
using AAO 
nanopore 

sensor

ELISA 
NEM level

1 2.46 2.73 6.52 4.73

2 2.2 2.47 13.19 12.47

3 3.21 1.15 3.54 1.15

4 5.18 13.03 4.91 6.03

5 3.28 2.57 2.39 2.57

6 31 27.6 19 27.6

7 4.59 6.66 1.76 3.66

8 3.1 2.57 1.74 3.57

9 29.13 21.3 21.03 21.3

10 4.39 5.05 2.1 3.05
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Figure 4-15. Analysis of NEM and PSA in serum samples of 10 urology patients as given 
in Table 4-3: Correlation between NEM and PSA in same samples (Pearson Co-efficient 
r=0.8557; p<0.0016).
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4.2.10 PC Detection Validation with Clinicopathological PC 
Confirmed Human Serum Samples

After assay validation, we analyzed the levels of NEM and PSA of 28 blood 

samples of humans who were confirmed to have the PC. The protocol for the use and 

analysis of the sera was approved by the Institutional Review Boards (IRB) at University 

of Louisiana at Monroe (ULM).

More importantly, all test results with PSA serum levels < 10 ng/ml are 

considered as a failed to detect, and all samples with NEM serum levels < 4 ng/ml are 

considered as a failed to detect as well. Any sample with serum levels more than 10 

ng/ml for PSA or 4 ng/ml for NEM is considered as a pass to detect (Table 4-5) and we 

generated a dot plot of tested PC serum samples (by using NEM and PSA biomarkers) 

with negative controls, listed in Table 4-4 (Figure 4-16). The dot plot shows that when 

we used NEM as the tested biomarker, the overlap between negative controls NEM and 

PC NEM serum levels was small. On the other hand, PSA shows higher overlap with 

negative controls. ROC curves (Figure 4-17) also showed that NEM is more sensitive 

than PSA as PC biomarkers.

The combined use of NEM as PC biomarker led to detection of 23 out of 28 PC 

cases, a success rate of 82%. On the other hand, by testing samples with PSA as PC 

biomarker, we were able to detect 19 out of 28 PC cases with a success rate of 68%.

Interestingly, three samples (4, 7, and 23) showed low NEM serum levels, but 

high PSA serum levels, and seven samples (9, 12, 13, 16, 17, 19, and 22) showed low 

PSA serum levels with high NEM serum levels. Only two samples (3, 15) gave low 

serum level readings. If we combined PSA test with NEM test, we were able to detect 26 

out of 28 PC cases (93% success).
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Table 4-4. Negative controls PSA and NEM levels measured by porous AAO nanosensor.

Negative control number NEM levels PSA levels

1 2.418 2.270

2 1.73 2.553

3 0.999 0.822

4 13.877 1.627

5 1.217 2.656

6 1.762 5.221

7 0.874 1.612

8 2.404 2.242

9 2.762 1.998

10 1.527 5.976

11 1.709 4.958

12 2.873 1.889

13 3.817 1.288

14 2.345 1.671

15 2.822 1.301

16 2.341 1.801

17 2.512 13.576

18 1.557 14.877

19 0.98 16.289

20 1.288 14.751
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Figure 4-16. Dot plot for cancer and negative controls, (a) NEM showed little overlap 
between PC samples and negative controls, (b) The overlap between PC samples and the 
negative control is higher when samples were tested by using PSA as a biomarker.
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Figure 4-17. ROC curves for NEM and PSA. (a) NEM ROC curve shows that NEM 
biomarker is a specific and sensitive as PC biomarker, (b) PSA ROC curve shows that 
PSA is less specific than NEM as PC biomarker.
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Table 4-5. NEM and PSA levels in PC samples tested by using porous AAO nanosensor.

PC
patient
number

NEM levels by 
using Nanosensor 

(ng/ml)

NEM 
Nanosensor 
test result

PSA levels by 
using Nanosensor 

(ng/ml)

PSA 
Nanosensor 
test result

1 18.967 Pass 17.053 Pass

2 5.758 Pass 10.541 Pass

3 2.129 Failed 6.310 Faded

4 2.082 Failed 17.278 Pass

5 8.755 Pass 32.548 Pass

6 9.315 Pass 22.113 Pass

7 2.449 Failed 42.770 Pass

8 10.04 Pass 10.855 Pass

9 12.461 Pass 8.247 Failed

10 7.231 Pass 12.686 Pass

11 23.926 Pass 16.771 Pass

12 14.570 Pass 6.962 Failed

13 5.982 Pass 8.115 Failed

14 17.604 Pass 10.009 Pass

15 1.432 Failed 5.061 Faded

16 6.044 Pass 3.013 Failed

17 11.738 Pass 4.249 Faded

18 11.786 Pass 16.990 Pass

19 9.612 Pass 5.953 Failed

20 12.313 Pass 12.065 Pass

21 14.495 Pass 16.398 Pass

22 10.434 Pass 5.198 Faded

23 2.245 Failed 36.750 Pass

24 6.865 Pass 15.752 Pass

25 9.087 Pass 16.586 Pass

26 23.212 Pass 17.488 Pass

27 19.205 Pass 20.252 Pass

28 13.061 Pass 13.417 Pass
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4.3 Discussion

Present results demonstrate that the porous AAO nanosensor can reliably detect 

prostate cancer biomarkers in ultra low volume of serum samples. The nanosensor offers 

several advantages over the traditional ELISAs. First, the nanosensor displayed low 

detection limits (2 pg/ml for NEM and 20 pg/ml for PSA) and the detection range for 

both markers (for NEM the range is from 2 pg/ml to 0.512 ng/ml, for PSA the range is 

from 20 pg/ml to 1 ng/ml) was 50-100-fold lower than that achieved by traditional 

ELISAs (pM to nM range) (see Figure 4-12). We could have achieved even higher 

sensitivity. Since we could detect both NEM and PSA biomarkers even in non-cancer 

individuals in as little as 0.25 pi of serum, we felt that achieving higher sensitivity will 

not provide any real benefits. The second major advantage is the technology to measure 

antibody-bound protein by optical interference signals coupled with localized surface 

plasmon resonance. This method completely eliminates the need for an enzyme-labeled 

antigen, or the requirement for efficient competition between labeled antigen and native 

molecules.

We had serious difficulties in labeling NEM peptide with an enzyme conjugate 

that was a thousand times larger than the NEM peptide. The labeled NEM was highly 

unstable, denatured rapidly, and had difficulty competing with the native protein for 

antibody binding sites, leading to unacceptably high non-specific binding. In addition, the 

technology offers several advantages, such as simplicity of the procedure, a significant 

reduction in the number of processing steps, and completion of the assay in the short time 

of fewer than two hours.
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For any new detection technique, it is critical to demonstrate that the technology 

measures the native molecules accurately, specifically, and precisely in a complex 

mixture of potentially interfering proteins normally found in biological fluids. We have 

tested the accuracy of nanosensors in multiple ways. First, we examined whether high 

protein concentrations found in biological fluids such as serum would interfere with the 

measurement of biomarkers. We found that high levels of albumin did not interfere with 

biomarker measurements.

Also, we observed that the dilution curve of the serum reached the saturation 

point at 4 pi serum volume (see Figure 4-13). Next, we added known concentrations of 

biomarkers in a serum sample, and tested whether the sensor can measure the added 

biomarker accurately. Again, the results show we could recover 76.7% to 93% of added 

antigens in a serum sample at multiple concentrations (see Table 4-2). We measured PSA 

and NEM levels in ten patient samples of PC and benign urological diseases by the 

nanosensor as well as the ELISA. The results showed that by both methods were similar 

(Figure 4-14).

Next, we examined the correlation between NEM with PSA in same samples. In 

eight out of ten specimens (except #1 and #2, which exhibited a significant diversion), we 

observed high correlation between PSA and NEM (Pearson Coefficient 0.987; p<0.0001). 

We also observed divergence between NEM and PSA in some samples. For example, 

Patients #1 and #2 displayed normal levels of PSA but elevated NEM levels. Since the 

number of cases examined is extremely low and we do not have access to the current 

status of the patients, we cannot say whether NEM can detect PCs with low PSA levels. 

However, it is a possibility since it is known that PCs with high neuroendocrine
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differentiation or metastatic PC generally display low PSA but are aggressive [160,161]. 

On the other hand, patients #7 and #10 showed borderline PSA levels (4.6 and 4.4 ng/ml 

respectively) but low NEM levels (1.76 and 2.1 ng/ml respectively).

Finally, we compared the serum PSA and NEM levels of the patients with their 

clinical diagnosis based on physical examination and pathology (Table 4-5). As expected, 

confirmed PC patients displayed high levels of both markers. Based on these 

observations, it appears that the nanosensor is reliable, accurate and precise in typical 

analytical conditions for clinical measurements.

Since PSA is known to overestimate the number of PC patients, these results 

raise a possibility that one can be more certain of cancer diagnosis when both PSA and 

NEM are elevated, rather than an increase in only one biomarker. This can significantly 

reduce the number of false positive diagnoses and, consequently, the number of biopsies 

[158,159]. Indeed, the present study is preliminary and is designed to test the validity of 

an immuno-nanosensor for the measurement of PC biomarkers. Moreover, the current 

cohort of patients is extremely small and is not sufficient to draw any clinical 

conclusions. However, these preliminary results provide a strong rationale for further 

investigation of PSA/NEM in a larger patient cohort with well-defined statistical 

objectives.

Although these studies are preliminary, they demonstrate that this novel device, 

which is fabricated by a low-cost standard micro- and nano-fabrication process [162], can 

be a viable prototype for future prostate cancer diagnostics in the clinic. The device’s low 

cost, suitability of mass production, and long shelf life can contribute to significant 

acceptability in a marketplace. Thus, considering the ease of fabrication, utilization of
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commonly available commercial components (the typical life time of the white lamp is 

1 0 0 0 0  hours), and the simplicity and sensitivity of the method make this system 

accessible to virtually any biomedical laboratory at a small cost. The fabricated sensor is 

disposable and we can fabricate more sensors when we need more.

To summarize: a novel, low-cost nanosensor has been optimized for the detection 

of two biomarker proteins (NEM and PSA) for prostate cancer. The study presents the 

preliminary proof of principle for the reliable platform for developing clinically useful 

protein detection devices that could, in the future, be translated to point-of-care in 

prostate cancer diagnostics and therapeutics.



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, we tested different PC biomarkers (PSA and NEM) in buffer 

as well as in human serum by using optical label-free biosensor based on anodic 

aluminum oxide (AAO) nanopore thin film. Label-free biosensors provide less cost and 

didn’t affect the properties of the analyte. It is a minimally invasive method and it has no 

connection to any external compound, like fluorescent dye.

The operating principle of our porous AAO label-free biosensor is biased on 

detecting the phase difference that applied to the reflected light from the sensor surface 

due to the change of the refractive index caused by the presence of an analyte over the 

sensor surface.

Porous AAO nanosensor was fabricated by using a two-step anodization method. 

By using this method, we can control AAO pore geometry by changing anodization time 

and anodization voltage. For example, pore diameter is directly proportional to 

anodization voltage. Also, pore geometry affects the number of reflected fringes and 

fringe intensity.

Coating porous AAO nanosensor surface with gold enhanced the the fringe shape 

as well as the reflected signal intensity. Also, a gold coated nanosensor was able to make

86
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extraordinary contact with alkanethiols, which are the building blocks of the self­

assembled monolayer.

In this project we used porous AAO nanosensor with the following 

characteristics: Pore diameter Dp = 55 nm, pore length lp = 5 pm, pore density = 5.5 * 109 

pores per cm2, pore period = 145 nm, poricity = 34.4%, and Au coat thickness = 5 nm.

Optimizing antibody experiments were performed before we start generating 

biomarkers standerd curves. It is important to find the appropriate antibody concentration 

and to keep it constant for all experiments.

After that, we generated standered curves for NEM and PSA, and we found the 

upper and lower concentrations, detection limits for these proteins (for NEM the range is 

from 2pg/ml to 0.512 ng/ml, for PSA the range is from 20 pg/ml to 1 ng/ml). Accuracy is 

an important factor in this project; a porous AAO nanosensor was highly accurate and 

detected small changes in tested samples (as low as lpg).

Specificity experiments were performed before we started measuring biomarker 

levels in human samples. We found that porous AAO nanosensor is highly specific and 

can detect only antigens that are specific to antibody. Then we measured the lowest and 

highest voulumes of human blood serum that porous AAO nanosensor can measure; this 

nanosensor can measure the levels of PC biomarker even in very low serum volume 

(0.25pl).

Then we measured the levels of PC markers (NEM and PSA) in healthy, as well 

as PC, patients and we compared the nanopore sensor results with ELISA; the results 

showed high correlation between serum NEM and PSA values determined by the sensor 

and those by the ELISA.
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Finally, we tested the levels of PC NEM and PSA markers in pathologically 

confirmed PC patients serum. NEM detected PC in 82% of PC tested samples and PSA 

detected 6 8 % of PC tested samples. The results were promising and gave us an indication 

to improve the ability to detect PC by combining NEM with PSA test (PC detection rate 

of 93%).

5.2 Future Work

We describe the addition of a microchannel system that can be applied to AAO 

patterns (Figure 5-1). The major challenge in using a microchannel system for 

biomolecule detection is the need for multiple fluid inlets and outlets to make sure the 

different solutions do not overlap and react.

Figure 5-1. MicroChannel system fabricated over 15 AAO patterns.

The process of adding a microchannel system involves two parts: fabrication of 

the PDMS microfluidic chip and the chip assembly.

The PDMS fabrication process uses a soft lithography [163]. The fabrication 

process (Figure 5-2) starts by spinning the SU8 coat onto a silicon wafer with a diameter 

of 10 mm. The thickness of the SU8 mold will generate a cavity between the PDMS and 

AAO sensor patterns.
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Then, we will apply a mask over the SU8 mold, and we will expose UV light to 

transfer the patterns. Then we coat the mold with PDMS. After coating, the sample is 

heated at 650 for 90 minutes. After this, we will disconnect the PDMS layer from its 

mold. Finally, the inlet and outlet spaces will be created using a 1.5 mm diameter hole 

puncher.

uvugnt

PDMS layer

Figure 5-2. PDMS microchannel system fabrication process.

After the fabrication is completed, we will attach the resulted PDMS layer to the 

patterned AAO sensor to assemble the final product (Figure 5-3). PDMS layer thickness 

should be optimized, since layer thickness affects Fabry-perot fringe shape (Figure 5-4).

PDMS
u thin film 

anopore (AAO)

Figure 5-3. Cross sectional view of the PDMS microchannel attached to gold coated (Au) 
AAO nanopore thin film [38].
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Figure 5-4. Not optimized PDMS layer thickness, which affects Fabry-perot fringes 
shape.

By adding microchannel system, the sensor can be developed as a smart PC 

detection system (Figure 5-5). To develop that device, disposable cartridge-type sensor, 

optical detection, electronics for wireless transmission, and control panel, a liquid-crystal 

display is needed.

Figure 5-5. Schematic of smart PC detection system with main components: disposable 
cartridge-type sensor that consists of two parts; sample preparation chip and detection 
chip, wireless communication interface to transmit patient measurement data to a clinic, 
measurement system and display, control panel for all the components & functions.

Display

Inlet for 
Biological sampla

Disposable 
irtiidge-type sensorControl
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The disposable cartridge-type sensor consists of two connected chips. One chip at 

the upstream is for biological/medical sample preparation, the other at the downstream is 

for PC screening and monitoring. Biomarker standard curve will be used as positive 

control.

The white light source is collimated by a lens and perpendicularly illuminates on 

the disposable cartridge-type sensor. A white light source, a microfluidic control network, 

a liquid-crystal display (LCD) and wireless transmission will be connected to and 

operated by a microcontroller. The battery-operated microcontroller is a one-chip unit, 

which includes CPU (central process unit), RAM, analog to digital (A/D) and digital to 

analog (D/A) converter, and interrupt controller.

The reflected signal will appear on the LCD display. Three LED lights (red, 

yellow, and green) will give us an indication if we have to increase or decrease the 

applied white light intensity to make sure that the reflected signal doesn’t reach the 

saturation level. The red LED light is going to be an indication for high intensity reflected 

signal, while the yellow light will show that the reflected signal intensity is low; the green 

light will be a mark for a suitable intensity reflected signal. The intensity of the reflected 

signal will be controlled by increasing and decreasing the integration time by using the 

side buttons.



APPENDIX 

CROSS-CORRELATION MATLAB CODE
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uiopen('file location\file name, file type',1) 

x 1 =VarNamel (1:2048); 

x2=VarName4( 1:2048); 

yl=VarName2( 1:2048); 

y2=VarName5( 1:2048);

[cj]=xcorr(yl,y2 );

plot(xl,yl);

hold on; plot(x2 ,y2 ,'r');hold off 

l=(length(xcorr(y 1 ,y2 ) ) - 1 )/2 ; 

figure;plot(-l:l,c,'.-');

[p,i]=findpeaks(c,'SORTSTRVdescend'); % sorting peaks in descending order 

pk_idx=j(i( 1)); % Peak Index 

shift=pk_idx*(max(x 1 )-min(x 1 ))/2048;
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