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ABSTRACT

Cellulosic ethanol is an alternative renewable energy source. Cellulase used in the 

production of cellulosic ethanol is very expensive. The difficulty in separating cellulase 

from the cellulose solution after the hydrolysis process limits the reusability of the 

cellulase, which highly precludes the scales of this application because of the high cost of 

the enzyme. Immobilization of cellulase provides a promising approach to allow the 

enzyme to be recycled, thus reducing the production cost. This research focused on 

immobilizing cellulase for reuse to reduce the cellulosic ethanol cost.

Four immobilization techniques were explored for the immobilization of cellulase 

on four different immobilization carriers. The immobilized cellulases by Layer-by-Layer 

Nano-Assembly (LbL) and Ca2+-Al(OH)x modification methods had high initial activities 

but low reusabilities. Enzyme desorption was observed during the hydrolysis of cellulose 

solutions by the immobilized cellulases for both LbL and Ca2+-Al(OH)x modification 

methods. Efforts were focused on improving the reusability of the immobilized cellulase, 

yet rarely worked. For the immobilized cellulase by the combination of Ca2+-Al(OH)x 

modification and LbL, the reusability of the immobilized cellulase was improved with the 

number of enzyme layers. Unfortunately, for the present moment, the initial activity 

decreased with the number of enzyme layers. Immobilization of cellulase on silica gel by 

3-APTES and glutaraldehyde modification showed the highest reusability. No enzyme 

desorption was observed during the hydrolysis of cellulose solution. It indicated that the



cellulase molecules firmly covalent bound to the silica gel. The immobilized cellulase on 

silica gel by 3-APTES and glutaraldehyde modification had the highest activity per unit 

mass of immobilization carriers because of the porous structure of the silica gel.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The global demand of energy has enormously increased in recent years due to 

industrial development and population growth. The petroleum consumption had risen 

from 13,315 in 1,950 trillion Btu to 34,016 trillion Btu in 2012, in which the consumption 

for transportation sector had risen from 6,690 to 24,202 trillion Btu [1]. Also, massive 

fossil fuel consumption causes several environmental problems, such as pollution, global 

warming, and destruction of landscapes and habitats [2]. Because of these facts, the 

interest in developing a new, clean, and sustainable energy source has risen dramatically. 

Biofuel is an alternative renewable energy source which has several advantages including 

improvement of air quality, reduction of greenhouse gases, and preservation of the 

ecological environment [2]. Biofuel includes bioethanol, biodiesel, and biomethanol.

In 2013, bioethanol production in the USA was 25 million tonnes of oil 

equivalent, which was 88% of the total biofuel production in the USA [1]. In the past, 

bioethanol was produced mainly from starch in com kernels in the USA and sugarcane in 

Brazil, which was known as the first-generation bioethanol [2]. However, its competition 

with the food industry limits its scales due to rapidly increasing population growth.
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Therefore, the second-generation bioethanol produced from lignocellulosic biomass, such 

as cellulose, is one of the most promising biofuels [3].

In order to produce bioethanol, the lignocellulosic biomass are broken down into 

fermentable sugars (glucose) by hydrolysis. Although this process can be performed by 

either a chemical or an enzymatic process, the latter one is preferred because it is cleaner 

and the process can be controlled by adjusting the reaction conditions easily (such as pH 

and temperature) [4]. Currently, the degradation of cellulose materials to glucose uses 

free enzyme. The difficulty of the separation of the free enzyme from the solution after 

the hydrolysis process limits the reusability of the enzyme which highly precludes the 

scales of this application because of the high cost of the enzyme. Therefore, the interest 

in immobilizing enzyme is increasingly high. The immobilized enzyme can be reused 

several times, which would dramatically decrease the cost of bioethanol producing 

processes.

1.2 Objectives

The overall objectives of this research work are to explore and demonstrate one 

enzyme (cellulase) immobilization method for reuse to reduce bioethanol producing costs 

in commercial scale reactors.

Specifically:

(1) Explore enzyme immobilization methods. Layer-by-Layer Nano-Assembly 

(LbL) and self-assembly monolayer nanotechnology were studied. In order to find 

a suitable immobilization carrier, different materials were tested for immobilization of the 

enzyme.
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(2) Adjust the immobilization steps to achieve the immobilization of the enzyme. 

Monitor and calculate the mass of the immobilized enzyme.

(3) Design and set up bioreactors for hydrolysis of different cellulose materials by 

free enzyme and immobilized enzyme onto different carriers. Different immobilization 

carriers require different bioreactors to perform hydrolysis of cellulose material.

(4) Test the activity of the free and immobilized enzyme in hydrolysis of cellulose 

materials. Optimize the immobilization and hydrolysis steps to achieve high specific 

activity of the immobilized enzyme by comparing it with the same amount of the free 

enzyme. Characterize material properties, such as pore size.

(5) Test hydrolysis performances of the immobilized enzyme under different 

conditions (temperature and pH)

(6) Demonstrate the reusability of the immobilized enzyme for multiple recycles. 

Further optimize the immobilization and hydrolysis steps to improve the reusability of the 

immobilized enzyme.

1.3 Background

Enzymes are macromolecules that act as biological catalysts. They can catalyze 

many different kinds of chemical reactions under very mild conditions. Enzymes have a 

high level of substrate specificity. It is rare for by-products to be formed from the enzyme 

catalyzed reactions. These advantages make them very interesting for industrial use. 

However, most enzymes are expensive, and it is difficult to separate them from the 

substrate/product solution after the catalystic reaction. Immobilization of enzymes allows 

enzymes to be recycled, thereby reducing the cost of the overall industrial process.
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Chibata et al. reported the first industrial use of the immobilized enzymes in 1967, with 

the immobilization of Aspergillus oryzae aminoacylase [5].

Techniques for immobilization have developed rapidly in the past four decades

[6]. There are two main immobilization techniques: physical adsorption and chemical 

binding [6]. Both of these main immobilization techniques have their own inherent 

advantages and disadvantages. The immobilization techniques will be discussed in 

Section 1.7 in detail. Besides application in the industrial processes, the immobilization 

techniques are fundamental with application in diagnostics, bioaffinity chromatography, 

and biosensors [7, 8]. Although the immobilization techniques have developed rapidly in 

the past decades, further development is still needed. Application in the current field and 

further extension of the use of the immobilized enzymes to other domains will require 

new methodologies and a better understanding of current techniques.

1.4 Cellulose

1.4.1 Crystalline Cellulose

Cellulose is one of the most abundant polysaccharide in nature. Its sources 

include agricultural and forestry residues (e.g. com stover, sawdust, and mill wastes), 

portion of municipal solid waste (e.g. waste paper), and herbaceous and woody crops 

(e.g. switchgrass) [9]. The chemical structure of cellulose is a linear polymer of p~(l—*•4)- 

linked D-glucopyranose monomer units (also called D-glucose units). Although the 

chemical repeating unit is P-(l—>4)-linker D-glucose, the structural repeat of cellulose is 

p-cellobiose because every glucose residue is rotated approximately 180° [10,11].

Figure 1-1 shows the structure of a single cellulose chain.
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HOHO HO
HOHO O- -HO

OHOH OH
OHOH OH

Structural repeating unit
is the disaccharide (3-cellobiose

Figure 1-1: The structure of a single cellulose chain. While |3-(1—»4)-linker D-glucose 
is the chemical repeating unit, the structure repeat is cellobiose and each glucoside is 
orientated at 180° [10].

The single cellulose chains (also called glucose chains) are bound to each other by 

Van der Waals forces and hydrogen bonds to form crystalline structures in the cellulose. 

There are seven crystal structures for cellulose, including Ia, Ip, II, IIIi, IIIn, IVi, and IVh 

[12]. In nature, the most abundant crystal forms of cellulose are I„ and Ip. Figure 1-2 

shows the structure of crystalline cellulose (conformation Ia).

H H

_^HOv OH— O OH
.0

HO OH— OHO'

HO.— o
.0'

HO OH— O HO'

Figure 1-2: The structure of a crystalline cellulose (conformation Ia) [13].
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1.4.2 Carboxymethyl Cellulose Sodium Salt

Carboxymethyl Cellulose (CMC) is a cellulose derivative which is soluble in 

water [14]. The hydroxyl groups of the glucopyranose monomer units in cellulose are 

substituted by carboxymethyl groups in CMC repeating units. Figure 1-3 shows the 

structure of CMC sodium salt.

RO.

RO .OR

.OR OR

RO' OR

R = H or 

O

Figure 1-3: The structure of CMC Sodium Salt, in which R is H or C^CChNa [15].

1.5 Cellulase and Hydrolysis of Cellulose

Cellulases refer to a class of enzymes which can catalyze the hydrolysis of 

cellulose to glucose. In general, cellulases have been classified into three distinct classes 

based on their types of catalyzed reaction: cellobiohydrolases (CBH) which are also 

called exo-l,4-P-D-glucanases (EC 3.2.1.91), endo-1,4-|3-D-glucanases (EG) (EC 

3.2.1.4), and p-glucosidases (BG) (EC 3.2.1.21). Endoglucanases have an affinity to the 

interior of the cellulose chain, while exoglucanases have an affinity towards the cellulose 

chain’s ends, p-glucosidases work with CBH and EG to hydrolyze the cleaved units into 

individual monosaccharides, i.e. glucose. However, these three classes of cellulase often 

have overlapping specificities [16].

Endo-glucanases are responsible for decreasing the degree of polymerization of 

the cellulose by randomly cutting the internal amorphous sites of the cellulose chain
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(such as bent, flexible and hydrated disordered regions in the cellulose chain) to form 

oligosaccharides at different lengths [17]. The products can easily react with 

cellobiohydrolases in the later hydrolysis steps [18]. Figure 1-4 shows the structure of 

endoglucanase from termite Nasutitermes takasagoensis [19]. Figure 1-5 shows the 

computer animation of endoglucanase on the surface of the cellulose chain [Picture from 

National Renewable Energy Laboratories (NREL) and Pixel Kitchen].

Figure 1-4: The structure of endoglucanase from termite Nasutitermes takasagoensis 
[19].

Figure 1-5: Computer animation of endoglucanase on the surface of the cellulose 
chain [Picture from National Renewable Energy Laboratories (NREL) and Pixel 
Kitchen].
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Exo-glucanases cut the ends of the cellulose chains to produce cellobiose [16,20, 

21]. A small amount of glucose and cellotriose are also procduced at the beginning of 

hydrolysis [22]. There are two exo-glucanases, CBHI and CBHII, which react with 

reducing and non-reducing ends of cellulose chain, respectively [17,23,24]. All 

exoglucanases (CBH I, CBH II) can react with microcrystalline cellulose [25]. Figure 

1-6 shows the three dimensional structure of cellobiohydrolase (CBH I) (Cel7A). Figure 

1-7 shows the computer animation of cellobiohydrolase on the cellulose surface [Picture 

from National Renewable Energy Laboratories (NREL) and Pixel Kitchen].

Figure 1-6: Structure of cellobiohydrolase CBH I (Cel7A) catalytic domain from T. 
reesei [26].

/

Figure 1-7: Computer animation of cellobiohydrolase on the cellulose surface 
[Picture from National Renewable Energy Laboratories (NREL) and Pixel Kitchen].
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(3-glucosidases react with cellobiose (the hydrolysis products of endo-glucanases 

and exo-glucanases catalyzed reactions) to produce glucose [27,28]. The reaction is 

performed in the liquid phase. Figure 1-8 shows the structure of P-glucosidase from 

fungus Trichoderma reesei (TrBgl2) [29].

Figure 1-8: The structure of P-glucosidase from fungus Trichoderma reesei (TrBgl2) 
[29].

1.6 Choice of Immobilization Carriers

Selection of immobilization carriers plays an important role in enzyme 

immobilization. Ideal support properties include chemical stability, physical strength, 

non-toxicity, biological compatibility, resistance to microbial attack, and cost- 

effectiveness [30-32]. According to the chemical composition, immobilization carriers 

can be classified as inorganic and organic carriers. The organic carriers can be subdivided 

into natural and synthetic materials [33].

Researchers have paid attention to cellulose and its derivatives, dextran, chitin, 

chitosan, and other natural organic carriers because of their wide range of sources, 

non-toxicity, biological compatibility, and easy modification. Chitosan is a typical natural
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organic carrier, which can provide some advantages, such as inert, hydrophilic, 

biocompatible, and cost-effectiveness [34]. Chitosan and its amino acids condensation 

adducts were reported for the immobilization of cellulase [35]. The retained activities 

were found to be 63%-85% for chitosan and its adducts [35]. In addition, Rodolfo Darias 

and Reynaldo Villalonga reported covalent binding of cellulase with chitosan [36]. The 

specific activity was 39% of the native cellulase [36]. Also, the thermostability and pH 

stability were reported a significant increase for the cellulase-chitosan complex [36]. 

Carbon nanotubes have gained much attention for its efficient carrier properties, such as 

high mechanical strength, electrical, and thermal properties [37, 38]. The functionalized 

multiwall carbon nanotubes were used for the immobilization of cellulase [39]. The 

enzyme loading of the immobilized cellulase reached approximately 97% under the 

optimal conditions, and 52% retained activity was observed after the six cycles [39].

As important carriers, synthetic organic materials exhibit some advantages, such 

as good mechanical rigidity, easy modification, and large surface area. Therefore, they 

have been widely studied and applied for enzyme immobilization. Lei and Jiang 

synthesized the macroporous polyacrylamide (PAM) microspheres for the immobilization 

of pectinase [40]. The enzyme loading was reported up to be 296 mg of enzyme per gram 

of the supports [40]. Also, the thermal stability and storage stability was improved after 

immobilization [40]. Polystyrene (PST) microspheres were used as immobilization 

carriers by Li et al. to immobilize lipase, and they found that the pore size of the PST 

microspheres played a critical role in the properties (specific activity, thermal stability 

and storage stability) of the immobilized enzyme [41].
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When it comes to the inorganic carriers, much attention has been paid to 

nano-particles, which can provide large surface areas. Immobilization carriers with large 

surface areas always provide great help in obtaining good immobilization efficiency. 

Recently, researchers have paid much attention to Fe3 0 4  magnetic nanoparticle for 

immobilization of cellulase, due to its easy separation from the hydrolysis solution when 

applying magnetic field [42-46]. Unfortunately, the preferred pH condition for the 

hydrolysis of cellulose is slightly acidic (pH 5) dissolving the Fe3 0 4  back to Fe2+ and
j

Fe . Also, the aggregation of Fe3C>4 magnetic nanoparticle was commonly found in the 

research, which decreases the mass transfer rate in the solution [43,46]. Many other 

inorganic carriers were used for the immobilization of cellulase, such as nano-silver and 

gold particle [47], silicate clay minerals [48], and modified activated carbon [49]. Silica 

gel has been widely used in the immobilization of enzymes [50-57]. Its advantages of low 

cost, chemical stability in acid environment, good dispersion in the solution and large 

surface area make it more favorable for the immobilization of cellulase.

The physical properties of the immobilization carriers (such as particle size, 

mechanical strength, density) are of critical importance for the performance of the 

immobilized enzyme. Density of the carriers determines the dispersion of the 

immobilized enzyme in the substrate’s solution. For porous materials, the total surface 

area which significantly affects the loading of enzyme is determined by pore parameters 

and particle size. By contrast, for non-porous materials, there will be few mass 

diffiisional limitations but low enzyme loading. Table 1-1 shows the classification of 

immobilization carriers.
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Table 1-1: Classification of immobilization carriers.

Classification of carriers Name of carriers Density

Natural organic
Chitosan 0.3-0.45 g/cm3

Cellulose 1.5 g/cm3

Carbon nanotube 1.3-1.4 g/cm3

Synthetic organic
Polystyrene 1.05 g/cm3

Polyacrylamide 1 . 1 1  g/cm3

Inorganic

Silica 2 . 2  g/cm3 (amorphous)
Silica gel 0.7 g/cm3

Glass 2.5 g/cm3

Iron oxides 5.24 g/cm3

1.7 Immobilization Techniques

The immobilization methods and immobilized carriers are two important factors 

that significantly influence the properties of biocatalysts. The immobilization methods 

can be classified into physical adsorption and covalent binding [58].

1.7.1 Physical Adsorption

Physical adsorption is one of the earliest immobilization methods reported in the 

literature. It can be further categorized into adsorption (by electrical binding, hydrogen 

binding, and hydrophobic adsorption), and entrapment (inside polymer matrix) (Figure

1-9) [59]. It is still widely used due to its simple and economical process, and initial 

reported enzymatic activity [43]. Wenjuan Zhang et al. demonstrated that cellulase 

immobilized on modified Fe3C>4 magnetic nanosphere by electrostatic binding can retain 

87% native activity for the first use [43]. N.M. Mubarak et al. reported that the specific 

activity of the immobilized cellulase on fimctionalized multiwall carbon nanotubes by 

hydrogen binding was even higher than that of free cellulase [39].This high retention of 

immobilized cellulase is reportedly due to the weak interaction between carriers and
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cellulase molecules, which minimize the change of conformational structure and the 

active center of cellulase molecules [59]. However, this weak interaction also causes 

enzyme desorption, and poor reusability of immobilized cellulase is a major 

disadvantage of physical adsorption [59].

Abhijeet Mishra et al. reported that, with 30 min incubation in CMC for each 

cycle, the immobilized cellulase on nano-silver and gold can be reused six times with 73- 

78% initial activity retained [47]. The retained activities of the immobilized cellulase on 

functionalized multiwall carbon nanotubes by N.M. Mubarak et al. were 52% for the 6 th 

recycle and 26% for the 8 th recycle [39]. The majority of the literature for physical 

absorption immobilization of enzymes do not report reusability [43,48, 60-63].

I *  ' l
+  -
+ - °  O O /  ' n

+ -«  t —r— [ i

(a) (b) (c) (d)

Figure 1-9: Physical binding, (a) Adsorption, (b) Electrical binding, (c) Entrapment,
(d) Encapsulation.

1.7.2 Laver-bv-Laver Nano-Assembly

Layer-by-Layer Nano-Assembly (LbL) is a very simple and effective way to form 

the multilayers. It uses electrostatic force as a driving force between layers. LbL was first 

reported by Her in 1966 [64], and it was further studied by Decher and Lvov in the 1990s 

[65,66]. The fundamental principle of LbL is that the surface charge is reversed by 

alternating adsorption of oppositely charged polyions. Figure 1-10 shows the scheme of 

LbL processes.



Figure 1-10: The scheme of LbL processes.

The multiple layers can be formed by sequential deposition of oppositely charged 

molecules. The film’s thickness was linearly increased with the number of adsorbed 

layers, and the films were remarkably uniform [67]. This technique works not only with 

polyions but also with proteins [6 8 ], viruses [69], ceramics [70], and charged 

nanoparticles [71-77]. Figure 1-11 illustrates the basic LbL operation procedure.

Repeat

Wash Wash

Adsorption! Adsorption I
« b

e y

Charge Reversal
Charge Neutralization 

Charge Resaturation

Figure 1-11: The basic operation procedure of LbL [78].
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For a weakly charged carrier, the first polyion layer may not cover the whole 

surface, but forming an island-type pattern [79]. However, the islands will spread and 

cover the entire surface of the carrier in the following steps. It is the reason that 

non-linear film growth is often observed at the beginning of the LbL processes, which is 

followed by linear growth of multiple layers. Because of this phenomenon, three or four 

precursor layers are needed before coating the target molecules. The precursor layers 

provide a well-defined surface charged carrier [79].

Many kinds of charged molecules can be adsorbed by using LbL technique such 

as polyelectrolytes, nanoparticles and proteins (i.e. DNA, enzymes) [80-87]. Figure 1-12 

shows the structural formula of the predominately used polyelectrolytes.

COO"

(1)

S03 K 

(2)

803  Na

(3)

h2

(4) (5)
H £  CH:

(6)

Figure 1-12: Polyion structural formula: (1) PAA, (2) PVS, (3) PSS, (4) PEI, (5) PAH, 
(6 ) PDDA.
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Frequently used polyions are: 1) Polycations: poly(dimethyl diallyl ammonium 

chloride) (PDDA), poly(allylamine) (PAH), poly(ethylenimine) (PEI), polylysine, 

chitosan; 2) Polyanions: poly(styrene sulfonate) (PSS), poly(vinyl sulfate) (PVS), 

poly(acrylic acid) (PAA), dextran sulfate, and many proteins [79]. The isoelectric point is 

the pH at which the molecule carries no net electrical charge. The net charge of the 

molecule can be influenced by the surrounding environment and become positively or 

negatively charged due to the gain or loss of protons, respectively [79]. In order to make 

the polyions sufficiently charged, the pH of the polyion solution must be adjusted away 

from the isoelectric point. Table 1-2 shows the isoelectric points of the poly ions.

Table 1-2: Isoelectric point of some polyelectrolytes 
and proteins.

Compound Isoelectric Point

Polycation
PDDA 1 2

PEI 11.5
PAH 8 . 2

Polyanion
PAA 4.2
PSS 1 . 0

Protein
Urease 5.1
BSA 4.9

Cellulase 3.6

1.7.3 Covalent Binding

Covalent binding is the second main method of enzyme immobilization which is 

used to immobilize enzyme by binding a nonessential group of enzyme to the functional 

group of carriers via chemical bonds (Figure 1-13). The functional groups that can be 

used for covalent binding includes amino group, carboxyl group, thiol group, etc. [59]. 

Recently, functionalized Fe3C>4 nanoparticles modified with chitosan were used as
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carriers for the immobilization of cellulase [46]. Compared with the free cellulase, the 

immobilized cellulase exhibited higher operational stability over wider temperature and 

pH ranges and good superparamagnetism [46]. Qi et al. synthesized magnetic porous 

terpolymers which contained epoxy groups and used them to immobilize cellulase by 

forming covalent bonds between epoxy groups and cellulase [45]. Reusability was 

observed up to six recycles with 48% initial activity retained [45].

In some research, crosslinkers such as glutaraldehyde were used to form covalent 

bond in the presence/absence of solid support [59]. Besides forming covalent bonds, the 

crosslinker is also a spacer arm which can be used to avoid the steric hindrance and 

increase the specific activity [8 8 , 89]. Li et al. investigated the immobilization of 

liposome-bound cellulase for the hydrolysis of insoluble cellulose [90]. The liposome- 

bound cellulase by glutaraldehyde was immobilized on chitosan beads [90]. The specific 

activity was 17% compared with the same amount of free cellulase, which was 1 0  times 

higher than that of the conventionally immobilized cellulase, and 80% initial activity 

retained after six recycles for the hydrolysis of CMC [90].

(a) (b)

Figure 1-13: Covalent binding, (a) Covalent binding to carrier’s surface,
(b) Intermolecular crosslinking.

The main concern of this method is a major loss of immobilized enzyme activity 

due to the stable nature of the covalent bonds between the carriers and the cellulase
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molecules. The decrease in activity is likely due to changes in the conformational 

structure of cellulase molecules and decrease in the degree of movement of the cellulase 

molecules [59]. The typical specific activity of immobilized cellulase by covalent binding 

is below 52% [44,90,91]. However, the stable covalent binding also leads to very high 

reusability of immobilized cellulase [44-46,91]. This major advantage makes covalent 

binding more promising in industrial application.



CHAPTER 2

MATERIALS AND METHODS

2.1 Free Cellulase Assay

2.1.1 Chemicals

Cellulase (Accellerase 1500, Genencor Division) was purchased from Danisco US, 

Inc. Cellulase (Novozyme 188), cellulase (Cellulase from Trichoderma viride, 9 units/mg 

solid), cellulose (Sigmacell Cellulose, Type 20), carboxymethylcellulose sodium salt 

(CMC), sodium acetate trihydrate (ACS reagent), acetic acid (> 99.7%), and sodium 

hydroxide (ACS reagent, > 97.0%) were purchased from Sigma.

Figure 2-1 and Figure 2-2 show the experiment setups for the hydrolysis of 

cellulose.

19
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Figure 2-1: The 500 ml scale batch reactor.
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Figure 2-2: The 20 ml scale batch reactor.
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2.1.2 Experimental Procedure

Free cellulase (either Novozyme 188, Accellerase 1500, or Trichoderma viride) 

was added to the cellulose solution (either cellulose type 20 or CMC). Hydrolysis 

reaction took place in either the 20 ml or 500 ml scale batch reactor (Figure 2-1, Figure

2-2). Samples were taken after a certain period of time and tested by the glucose assay.

2.1.3 Glucose Assay

Glucose analysis of the samples was tested by YSI7100 MBS (Multiparameter 

Bioanalytical System from YSI Life Sciences) (Figure 2-3).

Printer

Display/ 
Touch Panel

Pumps

Sample

Sensor
Module

Figure 2-3: YSI 7100 MBS (Multiparameter Bioanalytical System).

2.1.3.1 Chemicals for YSI 7100 MBS

System buffer (YSI 2357), calibrator standard (YSI 7147 (1.8 g/L glucose)), 

membrane (YSI 2365 (Glucose Membrane)).
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2.1.3.2 Analysis procedure

Sample was taken by the sipper. The sipper can be raised or lowered by one motor, 

and moved horizontally to its various positions (sample’s position/sensor module’s 

position) by another motor. The released sample by the sipper entered the sensor module 

and is stirred and diluted. The glucose in the sample diffused through a thin 

polycarbonate membrane which was coupled with an electrochemical probe and housed 

in a sensor module where sample delivery and flushing occurred. Once past the 

membrane, the glucose encountered an extremely thin layer of glucose oxidase which 

was immobilized on the membrane. There is where the following reaction occurs:

glucose oxidase ~ ,
Glucose + 02 --------------- ► H20 2 + DGluconoSLactone. ^q . 2 - 1

Hydrogen peroxide diffused toward the platinum anode in the probe assembly, 

and was electrochemically oxidized at the platinum anode of an electrochemical probe. 

This gave rise to the probe signal current, which was detected and compared with the 

calibrated current (1.80 g/L glucose calibrator standard was used for calibration). The 

sample size was 50 pL. This gave the glucose concentration in the sample. The precision 

was 0.02 g/L.

2.2 Laver-bv-Laver Nano-Assembly Technology

2.2.1 Chemicals

Cellulase (Accellerase 1500, Genencor Division) was purchased from Danisco US, 

Inc. Cellulose (Sigmacell Cellulose, Type 20), carboxymethylcellulose sodium salt 

(CMC), Polyethylenimine (PEI, high molecular weight, MW 25,000, water free), poly 

(sodium 4-styrene-sulfonate) (PSS, MW 70,000), sodium acetate trihydrate (ACS
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reagent), N-Hydroxysuccinimide (NHS, 98%), acetic acid (> 99.7%) were purchased 

from Sigma. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was purchased 

from Thermo Scientific. Polystyrene beads were purchased from Crosman Airsoft.

2.2.2 QCM

Quartz Crystal Microbalance (QCM) was used to monitor the thickness of the 

coating films. PEI was prepared at a concentration of 2 mg/ml in 0.05 M acetate buffer at 

pH 7. PSS was prepared at a concentration of 2 mg/ml in DI water at pH 6 . Cellulase was 

centrifuged at 10,000 rpm for 5 min and the suspension was diluted 10 times in 0.02 M 

acetate buffer at pH 5.7.

2.2.2.1 Equipment

QCM 200 Quartz Crystal Microbalance was purchased from Stanford Research 

Systems, Inc.

2.2.2.2 Experimental procedure

• Coating PEI: the QCM crystal oscillator was immersed into the PEI solution for 

1 0  min.

• Washing and drying steps: the crystal oscillator was washed by DI water. Then it 

was dried by compressed air.

• Coating PSS: the QCM crystal oscillator was immersed into the PSS solution for 

1 0  min.

• Washing and drying steps: the crystal oscillator was washed by DI water. Then it 

was dried by compressed air.
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Then a complete PEI/PSS bilayer was formed. After 3-bilayer precursor layers, 

the cellulase solution was utilized instead of the PSS solution.

• Coating PEI: the QCM crystal oscillator was immersed into the PEI solution for 

1 0  min.

• Washing and drying steps: the crystal oscillator was washed by DI water. Then it 

was dried by compressed air.

• Coating cellulase: the QCM crystal oscillator was immersed into the cellulase 

solution for 30 min.

• Washing and drying steps: the crystal oscillator was washed by DI water. Then it 

was dried by compressed air.

The process was repeated until the number of desired layer was achieved.

2.2.3 Immobilization on Polystyrene Beads

Immobilization carrier: polystyrene beads (Figure 2-4).

Figure 2-4: Polystyrene beads.

PEI was prepared at a concentration of 2 mg/ml in 0.05 M acetate buffer at pH 7. 

PSS was prepared at a concentration of 2 mg/ml in 0.05 M acetate buffer at pH 6 .
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Cellulase was centrifuged at 10,000 rpm for 5 min and the suspension was diluted 10 

times in 0.02 M acetate buffer at pH 6 .

2.2.3.1 Experimental procedure

• Pretreatment of the polystyrene beads: 6  mm diameter polystyrene beads were 

boiled in 5 g/L NaOH solution for 3 hours to increase the surface roughness. The 

pretreated beads were washed by DI water after boiling and dried by compressed 

air.

• Coating first PEI layer: for the first PEI layer, the pretreated polystyrene beads 

were immerged into PEI solution for 20 min.

• Washing and drying steps: the polystyrene beads were washed by DI water. Then 

they were dried by compressed air.

• Coating PSS layer: the polystyrene beads were immersed into the PSS solution for 

1 0  min.

• Washing and drying steps: the polystyrene beads were washed by DI water. Then 

they were dried by compressed air.

• Coating PEI layer: For the rest PEI layer in precursor layers, the polystyrene 

beads were immersed into PEI solution for 10 min.

• Washing and drying steps: the polystyrene beads were washed by DI water. Then 

they were dried by compressed air.

After 3-bilayer precursor layers, cellulase solution was used instead of the PSS 

solution.

• Coating cellulase: the polystyrene beads were immersed into the cellulase solution 

for 2 0  min.
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• Washing and drying steps: the polystyrene beads were washed by DI water. Then 

they were dried by compressed air.

• Coating PEI layer: the polystyrene beads were immersed into the PEI solution for 

5 min.

• Washing and drying steps: the polystyrene beads were washed by DI water. Then 

they were dried by compressed air.

The process was repeated until the number of desired layers was achieved.

2.2.3.2 Crosslinkine o f the immobilized
polystyrene beads bv LbL

A mixture of 0.2 mM EDC and 0.5 mM NHS which was made in DI water was 

used to crosslink the immobilized cellulase after LbL coating. After immobilization of 

cellulase by LbL, the coated beads were immerged into the crosslinker for a certain of 

time. Then the coated beads were washed by DI water and dried by compressed air.

2.2.4 Hydrolysis of Cellulose bv the Immobilized
Polystyrene Beads

We prepared 10 g/L cellulose solution (cellulose type 20/CMC) in 0.05 M acetate 

buffer. The hydrolysis reaction was operated at 25°C in a certain pH environment. There 

were two volumes of cellulose solution, i.e. 100 ml and 250 ml. The hydrolysis of 100 ml 

and 250 ml cellulose solution was operated in a 100 ml batch reactor (Figure 2-5) and a 

500 ml batch reactor (Figure 2-1), respectively. The masses of the immobilized 

polystyrene beads for hydrolysis of 100 ml and 250 ml cellulose solution were 27.4 g and

6 8 . 6  g, respectively. Samples were taken according to time and tested by the glucose 

analysis as described in Section 2.1.3. The first order rate (the linear slope of the
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time-dependent curve) was applied to represent the enzymatic activity of the immobilized

cellulase as described in Eq. 2-2.

The f ir s t  order rate 
The produced glucose concentration ( ^ - )  Eq. 2-2

Hydrolysis time (min)

Temperature
Probe

Magnetic
Stir

Reactor

Figure 2-5: The 100 ml scale batch reactor.

2.2.5 Reusability of the Immobilized Cellulase

Reusability of the immobilized cellulase was studied by recycling the 

immobilized cellulase in a fresh cellulose solution under the same hydrolysis conditions 

as the first cycle. After each cycle, the immobilized cellulase was removed from the 

cellulose solution and washed by DI water. The first cycle was recognized as the control 

group, and its activity was defined as a relative activity of 1 0 0 %.
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2.3 Ca2+-Al(OH)« Modification

2.3.1 Chemicals

Cellulase (Accellerase 1500, Genencor Division) was purchased from Danisco US, 

Inc. Cellulose (Sigmacell Cellulose, Type 20), carboxymethylcellulose sodium salt 

(CMC), sodium acetate trihydrate (ACS reagent), acetic acid (> 99.7%), sodium 

hydroxide (ACS reagent, > 97.0%), Calcium chloride (anhydrous, > 97%), Aluminum 

chloride hexahydrate (ReagentPlus, 99%), and molecular sieves (13X, 3.2 mm pellets) 

(Figure 2-6) were purchased from Sigma.

Figure 2-6: Molecular sieves (13X, 3.2 mm pellets).

One mol/L AICI3 solution and 0.5 mol/L CaC^ solution were made in DI water, 

respectively. We made a 0.5 M NaOH solution in DI water. Cellulase (Accellerase 1500) 

was diluted 10 times with DI water.

2.3.2 Experimental Procedure

• Pretreatment of the molecular sieves: the molecular sieves (pellets) were wet by 

DI water.
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• Ca homo-ionization: The wet molecular sieves (pellets) were immersed into 

50 ml 0.5 mol/L CaCL solution for 20 min to make a Ca homo-ionized surface. 

Then washed by DI water several times.

• Al(OH)x modification: The modified molecular sieves (pellets) were immersed 

into 20 ml 1 mol/L AICI3 solution for 20 min. Then the pH of the solution (with 

molecular sieves in it) was adjusted to seven with 0.5 M NaOH solution. After 

filtering, the modified molecular sieves (pellets) were washed several times with 

DI water.

• Immobilization of cellulase: The modified molecular sieves (pellets) were 

immersed into 20 ml 10-time diluted cellulase solution for one hour. Then the 

immobilized cellulase was washed several times by DI water to remove the loose 

cellulase.

2.3.3 Hydrolysis of Cellulose bv the Immobilized 
Molecular Sieves

We prepared a 10 g/L CMC solution in pH -  6  0.05 M acetate buffer. The 

hydrolysis reaction was operated at 25°C. We used 11.2 g immobilized molecular sieves 

for hydrolysis of 40 ml CMC solution. The hydrolysis reaction was operated in a 100 ml 

scale batch reactor (Figure 2-5). Samples were taken according to time and tested by the 

glucose analysis as described in Section 2.1.3. The first order rate (the linear slope of the 

time-dependent curve) was applied to represent the enzymatic activity of the immobilized 

cellulase as described in Eq. 2-2. The reusability of the immobilized cellulase was 

studied as described in Section 2.2.5.
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2.4 Combination of LbL and Ca2+-AUOHh Modification

2.4.1 Chemicals

Cellulase (Accellerase 1500, Genencor Division) from Danisco US, Inc. Cellulose 

(Sigmacell Cellulose, Type 20), carboxymethylcellulose sodium salt (CMC), sodium 

acetate trihydrate (ACS reagent), acetic acid (> 99.7%), Polyethylenimine (PEI, high 

molecular weight, MW 25,000, water free), poly(sodium 4-styrene-sulfonate) (PSS, MW 

70,000), glutaraldehyde (GA) solution (grade I, 50%), sodium hydroxide (ACS reagent,

> 97.0%), Calcium chloride (anhydrous, > 97%), Aluminum chloride hexahydrate 

(ReagentPlus, 99%), molecular sieves (13X, 3.2 mm pellets), and molecular sieves (13X, 

beads, 4-8 mesh) (Figure 2-7) were purchased from Sigma.

Figure 2-7: Molecular sieves (13X, beads, 4-8 mesh).

One mol/L AlCb solution and 0.5 mol/L CaCh solution were made in DI water, 

respectively. We made a 0.5 M NaOH solution in DI water. Cellulase (Accellerase 1500) 

was diluted 10 times with DI water. Two mg/ml PEI solution was made in DI water. 

Cellulase solution was diluted 10 times with DI water.
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2.4.2 Experimental Procedure

• The molecular sieves (pellets) or molecular sieves (beads) were pretreated by 

Ca2+-Al(OH)x modification as described in Section 2.3.2.

• Coating cellulase layer: the pretreated molecular sieves (pellets) or molecular 

sieves (beads) were immersed into the cellulase solution for one hour.

• Washing step: then the immobilized molecular sieves (pellets) or molecular sieves 

(beads) were washed by DI water five times.

• Coating PEI layer: the immobilized molecular sieves (pellets) or molecular sieves 

(beads) were immersed into PEI solution for 10 min.

• Washing step: then the immobilized molecular sieves (pellets) or molecular sieves 

(beads) were washed by DI water five times.

The coating processes were applied until the desired cellulase/PEI bilayers were 

achieved.

2.4.3 Hydrolysis of Cellulose bv the Immobilized Molecular Sieves
bv Combination of LbL and Ca +-Al(OH\ Modification

Ten g/L CMC solution was prepared in pH = 6  0.05 M acetate buffer. The 

hydrolysis reaction was operated at 25°C. We used 11.2 g immobilized molecular sieves 

for hydrolysis of 40 ml CMC solution. The hydrolysis reaction was operated in a 100 ml 

scale batch reactor (Figure 2-5) and the packed bed reactor setup for hydrolysis of 

cellulose solution by the immobilized molecular sieves (Figure 2-8), respectively. The 

flow rate of the packed bed reactor was 100 ml/min. Samples were taken according to 

time and tested by the glucose analysis as described in Section 2.1.3. The first order rate 

(the linear slope of the time-dependent curve) was applied to represent the enzymatic
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activity of the immobilized cellulase as described in Eq. 2-2. The reusability of the 

immobilized cellulase was studied as described in Section 2.2.5.

Packed Bed 
Reactor

Cellulose
Solution
Container

Pump

Figure 2-8: Packed bed reactor setup for hydrolysis of cellulose solution by 
immobilized molecular sieves.

Norprene tube (06402-17) (Figure 2-9) was purchased from Masterflex.

• Masterflex tubing size (L/S): 17 (6.4 mm inside diameter).

• Hose barb size: 6.4 mm.

Norprene tube (06404-14) (Figure 2-9) was purchased from Masterflex.

• Masterflex tubing size (L/S): 14 (1. 6  mm inside diameter).

• Hose barb size: 1. 6  mm.

Nylon tube (1025L06 01) (Figure 2-9) was purchased from Legris.

• Inside diameter: 4 mm.

• Outside diameter: 6  mm.
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Figure 2-9: (a) Norprene tube (06404-14), (b) Norprene tube (06402-17), (c) Nylon 
tube (1025L06 01).

2.5 3-APTES Self-assembly Monolayer

2.5.1 Chemicals

Cellulase (Accellerase 1500, Genencor Division) was purchased from Danisco US, 

Inc. Silica-Amorphous (precipitated, pore size 150 A), (3-Aminopropyl) triethoxy-silane 

(3-APTES,99%), toluene (anhydrous, 99.8%), glutaraldehyde (GA) solution (grade I, 

50%), carboxymethylcellulose sodium salt (CMC), sodium acetate trihydrate (ACS 

reagent), cellulose (Sigmacell Cellulose, Type 20), solid-glass beads (3 mm diameter), 

and molecular sieves (13X, beads, 4-8 mesh) were purchased from Sigma.

2.5.2 Immobilization on Molecular Sieves (Beads)

Ten percent v/v 3-APTES was prepared in toluene, and 2% v/v glutaraldehyde 

solution was prepared in pH = 6  acetate buffer (50 mmol L'1). Cellulase (Accellerase 

1500) was diluted 10 times with DI water, and 11.2 g molecular sieves (beads) were used 

for one batch.
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2.5.2.1 Experimental procedure

•  3-APTES modification: molecular sieves (beads) were immersed into 10% v/v

3-APTES solution for 10 min. Then the pretreated molecular sieves (beads) were 

washed by toluene five times to remove the residues.

• Glutaraldehyde crosslinking: the pretreated molecular sieves (beads) were 

immersed into 2% v/v glutaraldehyde solution for 5 min. Then the molecular 

sieves (beads) were washed by DI water five times.

• Cellulase immobilization: the pretreated molecular sieves (beads) were immersed 

into 10-time diluted cellulase solution for 24 hours. Then the molecular sieves 

(beads) were washed by DI water several times to remove the cellulase residue.

2.5.3 Immobilization on Glass Beads

Ten percent v/v 3-APTES was prepared in toluene, and 2% v/v glutaraldehyde 

solution was prepared in pH = 6 acetate buffer (50 mmol L'1). Cellulase (Accellerase 

1500) was diluted five times with DI water. The glass beads were washed by DI water 

and dried by compressed air. Two hundred and forty-seven glass beads (Figure 2-10) 

were used as immobilization carriers for one batch.

Figure 2-10: Glass beads.
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2.5.3.1 Experimental procedure

•  3-APTES modification: glass beads were immersed into 10% v/v 3-APTES 

solution for 24 hours. Then the pretreated glass beads were washed by toluene 

five times to remove the residues and dried by compressed air.

• Glutaraldehyde crosslinking: the pretreated glass beads were immersed into

2% v/v glutaraldehyde solution for 30 min. Then the glass beads were washed by 

DI water five times and dried by compressed air.

• Cellulase immobilization: the pretreated glass beads were immersed into 10-time 

diluted cellulase solution for 24 hours. Then the glass beads were washed by DI 

water several times to remove the cellulase residue and dried by compressed air.

2.5.4 Immobilization on Silica Gel

Ten percent v/v 3-APTES was prepared in toluene, and 2% v/v glutaraldehyde 

solution was prepared in pH = 6 acetate buffer (50 mmol L'1). Cellulase (Accellerase 

1500) was diluted five times with DI water (17.5 mg protein/ml), and 0.06 g silica gel 

was used for one batch.

2.5.4.1 Experimental procedure

• 3-APTES modification: 0.06 g silica gel was incubated with 10% v/v 3-APTES 

prepared in toluene at 30°C for 24 hours in incubator shaker (Innova™ 4000, New 

Brunswick Scientific) with 300 rpm shaking speed. The modified silica gel was 

followed by a washing step with 1.2 ml toluene for four-five times to remove the 

unbound 3-APTES. Then the modified silica gel was cured on a hot plated at 

40°C for 24 hours. The modified silica gel is stable for months if sealed [92].
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• Glutaraldehyde crosslinking: Glutaraldehyde was used as a crosslinker and

a space arm between the 3-APTES layer and the cellulase layer. The 3-APTES 

modified silica gel was immersed into 2% v/v glutaraldehyde solution which was 

prepared with pH = 6 acetate buffer (50 mmol L-l) for 30 min at room 

temperature. After this step, an aldehyde terminated silica gel surface was formed. 

Then modified silica gel was washed by 1.2 ml DI water four-five times to 

remove the unbound glutaraldehyde.

• Cellulase immobilization: the modified silica gel was immersed into 1 ml of 

five-time diluted cellulase with DI water (17.5 mg protein/ml) for 24 hours at 

room temperature in incubator shaker with 300 rpm shaking speed. After remove 

the residue immobilization solution, the immobilized silica gel was washed five 

times with DI water. Only 0.1% of cellulase was detected in the supemate of the 

fifth wash suggesting that no further washes were required.

The incubator shaker utilized for immobilization of 3-APTES and cellulase was to 

make the silica gel uniformly distributed in the solution and kept a certain temperature. 

The cellulase solution after immobilization and the water waste were kept together in 

a 100 ml volumetric bottle for protein assay in order to determine the amount of 

immobilized cellulase. Figure 2-11 shows the mechanism of immobilization with 

3-APTES.
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Figure 2-11: Mechanism of immobilization with 3-APTES.

25.4.2 Impact o f  initial concentration o f  cellulase 
solution on the immobilized cellulase

The activities of the immobilized cellulase from different time-diluted cellulase 

solutions for immobilization were tested. Silica gel was modified by 3-APTES and 

crosslinked by glutaraldehyde as described in Section 2.5.4.1. Then the pretreated silica 

gel was immerged in 20 X, 10 X, 5 X diluted and undiluted cellulase solution, 

respectively. The protein concentrations of the diluted cellulase solutions for 

immobilization measured by the flourescamine protein assay were 4.4, 8.8, 17.5,

87.5 mg/ml for 20 X, 10 X, 5 X diluted and undiluted cellulase solution, respectively.
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The activity of the immobilized cellulase was determined by the CMC assay as stated in 

Section 2.5.7.

2.5.4.3 Impact o f  temperature on immobilized
cellulase

The effect of temperature on the immobilized cellulase was examined in 10 g/L 

CMC solution in pH = 6 acetate buffer (50 mmol L 1) by altering the reaction temperature 

to 20°C, 30°C, 40°C, 50°C, and 60°C. The cellulase was immobilized on the silica gel as 

described in Section 2.5.4.1. The initial concentration of cellulase solution for 

immobilization of silica gel was 17.5 mg/ml (five-time diluted). The highest activities of 

free and immobilized cellulase were considered as the control groups for each series of 

experiments, respectively, and defined 100% relative activity [45].

2.5.4.4 Impact o f  pH on immobilized cellulase

The effect of pH for hydrolysis of CMC on immobilized cellulase was examined 

by altering the acetate buffer to pH 4, 5, 6 in the CMC assay in Section 2.5.7. The 

immobilized cellulase was performed as stated in Section 2.5.4.1.

2.5.5 Hydrolysis of Cellulose bv the Immobilized
Molecular Sieves (Beads)

Ten g/L CMC solution was prepared in pH=6 0.05 M acetate buffer. The 

hydrolysis reaction was operated at 25°C. We used 11.2 g immobilized molecular sieves 

for hydrolysis of 40 ml CMC solution. The hydrolysis reaction was operated in the 

packed bed reactor setup for hydrolysis of cellulose solution by the immobilized 

molecular sieves (Figure 2-8). The flow rate of the packed bed reactor was 100 ml/min. 

Samples were taken according to time and tested by the glucose analysis as described in
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Section 2.1.3. The first order rate (the linear slope of the time-dependent curve) was 

applied to represent the enzymatic activity of the immobilized cellulase as described 

in Eq. 2-2. The reusability of the immobilized cellulase was studied as described in 

Section 2.2.5.

2.5.6 Hydrolysis of Cellulose bv the 
Immobilized Glass Beads

Ten g/L CMC solution was prepared in pH = 6 0.05 M acetate buffer. The 

hydrolysis reaction was operated at 25°C. Two hundred and forty-seven immobilized 

glass beads were used for hydrolysis of 10 ml CMC solution. The hydrolysis reaction was 

operated in the packed bed reactor setup for hydrolysis of the cellulose solution by the 

immobilized glass beads (Figure 2-12). The flow rate of the packed bed reactor was 

6 ml/min. Samples were taken according to time and tested by the glucose analysis as 

described in Section 2.1.3. The first order rate (the linear slope of the time-dependent 

curve) was applied to represent the enzymatic activity of the immobilized cellulase as 

described in Eq. 2-2. The reusability of the immobilized cellulase was studied as 

described in Section 2.2.5.
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Packed Bed 
Reactor

Cellulose k-Pump

Solution •*] 
Container

Figure 2-12: Packed bed reactor setup for hydrolysis of cellulose solution by 
immobilized glass beads.

Norprene tube (06404-14) (Figure 2-13) was purchased from Masterflex.

Immobilized Silica Gel 

Activities of the immobilized silica gel were determined by hydrolysis of 10 g/L

silica gel was immersed into a 10 ml CMC solution and stirred well in the reactor, which

Figure 2-13: Norprene tube (06404-14)

• Masterflex tubing size (L/S): 14 (1.6 mm inside diameter).

• Hose barb size: 1.6 mm.

2.5.7 Hydrolysis of Cellulose bv the

CMC solution dissolved in pH = 6 acetate buffer (50 mmol L'1). 0.06 g immobilized
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maintained a temperature of 20°C in bath water. The hydrolysis reaction took place in 

a 20 ml scale batch reactor (Figure 2-2). Samples were taken after 1 hour, 2 hours, and 

3 hours, which were centrifuged for 5 min at 10,000 rpm. The supemate was collected, 

and its glucose concentration was tested by the glucose analysis as described in Section

2.1.3. One unit of cellulase activity was defined as nmol glucose produced per minute.

The reusability of the immobilized cellulase was studied as described in Section 2.2.5.

2.6 Protein Assay

2.6.1 Chemicals

Fluorescamine (> 98.0%, powder), toluene (anhydrous, 99.8%), and bovine serum 

albumin (BSA, > 98.0%) were purchased from Sigma.

2.6.2 Equipment

LS 55 Fluorescence Spectrometer was purchased from PerkinElmer (Figure 2-14).

Figure 2-14: LS 55 Fluorescence Spectrometer.
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Fluorescamine protein assay was used to determine the amount of immobilized 

cellulase, in which 5 mg/ml BSA stock was prepared for a standard curve. Table 2-1 

shows the standard curve. One ml of five-time diluted cellulase solution for 

immobilization was added into a 100 ml volumetric bottle, and diluted with DI water. 

Three ml of the diluted solution was used for protein assay. The samples were measured 

using fluorescence spectrometer at excitation wavelength 390 nm and emission 

wavelength 460 nm. The amount of immobilized cellulase was calculated by

Mass o f  the immobilized cellulase = CjF{ -  CfVf, Eq. 2-3

where Q  is the initial protein concentration, Vj the initial volume of cellulase solution, Cf 

the final protein concentration after immobilization, Vf the final volume of cellulase 

solution after immobilization (water washes included). The maximum percentage error of 

Cj and Cf ranged from 3% to 4%. The magnitude of the measured difference of enzyme 

mass before and after the immobilization step was 11% to 14%.

Table 2-1: Standard curve of fluorescamine protein assay.

Protein
conc.

[mg/ml]

BSA
stock
[ml]

Water
[ml]

Fluorecamine
[ml]

Incubation
[min]

0 0 3.000 0.05 30
0.025 0.015 2.985 0.05 30
0.050 0.030 2.970 0.05 30
0.100 0.060 2.940 0.05 30
0.200 0.120 2.880 0.05 30
0.300 0.180 2.820 0.05 30

2.7 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) was applied to monitor the surface 

topography change before and after immobilization. For immobilized polystyrene beads
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by LbL, samples were prepared by non-pretreated polystyrene beads, NaOH boiled 

polystyrene beads, and the 120-bilayer immobilized polystyrene beads as described in 

Section 2.2.3.1. The samples were tested by scanning electron microscope Hitachi 

S-4800.

2.8 Fourier Transform Infrared Spectroscopy

The Fourier Transform Infrared Spectroscopy (FTIR) was used for recording the 

chemical composition of the samples. The samples were prepared by 100% pure silica, 

3-APTES modified silica, 3-APTES modified glutaraldehyde crosslinked silica gel, and 

cellulase immobilized silica gel as described in Section 2.5.4.1, respectively. The spectra 

were recorded at room temperature in the 400-4000 cm'1 range using Thermo Scientific 

NICOLETIR100 FT-IR Spectrometer (Figure 2-15).

Figure 2-15: Thermo Scientific NICOLET IR100 FT-IR Spectrometer.
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2.9 Nitrogen Adsorption/desorption Analysis

The pore size and pore volume were calculated by nitrogen adsorption and 

desorption utilizing the Barrett-Joyner-Halenda (BJH) method using NOVA 2000 High- 

Speed Surface Area & Pore Size Analyzer. The surface area was calculated by the 

Brunauer-Emmett-Teller (BET) method. The samples were prepared by 100% pure 

silica, 3-APTES modified silica, 3-APTES modified glutaraldehyde crosslinked silica gel 

as described in Section 2.5.4.1, respectively.



CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, the results of immobilization of the cellulase by different 

immobilization techniques will be discussed in detail. The activity and reusability of the 

immobilized cellulase will be the purpose and focus of attention. For each immobilization 

technique, the key variables of both immobilization steps and hydrolysis of cellulose by 

the immobilized cellulase were studied.

3.1 Free Cellulase Assay

Three different kinds of cellulases were investigated in order to find the enzyme 

with the highest activity for immobilization. Free cellulase assay of Novozyme 188, 

Accellerase 1500 (uncentrifuged) and cellulase (Trichoderma viride) were tested under 

the same hydrolysis conditions. Figure 3-1 shows the activities of three different 

cellulases (Novozyme 188, Accellerase 1500 and Trichoderma viride). The activity of 

cellulase (Novozyme 188) was much lower than the activities of cellulases (Accellerase 

1500 and Trichoderma viride). The activity of cellulase (Trichoderma viride) was the 

same as the activity of cellulase (Accellerase 1500) until about 260 min. However, after 

260 min, the activity of cellulase (Accellerase 1500) increased. The produced glucose 

yield by cellulase (Accellerase 1500) was larger than the one by cellulase (Trichoderma

45
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viride). Because cellulase (Accellerase 1500) had the highest enzymatic activity and the 

largest produced glucose yield, it was chosen for immobilization of the following studies.

20 Novozyme 188

18
Accellerase 1500

16

14
1  ̂12
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Figure 3-1: Activities of three different free cellulase (Novozyme 188, Accellerase 
1500 and Trichoderma viride). Enzyme: Novozyme 188,2 ml undiluted; Accellerase 
1500, 2 ml undiluted (uncentrifuged); cellulase (Trichoderma viride), 500 mg. Cellulose 
solution: 250 ml cellulose (type 20), 5% (w/v) in pH = 5 0.05 M acetate buffer at 25°C.

In the following experiments, cellulase (Accellerase 1500) was centrifuged to 

remove the particles in the native cellulase solution, which did not contribute to the 

enzymatic activity but disturbed the protein assay. The supernatant was used for 

hydrolysis of cellulose or immobilization. Figure 3-2 and Figure 3-3 show the activities 

of the centrifuged and uncentrifuged free cellulase (Accellerase 1500) in 10 g/L pH = 6 

CMC solution, respectively. The same enzymatic activities (first order rates) were 

observed.
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Figure 3-2: Activity of free cellulase (Accellerase 1500) in CMC solution. Enzyme: 
Accellerase 1500,0.1 ml 500-time diluted cellulase (centrifuged). Cellulose solution: 
10 ml CMC, 10 g/L in pH = 6 0.05 M acetate buffer at 20°C.
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Figure 3-3: Activity of free cellulase (Accellerase 1500) in CMC solution. Enzyme: 
Accellerase 1500,0.1 ml 500-time diluted cellulase (uncentrifuged). Cellulose solution: 
10 ml CMC, 10 g/L in pH = 6 0.05 M acetate buffer at 20°C.
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3.2 Results from the Immobilized Cellulase bv Laver-bv-Laver
Nano-Assemblv (LbL)

Layer-by-Layer Nano-Assembly was the first immobilization technique that was 

studied for immobilization of cellulase. It was widely reported for immobilization of 

enzymes such as glucose oxidase, glucoamylase, and lysozyme [79]. The main advantage 

of LbL was that the activity of the immobilized enzyme increased with the number of 

enzyme layers [85]. Also, the mobility of the immobilized cellulase molecules between 

layers improved the enzyme denaturation during immobilization, which was commonly 

found in other immobilization techniques [79]. These advantages of LbL make it very 

promising for immobilization of cellulase.

3-2.1 Characterization of the Immobilized Cellulase

SEM and QCM were applied to characterize the immobilized cellulase by LbL. 

QCM was applied to measure the mass change on the crystal resonator during the 

immobilization steps. Figure 3-4 shows that the coated mass linearly increased according 

to the number of bilayers. During the PEI/PSS precursor layer, about 0.85-1.48 pg/cm2 

material was coated for each PEI/PSS bilayer. After changing PSS to a cellulase solution, 

about 0.88-1.96 pg/cm2 cellulase was coated after each bilayer.
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Figure 3-4: QCM results of the immobilized cellulase by Layer-by-Layer Nano- 
Assembly. [(PEI/PSS)3+(PEI/Cellulase)s]. The precursor layers and the enzyme layers 
were coated as described in Section 2.2.2.

SEM imaging was applied to monitor the surface topography change before and 

after the immobilization. Figure 3-5 shows that the surface of the polystyrene beads is 

rough after 3 hours of NaOH boiling, which increases the surface area for 

immobilization. After coating 120 PEI/cellulase bilayers, the surface became smoother 

than the uncoated one. It indicated that PEI and cellulase were successfully coated onto 

the surface of the polystyrene beads.



Figure 3-5: SEM images of polystyrene beads before and after immobilization.
(a) Polystyrene beads before NaOH boiling, (b) Polystyrene beads after 3 hours of 
NaOH boiling, (c) Polystyrene beads with 120 bilayers of cellulase. Cellulase was 
immobilized onto the polystyrene beads as described in Section 2.2.3.

3.2.2 Hydrolysis of Crystalline Cellulose (Type 20)
bv the Immobilized Cellulase

After adjusting the pH condition for coating by the QCM technology, the LbL 

technique was applied for the immobilization of cellulase on polystyrene beads. The 

activity of the immobilized cellulase was tested by hydrolysis of the cellulose solution. 

Efforts were focused on increasing the activity and reusability of the immobilized 

cellulase.

3.2.2.1 Impact o f  the cellulase bilavers on the activity
o f the immobilized cellulase

The activity of the immobilized cellulase by LbL was tested by hydrolysis of 

a 10 g/L cellulose (type 20) solution in pH 6 acetate buffer (50 mmol'1). The first order
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rate (the linear slope of the time-dependent curve) was applied to represent the enzymatic 

activity of the immobilized cellulase as shown in Figure 3-6. Figure 3-6 shows that the 

activity of the 5-bilayer immobilized cellulase is 11.2 times larger than one of the 

3-bilayer immobilized cellulase, which indicates that the activity of the immobilized 

cellulase by LbL increases with the number of the cellulase bilayers.
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Figure 3-6: Activity of 3-bilayer and 5-bilayer immobilized cellulase on polystyrene 
beads by LbL. (a) Time-dependent curves, (b) Enzymatic activity. 
[(PEI/PSS)3+(PEI/Cellulase)x] x = 3 or 5. Cellulase was immobilized onto the 
polystyrene beads as described in Section 2.2.3. Hydrolysis by 27.4 g immobilized 
cellulase was applied in a 100 ml 10 g/L pH 6 cellulose (type 20) solution at room 
temperature (25°C) as described in Section 2.2.4.
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However, the enzyme desorption problem was observed for the immobilized 

cellulase by LbL. In order to test the immobilized cellulase desorption, the immobilized 

cellulase was removed from the cellulose (type 20) solution after 14 hours. The cellulose 

solution was kept in the water bath, and samples were taken at determined intervals of 

time. Figure 3-7 depicts that for both 5-bilayer and 10-bilayer immobilized cellulase, the 

produced glucose concentration increased without the immobilized cellulase. A possible 

reason was that there was desorbed cellulase in the reactor which contributed to the 

hydrolysis activity. This would also explain why the activity of the 5-bilayer was larger 

than one of the 10-bilayer at the sample point of 14 hours (Figure 3-7): the desorbed 

cellulase of 5-bilayer contributed more hydrolysis activity than the 10-bilayer one.
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was rem oved from 
th e  reactor
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Figure 3-7: Activity of the 5-bilayer and 10-bilayer immobilized. Cellulose was 
hydrolyzed by the immobilized cellulase for 14 hours. Then the immobilized cellulase 
was removed from the reactor. The cellulose solution was kept in the water bath, and 
samples were taken at determined intervals of time. [(PEI/PSS)3+(PEI/Cellulase)x] x = 5 
or 10. Cellulase was immobilized onto the polystyrene beads as described in Section
2.2.3. Hydrolysis by 27.4 g immobilized cellulase was applied in a 100 ml 10 g/L pH 6 
cellulose (type 20) solution at room temperature (25°C) as described in Section 2.2.4.



53

The reusability of the immobilized cellulase by LbL was tested. After the first 

batch, the immobilized cellulase was removed from the cellulose solution and washed 

several times with DI water. Then the immobilized cellulase was immersed in the fresh 

cellulose solution. Unfortunately, no detectable produced glucose was observed on the 

5th day (6000 min). Possible reasons were that first, the immobilized cellulase was 

desorbed in the hydrolysis and washing steps; second, the cellulose particles would not 

penetrate into the deep enzyme layers.

3.2.2.2 Impact o f the choice o f the terminated lover

Experiments were conducted to reduce the desorption of cellulase that was 

observed in the previous section. A PEI layer or PEI/PSS bilayer was applied after the 

terminal cellulase layer as a sealing layer. Figure 3-8 shows that the activity of the 

immobilized cellulase dramatically decreased after applying a sealing layer. Although 

desorption of the enzyme was not observed, the bioavailability of the enzyme to the 

cellulose (type 20) particle was prohibitively low. The catalyst beads were filtered and 

tested using the same initial conditions. No detectible glucose concentration was 

measured for the second cycle of experiments on the 6th day (8000 min).
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Figure 3-8: Activity of the immobilized cellulase with PEI, PSS or cellulase as a 
terminated layer. [(PEI/PSS)4+(PEI/Cellulase)5+PEI or PEI/PSS]. Cellulase was 
immobilized onto the polystyrene beads as described in Section 2.2.3. Hydrolysis by 
68.6 g immobilized cellulase was applied in 250 ml 10 g/L pH 6 cellulose (type 20) 
solution at room temperature (25°C) as described in Section 2.2.4.

3.2.2.3 Impact o f crosslinkins on the immobilized cellulase

Crosslinking was another method tested for the purposes of reducing the 

desorption of the immobilized cellulase. By intermolecular crosslinking, the enzyme 

desorption was expected to be improved. However, because the crosslinking also reduced 

the mobility of the cellulase molecules, the enzymatic activity might be decreased.

Figure 3-9 and Figure 3-10 show the results. Figure 3-9 shows that only 9% initial 

activity is retained after 10 min of crosslinking and 7% initial activity is retained after 

20 min of crosslinking. A lighter crosslinking (3 min of crosslinking with 1/10 

concentration of the crosslinker) was applied, but the result did not improve. Figure 3-10 

shows that the reusability of the immobilized cellulase with crosslinking. The second 

cycle’s activity of the immobilized cellulase was only 11% compared with the first cycle.
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The results from Figure 3-9 and Figure 3-10 confirmed that while the crosslinker 

strengthened the bonding condition of the immobilized cellulase, it also decreased the 

activity of the immobilized cellulase. Therefore, considering the activity loss of the 

immobilized cellulase, crosslinking was not suitable for the immobilized cellulase by 

LbL.
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Figure 3-9: Impact of crosslinking on the activity of the immobilized beads. 
[(PEI/PSS)4+(PEI/Cellulase)5+crosslinker]. Cellulase was immobilized and crosslinked 
onto the polystyrene beads as described in Section 2.2.3. Hydrolysis by 68.6 g 
immobilized cellulase was applied in 250 ml 10 g/L pH 5 cellulose (type 20) solution at 
room temperature (25°C) as described in Section 2.2.4.
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Figure 3-10: Activity and reusability of the immobilized beads with crosslinking. 
[(PEI/PSS)4+(PEI/Cellulase)5+crosslinker]. Cellulase was immobilized and crosslinked 
onto the polystyrene beads as described in Section 2.2.3. Hydrolysis by 68.6 g 
immobilized cellulase was applied in a 250 ml 10 g/L pH 5 cellulose (type 20) solution 
at room temperature (25°C) as described in Section 2.2.4.

3.2.3 Hydrolysis of CMC bv the Immobilized Cellulase

The produced glucose concentration of hydrolysis of cellulose (type 20) by the 

immobilized cellulase was low. Figure 3-8 shows that the produced glucose 

concentration of hydrolysis of cellulose (type 20) after 6 hours was just 0.009 mg/ml. 

When a sealing layer was applied to the immobilized cellulase, the produced glucose 

concentration further decreased to 0.003 mg/ml even after 90 hours, which was close to 

the detectable limitation. Besides the low enzymatic activity of the hydrolysis reaction by 

the cellulase enzyme, the mass transfer and penetration problems had a significant effect. 

In order to get a better understanding of the immobilization technique (what made the
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enzyme desorption; how to improve the reusability; and how to improve the activity.), 

a soluble cellulose, CMC, was used instead of cellulose (type 20) to minimize the mass 

transfer and penetration problem. Thus, the enzymatic activity of the immobilized 

cellulase was increased using CMC as a substrate for hydrolysis.

3.2.3.1 Comparison enzymatic activity o f the immobilized
cellulase for crystalline cellulose (type 20) with CMC

As shown in Figure 3-11, the activity of the immobilized cellulase in the CMC 

solution was about 7.9 times larger than the one in the cellulose (type 20) solution. After 

240 min of hydrolysis of CMC, the produced glucose concentration by the immobilized 

cellulase was 0.041 mg/ml, which was 20 times larger than the one in the hydrolysis of 

the cellulose (type 20) (0.002 mg/ml).
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Figure 3-11: Activity of the immobilized cellulase in CMC/cellulose (type 20). 
[(PEI/PSS)5+(PEI/cellulase)5+PEI]. Cellulase was immobilized onto the polystyrene 
beads as described in Section 2.2.3. Hydrolysis by 27.4 g immobilized cellulase was 
applied in a 100 ml 10 g/L pH 6 CMC/cellulose (type 20) solution at room temperature 
(25°C) as described in Section 2.2.4.
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3.2.3.2 Reusability o f the immobilized cellulase

The reusability of the immobilized cellulase by LbL with a PEI sealing layer was 

also observed for hydrolysis of the CMC solution. Figure 3-12 shows that the activity of 

the second cycle was 2.06E-05 mg/(ml min), which is 12% compared with the first cycle. 

A possible reason for low reusability was the immobilized cellulase loss during 

hydrolysis of CMC and the washing steps between cycles.
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Figure 3-12: Reusability of the immobilized cellulase by LbL in CMC. 
[(PEI/PSS)5+(PEI/cellulase)5+PEI]. Cellulase was immobilized onto the polystyrene 
beads as described in Section 2.2.3. Hydrolysis by 27.4 g immobilized cellulase was 
applied in a 100 ml 10 g/L pH 6 CMC solution at 25°C as described in Section 2.2.4.

3.2.3.3 Impact o f the choice o f the terminated layer

The activity of the immobilized cellulase by LbL with different terminated layers 

was tested in the CMC solution. A PEI layer was applied after the terminal cellulase layer 

as a sealing layer. The results are shown in Figure 3-13. In the results for cellulose (type 

20) solution, the activity of the immobilized cellulase with cellulase as a terminated layer 

was higher than the one with a PEI layer as a terminated layer. From the QCM result in
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Figure 3-4, it can be demonstrated that for each cellulase layer, the immobilized cellulase 

stripped off during the next PEI coating process. Therefore, the mass of the immobilized 

cellulase with cellulase as a terminated layer was larger than the one with PEI as 

a terminated layer. Thus, the activity of the immobilized cellulase with cellulase as 

a terminated layer was higher than the one with PEI as a terminated layer.
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Figure 3-13: Activity of the immobilized cellulase with PEI or cellulase as a terminated 
layer. [(PEI/PSS)5+(PEI/Cellulase)5+PEI]. Cellulase was immobilized onto the 
polystyrene beads as described in Section 2.2.3. Hydrolysis by 27.4 g immobilized 
cellulase was applied in a 100 ml 10 g/L pH 7 CMC solution at 25°C as described in 
Section 2.2.4.

The impact of the PEI sealing layer on the activity and reusability of the 

immobilized cellulase by LbL was tested in the CMC solution. Unlike hydrolysis in the 

cellulose (type 20) solution, hydrolysis in the CMC solution by the immobilized cellulase 

minimized the penetration problem. Figure 3-14 and Figure 3-15 show the activities of 

the first and second cycles. In the first cycle, the immobilized cellulase was removed 

from the CMC solution after 2 hours. The CMC solution was kept in bath water, and the
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samples were taken at determined time intervals. Figure 3-14 shows that for both 

immobilized cellulase with/without a sealing layer, the produced glucose concentration 

increased without the immobilized cellulase. It indicated that there was cellulase 

desorbed during hydrolysis of CMC for both immobilized cellulase with/without a PEI 

sealing layer. Figure 3-14 shows that the first cycle’s activity of the immobilized 

cellulase with a PEI sealing layer was smaller than the one without the PEI sealing layer. 

However, Figure 3-15 depicts the second cycle’s activity of the immobilized cellulase 

showing the opposite. It indicated that although using PEI as a terminated layer decreased 

the initial activity of the immobilized cellulase, it improved the cellulase desorption 

problem. Thus, using a PEI sealing layer improved the reusability.
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Figure 3-14: Activity of the immobilized cellulase with PEI or cellulase as a terminated 
and the impact of enzyme desorption. First batch. The immobilized beads were removed 
from the reactor after 2 hours. The CMC solution was kept in the water bath, and 
samples were taken at determined time intervals. Immobilization carriers: polystyrene 
beads 27.4 g. [(PEI/PSS)5+(PEI/Cellulase)s+PEI]. Cellulase was immobilized onto the 
polystyrene beads as described in Section 2.2.3. Hydrolysis by 27.4 g immobilized 
cellulase was applied in 100 ml 10 g/L pH 7 CMC solution at 25°C as described in 
Section 2.2.4.
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Figure 3-15: Activity and reusability of the immobilized cellulase with PEI or cellulase 
as a terminated layer in CMC. Second batch. [(PEI/PSS)5+(PEI/Cellulase)5+PEI]. 
Cellulase was immobilized onto the polystyrene beads as described in Section 2.2.3. 
Hydrolysis by 27.4 g immobilized cellulase was applied in a 100 ml 10 g/L pH 7 CMC 
solution at 25°C as described in Section 2.2.4.

3.2.4 Summary for Hydrolysis of Cellulose bv the 
Immobilized Cellulase Using LbL

Table 3-1 shows the results for hydrolysis of cellulose by the immobilized 

cellulase using LbL. The initial activity of the immobilized cellulase did not increase with 

the number of cellulase layers. Enzyme desorption was observed during the hydrolysis of 

cellulose, which was the possible reason that there was no or low reusability for the 

immobilized cellulase. Applying crosslinking dramatically denatured the initial activity 

of the immobilized cellulase by 15-20 folds, yet rarely improved the reusability. A PEI 

sealing layer slightly improved the reusability of the immobilized cellulase for hydrolysis 

of CMC, but it was not working for the hydrolysis of cellulose (type 20). A possible 

reason was that the cellulose (type 20) molecules would not penetrate into the deep 

layers. It was also the possible reason that the initial activity of the immobilized cellulase
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did not increase with the number of enzyme layers. Therefore, according to our study, 

these negative results limits the application of LbL for the immobilization of cellulase.

Table 3-1: Summary for hydrolysis of cellulose by the immobilized cellulase using 
LbL.

Immobilization conditions
Amount o f  

immobilization 
carriers (g)

Cellulose

Volume o f  
cellulose 
solution 

(ml)

pH o f  
cellulose 
solution

Initial
activity
(mg/ml

min)

Activity for 
the second 

batch 
(mg/ml 

min)

3-bilayer 27.4 Cellulose 
(type 20)

100 6 6.00E-06 NA

5-bilayer 27.4 Cellulose 
(type 20)

100 6 6.70E-05 NA

5-bilayer 27.4 CMC 100 6 1.72E-04 2.06E-05

5-bilayer 27.4 CMC 100 7 8.16E-05 5.19E-06

Non­
5-bilayer 68.6

Cellulose 
(type 20) 250 5 1.36E-04 NA

crosslinking 10-bilayer 27.4 Cellulose 
(type 20) 100 6 3.97E-05 NA

PEI sealing 
layer 68.6 Cellulose 

(type 20) 250 6 4.34E-07 NA

PEI sealing 
layer 27.4 CMC 100 7 1.48E-05 9.72E-06

PEI/PSS
sealing
layer

68.6
Cellulose 
(type 20) 250 6 4.34E-07 NA

20 min 68.6 Cellulose 
(type 20) 250 5 6.79E-06 NA

Crosslinking,
5-bilayer

10 min 68.6 Cellulose 
(type 20) 250 5 9.17E-06 NA

3 min, 1/10 
crosslinker 

conc.
68.6 Cellulose 

(type 20)
250 5 8.74E-06 1.00E-06

3.3 Results from the Immobilized Cellulase bv Ca2+-homoionized 
and AlfOHli Coating Technique on 

Molecular Sieves (Pellets)
*11

Ca -homoionized and Al(OH)x pretreatment was the second immobilization 

technique that was investigated on molecular sieves. This immobilization technique 

combined physical adsorption and entrapment. After Ca2+-homoionization, the positive 

surface charge of the molecular sieves increases. Because the cellulase molecules have 

a negative charge, the interaction between the cellulase molecules and the immobilization
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carrier is significantly improved. The purpose for Al(OH)x pretreatment is to coat 

an Al(OH)x gel film outside the immobilization carriers to provide additional surface area 

for cellulase immobilization. Figure 3-16 shows the results.
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Figure 3-16: Activity and reusability of the immobilized cellulase on molecular sieves 
(pellets) by Ca2+-A1(0H) modification. Cellulase was immobilized onto molecular sieves 
(pellets) as described in Section 2.3.2. Hydrolysis reaction was applied as described in 
Section 2.3.3. The flow rate of the packed bed reactor was 100 ml/min.

3.3.1 Effect of Ca Homo-ionized Pretreatment
on Molecular Sieves (Pellets')

Porous molecular sieves (pellets) were used for the immobilization of cellulase. 

The activity of the immobilized cellulase was tested by hydrolysis of 1% w/v CMC 

solution in pH 6 acetate buffer at room temperature. Reusability of the immobilized 

cellulase was observed.

The homo-ionizing Ca2+ had a significant effect on the activity of the immobilized 

cellulase. Figure 3-16 shows that the initial activity of the immobilized cellulase with 

Ca2+ homo-ionization was five times higher than the one without Ca2+ homo-ionization.

A possible reason was that after Ca homo-ionization, the positive surface charge
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increased and thus increased the amount of the cellulase (which had a negative charge) 

immobilization. The reusability of the immobilized cellulase was barely improved after
'yi

Ca homo-ionization. The second and third cycles’ activities of the immobilized 

cellulase without Ca2+ homo-ionization were 26% and 17% of the initial activity, 

respectively. In comparison, the second and third cycles’ activities of the immobilized
•y,

cellulase with Ca homo-ionization were 31 % and 15% of the initial activity, 

respectively.

3.3.2 Effect of Ca2+ Homo-ionized and Al(OH\ Coating 
Pretreatment on Molecular Sieves (Pellets')

The positive impact of Al(OH)x coating on the Ca2+ homo-ionized molecular 

sieves (pellets) was significant. Figure 3-16 shows that the initial activity of the 

immobilized cellulase with Al(OH)x is 1.6 times larger than the one without Al(OH)x 

coating. However, the reusability barely improved. The second and third cycles’ activities 

of the immobilized cellulase with Al(OH)x coating were 22% and 17% of the initial 

activity, respectively. In comparison, the second and third cycles’ activities of the 

immobilized cellulase without Al(OH)x coating were 31% and 15% of the initial activity, 

respectively. Enzyme desorption was observed during the hydrolysis and washing steps, 

which was the possible reason for low reusability. Besides, the immobilized molecular 

sieves were observed to be abraded during the hydrolysis, while they were stirred in the 

reactor.

A packed bed reactor (Figure 2-8) was designed and used for the hydrolysis of 

the CMC solution by the immobilized cellulase (molecular sieves) instead of the batch 

reactor in order to minimize the abrasion. It significantly improved the reusability of the 

immobilized cellulase. The activity of the second cycle retained 58% initial activity in
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a packed bed reactor by contrast with 22% initial activity retained in a batch reactor 

(Figure 3-16). The close-packing of the immobilized molecular sieves in the packed bed 

reactor may have improved the abrasion among the immobilized molecular sieves and 

thus saved the immobilized cellulase. Therefore, the reusability of the immobilized 

cellulase on molecular sieves (pellets) was improved by using a packed bed reactor. 

However, enzyme desorption was still observed during the hydrolysis of the CMC 

solution. The cellulose solution container was removed from the packed bed reactor setup 

after 1 hour, and it was stirred at 300 rpm by a magnetic stirrer. A sample was taken after 

14 hours and 45 min. The produced glucose concentration increased from 0.065 mg/ml to

0.392 mg/ml, which indicated that the desorbed cellulase existed in the reactor.

3.4 Results from the Immobilized Cellulase bv Combination of 
Ca +-AKOH)t Modification and LbL 

on Molecular Sieves

Because relatively high initial activity but low reusability of the immobilized 

cellulase by Ca -Al(OH)x modification technique were observed, LbL technique was 

applied after Ca -Al(OH)x pretreatment to improve the reusability of the immobilized 

cellulase. The influence of a different number of enzyme layers was investigated for both 

activity and reusability of the immobilized cellulase.

3.4.1 Activity and Reusability of the 
Immobilized Cellulase

LbL immobilization technique was used after the Ca2+-Al(OH)x pretreatment. 

There were two kinds of immobilization carriers used for the immobilization of cellulase,

1.e. molecular sieves (pellets) and molecular sieves (beads). For three cellulase bilayers, 

the initial activity of the immobilized molecular sieves (pellets) was 1.9 times higher than
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one of the immobilized molecular sieves (beads) (Figure 3-17). This was probably 

because the surface area (per mass) of the molecular sieves (pellets) was larger than one 

of the molecular sieves (beads). Therefore, the mass of the immobilized cellulase on the 

molecular sieves (pellets) was larger.
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Figure 3-17: Impact of different immobilization carriers (molecular sieve pellets or 
beads) on the activity and reusability of the 3-bilayer immobilized cellulase by 
combination of LbL and Ca2+-A1(0H)X modification. Cellulase was immobilized onto 
molecular sieves (pellets or beads) as described in Section 2.4.2. Hydrolysis reaction 
was applied as described in Section 2.4.3.The flow rate of the packed bed reactor was 
100 ml/min.

The difference between the reusabilities of the immobilized molecular sieves 

(pellets) and molecular sieves (beads) was observed. The immobilized molecular sieves 

(pellets) had 63% initial activity retained for the second recycle while the immobilized 

molecular sieves (beads) had 67% initial activity retained for the same recycle (Figure 

3-17). However, from the 4th recycle, the activity of the immobilized molecular sieves 

(beads) was almost the same as one of the immobilized molecular sieves (pellets), even if 

the initial activity of the immobilized molecular sieves (pellets) was 1.9 times higher. It

■ Pellets 

ea Beads

3 4 5
Number of recycles



67

indicated that by using molecular sieves (beads), the reusability of the immobilized 

cellulase improved.

3.4.2 Effect of Different Number of 
Cellulase Bilavers

Reusability of the immobilized cellulase was significantly improved by increasing 

the number of cellulase layers. Figure 3-18 shows that the 6th recycle’s activity of the 

15-bilayer immobilized cellulase was 0.0011 mg/(ml min), which was 75% of the initial 

activity. Compared with direct immobilization of cellulase on the Ca2+-A1(0H)X 

pretreated molecular sieves (beads), the PEI layer protected cellulase molecules from 

desorption from the pores of the molecular sieves (beads). This effect increased with the 

number of cellulase bilayers, but also led to an activity decrease of the immobilized 

cellulase because the PEI layer partially blocked the pores. Therefore, the initial activity 

of the immobilized molecular sieves (beads) with 15 cellulase bilayers was 46% 

compared with one of the immobilized molecular sieves (beads) with three cellulase 

bilayers (Figure 3-18).
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Figure 3-18: Activity and reusability of the 3-bilayer/15-bilayer immobilized cellulase 
by combination of LbL and Ca2+-Al(OH)x modification on molecular sieves (beads). 
Cellulase was immobilized onto molecular sieves (beads) as described in Section 2.4.2. 
Hydrolysis reaction was applied as described in Section 2.4.3. The flow rate of the 
packed bed reactor was 100 ml/min.

3.4.3 Effect of Crosslinking After
Cellulase Immobilization

Glutaraldehyde was used as a crosslinker after LbL coating on the Ca2+-Al(OH)x 

pretreated molecular sieves (beads). The two aldehyde groups can react with amino 

groups in cellulase molecules and restrict their movement, therefore decreasing the 

immobilized cellulase desorption from the molecular sieves. Figure 3-19 shows the 

results. The initial activity of the immobilized cellulase with crosslinking was 

0.0009 mg/(ml min), which was only 29% of the activity of the 3-bilayer immobilized 

cellulase (Figure 3-19). The reusability was not improved by crosslinking. For the 

immobilized cellulase with crosslinking, 56% initial activity was retained for the 2nd 

recycle. In comparison, for the immobilized cellulase without crosslinking, 68% initial 

activity was retained for the 2nd recycle.
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Figure 3-19: Activity and reusability of crosslinking 2-bilayer immobilized cellulase by 
combination of LbL and Ca2+-Al(OH)x modification on molecular sieves (beads). 
[Enzyme (1 hour) + PEI (10 min) ] 2  + Crosslinker (2 hours). Crosslinker: 2% (v/v) 
glutaraldehyde in DI water. Cellulase was immobilized onto molecular sieves (beads) as 
described in Section 2.4.2. Hydrolysis reaction was applied as described in Section 
2.4.3. The flow rate of the packed bed reactor was 100 ml/min.

3.4.4 Summary for the Hydrolysis of the CMC by the Immobilized
Cellulase Using Combination of Ca2+-Al(OHL and LbL

Table 3-2 shows the results for the hydrolysis of the CMC by the immobilized 

cellulase using combination of Ca2+-Al(OH)x and LbL.

Table 3-2: Summary for hydrolysis of CMC by the immobilized cellulase using
combination of Ca2+-Al(OH)x and LbL.

Immobilization
techniques

Immobilization
carriers

Initial 
activity 

(mg/ml min)

Reusability, relative activity %
Second
batch

Third
batch

Fourth
batch

Fifth
batch

3-bilayer pellets 0.0058 62% 41% 22% 14%
3-bilayer beads 0.0031 68% 45% 35% 29%
15-bilayer beads 0.0014 107% 100% 86% 86%
2-bilayer,

crosslinking beads 0.0009 56% 33% 33% 33%
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3.5 Results from the Immobilized Cellulase Using 3-APTES 
Self-assembly Monolayer Technique

3-APTES self-assembly monolayer technique was the third immobilization 

technique that was investigated. Since the enzyme layer is the terminated layer, there is 

no penetration problem for the cellulose molecules to interact with the immobilized 

cellulase during hydrolysis, greatly improving the initial activity. Also, because the 

cellulase molecules are covalently bound to the modified immobilization carriers, there is 

little enzyme desorption during the hydrolysis reaction. Thus, the reusability of the 

immobilized cellulase will be improved.

3.5.1 Immobilization of Cellulase on 
Molecular Sieves (Beads!

Immobilization of cellulase on molecular sieves (beads) modified by 3-APTES 

and GA was investigated. GA crosslinking after 3-APTES modification played 

a significant role in immobilization of cellulase. Figure 3-20 shows that both the initial 

activity and the reusability of the immobilized cellulase are dramatically improved after 

GA crosslinking. The initial activity of the immobilized cellulase by 3-APTES and GA 

modification was 1.5 times higher than the one with just 3-APTES modification. The 2nd 

batch’s activity of the immobilized cellulase by 3-APTES and GA was 6.3 times higher 

than the one with just 3-APTES. The use of GA worked not only as a crosslinker, but 

also as a spacer arm which decreased the steric hindrance and thus increased the initial 

activity.
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Figure 3-20: Impact of glutaraldehyde crosslinking after 3-APTES modification on 
immobilized molecular sieves (beads). Enzyme: Accellerase 1500, 10-time diluted.

Figure 3-21 shows the activity and the reusability of the immobilized cellulase 

using 3-APTES and GA modification pretreatment. The activity of the sixth cycle 

retained 71% initial activity.
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Figure 3-21: Activity and reusability of the immobilized cellulase on molecular sieves 
(beads) by 3-APTES and glutaraldehyde modification. Enzyme: Accellerase 1500, 
undiluted.
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3.5.2 Immobilization of Cellulase on Glass Beads

Glass beads (3 mm diameter) were chosen for the immobilization of cellulase 

instead of molecular sieves. Because of the poor structural strength of the molecular 

sieves, the immobilized molecular sieves abraded during the hydrolysis reaction, which 

lowered reusability (Figure 3-22). In contrast, glass beads had high structural strength 

and the surface was chemically suitable for 3-APTES modification.

Figure 3-22: (a) whole molecular sieves; (b) Abraded molecular sieves.

The activity of the immobilized cellulase was determined by hydrolysis of the 

CMC in pH 6 acetate buffer solution (50 mmol'1) using a packed bed reactor. Figure 

3-23 shows the activity and reusability of the immobilized cellulase with a 5-time diluted 

cellulase solution. Figure 3-24 shows the time-dependent curve of the produced glucose 

by the immobilized cellulase. The produced glucose by the immobilized cellulase on the 

glass beads was low because of the limited surface area of the glass beads, which led to 

a small amount of the immobilized cellulase.
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Figure 3-23: Activity and reusability of the immobilized cellulase by 3-APTES and 
glutaraldehyde modification on glass beads.
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Figure 3-24: Time-dependent curve of the produced glucose by the immobilized 
cellulase on glass beads.
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3.5.3 Immobilization of Cellulase on Silica Gel

Silica gel has been widely used for the immobilization of enzymes. Compared 

with the molecular sieves and the glass beads, it had advantages of both high structural 

strength and large surface area. Other advantages included low cost, chemical stability in 

an acid environment, good dispersion in the solution and chemically suitable for 

3-APTES modification, which made it promising for immobilization using 3-APTES 

self-assembly monolayer technique.

3.5.3.1 Nitrogen adsorption/desorption analysis and
enzyme loading o f the modified silica gel

Nitrogen adsorption/desorption analysis was used to characterize the porous

structure of the immobilization carrier. Figure 3-25 shows the nitrogen

adsorption/desorption isotherms for silica gel; 3-APTES modified silica gel, and

glutaraldehyde-crosslinked 3-APTES modified silica gel. According to IUPAC

classification, they can be classified as Type IV isotherms with H2 hysteresis loops,

which are characteristic of mesoporous materials with a cage-like structure [93]. Figure

3-26 shows the pore size distributions which are calculated from nitrogen desorption

branch by the Barrett-Joyner-Halenda (BJH) method. It can be seen that the pore size of

silica gel decreases from 10.6-16.2 ran to 7.7-10.6 ran after 3-APTES and glutaraldehyde

pretreatment. Table 3-3 shows the summary of the pore volume and surface area. The

pore volume of pretreated silica gel was 0.6 cm3/g, calculated by the BJH method. The

(Brunauer-Emmett-Teller) BET surface area of pretreated silica gel was 175.5 m2/g. The

immobilized cellulase on glutaraldehyde crosslinked 3-APTES modified silica gel was

18.8 mg protein (cellulase)/g silica gel.
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Figure 3-25: Nitrogen adsorption/desorption isotherms of silica gel, 3-APTES modified 
silica gel, and glutaraldehyde-crosslinked 3-APTES modified silica gel.
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Figure 3-26: Pore size distribution obtained from nitrogen desorption branch by the 
BJH method.
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Table 3-3: Properties of silica gel after immobilization steps.

BET surface area [m2/g] Pore volume [cm3/g]
Silica gel 251.9 1.15

Silica gel+3APTES 159.9 0.78
Silica gel+3APTES+GA 175.5 0.60

3.5.3.2 Characterization o f immobilized cellulase
by FTIR analysis

The Fourier Transform Infrared (FTIR) spectra of silica gel, 3-APTES modified 

silica gel, 3-APTES modified glutaraldehyde crosslinked silica gel, and cellulase 

immobilized silica gel are given in Figure 3-27. For silica gel, the Si-O-Si asymmetric 

stretching vibration at 1000-1250 cm 1, OH bending vibration at 800 cm'1 appeared [92, 

94]. After 3-APTES modification, a new band at 2917 cm'1 represented C-H stretching 

vibration [92]. The new peaks at 1563 cm'1 and 1489 cm'1 were attributed to the 

formation of an amine bicarbonate salt (-NH3+(HC0 3 )') because of drying 3-APTES 

modified silica gel at room environment [92]. The new peak at 1644 cm"1 appeared after 

glutaraldehyde crosslinking suggested imine bond (O N ) vibration, which was formed 

between the glutaraldehyde and the 3-APTES layer [95,96]. After cellulase 

immobilization, the characteristic bands of the protein at 1645 cm*1 and 1539 cm'1 

associated with O N  vibration at 1644 cm'1 appeared in the spectrum [46]. The broad 

band at 3400 cm'1 after the immobilization of cellulase was due to association 

intermolecular bonds from O-H stretching vibration with N-H stretching vibration in the 

cellulase molecules, which confirmed the successful immobilization of cellulase onto the 

pretreated silica gel [97].
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Figure 3-27: FTIR spectra of silica gel, 3-APTES modified silica gel, 3-APTES 
modified glutaraldehyde crosslinked silica gel, and immobilized cellulase.

3.5.3.3 Modification o f immobilization steps

In the immobilization process, the factors that affected the activity of the 

immobilized cellulase included the saturation and the thickness of the 3-APTES layer. 

3-APTES exhibited a fast adsorption on silica gel surface. The monolayer of 3-APTES 

reached equilibrium within minutes on the silica gel surface [98]. Organic solvent 

(toluene) was chosen for 3-APTES in order to control further adsorption and the 

hydrolysis of 3-APTES [92]. The activity of the immobilized cellulase was observed no 

change for 20-24 hours’ immobilization of 3-APTES in toluene. Therefore, 24 hours was 

sufficient time for 3-APTES to saturate the silica gel surface.

The curing process after 3-APTES immobilization has a significant impact on the 

activity of the immobilized cellulase as shown in Figure 3-28. The activity of the 

immobilized cellulase after curing was 1.7 times higher than a similar experiment without
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curing. The curing process in air environment can cause hydrolysis and possible 

oligomerization of 3-APTES immobilized. The oligomerization can decrease the 

thickness of the 3-APTES layer and minimize the changes of pore size of the silica gel 

[98]. Therefore, curing will increase the cellulase loading on the modified silica gel, and 

increase the overall activity of the immobilized cellulase.
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Figure 3-28: Effect of curing process after 3-APTES modification on the activity of the 
immobilized cellulase.

3.5.3.4 Effect o f initial concentration o f cellulase
solution on immobilized cellulase

Figure 3-29 shows the results of enzymatic activity vs. the protein concentration 

of the cellulase solution for immobilization. The non-linear increasing curve trend is due 

to the Langmuir adsorption isotherm, as well as the mass transfer of produced glucose 

and CMC. This figure suggests that although the undiluted cellulase solution for 

immobilization would produce the highest absolute activity, the efficiency in the 

utilization of the enzyme is higher at lower dilutions due to losses at the immobilization

■ Cured sample 

a  uncured sample
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step (consuming more enzyme) and the hydrolysis step (low mass transfer coefficient 

caused by cellulase immobilized deep in the pores). Therefore, the optimal dilution of the 

cellulase solution for immobilization appears to be five. The reusability of the 

immobilized cellulase by different protein concentrations of cellulase solution is shown 

in Figure 3-30. The activity does not change after four batches of hydrolysis of CMC. 

This indicates that all the cellulase is firmly immobilized on the silica gel surface, and it 

is independent of the protein concentration of the cellulase solution for immobilization.
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Figure 3-29: Activity vs. protein conc. of cellulase solution for immobilization.
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Figure 3-30: Effect of initial concentration of cellulase solution on the immobilized 
cellulase.

3.5.3.5 Activity o f the immobilized cellulase

Cellulase was immobilized on 3-APTES and glutaraldehyde pretreated silica gel 

surfaces as described. The activity was determined by testing the produced glucose in a 

10 g/L CMC solution dissolved in 10 ml pH = 6 acetate buffer (50 mmol L'1) at 20°C. 

One unit of cellulase activity was defined as nmol glucose produced per minute. The 

activity of immobilized cellulase using 3-APTES and glutaraldehyde pretreatment is 

474 ± 20 U per unit gram of immobilized silica gel. The activity of unit enzyme mass of 

immobilized cellulase is 24 ± 6 U/mg, while the one of the free cellulase is 352 ± 43 

U/mg. That is: the specific activity of immobilized cellulase is 7 ± 2% compared with the 

similar amount of free cellulase. The denaturation of the immobilized cellulase was due 

to the decrease in degree of movement of the cellulase molecules after covalent binding, 

which was commonly found in the studies of immobilization of enzyme [99].



81

3.5.3.6 Effect o f temperature on the immobilized cellulase

Temperature is an important factor for hydrolysis reaction by enzymes. The 

activities of the free and immobilized cellulase at different temperatures are shown in 

Figure 3-31. The results show that the activities of both the free and immobilized 

cellulase have the same trend: the activity increases from 20°C to 50°C and deceases 

after 50°C, which is consistent with many other studies [100,101]. The immobilized 

cellulase on modified silica gel exhibited better relative enzymatic activity than free 

cellulase below 50°C. Compared with free cellulase, an increase of 18%-27% relative 

activity was observed for immobilized cellulase from 20°C to 40°C, respectively.
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Figure 3-31: Activity of the immobilized and free cellulase according to temperatures 
for hydrolysis of CMC.

Reusability of immobilized cellulase was performed at 40°C, 50°C, and 60°C, 

since the activities of both immobilized cellulase and free cellulase in this range exhibited 

peak area in Figure 3-32. Figure 3-32 shows that the activities decrease to 24% and
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59% of the initial activities for the third batch at 50°C and the second batch at 60°C, 

respectively. At 40°C, 66.5% of the initial activity was retained after three recycles. And 

the specific activity of the immobilized cellulase at 40°C was larger than the one at 50°C 

and 60°C after three recycles. The possible reason is that the immobilized cellulase at 

high temperature, i.e., 50°C and 60°C, appears to denature relatively rapidly. Other 

researchers also observed the same thermal effect [91,102]. Figure 3-33 clearly shows 

that the produced glucose concentration linearly increases at 20°C to 40°C for at least 

2 hours; however, it rapidly reaches its plateau at 50°C. This behavior is even more 

obvious at 60°C, at which the glucose concentration reaches its plateau at 30 min. 

Therefore, although the initial activity at 50°C is the highest, 40°C appears to be the 

optimal temperature for hydrolysis of CMC using immobilized cellulase.
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Figure 3-32: Reusability of the immobilized cellulase at different temperatures.
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Figure 3-33: Time-dependent curve of the immobilized cellulase.

3.5.3.7 Effect o f vHon immobilized cellulase

The pH for hydrolysis of CMC solution was also studied. The 17.5 mg/ml 

cellulase solution in DI water was used for immobilization. The CMC solution was 

prepared in pH 4, 5, 6 acetate buffer (50 mmol L'1) respectively for hydrolysis at 20°C. 

Figure 3-34 shows the results. The activity of the immobilized cellulase reached highest 

at pH 5, which was about four times higher than the one at pH 6 for the first cycle. 

However, the reusability at pH 5 was low. The activity of the third cycle rapidly 

decreased to 58% compared to the first cycle. The reusability at pH 4 was even worse. 

Only 14% activity retained after the fifth batch. The possible reason was that the enzyme 

rapidly desorbs at pH 4 and 5. Thus, the high activity for the first batch was due to the 

free cellulase in the CMC solution, since the specific activity of the immobilized cellulase 

was only 7% compared to the same amount of the free cellulase. Therefore, considering

— hydrolysis at 20°C 

hydrolysis at 30°C 

—A— hydrolysis at 40*0 

- • —hydrolysis at 50°C 

— hydrolysis at 60°C



the reusability, although the cellulase was slightly activated at pH 4 and 5, pH 6 was the 

optimal pH for hydrolysis of CMC.
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Figure 3-34: Reusability vs. pH for hydrolysis of CMC solution.

3.5.3.8 Comparison enzymatic activity o f the immobilized cellulase
for crystalline cellulose (type 20) with the one o f CMC

The activity of the immobilized cellulase in cellulose (type 20) solution was 

tested. Figure 3-35 shows that the activity of the immobilized cellulase in cellulose (type 

20) solution is only 27% compared with the activity in CMC solution. This was because 

the insoluble cellulose (type 20) decreased the mass transfer between the cellulose 

particles and the immobilized cellulase.
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Figure 3-35: Activity of the immobilized cellulase by 3-APTES and glutaraldehyde 
modification on CMC vs. microcrystal cellulose (type 20). Enzyme for immobilization: 
Accellerase 1500, five-time diluted in DI water. Cellulose solution: 10 ml CMC or 
cellulose (type 20), 10 g/L in pH = 6 0.05 M acetate buffer at 20°C,

3.5.3.9 Comparison o f glucose yield bv free cellulase
with immobilized cellulase

In order to compare the produced glucose yield by the free cellulase and the

immobilized cellulase, hydrolysis of CMC solution under the same reaction conditions

was applied. Figure 3-36 shows that until 5000 min (slowly reaching plateau), the

amount of the produced glucose by the free cellulase and the immobilized cellulase are

0.798 mg/ml and 0.374 mg/ml, respectively; that is, the produced glucose yield by the

immobilized cellulase is 47% compared with the glucose yield produced by the free

cellulase. Considering the excellent reusability of the immobilized cellulase (the activity

retained 82% of the initial activity for the 7th cycle), the immobilized cellulase provides

an economical approach to produce glucose by hydrolysis of cellulose.
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Figure 3-36: Activity of the immobilized cellulase and the free cellulase. Hydrolysis 
conditions: 0.2 ml 10-time diluted free cellulase (Accellerase 1500); 0.06 g immobilized 
silica gel as described in Section 2.5.4.1.

3.5.3.10 Kinetic study on immobilized cellulase

The kinetic study of the immobilized cellulase was investigated by using varying 

concentrations of CMC solution. Figure 3-37 shows that the initial activity of the 

immobilized cellulase increases with the concentration of CMC solution until 6 g/L.

After 6 g/L, the initial activity reached a plateau and slightly decreases with the 

increasing CMC concentration. It was because of the inhibition of the high concentration 

CMC on the cellulase enzyme, which was also found in other’s research [103].
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Figure 3-37: Activity of the immobilized cellulase with respect to CMC concentration. 
Cellulase was immobilized on silica gel as described in Section 2.5.4. Hydrolysis by the 
immobilized cellulase was applied in a 10 ml 2-10 g/L CMC in pH = 6 0.05 M acetate 
buffer at 20°C.

Michaelis-Menten kinetic derivation was used for monitor the rate of hydrolysis 

reaction with respect to the substrate concentration (Eq. 3-1). The Km and Vmax values 

were obtained by Hanes-Woolf plot (Figure 3-38). - Km is the x-axis intercept of the 

trend line while 1/Vmax is the slope of the trend line. The Km value and V max value are

1.5 g/L and 0.0013 mg/(ml min), respectively. The small Km value suggested a high 

affinity of the CMC for the immobilized cellulase. Eq. 3-1 is the Michaelis-Menten 

equation and Eq. 3-2 is the Hanes-Woolf equation:

v  _  vmax[s] 
Km+[Sy

[S] =  [■S] j Km 
v  Vmax Vm ax

Eq. 3-1

Eq. 3-2

v = the initial reaction rate

[S] = the substrate concentration
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Vraax is the maximal rate

Km is the Michaelis constant (half-maximal rate).
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Figure 3-38: Hanes-Woolf plot of the activity of the immobilized cellulase respect to the 
CMC concentration.

3.5.3.11 Reusability o f the immobilized cellulase

Reusability is an important issue for immobilized cellulase in industrial 

application [104-106]. The reusability of immobilized cellulase on modified silica gel 

was shown in Figure 3-39. The relative activity of the immobilized cellulase retained 

100%- 82% initial activity from 1st to 7th cycle, 60%-48% from 8th to 13th cycle, and

th fk36%-23% from 14 to 26 , respectively. In comparison, the immobilized cellulase was 

applied to the hydrolyzed CMC solution 3 hours for each cycle, which is longer than 

previously reported [39,45,47,49,91,107-109]. The immobilized cellulase exhibits 

remarkable reusability up to 13 recycles. Table 3-4 shows the comparison of reusability 

with other studies. Cellulase entrapped in a MeTMOS/TMOS (3:1 molar ratio) made
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sol-gel matrix can be reused six times with 20% initial activity retained [110]. N.M. 

Mubarak et al. reported that cellulase immobilized on acid pretreated MWCNTs by

55% initial activity was retained after four recycles when cellulase covalently bonded to 

the magnetic graphene nanoparticles [108]. Cellulase immobilized on magnetic 

nanoparticles via covalent binding can be reused six recycles with 40% initial activity 

retained [107]. The possible reasons of activity loss after each cycle might be 

immobilized enzyme loss during separation and washing processes after each cycle, 

enzyme denaturation, and enzyme leak (desorption) [46].

physical adsorption retained 26% initial activity for the 8th recycle [39]. In another study,
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Figure 3-39: Reusability of immobilized cellulase according to batches.
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Table 3-4: Cellulase immobilization carriers, techniques, and reusability of the current 
work and other researches.

Immobilization carrier Immobilization
technique

Reusability
Refs

Recycles Time for 
each cycle

Residual
activity

Sol-gel matrix Sol-gel
entrapment 6 24 hr 20% [110]

Sodium alginate gel beads
Sol-gel 

entrapment and 
crosslinking

7 N/A 58.37% [91]

Functionalized multiwall 
carbon nanotubes

Physical
adsorption 8 30 min 26% [39]

Ultraflne Eri silk 
microparticles

Physical
adsorption 8 10 min 50% [109]

Magnetic porous 
terpolymers Covalent binding 6 30 min 48.2% [45]

Magnetic graphene 
nanoplatelets Covalent binding 4 1 hr 55% [108]

Magnetic nanoparticles Covalent binding 6 30 min 40% [107]

Modified silica gel Covalent binding 10 3 hr 60% Current
work

Enzyme leak (desorption) is a crucial issue for the immobilization of enzyme, and 

it was observed by many researchers for the immobilization of cellulase [46,62,99,110]. 

Sandy Budi et al. found that up to 7% of immobilized cellulase was desorbed from silica 

in citrate buffer after 14 days’ storage at 4°C [62]. Compared with cellulase leak in buffer 

solution (in washing and storage processes), it is expected that desorption during the 

hydrolysis of CMC would be more severe, since the binding between immobilized 

cellulase and CMC provide another driving force to pull the cellulase off the immobilized 

carrier. The cellulase leak (desorption) in the hydrolysis of the CMC can make the 

measured activity and reusability of the immobilized cellulase inaccurate [46]. Because 

free cellulase is more active than immobilized cellulase, a small amount of cellulase 

leaked (desorbed) would result in a high enzyme activity. Linear enzyme activity loss of 

immobilized cellulase was observed according to the number of recycles in many prior
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studies, which suggests leaked (desorbed) cellulase strongly contributed to the activity 

and the lack of reusability of immobilized cellulase [39,45,91,110]. In order to test the 

enzyme leak (desorption) of immobilized cellulase during the hydrolysis of CMC, the 

immobilized cellulase was centrifuged from the CMC solution after 6 hours and then the 

reactor was kept running. Figure 3-40 depicts that for the hydrolysis of CMC by the 

immobilized silica gel in 8.8 mg/ml cellulase solution and 4.4 mg/ml cellulase solution, 

the produced glucose concentration never increased after centrifuging the immobilized 

silica gel. This strongly indicates that there is no enzyme desorption during the hydrolysis 

of CMC regardless of the protein concentration of the cellulase solution for 

immobilization. This was likely due to the entrapment of cellulase molecule in the silica 

gel pore structure and the strong covalent bond between the cellulase molecule and the 

silica gel surface, which make the specific activity low but maximize reusability.
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Figure 3-40: Hydrolysis time vs. produced glucose concentrations.
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Since there was no enzyme leak from the immobilized silica gel, the activity loss 

could be attributed to denaturation of the immobilized cellulase. The immobilized 

cellulase exhibited three stages of activity loss in reusability, i.e., the first stage which 

was from 1st to 7th cycle (the activity retained 100%-82%), the second stage which was 

from 8th to 13th cycle (the activity retained 60%-48%), and the third stage which was 

from 14th to 26th cycle (the activity retained 36%-23%). A possible explanation of this 

behavior is that the immobilized cellulase outside the pores of silica gel was denatured 

after the first stage, while the one near the pores of silica gel was denatured after the 

second stage. The porous structure of the silica gel lowered the biological activity of the 

immobilized cellulase. However it also likely protected the cellulase molecules 

immobilized in the pores from the conformational structure shifting [111]. Therefore, the 

activity of immobilized cellulase remained stable after the 13th cycle. This is also 

confirmed by Figure 3-41, which shows that the activity of immobilized cellulase barely

tli tli th tfidecreases after 5 day up to 14 days (from 14 cycle to 26 cycle).
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Figure 3-41: Reusability of immobilized cellulase according to days.
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The storage stability of an enzyme is another important factor that limit its 

applications. The immobilized silica gel was operated first batch and then washed by DI 

water. After centrifuging and removing supernatant, the deposition (immobilized silica 

gel) was sealed and kept at 4°C in the refrigerator for 38 days. The second activity 

experiment was performed after the 38 day incubation period and the immobilized 

enzyme on the silica gel still retained 92.4% of its initial activity.

3.6 Comparison of the Activities of the Immobilized Cellulases bv 
Four Different Immobilization Techniques

The activities of the immobilized cellulase by four different immobilization 

techniques were compared. Ten-time diluted cellulase solution (Accellerase 1500) was 

used for immobilization of the immobilization carriers. The mass of the immobilized 

cellulase for LbL was calculated by the QCM results as shown in Figure 3-4. The mass 

of the immobilized cellulase for 3-APTES self-assembly monolayer was tested by the 

protein assay as describe in Section 2.6.

• LbL: Hydrolysis of 100 ml 10 g/L CMC solution by 27.2 g immobilized 

polystyrene beads was operated in pH = 6 0.05 M acetate buffer at 25 °C.

• Ca2+-Al(OH)x modification: Hydrolysis of 40 ml 10 g/L CMC solution by 11.2 g

immobilized molecular sieves (pellets) was operated in pH = 6 0.05 M acetate 

buffer at 25°C.

• Ca2+-Al(OH)x modification & LbL: Hydrolysis of 40 ml 10 g/L CMC solution by

11.2 g immobilized molecular sieves (beads) was operated in pH = 6 0.05 M 

acetate buffer at 25°C.
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• 3-APTES self-assembly monolayer: Hydrolysis of 10 ml 10 g/L CMC solution by

0.06 g immobilized silica gel was operated in pH = 6 0.05 M acetate buffer at 

20°C.

One unit of cellulase activity was defined as nmol glucose produced per minute. 

Table 3-5 shows these results. The initial activities of the immobilized cellulase by LbL, 

Ca2+-Al(OH)x and Ca2+-Al(OH)x & LbL were much higher than the activity of the 

immobilized cellulase by 3-APTES self-assembly monolayer. A possible reason was that 

the free enzyme desorbed from the immobilization carriers. The specific activity of the 

immobilized cellulase by LbL was 267 U per enzyme mass, which was very close to the 

specific activity of the free cellulase (352 U per enzyme mass). A combination of the fact 

that desorbed enzyme was observed, it suggested that the desorbed enzyme contributed to 

the enzymatic activity. The immobilized silica gel had the highest activity per unit mass 

immobilization carriers and the enzyme loading. A possible reason was that silica gel had 

the higher surface area per volume. The immobilized silica gel had the best reusability, 

which was due to the strong covalent bonding between the cellulase molecules and the 

immobilization carrier’s surface.
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Table 3-5: Comparison of the activities of the immobilized cellulases by four different 
immobilization techniques.

Immobilization
techniques

Immobilization
carriers

Enzyme
loading
(mg/g)

Initial
activity

(produced
glucose
mg/min)

Activity per 
unit mass 

immobilization 
carriers (U/g)

Activity
per

enzyme
mass
(U)

Reusability, 
relative 

activity for 
the 2nd 

recycle (%)

LbL Polystyrene
beads 0.013 0.0172 4 267 12%

Ca-Al(OH) Molecular 
sieves (pellets) NA 0.25532 127 NA 58%

Ca-Al(OH) & 
LbL

Molecular 
sieves (beads) NA 0.12456 62 NA 67%

3-APTES and 
GA Silica gel 12.207 0.00164 152 12 103%



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this project, immobilization of cellulase was explored for reuse to reduce 

bioethanol production cost in commercial scale reactors. Four different enzyme 

immobilization methods, i.e. LbL, Ca2+-Al(OH)x modification, combination of Ca2+- 

Al(OH)x modification & LbL, and 3-APTES self-assembly monolayer, were studied.

Four different materials were applied as immobilization carriers, including polystyrene 

beads, molecular sieves, glass beads, and silica gel.

For LbL technique, polystyrene beads were used as immobilization carriers. QCM 

results showed that the mass of the immobilized cellulase increased with the number of 

cellulase layers. The results from hydrolysis of cellulose showed that the activity of the 

immobilized cellulase increased with the number of the cellulase layers up to five 

cellulase layers. Further increasing the number of the cellulase layers lowered the activity 

of the immobilized cellulase. Enzyme desorption was observed during hydrolysis of 

cellulose by the immobilized cellulase. Sealing layers (PEI or PEI/PSS layers) or 

crosslinking was applied after the final cellulase layer to protect the immobilized 

cellulase from stripping off. However, the initial activity of the immobilized cellulase 

dramatically decreased and low reusability was observed.

96
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For Ca -Al(OH)x modification method, molecular sieves were used as 

immobilization carriers. After Ca2+-Al(OH)x modification, the activity of the 

immobilized cellulase increased 8.7 times compared with the activity of the immobilized 

cellulase on non-Ca2+-Al(OH)x pretreated molecular sieves. The reusability of the 

immobilized cellulase was observed. The second cycle’s activity of the immobilized 

cellulase by Ca -Al(OH)x modification method retained 58% initial activity in the 

packed bed reactor.

LbL technique was applied after Ca2+-Al(OH)x modification method. The 

reusability increased with the number of enzyme bilayers. Great reusability of the 

15-bilayer immobilized cellulase on Ca2+-A1(0H)X pretreated molecular sieves (beads) 

was observed. The 6th recycle’s activity was 75% of its initial activity. By contrast, the 6th 

recycle’s activity of the directly immobilized cellulase on the Ca2+-Al(OH)x modified 

molecular sieves was 17% of its initial activity. However, the initial activity of the 

immobilized cellulase decreased with the number of enzyme layers. Crosslinking 

dramatically decreased the initial activity, yet rarely improved the reusability of the 

immobilized cellulase.

For 3-APTES self-assembly monolayer method, molecular sieves (beads), glass 

beads and silica gel were used as immobilization carriers. The immobilized cellulase on 

silica gel showed the best results. Multiple reuses were observed up to 26 recycles and 

14 days. No cellulase desorption was observed during the hydrolysis of the CMC solution 

at the optimized conditions of pH 6 acetate buffer (50 mmol L'1). The influence of pH 

and temperature on hydrolysis of CMC by the immobilized cellulase was studied. The 

optimal temperature for hydrolysis of CMC was 40°C. The best reusability of the
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immobilized cellulase appeared in hydrolysis of CMC in pH 6 buffer solution. The 

glucose yield of the immobilized cellulase was 47% compared with the free cellulase. 

Considering the excellent reusability of the immobilized cellulase, the immobilized 

cellulase by 3-APTES self-assembly monolayer technique provides a promising approach 

to reduce the cost of glucose production.

4.2 Future Work

In this work, the immobilization of cellulase by 3-APTES self-assembly 

monolayer method was demonstrated to be effective at both maintaining initial activity 

and retaining activity over a larger number of reuse cycles. Other covalent bonding 

techniques might be studied to reduce the impact of specific enzyme activity by 

immobilization. Longer linkers might reduce steric hindrances; cross-linkers might be 

able to identify target specific regions of the enzyme that minimize activity loss. Further 

kinetic study of the immobilized cellulase is needed. Michaelis-Menten equation only 

shows the substrate’s affinity and the maximal rate of the immobilized cellulase. 

However, it lacks details of the reaction, such as inhibitions (glucose inhibition and CMC 

inhibition), influence of pH and temperature on enzymatic rates of hydrolysis, and mass 

transfer limitation. It also cannot be used to predict the produced glucose profile during 

hydrolysis of CMC.

The separation of the immobilized enzyme from the cellulose slurry in a 

commercial environment is a future opportunity. The CMC used in the majority of 

studies allowed the use of simple filtration to separate the enzyme immobilized on 

carriers such as polystyrene beads, molecular sieves, glass beads and silica gel. Density
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differences may allow centrifugation to be effective. However other forces such as 

functionalization with magnetic particles might be beneficial.
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