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ABSTRACT

The Large Hadron Collider (LHC) is home to multiple particle physics
experiments designed to verify the standard model and push our understanding of the
universe to its limits. The ATLAS detector is one of the large general-purpose
experiments that make use of the LHC and generates a significant amount of data as part
of its regular operations. Prior to physics analysis, this data is cleaned through a data
assessment process which involves significant operator resources. With the evolution of
the field of machine learning and anomaly detection, there is great opportunity to upgrade
the ATLAS Data Quality Monitoring Framework to include automated, machine learning
based solutions to reduce operator requirements and improve data quality for physics
analysis. This thesis provides an infrastructure, theoretical foundation and a unique
machine learning approach to automate this process. It accomplishes this by combining 2
heavily documented algorithms (Autoencoders and DBScan) and organizing the dataset
around geometric descriptor features. The results of this work are released as code and
software solutions for the benefit of current and future data quality assessment, research,

and collaborations in the ATLAS experiment.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to High Energy Physics and the LHC

High energy physics is a field that studies the fundamental components of the
universe. As the universe is currently understood, the standard model predicts the
existence of elementary particles that make up all matter. The objective of high energy
physics is to explore and test the standard model, the particles that make it up, and the
particles' interactions with one another. One of the largest collaborative operations in the
world that studies high energy physics is the Conseil Européen pour la Recherche
Nucléaire (CERN, European Council for Nuclear Research). With many uncertainties to
explore in high energy physics, physicists at CERN are currently searching for answers to
many questions. In order to explore these questions, 574 feet beneath the surface of the
France-Switzerland border was created the current largest particle accelerator in the
world, the Large Hadron Collider (LHC).

The LHC is the home of various high energy physics experiments including the
CMS, ALICE, LHCb, and ATLAS experiments, and required roughly 17 miles of tunnel
for its construction. Each of the detectors are similar in nature but have a few advantages
and disadvantages with respect to one another in terms of design. For example, the CMS
detector features a 4T magnetic field in its solenoid while the ATLAS detector has only a
2T solenoid field allowing it an advantage in terms of momentum resolution from the
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tracker. However, this strong magnetic field imposes limitations on the other detector
components. Thus, the ATLAS detector is less restrictive in the component design
leading to a less dense and larger volume detector whose components have advantages in

its hadronic calorimeter detector system compared to CMS. [1]

1.2 Introduction to ATLAS and the Data Processing Chain

The solution developed in this work will be in reference to and applied with
respect to the ATLAS (A Toroidal LHC ApparatuS) experiment. The ATLAS experiment
is one of the four longest running experiments run in the LHC. Its purpose is to study the
Standard Model as well as push the frontiers of knowledge beyond the model.

The LHC produces proton particle beams to analyze proton-proton collisions. The
lifecycle process of this data can be thought of as “The ATLAS Data Processing Chain”
[2]. In the beginning of this chain, particles pass through various parts of the detector and
data is collected based on triggers. Trigger data is calibrated, aligned, then reconstructed.

As part of the data reconstruction, various groups are responsible for specific
areas of data preparation. The data quality group is responsible for “how good” the data
is, so that it may be safely used for physics analysis.

The “express_express” or Express Stream contains triggers to monitor
efficiencies, backgrounds, and detector noise and is used for quick Data Quality and
prompt calibration. It is promptly reconstructed at the ATLAS Tier 0 facility and occurs
simultaneously to data taking allowing it to be used for rapid validation and Data Quality
assessment tasks [2].

Following the Express stream reconstruction job and Data Quality Monitoring

Framework checks, monitoring histograms are produced and used for offline data quality



assessment. Currently, data quality assessment for anomalies in these histograms are
handled by shifters with the aid of these monitoring algorithms [3].

In addition to the Express stream, there also is a “physics Main” stream.
According to [4], “In some cases, the number of events collected in the express stream is
not sufficient to perform a full assessment of the DQ. In these cases, the express stream is
used as a preliminary check, and the final assessment is done when looking at the same
histograms but produced by processing all events collected in the physics stream” This
stream should include a cleaner, more holistic view of experimental data by ATLAS and
its sub-detectors. Therefore, this stream will contain the data that is focused on training
and testing the machine model [4].

With the vast amount of data available to ATLAS and the field of machine
learning based anomaly detection rapidly expanding, there is great opportunity for its
data quality professionals to maximize the accuracy, efficiency, and human resources by
harnessing this technology. The results of this work bring the tools and models necessary

for these improvements to data quality professionals of ATLAS.

1.3 Introduction to Validation
Occasionally, the software used by ATLAS may require changes. These changes
can be from a variety of persons for a variety of reasons. For example, software changes
may occur if certain kinds of data are needed by scientists, improvements can be made to
the results of the sub-detectors, or new technology needs to be added to the system. For
various reasons, software changes can cause undesirable behavior in the detector’s
experimental data. The purpose of validation in ATLAS is to identify this undesirable

behavior if it exists and correct it. Naturally, several technologies have been developed to



assist in this process. While preparing the infrastructure for this research, a tool was also
developed that could assist individuals in such validation - The ATLAS Validation
Dashboard. Validation is not the focus of this work, but this dashboard establishes the
foundation for deployment of the forthcoming machine learning model. Thus, there will

be only a brief mention of it in the final sections.

14 Research Objectives
Three opportunities for using machine learning tools in this domain include
reduction of human operator (known as shifter) input, reduction of time and complexity
of the procedures that would require this input and generating higher quality reference
histograms to maximize the quality of data for physics experiments further down “The
ATLAS Data Processing Chain”. The overall goals of this kind of project are as follows:
e Reduce shifter input necessary to assess data quality using monitoring
histograms via machine learning and deployment solutions
e Reduce time and complexity for assessing data quality using monitoring
histograms via machine learning and deployment solutions
e Generate reference histograms that more accurately represent the collision
data when no anomalies are present via machine learning solutions
The specific goals and contributions of this work will provide the infrastructure,
theoretical foundation, and first-generation software that will culminate in the realization

of these data quality assessment objectives for the ATLAS experiment.

1.5 Typical Approaches
Previous research focused on solutions to the previously identified objectives with

the following machine learning model architectures and software tools:



e (Convolutional Neural Networks (CNNs): Initial interest and previous work
done in particle physics data quality assessment models included
Convolutional Neural Networks.[5] For the scope, input data strongly
resembles image data, thus this approach will be tested for potential use in a
final model.

e Denoising Autoencoders (DAEs): Current literature strongly supports use of
Autoencoders and autoencoder based unsupervised machine learning methods
for anomaly detection solutions.[6] The data contained in the histograms is
largely absent ground truth anomaly labels, thus this approach will be tested
for potential use in a final model.

e Variational Autoencoders (VAEs): In addition to the strong support of AEs
and unsupervised learning methods, Variational Autoencoders are known for
their ability to reconstruct distributions that trained data came from by
extracting the mean and standard deviations from that data.[6] This approach
allows data quality experts to generate reference histograms from the trained
dataset. Since the first-generation solution will not touch on the reference
histogram generation yet, this information is provided as reference for
extending this work.

The final approach will start out with the above techniques in mind but will also

explore a unique final approach based on experiments and modifications done with
various approaches to this task. In this way, this work will take advantage of any internal

patterns in the data using the research objectives as a guide. The user end deployment of



the tools will be made possible with a dashboard using Dash by Plotly and Docker (see

section 3.10 and 3.11).

1.6 What to Expect

This section describes a summary of what to expect in the upcoming chapters of
this work. In the first chapter, details are provided on the overall domain of the work,
how the task for this work ties to that domain, the overall and specific objectives of this
work, and an explanation is given on the approach with respect to common approaches to
this task. The second chapter explains that domain in greater detail, provides background
details of core technology used in this work, and sets the scope and limitations of the
work to fulfill the objectives. The third chapter lists the essential information leading up
to the experiments, initial explorations and experiments, core technology that has been
and will be developed during this work, construction of the dataset for the experiments,
the experiments themselves, important information relevant to final automation of the
machine learning system, and the intended deployment methods. The fourth chapter
presents the results of the previously described systems and experiments that demonstrate
the abilities of the developed system and begins the discussion of those results. The fifth
chapter further develops the discussion and meaning of those results including
assumptions, limitations, and possibilities for future work. The final chapter concludes
with a summary of the objectives, the results that were achieved, and how it compares to

the current system.



CHAPTER 2

BACKGROUND

2.1 Introduction

2.1.1 CERN and the LHC

The Conseil Européen pour la Recherche Nucléaire (European Council for
Nuclear Research), or CERN is an organization that was established in 1954 for the
purposes of scientific discovery and collaboration. It was also decided that their work
would have no investment in military interests and that the work produced by the
organization would be publicly published. Throughout CERN’s lifetime, improvements
and upgrades have been made to verify the limits of the Standard Model as it is called in
particle physics, as well as discover how the universe might work beyond that model [7].

In 2008, these efforts led to the completion of the Large Hadron Collider (LHC), a
nearly 27-kilometer-long particle accelerator that passes through both France and
Switzerland. It is currently the largest and highest energy particle collider in the world
making the collaboration Louisiana Tech University works with, the ATLAS experiment,
one of the largest scientific collaborations in the world. The LHC’s main function is to
accelerate and collide particle beams of protons, lead-proton and lead-lead heavy ions.
The information in this work has focused on data specific to proton collisions only.
CERN’s accelerator complex connects several experiments and devices together (see Fig

1). The LHC is home to several major experiments and some of the largest collaborations

7



in history such as the CMS, ALICE, LHCb, and ATLAS experiments. The detectors used
in these experiments vary from general purpose studies to specific interests such as

studying flavor physics like that of CP violations in B-hadrons.

CERN's accelerator complex

CMS

LHC
\Nw:\

ALICE LHCb

Figure 1: The CERN Accelerator Complex [8].

2.1.2 The ATLAS Detector

The ATLAS detector is the device that makes the ATLAS experiment possible.
Containing some one-hundred-million electric channels and its various sub-detectors
including the muon detector, inner detector, and calorimeters, the ATLAS detector is
capable of identifying various particles and particle energies. Unlike other detectors of its
kind, ATLAS has a magnetic field of two Tesla in its central solenoid allowing more
flexibility in design considerations, such as a larger overall volume and advantages in

certain sub-detectors such as the Hadronic Calorimeter system [9].
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Figure 2: The ATLAS detector and its sub detector systems [10].

2.13 The ATLAS Calorimeter Systems

The area of the detector that houses the calorimeter sub-detectors are where the
datasets constructed for the experiment will originate from. The calorimeter is made up of
two systems, the Liquid-Argon (LAr) calorimeter and the hadronic calorimeter. Within
these calorimeters includes 8 sections: The LAr Hadronic End-Cap (HEC), the Min Bias
Trigger Scintillators (MBTS), the Tile Barrel (TB), the Tile-Extended Barrel (TEB), the
LAr Forward Calorimeter (FCAL), the Cryostat, the LAr EM barrel (EMB), and the LAr
Electromagnetic End-Cap (EMEC). As the overall detector structure is symmetric about
the collision point, there tends to be part of each sub detector on each side such as HEC1
and HEC2 (see Figure 3). Hadronic calorimeters such as the HEC, TB, and TEB
calorimeters are designed to measure energies of particles that interact with the strong
nuclear force. The HEC is also a sampling calorimeter where the Copper LAr structure

alternates materials that absorb particle energy and active media that measures the energy
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signal while the Tile calorimeters use an Iron scintillator structure [11]. The MBTS is
responsible for providing key physics measurements via event triggers such as proton-
proton cross section, charge multiplicity, and others. It is a scintillator sub detector made
of polystyrene disks that can detect particle energies as they pass by scintillation of the
material [12]. The cryostat is implemented to maintain the liquid state of Argon at a
temperature of 185°C [13]. The FCAL is made of copper and tungsten and LAr fills the
gaps between the materials. The EMEC and EMB calorimeters are accordion shaped lead

plates and cover the pseudorapidity of 1.375 <|n| <2.5 and 2.5 <|n| < 3.2 respectively.

Min. bias trigger scintillators (MBTS)

Tile barrel Tile extended barrel

4 * Fe-Scintillating
o Cu-LAr Tile structure
structure *In<1.7
*15<n <32
LAr hadronic
end-cap (HEC)
LAr electromagnetic

I

* Pb-LAr
accordion
*n[<2.5

©32<n<49

LAr electromagnetic

barrel
LAr forward (FCal)

(LAr: Liquid Argon)

Figure 3: The Calorimeter based systems of the ATLAS detector [14].

The main connection between these sub-detector parts, and this work is that the
pseudorapidity values for each calorimeter sub-detector section coincide with the

pseudorapidity values in monitoring histograms for those locations in the calorimeter.
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2.2 Data Quality in ATLAS

The purpose of gathering data in the ATLAS experiment is partly to confirm and
discover physics beyond the Standard Model. In order to do this, the data provided by the
ATLAS detector is subject to physics analysis. For the physics analysis to be of value, the
data from the detector must be as free from errors as possible. Realistically, the detector
is imperfect, and errors occur in the form of excessive noise, electronic malfunctions, and
more. Identifying and correcting these errors is the primary reason for the existence of
Data Quality Assessment.

Due to the size of the detector and the large amount of data being passed from
data to storage, the responsibilities of Data Quality Assessment are divided up among
several groups - one for each sub system in the detector. These groups include the LAr,
MS, Pixel, SCT, Tile, and TRT groups. Also, there are several groups tasked with
handling the combined data performance of several sub systems. These groups include b-
tagging, CaloCombined, ID global, and MuonGlobal groups.

As can be seen in Figure 4, the Data Quality Workflow (DQW) for RUN II is
shown. The DQW shows the lifecycle of data as it makes its way through several review
systems and is processed to different collections known as streams. The various streams
allow data quality checks and calibration of systems at various times in the processing
timeline. As part of the data quality checks, a system called the Data Quality Monitoring
Framework (DQMF) has been implemented to assist Shifters and/or Data Quality Experts

in assessing the quality of data.
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Figure 4: The Data Quality Workflow (DQW) for ATLAS [15].

The DQMEF is a computerized system that assists both online and offline Shifters
with various data quality checks. This system exists as a series of programs that include
DQParameters, DQAIlgorithms, DQResults, and a web display. The DQParameters
contain the necessary input information to the web display to provide shifters with
information relevant to the DQ task at hand. The information that the parameters include
are histogram information, algorithms, and programs specific parameters required by the
algorithms. The DQAIlgorithms or algorithms are currently a collection of statistical
software run over histograms to assist in determining the quality of data or quality of that
histogram. The DQResult is the result of that algorithm's classification as either good or
bad. It is not necessarily the DQParameters or web display that are relevant to this work’s
objectives. However, the DQAIlgorithms and DQResults are important as they are
currently the primary means of machine assisted data quality assessment in the ATLAS

DQMF.
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The DQAIlgorithms include statistical methods of identifying anomalous data such
as “BinsDiffFromStripAvg” and “BinsDiffFromStripMedian”. While these algorithms
are reasonably effective, it is a modest assumption to say that with the vast amount of
data ATLAS has generated and the advances in the field, a machine learning approach
could be superior. In fact, similar approaches are already being implemented in other
LHC experiments. The other distinct advantage within this system that machine learning
offers is the ability to reduce the manpower (Shifter/DQExpert) input necessary to
achieve data quality assessment of incoming data. The results of this work will provide a
machine learning solution that will be the first step in achieving these objectives and the
objectives outlined in the previous chapter. Figure S shows the current flow of data from

the perspective of the DQMF.

Data Quality Monitoring Framework

Status flags
in COOL
(COOLOFL_
GLOBAL)

Figure 5: The Data Quality Monitoring Framework (DQMF) of ATLAS [16].
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Figure 6: Another view of the DQW as it is connected to the DQMF and Data Quality
Monitoring Display (DQMD) [17].

Online Shifters are workers who rotate in and out on a 24-hour shift and are
tasked with monitoring detector components and reconstruction algorithms in real time.
They seek to identify anomalous information while being aided by various systems
including the DQMF and document that information and the data that was taken when an
error occurred. Offline Shifters have similar tasks although they are less in number, and
their work is less time sensitive. Considering this, a new machine learning data quality
system that would improve on the existing DQMF would be of most benefit to the online
shifter group but is also beneficial to offline shifters.

The data quality monitoring histograms are the main subject of dataset that will be
constructed. As mentioned previously, the histograms are generated on the web display

by the DQMF by way of DQParameters, DQAIlgorithms, and DQResults. Furthermore,



15

the histograms are of several types including TH1 type, TH2 type, and TProfile type
histograms provided by the ROOT framework. Each sub detector gathers data that will be
subject to physics analysis, so its data quality must be assessed. Thus, the monitoring
histograms include data from all sub detectors. This work will focus on the TH2 type of
monitoring histogram, but the results could be extended to other types of monitoring
histograms in this area similar to approaches by other LHC experiments. This work will
also focus on monitoring histograms from the calorimeter sub detectors that are part of
the CaloCombined and LAr groups.

Half of all offline monitoring histograms that will be present in the constructed
dataset comes from the CaloCombined combined performance group, while the other half
comes from the LAr group. Details on monitoring histograms will be explained further in

this section and the details about the dataset will follow in Chapter 3.

23 Anomaly Detection

What is an anomaly? Anomalies or outliers can be defined as data points that lie
outside an expected range or distribution. They are a type of rare information or event
that does not seem to fit with the system [18]. Of course, for an observer to judge if it is
outside an expected range or distribution, there must be up front assumptions made about
what the entire population looks like. Very rarely do scientists have all information
regarding a population or its distribution and this makes identifying outliers at the highest
level most difficult. On the other hand, it is often much simpler to classify a data point as

anomalous on strict and pre-defined rules.
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2.3.1 Statistical Anomaly Detection

Statistical anomaly detection seeks to identify outliers by rules and mathematical
principles. One such principle known popularly as the Empirical Rule [19] assumes that
all data points that fall at the extreme ends of a distribution (beyond the 99.7 percentile
range) are anomalous. Assuming that outliers are rare events occurring in low frequency,
data occurring less than 0.3% of the time makes relative sense. Other statistical
approaches to anomaly detection are available, but having described one such method,
the approach in current use by the ATLAS DQMF system will now be examined.

The current DQAIlgorithm in use for the monitoring histograms that will be in the
constructed dataset is called “BinsDiffFromStripMedian”. The DQResult of “good”
(green), “review” (yellow), or “bad” (red) is given based on this algorithm and roughly
on how far any individual data point is from the median of the strip in 1 to which it
belongs. Formally, the algorithm exists in the CERN Gitlab [20] with the same name.
The thresholds for a histogram to be deemed green, yellow, and red are compared to the
“outstandingRatio” (Equation 1) and classified accordingly. The outstandingRatio or
BinsDiffFromStripMedian formula is defined in the algorithm as follows:

bi—Smed (1)

Y, [Smedl

0 =

where b; is the i-th occupancy value of the strip and S,,,,41s calculated as the average of

the first three quantile values of the strip:
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n n 3
——=—
4 2

Smed = 3 * (2)

Assume a strip of size 4 and with basic increasing values ([1,2,3,4]) then the
median according to this formula differs from the median definition according to

statistics:

n Neven , Neventl
_ Nodd 2 2
SmedTrue = 2 or 2 (3)

where n is the sample size.

The former formula would yield a median of 2 and the latter formula would yield
a median of 2.5. It has been assumed this method was chosen in the algorithm for the
necessity of having an integer value.

What is the meaning of outstandingRatio 0? Occupancy(bin) values cannot be
negative. Therefore, s,,.4 the sum of all positive numbers must be positive. Looking first
at the numerator, (b; — Syeq), the Median Absolute Deviation (MAD) which is similar in

form to the numerator is given by:
MAD = med(|b; — med(b)| (4)
removing the median of this absolute deviation:
AD = |b; — med(b)| (5)
And finally removing the absolute value of the deviation yields:
Dpnea = b; — med(b) (6)
In the algorithm, there are additional limits in place that allow the formula to not

need the absolute value of this difference. What is left in Equation 6 is the amount of

residual occupancy that deviates from the median as in the numerator.
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Since the numerator is a deviation, the Standard Error (SE) for that deviation can
be defined, typically given in terms of standard deviation about the mean, by dividing by

the square root of the positive sample size Syeq:

Dmed
== _SE 7
‘/|5med| ( )

for individual deviations.

This SE gives a measure for how accurate the value of any sample from that
population is likely to be compared to the true population median [21]. The addition of
absolute value to the sample size is specific to the kind of values these strips can take on
and the additional limits and controls included in the algorithm. Thus, the larger this
value is, the more likely it is to be an outlier, and this corresponds to the ascending
threshold values moving from green to yellow, and finally red.

How effective are these methods? The 2 and 3 sigma rules are reasonably
effective and is widely known, but the main issue with this method is that the standard
deviation itself is calculated including outliers that can affect its value. Many outliers or
large values of outliers could lead to issues with this method’s results. The MAD method
is generally more effective at detecting outliers but can lead to a high false positive rate in
the outlier classification. The algorithm further underestimates the median by taking only
the integer part and further increases the probability of a false positive when subtracting
out a value that is lower than the true mean [22].

2.3.2 Machine Learning Based Anomaly Detection

As the field of machine learning continues to attract attention, it is no surprise that
the topic of anomaly detection is currently seeing a surge in machine learning based

techniques. From the information given in Typical Approaches(1.5), the discussion of
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anomaly detection in machine learning in this context begins with understanding the
general machine learning approaches and will proceed until details have been developed
about convolutional neural networks, various kinds of autoencoders, and methods

relevant to this work. The general approaches can be seen in Figure 7.

Training Data

Supervised i
2 = Model
Larhing All Labeled Data \_)

Semi- Some Labeled Data [H—
Supervised = ! :
Learning Lots of Unlabeled

Data

Unsu p_;ervised All Unlabeled Data
Learning

= Model

Figure 7: An overview of 3 general types of machine learning approaches [23].

The first major approach to a machine learning project is the Supervised Machine
Learning (SML) method. SML derives its name from the idea that the machine learning
algorithm learns how to predict or classify information from known ground truth target
data. Having a clear target for the algorithm to learn from, an advantage of performance
characteristics is present since a benchmark for comparison is available. The ground truth
data is often a time-consuming hand labeled feature making its strongest asset often its
greatest challenge. The primary SML algorithm of interest for this work that will be

discussed in a later section is the Convolutional Neural Network.



20

New observations

Labeled dataset Supervised learning

algorithm

Prediction /
classification

Figure 8: A more specific description of the supervised machine learning approach [24].

Another popular machine learning approach is the Semi Supervised Machine
Learning (SSML) approach. The algorithm for SSML works by using both hand labeled
and unlabeled target data and using both Supervised and Unsupervised approaches - often
further generating its own ground truth labels in process. This approach is more of a
technique rather than indicative of a specific model architecture. In real world
applications, approaches that use both supervised and unsupervised methods often

happen and a careful study of this subject can be beneficial.
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Figure 9: A more specific look at the semi-supervised approach [25].
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Unsupervised Machine Learning (UML) algorithms are the last approach that will
be discussed. This approach is the exact opposite of SML in that it uses and requires no
ground truth label for the algorithm. One huge advantage of these methods is that most
data is unlabeled by nature and these algorithms have the potential to highlight patterns
that go unnoticed. One of the major drawbacks of UML algorithms is that they are
notoriously hard to evaluate as evaluation requires human assumptions on how well an
algorithm performs (i.e., target values to compare the predictions to). Sometimes,
Autoencoder Neural Networks are classified as SSML algorithms, but they are a special
case of UML known as Self Supervised Machine Learning as it maps its own input as
ground truth labels.

Within anomaly detection in machine learning, there are also common
approaches. These approaches include probabilistic, ensemble based, neural network
based, linear based, and combination-based methods. The majority of these methods are
unsupervised, but there are also some supervised methods. More supervised methods are
available in the classification algorithms due to the ground truth classes of outlier and
non-outlier when available. One such algorithm, the Local Outlier Factor (LOF) initially
seemed like a good candidate, but many basic machine learning algorithms were limited
in the complexity of the features they could learn or were not designed to perform well
with a significant amount of data. Due to the overwhelming amount of data this particle
physics application provides, neural network and deep learning methods were identified

to be more suitable [26].



22

Clustering
Cluster1
O O O ..';'i'_: O
( ‘I J - QA (1 ]
. N \_)(_O, ;
: & %%
o C i . Cluster3
Cluster2

Figure 10: A more specific look at an unsupervised learning approach. This method
depicts a clustering algorithm in unsupervised learning [27].

233 DBScan

DBScan is a density based unsupervised machine learning algorithm
developed by Ester et.al. [28]. Its main function is to cluster data points that fall within a
pre-set minimum number of points of a neighborhood whose range is defined by some
pre-set distance. In this work, the minimum number of points is set to its lowest value to
allow the clusters to spread more easily. The DBScan algorithm is strong against noise
and varying size clusters but does not handle clusters of varying density well. This can be
an advantage in cases such as in this work where it is expected normal points semi tightly
clustered together and outliers in small external outlying clusters will be found. It also is
known to be sensitive to parameter adjustments, so finding the correct setting can be
challenging as well as important. Of the various clusters that DBScan identifies, the class
labeled -1 is reserved for noise or outlier labels identified by the algorithm and is the
cluster of most interest for this work. In general, the algorithm can be summarized by the

following Figure 11:
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Algorithm 1: DBSCAN algorithm

DBSCAN (W, MinPts,Eps)
Inpui: a data set W, MinPls
COutput: arbitrary shape clusters
for each data poindt p € W do
if p is not mark as 'seen’ then
Mark p as 'seen’
Find neighborhood of data point p, NeighborPts
if NeighborPils < minimum peinls then
Mark data point as a noise
else
| clusterid=clusterid+1
end

R EE R

e
LU ]

end
for all g € NeighborPts do
Mark data points g as seen
Find neighborhood of data point g, NeighborPts
if NeighborPts > minimum poinls then
| Give data point q a clusterid
end
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Figure 11: This graphic depicts the general steps involved in setting clusters according to
the DBScan algorithm [29].

234 Neural Networks, Deep Learning, and Anomaly Detection

Neural Networks are a special kind of machine learning algorithm designed to
learn new information from input information and use that new information to make
predictions. The origin of the neural network can be traced back to its fundamental unit,
the perceptron where inputs are calculated together in a specific way to form an output
prediction. There is a long complex history involving the design and development of
neural networks and their many different flavors over the years. Here, details will be
listed that are most relevant to this work.

From the Perceptron to the Deep Neural Network

If the most basic form of neural network is the feed forward neural network, then
the fundamental building block of that neural network is the perceptron. One of the most

important areas of this study is the “Interpretability and Explainability” of deep neural
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networks. It is therefore essential to understand all details of how a perceptron functions
in a neural network. From here, the details of the perceptron will be described including

the mathematics that go into building the neural networks used in this study.
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Figure 12: A diagram of the basic perceptron neural network model [30].

The perceptron only uses forward propagation as the original outline of the

perceptron was done by [31] whereas the original outline of backpropagation was not

introduced until [32].

According to [31], the calculated value at any node or neuron is the weighted sum

of the inputs plus the bias. This value is calculated before applying the activation function

such that:
a =Xy xw;+b ®)
Following calculation of the node (a), an activation function is applied over the

resulting value. Here, the depicted activation function () is the sigmoid function where

2(x) =

1+e~Xx ©)

Here, the output y is given when the activation function is applied to this single

node. Applying this function over (a) results in the following:
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1+e~C0xWig+bo) (10)

Perceptrons were initially used as binary classifiers. This means they are naturally
suited for binary classification problems such as anomaly detection. Unfortunately, they
are an oversimplification of what machine learning based anomaly detection is currently
capable of.

Having discussed the fundamental unit of a neural network, a description of the
first deep learning neural network relevant to this study will be given. The Convolutional
Neural Network is both a special kind of Feed Forward Neural Network and a Deep
Learning Neural Network.

A simple Feed Forward Neural Network (FFNN) is built from a collection of
inputs mapped to all nodes in a single hidden layer who are also mapped to all outputs.
Each node in the hidden layers functions like the perceptron described previously, and
each node in the output layer also functions like the perceptron [33]. In practice, this is a
simplification of what is actually at work in a framework like Keras where various other
kinds of nodes and layers along with activation functions and weight initialization

functions set in the background.
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Figure 13: A FFNN with m inputs, a bias of 1, and a single output [34].

There appears to be no strict definition of how Deep Learning Neural Networks
(DNNSs) are structured, but most sources suggest that a sufficient number of network
layers are required for it to be classified as a DNN. The definition of sufficient is where
definitions diverge. According to [35], “DNNs are the underlying architectures, which, in
contrast to neural networks (NNs), consist of multiple hidden layers.”
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Figure 14: A basic DNN that is also a 2-layer FFNN. This follows the definition that
DNNSs are NNs with multiple layers [36].

The Convolutional Neural Network

The Convolutional Neural Network (CNN) is a special modification of a FFNN in

that a technique derived from work on images (convolution) is performed section by
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section in a multidimensional data space in order to generate features that are
representative to that section of data. The data space is typically a 2d image (TH2
histogram for this work) and the matrix it is multiplied with to complete the convolution
is known as the kernel. The kernel is a weight matrix that is updated during the
backpropagation phase of the algorithm. This weight matrix is commonly initialized with
random values from a “glorot uniform” distribution. A CNN architecture contains more
than just the convolutional layer (see Figure 16). The distributions of available kernel

initializers using the Keras package are given in the following Figure 15.
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Figure 15: Plots of weight initialization distributions available in the Keras package for
python [37].

The advantage of using a CNN architecture derives from the possibility of
identifying anomalous data in a monitoring histogram whose anomalies are identifiable
due to occupancy differences in localized areas. If the ground truth values are available,
the CNN is a strong and commonly used approach in recent anomaly detection works

with similar objectives.
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Convolution Neural Network (CNN)
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Figure 16: An example of an image classification model whose main architecture is that
of a Convolutional Neural Network (CNN) [38].

The Autoencoder

X Xi

Figure 17: Simple autoencoder with one hidden layer where the values x; are the inputs,
h(x;) are the latent space values, X; are the reconstructed input values, w is the encoder
weights, and W is the decoder weights [39].

The Autoencoder (AE) is one of the simplest neural networks. Again, they
technically are classified as self-supervised in that they utilize the inputs as both input
and target for the model, but they are often interpreted as unsupervised since they do not

require labeled data. In this self-supervised approach, an autoencoder will seek to train on
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input samples so that it can accurately reconstruct a dataset and register high
reconstruction error for anomalous data points. Despite returning a reconstruction error,
establishing a dataset whose classes are linearly separable requires different techniques
that will be discussed in detail later.

The general structure of an autoencoder is that of an encoding layer, latent space
layer, and decoding layer in addition to input and output layers. The encoding layer is
where the input features are reconstructed to a smaller feature space similar to PCA, but
often in a nonlinear fashion unless specified by the architecture. The latent space is the
zone where the compression occurs - information found to be less important is left out of
the limited space that more important information will occupy. The decoding layer
simply reverses the feature reduction process, but this time on the compressed
information resulting in a limited reconstruction of the original input. Some autoencoder
structures have the encoding layer and input layer the same while simultaneously having
the output layer and decoding layer the same (see Figure 17). These types of AEs do not
fall under the definition of a DNN, but AEs who have all these layers separate or are
more complex are a type of DNN called Deep Autoencoders. All these models will
simply be referred to as AEs unless it is of key importance to make the distinction going

forward.
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Complete Autoencoder
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Figure 18: A “complete” autoencoder [40].

This is a type of autoencoder whose encoder has the same number of dimensions
as the input layer. The loss is very low for both training and validation sets. It is an
example of a simple autoencoder that is overfit. It functions by simply passing along the
input information directly through the network, with no bottleneck, and maps the input
directly to the output. This network is not designed for anomaly detection, but it is a
useful calibration measure before starting experiments.

Denoising Autoencoder

This type of autoencoder more aggressively ignores noise in the data. This would
be useful in the case that the original data is suspected to be corrupted.
“Another regularization method, similar to contractive autoencoder, is to add

noise to the inputs, but train the network to recover the original input.” The architecture
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varies from a basic autoencoder setup to sparse and/or stacked autoencoder setups. The
preparation of a Denoising Autoencoder requires that inputs are trained on noisy data and
targets be noiseless data with the assumption that the algorithm will learn to predict
noiseless data from noisy data [41].

Sparse Autoencoder

Output layer

Hidden layers

Input layer
|_encoder 4

o
°
0
L

Figure 19: A sparse autoencoder [42].

Autoencoders of the most typical form are called Dense Autoencoders. Sparse
autoencoders output a sparse final matrix such that the information captured is better
distributed across the features that the autoencoder learns. The result of which should be
a final matrix that has more zeros throughout and the information captured will be better
distributed across the learned features.

In addition to the standard components of an autoencoder, the sparse autoencoder

requires what is known as a sparsity penalty.
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Sparse autoencoders are generally overcomplete. They have hidden layers with
more units than the number of input features with only a small fraction of the hidden
units being allowed to be active at the same time.

A sparsity penalty forces the auto encoder to take the sparsity of the final matrix
into consideration.

Stacked Autoencoders

A stacked autoencoder is a neural network consisting of several layers of sparse
autoencoders where the output of each hidden layer is connected to the input of the
successive hidden layer.

Convolutional Autoencoder

A Convolutional autoencoder makes use of the advantage of convolution applied
to standard autoencoder architectures.

As previously mentioned, convolution is a technique where not all elements in a
layer are fully connected to all elements in another layer. Instead, it is assumed that
features can be extracted in blocks such that individual weights are connected to subsets
of neurons rather than every neuron in a convolutional layer. This technique also has the
advantage of less fully connected neurons, meaning less neural network parameters being
passed forwards and backwards during training, and this means it will significantly
reduce training time for applicable systems. These too are reasons that the technique of
convolution is commonly used in image datasets.

The convolutional autoencoder combines the two ideas where localized feature
information is picked up in the data space and simultaneously mapped through some

variation of nonlinear feature reduction space. Of course, this technique will still require
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ground truth labels, but is a candidate for the most effective algorithm in the application

of this work [43].

Inputs (2x88)
Conv2D(1,2,40)
Linear
Dense(44)
Hard Sigmoig
Dense(2*88)
Hard Sigmoid
Conv2D(1,1,81)
Linear
Outputs (2x88)

Figure 20: An example Convolutional Autoencoder architecture featuring 2d
convolutional layers, and dense latent spaces [45].

Variational Autoencoder

This type of autoencoder has an encoder that outputs two vectors instead of one.
The outputs are vectors of the means and the vectors of the standard deviations. The i-th
value of these vectors corresponds to the mean and standard deviation of the i-th random
variable.

This type of autoencoder generates a sample of the population space. It is able to
sample across a continuous space based on what is learned from the input data.

It is not limited to examples it has trained on but can generalize and output new
examples even if it has never seen similar ones. It generates synthetic data that appears to
belong to the same distribution as the trained data. This led to generative adversarial

networks and synthetic data such as images, speech, music, art, etc.
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Figure 21: Variational Autoencoder Architecture. The latent space includes features that
represent the mean of the learned distribution and variance of the learned distribution.
The learned features would then be able to generate samples from this learned
distribution.

24 Scope and Limitations
In the process of building the machine learning model for these objectives, focus
will be placed on interpretation and evaluation to successfully achieve the desired results.
At the time of designing this work, the following limitations were placed upon this
project due to resources available or requirements of the final product:
e Luminosity independent system — Resources unknown regarding information
of the histograms were of interest with respect to luminosity (time series

information)



36

e Histogram independent system — Rather than looking at all data for a sub
detector side by side and including these features to determine defects across
sub detectors, the task was to find histogram level defects first, whose results
would later be compared between histograms (sub-detector level features such
as TileCal energy vs HCAL energy).

e Label independent system — It was reported that expert labeled defects were
typically recorded in the defect database, but labels lacked the detail required
for a histogram level detection system.

e Common defects known, but uncommon defects possible — Known defects
make up about 2% of the results according to estimates.

These limitations imply time dependent machine learning algorithms are out as
well as the ability to make time dependent predictions (no RNNSs, etc. and no time series
features). It also implies that as little as a single histogram’s worth of data and as much as
the entire historical set of data is available. Therefore, it is not possible to mimic expert
behavior without a record of expert behavior (Supervised algorithms such as CNNs via
labels). Were such labels available, this information suggests that supervised/human
labels could perform well in the automation task due to known defect types.

As a result, this approach will focus on coordinate-by-coordinate inputs as is
common with neural networks in similar works or an alternative configuration based on
geometric features via coordinates. Furthermore, unsupervised methods will be relied on
such as autoencoders that are commonly used in anomaly detection literature, but other

options will be explored.
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In consideration of the lack of historical data available at the start of a LHC Run
(changes to the detector cause inconsistent patterns between historical data and gathered
data after shutdowns), as few as a single histogram worth of data (6435 coordinates) or
about 384 histograms of a single type available per year according to estimates
(2,471,040 data points in the dataset per year, but only about 384 data points per input in
the dataset per year, shape of 384 samples by 6435 features, could cause overfitting
requiring a different configuration), the choice has been made to avoid DNN approaches
such as CNNs requiring significant labeled data which is convenient since this
information is unavailable.

Currently, anomaly detection literature suggests and previous researchers in this
domain have generated anomalies as a method to both improve results and provide a
method to evaluate results. This also implies that expert labeled anomaly sets would be
skewed against the number of anomalies for prediction results.

To that effect, the objectives will be considered fulfilled for a final model that
satisfies a number of the following criteria:

1. As a first phase workable solution, this particular model will be restricted to 2
dimensional histograms of the class TH2 according to the ROOT framework.

2. Furthermore, this model will seek to identify all generated anomalies and/or at
least present results potentially superior to the in use DQalgorithm per monitoring
histogram.

3. The scope of the model will restrict its training and prediction for monitoring
histograms primarily to the physics Main stream. The physics Main stream will

be used to construct and evaluate datasets as is and the version of the
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physics Main datasets that contain generated anomalies will be used for pressure
testing the detection system. The physics Main stream is assumed to be more
representative of clean histogram data, but without comparing to the good run
lists some additional anomalies can be expected to be present during evaluation
for runs not on the certified good run list.

The scope of the model will restrict the monitoring histograms to the TH2
histograms in the CaloCombined folders contained in run files and found in the
DQ web display.

The model is capable of successfully identifying known anomalous data points in
data quality monitoring histograms. These anomalous data points can be of the
form of individual data points as well as clusters of anomalous data points

a. Identifies hotspots (occupancy levels in monitoring histograms that
are greater than the expected inlier distribution)

b. Identifies cold spots (occupancy levels in monitoring histograms
that are less than the expected inlier distribution)

c. Identifies hot strips and cold strips (same as hotspots and cold
spots except occurring along a single strip in 1 for several values
of )

d. Identifies hot layers and cold layers (same as hot strips and cold
strips except now including several values of 1 and several values
of ¢ such that a layer would typically have one value greater than

the other).



CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the process of setting up the experiments in a section-by-section
fashion will be described. It will begin with the initial system setup and software
requirements, followed by initial investigations, plans to prototype following those
investigations, construction details of the datasets, exploratory analysis of the constructed
datasets, basic calibration, some information on reproducibility, the experiments, the
outlier decision function and outlier probability, performance evaluation and
interpretation, the dashboard, and a final section on deployment.

The primary focus of the chapter is providing details of the approach that will
achieve the listed objectives for this work but will also focus on details to simplify future

work in this domain.

3.2 Hardware, Software, and Packages
The following is a list of hardware, software, and packages that were used in
construction of this work. Anyone working on a similar project to this may require
“ATLAS Collaborator” status and “GRID credentials” in order to access various essential
systems such as “Ixplus” where the .root files are moved and downloaded from, “Rucio”

[46] where file requests are made, “CERNbox” [47] where files are stored, and “SWAN”

39
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[48] where analytical work for machine learning can be done efficiently. The local
system specifications used by the researcher and packages necessary for this work are
listed sequentially with descriptions below. The analysis and experiments have been run
mainly on SWAN while the local system is used for final software construction.

3.2.1 Local System Specs

e Linux c-B450M-DS3H 5.13.0-30-generic #33~20.04.1-Ubuntu SMP x86 64
x86_64 x86_64 GNU/Linux

e AMD Ryzen 5 1600 Six-core 3.2GHz Processor: 2 threads per core, 6 cores
per socket

e RAM: 32GB, DIMM DDR4 3.2GHz

e GPU: Radeon RX 5700 XT

e Docker is an industry standard, portable, lightweight platform for sharing and
deploying secure applications [49].

3.2.2 Miniconda3 and Packages Used

Anaconda is a data science targeted application meant to simplify python and R
package management and deployment. Miniconda is the lightweight version of that
application with no pre-installed packages [50]. The current system uses Miniconda
version 4.11.0, and it has the following packages installed with corresponding version
numbers in “<>” brackets:

e Python <3.7.6> is a well-known high-level scripting language that is industry

standard in the field of data science, but with thriving communities in other

scientific areas and non-scientific areas [51].
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ROOT <6.18.00> is an analysis framework developed by CERN to provide a
coding infrastructure that will assist in analyses following data collection by
the LHC [52].

Pandas <1.3.4> is a commonly used data management and manipulation
package for python. It excels in cleaning, transformation, and other essential
practices relevant to scientists and analysts working with data [53].
Matplotlib <3.5.0> is a commonly used visualization package available for
python with great depth in its capabilities [54].

Seaborn <0.11.2> is another commonly used visualization tool built over
Matplotlib. It provides a few unique tools and aesthetic advantages to
Matplotlib [55].

SQLAIchemy <1.4.27> is an open-source SQL package built for Python [56].
Scikit-learn <1.0.2> is a commonly used machine learning library for Python.
While it is useful in many cases, occasionally more configuration is required
as in the case of neural networks [57].

Keras with TensorFlow as a backend <2.4.3> - Keras is a package built on top
of TensorFlow, built on top of NumPy, built on top of python. It is
specifically geared toward deep learning neural networks as opposed to
TensorFlow which is a more general system for neural network development
[58].

Dash by Plotly <1.19.0> is a dashboard development system developed with
the use of Flask, Plotly, and Python [59], with the following required

component packages installed:
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o Dash-bootstrap-components <0.11.1>
= Dash-html-components <1.0.1>

= Dash-core-components <1.3.1>

33 Initial Steps and Investigations

The initial steps taken and prototypes generated included setting up software,
gaining access to ATLAS’s online databases and systems, and unpacking that data in the
intended python or pyROOT cloud system (SWAN notebook) to view, manipulate, and
work with data. Following successful completion of those steps, the next step was to
convert the now accessible and viewable histograms to pandas data frame structures.
More details on this can be found in Section 3.4 for constructing the dataset.

Having successfully completed the software necessary for converting histograms
to data frames, rapid prototyping of what a machine learning solution might look like and
do in relation to this project and research goals had begun. Using a small collection of
data from several histograms, preliminary results were investigated using pyOD [60]
using different algorithms. As specific kinds of patterns were observed in the data, the
algorithms that were chosen according to these patterns performed best. Proximity based
machine learning approaches were able to classify several data points that were visually
identified to be faulty. This suggested an exploitable pattern related to how outlying a
data point is for data points in this dataset. From these preliminary results, targets were
set to scale up the size and scope of the project to meet its goals with a full solution. The

experiments and details that follow are designed from these initial investigations.
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34 Construction of the Datasets

Note: The full construction of the datasets is also given in step by step detail via
Jupyter Notebook files that will be uploaded to GitHub and included as a resource link in
the near future.

In order to construct the dataset, the first step was to identify the data needed to
train a model that would satisfy the objectives. Also, it was important to identify what
resources were available to access it. Ultimately, the objectives required using the same
data that is available to the shifters at the time of determining if anomalies are present in
the monitoring histograms - the geographical information. The geographical information
that is directly viewable from the monitoring histogram itself is the heatmap of
occupancies of the TH2 in 1 and ¢ coordinate space.

The ATLAS detector is roughly cylindrical in shape around the beam lines. The n
coordinate in the monitoring histograms, also known as the pseudorapidity in particle
physics, is the angle a particle is measured with respect to the beam direction. n =0
indicates particle trajectory perpendicular to the beam axis. The ¢ coordinate, otherwise
known as the azimuthal angle, refers to the location about the circular cross section of the
detector [61]. Together, these two pieces of information, along with the meta information
of the histogram itself, make it possible to locate on a monitoring histogram where in the
detector the particle location or energy registered during beam crossing, depending on
what part of the detector you are viewing data from. The monitoring histograms that were
identified for use in this work focused primarily on calorimeter information, therefore the
information in the datasets refers to particle energies measured in that respective region

of the detector.
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Figure 22: Cross section of the inner detector through the beam axis [61].

Earlier, it was mentioned that 3 features are part of the main datasets: 7, ¢, and
occupancy. The next feature of interest is the quality label. There are also 3 additional
features that give scaled and/or normalized versions of the occupancy values in a specific
way that will be explained further shortly. The quality label holds a value of 0 for already
present data points and 1 for generated outlier data points. The remaining features are
meta information used to understand and explain where the data comes from and will be
used in explaining and interpreting the model results. Those meta features include the
path of each datapoint from the run file to the histogram, the ftag id, the histogram id, and
histogram type.

34.1 Feature List and Explanation

The experiments will report on various combinations of the following features

with the interest in the objectives outlined previously in mind.
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e paths - For each data point, this feature lists the path in the run file to the
monitoring histogram specific to that data point. As part of the pathing
information, it also shows the run number it originates from. The format of
any such path string appears as:
<run_XXXXXXXX>/sub_directoryl/sub_directory2/...etc.../<monitoring_hi
stogram>. All such monitoring histograms come from 2 dimensional TH2 (see
Root Class Reference [62]) class histogram files.

e x - Feature x is the pseudorapidity 1, given by the monitoring histogram.

e vy - Featurey is the azimuthal angle ¢, given by the monitoring histogram.

e occ - is the occupancy for any given (x, y) coordinate in the monitoring
histogram.

e occ Otol - is the occupancy as above, but scaled and not normalized using the
minmax formula given below:

= .
0—0min

(1)

- —
Oscaled — = o
Omax—O%min

where 0 is the vector occupancy values at the corresponding (x, y) coordinate, Gpyqy i

the maximum occupancy value for this monitoring histogram, 0,,,;,, is the minimum
occupancy value for this monitoring histogram, and 044 is the occupancy vector
containing all scaled values. All occupancies scaled in this manner will have values
between 0 and 1. If the minimum and maximum values are equivalent, they are set to
their original value Og.q0q4 = 0. Defined in this way, it emphasizes using vector

operations to complete the scaling task for large vectors of data.
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e occ _robust - is a normalization method commonly used that is robust against
the presence of scalers. The robust scaler formula is given below:

- > med(0)
Orobust — 0 —

(12)

Tigr

where 1y, is the interquartile range such that

Tigr = q3(06) — q1(0) (13)

and med (0) is the median of the occupancy vector 0.

e occ_zscore - is a commonly used normalization method in the machine
learning realm. The occ_zscore formula given below:

> 0—u(0)
Ozscore = 0'(6) (14)

where o is the occupancy vector at the given (x,y) coordinate, 11(0) is the average

occupancy for the monitoring histogram, ¢ (0) is the standard deviation for the

monitoring histogram, and 0,4,y is the vector of normalized occupancies. All

occupancies normalized in this manner have no specific range they are normalized to. It

is useful for determining how far away values are from the standard deviation.

ftag_id -is the meta information feature that identifies what specific ftag this
collection of run numbers and monitoring histograms come from with respect to
the order in the database file. The database file contains a total of 87 tables, 1
table for each ftag. Therefore, there are a total of 87 such ftag ids that ftag id can
list in this meta feature. (The ftags in the database file are ordered such that the

first table is table O and the last table is table 86 for the 87 tables). Some datasets
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contain less than this number as it is the unique number of histograms in that
dataset that is reported, not the ftag id.

e hist id - is the meta information feature that identifies which of the monitoring
histograms who all come from a single ftag id, the data point refers to. (This
together with the path feature and ftag id allows one to identify all such data
points from a single monitoring histogram).

e hist type - is the meta information feature that identifies which of the 18 types of
monitoring histograms this histogram is (refer to the upcoming paragraphs for
more information on these 18 histogram types). This feature also allows one to
experiment using input data from individual histograms.

e quality - is the label feature that identifies if the datapoint came from the
monitoring histogram in the specified run file or if that datapoint was generated as
an anomaly as part of the anomaly generation process. This feature will be used
derived from anomalies that have been manually generated (details ahead) for
evaluation of unsupervised learning tasks as well as training and testing of
supervised learning tasks.

In order to properly interpret and explain the model results, it is necessary to plot
the monitoring histograms prior to and following predictions. Therefore, the meta
features were added to facilitate this extra level of detail.

34.2 Specific Details on Constructing the Final Datasets

An overview of the dataset construction process following identification of

research objectives can be best described by the flowchart below:
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Figure 23: Diagram of the dataset construction process.

Research Objectives

In order to construct the dataset, first the research objectives were clearly
defined. These have been discussed in detail in Chapter 1 with associated scopes and
limitations in Chapter 2.

Source data from Web Display

From the online web display, the most recent runs are displayed that have
physics Main streams, copy that textual meta information from the display, and get the
information needed to make the run requests from Rucio by pushing that information

through a python processing script.
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Figure 24: The Data Quality Monitoring Display (DQMD) or web display for short is
where the data and its meta information are sourced [63].
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Figure 25: A visualization of the output of the processing scripts as data is gathered.

Request Data from Rucio, then LXPLUS
The data is stored in not readily available format; therefore, requests must be

made prior to being able to locally download it. Having processed the web display



50

information, the script outputs properly formatted requests that can simply be pasted into
rucio. Rucio processes those requests, and when all of them get the OK status, they can
be downloaded from Ixplus. To download them from Ixplus, first login to Ixplus with
GRID credentials (information on how to do this can be found within the ATLAS twiki
online reference material), run the “setup ATLAS” command, the “voms init” type
command that is suggested by the prompt, then run the “Isetup rucio” command. Having
done this, the script previously outputted download commands as well as formatted
requests. Finally, paste those download commands into the command window, and the
commands will run and download the associated run file, line by line (depending on the

number of downloads it can take some time).

data18_13TeV:datal8_13TeV.00348251.
data18_13TeV:datal8_13TeV.00364292.
data18_13TeV:datal8_13TeV.00364214.
data18_13TeV:datal8_13TeV.00364160.
datal8_13TeV:datal8_13TeV.00364098.
datal8_13TeV:datal8_13TeV.00364076.
data18_13TeV:datal8_13TeV.00364030.
datal8_13TeV:datal8_13TeV.00363979.
data18_13TeV:datal8_13TeV.00363947.
datal8_13TeV:datal8_13TeV.00363910.
datal8_13TeV:datal8_ 13TeV.00363830.
datal8_13TeV:datal8_13TeV.00363738.
datal8_13TeV:datal8_13TeV.00363710.
datal8_13TeV:datal8_13TeV.00363664.
datal8_13TeV:datal8_13TeV.00348251.
datal8_13TeV:datal8_13TeV.00363664.
datal8_13TeV:datal8_13TeV.00363710.
datal8_13TeV:datal8_13TeV.00363738.
datal8_13TeV:datal8_13TeV.00363830.
data18_13TeV:datal8_13TeV.00363910.
data18_13TeV:datal8_13TeV.00363947
datal8_13TeV:datal8_13TeV.00363979.
data18_13TeV:datal8_13TeV.00364030.
data18_13TeV:datal8_13TeV.00364076.
data18_13TeV:datal8_13TeV.00364098.
data18_13TeV:datal8_13TeV.00364160.
datal8_13TeV:datal8_13TeV.00364214.
data18_13TeV:datal8_13TeV.00364292.

physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.
physics_Main.merge.

HIST.f920_h295

HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1002_h327
HIST.f1001_h327
HIST.f1001_h327

express_express.merge.HIST.f920_h295

express_express.merge.HIST.f1001_h327
express_express.merge.HIST.f1001_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327

.express_express.merge.HIST.f1002_h327

express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327
express_express.merge.HIST.f1002_h327

Figure 26: Further processing from scripts. This format of the data is for the requests that
are input to Rucio.
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Figure 27: A visualization of all the requests having been made on Rucio prior to
downloading the files.

rucio download datail8_13TeV:datal8_13TeV.00348251.physics_Main.merge.HIST.f920_h295
rucio download datail8_13TeV:datal8_13TeV.00364292.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00364214.physics_Main.merge.HIST.f1002_h327
rucio download datail8_13TeV:datal8_13TeV.00364160.physics_Main.merge.HIST.f1002_h327
rucio download data1l8_13TeV:datal8_13TeV.00364098.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00364076.physics_Main.merge.HIST.f1002_h327
rucio download datail8_13TeV:datal8_13TeV.00364030.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363979.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363947.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363910.physics_Main.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363830.physics_Main.merge.HIST.f1002_h327
rucio download datail8_13TeV:datal8_13TeV.00363738.physics_Main.merge.HIST.f1002_h327
rucio download datail8_13TeV:datal8_13TeV.00363710.physics_Main.merge.HIST.f1001_h327
rucio download datal8_13TeV:datal8_13TeV.00363664.physics_Main.merge.HIST.f1001_h327
rucio download datail8_13TeV:datal8_13TeV.00348251.express_express.merge.HIST.f920_h295
rucio download datal8_13TeV:datal8_ 13TeV.00363664.express_express.merge.HIST.f1001_h327
rucio download datail8_13TeV:datal8_13TeV.00363710.express_express.merge.HIST.f1001_h327
rucio download datal8_13TeV:datal8_13TeV.00363738.express_express.merge.HIST.f1002_h327
rucio download datai8_13TeV:datal8_13TeV.00363830.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363910.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363947.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00363979.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_ 13TeV.00364030.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00364076.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00364098.express_express.merge.HIST.f1002_h327
rucio download datal8_13TeV:datal8_13TeV.00364160.express_express.merge.HIST.f1002_h327
rucio download datail8_13TeV:datal8_13TeV.00364214.express_express.merge.HIST.f1002_h327
rucio download data1l8_13TeV:datal8_13TeV.00364292.express_express.merge.HIST.f1002_h327

Figure 28: Further processing from the scripts, the same as Figure 26, but with the
download commands for Ixplus generated.
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Terminal - crandazz@Ixplus703:~

Edit iew Terminal Tab: Help

Figure 29: An example of one of the command lines from the previous Figure 28 going
into Ixplus. These are pasted all at once and the command prompt knows to download
them one at a time.

Build on Site Storage and Store Data
There are a number of ways to handle this, but for speed and scalability, python’s

implementation of SQL called SQLAlIchemy was chosen to build the storage for this
system. The current system stores all the data in a local file, but this can be migrated to a
server database with the built infrastructure relatively easy. From there, SQL based data
requests would improve the time required to run future experiments. Having built this
infrastructure, the data gets put into a workable format and stored in this type of database

file. Some testing with the database has shown some volatility during storage.
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Replicas

O NAME ~
datal8_13TeV.00348251.express_express.merge.HIST.f920_h295
datal8_13TeV.00348251.physics_Main.merge.HIST.f920_h295
datal8_13TeV.00363664.express_express.merge.HIST.f1001_h327
datal8_13TeV.00363664.physics_Main.merge.HIST.f1001_h327
datal8_13TeV.00363710.express_express.merge.HIST.f1001_h327
datal8_13TeV.00363710.physics_Main.merge.HIST.f1001_h327
datal8_13TeV.00363738.express_express.merge.HIST.f1002_h327
datal8_13TeV.00363738.physics_Main.merge.HIST.f1002_h327
datal8_13TeV.00363830.express_express.merge.HIST.f1002_h327
datal8_13TeV.00363830.physics_Main.merge.HIST.f1002_h327

datal8_13TeV.00363910.express_express.merge.HIST.f1002_h327

Figure 30: A visualization of the data that has been downloaded straight to the user area
in CERNbox or SWAN.

1 engine.execute('SELECT DISTINCT paths FROM data hi_express').fetchall()
xecuted in 731ms, finished 15:52:51 2021-08-16

('run_366268/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m clus_etaphi Et thresh3',),
('run_366268/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/General/etaphi ncellinclus',),
('run_366268/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m clus_etaphi Et threshl',),
('run_366268/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m clus_etaphi Et “thresh2',),
('run_366268/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m clus_etaphi Et “thresh3',),

(' run_366268/caloMon1torlng/clusterMon/LArclusterEMNoTrlgSel/General/etaphl_ncelllnclus .
('run_366337/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m clus_etaphi Et thresh2',),
('run_366337/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m clus_etaphi Et thresh3',),
('run_366337/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/General/etaphi ncellinclus',),
('run_366337/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/TransEnergy/etaphi_thresh avggt 0',),
('run_366337/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m _clus_etaphi Et threshl',),
('run_366337/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m clus etaphi Et thresh2',),
('run_366337/CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m clus etaphi Et thresh3',),

('run 366337/Ca10Mon1tor1ng/C1usterMon/LArClusterEMNoTrlgSel/General/etaphl ncellinclus',),
('run_366383/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m_clus etaph1 Et_threshl',),
('run_366383/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m  clus _etaphi_Et thresh2',),
('run_366383/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m  clus _etaphi Et “thresh3',),
('run_366383/CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/General/etaphi ncellinclus',),

('run 366383/Ca10Mon1tor1ng/clusterMon/LArClusterEMNoTrlgSel/Zd Rates/m_clus etaph1 Et thresho' ,),

Figure 31: A visualization of the processed data that was downloaded and has been
moved to the SQLAIchemy database.

Feature Engineering and Data Processing
Prior to the final cleaning and processing of the data, the features of interest must

be engineered from the stored data. The final decision on what features to use was a
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combination of time and space limitations with regards to the machine learning,
suggestions from previous authors’ work such as the feasibility to use geometric image
features rather than a parameter per pixel approach, various conversations with my
advisor who is a subject matter expert with regard to this matter, and exploration of the
initial data during and following storage. Having divined these features of interest, the
process of any necessary cleaning and formatting of the data is handled, followed by
generation of those features of interest. Further details on this step will be included
below.

Following the description of relevant features, next the specifics of data that was
requested and included in this work will be discussed. Since the tools generated from this
work are designed for the upcoming 2022 Run, the input data will be the most recent
previous Run data as far back as 2018. Additionally, the datal8 13TeV run files were
requested to be focused on for this work so these were selected to construct the main

dataset.

#0 run_348251, m_clus_etaphi_Et_threshl [Occupancies]
64.0
60.0
56.0
52.0
48.0

-400

- 320

- 240

- 160

OTONEQRRNRITRNRBIBRLITBNR
n

Figure 32: Example monitoring histogram heatmap from the dataset.
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#70 run_363947 , etaphi_ncellinclus [Occupancies]
64.0
60.0
56.0
52.0
48.0
440
40.0

CTONORIRARIIFARBTBRLIIBER
n

Figure 33: Another example of a monitoring histogram from the dataset.

The downloaded files were stored in a SQLAlchemy database file in tabular
format such that each table in the database contained a collection of run files specific to a
single ftag. This ftag was used as the table name for each such collection. To date, the
database contains 6408 datal8 13TeV physics Main stream monitoring histograms
worth of data. Initially, the CaloCombined, Egamma, Jets, MissingEt, and Tau folders
were coded into the processing system, but the data stored in the database now only
reflect the folders whose location in the run folder are of the 18 identified monitoring
histogram types of interest from the DQ web display (see the following section that
details the 18 monitoring histogram types).

In order to simplify the process of storing the raw TH2 data (as well as
simplifying future data processing and machine learning training) in the SQLAlchemy
database, a script was developed that converts an entire chosen monitoring histogram in a
run file to a pandas data frame. During this time, the geographic image data as well as the

pathing information for the histogram are extracted to the data frame. Using this script
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and pandas’s DataFrames (called data frame in this work), all relevant monitoring
histograms in all relevant run files were inserted into the database file with the extracted
information.

Up to this point, all steps prior to the final data processing step in the flowchart
are demonstrated in the Jupyter Notebook whose filename is “Step1-
DataGatherAndInitialPrep—2-15-2.ipynb”. The final step on the flowchart is composed of
a collection of 4 internal steps. Those 4 internal steps are the following (starting with step
2 to follow the naming convention).

o Step2(“Step2DropDuplicates-outputMainDfs—2-21-22.ipynb”): In this step is
where all the data cleaning would take place. For the purposes of this project, only
removing duplicate entries were necessary due to loose use of the database
insertion methods.

e Step3(“AnomalyGenCode—2-22-2.ipynb”): Anomaly generation have been and
will be a key technique in upcoming experiments first because of the testing done
with the supervised CNN for labels, and later for evaluation and validation of the
unsupervised approach as will be explained in the evaluation section.

o Step4(“Step4NormalizeOccByHist—2-9-22.ipynb”: From the previous step, the
main dataset will branch off into an anomalous and non-anomalous dataset mostly
due to preference of format. Therefore, a sister file named similarly will
normalize the non-anomalous dataset in this step. The normalizations are
responsible for generating the normalized features that were previously described.

o Step5(“FullHistSplit—2-23-22.ipynb”): Having Cleaned, generated anomalous

data points for, and added normalized features to the main datasets, all that is left
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is to split the datasets into their respective training and testing sets for the machine
learning and experimentation. To do this, a custom train test split method was
used rather than the industry standard scikit-learn method as a data frame full of
various histogram datapoints would leave one with histograms that holes of
missing data. Instead, the custom split function looks at the dataset on a histogram
level, randomly selects those for either the train or test set based on the desired
percentage of histograms to hold out, and moves all the data points as they are,
individually selected with all their respective data points intact. From here, the

flowchart and data construction are complete.

paths x vy occ ftag id hist_type hist_id quality

0 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 0 3872943.0 0 0 0 1

1 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 1 4551316.0 0 0 0 1

2 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 2 0.0 0 0 0 0

3 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 3 3610718.0 0 0 0 1

4 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 4 0.0 0 0 0 0
41235475 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 60 0.0 84 17 233 0
41235476 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 61 0.0 84 17 233 0
41235477 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 62 0.0 84 17 233 0
41235478 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 63 78.0 84 17 233 1
41235479 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 64 0.0 84 17 233 0

41235480 rows x 8 columns

Figure 34: The full unsplit dataset prior to feature engineering and after anomaly
generation. 9,146,559 of the 41,235,480 are generated anomalies (~22%).

A variation of the final datasets shows what the shape would look like if it were
formatted it in the manner that is typical of image based neural network inputs (pixel by
pixel). This would lead to a dimension of 6408 input neurons with 4165 samples. This

highlights the concerns of overfitting of the model on the histogram level. If all inputs
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and data points were independent of each other, this would be less of an issue.

Regardless, either approach has been shown to yield results [64].

hist_metadata hist_type thresh val occ at 0 0 occ at 01 occ at 02 occat03 occat04 occat05 occat06 .. occat 08 55 occ at 98 56 occ at 98 57 occ at 98 58 occ at 98 59 occ at

(run_363664,
‘datal8_13TeV,
11001_h3z7,

°

c: lusterhor/CaloCaiTopoClustersh...  undecided 0.0 00 00 00 00 00 0.0 6.125000 00 00 00 00

(run_363664,
‘datalf_13TeV, Z - o s
‘t1001_h3zT,

-

undecided 0.0 0.0 0.0 00 00 0.0 0.0 0.652109 00 00 00 00

(run_363664,
‘datal8_13TeV,
1001_haz7,

W
]

Mon/CaloCalTopoClustersN...  undecided 0.0 00 00 00 00 00 0.0 0.000000 00 00 00 00

(run_363664',
‘datals_13TeV,
11001_h3zT,

o

Mor/CaloCalTopoClustersh...  undecided 0.0 00 00 00 00 00 0.0 0.000000 00 00 00 00

(run_363664,
‘datal8 13TeV,
1001_h3z7,

IS

.. undecided 0.0 00 00 00 00 00 00 . 0.000000 00 00 00 00

(run_367365,
‘datal8 hi,
11030_n333,
exp..
(run_367365,

Ab, RN TopoClustersN...  undecided 00 0 00 00 00 00 0o . 0.000000 00 00 00 00

eXp...

a160 [ lusterMon/CaloCaiTopoClustersh...  undecided 0.0 0.0 00 00 00 0.0 00 .. 0.000000 00 00 a0 00

(run_367365,
a6z AL usterMon/CaloCaiTopoClustersN...  undecided 0.0 00 00 00 0o 00 0o . 0.000000 00 00 00 00

(run_367365,
“Gatals i

4183 39 n333,
exp..

&

aloCalTopoClustersN...  undecided 0.0 L] 0.0 00 00 0.0 0.0 0.000000 00 00 00 00

(run_367365',

aey fusterMon/CaloCalTe tersh...  undecided 00 00 00 00 00 00 00 . 0,000000 00 00 00 00
“exp...

4165 rows x 6438 columns

Figure 35: The horizontal dataset contains 4165 histograms, 83 ftags, all compiled
together in 4165 datapoints, one per histogram, and 6438 features. Most features are for
each coordinate in the 65x99 histogram plane, and a few metadata features as well. This
dataset was constructed for example to highlight its limitations.

3.5 Exploration of Reconstruction Error in Anomaly Detection

3.5.1 Does Reconstruction Error Correlate with Anomalous Data?

This is an important question to ask. First, the only way to know this for certain is
to use a dataset with known labels. Next, after training the model, the reconstruction error

by datapoint similar to Figure 36 can be studied.
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Reconstruction error for different classes
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Figure 36: The reconstruction error per data point of some arbitrary anomaly detection
algorithm. Anomalies ground truth labels are given by color, and the threshold in this
case is a single linear classification boundary in this space. It appears that the
reconstruction error, in this case, has more examples that cannot fit inside a linear
classification threshold (more fraud data mixed between normal data than fraud data
classified by a threshold).

The issue here is that an attempt to impose a linear classification rule is being
made (threshold in this case) to what appears to be non-linearly separable data. It is
nonlinearly separable by class specifically because, with this example’s setup, there is not
a linear correlation between the reconstruction error and the normal or fraudulent labels.
Further verification of this by plotting the class labels vs reconstruction error can be made
to see if the classes for lower values of reconstruction error tend towards class 0 or not
and if the classes for higher values of reconstruction error tend towards 1 or not. An even
better representation that would allow one to verify a correlation here would plot the class
prediction probability against the reconstruction error if it is available.

If such a correlation between class and reconstruction error is found, when the
above plot was generated, the majority of anomalous datapoints above such a threshold

value would be seen and the data could be linearly separable in this context.
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The question is revisited, does reconstruction error correlate with anomalous

data? The short answer is it should and the long answer, as above, is it depends. In both

cases, this is extremely important to construct and verify for an anomaly detection model

to achieve its intended purpose. The next obvious question then is how can the

reconstruction error be made correlate with anomalous data points?

3.5.2

How to Make Reconstruction Error Correlate with Anomalous Data?

Typically, it is assumed that reconstruction error correlates with anomalous

datapoints, but recent work is showing this may no longer be the case [66, 67, 68].

1.

Train on mostly non-anomalous data points. If an autoencoder is trained to
learn how to reconstruct input that it sees, then if it is trained on
anomalous datapoints, it will learn to reconstruct anomalous and non-
anomalous data points. If it is trained on only normal data points, then
given an input with anomalous data, it will reconstruct what the non-
anomalous set would look like and therefore cause the reconstruction error
to correlate high with anomalous data points. The issue with this is that it
becomes a supervised task (and to some degree all unsupervised
classification of anomalous data becomes supervised in the literal sense
such as when imposing a threshold parameter to the model).

Use a different algorithm.

Use a different architecture for current algorithm.

Add relevant features to the dataset.

Use a different set of hyperparameters.
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Thus, without going the fully labeled dataset route, a series of experiments can be
conducted, preprocessing techniques can be applied, and transformations can be made to
this approach in order to achieve a reconstruction error that correlates well with
anomalous data. Therefore, in order to discover the optimal approach, a series of
experiments will be conducted to see the effects the system’s experiments will have on
the established controls. In an effort to separate anomalous data from non-anomalous data
using reconstruction error, a few main assumptions related to the issue is reviewed:

1. The often-made assumption is that anomalous data points will have a high
reconstruction error [66, year 2019]. That is, reconstruction error should correlate
with outlier probability.

2. It has been found that this is not always the case. To mitigate this issue, many
approaches now assume that a semi-supervised approach where training on non-
anomalous data only yields high reconstruction error for anomalous data points
[66, year 2020].

3. Even then, the assumption in 2 may be poor because it has been shown that when
trained on non-anomalous data, the autoencoder is still capable of reconstructing
anomalous data. A proposed solution to this is generating anomalous data from
non-anomalous data, thereby giving a more concrete boundary for the
autoencoder to construct a distribution whose reconstruction error can more
reliably predict anomalous data points [67, year 2021].

Exploration of this idea of how to make reconstruction error correlate with outlier
probability in the coming experiments will be explored. It is from the previous reasoning,

as well as for evaluation purposes, the data generation method was chosen as the
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preferred method. From that starting point, how to make this correlation for the final
solution will be discovered, or an equally useful solution to achieve the work’s objectives

will be found.

3.6 Exploratory Analysis of the Training Set and Testing Set
The unsplit dataset contains over 41,000,000 data points consisting of 6408
histograms whose axes are a full length of 99 in x and 65 in y. The train and test sets have
file names “x_train_df2.csv” and “x_test df2.csv” respectively. The split datasets can be

viewed in the Figure 37 and Figure 38:

paths x vy occ ftag id hist_type hist id quality occ 0tol occ_zscore occ_robust

0 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 0 0.0 0 2 2 0 0.000000 -0.163700  -0.449285
1 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 1 0.0 0 2 2 0 0.000000 -0.163700  -0.449285
2 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 2 2454.0 0 2 2 1 0032756 -0.161290 0.021687
3 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 3 0.0 0 2 2 0 0.000000 -0.163700  -0.449285
4 run_363664/CaloMonitoring/ClusterMon/CaloCalTo... 0 4 0.0 0 2 2 0 0.000000 -0.163700  -0.449285
27593275 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 60 0.0 84 17 233 0 0.000000 -0.090706  -0.170740
27593276 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 61 0.0 84 17 233 0 0.000000 -0.090706 -0.170740
27593277 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 62 0.0 84 17 233 0 0.000000 -0.090706 -0.170740
27593278 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 63 78.0 84 17 233 1 0.006434  -0.090692 0.036157
27593279 run_360402/CaloMonitoring/ClusterMon/LArCluste... 98 64 0.0 84 17 233 0 0.000000 -0.090706 -0.170740

27593280 rows x 11 columns

Figure 37: Anomalous Training Dataset (pMtrain_a, file name “x_train_df2.csv”)
contains 4288 histograms, 83 unique ftags, all compiled together in 27,593,280 samples
and 11 features (x as 1, y as ¢, and occ as occupancy) as well as 2 metadata features.
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Figure 38: Anomalous Test Dataset (pMtest_a, file name “x_test df2.csv”’) contains
2120 histograms, 83 unique ftags, all compiled together in 13,642,200 samples and 11
features (x as 17, y as ¢, and occ as occupancy) as well as 2 metadata features.

From Figure 37 and Figure 38, it can be seen that the datasets have been split
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such that % of the data will be for training while '3 of the data will be for testing. There is

no perfect standard for this split, but others often split datasets between 80/20 and 70/30.

The advantage of having a larger training set is a potentially better trained model, but the

advantage of a larger testing set is better evaluation on a model’s generalizability (Note:

the datasets are split histogram-wise rather than data pointwise to allow model

interpretation and explainability). Both datasets exist in .csv file format for easy
importing and exporting throughout the data processing and machine learning parts of

this work.

These datasets contain 18 unique types of monitoring histograms. The histogram

types can be identified by their pathing information as given by the run file structure. The

18 types of histograms used are as follows:

1. CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m_clus_e

taphi Et thresh0,



10.

11.

12.
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CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m_clus e
taphi_Et threshl,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m_clus e
taphi_Et thresh2,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/2d Rates/m_clus e
taphi_Et thresh3,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/General/etaphi_ncel
linclus,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/TransEnergy/etaphi
_thresh_avgEt 0,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/TransEnergy/etaphi
_thresh _avgEt 1,

CaloMonitoring/ClusterMon/CaloCal TopoClustersNoTrigSel/TransEnergy/etaphi
_thresh _avgEt 2,
CaloMonitoring/ClusterMon/CaloCalTopoClustersNoTrigSel/TransEnergy/etaphi
_thresh _avgEt 3,

CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m_clus_etaphi
Et threshO,

CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m_clus_etaphi
Et threshl,

CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m_clus_etaphi

Et thresh2,



65

13. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/2d Rates/m_clus_etaphi

Et thresh3,

14. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/General/etaphi_ncellinclu

s,

15. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/TransEnergy/etaphi_thres

h avgEt 0,

16. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/TransEnergy/etaphi_thres

h avgEt 1,

17. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/TransEnergy/etaphi_thres

h avgEt 2,

18. CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/TransEnergy/etaphi_thres

h avgEt 3
(NOTE: The hist_type value in the data frame starts with hist type = 0 for the 1% type of
histogram above and hist_type = 17 for the 18" histogram type above).

Following the exploration of the dataset and reviewing the literature in the domain
of anomaly detection and anomaly detection in high energy physics, an unsupervised
autoencoder based approach seems most appropriate as primarily unlabeled, clean data is
available. In addition to this, rather than relying entirely on a neural network to achieve
the anomaly detection objective, there also appears to be an opportunity to exploit the
type of pattern that presents itself in the datasets when anomalies are present. Thus, a
DBScan clustering algorithm on the back end of the autoencoder model will be included.
In section 3.10, further detail on the reasoning behind this choice is explained. The other

works in these domains have thoroughly explored autoencoder approaches, but none have
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currently been found to have also tried explicitly exploiting this pattern in the data in
combination with autoencoders. In an effort to not simplify the results, a standard
autoencoder architecture whose parameters will be described further in section 3.7.1 will
be used. This should simplify the comparison of this approach to other typical methods
on the front end [68].

As a first step, calibration of the systems for training the model will be made by
constructing a complete autoencoder for some experiments on normalization of the
dataset. It has been observed in other work that the choice in normalization scheme

depends on unique dataset [85].

3.7 Experiments

3.7.1 Parameter Explorations

For all experiments excluding the complete autoencoder, the best setup will be
determined and compared to other results. Variations in architecture and layers will be
made, activation functions, input features and targets, as well as validation features and
targets. For conciseness, the details of every setup will not be included. Some of the
following parameters will be explored during the experimental phase of the work:

e physics Main stream monitoring histograms only (identified by “pM” in the
filenames)

e pMtrain_nonAnom —vs— pMtest nonAnom

e pMtrain Anom —vs— pMtrain_ nonAnom

e Hot spots —vs— cold spots

e 4208 histograms training set

e 2120 histograms in the test set
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AE Model is fit to “pM” dataset that does not include generated anomalous data
points, but testing and validation utilizes the anomalous version of the dataset (i.e.
“pMtrain_a”)
Hyperparameter tuning
Architecture and Layers
o 3 input layer nodes: (17, ¢, occupancy)
o Various encoder, latent, and decoder layer nodes will be tested to
determine the best reconstruction error performance
o 3 output layer nodes: (1, ¢, occupancy) - as the eta and phi coordinates
will be reconstructed, but are constant, the eta and phi coordinates are
mapped to the reconstructed occupancy values only
Optimizer - Adam (adaptive momentum) - the Adam optimizer is one of the best
general-purpose optimization algorithm for deep learning applications currently
available
Loss function - MSE (mean squared error) - Rather than other approaches that use
binary crossentropy with sigmoid activation outputs in this space, the MSE has
been chosen as the reconstruction error in the same manner as other researchers
Activation function - testing will include the standard Relu as well as some linear
activation functions. Reconstruction will occur over the entire histogram and final
classification will occur later, the output activation will not be mapped to a

sigmoid or binary function.
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In summary, the experiments will include these parameter combinations, the
previously mentioned explorations, the autoencoder approach, and an exploration on the
outlier decision function and final classification methods in the coming sections.

3.7.2 The Autoencoder Neural Network (AE) Approach

In neural network and deep neural network approaches using images and image
like inputs, it is common to use each pixel of the image as an input to the neural network.
However, while there is plenty of data available in high energy physics, much of which is
currently unlabeled. Therefore, an image the size of the monitoring histograms (99x65)
would require 6,435 input parameters with only 4200 data points for the model if the
process was continued in this way which could lead to overfitting. Fortunately, initial
assessments with the complete autoencoder demonstrated that no unusual behavior was
present in the vertical dataset that was constructed utilizing coordinates as features. This
will allow an advantage in terms of neural network parameters as well as resilience
against overfitting the model. This configuration can restrict the autoencoder’s ability to
learn complex information, but as will be shown, the autoencoder will easily reconstruct
the histogram with an expected level of loss and provides a reconstruction error result
that is essential for the anomaly detection process.

3.7.3 A Note on Reproducibility

Deep Learning Neural Networks and Neural Networks in general require extra
consideration to reproduce results because they are stochastic by design. They are
designed with many pieces that are randomized in order to generate the best results [69].
However, this does not mean a well performing model can be made from the random

information that is embedded into the training.
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One way to reproduce the results is relatively straight forward. Once the model is
trained, all the random information that was used to initialize and process the model
during training is statically set in the final outputs, the model and its weights can be
saved, and this information can be loaded to predict with the same evaluation results as it
was when it was originally saved. More complex methods to reproduce the results can be
found in the literature [70, 71, 72, 73].

For reproducing the model, a detailed set of instructions is given on dataset
construction as well as the parameter configuration and architecture configuration for the
model. There will also be included the saved and trained file for the model itself that can
be rapidly loaded and tested, and the final form of the code used in producing the results

will be uploaded to a GitHub repository.

3.8 Outlier Decision Function, Probability Function, and Model Evaluation
The “outlier decision function” is an important step necessary to move from

manual classification of outliers to automatic classification of outliers. In [74], the
authors suggest that when moving from manual classification to automatic classification,
a threshold parameter must be set. It is not hard to jump from this requirement to
applying statistical techniques such as the 3-sigma rule, the mean absolute deviation, or
the interquartile range. However, the authors also offer other work that has used machine
learning methods to calibrate for this requirement. It is also believed that this threshold
requirement is of key importance to run an automatic anomaly detection system. The
developed approach will exploit patterns in the data that suggest outlier behavior to
calibrate this threshold. In other work, authors have utilized the unsupervised machine

learning technique of clustering to exploit distance-based patterns in data to automatically
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classify certain data as outliers [64]. The unsupervised clustering algorithm DBSCAN
(see 2.3.3) will be used as the decision function to take advantage of the kinds of patterns
this detector data exhibits on the occupancy matrices in order to make the final
classification decision. Again, outliers can occur in hot or cold spots, strips, or layers.
Experts identify these outliers based on the context of nearby data points in the same
strips, nearby strips, or the entire map. Nearby, in terms of machine learning, suggests a
distanced based or nearest neighbor approach, and experiments in this work will prove
the validity and usefulness of this approach to anomaly detection in this domain. In
general, sources such as [65] loosely suggest that the autoencoder reconstruction error
correlates with anomalous data points, but the initial findings have not been able to
confirm this. Thus, an assumption of outlier probability can be viewed as follows:
P(OL) < RE, (15)
P(OL) x d, (16)

Where P(OL) is the outlier probability, RE is the autoencoder reconstruction
error, and d is the Euclidean distance to its nearest neighbor. Equation 1 is a finding in
various sources on anomaly detection that utilize autoencoders. The second relation will
be verified by results from the anomaly detection approach in this work.

The threshold parameter is one of if not the most important parameters chosen for
an unsupervised learning application. The reason for this, specifically with regards to
anomaly detection, is because regardless of how effective an algorithm is, in order to
automate the final classification of outlier or inlier, this parameter must be set to make
that final decision. In [75], the authors briefly discuss the importance of threshold

selection and go further by offering a technique based on their work that is more
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sophisticated than the standard. The standard method is the so-called “elbow method”
where a scientist would select the threshold by eye based on a subjective choice of slope
change on the PR curve. There appears to be very little information available about
threshold selection beyond this simple method in the literature, but the solution offered
by the authors provides insight into this as well as what the elusive outlier probability
might look. They suggest using the Bayes Decision Rule to offer a more robust way of
selecting threshold. The rule is given below:
(A1 — 21)P(wq]x) > (A1 — A22)P(w,|x) (17)

Where A;; is the cost of misclassifying w; as w; and P(w;|x) is the probability
that data point x is class i. The subject of interest for this work is the class probability,
however the best explanation of how this relates to the problem is that when the
probability of class 1 equals the probability of class 2, the threshold is 0.5, a 50-50
chance, and setting the loss such that the probability of the inlier class is greater, a greater
false positive rate is incurred whereas setting the probability of outlier class greater a
greater false negative rate is incurred. This mathematically defines the advantages and
disadvantages of a higher or lower threshold value. Typically, the threshold parameter
exists in industry standard packages such as scikit-learn for python.

Few sources found in the literature clarify threshold parameter settings of results
for entirely unsupervised approaches. Rather, the threshold is commonly calibrated by
selecting a result from a ROC curve of supervised models that return results from labeled

datasets [76].
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3.9 Evaluation, Interpretability, and Explainability
3.9.1 Evaluation

In the previous section, the connection between threshold selection and common
evaluation methods was explained. While this method (ROC) is reasonable to quantify
the performance of a model, it forces a requirement of labeled data. In this unsupervised
approach, the technique suggested in [77] is drawn from, where the predictions are
ranked according to the anomaly score and then iteratively a threshold is applied from the
first to the last rank, resulting in N tuple values for true positive and false negative rates
that can be used to generate the ROC and AUC curves. In [78], the authors interpret the
AUC in the anomaly detection domain as the probability an anomaly detection algorithm
will assign a randomly chosen normal instance a lower score than a randomly chosen
anomalous instance. That is, higher AUC scores suggest higher ability of the algorithm’s
predicted scores to represent outlier probability. To facilitate this evaluation, the
precision_recall curve, auc_curve, and the classification report classes from the sklearn
library will be used.

Since each prediction of the algorithm only tests outliers in a single histogram and
to get a better overview of the performance, the model will be run over the calibrated
histogram for several runs and/or ftags. It will be determined if calibration needs to be
run on a histogram-by-histogram basis by comparing model results between different
types of histograms. Each calibration takes time to find optimal threshold values but inter
histogram comparisons are quicker using the same threshold configurations. The

classification report metrics are explained in Figure 39.
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Besides the models themselves, it is recommended that researchers ask the
following questions to identify key differences of works in this problem space when
comparing results:

o Is the data labeled? If so, how much of it is labeled and what is the quality of the
labels? (Have they been generated? From a model? From experts?)

e With regards to model architecture, how specifically was the model constructed?

e Do labels identify outlier/inlier values with respect to occupancy values of

specific coordinates, entire strips, entire histograms, or entire sections of the

detector?
predicted—
| classpos Classnes| PR (sensitivity) = o
Class_pos TP FN
. . FP
Classneg| FP TN FER (-speciboitr) = o 50

Figure 39: A diagram of how the classification matrix returns classification results. The
true positive rate (TPR) and false positive rate (FPR) formulas are given based on the true
positive (inliers classified as inliers, TP), false negative (inliers classified as outliers),
false positive (outliers classified as inliers), and true negative (outliers classified as
outlieres).

3.10 Dashboard and Deployment
Individuals who followed the initial tracking of the COVID-19 pandemic spread
have likely been exposed to a dashboard using epidemiological information. A dashboard
system allows for live monitoring and forecasting (depending on the requirements) for
the user to benefit from the achieved objectives. They can include analytic as well as
predictive information [79]. This type of system has been identified as a valuable, first

iteration tool for individual users and, perhaps in the future, shifters in fulfillment of the
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previously mentioned objectives. The dashboard is deployed using Dash by Plotly (see
3.2) with all its requirements using Docker (see 3.2) to allow consistent, uninterrupted
use of the solution. Future iterations of this type of solution could be integrated on the

main ATLAS server end rather than operating as a local tool.



CHAPTER 4

RESULTS

The results of these experiments rapidly converged on the patterns apparent in
each part of the system. The first part being the resultant patterns observed and leveraged
by the autoencoder for use in the second part of the system used to make the final
classification of the outlier vs. inlier. The following information provides the results of

those experiments.

4.1 Validation Dashboard Initial Phase

The validation dashboard currently runs as a locally hosted server but can be
deployed similarly to an externally available online server. The current format provides
examples of what the dashboard can do for users to make the final decision on features
that will be implemented in upcoming versions as well as the current core functionality of
an efficient plot to determine differences of all relevant histograms between 2 specific
runs. This plot is of chi squared differences between 2 runs vs the histogram itself - one
chi squared difference per histogram type. Hovering over any datapoint gives all
necessary meta information including the exact chi squared value and specific histogram
and run information. Future updates will include the anomaly detection system. The

validation dashboard in its current state can be seen in Figure 40.

75
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Atlas Validation Dashboard

2941 1110 35 o

Distributions Chi2/NDF vs Hists

H1 Chi2INDF values by hist TH2 Chi2INDF values by hist

Figure 40: A visualization of the Dashboard’s current version. One analysis plot for each
of the histogram types TH1, TH2, and TProfile are provided. On the “Distributions” tab
are found the distributions for the respective distributions.

4.2 Initial Experiment Results

Initial experiments began implementing a CNN approach, but the limitation of
having very few ground truth labels was quickly apparent. ATLAS’s defect database is
not currently in the state to provide detailed enough information about ground truth labels
that would be used for this type of application. Following this realization, The decision
was made to approach the problem from an unsupervised point of view. Therefore, the
results of these tests provided information as to the nature of limitations going into this
research. Later, it was discovered that the information reported in chapter 3
recommended manual generation of anomalies during the design of the evaluation of the
experiments. By that time, the infrastructure for the unsupervised approach was already
developed and there appears to be no advantage to reviewing the CNN approach. This

also means this research will provide an advantage in a different scenario for data quality
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assessment since it can be implemented without the need for ground truth labels. The

model will be tested and calibrated similar to the initial experiments before moving on.

4.3 Results of Complete Autoencoder for Model Construction, Validation, and
Choice of Dataset
After preparations for the unsupervised experiments were ready, a basic check

was made to make sure the setup behaves as expected. For this, the identity function was
modelled with minimally invasive parameter setups. Some variation was expected due to
leaving some parameters unmodified, but it was expected for this setup to yield near
identity like reconstruction.
Parameter configuration for training:

e Adam optimizer

e MSE loss

o Input layer 3 neurons, output layer 3 neurons

e 10 epochs

e 32 batch size
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Autoencoder Loss vs Epoch
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Figure 41: Reconstruction error of identity function on the dataset.

The total reconstruction error in the training set was about 0.01% and the total
reconstruction in the test set was about 0.31% using this configuration.

Of the 10 runs, the run with the lowest reconstruction errors were selected in
order to reconstruct the input as close as possible. In the 10 runs, the reconstruction error
was consistently close to what would be expected from this minimally invasive setup. It

can be further optimized to achieve less error, but this is an acceptable benchmark.

4.4 Results of ANN and DBScan Approach
The following information follows the anomaly detection system that was focused
on following initial experiments.
The reconstruction error applied as the scoring function for the autoencoder can
be seen in Figure 42 and Figure 43. Applying a high end threshold to these values

should yield the hot spot outliers as expected, but the reconstruction error with the MSE
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has an effect on the low end inputs that will exploited in the upcoming results to be useful

in identifying outliers containing cold spots as well.
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Figure 42: This plot is of “occ_0to1” vs “occ_0to1” simply for demonstration. This is an

input strip from an example histogram. Assuming these inputs, see Figure 43 for the

affects of applying the Autoencoder based MSE.
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Figure 43: The Autoencoder applies the Mean Squared Reconstruction Error(MSE) as
the anomaly scoring function and the resulting values applied from the inputs of Figure
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42 change as shown here. The y and x axis are of the same MSE result data, visualized in

this manner rather than on a single axis as an aesthetic choice.

Figure 44 shows an example histogram that the model is applied to. Figure 45 is

the heatmap of reconstructed values of those inputs through the Autoencoder part of the
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model. Figure 46 shows an alternative 2d visualization of the example histogram input
values. Figure 47 shows that same alternate 2d visualization, but with the reconstructed
occupancy values instead. Figure 48 shows the heatmap of reconstruction error values

calculated from the MSE for this part of the model.

input_hist
8 72/CaloMonitoring/ClusterMornyLArClustereMNo Irigscy IransEncrgyfetaphi_thresh_avgkt 0

1121006 4& 20

08K MNQUXNKNROVBDHN2 DN

Figure 44: An example input histogram that will be reconstructed with the Autoencoder.
The original data of the example histogram is shown here. Compare with Figure 45 to
estimate results.
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Figure 45: A reconstruction of the example histogram from Figure 44. The
reconstructed values are shown here. Compare with Figure 44 to estimate results.

.................................................

Figure 46: A more detailed look at the data values in the reconstruction gives insight into
the effect the autoencoder has. The horizontal axis is the coordinate index of each
coordinate in the histogram. The vertical axis is the occupancy at that coordinate.
Comparing this and Figure 47 clearly demonstrates the autoencoder’s reconstruction
error spreading out clusters of data points. Original data given here in this figure.
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Reconstructiongrror2d
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Figure 47: A more detailed look at the data values in the reconstruction gives insight into
the effect the autoencoder has. The horizontal axis is the coordinate index of each
coordinate in the histogram. The vertical axis is the reconstructed occupancy value.
Comparing this with Figure 46 clearly demonstrates the autoencoder’s reconstruction
error spreading out clusters of data points. Reconstruction values given here in Figure
47.
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Figure 48: Reconstruction error relates to the function between the original and predicted
occupancy values. Here, a visualization is given of the reconstruction error rather than the
predicted values or reconstructed values. A high reconstruction error for the 2 highest
occupancy coordinates in the histogram can be seen.
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This next part of the experiment's results shows a technique that was used to
easily see where large clusters of data points exist for the distribution and the smallest
clusters describe anomalous clusters. The clusters are identified with DBScan. This
identification process has 3 types of identification modes: “global”, “stripwise”, and
“zonewise”. The “global” mode looks at the clusters that appear in this manner and picks
out the anomalies that are of concern with respect to the entire histogram’s occupancy
values. The “stripwise” mode returns anomalies detected in these clusters for each eta
strip and is useful for picking out anomalous behavior relative to individual strips. The
geometry of the detector creates a flat normal distribution along each eta strip such that
these are ideal targets for anomaly detection. Finally, the “zonewise” mode returns the
anomalous data points strip by strip as before, but this time taking additionally taking into
consideration the adjacent strip occupancy values to determine if the cluster in question is
anomalous or not. The results of these modes are depicted in the following plots. Note:
These plots are of the reconstruction error values from the above plots Figure 45 and the
input occupancy values Figure 44. The choice of plotting these axes is mostly an
aesthetic choice so the clusters can be better seen, and if desired, could be presented in 1d

as Figure 49.
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Figure 49: 1d version of the suspect anomalous clusters according to the reconstruction
error. The y axis is meaningless here as it is the height of the blue location lines. The x
axis is the normalized reconstructed occupancy values from the example histogram.

Figure 50: Plot demonstrating how the system classifies anomalies in the global mode.
The system outputs the anomaly details by coordinate as [(7, ¢, normalized occupancy)].
Here, it returns [(31, 45, 1.0), (31, 63, 0.85125035)].
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In the “stripwise” mode, since there are 99 strips to each histogram, it would add
no extra value to include so many resulting histograms, but several cases are included
here to demonstrate how this mode classifies the clusters and anomalies. In this example
histogram, there are several strips of entirely 0 value occupancies. These return no

anomalies as expected and are skipped for convenience

Figure 51: Plot of “stripwise” identified anomalous clusters using the developed system.
The returned anomalous coordinates in the identified cluster are [(24, 0, 0.0), (24, 2,
1.0)]. In the same format as before mentioned. According to the 1 value, this shows s

In cases where naturally occurring clusters that are still in the distribution occur,
several clusters are identified. It is then the assumption is enforced that anomalous values
occur in least frequency and declare a “minpts” parameter to indicate the maximum
number of values that can occur in a cluster for it to be deemed anomalous. As this
threshold gets tuned, it affects the overall performance of the model and is a target for

optimization as will be described later. For this example histogram, the “minpts” value is
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set to a maximum of 10 occupancy values. The strip in Figure 52 indicates this behavior

of the system.

.
-,
S

Figure 52: Plot where multiple clusters are identified in strip 34 of the example
histogram. The clusters with the lowest frequency are the green and yellow clusters as
shown. The system reports anomalous values for clusters that contain less than 10 values.
In this case those are indeed the green and yellow clusters. Yellow cluster anomalies:
[(34, 5,0.96149087), (34, 22, 0.9559057), (34, 29, 0.97456884), (34, 36, 0.9712373),
(34, 45, 0.97742224), (34, 52, 0.95238775)]. Green cluster anomalies: [(34, 0, 0.0), (34,
13, 1.0), (34, 60, 0.9141569)].

The “zonewise” mode has no additional special characteristics besides
considering the adjacent strip’s occupancy values for clustering. Focusing again on strip
24, Figure 53 demonstrates the difference between the detection settings during the
anomaly detection. Figure 53 will differ in its look due to inclusion of strips 23, 24, and

25’s occupancy values.
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Figure 53: Plot of how the anomaly detection system classifies potentially anomalous
information in strip 24 of the example histogram. The mode is set to “zonewise”.

Here, the “zonewise” mode has differences in what anomalous clusters it detects
vs the stripwise mode. The two smallest clusters here are blue and red, but due to the
threshold settings, only one data point is reported suggesting one of the two clusters
contains more than 10 data points. The anomalous data point reported in this case is [(24,
2, 1.0)] which does not include the =0 coordinate values due to there being several
present from multiple strips’ 0 values being present and the distance these values are
away from the next closest cluster.

One important note is that, while the experiments yielded no advantage to using
one normalization method over the other, the necessity of normalizing the values was
recognized during the DBScan part of the system so that the distances over all test
histograms, strips, reconstructed occupancy values, and occupancy values will be of the

same range so the distance between clusters can be properly measured.
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In addition to the “minpts” there is also a distance-based parameter called epsilon
for DBScan or “eps_threshold” in the program. This is another key parameter to optimize
the performance of the model and will be discussed further in later results.

All anomalies identified by all settings of the system will now be reported for this
example histogram. The 3rd value in the tuples reported are based on the normalized
reconstructed error for the histogram or strip depending on the cluster setting. Therefore,
these should not be judged on the histogram against the input histogram occupancy

1’9 13

values. In the example above using the “global”, “stripwise”, and “zonewise” settings,
binary masks are constructed as heatmaps of the occupancies in Figure 54, Figure 55,

and Figure 56. Outliers are visualized in this way for comparison with the inputs and

expected results.
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Figure 54: Binary Mask of classification results from the model set to the “global” setting
on the example histogram.
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Figure 55: Binary Mask of classification results from the model set to the “stripwise”

setting on the example histogram.
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Figure 56: Binary Mask of classification results from the model set to the “zonewise”

setting on the example histogram.

In the program, the output is currently given as coordinate tuples that can be further

processed but may be adapted this way in the future.
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When comparing the reported outliers by all the modes with the original input
histogram, the model can be seen to pick up the hot and cold spots, strips, and layers for
this histogram at a very fine level of detail. The question of whether or not the reported
values are indeed anomalous depends on the requirements of the shifter and this
sensitivity of the model can and should be adjusted in the “eps_threshold” and “minpts”
parameter settings and/or by selecting the best or all cluster settings (global, stripwise, or
zonewise).

Attention will now be given to explaining the classification report based on the
generated anomalous data points in this histogram.

As it happens, this histogram has a single anomalous data point that was
generated in it. In Figure 57, it appears to properly classify this anomalous data point
with the system, but there appears to be an additional 131 false positive (true inlier, but
predicted outlier) from the system. The reason for this is due to limited access to ground
truth and clean data. With careful review of the previous figures, what appears to be
happening with the detection system is that values that are likely to be truly anonymous
(and not indicated as such up front by the dataset) have been identified. This, of course, is
subjective, but results can be reviewed by subject matter experts to further determine the
utility this unsupervised approach provides. This configuration can of course render an
unnecessarily high number of false positives as is the case here, but the choice of “epsilon
threshold”, “minpts” settings and “global”, “stripwise”, or “zonewise” cluster settings
allows the system to adjust the user tolerance for false positives and false negatives as

will be shown momentarily.
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Figure 57: Classification report using the histogram data from Figure 53 and previous
figures. 6303 True Positive classifications, 131 False Negative classifications, 0 False
Positive classifications, and 1 True Negative classification was reported in this
evaluation. The threshold settings to achieve these numbers was “eps_threshold” = 0.1
and “minpts” =10

In order to demonstrate the model’s true ability to classify outliers, it was
previously mentioned hot and cold spots, strips, and layers have been randomly generated
in the datasets. The example histogram from above demonstrates the model’s potential
ability to predict outliers that were both generated and internal to the dataset. The
following examples will demonstrate the model’s performance on significantly more
anomalies generated in the datasets to pressure test the system. In order to do this, the
need to optimize the threshold parameters and report the model’s abilities with the well-
known ROC curve and AUC metric has been recognized [81, 82].

After a random search through a range of threshold values, the values that
converged and offered the best results are shown Figure 58. As a note, this ROC curve

has been calculated for the two thresholds rather than the typical single threshold. Having

searched and found a convergent pattern for the best scores, “eps_threshold” = 0.0044



92

has been in this case set for the first threshold yields the following ROC curve over a

range of “minpts” values.

Figure 58: ROC curve of the example histogram from Figure 43 and Figure 44. The
AUC is calculated as 0.864 over the threshold iterations.

This graph demonstrates with some interpretation how effective the algorithm is
at anomaly detection. An AUC of 0.864 is presented. It is said that an AUC score of 0.5
classifies positive and negative values about as good as a random guess. According to
Homer et. al., an AUC of 0.5 suggests no discrimination, between 0.5 and 0.7 suggest
poor discrimination, between 0.7 and 0.8 we consider as acceptable discrimination,
between 0.8 and 0.9 we consider as excellent discrimination, and greater than 0.9 as
outstanding discrimination [83].

On the other hand, the context of this evaluation must also be taken into
consideration. As one user suggests, “If you are a trader and you can get an AUC of
0.501 in predicting future financial transactions, you're the richest man in the world. If

you are a CPU engineer and your design gets an AUC of 0.999 at telling if a bitis 0 or 1,
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you have a useless piece of silicon.”, so the true importance of this metric depends on the
domain in which it is applied [unknown quote author]. How important is a high true
positive rate versus a low false positive rate for this anomaly detection system? For
physicists working on certified data, a high true positive rate means there exists a lower
type 1 error removing potentially useful bits of data. A low false positive rate means there
exists a lower type 2 error removing potentially harmful bits of data. Since these
thresholds can be set as desired with the automatic system ahead of time, the final
decisions on which type of error is better to minimize are better left for the subject matter
experts. Assuming the type 2 error in this case is primarily what the data quality
assessment process aims to optimize, with type 1 error second to that, one option is to
first select the tolerance for false positive rate, then select the highest true positive rate
that suits that limit. Although, the reverse is also possible.

At this point in the evaluation, notice the example histogram that has been being
used so far is of the type 15 according to section 3.6’s numbering of histogram types in
the dataset
“CaloMonitoring/ClusterMon/LArClusterEMNoTrigSel/TransEnergy/etaphi_thresh avg
Et 0”. All 18 types of histograms are based on the calorimeter sub detector systems and
share similarities that suggest their results will be similar. To verify this assumption,
similar ROC-AUC based results will be provided as above for one example of each of the
remaining 17 types of histograms and determine any differences in performance based on
histogram type. Hist type 15 has already been evaluated so it is skipped in Figure 59

through Figure 75.
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Figure 59: ROC curve of histogram type 0. The AUC is calculated as 0.879 over the
threshold iterations.
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Figure 60: ROC curve of histogram type 1. The AUC is calculated as 0.841 over the
threshold iterations.
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Figure 61: ROC curve of histogram type 2. The AUC is calculated as 0.88 over the
threshold iterations.
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Figure 62: ROC curve of histogram type 3. The AUC is calculated as 0.885 over the
threshold iterations.
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Figure 63: ROC curve of histogram type 4. The AUC is calculated as 0.94 over the
threshold iterations.
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Figure 64: ROC curve of histogram type 5. The AUC is calculated as 0.9 over the
threshold iterations.
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Figure 65: ROC curve of histogram type 6. The AUC is calculated as 0.937 over the
threshold iterations.
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Figure 66: ROC curve of histogram type 7. The AUC is calculated as 0.945 over the
threshold iterations.
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Figure 67: ROC curve of histogram type 8. The AUC is calculated as 0.899 over the
threshold iterations.
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Figure 68: ROC curve of histogram type 9. The AUC is calculated as 0.932 over the
threshold iterations.
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Figure 69: ROC curve of histogram type 10. The AUC is calculated as 0.961 over the
threshold iterations.
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Figure 70: ROC curve of histogram type 11. The AUC is calculated as 0.927 over the
threshold iterations.
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Figure 71: ROC curve of histogram type 12. The AUC is calculated as 0.972 over the
threshold iterations.
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Figure 72: ROC curve of histogram type 13. The AUC is calculated as 0.982 over the
threshold iterations.
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Figure 73: ROC curve of histogram type 14. The AUC is calculated as 0.978 over the
threshold iterations.
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Figure 74: ROC curve of histogram type 15. The AUC is calculated as 0.968 over the
threshold iterations.
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Figure 75: ROC curve of histogram type 17. The AUC is calculated as 0.968 over the
threshold iterations.

The average calibration time for each histogram (depending on the threshold
search size), was approximately 6 hours. Having provided these results, it appears the
threshold settings differ from histogram type to histogram type. This means there will be
at minimum one full threshold calibration required for this system to detect anomalies
prior to production use. The final detail to verify is that the results do not differ within the
same histogram type, but with different run numbers and/or ftags. This would mean that
every single histogram would need known anomalous values to calibrate on and time to
calibrate prior to running the system rendering it impractical. However, it is possible that
the normal distribution from histogram type to histogram type is sufficiently different that
despite the generated anomalies being of the same character, a threshold calibration will
be required once for each histogram type of interest by the detector. The following results
will clarify whether a single calibration holding good performance results can be

depended on for different runs and/or ftag histograms of the same histogram type. With
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the same calibration that generated its ROC curve, do the results seem stable for a single
histogram over different runs? The results of this are given in Figure 76, Figure 77, and

Figure 78.

Figure 76: ROC curve of histogram type 3. The AUC is calculated as 0.867 over the
threshold iterations. The specific run and ftag_id for this result is run_356124 and 6
respectively.
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Figure 77: ROC curve of histogram type 3. The AUC is calculated as 0.84 over the
threshold iterations. The specific run and ftag_id for this result is run 357750 and 8
respectively.

Figure 78: ROC curve of histogram type 3. The AUC is calculated as 0.89 over the
threshold iterations. The specific run and ftag id for this result is run_358031 and 42
respectively.

Stable behavior is reported for a single histogram type calibrated for a specific

“eps_threshold” (0.0044) varied over “minpts” (0-40). The AUC is consistently above



0.8. More histograms have been tested and all return an AUC score of over 0.8 some
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reaching into the low 0.9 score area. The example histogram from earlier in this chapter

can be found in the web display with the information according to Figure 79.
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Figure 79: Note that the heatmaps of monitoring histograms are plotted such that the y
axis is reversed for convenience and increases vertically downward rather than upward in

this figure [84].
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CHAPTER 5

DISCUSSION

In Figure 41 and Figure 42, the MSE has an interesting effect on the input values
from the monitoring histogram. On the high end the values can be used to identify hot
spots, but on the low end the affected values can be used to classify cold spots as well.
This behavior has been exploited in later figures where cold spots can be seen as properly
identified as expected.

In Figure 43 and its reported total error, the reconstruction error is extremely low,
meaning that the Complete Autoencoder has learned a near identical representation of the
input.

Experiments have shown that the autoencoder trained in this way reconstructs the
input histogram to a great degree of accuracy. In Figure 44 and Figure 45 the input
histogram is reconstructed very accurately by the autoencoder used by the system. Figure
46 and Figure 47 give a 2-dimensional look of what exactly happens to the absolute
values of the occupancy values that are reconstructed from the input histogram. The
figures show the relative distance of the points from one another are the same (leading to
a near exact heat map or image reconstruction), but the exact values of occupancy
between the input histogram and reconstructed histogram differ. Figure 48 shows that
only “hot” coordinates tend to show a higher reconstruction error while “cold”
coordinates have no such behavior.

In the second part of the system where the DBScan algorithm takes over, Figure
49, Figure 50, Figure 51, Figure 52, and Figure 53 show the cluster behavior the

algorithm takes advantage of as well as gives insight into how the algorithm classifies
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anomalous data points in each setting the system can be put in (Figure 50, the global
setting; Figure 51 and Figure 52, the stripwise setting; Figure 53, the zonewise setting).

Figure 54 evaluates a non-clean histogram that has had a single anomaly
manually generated into it and with the threshold settings set to high sensitivity, the
system picks up the global anomalous which are the same as the current in use algorithm
“BinsDiffFromStripMedian” and goes further to identify more suspect data points. The
data points generated in this way have been provided in their entirety for further
interpretation. The results for the stripwise and zonewise settings can be similarly
evaluated in Figure 55 and Figure 56 respectively. Figure 57 reports that of the 6,435
datapoints in the histogram, 6,303 true inliers were classified, 1 true outlier was
classified, O false inliers were classified, and 131 false outliers were classified.

The overall model performance ability of the model is measured using the same
dataset with significantly more anomalies generated. The “eps_threshold” is calibrated by
scanning over well performing threshold values, and after being selected the ROC curve
is generated by varying the “minpts”. The model shows very good performance with an
AUC of 0.864 from Figure 58. To determine if the model is stable with the same
calibrated threshold values for different histogram types, more ROC curves were
generated. In Figure 59 through Figure 75, the AUC values differ with respect to unique
threshold combinations, but following a calibration process, show high performance with
any histogram type. This suggests the model does not require recalibration for each
histogram it is used for, and a calibration exists for each histogram type allowing for high

performance throughout at least the 18 histogram types analyzed in this work.
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In Figure 76, Figure 77, and Figure 78, the model consistently performs well for
the same histogram type with the same threshold calibration values. Several more curves
were generated of the same histogram type with different run and/or ftag values, but all
demonstrated the same stable performance.

It is likely that the developed system generally scores high in performance due to
the types of anomalies being generated in all histograms being of roughly the same
character (spots in random locations, horizontal strips, horizontal layers, limitations on
the length of anomalous strips and layers, intensity of the anomaly being between three
and four sigma for the entire map rather than for that strip). This could mean that a more
effective classification system would need to more accurately generate anomalous data
points in a way that would best resemble detector anomalies. If the assumption can be
made that the anomalous data we generated would be of that same character, then we can
say the system’s performance should be in line with the evaluation results presented.

Referring to the current data quality algorithm in use from chapter 2,
BinsDiffFromStripMedian, this system can be calibrated to achieve a high-performance
rating, and it can be adjusted to suit the user in terms of sensitivity to less visible
anomalies or to only identify highly invasive anomalous data points. The DQAlgorithm’s
thresholds for the tolerable number of differences to render a yellow or red flag on the
histogram is set to a constant value (one for yellow, one for red) for the algorithm and is
not adapted to each histogram type. The DQalgorithm renders yellow flags for the two
anomalies identified by this system as outliers with the global setting as can be seen in

Figure 79.
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Since the objective of this work was not to create a state-of-the-art machine
learning architecture, the focus has been on developing a functional machine learning
system that can improve on the manual systems in place for data quality assessment.
Refinements that compete with hardware and software on the cutting edge of machine
learning are beyond the scope of this work.

Previous research in this domain leads one to believe that the general performance
of machine learning based anomaly detection systems often are on par or exceed the
performance of standard methods of anomaly detection in high energy physics, but the
absolute performance of the same architecture varies with the exact control established
when constructing a dataset, selecting and engineering features, and developing a
solution to a unique problem. This suggests it is possible a simple machine learning based
anomaly detection architecture could outperform more complex methods in terms of
absolute accuracy if the experimental setup is superior in design but requires
confirmation with further research. The scope and limitations in this work, for example,
differ from that of others work in that most Data Quality HEP ML models are designed to
work with TH2 histograms rather than TH1 histograms. For works that also utilize the
TH2 histograms, other input features are considered beyond the topological features that
this scope is limited to. In future iterations, complex features could be engineered with
respect to the TH2 histogram that positively impact model performance.

During the experimental phase, an issue was ran into an issue where resulting
occupancy heatmaps seem to get stuck in a sweeping set of zero values. This issue is
commonly known as the “dead Relu” problem caused from certain values taken in by the

Relu function returning many zero values. The issue was noted and fixed by switching
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the Relu activation function in the model architecture to the LeakyRelu activation
function with default settings.

Is it important to use the autoencoder model for this task at all considering it
seems the clustering model is doing most of the heavy lifting? Truly, a simplified version
of this could use the clustering algorithm itself. Having demonstrated how the
reconstruction error impacts the distances between occupancy clusters, it is likely
important to improve the performance of the model beyond what a simple cluster
algorithm would provide because it is those distances specifically the clustering
algorithm targets when it becomes the outlier decision function. The comparison can be
made between this system and other systems directly without the need for such
experiments, but if there were interest in developing this technique, further study could

be of value to the interested researcher.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, infrastructure has been constructed, initial theoretical foundations
have been established, and first-generation software has been built to achieve the
provided objectives. The infrastructure will allow collaborators of different backgrounds
in the ATLAS experiment access to tools and a system that will greatly simplify the
initial work that would be required to begin experimenting on this application for future
developments. The established theoretical concepts include the data quality assessment
background in ATLAS, autoencoders, DBScan, the outlier decision function or threshold
for anomaly classification, and other fundamental concepts to build on. An anomaly
detection system has also been provided that can achieve high quality, automatic anomaly
detection results with proper threshold calibration (AUC ~ 0.85) built with a uniquely
constructed dataset (local feature descriptors or histogram coordinates versus the one
input per pixel approach which was necessary due to histogram area and availability of
data). This model has been provided as well as a dashboard for validation deployed by
Docker to become part of the first generation of machine learning based data assessment
tools for the ATLAS experiment.

In future work, recommendations include using one calibration per histogram
type assuming the types of anomalies will be of the same character (density, frequency,
shape relative to the histogram 2d map, etc.). The pressure tested system where many
anomalies were generated is calibrated for the “eps_threshold” distances that often occur
due to how it was generated in the code. Natural occurring outliers should have their own

pattern that can be calibrated for. In Figure 57, using “eps_threshold” = 0.1 and “minpts”
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= 10, the system picks up suspect anomalous data points that are internal to the dataset
prior to anomaly generation. The “eps_threshold” in this case is about 3 orders of
magnitude different from the calibrated value found for the generated anomalies in the
same histogram type (0.0044). Again, it is essential to tune these parameters for future
work with and use of this model to reproduce these results.

This calibration step assumes that enough data exists to gather classification
information. It is possible to use previous historical data to calibrate each histogram type
between run periods, but some consideration should be made for what kind of differences
in that histogram type appear from data taking period to period. However, since the shape
of the detector and natural laws will hold constant, it should be possible to use this
historical data with these considerations.

In terms of raw performance, the typical CNN supervised method has been shown
to be superior to this method (AUC=0.99 [5]), but due to the number of inputs being
equal to the number of coordinates for this setup, ATLAS’s large TH2 histograms would
require a significant number of ground truth labeled (detailed defect tagged) anomaly
information before this high performing technique would be possible. While the model
has been trained on a large number of histograms, the developed technique allows for a
significantly lower number of training histograms (the number of data points is in far
excess to the number of features present in the dataset) to render above average results
and can be a significant advantage earlier in a run period where high amounts of expert
labeled data is not present. The CNN model’s behavior could be more directly trained to
reproduce subject matter expert behavior while this model could provide superior

performance for more detailed or less detailed anomaly detection depending on how its
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thresholds are calibrated. The choice of which model to use is not black and white, but a
gray area where the requirements of the shifters and physicists will dictate which method

better fits the application.
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