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Parameters  1st Set (90% Reliability) 2nd Set (50% Reliability) Trust (1-5) 

 N M SD N M SD r p 

Number of Slides (slides) 357   354     

Time to complete set per  

participant (min) 

 

 11.12 2.45  7.86 1.88   

Fixation Duration of  

Decision Aid (sec) 

 

 3.37 1.61  2.45 1.36 0.175 0.308 

Fixation Duration on  

Decision Aid (%) 

 

 17.6% 7.05%  19.7% 6.73% -0.180 0.295 

Fixation Count on  

Decision Aid (fixations) 

 

 7.85 3.99  6.17 3.39 0.082 0.634 

Fixation Count on  

Decision Aid (%) 

 

 30.3% 10.1%  32.8% 9.30% -0.152 0.376 

Mean Saccade  

Amplitude (degrees) 

 

 9.23 1.64  8.66 2.23 0.099 0.567 

Reliability (1-5)  4.11 0.34  2.87 0.187 0.610 0.000 

Trust (1-5)  3.44 0.90  2.06 0.91   

 

Visual data retrieved from the Tobii software backed up the findings from the 

Table 4-1. The software’s generated heatmaps and gaze plot data displayed heavier 

interactions with decision aids of lower reliabilities. Figure 4-2 and Figure 4-3 highlight 

how the participant reacted when interacting with a low reliability decision aid. For this 

particular example, Tobii indicated a share of 67.1% of fixation duration and 76.5% of 

fixation counts on the decision aid. 

Table 4-1: Descriptive statistics and (last two columns) Pearson’s correlation between 

metrics and Trust (1-5). 
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Figure 4-2: Heat map from example low reliability decision aid. 

 

Figure 4-3: Gaze plot from example low reliability decision aid. 

In comparison, Figure 4-4 and Figure 4-5 highlight a participant’s interaction 

with a high reliability decision aid. These figures show much less interaction with the 

decision aid, evident by both the visual data as well as extracted fixation data. This 

example shows a share of 11.4% of fixation duration and 20% of fixation counts on the 

decision aid. 



29 

 

 

Figure 4-4: Heat map from example high reliability decision aid. 

 

Figure 4-5: Gaze plot from example high reliability decision aid. 

To compare the resulting percentages from each set of slides for all participants, a 

collection of Mann-Whitney U Tests were run. Results indicated a significant difference 

for fixation duration % (p = 0.013), fixation count % (p = 0.02), mean saccade amplitude 

(p=0.010), and average decision aid reliability (p = 0.00) between the two sets. Trust      

(p = 0.000) also showed significant difference. 
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Wilcoxon signed-rank tests were used to study the paired differences in metrics 

between the first and second sets of data (not assuming normality). The tests determined 

that there was a statistically significant median increase in fixation duration % (p = 

0.003) and fixation count % (p = 0.018) between the two sets. The tests also determined a 

significant mean decrease in mean saccade amplitude (p = 0.000), reliability (p = 0.000), 

and trust (p = 0.000) going from the high reliability set of slides to the low reliability set. 

These results match the outcomes from the Mann-Whitney U Tests done previously. 

To further investigate the relationship of monitoring data and trust, a Pearson 

correlation was used to test for correlation between the measures. Figures 4-6, 4-7, and 

4-8 display matrix plots of the comparisons, both indicating negative (but non-

significant) relationships between fixation duration % and trust (r= -0.180, p=0.295) and 

fixation count % and trust (r= -0.152, p=0.376). (Note, 9 out of 36 points contain samples 

of 19 slides (rather than 20), as gaze data for those respective decision aids was 

inconclusive. These points are denoted as stars, while full samples are circles.) 
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Figure 4-6: Correlation chart comparing “Fixation Duration % on Decision Aid” with 

“Self-Reported Trust.” 

 

Figure 4-7: Correlation chart comparing “Fixation Count % on Decision Aid” with 

“Self-Reported Trust.” 
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Figure 4-8: Correlation chart comparing “Mean Saccade Amplitude” with “Self-

Reported Trust.” 

 



 

CHAPTER 5 

 

DISCUSSION 
 

This study sought to investigate how low reliability automation affects user 

interaction and usage of provided decision aid support systems. Throughout the 

experiment, participants completed length measurements of numerous bone defects 

within model images. Participants were provided a comprehensive training (crafted from 

knowledge and cues taken from subject matter experts) to ultimately feel comfortable and 

prepared to make these measurements on their own. To aid their efforts, lab 

representatives provided participants with an automated interpretation of the location and 

its visual measurement of the bone defect to act as a decision aid. This automation was 

developed to emulate the concept of machine-learned analysis of medical images, an 

existing technology (Chan, et al., 2020) and one in which many of the participants 

expressed familiarity. All participants were primed with the decision aid’s confidence 

rating prior to and during measurements, used as a tool for the researchers to manipulate 

the operator’s sense of automation reliability. Given the assumption that system 

reliability influences human use and trust in automation (Parasuraman & Riley, 1997; 

Lee & See, 2004), we attempted to determine if lower decision aid reliability would have 

an inverse relationship with participant gaze data and overall usage of the provided 

assistance. 
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A pre-study experimental power analysis indicated the need for at least 20 

subjects to reach an acceptable correlation (r=0.6). We recruited 21 participants, yet 3 of 

the collected data sets returned insufficient results, finalizing the participant count at 18. 

While it is fair to assume the difference between our actual count (18) and the power-

identified sample (20) would not significantly change any result, future studies will 

attempt to satisfy the need for an increased sample size. Of the 18 participants who 

returned sufficient data, 16 provided trust ratings that decreased between sets, continuing 

the validation that the lower reliability decision aids shifted participant’s attitudes 

towards willingness to use and trust the provided decision aids. The remaining two 

participants had equal trust ratings for each set. Using the provided subjective ratings, we 

sought to find relationships with eye tracking metrics that would indicate variable trust 

behavior in the automation.  

Overall, the correlations found were not significant, but they do not completely 

dismiss our hypothesis of a negative relationship. Longer fixation times and more 

numerous fixation counts were expected for the slides containing low reliability decision 

aids. While participant’s overall time and interactions with the decision aids decreased 

with the lower reliability set of slides, the percentage of fixation count and fixation 

duration showed slight increases. The decrease in non-percentage metrics during the 2nd 

set of measurement slides can be attributed to an evident decline in overall time spent 

when compared to the 1st set seen in Table 4-1, therefore less time overall spent on low 

reliability decision aids in total. We hypothesize that the experience and comfort with the 

task gained from the participants during the 1st set of slides increased personal image 

interpretation efficiency, promoting quicker identification of existing bone defects. 
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Regardless, findings of increased percentage usages of the decision aids during the low 

reliability set bodes well for further analysis with a potentially larger data sample. This 

increase in image interpretation efficiency also could have attributed to the lower saccade 

amplitude in the 2nd set. This metric has been used previously to measure gaze path 

randomness (Lu & Sarter, 2019), thus indicating lower trust levels when search behavior 

becomes less organized.   

The metrics presented in this study did not show significant correlations with the 

trust ratings submitted; however, the usage of eye tracking to highlight behavioral 

patterns cannot be dismissed. Subjective rating scales, on their own, provide non-

continuous data that fails to show real-time variation in operator action. This study 

attempted to highlight three main indicators (reliance, situational awareness, 

use/disuse/misuse) with eye tracking metrics used from previous studies, all of which 

provide meaningful information regarding safety and productivity existing with the 

human-computer interactions (French, et al., 2018). These will be more readily observed 

when participant’s measurements can be quantitatively compared to the correct lengths 

provided by experts, as done in previous studies. Due to time constraints, our study could 

implement an immediate usage of the measurement software, ImageJ. Nonetheless, 

decision aid designers can learn from this sort of operator behavior, counter it, and 

implement system changes that enhance output from the human-computer interaction. 

 



 

CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

Overall, the inverse correlations suggest that eye tracking can be an effective tool 

for real-time observation of operator trust level variation. Eye tracking provides a 

minimally intrusive avenue to observe human behavior, allowing researchers to dive 

deeper into exploratory studies and gain more in-depth information, especially when 

compared to more surface level evaluations. Future studies are still needed to confirm eye 

tracking as a viable tool to measure human trust in automation, so this mode of research 

is still best suited when combined with other more proven measurement methods. 

6.2 Future Work 

It is important to note two aspects of intended future work stemming from this 

study. First, the eye tracking metric “transition rate,” which can be defined as consecutive 

fixations into separate AOIs, has been shown to provide a significant inverse relationship 

to trust ratings (Lu & Sarter, 2019). The software used for this study does not offer this 

metric in exported data sets, however, we are now aware of other potential methods to 

find and measure rates of transition to continue to investigate human-automation 

interactions at various reliability levels. Second, to confirm behavioral indicators as a 

connection to trust, we are in need of more precise participant performance data. As 
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mentioned earlier, the time needed to train for ImageJ usage would decrease the amount 

of time available for actual experimentation, given the time allotted. The results we have 

currently are entirely visual, yet we believe knowing the exact comparison between 

perceived length and the actual length of the bone defect will allow us to gain more 

relevant information regarding how user reliance, situational awareness, and 

use/disuse/misuse can impact task performance when interacting with automated aids. 

 



 

APPENDIX A  

 

HUMAN USE COMMITTEE REVIEW 
 

A.1 Exception Memorandum 

 

Figure A-1: Human use committee review documentation. 



 

APPENDIX B  

 

QUESTIONNAIRES WITHIN STUDY 
 

B.1 Reliability Questionnaire 

 

Figure B-1: Human use committee review documentation. 
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B.2 Trust Questionnaire 

 

Figure B-2: Six-question, 5-point Likert scale Questionnaire measuring several 

aspects of participants interactions with past decision aids, including trust. 

 



 

APPENDIX C  

 

HUMAN USE PACKET 
 

C.1 Human Subjects Consent Packet 

 

Figure C-1: Full study human use packet. 



 

 

APPENDIX D  
 

SAMPLE SIZE CALCULATION 
 

D.1 Sample Size Equation 

 

𝑁 = [
𝑍𝛼 + 𝑍𝛽

𝐶
]
2

+ 3 Eq. D-1 

D.2 Sample Size Calculation 

 

Figure D-1: Sample size calculation, using Hulley et al (2013) equation. 



 

APPENDIX E  

 

RYAN-JONIER NORMALITY TEST (MINITAB) 
 

E.1 Fixation Count % on Decision Aid 

 

Figure E-1: Resulting test for normality from fixation count % data. 
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E.2 Fixation Duration % on Decision Aid 

 

Figure E-2: Resulting test for normality from fixation duration % data. 

E.3 Mean Saccade Amplitude 

 

Figure E-3: Resulting test for normality from mean saccade amplitude data. 
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E.4 Reliability 

 

Figure E-4: Resulting test for normality from self-reported reliability data. 

E.5 Trust 

 

Figure E-5: Resulting test for normality from self-reported trust data. 



 

APPENDIX F  

 

MANN-WHITNEY TEST RESULTS (MINITAB) 
 

F.1 Mann-Whitney Test Results (Minitab) 

Table F-1: Results from Mann-Whitney U Test. 

Metric Difference U 𝒑 

Fixation Duration 

% on DA 

-1.845 120,284.5 0.013 

Fixation Count % 

on DA 

-2.574 120,702.5 0.020 

Mean Saccade 

Amplitude 

0.730 136,757.0 0.000 

Reliability 1 155,425.5 0.000 

Trust 1 445.5 0.000 
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