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ABSTRACT 

As is evident in areas of privacy, security, and ethics, the hindrances to research is 

the lack of validated real-world data. Therefore, people resort to creating their own 

dataset and/or artificially increasing the size of existing datasets. However, in areas like 

countermeasures of phishing, this is not only insufficient but could introduce bias in the 

dataset in the process. 

To raise the awareness of bias in Machine Learning (ML) / Artificial Intelligence 

(AI) and its consequences, this work tries to gauge one of its occurrences reliably, namely 

selection bias when generating more samples from existing samples in a dataset. 

However, there is currently no cross‐disciplinary or cross‐sector consensus in approaches 

to identifying or validating measurements, metrics, and key indicators of bias, or how 

data should be measured or understood in context. 

The problem presented in this thesis relies on investigating the effects of selection 

bias on Adversary-Aware Online Support Vector Machines (AAOSVM) with the help of 

support vectors to represent selection bias. 
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CHAPTER 1 

 

INTRODUCTION 
 

To take full advantage of the Internet, one must know how to use it. The freedom 

we enjoy comes in part from protection against harmful actions [1]. Socially Engineered 

Attacks (SEA) are one of the major forms of attacks that plague organizations as we 

accept the digitalization of various aspects of work [2], [3]. Not every cyber-threat has 

the same goal or impact [4]. It is increasingly difficult to keep up with the malicious 

actors who want to steal user’s information and money. There is a paradigm shift in 

cybersecurity, whereby users are the first line of defense in online security of anything 

that is digital, e.g., networks, systems, users’ passwords and users’ identities. This 

paradigm shift in cybersecurity requires the involvement of as many areas of research [5]. 

SEAs differ in scale and scope making it difficult for cybersecurity experts to 

detect and prevent it [6]–[8]. The economic impact of an average data breach has risen 

from $4.9 million in 2017 to $7.5 million in 2018 [4]. A successful phishing attack can 

lead to much more losses as the leak of sensitive information can have long term future 

ramifications as well [9]. 

The work presented in this thesis is focused on the website phishing - one aspect 

of the SEAs. Phishing is a popular type of cyber-attack that uses messages (usually via 

emails) as its medium of attacks [6]–[8], [10], [11]. Phishing attempts to acquire sensitive 

information using malicious URLs are through electronic communication mediums or by 
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phone [6]. For example, consider the situation when one arrives at a potential fraudulent 

website either by clicking on a link or by searching for it; it is wise to have accurate 

means of detecting if that website is legitimate or not. 

There is a gap between threat and defense, as ill-intentioned people deploy 

increasingly sophisticated attack technology and engage in cyber-crime as the world 

becomes more connected [5]. Phishing as a SEA cannot be solved just by informing the 

end users [12]. 

Considering the security risks involved and the need for appropriate cybersecurity 

responses – that can scale to every changing landscape – the motivation of this research is 

to explore the role of adversarial machine learning techniques employed in defending 

against the spread of phishing attacks. In this chapter, we introduce foundational concepts 

that we leveraged in the formulation of our problem statement, objectives, and specific 

aim of this work.  

1.1 Social Engineering 

Social Engineering (SE) in cybersecurity is the manipulation of trust of people to 

steal private information [13]. One popular mode of doing this is by phishing. Phishing 

can be categorized into two types based on how users are manipulated to carry out an 

attack. In the first type of a phishing attack, the user actively participates - where the user 

unintentionally inputs information or carrying out an action, such as downloading a virus.  

On the contrary, the second type of phishing attack is where the user passively 

participates:  the user is monitored on malicious websites or by unsuspectingly 

downloading a virus when opening an email.  
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Socially engineered attacks (SEA) – phishing included – start by either actively or 

passively gathering information about the user. Once sufficient information is gathered 

the next set of phishing attacks are carried out days later [15], [16]. Here, attackers use 

the gathered information in any way they want to in order to exploit the user. By this 

point, it is extremely difficult for anyone, even a cybersecurity expert, to detect or 

mitigate the attack. 

As of now, we have three methods of mitigating phishing attacks: (a) Manual 

mitigation, which should be avoided for many reasons—two of the main reasons being 

that it is inefficient and that it is error-prone, (b) Blacklisting malicious websites, which is 

good but must be constantly updated and does not account for new websites, and (c) The 

use of machine learning based heuristics which is considered the best and most reliable 

methods.  

Recent advances in cyber security have shown that machine learning (ML) has 

played an important role in building monitoring systems to defend against socially 

engineered attacks. However, attackers target monitoring systems with the intent of 

deceiving models built to protect users. Adversarial machine learning (AML) is an area 

of research aimed at understanding the role of machine learning algorithms against 

carefully targeted attacks, with the intent of creating countermeasures to enable more 

secure learning algorithms.   

In the context of adversarial learning - there are basically two types of adversarial 

attacks prominently studied in related works namely, poisoning and evasion. 

Poisoning attacks try to mislead the machine learning algorithm during the 

training phase by manipulating only a small fraction of the training data to increase the 
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number of misclassified samples at test time significantly [14].  Evasion attacks consist 

of manipulating input data at test time to cause misclassifications. In this thesis, we will 

focus on evasion attacks [14]. 

1.2 Adversarial Setting 

The challenge of detecting adversarial attacks using phishing is that the strategies 

used by the phishers adapt with time and the targeted user. 

1.2.1 Adversarial Machine Learning (AML)  

Most ML algorithms are designed to work on specific problems with datasets. 

From these datasets, both training and test data are derived to train and test a ML model. 

It is standard practice that both training and test data originate from the same statistical 

distribution. When those models are applied to the real world, adversaries aim to supply 

data that violates any statistical assumption made by a classifier. Attackers arrange the 

data to exploit vulnerabilities and compromise the performance of a classifier. 

On the contrary, AML is a machine learning technique that attempts to fool 

models by supplying deceptive inputs. The intent is to cause a malfunction in a machine 

learning model. This malfunction will depend on the type of threat that it is facing. For 

example, the malfunction could be to misclassify a set of instances or not to “understand” 

what the true difference between a phishing and a legitimate website is. 

Adversary-aware machine learning (AAML) models takes into consideration an 

attacker (simulated or not). The attacker’s objective is to make the classifier performance 

decrease, either in general or for some specific samples. This is one of the 

countermeasures taken against the attacker. 
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 In the case of the AAOSVM, it is done by calculating probabilities of each label, 

having, and changing the scores for each sample, and only training on a sample if it 

reaches a certain threshold [16].  

1.2.2 Adversarial Sampling Techniques (AST) 

As is evident in areas of privacy, security, and ethics [5], the hindrances to the 

research is the lack of validated real-world data. We would benefit with data that was 

collected from a real-world phishing attack and solely verified that it is what indeed it 

was supposed to be. Due to the sparsity of the data, we employ data from ASTs that 

simulate a phishing attack. 

AST as a technique randomly chooses a data sample from the input dataset and 

modifies the data sample with the intent of causing a machine learning to misclassify the 

said sample. 

1.3 Perspectives of Bias  

Bias is the simplifying assumptions made by a machine learning model that skews 

the overall model performance. Here, we emphasize the various types of bias in ML 

specifically with the SVM algorithm. 

1.3.1 Bias from Machine Learning Model 

Parameter bias in the context of the linear SVM and it makes use of Eq. 1-1, 

where the 𝑏 is called bias or threshold, depending on the source [17], [18]. It only means 

that it is dislocating the hyperplane from the origin. 

 𝑓(𝑥) = 𝑤𝑇 ∙ 𝑥 + 𝑏 Eq. 1-1 
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This terminology derives from the point of view that the output of the 

transformation is biased toward being 𝑏 in the absence of any input i.e., 𝑓(𝑥) will tend to 

𝑏 if 𝑏 >> (𝑤𝑇 ∙ 𝑥), either by 𝑏 being too big or 𝑤𝑇 ∙ 𝑥 being too small.  

1.3.2 Bias Brought by Disparity in the Dataset 

  

Figure 1-1: Examples of bias in the dataset without discrimination. 

Each feature tends towards a certain value. Figure 1-1 shows two features, one 

with a preference for the value of 1, and another avoiding the value of 1. 

This is more evident when the classes are separated. Figure 1-2 shows the 

difference in bias (i.e., preference) in the data for two features for each class. 
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Figure 1-2: Examples of bias in the dataset with discrimination. The blue histograms 

represent the phishing instances, and the orange histograms represent the legitimate 

instances. 

Whenever an instance has the value of -1 for the “SFH” or “popUpWindow” 

feature, a classifier trained on this dataset could be likely to predict this instance as a 

phishing instance. Similarly, if an instance has the value of 1 for the “SFH” or the value 

of 0 “popUpWindow” feature, a classifier trained on this dataset could likely predict this 

instance as a phishing instance. 

One way to overcome this problem would be to generate more samples with the 

other, less preferred values, until a balance is achieved, should this be a problem for the 

classifier. 

1.3.3 Bias Introduced During the Creation of the Dataset 

The human perception influences what should and what should not be in the 

dataset. Another way to introduce bias to the dataset is not to know what is important and 

what is not important to insert into it.  
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In our case, this could be what websites were captured to be in the dataset or 

which features are chosen to represent a website. This is known as selection bias. 

According to Wikipedia: 

“Selection bias is the bias introduced by the selection of individuals, groups, or 

data for analysis in such a way that proper randomization is not achieved, 

thereby ensuring that the sample obtained is not representative of the population 

intended to be analyzed.” 

1.3.4 Bias Introduced During the Preprocessing of the Dataset 

By changing the dataset by removing samples or generating more samples from 

selected samples of the dataset, we have another “side” of selection bias, where the 

dataset could already represent a good generalization of the problem, but by introducing 

or removing samples, the dataset becomes skewed towards one or more classes. 

1.4 Problem Statement 

Countermeasures for phishing in social engineering deal with a constantly 

changing data stream that causes the classifier to malfunction. 

This is especially problematic in the academic setting because there are not many 

datasets publicly available. Even when you create your own dataset, it is impossible to 

capture the dynamic changes in the data. To compensate for this, we decided to use an 

Adversarial Sampling Technique (AST) [12] to simulate an attacker. In the attack 

simulation, one must be careful not to introduce bias. An attacker with the same goal, 

knowledge, and influence as the simulation should be able to make a successful attack. 

We also need to try to compensate the misclassification in the classifier. For this, 

we implemented a modified version of the Adversary-Aware Online SVM (AAOSVM) 
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[19]. It can change the sample scores during training and takes into account the 

adversarial nature of the data. 

Objectives: 

• To create a baseline: Compare batch classifiers from sklearn with 

incremental SVM from sklearn and with AAOSVM [19] performances. 

• Data standardization and pre-processing: Investigate the effects of 

normalization on sklearn classifiers on its performances. 

• Data mining: Investigate the effects of generated labels by clustering on 

generated data bias metrics. 

• Validation: Investigate the effects of making the AAOSVM more dynamic 

on bias metrics and performance. 

• Assessment: Investigate the effects of selection bias by using support 

vectors to generate more data. 

Research Question 1: If support vectors are used as AST seed samples, will it 

cause more misclassification? 

Research Question 2: Is there a class imbalance in the generated data by AST 

and does it negatively affect the classification algorithm? 

Research Question 3: How does the AAOSVM behave in the worst-case 

scenario, with changing scores? 

1.5 Key Contributions 

The specific aim of this research is to raise awareness about the consequences of 

bias in machine learning, especially in areas where the data that is publicly available is 

hard to find and does not consider the context in which it is meant for such as phishing. 
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With the help of four datasets and with four experiments, we present an 

investigation on the effect of bias at the data preprocessing level. An AST will be used to 

mimic an attacker and an AAOSVM as a model of the end user. 

The algorithm from [12] was reproduced according to what is presented in the 

paper. This AST used to model the attacker will go against the AAOSVM to see how that 

would change its behavior. The objective of this work is to shed light on the role of 

selection bias brought by the AST. 

The remainder of this thesis is organized as follows. Chapter 2 (Background) 

consists of an overview of previous works. Chapter 3 (Methodology) outlines the 

experiments in terms of used datasets, assumptions, settings, algorithms, performance, 

and bias metrics. Chapter 4 (Results and Discussion) encapsulates the results of the 

experiments and discussion. Chapter 5 (Conclusion and Future Works) contains 

suggestions for further research, refinements, and improvements. 

 



11 

 

CHAPTER 2 

 

BACKGROUND 
 

2.1 Challenges of Phishing Datasets  

In the beginning, people did all the work of selecting which websites were 

legitimate, and these people were experts or the users themselves. As the attacker is 

always trying to exploit certain traits in human behavior [11], [20], the experts would 

look for flaws such as misspelling and suspicious links, to blacklist those websites 

manually. 

Some considerations must be made regarding when a phish is considered 

successful or not and the amount of untrained people that fall for them. Phishing could be 

considered successful by clicking on a link or by giving information to a website, for 

example [20]. Untrained people have a high rate of falling in a phishing attempt (about 

52%) [20], but even trained people might misclassify websites (sometimes misclassifying 

real websites as well, out of suspicion) [21]. Maybe that has to do with training, as a 

report from a company of awareness training shows that the percentage of people that 

falls for phishing decreases significantly after only 90 days of training and gets as low as 

5% after a year of training [22]. 

While it is important to train as much people as possible, with the growth of the 

Internet and the number and complexity of the attacks, it became virtually impossible to 

defend against them just by manually selecting each website. 
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2.2 Creation of the Dataset 

Services like PhishTank©1 started being used to blacklist and whitelist, 

respectively, websites so users and other services, such as google.com, could use them to 

know which websites to trust and which to avoid. This approach is insufficient as there is 

zero-day attacks and similar ones that can get through it [7], but necessary, as many 

datasets are built from it to be used [23]. 

2.3 Extracting Information from the Dataset 

Many companies use ML tools to extract information from a vast amount of data. 

These tools are especially useful when dealing with problems such as phishing [24]. 

Supervised learning is a method that involves the system learning to map inputs and 

outputs based on existing input and output pairs. Supervised learning consists of 

techniques including SVM, linear regression, decision trees (DT), and neural networks 

(NN) [25]. There are several issues to consider when using supervised learning [26]. 

These issues are bias-variance tradeoff, functional complexity, dimensionality of the 

input space, and noise in the output values. Bias-variance tradeoff refers to the tradeoff 

between the bias and variance of a learning algorithm [27]. Bias refers to the error from 

erroneous assumptions in the learning algorithm. High bias can result in under-fitting. 

Variance refers to the error from sensitivity to small fluctuations in the training set. High 

variance can result in overfitting [28]. The prediction error of a learned classifier is 

related directly to the sum of the bias and variance of a learning algorithm. 

 
1 https://phishtank.com/ 
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2.3.1 Feature Engineering 

When it comes to phishing, many works focus on either defining features that will 

improve the performance of the machine learning models or enhancing the existing 

machine learning models [12], [29]. 

Sometimes it is a mixture of those two. For example, Niakanlahiji et al. 

introduced PhishMon [30], a machine learning framework to detect phishing websites 

that depends on certain features. Although it is a recent development, is scalable, and 

independent of third parties, it fails to consider the very nature of phishing attacks. 

The problem with works that focus mainly on the features is that attackers can 

decipher which features are being used to decide what is a phishing attempt and what is 

legitimate and mimic it. 

A good example would be the work of Shirazi et al. who tried to determine the 

most important features that would distinguish a phishing website from a legitimate one 

[9].  They tried to avoid anything that was convoluted, like DNS routing, or that could be 

compromised later – at least from an academic point of view, like third party services.  

Another possibility would be to focus on something such as URL and the 

reasoning that phishing websites’ URLs can be identified by a trained person with a 

certain ease [31], then URL shortening comes along and your work becomes not so valid 

anymore. 

2.3.2 Enhancing Machine Learning Models 

Jiang et al. developed a Convolutional Neural Network (CNN) that automatically 

extract features from the URL [32]. It combines deep neural network with natural 

language processing and threat intelligence to do so. That could potentially be robust 
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against an adversarial attack, especially because it uses incremental updates, but it did not 

explore that possibility [32]. 

Pereira et al. distinguished legitimate from phishing domains with precision and 

accuracy with the use of graphs [33]. Domain Generation Algorithms (DGA) was used to 

simulate an attacker. Although good classification was obtained in an adversarial 

environment, only the domain part of the website was used. From making graphs of 

domains from DGAs, one can see that there are some trends [33]. 

A few more considerations noted by Shirazi et al. [12] attackers have full control 

over the URL, except the Second Domain Level (SDL); therefore, any solution that does 

not account for or does not have room for considering the website content would be 

disregarded in the real world. Considering that your information still has not been stolen 

by just entering the website, the content of the website will determine if it will or not be 

stolen. 

Figueroa et al. devised an AAOSVM that uses game theory to help in the 

classification process [19]. There are a few problems with it. First, they create their own 

dataset using natural language processing, not accounting for possible introduced bias. 

Second, it uses a function that is nowhere to be found and it is based on a library that has 

poor documentation, making reproduction near impossible. 

2.4 Bias in the Dataset 

In one way or another, Chiew et al. noted some ways a dataset could have bias 

introduced during and from its assembly step [23], namely (1) how big it is (interferes 

with the standard error), (2) where are the samples coming from, (3) how popular are the 

websites being used in the dataset, (4) without due description, the dataset could be using 
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a high volume of the same brand, (5) unproper distribution of website categories, and (6) 

not enough languages (English, Spanish, etc.). 

The focus of Shirazi et al. [9] is to try to create an unbiased dataset. Shirazi et al. 

points to two main causes of bias in the dataset: (1) too many features with not enough 

arguments to sustain those choices of features, and (2) many datasets are based on URL 

or content –  [12] considered the potential bias in at least one of the used datasets; the 

remark made was about the use of URL length. As a sidenote, (1) Shirazi et al. also said 

that content-based dataset is not efficient due to the number of training features, (2) that 

third-party servers violate user privacy, and (3) while URL-based datasets have a good 

indicator of phishing attacks, their features make them unlikely to be used in the future as 

the attackers have complete control over the URL (except the domain part, at least for 

now). 

2.5 Benchmarking Phishing Datasets 

It is not easy to find publicly available datasets for phishing and many researchers 

use their own dataset for their experiments. This makes benchmarking for anti-phishing 

techniques very difficult [23]. The two main reasons for not finding publicly available 

datasets in this area are because (1) it is dealing with sensitive information and cannot be 

or stay publicly available for long, and (2) it was hosted somewhere but it was moved or 

deleted without a trace (ironically, it seems to be the case for the dataset from [23]). 

 



16 

 

CHAPTER 3 

 

METHODS 
 

3.1 Creation of the AAOSVM 

In this thesis, we base our implementation of the SVM algorithm with Sequential 

Minimal Optimization (SMO) inspired by Charest implementation [34][35]. We describe 

the SVM using the following definitions. 

Definition 1. Support vectors (�⃗⃗� ):  instances that are closer to the hyperplane 

and influence the position and orientation of the hyperplane. 

Definition 2. Objective function 𝑾(�⃗⃗� ): the hyperplane function that defines the 

class label of an instance, calculated as the RHS on Eq. 3-1. 

 max
�⃗⃗� 
𝑊(𝛼 ) = ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝑦𝑖𝑦𝑗𝑥 𝑖𝑥 𝑗𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

   Eq. 3-1 

where 𝑁 is the number of instances in the dataset and the second term of the RHS is 

multiplying with itself. Maximizing 𝑊(𝛼 ) while respecting the constraint Eq. 3-2 

constitutes the basis of the SVM.  

 ∑𝑦𝑖𝛼𝑖 = 0

𝑁

𝑖=1

 Eq. 3-2 

where 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑚, and 𝑚 is the number of instances. 

The support vectors (α) are rounded to zero or a constant (𝐶) if they are close to 

one of those values.  
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The next steps are to condense all the functions into the SVM class for later 

modifications, implement windowing, implement sample “check” (only poorly classified 

samples will make the model retrain), and join all of these before making changes to the 

SVM itself. This is brought about by SVM windowing and the definition of training 

criteria described below. 

Definition 3. Bias or threshold 𝒃: the dislocation of the hyperplane from the 

origin. 

Definition 4. The weight vector (�⃗⃗� ): the normal vector of the hyperplane and the 

minimal distance to the hyperplane, defined as Eq. 3-3,  

 �⃗⃗� =∑𝑦𝑖𝛼𝑖𝑥 𝑖

𝑁

𝑖=1

 Eq. 3-3 

where 𝑁 is the number of instances in the window. 

During the training, the AAOSVM always looks at a pair of samples at a time, so 

the update on the weight vector is done using Eq. 3-4. This saves computational power 

by only computing the change of the two samples observed and then added to the old 

vector. 

 �⃗⃗� = �⃗⃗� 𝑜𝑙𝑑 + 𝑦1(𝑎1
𝑛𝑒𝑤 − 𝛼1

𝑜𝑙𝑑)𝑥 1 + 𝑦2(𝑎2
𝑛𝑒𝑤 − 𝛼2

𝑜𝑙𝑑)𝑥 2  Eq. 3-4 

When optimizing, the SVM uses a vector of prediction errors to determine which 

sample will make the best pair to train on. The SVM windowing is implemented with the 

size of 100 samples, i.e., the maximum number of samples that the model knows is 100. 

The window slides one sample at a time, i.e., with each new sample, and if the window is 

full, the last one is discarded. Although the model is trained on a sliding window, it keeps 

its “knowledge” (values of α and 𝑏). 
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Definition 5. The training criteria: trains the classifier whenever samples that 

are considered poorly classified, as expressed in Eq. 3-5.  

 𝑦𝑖 × (�⃗⃗� 𝑖−1. 𝑥 𝑖 + 𝑏𝑖−1) < 𝜀 Eq. 3-5 

where �⃗⃗� 𝑖−1 and 𝑏𝑖−1 are the weight and bias term from the previous training iterations. 

The variable ε has the value of 0.6 which adopted this value on their algorithm 

[36]. This threshold sets the scaling of �⃗⃗�  and could have been any positive number [18]. 

Finally, before making major changes on the SVM itself, we merged the sliding 

window with the sample selection. 

3.2 Experimental Settings 

All experiments presented in this thesis adopts the framework shown in  Figure 

3-1. Each experiment was repeated 10 times and the results reported are an average 

across 10 iterations. 

3.2.1 Proposed Framework 

 

Figure 3-1: Overview of the framework adopted in this thesis. 
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All the class labels are verified and changed, if necessary, to +1 as a phishing 

instance and -1 as a legitimate instance. As part of our validation, all the dataset but 200 

instances is used for 5-fold cross validation.  

All the classifiers that are used to compare against the AAOSVM have parameters 

set as listed in Table 3-1.  

Table 3-1: Parameters used in the classifiers. 

Classifier Parameters 

Nearest Neighbors (KNN) K = 3 

Linear SVM (SVC, 

kernel=”linear”) 

C =100, max_iter =10000, random_state = 42 

RBF SVM (SVC, kernel=”rbf”) 
Gamma = 2, C = 100, max_iter =10000, 

random_state=42 

Decision Tree max_depth = 5, random_state = 42 

Random Forest 
max_depth = 5, n_estimators =10, max_features = 1, 

random_state = 42 

Naive Bayes - 

Gradient Boost random_state = 42 

OSVM (SGDOneClassSVM) random_state = 42 

AAOSVM 

C = 100, m =100, Gp = 250, Em =10, Er = 10, Ym = 

10, Yr = 10, s = 0.6, kernel_type = "linear", k = 3, 

max_optimization = 2 
 

Some classifiers need a seed to initialize. This is given by the “random_state” 

attribute. If no seed is given, every iteration (run) of every dataset could lead to a 

different performance that has nothing to do with the input data. The reason for them to 

have a fixed initial random state is that we do not want to introduce a potential bias to the 
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experiments. Whenever an experiment does not follow these settings, it will be 

mentioned. 

3.2.2 Bias Metrics  

Class Imbalance (CI) is used to measure the imbalance of class labels after the 

AST as shown in Eq. 3-6. 

where 𝑛𝑝 is the number of phishing instances and 𝑛𝑙 is the number of legitimate 

instances. The value of CI ranges from -1 to 1, where -1 signifies that there is only 

legitimate instances, 0 signifies that there is a perfect balance of labels, and 1 signifies 

that there is only phishing instances. 

Difference in Positive Proportions of True Labels (DPPTL) is also used to track 

the imbalance of class labels after the AST as shown in Eq. 3-7. 

where 𝑛𝑎 is the number of all the samples that have a certain value on a specific attribute, 

𝑛𝑎
𝑝
 is the same as 𝑛𝑎 but are labeled as phishing, 𝑛𝑑 is the number of all the samples that 

do not have that certain value on a specific attribute, and 𝑛𝑑
𝑝
 is the same as 𝑛𝑑 but are 

labeled as phishing. It needs to be calculated for each manipulated feature. 

A positive DPPL value indicates that there is a preference towards that certain 

value in that specific attribute. This is referred to as positive bias. Similarly, a negative 

DPPL value indicates that there is a preference towards other values other than the certain 

value in that specific attribute. This is referred to as negative bias. 

 𝐶𝐼 =
𝑛𝑝 − 𝑛𝑙

𝑛𝑝 + 𝑛𝑙
  Eq. 3-6 

 𝐷𝑃𝑃𝑇𝐿 =
𝑛𝑎
𝑝

𝑛𝑎
−
𝑛𝑑
𝑝

𝑛𝑑
  Eq. 3-7 
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DPPTL can also be used to check Demographic Parity (DP) as shown in Eq. 3-8 

[37], which checks if the classifier uses an attribute to predict the labels or not: 

where �̂� are all the predicted labels and 𝐴 are all the values of a specific attribute. 

In this thesis, we employ the Euclidean distance (𝑑) as shown in Eq. 3-9:              

It is calculated for each original sample that has at least one sample from the generated 

samples to be classified as a legitimate sample. Only the smallest distance from the 

original sample to the generated samples where that original sample generated is kept. 

3.2.3 Performance Metrics 

The following performance metrics are employed to determine the classifier 

performance.  The classifiers were measured and compared performances in Accuracy 

(ACC). Accuracy is measured to see the correctness of the models. Accuracy is 

represented in Eq. 3-10: 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 Eq. 3-10 

 True Positive Rate (TPR) or Recall (R) is also known as sensitivity. It is trivial to 

achieve recall of 100% by making the model classify everything as phishing. A high 

sensitivity model is reliable when its result is negative since it rarely misclassifies the TP. 

A negative model outcome can be taken as TN. However, a positive outcome in a model 

with high sensitivity is not necessarily useful. TPR is captured in Eq. 3-11: 

 𝑇𝑃𝑅 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq. 3-11 

 𝐷𝑃 = 𝑃(�̂� = �̂�) = 𝑃(�̂� = �̂�|𝐴 = 𝑎) Eq. 3-8 

 𝑑(𝑥𝑖, 𝑥𝑖
′) = √∑(𝑥𝑖

𝑗
− 𝑥𝑖

′𝑗
)2

𝑎

𝑗=1

 Eq. 3-9 
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 The formula of Precision (PRE) is included to calculate the F1-score (F1) and is 

defined in Eq. 3-12: 

 𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq. 3-12 

 F1-score (F1) is the harmonic mean of precision and recall. It is another way of 

looking at a model’s accuracy. It is also commonly used to compare the model’s 

performances. An important thing to note is that this measure is dependent on the class 

imbalance [40]. F1-score is represented in Eq. 3-13: 

 𝐹1 =
2 × 𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
=

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 Eq. 3-13 

3.2.4 Instance Selection 

We believe that the choice of which instances will be kept away from the training 

can bias how the model behaves. Take Figure 3-2 as an example. If we had to select four 

instances to keep away from training, the ones that have been circled are good candidates. 

They are good candidates because two of them represent the class and two of them 

represent the ones that most likely will cause some trouble for the classifiers, as 

represented by the hyperplane in red. 
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Figure 3-2: Desired instance selection. 

Now imagine we did the selection shown in Figure 3-3 instead. We most likely 

would never generate a new sample that would cause any trouble. 

 

Figure 3-3: Undesired instance selection. 

Our investigation on the effect of bias at the data preprocessing level works on the 

premise that the AST will be used to mimic an attacker and the AAOSVM as a model 

of the end user. We devised four types of experiments to test and show how an attack 

from an AST would influence each type of classifiers as follows: 

1. Experiment 1: Evaluation of machine learning classifiers with both the 

datasets as they are and the datasets with normalized data with the use of 

minmax normalization. 

Feature 1 
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2. Experiment 2: Evaluation of an online SVM classifier with both the 

datasets as they are and the datasets with normalized data with the use of 

minmax normalization. 

3. Experiment 3: Evaluation of the AAOSVM on 200 randomly selected 

samples and investigate the effects of generated labels by clustering on 

generated data bias metrics. 

4. Experiment 4: Evaluation of the AAOSVM on 200 samples selected 

based on support vectors from previous experiments and investigate the 

effects of: 

a. generated labels by clustering on generated data bias metrics. 

b. changing the scores of each sample with each training iteration. 

3.3 Used Datasets 

Four datasets that are publicly available on the Internet (Mendeley data and UCI 

repositories) are used, to which 3 are the same as [12]. The reasons these datasets were 

chosen are (i) to try to compare results with [12], (ii) to see how the algorithms will 

perform on a bigger dataset, (iii) to avoid unnecessary complexity, and (iv) to avoid 

introducing bias inadvertently when extracting features from emails, for example. Table 

3-2 summarizes important aspects of each dataset and shows their relevance by the 

number of papers that use it. 

Since most of the phishing attacks involve going to a fake website at some point, 

we are going to try to help better the automation of detecting them before they can do any 

harm. Another thing to be pointed out is it works with these datasets; it should work with 

any other that has similar feature value types. 
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Table 3-2: Summary of the objective features in each dataset. 

Dataset 

Data shape (#) Instances Features # of 

papers 

that 

use it 

Size Features Legitimate Phishing URL 

based 

# 

binary 

# 

trinary 

DS1a 

(DS1) 
58,645 111 27,998 30,647 96 9 0 1 

DS2 11055 30 6157 4898 8 20 10 184 

DS3 1353 9 651 702 5 2 7 270 

DS4 10000 48 5000 5000 27 23 6 11 

DS1b 

(DS5) 
88,647 111 58,000 30,647 96 9 0 1 

 

Binary features are the ones that have only two values in the dataset. Similarly, 

trinary features are the ones that have only three values in the dataset. 

Dataset 1 (DS1a and DS1b) [39] is the only one that differs from the ones used in 

[12], since the dataset created by Shirazi not available for public use. This dataset is the 

biggest and the most recent one, not only instance wise but feature wise as well. It has 

two versions – one to favor machine learning models and another to mimic real-world 

scenarios. Most of its features are about the number of certain characters in the URL and 

the total number of characters of parts of the URL. 

Based on [23], this is the only one of the 4 used datasets that is significantly large 

enough to be used in anti-phishing research. From here onwards, DS1a will be called 

DS1 and DS1b will be called DS5. 

Dataset 2 (DS2) [40], [41] has all the features of Dataset 3 plus twenty more, but 

it has about nine times more instances. We might see some correlation between the two. 



26 

All the features in Dataset 3 (DS3) [42], [43] are in the format of 1, 0, and -1. It 

also has three class labels, namely: “Legitimate”, “Suspicious”, and “Phishy”, websites, 

respectively. For the sake of reproducibility, all the “suspicious” labels are considered as 

“phishy”. 

DS3 is the smallest dataset both in instances and features. Five of its features look 

at the URL for clues for whether a website is legitimate. These include looking at the 

presence of a symbol and the length of the URL. The other five features take a deeper 

look at the website. Those include checking if the URL will lead to another domain, how 

big is the traffic on the website, and if there is a DNS record. 

In terms of features, this Dataset 4 (DS4) [44]–[46] is almost as balanced as DS3 

in terms of how many features are dedicated to the URL alone and has about as many 

instances as DS2. It is the only dataset to have features with values of a continuous type. 

3.4 Attacker Model 

The threat – a person trying to phish someone through a website – is modeled as 

the AST. There are three different ways of categorizing the goal of an attack, as explored 

by [47], and it is as follows:  

1. Security violations:  Here there are three subcategories of violations 

integrity, availability, and privacy. The attacker seeks either to enter a 

system without being detected, or to make the system unavailable to the 

intended users, or to steal information. 

2. Attack specificity:  Here there are two subcategories, targeted or 

indiscriminate. The attacker seeks to fool one system (for a set of samples) 

or any system (for any given sample). 
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3. In error specificity, there are two subcategories, specific or generic.  The 

attacker intends to get a sample classified as a certain type or just 

misclassified. 

The attacker’s goal in this thesis is categorized as violating integrity – for not 

being detected by the classifier, targeted, and specific, as we will try to bias the classifier 

with sets of adversarial generated samples (each set of samples will try to mimic a certain 

type). 

The idea that there are attacks that come from the success from a previous attack 

is not unfounded [48]. It is possible that a real attacker could have the necessary 

information before the attack and that an attack could lead to another, but in a different 

way. The attacker’s knowledge in this thesis is the 200 phishing websites that the 

classifier does not know, all the other phishing websites and the features that the 

classifier is looking for. 

There are basically two types of adversarial attacks: evasion and poisoning [14], 

[47]. We modeled the attacker influence as using evasion attacks, where it tries to go 

undetected in the testing phase. 

3.5 Adversarial Sampling Technique (AST) 

For the AST, we used the Algorithm 1 from Shirazi et al. [12] with the difference 

that it takes the whole training dataset to generate new samples. It should not change 

anything from the original, as it was implicit that the Algorithm 1 from [12] could have 

had access to the whole dataset. 
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3.5.1 Conceptual Overview 

For a given instance and some selected features, it will go over the dataset looking 

for all the unique values in those features of the given type. With all these unique values, 

it will create all the possible combinations and each combination will be a new sample. 

The idea is that if a value was found in a phishing instance, for example, then it could be 

used in another slightly different one. 

 

Figure 3-4: Algorithm 1 from [12], illustrated. “x” is an instance with 4 features and 

a label, and the selected features are the second and the third one. “X” is any value 

and “Y” is the label of that instance. In this example, all the unique values in columns 

1 and 2 with the same label as “x” of the dataset are 0 and 1. 

To better explain the algorithm,  Figure 3-4 illustrates how the algorithm works 

on an example. In the example, the dataset is made of instances of four features, each 

with binary values. For a given sample and a list of selected features – the second and 

third one in the example, the algorithm generates more instances from the unique values 

of all the instances that have the same “Y” value as the “x” instance. It creates all 

possible combinations of those values and replaces them in the selected features, 

repeating the other values in the other features as well as the label. 

 

x: instance 

X X X X Y 

sel_features 

[1, 2] 

1 X X 1 Y 

0 X X 0 Y 

0 X X 1 Y 

1 X X 0 Y 

New generated 
samples 
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To test how the class imbalance brought by new samples would change and 

possibly affect the model’s performance—should it be used as training sample—the 

labels were also generated in two other ways. One way is to invert the original labels and 

the other one is to cluster them into two groups. It is worth mentioning that we are 

dealing with a dynamic environment. 

3.5.2 Feature Selection 

The feature selection in [12] was done randomly on purpose and so it is in this 

thesis. That could lead to selection bias, for in the words of Wikipedia, 

“Selection bias is the bias introduced by the selection of individuals, groups, or 

data for analysis in such a way that proper randomization is not achieved, 

thereby ensuring that the sample obtained is not representative of the population 

intended to be analyzed.”  

Because of the nature of the features in some datasets such as DS1, it could not be 

done up to four features as it was in [12]. Each number between the parentheses in 

Figure 3-5 is the number of samples generated by a single instance. In the last case of 

Figure 3-5, we are dealing with three manipulated features, which will generate more 

than 100 million samples, and this process will not only be repeated two more times but 

will also become more computationally expensive once another feature is manipulated. 
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Figure 3-5: Generation of samples. Number of samples generated for each seed 

sample, according to number of features manipulated. 

3.5.3 Sample Seed Selection 

Shirazi et al. [12] did not say how they reserved the 200 samples for the AST. We 

assume it is randomly selected. That could lead to selection bias. We tried two more ways 

of selecting the sample seeds to see how it affects the models’ predictions. 
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Algorithm 1 Dataset Split 

Input: {𝑋, 𝑦, 𝑠𝑝𝑙𝑖𝑡, 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒} 
Output: 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑒𝑠𝑡 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

1: Initialize 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← ∅ 

2: if 𝑡𝑦𝑝𝑒 is a class then 

3:     initialize random number generator with 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 

4:     while 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)  <  𝑠𝑝𝑙𝑖𝑡 do 

5:         get random index using random number generator 

6:         if 𝑦[𝑖𝑛𝑑𝑒𝑥]  ==  𝑡𝑦𝑝𝑒 then 

7:             add index to 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

8:         end if 

9:     end while 

10:     use 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to split 𝑋 into 𝑋𝑡𝑟𝑎𝑖𝑛and 𝑋𝑡𝑒𝑠𝑡 
11:     use 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to split 𝑦 into 𝑦𝑡𝑟𝑎𝑖𝑛  and 𝑦𝑡𝑒𝑠𝑡 
12: else if 𝑡𝑦𝑝𝑒 is a list of indexes then 

13:     if 𝑠𝑝𝑙𝑖𝑡 >  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) then 

14:         use 𝑡𝑦𝑝𝑒 to select 𝑦′ 
15:         use 𝑡𝑦𝑝𝑒 to select 𝑋′ 
16:         add all of 𝑡𝑦𝑝𝑒 into 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

17:         𝑟𝑎𝑑 ∶=  1 

18:         𝑑𝑖𝑠𝑡 ∶= 2 

19:         while 𝑠𝑝𝑙𝑖𝑡 >  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) do 

20:             for each 𝑖𝑛𝑑𝑒𝑥 and 𝑠𝑎𝑚𝑝𝑙𝑒 in 𝑋 that is labeled as phishing do 

21:                 for each 𝑠𝑎𝑚𝑝𝑙𝑒′ in 𝑋′ that is labeled as phishing do 

22:                     𝑐 ← calculate distance from 𝑠𝑎𝑚𝑝𝑙𝑒 to 𝑠𝑎𝑚𝑝𝑙𝑒′ 
23:                     if 𝑐 >  0 and 𝑐 <=  𝑟𝑎𝑑 and 𝑠𝑝𝑙𝑖𝑡 >  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) then 

24:                         add 𝑖𝑛𝑑𝑒𝑥 to 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

25:                     end if 

26:                     if 𝑠𝑝𝑙𝑖𝑡 ==  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) then 

27:                         break 

28:                     end if 

29:                 end for each 

30:                 if 𝑠𝑝𝑙𝑖𝑡 ==  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) then 

31:                     break 

32:                 end if 

33:             end for each 

34:             𝑟𝑎𝑑 ∶=  √𝑑𝑖𝑠𝑡 
35:             𝑑𝑖𝑠𝑡 +=  1 

36:         end while 

37:     else if 𝑠𝑝𝑙𝑖𝑡 ==  𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑦𝑝𝑒) then 

38:         use 𝑡𝑦𝑝𝑒 to split 𝑋 into 𝑋𝑡𝑟𝑎𝑖𝑛and 𝑋𝑡𝑒𝑠𝑡 
39:         use 𝑡𝑦𝑝𝑒 to split 𝑦 into 𝑦𝑡𝑟𝑎𝑖𝑛  and 𝑦𝑡𝑒𝑠𝑡 
40:     else 

41:         initialize random number selector with 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 

42:         𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ←  𝑠𝑝𝑙𝑖𝑡 samples from 𝑡𝑦𝑝𝑒 using random number selector 

43:         use 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to split 𝑋 into 𝑋𝑡𝑟𝑎𝑖𝑛and 𝑋𝑡𝑒𝑠𝑡 
44:         use 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to split 𝑦 into 𝑦𝑡𝑟𝑎𝑖𝑛  and 𝑦𝑡𝑒𝑠𝑡  
45:     end if 

46: end if 
 

Figure 3-6: Dataset Split. 
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The other two ways of selecting the sample seeds is using the support vectors 

from the linear SVM from sklearn and the support vectors from AAOSVM. This resulted 

in the lists that had various lengths. To keep it standardized at 200 samples, we used 

Algorithm 1. This algorithm assures that 200 samples are always kept out to be used in 

the AST. If the number of support vectors is less than 200, it uses the minimal distance 

from the support vectors to other samples to complete the selection of 200 samples. 

3.6 Adversarial Classification 

For adversarial classification, we used an AAOSVM based of [19]. The general 

idea of its workings can be seen on Figure 3-7. 

Our assumptions from the paper to create the dataset 

1. The websites were never changed after the training started, i.e., all the 

messages that had been maliciously modified were already modified. This 

means that the classifier actions did not affect the behavior of the adversary. 

2. The number of clusters is arbitrarily defined as three, since there are thought 

to be three types existing, namely (Regular, Fraud), (Malicious, Fraud), and 

(Regular, Not Fraud). 

3. The type of an instance is only which cluster it belongs to [24]. 

3.6.1 Optimization of the AAOSVM 

The optimization in the AAOSVM (SMO) comes from [35].  

Definition 6. Cluster Type (𝒛): 𝑧 is the cluster of which an instance can belong 

to. An instance can belong to any of three clusters, namely 𝑧1, 𝑧2, and 𝑧3; the union of 

these clusters make 𝑍. These clusters are created using the KMeans algorithm with 

random state parameter set to 42, found on the sklearn python library. 
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Definition 7. �⃗⃗� 𝒋: the observed instance. 

Definition 8. p(𝒛): this function computes the probability of type 𝑧. It is 

calculated by counting all the instances of type 𝑧 and dividing by the number of instances 

in the window. 

Definition 9.  p(𝑴, 𝒛): this function computes probability of type 𝑧 and 𝑦 = 1. 

This represents the malicious type in cluster 𝑧. It is calculated by counting all the 

messages of type 𝑧 that also have 𝑦 = 1 divided by the number of messages in the 

window. 

Definition 10. 𝝓(𝑴|𝒛): this function computes the probability of instance 𝑥 𝑗 to 

be malicious, given z, and is computed as Eq. 3-16 [49]: 

 𝜙(𝑀|𝑧) =
𝑝(𝑀, 𝑧)

𝑝(𝑧)
 Eq. 3-14 

Definition 11. µ((𝒚, 𝒛)| 𝒙𝒋⃗⃗  ⃗) is the consistent belief represented in  Eq. 3-15.  

 µ((𝑦, 𝑧)| 𝑥𝑗⃗⃗  ⃗) =  

{
 
 

 
 

𝑝(𝑧𝑗)𝜙(𝑀|𝑧𝑗)

𝑝(𝑅) + 𝑝(𝑀)𝜙(𝑀|𝑧)
, if 𝑦 = 𝑀

𝑝(𝑧𝑗)

𝑝(𝑅) + 𝑝(𝑀)𝜙(𝑀|𝑧)
, if 𝑦 = 𝑅

0, if 𝑦 = 𝑅 𝑎𝑛𝑑 𝑧𝑗 ≅ 𝑧 

  Eq. 3-15 

where 𝑧𝑗 is the predicted cluster of 𝑥 𝑗, p(R) is the probability of an instance to be regular, 

given the instances in the window, and p(M) is the probability of an instance to be 

malicious, given the instances in the window. 

Definition 12. Scores: The scores are one of two types: utility (𝜖) or cost (𝛾). 

Each type of score will be further divided to keep score of malicious and legitimate 

samples. 
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Definition 13. 𝝍(𝒙𝒋⃗⃗  ⃗): the function holds the prior knowledge that is based on 

probabilities and scores. It is defined in Eq. 3-16. It is updated every 𝐺𝑝 periods or 

number of samples, as stated in [19]:  

 𝜓(𝑥𝑗⃗⃗  ⃗) =  
∑ µ((𝑀, 𝑧)|𝑧∈𝑍 𝑥𝑗⃗⃗  ⃗) ∙ (𝜖𝑀 + 𝛾𝑀)

∑ µ((𝑅, 𝑧)|𝑧∈𝑍 𝑥𝑗⃗⃗  ⃗) ∙ (𝜖𝑅 + 𝛾𝑅)
 Eq. 3-16 

Definition 14. 𝜳(𝒙𝒋⃗⃗  ⃗): the function that is defined in Eq. 3-17. Adds prior 

knowledge to the training criteria (Eq. 3-5):  

 𝛹(𝑥𝑗⃗⃗  ⃗) =  
1 + 𝜓(𝑥𝑗⃗⃗  ⃗)

𝑤𝑇𝑒 + 2𝑏
 Eq. 3-17 

Now that 𝛹(𝑥𝑗⃗⃗  ⃗) is defined, it is incorporated to Definition 5. The criteria used in 

Figure 3-7 that decides if the SVM needs to be trained again is based off the intuition 

from Eq. 3-18: 

 𝑦�̂�𝛹(𝑥 ) < 𝑣 Eq. 3-18 

where 𝑦 ∈ {+1,−1} is the label of the instance, 𝑥 , �̂� ∈ {+1,−1} is its predicted label, 

and 𝑣 ∈ (0,1] is a threshold value. From that, we can say that the only two ways of 

making the equation correct is to misclassify the sample or to have 𝛹(𝑥 ) < 𝑣 (or a poorly 

classified sample). 

Definition 15. Update parameter (𝒖): a parameter that will tell the AAOSVM if 

it should change the scores or not. 

Definition 16. Difference of errors (∆𝒆𝒓𝒓𝒐𝒓): when training, if the training 

criteria is true, the AAOSVM will save the errors prior to training and compare with the 

new errors. This comparison is used as part of the conditions to decide which score 

should be updated, if 𝑢 == 𝑇𝑟𝑢𝑒. 
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Figure 3-7: Overview of the inner workings of the AAOSVM of Dynamic Scoring. 

Some changes needed to be made in the AAOSVM from [19]. Firstly, the 

traceZeroes procedure is not further explained, as “based on input parameters from 

Gambit for QRE computation” is not enough and is not publicly available; thus, we 

adopted the strategy of changing scores. Second, the true output of the algorithm is the 

optimal strategy for the classifier, as it would serve no purpose otherwise.  

3.6.2 Bias in the Algorithm 

From Eq. 3-16 and Eq. 3-15, it is proven that the algorithm will be biased 

towards malicious messages. The more a type appears, the bigger the belief will be about 

that type. The bigger the belief that a message is malicious, the bigger 𝛹(𝑥 ) will be; on 

the other hand, the bigger the belief that a message is regular, the smaller 𝛹(𝑥 ) will be. 
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3.6.3 Scoring Each Sample 

 When training, the proposed Algorithm 2 changes the scores for each label 

based on the true label and the difference between previous and actual error, depending 

on the value of 𝑢. 

 The intuition is that the score can double or zero its value if the ∆𝒆𝒓𝒓𝒐𝒓 is too great 

or have a change that is proportional to the error difference. We expect the scores to 

either settle at zero or at around some value, as the error fluctuate and gradually go to a 

minimum. 

 To update the utility of a malicious sample, we decreased each sample’s 

respective utility by itself, scaled by tanh (𝑒𝑟𝑟𝑜𝑟) , as shown in Eq. 3-19, if the 𝑒𝑟𝑟𝑜𝑟 

decreased as well. The intuition is that it will increase the utility of the malicious sample as the 

error goes down: 

 𝜖𝑀 −= 𝜖𝑀 × tanh (𝑒𝑟𝑟𝑜𝑟) Eq. 3-19 

  The same happens for a regular sample, as shown in Eq. 3-20, if the 𝑒𝑟𝑟𝑜𝑟 

decreased. The intuition is that it will increase the utility of the regular sample as the error goes 

down: 

 𝜖𝑅 −= 𝜖𝑅 × tanh (𝑒𝑟𝑟𝑜𝑟) Eq. 3-20 

 In a similar way, we update the costs as shown in Eq. 3-21 and Eq. 3-10. Now, 

the costs go up as the error goes up: 

 𝛾𝑀 += 𝛾𝑀 × tanh (𝑒𝑟𝑟𝑜𝑟) Eq. 3-21 

 𝛾𝑅 += 𝛾𝑅 × tanh (𝑒𝑟𝑟𝑜𝑟) Eq. 3-22 
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Algorithm 2 Adversary-Aware Online SVM of Dynamic Scoring 

Input: {𝜏,𝑚, 𝑣, 𝐺𝑝, 𝐶, 𝑘, 𝑢, 𝜖𝑅 , 𝛾𝑅 , 𝜖𝑀, 𝛾𝑀} 
Output: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇 ∙ 𝑥 + 𝑏) 

1: Initialize 𝑤0 ≔ 0, 𝑏0 ≔ 0, 𝑆 ← ∅ 

2: for each (𝑥𝜏, 𝑦𝜏) ∈ 𝑇 do 

3:     if 𝑦𝜏(𝑤𝜏−1
𝑇 ∙ 𝑥𝜏 + 𝑏𝜏−1)𝛹(𝑥𝜏) < 𝑣 then 

4:         𝑒𝑟𝑟𝑜𝑟𝑠 ∶=  𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑆) −  𝑆_𝑡𝑟𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 
5:         Find 𝑤′, 𝑏′ with prior knowledge SMO on 𝑆, with 𝑤𝜏−𝑡  and 𝑏𝜏−𝑡 as seed 

hypothesis, and 𝛹(𝑥𝜏)  
6:         if 𝑢 ==  𝑇𝑟𝑢𝑒 then 

7:             for each (𝑒𝑟𝑟𝑜𝑟, 𝑙𝑎𝑏𝑒𝑙) ∈ 𝑒𝑟𝑟𝑜𝑟𝑠, 𝑆 do 

8:                 if 𝑒𝑟𝑟𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 ==  𝑃 then 

9:                     𝜖𝑀 −= 𝜖𝑀 × tanh (𝑒𝑟𝑟𝑜𝑟) 
10:                 else if 𝑒𝑟𝑟𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 ==  𝐿 then 

11:                     𝜖𝑅 −= 𝜖𝑅 × tanh (𝑒𝑟𝑟𝑜𝑟) 
12:                 else if 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 ==  𝑃 then 

13:                     𝛾𝑀 += 𝛾𝑀 × tanh (𝑒𝑟𝑟𝑜𝑟) 
14:                 else if 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 ==  𝐿 then 

15:                     𝛾𝑅 += 𝛾𝑅 × tanh (𝑒𝑟𝑟𝑜𝑟) 
16:                 end if 

17:             end for 

18:         end if 

19:         Set 𝑤𝜏, ≔ 𝑤′𝑏𝜏 ≔ 𝑏′ 
20:     end if 

21:     if |𝑆| > 𝑚 then 

22:         Remove oldest example from 𝑆 

23:     end if 

24:     if 𝑇 𝑚𝑜𝑑 𝐺𝑝 = 0 then 

25:         Initialize {𝑐𝑖}𝑖=1
𝑘 = getClusters(𝑆, 𝑘) 

26:         𝑝(𝑡𝑖) = |{𝑥|𝑥 is a message in cluster 𝑐𝑖}|/|𝑆|, ∀𝑖 ∈ {1,… , 𝑘}, ∀𝑥 ∈ 𝑆 
27:         update 𝛹(𝑥𝑖), ∀𝑖 ∈ 𝑆  
28:     end if 

29:     S.add(𝑥𝜏, 𝑦𝜏) 
30: end for 

 
 

Figure 3-8: Adversary-Aware Online SVM of Dynamic Scoring. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

As explained in Section 3.2.1, the experiment results were obtained by removing 

200 samples from each dataset. To better compare the results, the same 200 samples were 

removed from all classifiers. Every time an experiment was repeated, new 200 random 

samples were chosen. From the remainder of each dataset, a 5-fold cross validation was 

performed, measuring the time it took to do the cross validation.  The only classifier that 

was scored on the adversarial samples was the AAOSVM and it was only scored on bias 

metrics.  In the previous chapters we have shown in how many places bias could be 

introduced during the training or testing of a classifier and tried to minimize them as best 

as we could so we could analyze only the effects of the bias in the scope of this thesis. 

4.1 Experiment 1 - Evaluation of Machine Learning Models  

The classifiers used were Decision Tree (DT), Gradient Boosting (GB), Random 

Forest (RF), K-Nearest Neighbors (KNN), SVM with two different kernels: Linear (lin) 

and Gaussian (rbf), and online SVM on a moving window of 100 samples. They all are 

from the sklearn library. Except for Figure 4-19 and Figure 4-20, all the graphs in this 

Section 4.1 and its subsections 4.1.1 and 4.1.2 show the average of the 10 runs, with 

each run having its own standard deviation from its cross validation. 
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Figure 4-1: Performance metrics on machine learning models on dataset DS1. 

 

Figure 4-2: Performance metrics on machine learning models on dataset DS2. 
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Figure 4-3: Performance metrics on machine learning models on dataset DS3. 

 

Figure 4-4: Performance metrics on machine learning models on dataset DS4. 
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Figure 4-5: Performance metrics on machine learning models on dataset DS5. 

From Figure 4-5, Figure 4-2, Figure 4-3, Figure 4-9, and Figure 4-5, we can 

see that Gradient Boost had the best performance overall on all datasets without 

normalization. Figure 4-3 shows us the effect of DS3 on the classifiers’ performance, a 

small dataset with only 9 features, when we remove 200 samples from it. We think that 

the reason for the DS3 to have such a variation is that 200 samples represent almost 15% 

of the total dataset and almost 30% of the total number of phishing instances. 
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Figure 4-6: Performance metrics on machine learning models with normalized data of 

dataset DS1. 

 

Figure 4-7: Performance metrics on machine learning models with normalized data of 

dataset DS2. 
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Figure 4-8: Performance metrics on machine learning models with normalized data of 

dataset DS3. 

 

Figure 4-9: Performance metrics on machine learning models with normalized data of 

dataset DS4. 
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Figure 4-10: Performance metrics on machine learning models with normalized data of 

dataset DS5. 

We can see in Figure 4-8 that the normalization using minmax decreased the 

classifiers performance robustness for DS3, i.e., now the variations have a greater impact 

on the classifiers’ performance. Normalization also had a bigger impact on Naïve Bayes 

standard variation on each run of DS5, as shown in Figure 4-10. 

 

Figure 4-11: SVMs as compared on ACC. 
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Figure 4-12: SVMs as compared on ACC with normalized data. 

 

Figure 4-13: SVMs as compared on TPR. 
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Figure 4-14: SVMs as compared on TPR with normalized data. 

 

Figure 4-15: SVMs as compared on F1. 
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Figure 4-16: SVMs as compared on F1 with normalized data. 

Looking at Figure 4-11, Figure 4-12, Figure 4-13, Figure 4-14, Figure 4-15, 

and Figure 4-16, we can see that the performance and standard deviation was greatly 

impacted by the normalization of the data.  DS1, DS4, and DS5 had all the metrics 

improve with normalization of the data for both SVMs. DS2 had all the metrics improve 

with normalization of the data for both SVMs, but it was subtler for the Lin SVM. DS3 

had all the metrics stay with about the same values, with or without the normalization of 

the data for both SVMs. 

Other deductions that can be made is that Lin SVM is more sensitive to which the 

samples are being reserved. RBF SVM performance metrics had a variation of around 1% 

for datasets 1 and 3, for the same type of data, which could indicate that it would be more 

robust for those datasets, i.e., reserved samples do not affect its performance too much. 

4.2 Experiment 2 - Performance of the Online SVM on a Moving Window 

Now that the baseline for the SVM has been established, we wanted to see how an 

Online SVM (OSVM) would perform on a moving window. This will not only give a 
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more realistic baseline to the AAOSVM but will also show the reliability of an OSVM on 

a moving window and show the importance of the features being in the range of [0,1] for 

a better general performance.  

 

Figure 4-17: Performance metrics of OSVM. 

 

Figure 4-18: Performance metrics of OSVM with normalized data. 

The only dataset that did not benefit from the normalization was DS2, probably 

because its data was already mostly binary. Based on the difference between the results 
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before and after normalization, we can see that when the features are engineered to be all 

in the range of [0,1], the performance of the SVM could be better. 

This is especially evident for DS1 and DS5, where it goes from classifying every 

instance as phishing to trying to predict different labels correctly, having the accuracy go 

from below 55% to above 70%. DS3 also an increase in the accuracy, going from below 

50% to above 75%. While DS4 accuracy decreased, at least the TPR was not as close to 

100% as it was before, meaning that it was trying to predict different labels more often. 

 

Figure 4-19: Time to execute each run of the cross validation of the OSVM. 
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Figure 4-20: Time to execute each run of cross validation of the OSVM with 

normalized data, according to each dataset. 

Although it is not in the scope of this thesis, we had an interesting find. During 

the analysis of the data, we found that the time to train before normalization was 

dependent on the run, while after normalization it was dependent on the dataset. When it 

comes to timing, there are two considerations to be done. One is how long it takes to train 

the model. Another is the number of features and the number of samples affect the 

training time. 

4.3 Experiment 3 - SVM Becoming Adversary-Aware 

For here and onwards, the experiments had access to only the data without 

normalization as it would have been in a real-world scenario. In this experiment, a 

random combination of features, up to 2 features, was used each time. 
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Figure 4-21: Performance metrics of AAOSVM, running 10x each dataset without 

200 random samples. 

Looking at Figure 4-21, we can see that the performance metrics are dependent 

on the run and dataset. 

4.4 Experiment 4 - Changing the Scores 

For here and onwards, the experiments were done with just one run and on 

holdout instead of 5-fold cross validation. 
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Table 4-1: Performance metrics of AAOSVM changing scores, running 1x each dataset 

without 200 random samples on a holdout validation. 

Dataset ACC TPR F1 

DS1 11.09% 19.34% 13.85% 

DS2 17.18% 17.04% 16.77% 

DS3 16.45% 17.98% 16.26% 

DS4 9.43% 19.08% 12.67% 

DS5 12.86% 0.35% 0.64% 
 

We can see from Figure 4-21 and Table 4-1 that changing the scores had a great 

impact on the AAOSVM. ACC went from around 50% to around 11% on DS1, from 

around 70% to around 16% on DS2 and DS3, from around 50% to less than 10% on DS4, 

and from around 60% to around 13% on DS5. In addition, it was even more critical on 

DS5, with TPR and F1 near 0, which means that it predicting almost every instance as 

being legitimate. 

To analyze the changes in the scores, we picked DS4 and DS5, DS4 for being a 

balanced dataset on both class labels and feature types, and DS5 for being the biggest and 

the most imbalanced of them all. Because of the disparity of the number of samples 

needed for a score to reach zero, the scores were analyzed based on the first 200 samples. 

It was already foreseen that once a score reaches zero, it has no way of coming 

back, i.e., it will stay at zero until the classifier is reset. As stated in Section 3.6.3, we 

thought that using tanh as the update function, the scores would go up and down, and 

either settles at zero or at around some value, as the error fluctuates and gradually goes to 

a minimum. 
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Figure 4-22: Score values for DS4, on 200 samples. 

 

Figure 4-23: Score values for DS5, on 200 samples. 

The intended desired behavior is the one displayed by the utilities on DS5 and the 

utility of malicious samples on DS4, as shown in Figure 4-22 and Figure 4-23. 
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We did not foresee the number of samples that was needed for each score to reach 

zero nor that it would happen with the error still high. It is worth noting that once both 

scores for a class reach zero, 𝛹(𝑥𝑖⃗⃗  ⃗) will be redefined as Eq. 4-1, where it no longer 

depends on the sample or the scores: 

 𝛹 = 
1

𝑤𝑇𝑒 + 2𝑏
 Eq. 4-1 

The costs on DS4 and DS5 went to zero with less than 120 samples, as shown in 

Figure 4-22 and Figure 4-23. The utility of regular samples on DS4 with less than 160 

samples means that for DS4 the scoring had no effect on 𝛹(𝑥𝑖⃗⃗  ⃗) after only around 1% of 

the samples. As both costs reach zero, they leave the scaling of the belief to just the 

utilities, which are updated based on the decrease in error or correct classification of the 

samples. 

4.4.1 Significance of Experiment 3 and 4 – Bias Metrics 

For the remainder of the results and discussion,  

• “a” represents that the support vectors from the previous AAOSVM are 

being used to select the 200 samples that will be left out of training. 

• “b” represents that the support vectors from the Linear SVM are being 

used to select the 200 samples that will be left out of training. 

• “n” represents that the 200 samples that will be left out of training are 

randomly selected. 
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Figure 4-24: Average DPPTL on one manipulated feature. 

As stated in Section 3.2.2, there were 5 metrics for measuring bias but only 2 are 

shown here and another 2 are shown in the next Section; this is because demographic 

parity was not attained on a single instance. An important thing to be mentioned is that 

not a single generated sample resulted in a false positive in DS4, even though the one 

with almost 0% TPR and F1 was DS5. 

 

Figure 4-25: Average DPPTL on two manipulated features. 
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Demographic Parity and Difference in Positive Proportions of True Labels did not 

carry as much information as expected. We expected to see at least a different DPPTL 

value for each set of generated samples, but all the sets of generated samples in each 

dataset with a set condition generated an average of about four distinct values of DPPTL. 

Table 4-2: Distance from the original sample. All the selected samples’ type have the 

same values for each respective dataset. 

Dataset Distance 

DS1 1 

DS2 2 

DS3 1 

DS4 0 

DS5 1 

 

It did not matter what instances were kept out of the training. It did not matter if 

the AAOSVM changed scores. The minimal distance from the original sample remained 

constant for each dataset. All the generated samples from an instance had at least one 

sample that had the same minimal distance for the given dataset. 

An important thing to consider is the cost of generating samples in the real world. 

While it is reasonable to consider Euclidean distance from an academic point of view, it 

is not reasonable in real life, as some features will be harder to modify than others and 

some datasets have half or more features with binary values while others have ninety 

percent of numerical values. Not to mention that, at least in the case of most website 

phishing, there is a need to modify one feature on every sample – named URL. It is also 
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important to consider how many features are being manipulated. At some point it will be 

similar to creating a new instance from scratch. 

4.4.2 Significance of Experiment 3 and 4 - Testing for False Positives 

Here, we have the results of percentage of false positives and class imbalance.  

 

Figure 4-26: Average percentage of FP using different seeds on the AST for different 

number of manipulated features. 

As stated in Section 1.4, we had three research questions. The first one was 

confirmed, as shown in Figure 4-26. If support vectors are used as AST seed samples, 

then the percentage of false positives can go up at least 10% in absolute number, or 25% 

relative to the randomly selected samples, and up to 20% in absolute number, or 100% 

relative to the randomly selected samples. 
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Figure 4-27: Comparative of Class Imbalance and Percentage of FP on each dataset 

for each type of sample seed. 

The reason why Figure 4-26 had a big variation in the standard deviation is 

shown in Figure 4-9 because the percentage of FP varies for each dataset. The second 

one was dismissed as there is no correlation between the class imbalance and the 

percentage of false positives as shown in Figure 4-9. In all datasets that had false 

positives with the exception of DS3, the class imbalance was almost constant, with the 

standard variation less than 1%. The class imbalance in DS3 varied more because of its 

size. Although the class imbalance had some variations, it did not change with the 

selected samples’ type but the dataset. The FP percentage varied according to the dataset 

and selected samples’ type as shown in Figure 4-9. 

On the one hand, small perturbations on some features can bypass the AAOSVM 

and bring down the accuracy. On the other hand, even in the worst case, where the 

AAOSVM had terrible performance during training and was facing generated samples 
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designed to fool the classifier, the percentage of false positives did not go over 50%. 

When it comes to online classifiers, adversarial attacks have an even bigger impact as 

they can bias the classifier towards one class or the other.  When the AAOSVM is 

changing scores during training, its performance decreases, but the decrease in 

performance in training is not linearly correlated with its bias metrics values. We say this 

because while clearly the choice of the seed matters, as shown in Figure 4-26, the change 

in FP occurs in a similar way but with different proportions, except for DS3, in Figure 

4-9. 

Focusing on Figure 4-9, DS1 with seed “a” has a slightly higher percentage of FP 

than “b” but both are lower than “n”; DS2 with seed “a” has a higher percentage of FP 

than “b” but both are higher than “n”; DS3 follows a similar pattern of DS2 with the 

difference that on DS3 “b” has a lower percentage than “n”; DS5 with seed “a” has a 

slightly lower percentage of FP than “b” but both are higher than “n” 

As mentioned in Section 3.2, DS2 and DS3 could have some correlation, but no 

experiment showed any obvious correlation.
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

In this thesis, we have shown that the selection bias has an impact on the 

AAOSVM, while class imbalance does not have an impact on the AAOSVM. Now more 

experiments are needed to determine if that impact is extended to other classifiers and 

initial parameters. 

As explained in Section 4.2.3, if support vectors are used as AST seed samples, it 

will cause more misclassification. There is a class imbalance in the generated data by 

AST, but it does not affect the classification algorithm. 

When the AAOSVM is changing scores during training, its performance 

decreases, but the decrease in performance in training is not correlated linearly with its 

bias metrics values. 

5.2 Future Work 

5.2.1 Poisoning Attack 

With a similar framework and the experiments as this thesis, one could test the 

effects of selection bias on the AAOSVM coming from a poisoning attack. 
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5.2.2 Proper Metrics 

The metrics used in this thesis were adapted from works on bias related to social 

context. For adversarial context, we need to develop new metrics to measure the effects 

of adversarial bias. 

5.2.3 Other Machine Learning Models 

This thesis focused on SVMs. We need to see how this would behave in other 

types of machine learning models that take into account the adversarial context. 

5.2.4 Tuning Machine Learning Models Parameters 

It would also be interesting to see how every machine learning model would 

behave if they were to go against an attack while its parameters are tuned to a specific 

dataset.  

5.2.5 Time to Train 

As said in Section 4.2, we found an interesting dependance that is out of this 

scope. We propose an investigation of this dependance for future work. 

5.2.6 Improving the AAOSVM Scoring 

We suggest that anyone who is willing to improve on scoring method to try a 

different set of update functions and conditions to apply the update functions. 
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