
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2015

Sensitivity of mixed models to computational
algorithms of time series data
Gunaime Nevine

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Mathematics Commons, Applied Statistics Commons, Mathematics
Commons, and the Other Computer Sciences Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages


SENSITIVITY OF MIXED MODELS TO COMPUTATIONAL 

ALGORITHMS OF TIME SERIES DATA

by

Nevine Gunaime, B.S., M.S.

A Thesis Presented in Partial Fulfillment 
of the Requirements of the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

May 2015



ProQuest Number: 10308420

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10308420

ProQuestQue

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

January 16, 2015
Date

We hereby recommend that the dissertation prepared under our supervision

. Nevine Gunaime
by_______________________________________________________________________________

entitled________________________________________________________________________________________

SENSITIVITY OF MIXED MODELS TO COMPUTATIONAL ALGORITHMS 

OF TIME SERIES DATA.

be accepted in partial fulfillment o f  the requirements for the Degree o f

Doctor of Philosophy in Computational Analysis and Modeling

Supe^isor of-Dissertation Research

Head o f  Department

CAtA
Department

Recommendation concurred in:

fcNI Cud

Approved:

ir o f  Graduate Studies

Advisory Committee

Approved:

aduate School

6 /=>
Dean o f the College

GS Form 13a 
(6/07)



ABSTRACT

Statistical analysis is influenced by implementation of the algorithms used to 

execute the computations associated with various statistical techniques. Over many years, 

very important criteria for model comparison has been studied and examined, and two 

algorithms on a single dataset have been performed numerous times. The goal of this 

research is not comparing two or more models on one dataset, but comparing models 

with numerical algorithms that have been used to solve them on the same dataset.

In this research, different models have been broadly applied in modeling and their 

contrasting which are affected by the numerical algorithms in different SAS software 

procedures. Those model-algorithm combinations have been tested separately on three 

datasets: Box and Tiao Ozone data, simulated Tree Height-Age data, and Longleaf Pine 

Tree Diameter-Height (Taper) data.

Furthermore, results presented will be inclusive in describing the general 

conclusions by comparing the algorithms, then analyzing the behavior and performance 

of every algorithm based upon the verification and the results we have. In addition, 

algorithms’ relative and absolute strengths and weaknesses will be identified. The 

decision will stand on well-known model selection criteria: Akaike Information Criterion 

(AIC), Schwarz's Bayesian Criterion (SBC), Root Mean Squared Error (RMSE), and 

Coefficient of Determination (R2).
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CHAPTER 1

INTRODUCTION

Scientists possess the knowledge and understanding about the world, and they are 

capable of converting what they know into models to make complex information easier to 

realize. Stockburger (1996) defined a model as “a representation containing the essential 

structure of some object or event in the real world”. Models are usually solved with 

algorithms, “which have a well-defined computational procedure that takes some value as 

input, and produces some values, as output” (Cormen et al., 2009). Algorithms are used 

to find models, but many algorithms are available to execute this task. However, 

algorithms depend on implementation, which influence the performance of the algorithm 

(McGeoch, 1996). Therefore, algorithm comparison papers have become important 

(Coffin & Saltzman, 2000); however, they do exist in many scientific fields like 

engineering, computer science, and biology. Often, algorithm comparisons are based 

upon solution qualities or accuracy of their results.

From a general viewpoint of statistical results, any model depends on the 

numerical algorithm used to solve that model, which can be proven by testing more than 

one algorithm to solve the same model and compare the results. For some models, 

coefficients (parameters) of model variables intervene and play a role in affecting results, 

particularly if dealing with nonlinear models (Seppelt & Richter, 2005). Applying 

statistical analysis is a very strong implementation for assessing any algorithm’s
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performance. Statistics is the most important part of mathematical science, besides 

searching theoretic topics, which is used by researchers in many scientific branches to 

assemble, arrange, examine, and make implications of the data. Statistical models can 

help researchers in making convenient decisions on data in their work (McCullagh, 

2002). When applying a statistical model on any type of dataset, it is best suited to 

execute through all types of algorithms associated with that model. Applying the same 

model on the same datasets with different algorithms yields consequences inclusive of 

different outputs.

One of the most broadly used tools for investigating multilevel data in statistics is 

regression analysis, which represents a relationship between variables (Montgomery, 

Peck, & Vining, 2006). This relationship describes the causative effect of one variable 

upon another. Regression equation is an approximation for the original relationship 

between variables. Furthermore, regression model also referred to as empirical model, 

can be a simple relation between one predictor variable and the response variable, or 

multiple which is between more than one predictor and the response variable. The best 

approach to replicate empirical models is the fix and random effects (Schielzeth & 

Forstmeier, 2009). When both effects appear together in a model, it is called the mixed 

effect model, and fixed effect is something the experimenter controls and is often 

repeatable. For example, a drug is tested in which experimenters provide a specified 

amount of a drug to one group and the other group gets the placebo. In this case, the drug 

or placebo is a fixed variable. Fixed effect is found to be more powerful because it 

produces smaller standard errors. In contrast, when an experimenter draws an individual 

(at random) from a population, random effects take place. As a means of providing a



comprehensive outlook, random effect can occur during a clinical trial by choosing 

random patients from one group for drug testing, which can be male or female; in this 

case, the gender is a random variable (Gelman, 2005). In essence, random effect is less 

powerful because it produces large standard errors.

Another important topic in statistics called time series must be defined to get a 

full understanding of this research; thus “time series is an ordered sequence of 

observations xt ,each one being recorded at specific time t” (Brockwell & Davis, 1996).

Time series analysis has been a significant topic in a variety of research fields such as 

business, agriculture, economics, engineering, geophysics, medicine, and social sciences 

(Wei, 2006).

1.1 Problem Statement

The applying scientists are focused on the details of their research and not on the 

particularity of the statistic methodologies. The quick improvement in computing 

technology has simplified the use of models and problem solving by using computer 

softwares. Consequentially, inducting researchers in applied sciences have a tendency to 

use the built-in default setting, which focuses on statistical softwares of their choice. 

However, we argue that the results are sensitive to settings embedded in the default 

options which can result in misleading or undefeatable conclusions. Furthermore, 

practitioners who focus on areas not related to statistics use the default setting of statistics 

software built for them. By using built-in procedures in any software, models can be 

fitted one equation at a time through different algorithms on the data, and every one of 

those algorithms has its own adjustment and derivation. On the other hand, we agree that 

the default option does not necessarily supply (indefinable) the results and researchers



should be aware of using this option. Unfortunately, this valuable information is often 

omitted in research reports, and from this point of view, the significance of studying the 

variation outcomes is a result out of applying different algorithms besides the default. 

Comparing algorithm papers are very wide spread, but unfortunately, most of them 

contain statistical summaries with few data analyses (Coffin & Saltzman, 2000). Data 

analysis is represented by EDA, which is an abbreviation for Exploratory Data Analysis, 

such as extracting important variables, detecting outliers, testing underlying assumptions, 

and determining optimal factor settings (Tukey, 1977).

In reality the exact true model of a given data set is unknown, but it could be 

predicted by practicing (running) well-known models or newly developed ones that are 

suitable for a research data numerous times by initiate different values for the model’s 

parameters until the results meet the researcher expectation, such as the model converges 

and achieved the lowest mean squared error.

To be more precise, this issue is explored by using models broadly applied in 

forest growth and yield modeling, in addition to comparing their effects. For every 

model, four algorithms in the time series autoregressive process and three algorithms in 

the time series ARIMA model in Statistical Analysis System (SAS software) will be 

applied and assessed. As previously mentioned, model-algorithm combinations have been 

tested separately on three datasets: Ozone data, Tree Height-Age data, and Height- 

Diameter (Taper) of Longleaf Pine trees.

1.2 Objectives

The objective of this research is to assess the impact of using different algorithms 

under the same model. In other words, investigating how the data are sensitive to



algorithms based on respective models. Models’ sensitivity terminology means 

describing how much the model output results are affected by changing the algorithms 

used by software procedure to execution that model.

This research, however, provides a clear understanding to the behavior and 

performance of each algorithm used to solve mixed models on the time series data. 

Furthermore, strengths and weaknesses will be identified for algorithms both relative and 

absolute. Above all, this study compares algorithms to determine which are best and the 

worst under each model.

In statistics, there is no miraculous procedure to provide the best model. 

Nevertheless, there are some criteria bench marks that should be measured to help 

compare two or more algorithms and choose the best. In this research, Akaike 

Information Criterion (AIC) and Coefficient of Determination (R2) are the two guide 

methods for selecting the best and worst models which is called multivariate pairwise 

tests used to compare the algorithms performance; thusly, in such a case, two or more 

vectors are used for comparisons (Yildiz, Aslan, & Alpaydin, 2011). Therefore, the best 

and worst algorithm comparisons for similarities and differences will be investigated; 

comparing algorithms is done by classification errors (residuals) based upon different 

factors for each dataset.

Even though numerical algorithms for solving any model most of the time leads 

to the same conclusions, they still have major differences between them that makes one 

of them performs better than the rest. There are many reasons that make these algorithms 

vary and even some of them more preferable than others. One of the main important 

criteria that make one algorithm more preferable is time consumption, in which some



algorithms require periods of running time to be executed to solve the model better than 

other algorithms to produce results (Coffin & Saltzman 2000). In some research, 

especially in computer sciences, the running time is a very important factor in comparing 

algorithms, and researchers in that field utilize asymptotic notation for computing 

algorithm complexity by measuring the running time which should be as small as 

possible (Cormen, Leiserson, Rivest, & Stein, 2009). In statistics, some algorithms do not 

show very important details about the coefficients such as AIC or p value, which is very 

significant in explaining any model. One more important distinction in statistics 

visualization is a very important way for giving feasible meaning of a huge number of 

data which helps to get a clear understanding about the data is behavior. Some algorithms 

do not show graphics to demonstrate the tendency in the data or differences between 

variables, but rather show only numbers which force the users to utilize their memory for 

comparing, instead of visual explanation. Unfortunately, this depends on user memory, 

which makes the assessment imprecise and decision inaccurate since it differs from one 

user to another.

1.3 Hypotheses and Assumptions

Two assumptions and hypotheses were proposed to direct this research. The 

assumptions used to clarify the time series data are:

1- The future is unknown, but it is predictable.

2- Residuals of any Time Series data has at least one organized pattern.

The previous two assumptions were set up as starting points for testing the two 

hypotheses of this study, and these two hypotheses are:



1- The default option algorithm under any statistical software procedure is not always 

the perfect choice for a predefined model.

2- Model Selection task gives different results for selecting the best models among a set 

of candidate algorithms, depending on the selection criteria chosen.

To test the hypothesis, the research presented in this thesis considered three datasets:

1- Impact of computational algorithms on modeling Ozone.

2- Impact of autoregressive algorithms in modeling auto-correlated data.

3- Analytical assessment for autoregressive process impact on Height-Diameter (Taper) 

data of Longleaf Pine trees.

1.4 Thesis Structure

The objective of the research was accomplished by combining the results of three 

datasets. Setting models and numerical algorithms were used to solve them to form one 

diagnostic platform, which enables the identification of the best algorithms associated 

with each model, and are presented individually as three chapters within this thesis. One 

chapter is used as a background to define important facts, concepts, and models which are 

applied in this research. The rest of this thesis is organized into five chapters, followed by 

the details and the outlines for the contents of each chapter to address the research 

objective.

Chapter 2 provides a background of the main statistical concepts and models 

which are used in this research with their formulas, helping to obtain a greater 

understanding for the research steps. Section 2.1 provides a brief introduction about the 

chapter, and Section 2.2 addresses the regression models which are divided into 

Subsection 2.2.1 simple regression model, Subsection 2.2.2 multiple regression model



with Subsection 2.2.2.1 multicollinearity, and Subsection 2.2.3 mixed effect model. 

Section 2.3 is about the time series model, discussing auto regressive (AR) models in 

Section 2.3.1 and autoregressive integrated moving average (ARIMA) models explained 

in Section 2.3.2. The most significant part of this research is the selection criteria, which 

is a leading guide for selecting the best models to be discussed in Section 2.4 by having 

two types of model selection methods: Akaike Information Criteria (AIC) and Coefficient 

of Determination (R2).

Chapter 3 serves three purposes based on Box and Tiao’s data (1975). First, the 

intervention model analysis for the times series data is explained; and secondly, 

discussing the meaning of ARIMA procedure in SAS 9.3 (SAS Institute Inc., 2012). 

Research hypotheses were then tested by using the Ozone data by applying the ARIMA 

procedure and its three algorithms. Chapter 3 mimics the work completed on the Ozone 

data by Box and Tiao (1975), which was applied by using the ML algorithm of ARIMA 

process and extended to be used with CLS and ULS. Subsequently, the results of ARIMA 

procedure and applied in the autoregressive procedure in SAS was used. Finally, by using 

AIC and R2, the best model was chosen among the final candidate models.

Chapter 4 will start with computational methods and numerical algorithms’ 

significance. Next, the description for simulation data translates the theoretical results 

into real practice. Afterward, there will be an in depth explanation of the Height-Age data 

generated by using SAS, and clarification of the autoregressive procedure concept in 

SAS. Next, applying the simulated data to two models have been utilized in forest growth 

and yield modeling: Chapman Richard and Wyckoff models, beside Schumacher and 

Polynomial models. The results of those four models are implemented in the autoreg
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procedure in SAS, then they are investigated and compared to its four algorithms: ML, 

ULS, ITYW, and YW (which is the default option). Exploring the models, as a result of 

each algorithm combined with the autoregressive procedure, will be completed through 

two stages, according to the selection of the best model based on AIC and R2.

Chapter 5 begins with a brief introduction about model-algorithm comparisons, 

followed by a comprehensive discussion describing the Longleaf Pine tree, what they are 

and where they are spread. Then, an explanation of what the taper stands for, its 

significance, and usage with the other collected attributes will be analyzed. An 

assessment of the five taper model results was based upon ninety-one plots: Bruce, 

Coffre, Jimenez, Kozak, and Munro (Rojo, PeaStem, & Sanchez-Rodriguez, 2005). Next, 

four autoregressive numerical algorithms will be investigated based on residual results 

from the taper models, and the final most favorable models are chosen according to AIC 

and R2.

Chapter 6 concludes the thesis by connecting and summarizing earlier chapters 

with significant results and decisions of the research. It will also discuss strengths and 

weaknesses throughout all major discoveries while showing the hypotheses of the thesis 

by relating them to algorithms. This research discusses the impact of applying different 

numerical algorithms on some important forest growth and yield models. Additionally, 

all tests and outcomes are examined theoretically and future researchers can use findings 

by testing other types of models with different datasets.



CHAPTER 2

BACKGROUND AND REVIEW

2.1 Introduction

This chapter is an extensive review of some basic statistical models used in this 

research, with explanation of their definitions, formulas, and graphs. These models will 

lead us to discuss and investigate the research findings and go over the main points of the 

data to support the methodology of the research.

2.2 Regression Models

The regression model is a statistical technique for evaluating and assessing a 

relationship between variables. This relationship is represented by an equation between a 

response (dependent) variable and one or more predictor (regressor or independent) 

variables (Draper & Smith, 1998). The regression model can be linear or nonlinear and is 

divided into two main types: simple regression model and multiple regression model.

2.2.1 Simple Regression Model

The simple regression model is an investigation of how the changes in one 

variable affect another. The equation of a straight line relating two variables is 

y = P  o + fi\ x + e , where y is the dependent variable, x is the independent variable, f30

and /?, are the intercept and the slope, respectively, and e is a random error. The errors
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are assumed to be normal, having a mean of zero, an unknown constant variance a 2 

(homoscedasticity), and finally they have to be independent (uncorrelated) (Montgomery, 

Peck, & Vining, 2006).

The residual plots are an efficient approach to investigate whether the fit of the 

regression model is strong or weak. These residuals have to be a random shape with no 

pattern to make sure the residuals are not correlated (Tsai, Cai, & Wu, 1998).

2.2.2 Multiple Regression Model

When a regression model includes more than one predictor variable, it is called a 

multiple regression model, and it is represented by y t = + /?,*, + f}2x2 + — ve

(Montgomery, Peck, & Vining, 2006). Multiple regression is basically the same as simple 

regression which is used to determine the goodness of the fit of the data and reliability of 

the model. The numbers of the independent variables are controlled by the research 

indicators in its hypothesis. The same rules in the simple regression model should be 

applied on the residuals, which resulted from the multiple regression model.

2.2.2.1 Multicollinearity

When there is no linear relationship in existence among regressors, they are orthogonal 

(statistically independent), which should occur in any multiple regression model. 

However, if this does not occur, a serious problem called multicollinearity has taken 

place, which is a big issue that has influenced the efficiency of the regression model 

(Montgomery, Peck, & Vining, 2006).

One of the most important ways to discover whether there is a multicollinearity in 

the model or not is to build a simple regression model between each pair of the



independent variables and observe R2 (R2 will be discussed in Section 2.4.2). If it is close 

to 1, this means there is a strong multicollinearity.

There are many ways to correct the model after discovering the multicollinearity 

in it. First, remove one of the strong correlated variables, but this can result in a non­

significant model. Secondly, increase the sample size of the model, but unfortunately, it 

is hard to recollect data in some research. Thirdly, combine one or more of the strongest 

correlated variables into a single variable without changing the idea of the research 

hypothesis. Finally, leave the model as is and describe the entire variable’s significance 

or weakness, and investigate the problem and purpose of the solutions (Fennessey & 

D’Amico, 1980).

2.2.3 Mixed Effect Models

In the past few years, many researchers and practitioners have taken mixed model 

courses for the important role it plays in many fields, as it is an extension of the multiple 

regression model and its significance expanded too. As mentioned earlier (in Chapter 1), 

the mixed effect models (or called mixed models) are statistical models which consist of 

fixed and random effects, and they can be linear or nonlinear. The fixed effect variables 

are predefined by the experimenter and are the same for all groups in one study. 

Additionally, random effect variables are drawn from larger distribution and the 

experimenter cannot have control over it.

Mixed models investigate grouped or repeated measures data in which the 

response is measured at fixed time points. These repeated measures data are correlated 

and data differs from the time series data by multiple subjects which are included; the 

number of measurements per subject is generally not very large (Moser, 2004).



The general form of the mixed models is Y = fix  + aZ  + e , where p X  is the 

fixed effect part and aZ is the random effect. The detailed equation explains two 

important classifications about the mixed models, which are within groups (observations 

or treatments) or between groups (levels) effects. Since there can be several treatments or 

single treatments evaluated at different points of time, the mixed model equation is in the 

form of: y tJ = p 0 + P xxUj + p 2x 2lI + • • • + p px pi] + a 0t + a nzU] +••• + a iqzqij + e

where p  and* represent the fixed effect part and a and z represent the random part of the 

mixed effect model, i represents the number of the group or the level, and j represents the 

number of observations (treatment) in each group (Draper & Smith, 1998).

The most significant improvement of mixed-effects models, is permitting the 

experimenter to simultaneously take into account all factors that likely participate in the 

understanding of the data structure, while having the ability to fit models of large 

unbalanced data (Baayen, Davidson, & Bates, 2008). The preceding talk about the mixed 

models will be used in Chapter 5.

2.3 Time Series Models

“Time series analysis is an ordered sequence of observation” (Wei, 2006). The 

order in the sequence is usually from beginning to end depending on time. This recorded 

sequence is always in the shape of electrical voltage. Figure 2-1 is an example of a 

general time series which is in a shape of electrical signals.



Figure 2-1: An example of a time series.

Time series analysis is used for modeling the data, recognizing the pattern in the 

correlated data, and predicting the future based on past and present data.

Time series is denoted asZ ,, where {t = 0, +1, ±2,... } with meanp, = E (Z ,),

variance cr;1 = (Z, -  ju, )2, and the covariance function between Z, and Z, will be

y(tl, t 2) = E(Z -  //, )(Z,2 -  juh ) . The autocorrelation function of any time series

measures how a series correlates with itself at different lags, and it is always one at lag 

zero. Consequently, the correlation between Z, and Z time series will be

manner, the partial auto correlation function is the partial correlation coefficients between 

the series and lags, but only after removing the best linear estimate of the series. 

Therefore, the partial autocorrelation between Z, and Z l+k time series will be:

If the autocorrelation between Z, andZ(+t, where k is a times lag,

the equation will be p k =
Cov(Zt ,Z l+k) _ y(t,t + k)

(Wei, 2006). In the same
JVar(Z,)Jv (̂zZ) y R ^ l k



Pk = Z,),(Z ,kk....V ) ] ^ , w jl e r e  and Zf+(are the best linear

JvarfZ , -Z ,)JV a r(Z ,«  -Z „ „ )

estimate of Z, andZ,+t, respectively (Baayen, Davidson, & Bates, 2008).

Time series can be one of four cases:

1- The sequence varies in a fixed level, and in this case, it is called stationary in the 

mean.

2- The sequence in this case varies not in a fixed level, but in an upward (increasing) 

trend, and in this case, the variance is increasing, and it is nonstationary in the 

mean and the variance.

3- This case is the opposite of the second case; it is a downward (decreasing) trend 

with a decreasing variance, and it is also nonstationary in the mean and the 

variance.

4- The sequence has a frequent pattern as a consequent of seasonal variation, and it 

is also a nonstationary time series.

In cases 2, 3, and 4, transformation has to be complete to convert them to the 

stationary time series for removing the tendency, and differencing is one of the best ways 

to make the transformation. Nonstationary time series can happen in the mean, the 

variance, or both. Moreover, ARIMA is the famous homogenous nonstationary time 

series models (Wei, 2006).

2.3.1 Autoregressive Time Series Models (AR)

There is an important series that has to be mentioned before addressing AR, 

which is called a white noise (WN) process. White noise is a sequence of uncorrelated 

random variables from a fixed distribution. It is denoted as at with E(at ) = Ma = 0,



constant varianceVar{at ) = a ] , and covariance^ = Cov(a,,a,+k ) = 0, for all k *  0 

(Wei, 2006).

The autoregressive model is a representation to express a stationary time series 

process by regressing the dependent variable at time t on its own past values, and adding 

the white noise to it. The autoregressive model of order p is denoted as AR (P), and in the

form of Z, =0, Z,-i + ••• + (f>p Z ,-P + a, where Z , = Z ,  - p  (Wei, 2006). Previous

discussions about the AR model and white noise will be used in Chapters 3, 4, and 5.

2.3.2 Autoregressive Integrated Moving Average Time Series 
Models (ARMA)

ARIMA is a homogenous nonstationary time series which can be transformed to 

the stationary time series by having a suitable degree of differencing. The general 

ARIMA model of (p ,q) order and after d differencing degree, is in the form of

0p(B )(l-B )dZt = # Q +9q{B)at (Brockwell & Davis, 1996). All previous discussions 

about the time series and the ARIMA model will be used in Chapter 3.

2.4 Model Selection Criteria

The best model of any research is the singular model for making implications 

from the data. The other unselected set of models which are clearly not significant will be 

maintained for more investigation. At the model selection stage there are data and a set 

of candidate models with statistic derivations which select the best model that will be 

based upon these derivations (Burnham & Anderson, 2004). Many researchers consider 

the robust inference test to be the best method for comparing models (Platt, 1964).There 

is no exclusive statistical procedure or method for selecting the best model, but there are
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various methods that have been proposed, and each one of them has its own properties 

(Draper & Smith, 1998).

Even though the model selection criteria provides the same conclusion most of the 

time, they do not guide to the same solution when applied on the same data set. In any 

research, the performance measurement, of the model is considered by observing some 

statistical numbers, such as the minimum number of errors or coefficient of 

determination, to see how well data points fit a statistical model, and based upon those 

performance measurements, the best model will be selected. In this research, we will 

discuss two of the most significant model selection criteria, which are Akaike 

Information Criteria (AIC) and Coefficient of Determination (R2).

2.4.1 Akaike Information Criteria (AIC)

Akaike information criterion was named according to a Japanese statistician who 

formulated it in the early 1970s (Akaike, 1974). As of late, AIC has had a significant 

impact in statistical model evaluations and has been known as one of the most important 

selection models for choosing the most favorable approximating model among all the 

candidates (Bozdogan, 2000). Furthermore, the best model has the smallest expected 

inconsistency among the candidates. In other words, the model with the lowest AIC value 

is selected as the best model to fit the data (Bozdogan, 2000; Wang, 2000).

AIC is a measure of the goodness of the fit and the complexity of the model, and 

is calculated as the following formula: AIC -  -2  log L{6) + 2 k , where L(6) is the

maximized likelihood function, -  2 log L{9) is the lack of fit component, and k is the 

number of estimated parameters in the model (Bozdogan, 2000).



2.4.2 Coefficient of Determination (R2)

Coefficient of determination (R2) is an extremely important indicator of how the 

variability in y is explained by the regression model. In essence, R2 demonstrates how 

well the data points fit a statistical model. It can be larger by adding more variables to the 

model and the magnitude of it depends on the range of the variability in the regressor 

variable (Montgomery, Peck, & Vining 2006). R2 is represented by:

cc
Rl  = - ^ r  Equation 2-1

where SSx is the sum of squares for the response variable and SSe is the final error sum 

of squares. The model with highest R2 value is selected as the best model to fit the data.



CHAPTER 3

IMPACT OF COMPUTATIONAL ALGORITHMS ON 

MODELING OZONE

3.1 Introduction

Numerical algorithms are fundamental tools used to solve problems in 

computational science and are applied to known models or to newly developed ones. 

Although any given model can potentially employ more than one numerical algorithm, 

the selection of the algorithm stays with the researcher, which will use the best algorithm 

that will provide the solution. However, not all the numerical algorithms provide for the 

same problem, completely similar results. One algorithm’s result can be more precise 

than another’s.

When performing statistical analysis, the common practice is to use built-in 

procedures available in any statistical software package with default numerical algorithm 

embedded in that procedure. Furthermore, practitioners possess the ability to look for the 

other available algorithms besides the default, even though the results are sensitive to the 

algorithm used. Consequently, studying the impact of different numerical algorithms 

under the same procedure on solving the same problem is the scope of our paper, since 

they can provide significantly different results.
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Our goal consists not in comparing two or more models of one dataset, but in 

comparing the numerical algorithms used to solve models of the dataset. After presenting 

the results, we will follow with the analysis of the behavior and performance of the 

models and the description of the conclusions based upon verification and results. The 

idea of this study is to make an assessment of different algorithms used to solve two time 

series procedures on a time series data. Observations are repeatedly recorded in a period 

of time, which is called the time series data; modeling this type of data is a significant 

topic in many scientific fields (Meek, Chickering, & Heckerman, 2002). The most 

complex implementation of time series models are applied in physical and environmental 

sciences (Shumway & Stoffer, 2011).

Delivering the ideology of this study requires a time series data, which is an 

intervention model for Ozone data chosen since it is considered one of the most important 

applications in economic and environmental science. This data set represents the Oxidant 

pollution in downtown Los Angeles from 1955 to 1972 and was studied by Box and Tiao 

(1975). Ozone is a chemical substance and it is referred to as O3, which is also called 

oxidant, and a high concentration of Ozone is known as Oxidant pollution. Box and Tiao 

completed their work by using the stochastic model for the noise with the ARIMA 

process. The Maximum Likelihood (ML) algorithm is the numerical algorithm elected to 

solve the model. Two other algorithms are selected to solve ARIMA, namely Conditional 

Least square (CLS) and Unconditional Least Square (ULS) algorithms. The comparison 

is based on the results of the three algorithms selected. The second phase of the study 

mimics the ARIMA procedure by using the autoregressive process and comparing the 

outcomes of its four numerical algorithms: Yule Walker (YW), Iterative Yule Walker



(ITYW), Maximum Likelihood (ML), and Unconditional Least square (ULS) algorithms. 

Highlight discuss

We underline the sensitivity of the data to the chosen algorithms by applying a set 

of key input variables and parameter values. To test how the data reacts to different 

algorithms, major factors were chosen to be the guideline in building decisions. The 

analysis is based on the noise (residuals) of the data, which is a very important 

benchmark in testing the model’s performance and assists in learning the data efficiently, 

while making the results easier to be interpreted and compared.

3.2 Methods

3.2.1 Data Description

As mentioned earlier, Ozone data will be solved as a time series regression model, 

with Ozone as a response variable and three regressors:

• xi which is an intervention variable with zero value for periods prior to 1960 and 1 

for post 1960;

• Winter is 1 from November to May starting with the beginning of 1966 and zero 

otherwise; a

• Summer which is 1 from June to October starting from the beginning of 1966 and 

zero otherwise.

The year 1960 was chosen to be the intervention year to determine the values of 

xi, because an important event occurred in the early 1960s which impacted the Ozone 

level. This event consisted of the opening of the Golden State Freeway, creating a new 

law, resulting in the reduction of the fraction of hydrocarbons in the gasoline sold. The 

law was produced to reduce the allowable proportion of hydrocarbons in the gasoline,



affecting the Ozone level. Summer and Winter are also considered as intervention 

variables because of the different temperatures and sunlight intensity that has different 

effects on oxidant pollution. Additionally, their effects have been an intervention to the 

Ozone level since 1966, which was the starting year of inventing new cars with engines 

that produced lower O3 than before. Table 3-1 is summarizing the Ozone variable and the 

three independent variables.

Table 3-1: Summary of Standard Statistical characteristics for Ozone data.

Ozone dataset 
N=228

Variable Mean SD Min Max
Ozone 3.77268519 1.49163379 1.2 8.7

XI 0.7368421 0.441316 0 1
Summer 0.1754386 0.381179 0 1
W inter 0.245614 0.431398 0 1

Figure 3-1 shows the graph for the Ozone level from 1955 to 1973. The graph 

shows a downward trend with a peak Ozone level of 8.7, which was observed in 

September of 1966, and the lowest was 1.3 in January and December of 1975, and 

December of 1977.
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Figure 3-1: (A) Ozone level in downtown Los Angeles from Januar 1955 to 
December 1972, (B) the estimated trend component,(C) the estimated seasonal component, 
and (D) the estimated irregular component.

One should notice that the variance is not constant through time and since the 

Ozone data has seasonal components, it has to be adjusted by subtracting the predictable 

seasonal part from the series. As it was done in a previous study by Box and Tiao, the 

Ozone series was differenced at lag 12 because it is a monthly data. Figure 3-2 shows the 

Ozone level series in the time interval 1955 to 1973 after it was differenced, and it is 

obvious that the seasonal component (downward trend) disappeared.

CNI

o

1960 1965 1970

Figure 3-2: Differenced Ozone series from January 1955 to December 1972.
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3.2.2 Models and Algorithms Description

To reach our goal of investigating and assessing the impact of different algorithms 

on Ozone data and to select the best algorithm, a set of runs were executed on the entire 

dataset. The appropriate numerical algorithms of investigation are used to solve two main 

time series processes which are the ARIMA and Autoreg procedures. Additionally, 

regression is the basic model the investigation was built on, and explaining the regression 

model within a time series platform means that the dependent variable is influenced by 

some time series independent variables. Furthermore, dependency should be expected 

between residuals of the time series values and the researcher’s work to estimate the 

correlation between them (Shumway & Stoffer, 2011).

The first phase in this study mimicked the work of Box and Tiao by using the 

ARIMA procedure in SAS. Two separate runs will be executed, in addition to the one 

completed using the ML algorithm and these two runs will be based on two different 

algorithms: CLS and ULS. Akaike Information Criteria (AIC) is the selection criteria 

method for deciding on the best algorithm. Above all, Box and Tiao (1975) has more 

details about the ARIMA model, in which they explain how to fit this model on the 

Ozone data.

The second phase of the study consisted on applying a regression model on Ozone 

data (216 observations) by using the autoregressive procedure in SAS as a means of 

obtaining regression residuals, upon which the analyses is built. The autoregressive 

model explains the current value of the series based on the function of number p past 

values, which is the reason for representing the autoregressive model by AR (p).



In the third phase, an autoregressive model is evaluated, given that it is the most 

familiar approach used in describing the time series data (Brockwell & Davis, 1996). 

This autoregressive process was applied on achieved errors from the second phase. 

Consequently, this obtained error is solved by four different numerical algorithms as was 

mentioned. Consecutively, four algorithms were applied to the differenced errors. The 

last step compared the results of each algorithm separately, based upon Akaike 

Information Criterion (AIC) and Coefficient of Determination (R2), which are the two 

reference methods for selecting the best and the worst models. Choosing two selection 

criteria methods to compare the algorithm’s performance is called the multivariate 

pairwise tests, and in such a case, two vectors are used for comparisons (Yildiz, Aslan, & 

Alpaydin, 2011).

3.2.2.1 ARIMA Algorithms Evaluations (Phase /)

Box and Tiao (1975) developed their model based on applying the ARIMA 

process on residuals of the following regression model:

ozone = + fljrl + /?,Summer + /^Winter + et Equation 3-1

Where Ozone is the dependent variable, xi, Summer, and Winter are independent 

variables; and /?, are the model parameters, and et is the error term. Box and

Tiao’s process involves differencing Ozone and innovation xi seasonally while applying 

ARIMA on the error term. Applying ARIMA on the residuals of regression equation was 

completed without the autoregressive process. In addition, specifying the parameters at 

lagl and lag 12 represent the moving-average part of the model due to these two lags 

having significant correlation. After going through the required steps, the final 

intervention model for the Ozone data is as follows:
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V12Vozone = /?,V12Vxl + f}2summer + int er + —— a, Equation 3-2

where Vi2Vozone and Vl2V;dare seasonally differenced Ozone and xi,

respectively, /?,, /72, and /?, are the model parameters, and at is the white noise.

Assessing the sensitivity of the Ozone data is achieved by comparing the three 

estimation methods, which are implemented for the ARIMA process of the residuals. The 

ARIMA procedure in SAS is carried out through three different numerical algorithms 

which are defined as the following: Conditional Least Square (CLS) is the default 

method, Maximum Likelihood (ML), and Unconditional Least Square (ULS).

The Conditional Least Square Algorithm (CLS) estimation is conditional on the 

assumption that past unobserved errors are equal to 0 and it produces estimates by 

minimizing the following equation (SAS, Inc., Cary, NC):

n n oo

2 > f  = Y J(x< “ X n i■*»-«)2 Equation 3-3
?=i /= i  ;=i

where n  is computed from the estimates of 0 and 0  at each iteration, being AR and MA
n

parameters for the series and ^ a f  is e'.e where e is the residuals matrix.
/=i

The unconditional least squares algorithm (ULS) produces estimates and also 

points to the exact least squares (ELS) method (SAS, Inc., 2012). The initial estimates are 

computed by using CLS algorithm, and ULS estimation obtained by minimizing the 

residual sum of square, as is represented in the following equation:

2 X  = Z (* , ~ c tv ,~l (xn " -<•*,-])')2 Equation3-4
/ = !  r = l
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where Ct is the covariance matrix and V, is the variance matrix for the series
n

x i ,...,xt_l,x t . is e'.e where e is the residuals matrix.
/= i

The Maximum Likelihood (ML) algorithm maximizes the likelihood function 

through nonlinear least square Marquardt’s method. The initial estimates are computed 

using the CLS and ML algorithms and the last equation of MLE for a regression model is 

produced by minimizing the following sum of squares (SAS, Inc., 2012):

. | H |1/n e'e\ H |l/n Equation 3-5

where e is a vector of the residuals and H is the lower triangular matrix with 

positive elements on the diagonal, such that H H ' = Q, where £2 is the determinant of the 

regression equation.

To assess the algorithms in this phase, Akaike Information Criteria (AIC) was 

used. AIC is a measure of the goodness of the fit of the model as well as the complexity 

of that model and is calculated as the following formula:

AIC = -2  ln(L) + 2k Equation 3-6

where L is the maximized value of the likelihood function for the estimated model and K 

is the number of estimated parameters.

3.2.2.2 Autoregressive Model (Phase II)

The autoregressive procedure in SAS is used to estimate linear regression models 

of a time series data, and the formula of the regression in this case is:

Yt = X'tP  +  V, Equation 3-7

where Yt is the response variable, X '  is the regressor variable with (3 slope, and Vt is the 

error term. As was mentioned, the errors are correlated and represented by Equation 3-8:



Equation 3-8

The regression model used in autoregressive procedure estimated the Ozone as a 

means of studying the relation between differenced Ozone as a dependent variable, with 

differenced intervention, Summer, and Winter as independent variables. The regression 

model is represented by the following equation:

where ozone and V i2V jc1 are seasonally differenced at lag 12 Ozone and x l,

respectively, /?, ,yf?2, and /?,are the model parameters, and £, is the residual. Ozone and

intervention variables were differenced to mimic Box and Tiao’s work in the ARIMA 

procedure.

The statistical analysis was performed using SAS 9.3 (SAS, Inc., 2012) version, 

and each of the model parameters estimators were evaluated, besides the mean square 

error (MSE) and coefficient of determination (R2) (Kobayashi & Salam, 2000).

where Yn Yn Y are the actual, the predicted, and the average values for the dependent 

variable, respectively. Additionally, n is the total number of observations and p is the 

number of parameters in each model.

By the time the statistical analysis had been executed for the regression model, the 

residuals were prepared for the third phase. Since the Ozone data was already differenced

V12Vozone = /?,Vl2V;d + /?2summer + /^wint er + £t Equation 3-9

Mean Square Error:
,=i n - p

Equation 3-10

n nn

Coefficient of determination: R 22 _  M ______________________ i= l Equation 3-11
n

1=1
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before fitting the autoregressive procedure is a time series data, the obtained errors are 

not serially correlated over time; the produced residual of the regression model was used 

in autoregressive procedure with four different algorithms in phase III.

3.2.2.3 Autoregressive Algorithms Evaluation (Phase III)

Evaluation of the algorithm’s performance is conducted by applying 

autoregressive procedure in SAS. As it was mentioned earlier, the autoregressive 

procedure is used to estimate the linear regression model of a time series data. After 

considering the error of the differenced Ozone, which resulted from the previous stage, 

and since these residuals are a consequence of uncorrelated random variables, the 

outcome residuals are called the white noise process ( at ). This white noise has properties 

of zero mean, constant variance, and zero covariance.

As suggested by the Cleveland (1972) method for analyzing the autocorrelation, 

inverse auto correlation and partial auto correlation functions were applied to determine 

the autoregressive model order. As such, twelve was the best lag order for the given data. 

By stating twelve to be the order of the autoregressive error process for fitting AR (12), 

the error’s autoregressive equation is in the form of Equation 3-12 and the final equation 

was applied in autoreg procedure in SAS in the form of Equation 3-13:

(1 -  <(>i2 B 12 )Z, = a, Equation 3-12

(1 -  <j)n B n ) ■ residual = residual Equation 3-13

where a, is the white noise.

At this stage of the research, the focus is on the residuals and how critical they are 

to the four different algorithms embedded in the autoregressive procedure, which helps in 

understanding the sensitivity of the Ozone to the intervention (xi), Summer, and Winter
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variables. Furthermore, comparing the data is achieved through applying four estimation 

methods, which are implemented for the autoregressive approach of residuals model, and 

algorithms are defined as the following: Yule Walker (YW), Iterative Yule Walker 

(ITYW), Maximum Likelihood (ML), and Unconditional Least Square (ULS).

The Yule Walker Algorithm (YW) algorithm is the default option in the 

autoregressive procedure in SAS. In a large sample from an AR (p) process, YW 

algorithm is represented by Equation 3-14:

c < = Z  t p c t-r + Equation 3-14
i

where Ct is the auto covariance function of the series, <p is the vector of 

autoregressive parameters which is the estimation of/3, p is the autoregressive lag 

order, g 2e is the standard deviation of the residual, and Sl 0 is the Kronecker delta 

function.

The Iterative Yule Walker algorithm uses the resulted residuals which stems 

from the YW algorithm to create new estimators of </> and V (the error vector).

The Maximum Likelihood algorithm is efficient but the downside is that it needs a 

good starting point and cannot be computed for some data. Therefore, it is maximized by 

minimizing the objective function:

\L\Vn e'e\L\'/N Equation 3-15

where e is the residual vector and L is the likelihood function which represented as:

-  — ln(2/r) -  — ln(cr2) -  -  ln(|v|) — Equation 3-16 
2 2 2 2cr



where a 2 is the variance, V is the variance matrix of the error vector, |v| is the

determinant of V, N the number of the observations, and S = e.e  (unconditional 

sum of squares of the model) where e is the transformed error.

The last algorithm that can be used to solve the autoregressive equation is the 

Unconditional Least Squares Algorithm (ULS), which is computed by minimizing S 

with respect to the parameters /?and $  (SAS, Inc., 2012). The best algorithm is

decided based on the selection criteria. In addition, each model’s intercept is 

estimated, as well as the residuals and the 12th order of autoregressive process.

The strong implication test utilized by many researchers is the best method for 

contrasting models (Platt, 1964). Moreover, the supreme model of any research is the 

most favorable model for developing inferences from the data. In any research, the 

execution of any model or algorithm is measured by choosing extreme statistics, 

either the minimum number of errors (e.g., lowest value MSE or AIC), or the 

maximum number of coefficient of determination (R2) (Dayton, 2003; Cameron & 

Windmeijer, 1995). This study uses both the lowest AIC and the highest coefficient 

of determination R2, as it is mostly used in the time series and regression model 

analyses.

3.3 Results

Models are generally sensitive to the input variables and parameter values 

because their reactions differ when applying the numerical methods. Hence, to test the 

model’s responses, three numerical algorithms with the ARIMA process and four with



the autoregressive process were applied to the Ozone model. Ozone regression models 

with ARIMA algorithm results are recorded in Table 3-2 with n = 216. All variables 

were significant with p < 0.0001, except the Winter variable.

Table 3-2: Parameter estimates and fit statistics of the Ozone model with three different 
algorithms of the ARIMA process.

Ozone 
lag (1)

Ozone 
lag (12)

XI 
lag (12) Summer W inter SE AIC

CLS -0.29983 0.59234 -1.2624 -0.2615 -0.082 0.856 520.52

ULS -0.25264 1 -1.3742 -0.2027 -0.084 0.768 510.78

ML -0.26684 0.76665 -1.3306 -0.2394 -0.080 0.797 501.77

From Table 3-2 one can notice that all parameters have negative effect on the 

model, except the error when the ARIMA process is applied with MA (12), which has a 

positive effect. The highest AIC and SE values were discovered when CLS algorithm was 

applied, which explains why even though the CLS is the default option, it has the worst 

results among the three algorithms. Based upon the previous conclusion, a very important 

point has to be declared, which the hypothesis is claiming the default option algorithm 

under any statistical software procedure is not always the perfect choice for a predefined 

model. The best result was achieved according to AIC selection criteria by using the ML 

algorithm which explains why Box and Tiao depended on ML algorithm with the 

ARIMA process to perform their work, although it is not the default option, and it causes 

more work and time in order to be executed. Equation 3-2 will be written as the 

following based on different algorithms from the results in Table 3-2.
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CLS:

r7 r7 , . (1 + 0.29983£ ) ( 1 - 0.59234B n )
V nVozone = - 1 .2624V,,VjcI -0 .2615  rammer - 0 .0 8 2 ^ 1^  er + ------------------------  a.12 12 (1 -  B )

ULS:

V.,Vozcme = - 1 ,3742V,2Vjc1 -0 .2 0 2 7 summer -0 .0842w in t e r +  ^  + 0 -^ 2 6 4 i?)(l— B_J  ̂ and
(1 — B )

could be written as

V12Vozone = - 1 .3742V12V;tl -0 .2 0 2 7 summer -  0.0842 wint er  + (1 + 0.25264fi)a,

ML:

V7 T7 , ,W V 7 • (1 + 0.26684f i ) ( l - 0.76665B n )V.,Vozone = - 1 .3306V.,V:d -0 .2 3 9 4 summer — 0.0802 wmt er-i-------------------------  a.
12 (1 -  B )

For all the previous models, MA (1) = -0.2924 and MA (12) = 0.4074 with white 

noise (at) = 0.945. Since 1973 had missing values throughout the entire year, the year was 

forecasted with 95% confident interval; the results were estimated by using the three 

algorithms as shown in Table 3-3.
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Table 3-3: Forecasting 1973 by using three different algorithms.

1973 CLS ULS ML
Months Forecast SE Forecast SE Forecast SE

January 1.4538 0.8562 1.2738 0.7677 1.4205 0.7966

February 1.8783 0.8938 1.5871 0.7919 1.8446 0.8244

M arch 2.5705 0.8938 2.2482 0.7919 2.4567 0.8244

April 2.8788 0.8938 2.7649 0.7919 2.8590 0.8244

May 3.1553 0.8938 2.9482 0.7919 3.1501 0.8244

June 2.8074 0.8938 2.7952 0.7919 2.7211 0.8244

July 3.3355 0.8938 3.3341 0.7919 3.3147 0.8244

August 3.4400 0.8938 3.3507 0.7919 3.4787 0.8244

September 2.8253 0.8938 3.2952 0.7919 2.0405 0.8244

October 2.0741 0.8938 2.7507 0.7919 2.3587 0.8244

November 1.6465 0.8938 2.3982 0.7919 1.8588 0.8244

December 1.2149 0.8938 1.5663 0.7919 1.2898 0.8244

From Table 3-3 we notice that the squared errors for the forecasted months with 

the CLS algorithm were the highest among the three algorithms, which is additional 

verification that the default option is not always the perfect choice to execute the 

procedure.

Following the investigations on behalf of the ARIMA model analysis, the second 

phase was initialized by using the identical original Ozone data to start the autoregressive 

model assessment. As shown above, Equation 3.9 was applied and the results are 

reflected in Table 3-4.

Table 3-4: Parameter estimates and fit statistics of the Ozone model by the 
autoregressive process.

Variable Estimate SE P MSE AIC R2
Intercept -0.0176 0.0983 0.8582
X ld i f f -1.1991 0.3109 0.0002 i r\A A Ad 591.679393 0.0710
Summer -0.2281 0.1987 0.2524
W inter -0.0885 0.176 0.6155



According to the outcomes, the differenced intervention variable is the only 

significant variable in the model and all variables had negative effects on the Ozone 

level. The coefficient of determination is very small, which is explained by the mentioned 

insignificant variables in the model. This insignificance could have been due to all three 

variables being dummy variables. Figure 3-3 shows the forecasting series of the Ozone 

level in 1973 by using three algorithms: CLS, ULS, and ML.

Figure 3-3: 1973 forecasting by three different algorithms.
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By checking the time effects on the residuals of the Ozone model, Figure 3-4 

illustrates a decreasing funnel shape which means there is a correlation between them. 

For this reason, differencing was done to remove the correlation and prepare them for use 

in phase three of the study as stationary white noise residuals.

After completing the analysis of phase two, the resulted residuals were 

differenced to remove the correlation among them and prepare them for the third phase of 

this study. As was mentioned in Subsection 3.2.2.3, the autoregressive model was 

applied on the linear differenced residuals model in the form of 

residual, = (1 -  <pn B n ) • residual to investigate the sensitivity of the Ozone data towards 

the four numerical algorithms. The autoregressive procedure was applied four times with 

four different algorithms on the differenced residual with lag 12 and the results are shown 

in Table 3-5.

o
o

o

0 50 100 1 SO 200
Observation

0 50 100 150 200
Observation

Figure 3-4: The residuals of the autoregressive model between the differenced 
Ozone with differenced intervention variable, Summer, and Winter.



Table 3-5: Autoregressive error model results for the four algorithms.
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Algorithm Residua]
AR12

£ i - \ 2
MSE AIC R2

Durbin Watson at lag 12

DW **r  < **r  > DW DW
ML 0.7085 -0.4951 0.76425 459.751036 0.3194 1.8784 0.4647 0.5353

ITYW 0.7164 -0.4231 0.77253 459.760418 0.3191 1.981 0.7413 0.2587
ULS 0.7044 -0.5334 0.76311 459.97695 0.3202 1.829 0.3287 0.6713
YW 0.7167 -0.4198 0.77311 462.232177 0.3067 1.9859 0.7526 0.2474

Assessing the errors’ sensitivity to the algorithms and comparing performance and 

behavior with respect to every algorithm is the goal of this research. After that the results 

of the model parameter estimations were sorted ascending with respect to AIC and 

descending with respect to R2, as shown in Table 3-5.

It is clear that the Ozone residuals had the least sensitive results with YW 

algorithm, and the highest impact was achieved when ML was applied. Additionally, one 

can notice that even though Yule Walker (YW) is the default option for the 

autoregressive model, it was not a good choice for the Ozone model when applied. This 

is an additional proof that the ML algorithm was the best choice for Box and Tiao for 

solving their model of the Ozone data. By using the Durbin Watson methodology 

(Watson, 1951) for testing serial correlation, research detected DW > DWV for all 

situations in Table 3-5, meaning we do not reject Ho as there is no serial correlation (all 

the serial correlation p s =0) .  Preliminary results were expected since we already 

differenced residuals to remove the correlations among them. The most effective way of 

assessing any model’s performance is through their residual which is accomplished 

through plotting the prediction errors for the Ozone model and their variables (Weiskittle, 

Hann, Kershaw, & Vanclay, 2011). In the regression analysis with time series data,



residual plots have been widely used to discover a model shortage (Anscombe, 1961, 

Chatterjee, & Hadi, 1980). Furthermore, graphical analysis of residuals is a very useful 

way to investigate the goodness of the fit for any regression model (Montgomery, Peck, 

& Vining, 2006). The differenced residuals are illustrated in Figure 3-5, clearly showing 

no pattern in the residuals’ plot, as they are distributed randomly.

CO

CM

O OOo

CSII

2 1 0 21

Predicted

Figure 3-5: Times effect on differenced residuals of the Ozone model.

As was stated previously the residuals were modeled after differencing, Figure 3- 

6 and Figure 3-7 show the state of the residuals when the ML algorithm is applied. It is 

obvious from Figure 3-6 that the residuals are independent and identical, normally 

distributed, and the white noise probabilities plot point out the resulting residuals (which 

are white noise). Autocorrelation Function (ACF), Partial Autocorrelation Function 

(PACF), and Inverse Autocorrelation Function (IACF) are three important functions for 

any time series model. ACF is a bar chart used to test the correlation between time series 

coefficients and the time lag. Furthermore, if a trend is found indicating a correlation, 

dependency exists. Moreover, PACF is a bar chart of the amount of correlation between
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variables and time lags, and IACF is the reverse of the calculated ACF of any time series. 

By investigating the partial autocorrelation function (PACF) plot in Figure 3-7, all partial 

autocorrelations are within the 5% significance error limit curves and there is no pattern 

observed, which means the AR (12) model was the suitable one to fit the data.
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/
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Figure 3-6: Complete information about plots the studentized residuals for the 
models with the nlag =12, standardized, and histogram of the residuals and plots the 
white noise probabilities.
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Figure 3-7: Autocorrelation, inverse autocorrelation, and partial autocorrelation function 
for the residuals.
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3.4 Discussion

Ozone is a chemical substance called oxidant which is represented by 03, and a 

high concentration of it is known as the Ozone pollution. The first phases of this study 

was about mimicking Box and Tiao’s work by using two different algorithms and 

comparing the results with their finding. This study was conducted by applying the 

ARIMA model with CLS and ULS algorithms. Following, algorithms were compared 

with the ML algorithm used in the study from 1975. In this research, differenced Ozone 

was predicted by differenced innovation, Summer, and Winter variables, and they 

referenced variables that had negative consequences on the Ozone level. Applying 

ARIMA on the residuals with lag 12 had an affirmative impact on the Ozone level.

Furthermore, The ML algorithm, with respect to the selection criteria, produced 

the best results when applied with the ARIMA model. In the second phase, the 

autoregressive process was used to fit the Ozone data, as done previously by using 

ARIMA. The resulted residuals from the second phase were differenced and refitted in 

the autoregressive process by using differenced residuals, which is the third phase. The 

third phase of our study had been repeated four times as a means of allowing the four 

autoregressive numerical algorithms (ITYW, ML, ULS, and YW) to be executed. After 

comparing the four algorithmic outcomes, the ML algorithm yielded the best result when 

used to solve the autoregressive model of the Ozone. Even though the Yule Walker (YW) 

algorithm is the default option when using the autoregressive procedure, it has the least 

significant result when used to solve the autoregressive model. Our accomplished study 

proves that Box and Tiao’s choice of utilizing the ML algorithm is the best selection for 

working on the Ozone data.



41

3.5 Conclusion

The mixed models approach helps any researcher to consider all factors 

contribution to affecting the data. Ozone pollution data in downtown Los Angeles was 

very important in studying the oxidant pollution during the time of 1955-1972, and was 

investigated for the first time by Box and Tiao in 1975. The best model assessment is 

based upon the selection criterion measurement as the mean square error (MSE), AIC, or 

R2. Furthermore, judgment of the best model or algorithm should be based upon more 

than one test or investigation; for instance, in this study AIC and R2 were combined to 

select the best model.

More significantly, several numerical algorithms when associated with the Ozone 

model could behave better and have a higher impact than other algorithms associated 

with the same model when applied on the same dataset. In this study, we proved that the 

future is unknown but can be predicted as was done in forecasting 1973, which was 

unknown since we have the Ozone level up to December 1972. All analyses and results 

were obtained based upon the Ozone data, and how models and algorithms will perform 

when used with other data is uncertain to be the same. The basic idea of this study can be 

applied on any time series data. Moreover, for future work interested researchers can try 

any regression model to be fitted on the Ozone data by using the autoreg procedure in 

SAS as long as the model is linear. However, if the model is not linear, the NLEN 

procedure can be used instead but with stated initial parameters. Analyses which are 

based on the resulted residuals by differencing and mimicking them had been completed 

in phase three.



CHAPTER4

IMPACT OF AUTOREGRESSIVE ALGORITHMS IN MODELING

AUTO-CORRELATED DATA

4.1 Introduction

Computational methods and numerical algorithms have been a prolific topic in all 

scientific fields, which helps solving complicated models. Often one model can be solved 

by using more than one algorithm. To determine which algorithm solves a particular 

model best depends upon criteria selection. Therefore, important in modeling is not only 

the function selected to represent the processes or phenomenon of interest but the 

algorithms or methods used to solve them (Seppelt and Richter 2005).

In biometric investigations a central role is played by time series data, which 

record information on the same subject at various intervals, preferably evenly spaced. 

The importance of time series analyses has increased in significance throughout recent 

years, as a means of studying phenomena occurring at equal periods of time (Wei 2006). 

The focus of time series analysis consists in identification of relationships among various 

temporal connected variables (Bartlett 1978, Box el al. 1994, Gujarati 1995). Among 

biometric investigations growth and yield models are routinely investigated with time 

series techniques. Some of the most popular growth and yield models are focused on tree 

development, and describe changes of dendrometric attributes, such as height, volume or

42
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diameter, with age. A vast palette of parametric models is available to relate total height 

of a tree with its age (Pretzsch 2009), which are either empirically or process based 

(Korzukhin et al. 1996).

Development of models describing growth or yield of a tree or stand recommends 

the inclusion in the modeling process besides mathematical representation of the 

relationships of interests the algorithms used to identify the respective relations. 

However, definite conclusions regarding a model and the algorithm employed to obtain 

the model are impossible when data supplied by experiments or observations are used, for 

at least two reasons. First, considering the simplifications associated with the modeling 

process and that the true model is not known in advance renders the inability to state the 

congruence between the found model and actual model. Secondly, measured data do not 

cover the entire spectrum of combinations required by a complex factorial experiment 

(Tabachnick and Fidell 2001). An alternative to recorded data is simulated data. Data 

simulation is the purpose of generating values from a well-known distribution that mimic 

real world phenomenon, and enables researchers to test hypotheses and forecast with 

various inputs and conditions. Simulation assists in various domains, such as decision 

making or risk assessment (Wang et al. 2008). Software that have the capability to solve 

complicate models are also able to generate data, such as SAS (SAS Institute 2010), R 

(Gentleman and Ihaka 2014) or SPSS (DBM Corporation 2014). Simulated data are 

popular in forestry research (Chuvieco et al. 2008, Strimbu 2014), and represents a 

fruitful avenue of investigating the impact of algorithms on model development. 

Therefore, the objective of this article is to assess the solutions supplied by different 

algorithms used to develop models with auto-correlated variables. The reason that
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variables with an additional structure are used in this research is to ensure that the 

findings are not influenced by the violation of modeling assumptions, such as 

heteroskedasticity or co-linearity (Neter et al. 1996), as strict fulfillment of the analytical 

assumptions is required (Gujarati 1995).

4.2 Methods

The general approach of this research is based on the assumption that if the true 

model is known, then by using the appropriate modeling one should be able to reach a 

formula similar, if not identical, to the true model. Simulated data are based on known 

models, but to ensure that data resembles reality noise should be added. Generated data 

guarantees that all possible combinations of factors that can influence modeling 

assumptions are present in the analysis, particularly the type of noise used to simulate 

real variability. Conceptually the framework used to identify the impact of algorithms on 

analysis is based on the following serial steps Figure 4-1:

1. Generate data according to a deterministic functional relationship

2. Generate noise that mimic real variation

3. Add noise to the generated data

4. Using various algorithms, select models to fit the generated data, assuming that

actual model used to generate data is unknown. The actual model will be included 

as a possibility. The selected models will fulfill all modeling requirements.

5. Compare the selected models with the models used to generate data.
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Simulate data
•generate functional relationship approapriate for the 

modeled p ro cesses .
•generate noise from the literature.

Select models
•identify models than were used to represent generated 

process.
•check the fulfillment o f modeling assumptions by the 

selected models.
•identify the "best" models according to the preset assessment 

criteria.
•determ ine the "best "m odels using diferent com putations 

% algorithms.

Assess the models
• ANOVA to com pare the algorithms.
•decide which algorithm supplied "the best" model close to 

the one used to generate data.
•identify the causes o f  the results.

Figure 4-1: Framework for identifying the impact of the algorithms on model selection.

4.2.1 Data Description

The process selected for generating data was the tree height growth. A plethora of 

models describe height growth, but only Schumacher equation (Schumacher 1939) and

4th degree polynomial were selected as: 1) both functions have horizontal asymptotes, 2) 

are simple and easy to understand and made inferences, and 3) are differentiable, which 

makes the computation of the Jacobian and Hessian matrices easy. Schumacher type 

model Equation 4-1 has an asymptote at ek0, and the polynomial function Equation 4-2
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at eklx l& 2, where Hschunwhaer and Hpolynomial are the height computed with Schumacher 

and polynomial equations, respectively, kO, k l  and k2 are parameters.

5c/i_exp
tj _  age Equation 4-1

n  Schumacher e

<-29.46X *(-(M I2 + V  )+ W » .9 7 * (-( ) .0 2 2+ V  ,  >-16102 * ( -f l .( )2 '+  V  , (+88775 * ( -0 .0 2 4+ V  . ))  „

H P„h.mmial= 10 /u‘f /w  Equation 4-2

The two equations are customary used in the southern region of the USA for pine 

plantations, the first one is an adjustment from A very and Burkhart (2001) while the 

second one is from Farrar (1981). Considering that height growth is a function of site 

productivity, an additional term was included in the model, which took values from 90,

81.4 and 73.7. The three values, which represent the site index (Avery and Burkhart 

2001), multiplies each of the two functions representing the change in height with age. 

The height was predicted from age 20 to 120 with a time-step of 5 years, similar to Farrar 

(1981).

To mimic reality, noise was generated by using a Gamma distribution Equation 

4-3. Considering that natural variability can be represented by a multitude of distribution, 

ranging from exponential to unimodal symmetric, a set of distributions were generated. 

The distributions were defined by the two parameters of the Gamma distribution, alpha 

and beta parameters. Alpha ranged from 0.5 to 5 in increments of 0.5, while beta 

increased from 1 to 4 and are in steps of 1.

noise = T(a,(3) = — — (—)a 'e P p = - -  (a )a 'e " = 3 * r ( a )  Equation 4-3
T(a) p  r(or)



Since there were 10 values for alpha and 4 values for beta, forty pairs (10x4) of 

H a ,/? )  were produced. To increase even more the generality of the simulated data 10 

replications were run for each pair alpha-beta, which lead to a total of 50,400 

observations (21 values of age x 2 height models x 40 alpha and beta casesx 3 site 

indices x 10 replication) were completed; 25,200 for each model. The relationship 

between age and height for each model is shown in Figure 4-2.

20 40 60 80 100 120 20 40 60 80 100 120

age age

Figure 4-2: Synthetically generated data for loblolly pine using Schumacher exponential 
relationship Equation 4-1 and polynomial equation of Farrar Equation 4-2.

4.2.2 Models and Algorithms Description (Phase I)

The generated data will be treated as if the appropriate models used to build it are 

unknown. Then the inference is made by executing two height models (i.e., Schumacher 

and Polynomial type), the same models used to generate the data. In essence, the exact 

same models used to construct the data will be tested on the respective data, in 

anticipation of an excellent goodness of fit.
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Polynomial model: height=bQ + S i x (/?,/age + b2/age2 + b31age3 + bi /age4) Equation 4-4 

Schumacher model: height =b0x S Ix e \p ( (5 -b x) t age) Equation 4-5

where bi are parameters to be estimated.

To ensure validity and completeness of the findings that describe change in forest 

height the modeling will be executed in two phases. The first phase will be fitting the 

selected height models to the data, aiming at estimating the parameters of each model. 

The assessment measures were mean square error (MSE), standard error (SE), and 

coefficient of determination (R2). In the second phase, the autoregressive process 

(Brockwell & Davis, 1996) was applied on the residuals supplied by models in the first 

phase, as measurements used to represent tree growth are executed on the same entities, 

which lead to a correlated process.

The final models were obtained by applying four algorithms to the autoregressive 

equations describing the temporal dependencies between residuals. Each algorithm was 

applied to the differenced errors resulting from both height models. The last step 

compared the Akaike Information Criterion (AIC), Schwarz Bayesian Information 

Criterion (SBC) and MSE supplied by each algorithm, based on alpha and beta values.

Two models were used to estimate tree height, and each model studied the 

relation between height versus age and SI. SI variable has been chosen to be a part of the 

model since it provides important information on tree development, as it quantifies site 

productivity, which is a key on the height. To identify the models applied to a particular 

generated data a two symbols abbreviation was employed: the first letter represent the



fitted model and the second letter the model used to generate the heights (e.g., P-P stands 

for polynomial estimated model on polynomial generated data)

In the first stage the analysis was executed using the nonlinear regression 

procedure NLIN of SAS 9.3 (SAS Institute, Inc., 2012). Estimation of the parameters of 

each model was assessed using three statistics, namely means square error (MSE), 

standard error (SE) and coefficient of determination (R2):

where n is the number of observations, p is the number of the parameters, S is the

standard deviation, Yi , Y{ ,and Y are the actual, the predicted, and the average values for

the dependent variable, respectively, n is the total number of observations, and p is the 

number of parameters in each model.

The first modeling phase is completed when adequate nonlinear models are 

obtained, even that the residuals are serial correlated. In the second modeling phase the 

serial correlation is removed by differencing, starting with lag 1, as following:

Equation 4-6

Equation 4-7
Vn

R
n

Equation 4-8

residual, ( f ) = e , - Equation 4-9
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4.2.3 Algorithms Evaluation by using Autoreg (Phase II)

After the time series had been differencing, the next step is fitting the 

autoregressive model to evaluate the algorithm’s performance. In SAS 9.3 (SAS Institute, 

Inc., 2012), autoregressive procedure is used to estimate linear regression models of a 

time series data which is in the following formula:

Y, -  X '/3 + V, Equation 4-10

where Yt is the response variable, X ' is the regressor variable with /? slope, and V, is 

the error term. As errors are correlated they are represented by Equation 4-11:

V, = -<py,_x  <pmv,_m+ e, Equation 4-11

After considering the differenced errors of height resulted from the first phase, 

the obtained residuals should be white noise a, , with zero mean, constant variance, and 

zero covariance.

To assess the significance of the relationship between residuals, autocorrelation 

function (ACF), partial autocorrelation function (PACF) and inverse autocorrelation 

function (IACF) were used, as suggested by Brockwell & Davis (1996). In eventuality 

that significant correlations were noticed for some lags, the residuals were differenced in 

various configurations to remove the relationships, and to ensure stationarity. Several 

differencing schemes were considered to reach the white noise status, but the start was 

the difference of two consecutive residuals, specifically A/?, = ej -  ei_l (where £, is the 

residual at the i,h age).

In eventuality that white noise was not obtained by differencing with a lag of 1 

then an additional differencing was executed, but now on the Ae,. The new difference was
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of the form Ak(Asi)j, where Ak is the lag k difference. The lag considered was not larger 

than 6, as values larger than 6 would contradict the development of the stem from 

physiological perspective by implying that events occurring more than six years apart, 

approximately 20% of rotation, are significantly related. Therefore, the models 

considered in analysis were Equations 4-12 to 4-16 where e is white noise.

• Difference at lag 2:

lag2 (A s) = A2 (Ae) + e = A2 (£. -  £M) + e = A2 (£i) -  A2 (£,_, ) + e = 

(£,. -  £j_2) -  (£,_, -  £,_3 ) + e ^ £ t -  £._2 -  £._, + e ._3 + e

y = f  (age,si)+ £,-£,_! -£ ,_2 + £,_3 +e Equation 4-12

• Difference at lag 3:

lag 3 (A£) = A3 (A£) + <? = A3 (£,.-£,_,) + *? = A3 (£,.) -  A3 (£,_, ) + e =

( £ ,  -  £ ,_3 )  -  -  £ • ,-4  )  +  * = > £ , - -  f  i_3 -  * +  £ , - 4  +  *

y = f  (age, si) + £. -  -  £;_3 + £,._4 + *? Equation 4-13

• Difference at lag 4:

lag4 (Ac) = A4 (As ) + e = A4 (£. -  £._,) + e = A4 (£.) -  A4 (£._, ) + e = 

(£, ~  £ ,_ 4) -  (*,■-. -  * / - 5 ) +  * = > £ , ■ -  ^ ,-4  -  *,-1 +  e t-5 +  *

y = f  (age,si) + £. - - £;_4 + e._s + e Equation 4-14

• Difference at lag 5:

lags (Ae ) = As (Af) + e = A5 (£,. -  £._,) + e = A5 (£,.) -  A5 (£._,) + c = 

( £ ( — £;_5 )  — (£ ,_ | — £,_6 )  +  e  = >  £■ — £,._s — £ (_, +  £,_6 +  C

y = /(ag e , si) + £, -  £,_, -  £,.5 + £,_6 + e Equation 4-15

• Difference at lag 6:

lagb (Ae ) = A6 (A£) + e = A6 (£. -  £,_,) + e = A6 (£,.) -  A6 (£._,) + e 

(£, ~ £,_6) -  (£,■_, -  £,_7 ) + £=>£,-- £,_6 -  £,_, + £,._7 + e

9 = fiage, si) + £, -  £,_, -  £,_6 + £;_7 + e Equation 4-16
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The impact of each algorithm with each of two models was assessed for every 

alpha-beta combination, which supplied information in each group of the resulted trees. 

Moreover, the larger amount of information obtainable for each alpha-beta pair drove to 

more precise models (Neter et al., 1996). It is important to declare that by doing this 

analysis, the hypothesis which claims that the default option algorithm under any 

statistical software procedure is not always the perfect choice for a predefined model.

The white noise is obtained by using an autoregressive model on every alpha and 

beta pair using four algorithms, namely Yule Walker (YW), Iterative Yule Walker 

(ITYW), Maximum Likelihood (ML), and Unconditional Least Square (ULS).

4.2.3.1 Yule Walker (YW)

This algorithm is the default option in the autoregressive procedure in SAS. In a 

large sample from an AR (p) process, YW algorithm is represented by Equation 4-17:

C i = X  0rC - p + ° X o  Equation 4-17
i

where Ct is the autocovariance function of the series, <f) is the vector of 

autoregressive parameters which is the estimation of/?, p is the autoregressive lag 

order, a] is the standard deviation of the residual, and Sl 0 is the Kronecker delta 

function.

4.2.3.2 Iterative Yule Walker (ITYW)

This algorithm uses the resulted residual that comes out of YW algorithm to 

create new estimators of <f> and V (the error vector).
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4.2.3.3 Maximum Likelihood (ML)

The Maximum Likelihood algorithm is efficient but is in need of a good starting 

point and cannot be computed for some data. Thusly, it is maximized by minimizing the 

objective function:

|L|1/weV|L|l/,v Equation 4-18

where e is the residual vector and L is the likelihood function which represented as

-  y  ln(2;r) -  y  ln (a 2) - ^ ln ( |V |) - - y y  Equation 4-19

where a 1 is the variance, V  is variance matrix of the error vector, |v | is the

determinant of V, N the number of the observations, and S = e.e (unconditional sum 

of squares of the m odel) where e is the transformed error.

4.2.3.4 Unconditional Least Squares (ULS)

The last algorithm that can be used to solve the autoregressive equation is the 

ULS, which is computed by minimizing S with respect to the parameters /? and <pi (SAS,

Inc., 2012). Assessment of the models was executed using MSE on e.g., lowest value 

MSE or AIC), or the maximum coefficient of determination (R2) (Dayton, 2003; 

Cameron & Windmeijer, 1995). In this research, pairwise comparison has been used, 

which means selecting the model based on three statistics: AIC, SBC and MSE. These 

methodologies are mostly used in time series and regression model analysis. AIC and 

SBC measure goodness of fit of the model and complexity of the model, and are 

calculated with the following formulas:
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AIC = - 21n (L) + 2k Equation 4-20

SBC = - 21n (L) + kln(n) Equation 4-21

where L is the maximized value of the likelihood function for the estimated model

and K  is the number of estimated parameters and n is the total number of

observations. To assess the average performance of the algorithms one-way ANOVA 

was performed using AIC as dependent variable. The model was:

AIC = Algorithm Equation 4-22

where algorithm had four values: YW,ITYW, ML and ULS.

4.3 Results

4.3.1 Data Generation

A set of 38,400 models were generated from a factorial combination of two 

models to generate heights, two fitted height models on generated data, four 

autoregressive numerical algorithms, forty alpha-beta pairs, 20 replications and three site 

productivities. Inference was based on Equations 4-12 to 4-16, which modeled the 

residual for several orders of the autoregressive process (i.e., 2, 3,4, 5 and 6).

4.3.2 Phase I Models

The parameters of the fitted nonlinear models (i.e., Schumacher and Polynomial) 

are presented in Table 4-1, as well as the associated assessment statistics. All models and 

all parameters were significant (p-value<0.001).

According to Table 4-1 Schumacher model has high R2 (larger than 0.98). The

parameters for polynomial models reflect the magnitude of data and their sign depends on 

the fit of the model. For Schumacher model to ensure conformity with development
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processes the parameter in the exponential term should be negative (i.e., there is an 

asymptote of tree highlight), value presented to both type of generated data. The results 

from Table 4-1 are mirrored by the graphs of plotting the equation used to generate the 

data with the fitted models.

Table 4-1: Parameter estimates and fit statistics of the Height-Age equations. The 
heading symbols were explained in text and P-S stands for polynomial model on 
Schumacher generated heights, P-P for polynomial model on polynomial generated 
heights, S-S for Schumacher model on Schumacher generated heights, and S-P for 
Schumacher model on polynomial generated heights

Model - Data Param eter Parameter
Estimation

SE MSE R2

P-S b o 52.1094 0.2741
b i 186.9 0.6676
b 2 -14396.0 46.7743 75.8809 0.8697
b 3 375579 1326.5
b 4 -3282375 12838.2

P-P b o 39.2989 0.2826
b i 205.3 0.6883
b 2 -15561.4 48.2292 80.6748 0.7973
b 3 416357 1367.7
b 4 -3735830 13237.6

S-S b o 1.8633 0.000950
58.9702 0.9941

b . 31.8967 0.0322

S-P b o 1.6660 0.000766
51.0007 0.9947

b , 25.0731 0.0274

Figure 4-3 explains the relationship between the tree heights and their age for 

both models end every single site index.
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Figure 4-3: Increase in height with age described by the Schumacher and Polynomial 
models for the three site indices (90, 81.4, and 73.7). The curve with the empty circles 
represents Schumacher generated heights and the solid circles represent Polynomial 
generated heights.

According to Table 4-1, the lowest recorded MSE are present to the Schumacher 

model, meaning the accuracy of the Polynomial model performs better than Schumacher 

model, irrespective the generated data. Polynomial height is less accurate than 

Schumacher height, as growth is more pronounced at early ages. Polynomial model 

places the two heights curves closely, irrespective the site index, while Schumacher 

model made a clear distinction among site productivities. Figure 4-4 represents the mean 

standard error (MSE) values for Polynomial and Schumacher models for both heights.

100

S ch u m ach e r  Polynomial 

Heights

■  Polynomial M odel 

t '  S chum acherl  M odel

Figure 4-4: The mean standard error (MSE) bar plots of the estimated height of every 
growth model for both heights type. The left group of bar for the Schumacher height and 
the left group for the Polynomial height.
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Figure 4-5 represents the relationship between the generated heights (actual 

values) and the predicted height for both models.

& =»
c. o>

I I I I
4 0  6 0  8 0  1 0 0  1 2 0  1 4 0

~i-----------1------ 1---------1---------1---------r

4 0  6 0  8 0  1 0 0  1 2 0  1 4 0

I I I I

4 0  6 0  8 0  1 0 0  1 2 0

Generated SchumacherHeight (ft) Generated Polynomial Height (ft)

Figure 4-5: Relationships between generated heights and predicted height.

4.3.3 Phase II algorithms

To every data generated model, fitted model, SI, replication, noise (i.e., alpha and 

beta) the autoregressive procedure was executed, each execution being implemented by 

four algorithms. Therefore, the autoregressive procedure was fitted on each individual 

38,400 models. Furthermore, to reach the white noise of the errors, which conclude the 

modeling exercise, for each autoregressive model several lags were tried, if the lag 1 

difference did not work.

The residuals resulted from the nonlinear models exhibited a pronounced pattern, 

as the ACF, PACF and IACF revealed. Several patterns were noticed but all presented a 

significant ACF, PACF and IACF at lag 1 Figure 4-6.



58

Fk Diagnostics for rosMual Ftt D iap io stic t for

Figure 4-6: ACF, PACF and IACF of the models residuals for two cases from the 38400: 
A) P-P, alpha=0.5, beta=l, YW algorithm and B) S-P, alpha =5, beta=2, YW algorithm.

Therefore, an initial differencing of the residuals was executed with lag 1, trying 

to remove the autocorrelation. However, differencing with lag 1 did not produce the 

expected results; in fact in some cases the results worsen Figure 4-7. Hence for each data 

generated model, height model, alpha and beta pairs, and site productivity the less 

parsimonious models of the Equations 4-12 to 4-16 were selected, such that the error 

term is distributed as white noise.

Fit Dlognottict (Of htrotlOl Fit D iagnostic! (Of htfttlfM

Figure 4-7: ACF, PACF and IACF of the lag 1 differenced residuals for two cases from 
the 38400: A) S-S, alpha=0.5, beta=2, YW algorithm and B) S-S, alpha =5, beta=2, YW 
algorithm
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To evaluate the overall performance of each algorithm, irrespective the model 

complexity, a box and wishers plot was produced for the two types of generated heights 

Figure 4-8. Durbin Watson test was applied on the residuals and results showed no 

autocorrelation between them.

AIC Boxplot for every Algorithm AIC Boxplot for every  Algorithm

8
O£P5

O
CM

O

s
ULSML YW

om

8

om
P5

8
CO

8
Oo

fTYW ML ULS YW

Algorithms Algorithms

Figure 4-8: Boxplots showing the performance of each algorithm in respect with the 
generated model (A) is Polynomial height and B) is Schumacher height), using AIC as 
criterion.

Depending on the autoregressive computation algorithm the structure of the 

residuals differed, but across al all fitted models and all data generated models the 

difference at lag 3 of the differenced residuals Equation 4-13 performed the best Table 

4-2. The next most popular residual model was for Equation 4-12, but with less than 100 

cases.



Table 4-2: The number of equations by type that produced white noise.

Model Height Algorithm Equation # equations
4-12 61
4-13 2314

ITYW 4-14 2 0
4-15 3
4-16 1
4-12 61
4-13 2314

ML 4-14 2 0
4-15 3

Polynomial 4-16 1
4-12 61
4-13 2314

ULS 4-14 2 0
4-15 3
4-16 1
4-12 61
4-13 2314

• Ml
g YW 4-14 2 0
os 4-15 3
>>

■© 4-16 1
Cu 4-12 71

4-13 2303
ITYW 4-14 2 0

4-15 2
4-16 2
4-12 81
4-13 2293

ML 4-14 15
4-15 4

Schumacher 4-16 5
4-12 77
4-13 2303

ULS 4-14 1 2
4-15 4
4-16 0
4-12 77
4-13 2303

YW 4-14 1 2
4-15 0
4-16 0
4-12 83

VJ3 4-13 2267
u« ITYW 4-14 31
Ea Polynomial

4-15 1 2
JB
u

M3
4-16 3
4-12 90

ML 4-13 2266
4-14 34
4-15 8
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4-16 1

ULS

4-12 97
4-13 2264
4-14 34
4-15 1
4-16 3

YW

4-12 114
4-13 2245
4-14 36
4-15 4
4-16 1
4-12 1 2 1
4-13 2229

ITYVV 4-14 43
4-15 4
4-16 2
4-12 104
4-13 2247

ML 4-14 34
4-15 8

Schumacher 4-16 5
4-12 91
4-13 2266

ULS 4-14 41
4-15 1
4-16 1
4-12 98
4-13 2253

YW 4-14 40
4-15 5
4-16 4

ANOVA confirms the boxplot summary, by revealing that there is no difference 

among the results supplied by all algorithms in Table 4-3, as for both data generated 

models the p-value >0.9. Tukey test showed that on average the algorithms are 

undistinguishable (p-value>0.99).
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Table 4-3: ANOVA

Height generated using 
polynomial model

Height generated using 
Schumacher model

Algorithm AIC 
Mean

Welch's 
ANOVA 

for AIC (Pr>F)

Algorithm AIC 
Mean

Welch’s 
ANOVA 

for AIC (Pr>F)
IT Y W  319 .866 IT Y W  317 .036
M L  319 .562 n  qg i ^ M L  326 .913 ^ m m
U L S 319 .613

U .W 13
U L S 319.355

<.UUU1

Y W  319 .780 Y W  319.541
Tukey Pairwise p-value Tukey Pairwise p-value
comparison comparison
M L -IT Y W 0 .999 M L -IT Y W 0.999
U L S -IT Y W 0 .999 U L S -IT Y W 0 .194
Y W -IT Y W 0.999 Y W -IT Y W 0.271
U L S -M L 0.999 U L S -M L 0.317
Y W -M L 0.999 Y W -M L 0.405
Y W -U L S 0 .999 Y W -U L S 0 .998

From the 38,400 cases the best models for each algorithm, fitted model, generated 

model, site productivity, and alpha were selected according to the lowest AIC, SBC and 

MSE in Table 4-4. To represent the type of noise generated only alpha was used, as it 

described the shape of the distribution, which ranges from open to 0 (therefore the 

skewness was labeled as “open” in the table), to almost symmetric unimodal (therefore 

the skewness was labeled as “reduced”).
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Table 4-4: Best cases for each algorithm, generated data, fitted model, site productivity, 
and alpha. The alpha describe the level of skewness of the generated noise, 
which was open (similar to an exponential distribution when alpha=0.5 and 
1), extreme skewed (alpha=1.5, 2 and 2.5), moderately skewed (alpha=3, 3.5) 
and reduced skewed (alpha=4,4.5 and 5).

Model Height Algorithm Site
Index Alpha skewness AIC RMSE Lag

Schumacher Sch ULS 81.4 0.5 open 95.71668 0.60659 2
Schumacher Poly ML 90 0.5 open 108.6282 0.70156 4

Schumacher Poly ITYW 90 0.5 open 111.5912 0.72334 3

Schumacher Poly ULS 81.4 0.5 open 117.9193 0.75409 2
Schumacher Sch ITYW 81.4 0.5 open 118.6499 0.75939 3
Schumacher Sch YW 81.4 0.5 open 118.6499 0.75939 3

Schumacher Poly YW 81.4 0.5 open 121.4686 0.7796 3

Schumacher Sch ML 90 0.5 open 218.2155 2.01447

Polynomial Sch ML 81.4 1 open 211.7804 1.87145 3

Polynomial Sch ULS 81.4 1 open 220.7776 2.03117 3

Polynomial Sch YW 81.4 1 open 223.1135 2.11134 3

Polynomial Sch ITYW 81.4 1 open 230.6519 2.27531 3

Polynomial Poly ML 73.7 1 open 233.5917 2.33032 3

Polynomial Poly ULS 73.7 1 open 233.754 2.32722

Polynomial Poly ITYW 73.7 1 open 235.0604 2.37607 3
Polynomial Poly YW 73.7 1 open 235.0755 2.37645 3

Schumacher Sch ULS 90 1 open 150.547 1.03817 3

Schumacher Poly ML 90 1 open 154.6066 1.08036 3
Schumacher Poly ITWY 90 1 open 144.7931 0.98082 3
Schumacher Poly ULS 81.4 1 open 152.5464 1.05213

Schumacher Sch ITWY 90 1 open 146.1344 0.99449 3

Schumacher Sch YW 90 1 open 145.1467 0.98486 3

Schumacher Poly YW 90 1 open 147.9092 1.01044 3

Schumacher Sch ML 90 1 open 228.5976 2.22911

Polynomial Sch ML 81.4 0.5 open 230.9733 2.27666 3
Polynomial Sch ULS 81.4 0.5 open 236.4885 2.40439 3
Polynomial Sch YW 81.4 0.5 open 236.7286 2.41439 3
Polynomial Sch ITWY 90 0.5 open 240.1235 2.61875 3
Polynomial Poly ML 81.4 0.5 open 240.2294 2.49396 3

Polynomial Poly ULS 81.4 0.5 open 240.303 2.49234 3
Polynomial Poly ITWY 81.4 0.5 open 241.0178 2.52002 3

Polynomial Poly YW 81.4 0.5 open 241.0233 2.52017 3
Schumacher Poly ITWY 73.7 1.5 extreme 177.5197 1.35276 3
Schumacher Poly ML 90 1.5 extreme 185.25 1.45864 3
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Schumacher Poly ULS 73.7 1.5 extreme 173.2033 1.2968 3

Schumacher Poly YW 81.4 1.5 extreme 168.4272 1.23705 3

Schumacher Sch ITW Y 90 1.5 extreme 152.4949 1.05736 3

Schumacher Sch ML 90 1.5 extreme 205.0801 1.76415

Schumacher Sch ULS 90 1.5 extreme 156.8992 1.10306 3

Schumacher Sch YW 90 1.5 extreme 165.8711 1.20552

Polynomial Poly ML 73.7 1.5 extreme 243.4122 2.54727 3

Polynomial Sch ML 81.4 1.5 extreme 244.4816 2.6038 3

Polynomial Poly ULS 81.4 1.5 extreme 243.9169 2.58727 3

Polynomial Sch ULS 81.4 1.5 extreme 230.8678 2.25873 3

Polynomial Poly ITW Y 81.4 1.5 extreme 244.3181 2.60302 3

Polynomial Sch ITW Y 81.4 1.5 extreme 237.9337 2.44299 3

Polynomial Poly YW 81.4 1.5 extreme 244.3275 2.60329 3

Polynomial Sch YW 81.4 1.5 extreme 232.3837 2.31419 3

Schumacher Poly ITW Y 90 2 extreme 178.3657 1.36318 3

Schumacher Poly ML 90 2 extreme 184.6608 1.44871 3

Schumacher Poly ULS 90 2 extreme 189.0899 1.51471 3

Schumacher Poly YW 90 2 extreme 197.5388 1.64583 3

Schumacher Sch ITW Y 90 2 extreme 174.1339 1.30625 3

Schumacher Sch ML 90 2 extreme 218.657 2.02371

Schumacher Sch ULS 81.4 2 extreme 182.7596 1.42345 3

Schumacher Sch YW 90 2 extreme 174.1339 1.30625 3

Polynomial Sch YW 90 2 extreme 241.7463 2.53553 3

Polynomial Poly YW 73.7 2 extreme 247.4318 2.6849 3

Polynomial Sch ULS 90 2 extreme 241.0956 2.50971 3

Polynomial Poly ULS 73.7 2 extreme 247.4297 2.6848 3

Polynomial Sch ML 90 2 extreme 246.8983 2.66996 3

Polynomial Poly ML 73.7 2 extreme 247.4296 2.68481 3

Polynomial Sch ITW Y 81.4 2 extreme 235.8651 2.39332 3

Polynomial Poly ITW Y 73.7 2 extreme 247.4317 2.68489 3

Schumacher Poly ITW Y 90 2.5 extreme 198.3901 1.65652 3

Schumacher Poly ML 81.4 2.5 extreme 206.0051 1.78635 3

Schumacher Poly ULS 73.7 2.5 extreme 199.9743 1.68593 3

Schum acher Poly YW 81.4 2.5 extreme 187.692 1.49309 3

Schumacher Sch ITW Y 81.4 2.5 extreme 198.7665 1.66566 3

Schum acher Sch M L 81.4 2.5 extreme 222.515 2.10073

Schum acher Sch ULS 90 2.5 extreme 209.2069 1.84575 3

Schumacher Sch YW 81.4 2.5 extreme 188.725 1.50966 3

Polynomial Sch ITWY 81.4 2.5 extreme 239.5882 2.48558 3

Polynomial Poly ITW Y 73.7 2.5 extreme 240.4288 2.50565 3

Polynomial Poly ML 73.7 2.5 extreme 240.2948 2.50092 3
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Polynomial Sch ML 81.4 2.5 extreme 252.4842 2.81938 3

Polynomial Poly ULS 73.7 2.5 extreme 240.306 2.50065 3

Polynomial Sch ULS 90 2.5 extreme 252.1029 2.80556 3

Polynomial Poly YW 73.7 2.5 extreme 240.4318 2.50573 3

Polynomial Sch YW 90 2.5 extreme 252.3373 2.81573 3

Schum acher Sch ITW Y 90 3 moderate 191.1918 1.54693 3

Schum acher Sch ML 90 3 moderate 291.7542 4.14423

Schum acher Sch ULS 90 3 moderate 216.6789 1.9809 4

Schum acher Sch YW 90 3 moderate 214.1264 1.93676 3

Schum acher Poly ITW Y 73.7 3 moderate 213.0452 1.91393 3

Schum acher Poly ULS 90 3 moderate 206.648 1.79994 3

Schum acher Poly YW 90 3 moderate 204.903 1.76854 3

Polynomial Poly ITW Y 73.7 3 moderate 246.4597 2.65945 3

Polynomial Poly ML 73.7 3 moderate 246.4595 2.65944 3

Polynomial Poly ULS 73.7 3 moderate 246.4595 2.65944 3

Polynomial Poly YW 73.7 3 moderate 246.4597 2.65945 3

Polynomial Sch ITW Y 90 3 moderate 304.9554 4.71825 3

Polynomial Sch ML 90 3 moderate 273.2415 3.44894 3

Polynomial Sch ULS 90 3 moderate 282.0401 3.76582 3

Polynomial Sch YW 90 3 moderate 282.1867 3.77412 3

Schum acher Poly ITW Y 81.4 3.5 moderate 210.2794 1.86418 3

Schum acher Poly ML 73.7 3.5 moderate 221.0246 2.0693 3

Schum acher Poly ULS 81.4 3.5 moderate 217.318 1.99745 3

Schum acher Poly YW 90 3.5 moderate 219.8709 2.04796 3

Schum acher Sch ITW Y 81.4 3.5 moderate 217.9715 2.0108 3

Schum acher Sch M L 81.4 3.5 moderate 257.1294 2.95076

Schum acher Sch ULS 90 3.5 moderate 227.3935 2.20576 3

Schum acher Sch YW 90 3.5 moderate 216.5875 1.9842 3

Polynomial Sch YW 90 3.5 moderate 288.6282 4.02086 3

Polynomial Sch ULS 90 3.5 moderate 288.5519 4.0162 3

Polynomial Sch ML 90 3.5 moderate 282.372 3.78178 3

Polynomial Sch ITW Y 90 3.5 moderate 276.2694 3.55947 3

Polynomial Poly ITW Y 90 3.5 moderate 303.5108 4.65246 3

Polynomial Poly M L 90 3.5 moderate 303.4675 4.6498 3

Polynomial Poly ULS 90 3.5 moderate 303.4701 4.64965 3

Polynomial Poly YW 90 3.5 moderate 303.512 4.65252 3

Schumacher Sch ITW Y 90 4 reduced 222.6445 2.10516 3

Schumacher Sch M L 81.4 4 reduced 307.6033 4.83552

Schum acher Sch ULS 90 4 reduced 247.1194 2.67643 3

Schum acher Sch YW 90 4 reduced 239.67 2.48817

Schumacher Poly ITW Y 73.7 4 reduced 224.3936 2.14005 3
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Schumacher Poly ML 90 4 reduced 228.4635 2.22801 3

Schumacher Poly ULS 73.7 4 reduced 213.6872 1.92768

Schumacher Poly YW 73.7 4 reduced 220.1505 2.05362

Polynomial Poly YW 90 4 reduced 316.4521 5.28164 3

Polynomial Poly ULS 90 4 reduced 316.36 5.27443

Polynomial Poly ML 90 4 reduced 316.3534 5.27482 3

Polynomial Poly ITW Y 90 4 reduced 316.4492 5.28148 3

Polynomial Sch ITW Y 90 4 reduced 276.8242 3.58154 3

Polynomial Sch ML 90 4 reduced 279.8231 3.6869

Polynomial Sch ULS 90 4 reduced 285.9714 3.90943 3

Polynomial Sch YW 90 4 reduced 286.1333 3.92038 3

Schumacher Poly ITW Y 81.4 4.5 reduced 234.4843 2.36485 3

Schumacher Poly ML 81.4 4.5 reduced 231.9641 2.30694 3

Schumacher Poly ULS 81.4 4.5 reduced 228.2672 2.22227 3

Schumacher Poly YW 73.7 4.5 reduced 221.0452 2.07176 3

Schumacher Sch ITW Y 90 4.5 reduced 240.7219 2.51174 3

Schumacher Sch ML 90 4.5 reduced 321.7263 5.55891

Schumacher Sch ULS 90 4.5 reduced 245.3393 2.62681 3

Schumacher Sch YW 90. 4.5 reduced 231.3613 2.2928 3

Polynomial Sch YW 90 4.5 reduced 283.6265 3.82504 3

Polynomial Sch ULS 90 4.5 reduced 283.5904 3.82144 3

Polynomial Sch ML 90 4.5 reduced 288.1191 4.00058 3

Polynomial Sch ITW Y 90 4.5 reduced 271.2638 3.3906 3

Polynomial Poly ITW Y 90 4.5 reduced 295.9005 4.3164 3

Polynomial Poly ML 90 4.5 reduced 295.7991 4.31011 3

Polynomial Poly ULS 90 4.5 reduced 295.8083 4.30973 3

Polynomial Poly YW 90 4.5 reduced 295.9052 4.31663 3

Schum acher Sch ITW Y 90 5 reduced 229.5177 2.24908 3

Schum acher Sch ML 90 5 reduced 268.7227 3.30133

Schumacher Sch ULS 90 5 reduced 239.7764 2.48933 3

Schumacher Sch YW 90 5 reduced 252.606 2.82458 3

Schumacher Poly ITW Y 90 5 reduced 238.609 2.46141 3

Schumacher Poly ML 73.7 5 reduced 227.3696 2.20377 3

Schumacher Poly ULS 90 5 reduced 232.2543 2.31347 3

Schumacher Poly YW 90 5 reduced 243.1071 2.57339 3

Polynomial Poly YW 90 5 reduced 296.9522 4.36192 3

Polynomial Poly ULS 90 5 reduced 296.8179 4.3531 3

Polynomial Poly ML 90 5 reduced 296.8083 4.35352 3

Polynomial Poly ITW Y 90 5 reduced 296.9483 4.36174 3

Polynomial Sch ITW Y 81.4 5 reduced 290.7355 4.10178 3

Polynomial Sch ML 81.4 5 reduced 290.9006 4.11159 3
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Polynomial Sch ULS 81.4 5 reduced 287.7327 3.98582 3

Polynomial Sch YW 81.4 5 reduced 287.7348 3.98595 3

The AIC for the best cases for each algorithm, generated data, fitted model, site 

productivity, and alpha showed that the fit decreases according to the noise, in the sense 

that the larger the noise (i.e., alpha) the weaker the fit Figure 4-9. This comes as no 

surprise, considering that generated noise is one level of magnitude less than height 

values, therefore smaller the noise better the fit.
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Figure 4-9: Ranking of models for each model, height, and algorithm according to AIC 
for every site index. The heading symbols were explained in text (i.e., P-S-ML stands for 
polynomial model on Schumacher generated height with respect to ML algorithm)

Mimicking the strategy of Strimbu and Paun (2013), comparisons were made on 

the best 10 models according to AIC, SBC and MSE from to the model used to generate 

the data, fitted model and alpha. Therefore, for each data generated model 200 cases were 

selected (10 alpha x 2 fitted models). To assess the performance of the algorithms the 

number of models leading to good results were counted for each algorithm Figure 4-10.
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Figure 4-10: Number of models that lead to white noise produced by every algorithm for 

each data generated model and fitted model.

Various results according to Figure 4-10 were obtained from fitting every 

algorithm as the following: for Polynomial model and Polynomial height, 15% of the 

effective impact was produced by applying the ML algorithm, 10.5% by the ITYW, 

14.5% by the ULS, and finally 10% was produced by applying YW. At that time, for 

Polynomial model and Schumacher height, ULS and ML were the most effective 

algorithms with 14.5% and 13.55, respectively. The least significance algorithm this time 

is ITYW with 9%. Additionally, for Schumacher model and Polynomial height ULS and 

ITYW were the most effective algorithms by 15% and 14.5 % respectively. The least 

significance algorithm was ML with 9%. Finally for Schumacher model and Schumacher 

height, ML was the worst algorithms with have no number of best models at all, and the 

most significance algorithm was ITYW with 27.5% of the best models achieved by using 

it.



4.4 Discussion

The results support the decision of software developer of having the least complex 

algorithm as default in solving autocorrelated models, as on average the algorithms are 

not different, conclusion supported by ANOVA. However, each analysis is an individual 

case; therefore a data analyst should be aware that the section of the algorithm could lead 

to wrong results. In fact YW algorithm, which is the default option in most software 

packages, proved to be a bad choice. YW was the worse algorithm in properly identifying 

the actual model (i.e., match the fitted model with data generation model) when 

polynomial function was used. The situation did not changed significantly for 

Schumacher equation, as YW was the third algorithm but only when the generated noise 

was very small, situation when the departure from deterministic relationship was 

minimal.

The most effective algorithms were ML and ULS algorithms. The best result for 

the Schumacher model was the noise has a small magnitude, which indicates that the 

selection of the proper nonlinear model is pivotal in further analyses. This means that the 

wrong model cannot be improved by choosing the correct residual autoregressive model.

4.5 Conclusion

The tree’s Height-Age relationships have been widely discussed in forest growth and 

yield through modeling by using linear and nonlinear functions. Frequently, the best 

model assessment is performed based upon selection criterion measurement as a mean 

square error, AIC, and SBC. Furthermore, the judgment of the best model or algorithm 

should be based upon more than one test or investigation. More significantly, several 

numerical algorithms when associated with a model can behave better and have a higher
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impact than other algorithms associated with the same model when applied on the same 

dataset. To illustrate the approach of this study, assumption that if the true model is 

known was used. After that by expending the appropriate modeling one should be able to 

reach a formula similar, if not identical, to the true model.

To mimic reality, noise was generated using Gamma distribution which defined by 

the two parameters of the Gamma distribution, alpha and beta parameters. Alpha ranged 

from 0.5 to 5 in increments of 0.5, while beta increased from 1 to 4 and are in steps of 1. 

The data was generated by specific models, and then used as if the true models used to 

build it are unknown. Then the implication is made by executing two height models (i.e., 

Schumacher and Polynomial type), the same models used to generate the data, then they 

used for testing the goodness of fit. The white noise of the generated data was obtained 

by using an autoregressive model on every alpha and beta pair using four numerical 

algorithms: Yule Walker (YW), Iterative Yule Walker (ITYW), Maximum Likelihood 

(ML), and Unconditional Least Square (ULS).

The final outcomes were achieved in this paper supported the decision of software 

developer of having the least complex algorithm as default in solving autocorrelated 

models, as on average the algorithms are not different. However, each analysis is an 

individual case; therefore a data analyst should be aware that the section of the algorithm 

could lead to wrong results. In fact YW algorithm, which is the default option in most 

software packages, showed to be a bad choice. The most effective algorithms were ML 

and ULS algorithms.



CHAPTER 5

ANALYTICAL ASSESSMENT FOR AUTOREGRESSIVE 

ALGORITHM’S IMPACT ON DIAMETER-HEIGHT 

(TAPER) MODELS OF LONGLEAF PINE TREES

5.1 Introduction

Software applications have been used to solve very complicated problems in all 

research fields. As well, any procedure in most software can be executed through 

different numerical methods (algorithms). The key point is which algorithm is the best 

choice for solving a model as a means of generating the best results. In the analytical 

interpretation of modeling analyses and their performance comparison, discussing 

embedded algorithms under software procedures is a very important step in the 

comprehension of the effects on the model’s results. Many researchers take on diverse 

statistical mechanisms to have a clear decision about the difference between the 

algorithms and the depiction of general conclusions (Demsar, 2006).

Analysis and the modeling of time series data is a significant topic of research in 

many fields (Meek, Chickering, & Heckerman, 2002). Therefore, time series is more 

critical in defeat stated assumptions than modeling the independent data (Gujarati, 1995). 

This analysis helps in studying any natural incident occurring repeatedly in periods of 

time and predicts how the future will look based upon these periods.

73
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This study focuses on the implementation of autoregressive process to a time 

series model, and compares the four possible results out of this process based on the noise 

(residuals) of the data. Concepts applied aids in learning the data efficiently while making 

the results easier to be interpreted and compared. The mentioned four achievable results 

are produced by numerical algorithms used to solve the autoregressive equations.

Delivering the research ideology is necessary of a situation inclusive of the time 

series in which the observations are repeatedly recorded in periods of time. The tree 

Diameter-Height relationship is an important element of growth and yield models in 

forestry, which is a good example to use in applying the concept of this research. This 

relationship is a very important indicator of any tree growth, and can be affected by 

human intervention such as burning, industrial pollution, pruning, or thinning; or by 

natural causes such as insects, diseases, animal damaging, or weather conditions like 

lightening and flooding.

One of the main significant characteristics in studying any tree growth model is 

called taper, which is a decreasing relationship between providing tree diameter and its 

correspondence of height, thusly estimating the volume and total tree height 

(VanderSchaaf, 2008).

Taper equation is used to illustrate tree volume at any predefined diameter and 

height by giving precise unbiased predictions; usually, volume equations make negative 

predictions for larger trees (Weiskittle, Hann, Kershaw, & Vanclay, 2011). In other 

words, taper is thinning in diameter according to increasing heights.

Tree stem taper has been studied since 100 years ago by developing taper 

functions to describe the connection between diameter and height (Newnham, 1992).
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Some of these well-known taper equations which were proposed to study the Diameter- 

Height relevance are: Munro (1966), Bruce (1968), Kozak (1969), Demaerschalk (1972), 

Cervera (1973), Ormerod (1973), Max and Burkart (1976), Coffre (1982), and Jimenez 

(1994) ( Rojo et al., 2005).

In the wake of European settlement, Longleaf pine trees, which comprise the data 

for this research, covered an estimated 36 million (ha) of southeastern United States (Van 

Lear, Carroll, Kapeluck, & Johnson, 2005). After many years, 1.2 million ha remain, and 

these remaining trees spread from southeastern Virginia to eastern Texas.

In recent years, different forestry organizations started encouraging the creation of 

natural forests by planting Longleaf pine trees (Gonzalez-Benecke et al., 2013), which 

will help foresters to research this type of tree and predict future aspects of tree growth 

based on current attributes such as age, height, site index, and diameter (Avery & 

Burkhart, 2002).

An abundance of qualitative data and literature reviews have been performed on 

Longleaf pine trees as a means of studying their stem volume, height, diameter at breast 

height (DBH), and diameters; however, no one has yet compared the numerical 

algorithms leading to autoregressive process results. The goal of this presented study is to 

examine the relationship between the Longleaf pine tree taper in contrast to height, age 

and site index (SI). This research will be assessed through analyzing various impacts of 

algorithms under different taper models. The algorithms discussed and implied 

throughout the qualitative and quantitative methodologies include Yule Walker (YW), 

Iterative Yule Walker (YW), Maximum Likelihood (ML), and Unconditional Least 

Square (ULS) algorithms. Discussing how the data is sensitive in comparison to the four
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algorithms was completed by applying a set of key input variables and parameter values. 

To test how the data reacts to different algorithms, AIC and R2 were the factors chosen as 

the guideline in building the decisions. Beside the mentioned factors, model errors 

(residuals) are very important benchmarks utilized to test the models performance.

5.2 Method

5.2.1 Data Description

The Longleaf data used to study the impact of diverse algorithms were recorded 

from seven studies and two hundred and twenty-nine persistent plots from Pineville, 

Louisiana and Auburn, Alabama. The trees were measured and collected by the U.S. 

Forest Service’s Laboratory at Pineville, LA to investigate the consequences of spacing 

and thinning Longleaf pine tree which spread throughout the Western Gulf Coastal 

Plains, from Santa Rosa County, Florida to Jasper County, Texas (Leduc & Goelz, 2009).

The trees were parceled into plots, representing a group located close to one 

another in one area. Tree plotting and taper models are two significant factors in 

assessing the impact of algorithms to solve the autoregressive process.

Tree height and stem diameter at 1.37 meters (m) in height, also classified as 

DBH, are very important tree characteristics for helping any researcher study and 

understand tree behavior, and predicting forest stock (Gonzalez-Benecke et al., 2013).

Twenty-five thousand, six hundred and fifty-nine trees were distributed (without 

human intervention) in southern Alabama, Mississippi, Louisiana, and eastern Texas. 

These trees were repeatedly measured as follows: diameter for the outside bark at 1.37 m 

height (DBH, cm) was measured to the nearest 0.254 cm, the total height (TH, m) was 

measured to the nearest 0.328 m, and lastly the specific tree stem outer bark diameter (D)



to height (H) at 5.08 cm were measured. Those tree measurements were collected at 

different ages for each targeted tree. The Longleaf Pine trees were divided into two 

categories: fertilized which is represented by type 1 and unfertilized which is represented 

by type zero. Fertilized tree type one was removed and only unfertilized trees were 

selected for this study. One observation was excluded from the study since it has the total 

height of the tree less than a height relative to specific diameter of the tree, which is 

impossible to happen (it could be a human entry mistake). Factor F was created as 

F = T H  /D BH  (m.cm1) and used as an indicator to remove the damaged trees. In 

addition, when F<  0.54 (m.cm1) or F > 13.5 (m.cm1), related trees are ineligible for 

inclusion in the data investigation. As a result of the previous step, 13 plots were 

eliminated out of 115, causing elimination for study 4.10 (which is the T.R. Miller plots 

from Auburn). Furthermore, 91 plots were found to be elite out of the initial 225 plots.

Study 2.29 and 4.10 were removed since they consist of the plots which were 

excluded by the factor F. After study 2.29 and 4.10 were eliminated, five studies 

remained inclusive: 2.03, 3.02, 3.12, 3.13, and 3.29 were all from Pineville. These five 

studies are defined as the following: study 3.02 represents the burned tree portion of this 

study, including four planting spacings and four thinning treatments, with study plots 

located in J.K. Johnson Forest (about 17 miles southeast of Alexandria, Louisiana). Study

2.03 is the unburned tree portion of the study with four pruning treatments and this study 

poses some problems for trees at specific ages. Study 2.29 has three basal areas and two 

fertilizer treatments, in addition to study 3.12 having seven thinning treatments with plots 

located on a plantation in Perry County, Mississippi (about 5 miles northwest of 

Richton). Study 3.13 also has seven thinning treatments and its plots located in Texas in
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the Angelina district. Finally, study 3.29 plots are located in Jasper and Newton counties 

in Texas and in Beauregard, Rapides and Sabine Parishes of Louisiana.

Table 5-1 shows the number of observations in each plot, revealing the lowest 

number of observations being 58 in plot 447 and the maximum was 1701 in plot 14.

Table 5-1: Observations in 91 plots of Longleaf pine trees.

Plot Obs. Plot Obs. Plot Obs. Plot Obs. Plot Obs. Plot Obs. Plot Obs.

1 934 14 1701 27 677 40 546 53 139 146 203 338 212

2 1116 15 914 28 539 41 1570 54 143 148 221 344 123

3 960 16 945 29 645 42 1657 55 146 232 148 345 195

4 1001 17 954 30 564 43 1060 56 90 233 179 346 143

5 1036 18 919 31 1702 44 1296 57 217 237 151 347 133

6 940 19 960 32 1376 45 198 69 154 238 164 431 209

7 953 20 841 33 1638 46 223 70 143 241 178 433 113

8 931 21 1762 34 1495 47 141 131 114 244 216 436 84

9 883 22 1440 35 565 48 129 132 211 245 89 438 217

10 814 23 1453 36 461 49 174 135 183 246 81 442 167

11 1956 24 1491 37 532 50 151 137 180 332 131 444 165

12 1882 25 631 38 427 51 167 143 149 332 192 445 240

13 1668 26 627 39 560 52 127 144 106 333 250 447 58

Site index (SI, m) is defined as the total height (TH) at age 50, predetermined for 

48 plots, but is not straight for the other 43, therefore being generated by using the

following Schumacher equation: SI = 1.3 + a.e\p( b -  ^ )  ■ The parameters a, b, and c

were chosen to be 1, 25, 10, respectively, and the equation was solved by using Jacobian 

and Hessian matrix. The final outcomes yield 91 plots, 6 studies, age, height, year of 

measurement, tree number, states, and counties of three locations totaling a population 

size of 45,675. Standard statistical characteristics of the fitting dataset are shown in
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Table 5-2. Since trees are grouped by plots and every tree measured repeatedly at 

different ages, taper models of Longleaf Pine data are considered as mixed models.

Table 5-2: Summary of Standard Statistical characteristics for 91 plots of 
Longleaf.

Taper equations dataset 
N=45675

Variable Mean SD Min M ax

Age 39 8.649407 16 50

DBH 26.162 8.269708 2.032 50.038

TH 15.3924 3.76244 1.8288 30.7848
H 13.2588 6.557018 0.3048 27.7368

SI 26.29922 1.486754 22.87372 30.7848

D 5.08 8.791802 5.08 50.8

The distribution of total observations (N = 54855 h 1) were used for taper model 

fittings and model evaluations by age and site index. The final 91 Longleaf Pine plots 

were the following: 5.49% of plots had N < 100 h '1, at the same time 20.88% of plots had 

N > 1000 h '1, while 73.63% had observations between 100 and 1000 h 1. With respect to 

site index, most places (60.44%) had SI between 25 and 28 m, and only 6.59% of the data 

had SI > 28 m, and lastly the results reflected about 32.97% had SI < 25 m. Finally, by 

analyzing the age findings conclude that 1.27% of data lie under age 20 years, 47.64% 

had ages between 20 and less than 40 years, and 51.09% of the data lie between 40 and 

50 years.

The relationship between DBH and TH, and between H and D shows clearly in 

Figure 5-1 that the diameter and the height have a negative relationship, for as long as 

the height increases the diameter decreases. In contrast, DBH and TH have a positive 

relationship in which trees with higher total height have wider DBH.
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Figure 5-1: Relationships between DBH and TH and between H and D.

5.2.2 Models and Algorithms Description

To reach the goal of investigating and assessing the impact of different algorithms 

on Longleaf Pine data and select the best, two sets of runs were executed on the entire 

dataset. The reason is because the autoregressive analysis based upon the errors resulted 

from the taper equations.

For the first phase, I applied five famous taper models on the data (45,675 

observations) to obtain parameter estimations for each model and model errors 

(residuals). These five taper models are referenced as: Bruce, Coffre, Jimenez, Kozak, 

and Munro models (Rojo, PeaStem, & Sanchez-Rodriguez, 2005).

The second phase involves the autoregressive process which, according to 

Brockwell and Davis (1996), is the most familiar approach in describing the time series 

data. Autoregressive process is applied on the achieved errors from the taper equations in 

the first phase: thus, these errors were differenced to remove the correlation among them 

since the Longleaf Pine data is a time series. The differenced errors are applied in a time 

series regression equation by using the autoregressive procedure, which is solved by four



different algorithms as was mentioned; one after another the four algorithms were applied 

to the differenced errors which resulted from each taper model. The last step entails 

comparing the results of each plot separately based upon Akaike Information Criterion 

(AIC) and Coefficient of Determination (R2), which are the two guide methods for 

selecting the best and the worst models. Choosing two selection criterion methods to 

compare the algorithms’ performance is called multivariate pairwise tests. In such a case, 

two vectors are used for comparisons (Yildiz, Aslan, & Alpaydin, 2011). In both phases 

no data splitting are used because of three reasons: (1) the model selection methods are 

simple and straightforward, (2) the whole dataset will be applied various times for fitting 

different models, and (3) according to Hirsch, “splitting a sample into two pieces cannot 

substitute for true attempts at replication.” The data in this study has true replication 

many times for every tree as previously mentioned.

5.2.2.1 Taper Models Evaluations (Phase I)

Five models were used to estimate tree taper, and each model studies the relation 

between taper and age: SI, H, TH, and some models add the DBH variable of the tree. 

The previous variables had been chosen since they provide pertinent tree feature 

information such as productivity, which has a very important impact on the taper. For all 

trees, X was calculated by dividing the difference between the total height and the height 

over the difference of the total height and 1.3716, which is the breast height of a tree, 

TH — H
X  = ---------------- . T is representative of the taper and defined by the squared of diameter

TH -1.3717

divided by DBH, T = ( -  )2. Age, SI, DBH, TH, and H are given variables (already
DBH

measured for each tree).
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Bruce was the first applied taper model reflected as :

T = ax - X ' 5 +a2 - ( X15 - X i ) DBH  + a, ■ ( X ' 5 -  X *) • TH + a 4(X15 - X n ) T H  DBH + 

a, ■ ( X 15 - X n ) TH 05 + a6 • (X15 -  X 40) TH 2 + a7 ■e(a*'',) ■ SI + ex

Equation 5-1

where a , to a 7 are curve fit parameters and e , is the Bruce model error term. The 

second taper model used is Coffre which has the formula of:

T = b x • X  + b 2 • X 2 + V  * 3 + V  SI + e 2 Equation 5-2

where b x tofo4 are curve fit parameters and e 2 is the Coffre model error term. The

Equation 5-3

third model used is Jimenez and fitted as the:

where c, to c, are curve fit parameters and £j is the Jimenez model error term. The 

fourth taper model was Kozak and applied as:

T = dx ■i(H/ TH) - \ )  + d 1 -{{h/ t h )2 -D  + d, SI + e4 Equation5-4

where </, to<f, are curve fit parameters and e4 is the Kozak model error term. The last 

taper model used is called Munro which has the formula of:

T = g l - g 1 - (h/ {TH _ , 3)) + g , ■ S l + e ,  Equation 5-5

where d xt od4 are curve fit parameters and e4 is the Kozak model error term.



The parameter estimations for each taper model were accomplished by using 

nonlinear regression procedure PROC NLIN, in SAS 9.3 (SAS Institute, Inc., 2012). For 

every model numerous initial values were used until two requirements were completed: 

(1) the model converges; and (2) the lowest mean square error (MSE) and coefficient of 

determination (R2) were achieved (Kobayashi & Salam, 2000). MSE and R2 were 

calculated by the following equations:

where y. , T ,, Y are the actual, the predicted, and the average values for the

dependent variable, respectively. In addition, n is the total number of observations 

and p is the number of parameters in each model.

By the time statistical analyses had been completed for all five taper models, 

individual model residuals were prepared for the second phase. Since the Longleaf 

Pine tree is a time series data, the error is dependent over time. In essence, errors 

serially correlated, which means ( £ f ) are correlated with residuals in earlier periods

such at£( ,. To remove the correlation between residuals, differencing was

accomplished and applied at lagl as the following equations:

Mean Square Error: Equation 5-6

n n

Coefficient of determination: R 2 = —i= l i= l Equation 5-7
n

i= i

residual \(£) = £, — Equation 5-8
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The produced differenced residual ( residual ,) of each one of the five taper models 

will be used in the autoregressive procedure with four different algorithms in phase II.

5.2.2.2 Algorithms Evaluation by using Autores (Phase II)

Evaluating algorithmic performance is based on applying autoregressive 

procedure in SAS 9.3 (SAS Institute, Inc., 2012). This procedure is used to estimate the 

linear regression models of a time series data. For example, the formula of the regression 

in this case is

Y, = x 'Ji + v, Equation 5-9

where y, is the response variable, x\  is the regressor variable with /? slope, and v,

is the error term. As it was mentioned, errors are correlated and represented by the 

following equation:

V, -  ------ <pmv,_m + e, Equation 5-10

After considering the differenced errors of Longleaf Pine which resulted from the 

previous stage, and since these residuals are a consequence of uncorrelated random 

variables, the outcome residuals ( residual ,) are called the white noise process ( a; ) with 

zero mean, constant variance, and zero covariance.

Suggested by Cleveland (1972), a statistical method for analyzing the 

autocorrelation, inverse autocorrelation and partial autocorrelation functions were applied 

to determine the autoregressive model order; three produced the best lag order for the 

given data. By stating three to be the order of the autoregressive error process for fitting, 

the errors’ autoregression equation was in the form of:

(1 — 03J53 )Zt = at Equation 5-11
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where a , is residual , and the autoregressive part is the residual before differencing, 

the final equation was applied in SAS autoreg procedure:

This stage of the research focuses on the residuals and how they are critical to 

the four numerical algorithms utilized for solving autoregressive procedure, helping 

to comprehend the sensitivity of tree taper to tree age, SI, H, TH, and DBH. Studying 

the impact of the algorithms with each model was processed for each plot to get 

detached analyses on observations in each group of trees. Moreover, increased 

obtainable information for each plot drove data to fit more precise models (Neter, 

Kutner, Nachtsheim, & Wasserman, 1996).

It is important to declare that by doing this analysis, the hypothesis, which 

claims that the default option algorithm under any statistical software procedure is not 

always the perfect choice for a predefined model, will be realized.

Reaching the point of comparing the data reacting occurs through applying four 

estimation methods, which are implemented for the autoregressive approach of residual 

models on every tree plot, and algorithms are defined as the following: Yule Walker 

(YW), Iterative Yule Walker (ITYW), Maximum Likelihood (ML), and Unconditional 

Least Square (ULS).

5.2.2.2.1 Yule Walker (YW)

This algorithm is the default option in the autoregressive procedure in SAS. In a 

large sample from an AR (p) process, YW algorithm is represented by Equation 5-13:

(1 -  (foB3) • residuah residua} Equation 5-12

Equation 5-13
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where Ct is the autocovariance function of the series, </> is the vector of 

autoregressive parameters which is the estimation of/3, p is the autoregressive lag

order, tf^is the standard deviation of the residual, and St Q is the Kronecker delta 

function.

5.2.2.22 Iterative Yule Walker (ITYW)

This algorithm uses the resulted residuals that come out of YW algorithm to 

create new estimators of ^and V (the error vector).

5.2.2.2.3 Maximum Likelihood (ML)

The Maximum Likelihood algorithm is efficient but is in need of a good 

starting point and cannot be computed for some data. Thusly, it is maximized by 

minimizing the objective function:

\L\',n e’e\L\l/W Equation 5-14

where e is the residual vector and L is the likelihood function which represented as

-  — ln(  In ) -  —  ln( a 2) -  -  In (|v |) -  Equation 5-15
2 2 2 2a

where a 2 is the variance, V is variance matrix of the error vector, |V| is the

determinant of V, N is the number of the observations, and S =e'.e (unconditional 

sum of squares of the model)where e is the transformed error.

5.2.2.2.4 Unconditional Least Squares (ULS)

The last algorithm that can be used to solve the autoregressive equation is the 

ULS, which is computed by minimizing S with respect to the parameters p  and <p: (SAS, 

Inc., 2012).
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Since there are five models, four algorithms, and ninety-one plots, 1820 candidate 

models (5 models* 4 algorithms* 91 plots = 1928) resulted from studying the best 

outcome for every algorithm associated with each model based upon selection criteria. 

Statistical analyses were estimated for the third order of autoregressive process AR(3) of 

every model.

The strong implication test considered by many researchers is the best method for 

contrasting models (Platt, 1964). Moreover, the supreme model of any research is the 

remarkable model for making inference from the data. In any research, the execution of 

any model or algorithm is measured by choosing extreme statistics. In essence, either the 

minimum number of errors (e.g., lowest value MSE or AIC), or the maximum number of 

coefficient of determination (R2) can be implied (Dayton, 2003; Cameron & Windmeijer, 

1995). Pairwise comparison have been used by selecting the main proficient models 

based on the lowest AIC and the highest coefficient of determination R2 (was mentioned 

in the first phase) as it is mostly used in time series and regression model analysis. AIC is 

a measure of the goodness of the fit and the complexity of the model, calculated as:

AI C  = - 2  ln( L)  +  2k  Equation 5-16

where L is the maximized value of the likelihood function for the estimated model 

and K is the number of estimated parameters.

5.3 Results

Models in general are roughly sensitive to the input variables and the parameter 

values. The measure of sensitivity differs not only between models but among different 

groups (plots) in the same model (Weiskittle, Hann, Kershaw, & Vanclay, 2011). 

Applying numerical methods to complicated nonlinear models make them possessive of
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diagnostic solutions. The correct solution is unknown, but the embedded algorithms are 

able to find trusted results (Seppelt & Richter 2005). Accordingly, four autoregressive 

algorithms were applied to the taper models.

By checking time effects on five taper model residuals, Figure 5-2 proves the 

Bruce model variance is constant. In other words, the residuals are unbiased and show 

homoscedasticity or residuals having homogeneity of variance (Bera & Jarque, 1981). 

Only the Bruce model was shown in Figure 5-2 as an example of the five taper models 

since the case of the residuals for the remaining four models are exactly the same.

I
I
15

I

Bruce

o

Oo
00 0 5 1 0 15

Observed Taper Observed Taper

Figure 5-2: The relationship between observed and predicted values for Bruce model 
(left) and the time’s effect on residuals of Bruce taper model (right).

Parameter estimations of five taper models related to the Longleaf Pine trees 

growing in Pineville located in the southern portion of the United States are recorded in 

Table 5-3. For all five model parameters, estimations were significant at P < 0.0001 and 

n = 45675.

Reflective of Table 5-3 we notice that Bruce and Coffre models have the highest 

R2 equaling 0.9828 and 0.9827, despite the Bruce model having DBH in the equation and
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Coffre does not. However, both models have the lowest MSE among the five models. 

The other three models, Jimenez, Kozak, and Munro, share the same variables with 

different equation forms, but Kozak shows more significance than the other two, with R2 

equaling 0.9697. The entire five models share the last term which has age and SI 

variables. The parameter estimation for that term was negative for all equations, except in 

the Bruce model which was positive. As such, age and SI have negative effects on the 

taper in four models.

Table 5-3: Parameter estimates and fit statistics of the Longleaf Pine tree taper 
equations.

M odel P a ra m e te r P a ra m e te r
E stim ate

SE M S E R2

B ruce ai 1.0349 0.000959 0.00603 0.9827
a2 -0.00451 0.000393
a3 0.0119 0.000540
a4 1.42E-12 6.9E-14
a5 -542E-14 2.31E-13
ae 1.44E-17 6.44E-19
a7 0.000824 0.000026

C offre bi 0.7514 0.00630 0.00602 0.9828
b2 0.2834 0.00860
b3 0.0546 0.00357
b4 -0.00120 0.000044

Jim enez Cl 1.3165 0.00821 0.0102 0.9257
C2 -3.0040 0.0624

C3 6.2952 0.4092
C4 -8.7238 1.0827
C5 4.3748 1.2439
C6 -0.1751 0.5168
C7 -0.00282 0.000289

K ozak d, -1.5649 0.00631 0.0106 0.9697
d2 0.3578 0.00637
d3 -0.00157 0.000052

M u n ro g i 1.2046 0.00853 0.0120 0.9130

g2 1.1413 0.00150
-0.00336 0.000313



The combination of the differenced residuals result from the five taper equations 

in autoregressive procedure, four numerical algorithms, and ninety-one plots led to 

generating 1820 models with 364 models for every taper equation. As was mentioned, 

selecting the best models from the candidate of 1820 was based upon two important 

criterions: akaike information criterion (AIC) and coefficient of determination (R2). Prior 

to starting the deep exploration for the best models, general statistical analyses were done 

on AIC and R2 by using the 1820 models Table 5-4.

Table 5-4: Five measurements summary of AIC and R2 statistics

Attribute AIC R2
Mean -1532.24 0.350231
Stand Deviation 1438.844 0.078243
0% Min -5403.43250 0.18650
25% Q1 -2249.16885 0.29790

tcs 50% Median -734.53468 0.33550
3

a 75% Q3 -442.28818 0.38675
100% Max -48.04991 0.79340

As it is well known the low AIC and the height R2 values are the best in the 

selection criteria properties (Dayton, 2003). By observing Figure 5-3 the AIC values for 

every model, algorithm, and for the 91 plots, it clearly appears the lowest AIC values are 

in plots 11 to 44. In addition, the plots over 44 have higher AIC values which make the 

models less significant in these plots. If we consider only AIC as a selection criterion for 

the best model, the most significant models for describing the strong relationship between 

the taper and the other variables would have been in plots 11, 14, and 31. At the same 

time, plots from 1 to 45 are more significant than the other plots.
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Figure 5-3: AIC values for every model, algorithm, and 91 plots from 1820 
models. Models from top to bottom are: Bruce, Coffre, Jimenez, Kozak, and Munro. 
Algorithms from left to right are: YW, ITYW, ML, and ULS.



Figure 5-4 shows R2 possess higher values in plots 447, 56, 53, 52, 51, and 47, 

which means these plots are very significant for representing the relationship between the 

taper and the variables. Simultaneously, plots 436, 433,131, 39, and 36 have the lowest 

R2 values making them less significant for explaining the same relationship.
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Figure 5-4: R2 values for every model, algorithm, and 91 plots from 1820 models. 
Models from top to bottom are: Bruce, Coffre, Jimenez, Kozak, and Munro. Algorithms 
from left to right are: YW, ITYW, ML, and ULS.



By comparing the results from Figure 5-3 and Figure 5-4, it is clear that the 

hypothesis that states model selection tasks yields different results achieved. For this 

reason and for satisfying the fairness in assessing error sensitivity to the algorithms’ 

performance and behavior under every model, pairwise selection method was chosen. 

This selection method is inclusive of the 1820 resulted models (364 models were 

produced by every taper model) and were sorted by ascending order with respect to AIC 

and descending with respect to R2 for each plot.

Duly mentioned, autoregressive procedure was used to solve the linear errors

process in the form of residuail=(\-</>}Bi )-residua  that resulted from the 1820

models. To select the best models, ranking was assigned from 1 to 1820 for every 

candidate model by ordering the data according to every model, algorithm, and plot. 

Through mimicking the strategy of Strimbu and Paun (2013), comparisons were made 

and the best initial models according to the fitting of the pairwise method were selected 

and shown in Table 5-5. Twenty models were counted as the best models for every taper 

model and algorithm. The table includes predictions for the third order of the 

autoregressive process AR (3), AIC, R2, and P values for the Durbin Watson test.
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Table 5-5: Autoregressive error model results for the top 20 best models according to 
lowest AIC and highest R2 for every model and algorithm All the 20 models from plot 
14.

Model Algorit
hm

AR(3) MSE
var ( e  t )

AIC R2 Durbin Watson 
at lag 3

DW Pr>DW

Jim enez ITYW 0.0382 0.00244 -5403.4325 0.2929 1.995 0.5285
Jim enez ULS 0.1219 0.00244 -5403.4128 0.2929 1.993 0.5381
Jim enez M L 0.1212 0.00244 -5403.4049 0.2929 1.993 0.5372
Jim enez YW 0.0398 0.00245 -5395.5983 0.2896 1.995 0.5252

Bruce ITYW 0.0398 0.0028 -5166.2851 0.3253 1.991 0.5527
Bruce ULS 0.07 0.0028 -5165.3009 0.3249 1.985 0.5122
Bruce M L 0.0695 0.0028 -5165.2733 0.3249 1.985 0.6052
Bruce YW 0.0398 0.0028 -5163.1712 0.324 1.960 0.5618
Coffre ITYW 0.0257 0.00294 -5085.2256 0.3179 1.996 0.5144
Coffre ULS 0.0718 0.00294 -5084.0714 0.3174 1.987 0.5928
Coffre M L 0.0711 0.00294 -5084.0286 0.3174 1.987 0.5921
Coffre YW 0.0257 0.00295 -5080.2371 0.3159 1.993 0.5364
Kozak ITYW 0.0019 0.00306 -5013.1983 0.3263 1.996 0.514
Kozak ULS 0.0168 0.00307 -5010.6335 0.3253 1.993 0.5395
Kozak M L 0.0166 0.00307 -5010.6224 0.3253 1.993 0.5388
Kozak YW 0.0019 0.00307 -5009.8482 0.3253 1.999 0.4847
Munro ITYW -0.0303 0.00326 -4909.1543 0.3224 2.002 0.4632
Munro ULS 0.00326 -0.0304 -4909.1533 0.3224 2.002 0.4617
Munro M L -0.0304 0.00326 -4909.1533 0.3224 2.002 0.4626
Munro YW -0.0303 0.00326 -4909.1532 0.3224 2.002 0.4637

From Table 5-5, all the given models come out of plot 14, which is the plot with 

the largest number of observations as shown in Table 5-1. Therefore, the top four models 

were produced by using ITYW, ULS, ML, and YW algorithms with the Jimenez taper 

equation. The top model for every taper equation was obtained by using ITYW 

algorithm.

It is clear that by fitting the Jimenez model, the best results were produced and 

ITYW, ULS, and ML algorithms have the same effect on the Jimenez model with very 

little difference with YW when they were applied. All four algorithms have the same 

effect on the Munro model producing the least significant results. By looking at the
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comparison criteria AIC and R2, it clearly appears that ML and ULS have the exact 

effects when used with Bruce and Coffre models. At the same time, ITYW algorithm is 

more significant than YW when used with the Bruce model. Furthermore, ULS, ML, and 

YW algorithms have the same effects when applied with the Kozak model, and 

collectively, ITYW was the most sensitive algorithm when used with the same model.

By using the Durbin Watson test (Watson, 1951) for testing serial correlation, we 

notice d w  > DW  ,, for all the plots in Table 5-5, that means we do not reject Ho. Stating 

all the serial auto correlation equals to zero means there are no serial correlation (all the 

serial correlation p t = o )• The previous results were expected since we already have

differenced the residuals to remove the correlations among them. We also notice that all 

AIC values are negative since the part -2 In (L) in Equation 5-16 is greater than 2 k.

Since the inference from previous analysis concludes that plots with the highest 

number of observations always produce the best models, analysis is done from different 

points of view. By choosing the top ten highest models (according to the pairwise 

method) for every plot, the inference is constructed based on 910 models (91 plots* 10 top 

best models). This represents 50% of the original 1820 models, summarizing the best 910 

models which describe the number of models produced for every taper model and 

numerical algorithms shown in Figure 5-5. It is clear that taper residuals were less 

sensitive to all four algorithms as a result of fitting the Kozak and Munro models. 

Moreover, Jimenez was the superior taper model for describing the relationship and YW 

algorithm was the least significant when used with it. Even though Yule Walker (YW) is 

the default option, this algorithm was not a good choice for some models like Jimenez,
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Bruce, and Coffre; hence, Unconditional Least Square (ULS) algorithm performs better 

with them.

Bruce

Coffre

J im enez

Kozak

M u nro

Algorithms

Figure 5-5: Number of best models produced by every taper model and numerical 
algorithm, it is summarizing for 910 best models

Despite which taper model or tree plot was used, the four algorithms had an 

undistinguished impact. For each taper model, diverse results according to autoregressive 

process were obtained as the following: 37.91% of the 910 best models were produced by 

fitting the Jimenez taper model which was the highest percentage, 29.12% were produced 

by the Bruce model, 25.38% by the Coffre model, 7.14% by the Kozak model, and finally 

the lowest number of good models were produced by fitting the Munro model with

0.44%. On the other hand, if the number of the good produced models were counted 

according to the algorithms’ effect, the following is found: 27.36% of the 910 effective 

impact models were produced by applying ITYW algorithm, 25.27% by ML, 27.58% by 

ULS, and finally 19.78% were produced by applying YW algorithm. While the four 

algorithms seem to have the same number of best models when applied with the Munro 

model (with 1% and lower), ITYW and ULS algorithms have the highest effects with the
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Jimenez model by 9.56 and 9.78% for each one, respectively. The number of best models 

produced by using Bruce and Coffre estimated 256 in comparison to Coffre at 231.

According to the selection criteria, the lowest models produced were in plots 49 

and 47. These two plots contain trees from study 329, and the trees in these plots were 

measured at three age levels, which are 16 years, 21 years, and 26 years during the 

periods of 1973, 1978, and 1983.

The most effective way to assess any model performance is through residuals by 

plotting the prediction errors for all trees’ grouping and their variables (Weiskittle, Hann, 

Kershaw, & Vanclay, 2011). Residuals plots are extensively used to discover a model 

shortage in regression analysis (Anscombe, 1961; Chatterjee, & Hadi, 1980). In addition, 

graphical analyses of residuals are very useful in investigating the goodness of fit for any 

regression model (Montgomery, Peck, & Vining, 2006). Figure 5-6 shows how the 

differenced residuals of Jimenez model are normally distributed.

Figure 5-6: Complete information about plot 14 that resulted from Jimenez with ITYW 
algorithm which is the best produced model. The studentize residuals for the models with 
the nlag = 3, standardized, and histogram of the residuals and plots the white noise 
probabilities.
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Figure 5-7 shows Autocorrelation Function (ACF), Partial Autocorrelation Function 

(PACF), and Inverse Autocorrelation Function (LACF) which are three important 

functions for any time series model. ACF is a bar chart used to test the correlation 

between the time series coefficients and time lag. If any pattern is found, this indicates a 

correlation (dependency) exists. PACF is a bar chart reflecting the amount of correlation 

between variables and the time lag. IACF is the reverse of the calculated ACF of any 

time series. By investigating the partial autocorrelation function (PACF) plot in Figure 5-

7. All partial autocorrelations are within the 5% significance error limits curves and there 

is no pattern observed, which means AR(3) model was the suitable one to fit the data.

5 10 15 20 25
Lag

Figure 5-7: Autocorrelation, inverse autocorrelation, and partial autocorrelation function 
for the residuals for plot 14 that resulted from Jimenez with ITYW algorithm which is the 
best produced model.

Figure 5-6 and Figure 5-7 show the situation of the residuals for plot 14 that 

resulted from Jimenez with ITYW algorithm which describes the general look for the 

best produced model in Table 5-5. It is obvious from Figure 5-6 that the residuals are
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independent and identically normally distributed and the white noise probabilities’ plot 

point out that the resulting residuals are white noise.

5.4 Discussion

Taper is one of the main significant characteristics in studying any tree growth 

model. The first phase of this study reported about five taper prediction equations of 

Longleaf Pine trees. These taper models provided a useful explanation about the 

relationship between the taper and height, DBH, age, and SI. Age and site index can have 

major participation on the precision of any model’s estimation (Weiskittle, Hann, 

Kershaw, & Vanclay, 2011). In this study, SI was set to be a height at age 50, and age 

had an affirmative impact on the tree taper only in the Bruce model. The DBH existence 

in the Bruce model can be the most proficient cause, since it was not present in the other 

four models. That means four out of five taper models show how the age increasing 

affects the tree taper in the opposite way. The Kozak taper model was the only model 

with negative intercept among the five equations. According to the mean square error 

(MSE) and the coefficient of determination (R2), the Jimenez model behaved the best 

when fitted on the data to predict tree taper. The Bruce and Coffre models have close 

results, as the reason could be the existence of variable X in those two models and with 

its absence throughout the remaining three models.

The second phase was a general approach for algorithm comparisons on one 

dataset which described tree taper. The mentioned numerical algorithms are used to solve 

autoregressive process of the residuals as a resulted of fitting the five taper models. The 

four algorithms behaved in a different way when they were applied with different taper 

models for each plot of trees. The best results according to AIC and R2 selection criteria



were for plot 14, which has the highest number of observations. Even though the Yule 

Walker (YW) algorithm is the default option when using the autoregressive procedure, 

the Iterative Yule Walker (ITYW) algorithm behaved better. ML and ULS algorithms 

behave the same when applied with Bruce and Coffre models in plot 14, but ITYW was 

the best with all five models. Kozak and Munro were the least significant taper models 

according to AIC and R2. The Durbin Watson test was applied on the residuals and the 

results showed no autocorrelation between them. According to the models, the highest 

percentage of the best models was 37.91% produced by applying the Jimenez model. In 

lieu of previous findings, the lowest percentage of the most favorable models was 

produced by the Munro model at 0.44%. According to algorithms, the highest 

percentages of the best models were 27.36% and 27.58% produced by ITYW and ULS 

algorithms, respectively; the lowest was 19.78% by the YW algorithm. Selection criteria 

played a significant role for producing the final results, and it was obvious in this study 

that the model selection task gives different results when used separately. The result was 

based on combining both conditions of AIC and R2 to select the best model and show 

how the residuals from Longleaf Pine tree data are affected by selecting different 

algorithms.

5.5 Conclusion

Using the mixed models helps the researcher to consider all factors that 

contributes to effecting data. Tree diameter-height (taper) relationships have been widely 

discussed in forest growth and yield through modeling them using nonlinear equations. 

The best model assessment and selection are based upon statistical characteristics. In this 

paper, selection criterion measurements were AIC and R2. Furthermore, the judgment for
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the best model or algorithm should be based upon more than one test or investigation. 

More significantly, several numerical algorithms when associated with a model can 

behave better and have a higher impact than other algorithms associated with the same 

model when fitted on the same dataset. To illustrate the approach of this study, 1820 

candidate models were used to describe tree taper. Three hundred and sixty-four models 

for every taper equation were assessed to identify the potential impact of different 

variables on tree taper within 91 tree plots. Two taper models discussed in this study did 

not perform as expected when applied with the four numerical algorithms. They could be 

replaced by other taper models in future work. Longleaf Pine trees performed well in 

delivering the idea of this study and future researchers could repeat this research while 

taking into account the fertilized trees and the study type as variables in their taper model, 

which could create more important results. All the analyses and results were obtained 

based on Longleaf Pine trees’ data. How models and algorithms will perform when used 

with other data is uncertain to be the same. In essence, the basic idea of this study could 

be applied on any time series data.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Sensitivity of mixed models focuses on numerical algorithm comparisons used to 

solve the time series models. Three different projects were used to test the methodology 

of this research by using different mathematical and statistical models, depending on the 

project type. Two of the most popular time series models are ARIMA and the 

autoregressive models (Brockwell & Davis, 1996; Wei, 2006). The previous two 

methodologies have advantages in solving any time series, and provide accurate results 

for the relationship between data variables. Each dataset had relations between different 

variables of that environment. The important consideration in any type of comparison is 

the selection criteria the decision will be based upon, and that decision investigator takes 

leads to make strong inference about the data. In any research, the performance 

measurement of the algorithm, which is computed by the selection criteria, is represented 

by selecting excessive statistics, either the minimum or the maximum. The analyses of 

each data were based on residuals which resulted from the parametric models, and these 

analyses are very useful in investigating the goodness of the fit for any regression model 

(Montgomery, Peck, & Vining, 2006). The most significant discovery in this research is 

using whatever numerical algorithm is embedded in a statistical software procedure to
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solve the time series models leading to the results and solutions; unless the user is 

performing manual comparisons of these algorithms, there will be no notifications for the 

best algorithm under the investigation model. According to previous information, 

applying scientists should be aware of the numerical algorithms’ differences when using 

the built-in software procedure, and not dependent on the default option algorithm of that 

procedure, which sometimes leads to contradicting results, of what has been predicted 

which causes reversal of conclusions. In conjunction with frequently proven research, the 

default option algorithm is not the best choice for solving the model, and sometimes 

proves it is the worst algorithm to select and solve the model. Three datasets were used in 

this thesis, as a means of illustrating the idea of algorithm comparisons and their behavior 

evaluation.

The thesis results supported the decision of software developer of having the least 

complex algorithm as default in solving autocorrelated models, as on average the 

algorithms are not different. However, each analysis is an individual case; therefore a 

data analyst should be aware that the section of the algorithm could lead to wrong results.

In Chapter 3, Ozone data which was suggested by Box and Tiao (1957), was used 

to test seven different algorithms, three for the ARIMA model and four for the 

autoregressive model. The first assessment was for the AREMA model with three 

numerical algorithms: CLS, ML, and ULS. The previous thee algorithms were used to 

solve the model and the worst result was achieved by CLS, which is the default option for 

that model, and at the same time, the best result was achieved by ML algorithm. By using 

the ARIMA model, studies possessed the capability of predicting the future year 1973, 

with 95% confidence interval by using the same three algorithms. The predicted
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observations for every month in that year were closed by using CLS, ML, and ULS 

algorithms, but the squared error (SE) for ULS were the lowest, which means the best 

prediction was achieved by the ULS algorithm.

The second assessment for the Ozone data was achieved by using the 

autoregressive model with four numerical algorithms. The best result for this model was 

obtained by using the ML algorithm, which is also not a default option for this model. 

The ULS algorithm showed significant results and was close to the ML algorithm, but 

still not the default option which is the YW algorithm. One very important piece of 

information has to be mentioned about Ozone data which is, all regressors in this data are 

dummy variables. In addition, all of them were significant in describing the model except 

the winter variable. For the significant variables p value was less than 0.0001 which 

indicates that there is less than 0.01% chance that the observed measurements are a 

meaningful addition to the model, because the change in the predicted variables are 

related to the change in the response variable being the Ozone.

In Chapter 4, the data of this chapter differs from the Ozone data in (Chapter 3), 

and the Longleaf Pine data in (Chapter 5) because it was generated different manner than 

the other two which were collected real data. Since the basic idea of this thesis is 

analyzing the data based on its residuals, the noise in this data was generated by using the 

gamma distribution, inclusive of alpha and beta parameters which are very important 

factors in it; investigating the autoregressive model in this chapter was grouped by alpha 

and beta pairs. After generating data with two height types, Height-Age relationship was 

studied by using two different height models, the same two had been used to generate the 

data (Schumacher and Polynomial). The residuals of all models were tested through the



autoregressive model and its four algorithms. The best results were obtained by applying 

ML and ULS algorithms which are not the default option for the autoregressive model, 

and it was noticeable that the best results were always found at lower alpha and beta pairs 

such as (1,1). For Polynomial model and Polynomial height, 15% of the effective impact 

was produced by applying the ML algorithm, 10.5% by the ITYW, 14.5% by the ULS, 

and finally 10% was produced by applying YW. At that time, for Polynomial model and 

Schumacher height, ULS and ML were the most effective algorithms with 14.5% and 

13.55, respectively. The least significance algorithm this time is ITYW with 9%. 

Additionally, for Schumacher model and Polynomial height ULS and ITYW were the 

most effective algorithms by 15% and 14.5 % respectively. The least significance 

algorithm was ML with 9%. Finally for Schumacher model and Schumacher height, ML 

was the worst algorithms with have no number of best models at all, and the most 

significance algorithm was ITYW with 27.5% of the best models achieved by using it.

The same generated data can be used with different models such as Larsen and 

Hann (1987) or Curtis (1967), comparing their results with different autoregressive 

algorithms. The investigation was based on models consisting of height as a predictor 

with age and site index as regressors, so that this data could be used repeatedly with the 

same strategy, which includes adding more regressors such as thinning or fertilization as 

dummy variables.

In Chapter 5, Longleaf Pine trees were used to study the taper models, under the 

ideology of numerical algorithms comparisons. This data was gathered from southeastern 

Virginia to eastern Texas. Five famous taper nonlinear models were used to test the 

relationship between age, height, total height, dbh, and site index with Height-Diameter



(taper). Three of the independent variables showed very significant results, and even the 

best numerical algorithm performances were under these three models which are 

Jimenez, Bruce, and Coffre. The ULS algorithm behaved the best with the Jimenez model 

and was reflective with the plots with the most number of observations, yielding more 

significant models produced. The Jimenez model was the best with 37.91% of producing 

the best models out of the 910 candidate models. This dataset was inclusive of a factor 

created to remove damaged trees, and it was later discovered that the damaged trees are 

in plots the model could not converge. Besides the ULS algorithm, ITYW showed very 

important results with 27.36% of the 910 candidate models which were produced. 

Furthermore, Age and site index were very important variables in describing the taper 

model, and it has been said that these variables can have major participation on the 

precision in any growth model estimation (Weiskittle, Hann, Kershaw, & Vanclay, 2011). 

Akaike Information Criteria was negative for all models, because the lack of fit 

component was very large compared to the number of parameters. In this dataset, we 

excluded the fertilized trees and omitted the study type factor, which can possibly be used 

in future studies, making important changes in the results. Numerous researches have 

been conducted on this data, but not one study reflects the residuals’ reactions towards 

models.

6.2 Status of the Hypotheses and the Research Significance

The present research is based on two assumptions:

1- The future is unknown, but it is predictable.

2- Residuals of any Time Series data, has at least one organized pattern.
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The previous two assumptions are supplied as a foundation for testing the 

following two hypotheses in studying the time series reaction to different algorithms:

1- The default option algorithm under any statistical software procedure is not 

always the perfect choice for a predefined model.

2- Model Selection tasks produce different results for the best models among a 

set of candidate models, depending on the selection criteria chosen.

During three chapters of this research (Chapters 3, 4, 5), assumptions and hypotheses 

stated at the beginning of this thesis have been proven.

The first assumption was investigated by using Ozone data in Chapter 3. When 

the Ozone from 1973 was not given it was supposed to be a future according to the 

dataset which ended in 1972. By using the ARIMA model, the Ozone from 1973 was 

predicted, proving the assumption that states the future is unknown, but it is however 

predictable. The second assumption clearly appeared in the Ozone data where there was a 

downward trend obviously shown, as well as in Height-Age and taper data where an 

increasing pattern was observed.

With respect to the hypotheses, the first was proving through the three datasets, 

that the default option was not a good choice for any predefined model in obtaining the 

best results. The second hypothesis was about model selection tasks, which was proven 

by using AIC and R2 methods, both of them were important in our research. When 

performed separately, they yielded different results. Accordingly, we depended on a 

method called multivariate pairwise tests to compare algorithm performances (Yildiz, 

Aslan, & Alpaydin, 2011) by combining them (AIC and R2) to get the best model.



6.3 Future Work

Future work is suggested based on the investigation of this research which was 

proposed independently in each chapter. One suggestion in conducting future research is 

to complete analyses using another time series procedures, while comparing embedded 

numerical algorithms results. The other suggestion is expanding the models of each data 

explored by including variables ignored in our study and examining their effects on the 

model, or how the dependent variable reacts to their changes. Furthermore, studying 

added variables contribute in providing the best model by observing changes when the 

numerical algorithm of the procedure is altered.
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