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ABSTRACT 

In this paper, we present how to use Hidden Markov Models (HMM) to predict 

the change in Unemployment Rate. By observing the NASDAQ price difference, we will 

predict the Unemployment Rate will rise or fall in the next month using the Hidden 

Markov Model. We will use the NASDAQ price and the unemployment rate from 2016 

to 2020 monthly data for this paper. When we check the relation between the NASDAQ 

price and the unemployment rate, we find out that whenever the NASDAQ price goes up, 

the unemployment rate will drop for a time. So we are interested in how we can build 

Hidden Markov Models (HMM) by using the data we have. Furthermore, we want to see 

if our model is more accurate than other models that predict the unemployment rate. 
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CHAPTER 1 

 

INTRODUCTION 

 

During the Covid-19 pandemic, the US Unemployment Rate rose perpendicularly, 

it became 14.8 in April 2020, which is the highest rate in recent ten years. Also, we note 

that along with the rise in the unemployment rate, the NASDAQ correspondingly began 

to fall severely. Hence, the question arises if there is a Hidden Markov Model that can be 

built between the unemployment rate and NASDAQ. When the NASDAQ shows certain 

characteristics, then the unemployment rate will rise or fall.  

In general, a declining unemployment rate represents a healthy overall economic 

development and is conducive to currency appreciation; a rising unemployment rate 

represents a recession and is not conducive to currency appreciation. Suppose the 

unemployment rate is analyzed together with the inflation indicator of the same period. In 

that case, it is possible to know whether the economy is overheating at that time, whether 

it will constitute pressure to raise interest rates, or whether it is necessary to stimulate the 

development of the economy by cutting interest rates. Therefore, by predicting the rise or 

fall of the unemployment rate, we can predict socio-economic development. If we need to 

predict the rise or fall of the unemployment rate, we need to build a model to analyze the 

data and then predict the direction of the unemployment rate. Because of our needs, 

Hidden Markov Models came to our attention.  
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Hidden Markov Models had been used for the stock market prediction for years. 

The Hidden Markov Model can model hidden state transitions based on ordered 

observational data. The problem of stock forecasting can be seen to follow the same 

pattern. The price of a stock depends on many factors that are usually invisible to 

investors (hidden variables) (Nguyen 2018). Transitions between the underlying factors 

vary with company policies and decisions, financial conditions, and management 

decisions, all of which affect the price of a stock (observed data). Therefore, the Hidden 

Markov Model is naturally suited to price forecasting problems.  

For our topic, we will use the NASDAQ price's monthly difference be the 

observations and the fall or rise of the unemployment rate be the hidden state, so we can 

use Hidden Markov Models to predict the unemployment rate trends by observing the 

NASDAQ price.  

We divide the entire data set into two categories. The first data set is the training 

set that will be used to train the model. The second data set is the test set, which is used to 

provide an unbiased evaluation of the model. Separating the training data set from the test 

set can prevent overfitting. So, in this case, we divide the data set into two parts: one for 

training the model and one for evaluating the model. 

The rest of the paper is organized as follows. In Section 2, we introduce the 

history and relationships of the Markov chain and the Hidden Markov Model. In Section 

3, we give the details of the methodology of the Hidden Markov Model. In Section 4, we 

show the data description and prepossessing. Finally, in Section 5, we discuss the results 

and our conclusions.
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In January 1913, the Russian mathematician A.A. Markov spent hours sifting 

through patterns of vowels and consonants from Pushkin's novel to see if he could apply 

probability theory to poetry, which is now known as the Markov Chain (Basharin 2004). 

Markov Chain makes the assumption of predicting the future state in a sequence, 

and the only factor that matters is the current state. All states before the current state do 

not effect on the future except through the current state (Diaconis 2009). For example, if 

we want to predict tomorrow's weather, it only depends on today's weather and not on 

yesterday's weather (Khiatani 2018). 

Adding the observations and hidden states into a Markov Chain makes it a Hidden 

Markov Model. In the 1960s, Leonard E. Baum and other authors described the Hidden 

Markov Model in a series of statistical papers (Mor 2021). 

Hidden Markov models are probabilistic models about time series, describing the 

process of generating a random sequence of unobservable states from a hidden Markov 

chain and then generating a random series of observations by generating associate degree 

observation for every status.  

Since the 1980s, Hidden Markov models have been applied to speech recognition 

with significant success. In the 1990s, Hidden Markov Model was also introduced to 

computer text recognition and the core technology of mobile communication, multi-user 
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detection, and it has been applied in the fields of bioinformatics and troubleshooting. One 

of the Hidden Markov Model usages is to use the model to predict the stock market's 

tendency (Hassan 2005). Based on the stock market’s performance, the tendency can be 

set to bear market or bull market or ordinary, which is the hidden state. We can build a 

Hidden Markov Model to predict if the market will be a bear market, a bull market, or 

normal (Somani 2014).  

The sequence of states randomly generated by the Hidden Markov Chain is called 

the state sequence; each state generates one observation, and the resulting random 

sequence of observations is called the observation sequence. Each position of the 

sequence can be considered as a moment. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Markov Chain 

A Markov Chain is a discrete-time stochastic process in mathematics with 

Markov properties. In this process, given current knowledge or information, the past (the 

historical state before the present) is irrelevant for predicting the future (the future state 

after the present). 

Markov processes with discrete time and state are called Markov chains, 

abbreviated as 𝑞𝑖 = 𝑞(𝑖), 𝑖 = 0,1,2, ⋯. 

The Markov chain is a sequence of random variables 𝑞1, 𝑞2, 𝑞3, … The range of 

these variables, the set of all their possible values, is called the state space, and the values 

of 𝑞𝑖 are the states at time n. If the conditional probability distribution of 𝑞𝑖 with respect 

to past states is only a function of 𝑞𝑖−1, then 

 𝑃(𝑞𝑖 = 𝑎|𝑞1, ⋯ , 𝑞𝑖−1) = 𝑃(𝑞𝑖 = 𝑎|𝑞𝑖−1) Eq. 3-1 

Here 𝑞 is the state in the process. This constant equation above can be regarded as 

a Markov property. The change in the state of a random variable in a Markov chain with 

time step is called evolution or transition. There are two ways to describe the structure of 

Markov chains: (1) transfer matrices and transfer diagrams (shown in Figure 3-1) and (2) 

the properties that Markov chains exhibit during the transfer process are defined. 
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Figure 3-1: Markov Chain 

In Figure 3-1, a graphic explanation of how the Markov Chain works is given. 

Assume that the current Markov chain has three states: 𝑄1, 𝑄2, 𝑄3. Each state is 

transformed to the next state with a certain probability. For example, the state from 𝑄1 is 

transformed to 𝑄2 with a certain probability. Markov chain is such an arbitrary process 

that its future state distribution depends only on the present and has nothing to do with 

the past. In fact, it is a random variable that varies with time according to the Markov 

property. 

3.2 Hidden Markov Model  

The Hidden Markov Model is a kind of Markov chain whose states cannot be 

observed directly but can be observed by a sequence of observation vectors, each of 

which is expressed as various states by some probability density distribution, and each 

observation vector is generated by a sequence of states with corresponding probability 

density distribution. Therefore, the Hidden Markov Model is a dual stochastic process of 
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Hidden Markov Chains with a certain number of states and the set of displayed stochastic 

functions.  

To have a better understanding of how the Hidden Markov Model works, let 𝑄 be 

the set of all possible states, 𝑉 be the set of all possible observations, 𝑌 be a sequence of 

states and 𝑋 is the corresponding sequence of observations. 

 𝑄 =  (𝑞1, 𝑞2, ⋯ , 𝑞𝑁), 𝑉 =  (𝑣1, 𝑣2, ⋯ , 𝑣𝑀) Eq. 3-2 

 𝑌 =  (𝑦1, 𝑦2, ⋯ , 𝑦𝑇), 𝑋 =  (𝑥1, 𝑥2, ⋯ , 𝑥𝑇) Eq. 3-3 

Here, 𝑁 is the number of possible states, 𝑀 is the number of possible observations 

and 𝑇 is the length of 𝐼. The state 𝑞 is invisible and the observation v is visible. 

Let A be a state transfer probability matrix: 

 𝐴 = [𝑎𝑖𝑗]
𝑁∗𝑁

 Eq. 3-4 

where 

 𝑎𝑖𝑗 = 𝑃(𝑦𝑡+1  =  𝑞𝑗  |𝑦𝑡  =  𝑞𝑖) , 𝑖 = 1,2, ⋯ , 𝑁;  𝑗 = 1,2, ⋯ , 𝑁 Eq. 3-5 

Matrix 𝐴 is the probability of transferring to state 𝑞𝑗 at moment 𝑡 + 1 under the 

condition of being in state 𝑞𝑖 at moment 𝑡. 

Let 𝐵 be the observation probability matrix 

 𝐵 = [𝑏𝑗(𝑘)]
𝑁∗𝑀

 Eq. 3-6 

where 

 𝑏𝑗(𝑘) = 𝑃(𝑥𝑡  =  𝑣𝑗  |𝑦𝑡  =  𝑞𝑗) , 𝑘 = 1,2, ⋯ , 𝑀;  𝑗 = 1,2, ⋯ , 𝑁 Eq. 3-7 

Matrix 𝐵 is the probability of getting an observation 𝑣𝑘 conditional on moment 𝑡 

being in state 𝑞𝑗. We call matrix 𝐵 the emission probability matrix. 
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Figure 3-2: Hidden Markov Model 

Let 𝜋 be the initial state probability vector 

 𝜋 = (𝜋𝑖) Eq. 3-8 

where 

 𝜋𝑖 = 𝑃(𝑦1  =  𝑞𝑖), 𝑖 = 1, ⋯ , 𝑁 Eq. 3-9 

The Hidden Markov Model is determined by the initial state probability vector 𝜋, 

the state transfer probability matrix 𝐴, and the observation probability matrix 𝐵. 𝜋 and 𝐴 

determine the state sequence, and 𝐵 determines the observation sequence. Thus, the 

Hidden Markov Model can be expressed in ternary notation: 

 𝜆 =  (𝐴, 𝐵, 𝜋) Eq. 3-10 

These are the three elements of the Hidden Markov Model. 

Given model 𝜆 =  (𝐴, 𝐵, 𝜋) and observation sequence 𝑂 =  (𝑜1, 𝑜2, ⋯ , 𝑜𝑇), 

calculate the probability of occurrence of observation sequence 𝑂 under model 𝜆: 

 𝑃(𝑂|𝜆) Eq. 3-11 

If we already know the initial value 𝜋, and the observation sequence 𝑂, then use 

the forward and backward algorithm to estimate the Transition and Emission 
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Probabilities (Yu 2003). Then we can use the Viterbi Algorithm to predict the hidden 

states which generated the visible sequence. 

In Hidden Markov Model, set 𝑌 be the hidden state and 𝑋 be the observations. If 

we want to find the probability of 𝑥1  =  𝑜1, 𝑥2  =  𝑜1, 𝑥3  =  𝑜2, which is 

𝑃(𝑥1  =  𝑜1, 𝑥2  =  𝑜1, 𝑥3  =  𝑜2). Here we put the hidden state in it, and we can use 

integrals to cancel it out.  Here we can get: 

 𝑃(𝑥1  =  𝑜1, 𝑥2  =  𝑜1, 𝑥3  =  𝑜2) 

= ∑ ∑ ∑ 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3)

𝑁

𝑦3=1

𝑁

𝑦2=1

 

𝑁

𝑦1=1

 

 

 

 

Eq. 3-12 

𝑃(𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3) can be written as: 

 𝑃(𝑥3|𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) ∗  𝑃(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) Eq. 3-13 

By the Markov property: 

 𝑃(𝑥3|𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) ∗  𝑃(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) 

=  𝑃(𝑥3|𝑦3) ∗  𝑃(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) 

 

Eq. 3-14 

Repeat the process above, we can get: 

   𝑃(𝑥3|𝑦3) ∗  𝑃(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3) 

= 𝑃(𝑥3|𝑦3) ∗  𝑃(𝑦3|𝑦2) ∗ 𝑃(𝑥2|𝑦2) ∗  𝑃(𝑦2|𝑦1) ∗ 𝑃(𝑥1|𝑦1) ∗ 𝑃(𝑦1) 

 

Eq. 3-15 

𝑃(𝑥𝑖|𝑦𝑖) is the emission probability, 𝑃(𝑦𝑖+1|𝑦𝑖) is the transition probability, 

𝑃(𝑦1)  is the initial value. So, we can find the probability of 𝑥1  =  𝑜1, 𝑥2  =  𝑜1, 𝑥3  =  𝑜2 

with the three elements of the Hidden Markov Model. 

Similarly, we can find: 

 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑡  |𝜆)  
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= ∑ ∑ ∑ 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , 𝑦1, 𝑦2, ⋯ , 𝑦𝑡)

𝑁

𝑦3=1

𝑁

𝑦2=1

𝑁

𝑦1=1

 

= ∑ ∑ ∑ 𝑃(𝑞1)𝑃(𝑥1|𝑦1)𝑃(𝑦2|𝑦1) ⋯ 𝑃(𝑥𝑡|𝑦𝑡)𝑃(𝑦𝑡|𝑦𝑡−1)

𝑁

𝑦3=1

𝑁

𝑦2=1

𝑁

𝑦1=1

 

 

 

 

 

 

Eq. 3-16 

Set 𝑎𝑖,𝑗  =  𝑃(𝑦𝑡 = 𝑗|𝑦𝑡−1 = 𝑖), 𝑏𝑗(𝑥𝑡) =  𝑃(𝑥𝑡|𝑦𝑡 = 𝑗). We can get from the 

above equation: 

 

∑ ∑ ∑ P(y1)P(x1|y1)P(y2|y1) ⋯  P(xt|yt)P(yt|yt−1)

𝑁

𝑦3=1

𝑁

𝑦2=1

𝑁

𝑦1=1

 

= ∑ ∑ ∑ π(y1)𝑏1(𝑥1) ∏ 𝑎𝑦𝑡−1,𝑦𝑡
𝑏𝑦𝑡(𝑥𝑡)

T

t=2

 

𝑁

𝑦3=1

𝑁

𝑦2=1

𝑁

𝑦1=1

 

 

 

 

 

Eq. 3-17 

3.3 Forward-Backward Algorithm  

Now we understand how Hidden Markov Model worked, but how can we get the 

3 elements we need for Hidden Markov Model? More precisely, how can we calculate 

the transition and emission probability? Cause in the real life, we have no way to get 

them directly. So, we need to use the forward-backward algorithm. 

Forward probability is the probability of being in state 𝑖 at moment 𝑡 and 

observing 𝑦1 to 𝑦𝑡 give that the Hidden Markov Model 𝜆. Let 𝛼 =

 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , 𝑦𝑡 = 𝑖|𝜆) which is 𝑃(𝑌|𝜆) = ∑ 𝛼𝑖(𝑇)
𝑁
𝑖=1   This is the probability of partial 

sequence 𝑥1, ⋯ , 𝑥𝑡 and ending up in state 𝑖 at time 𝑡. 

Let 𝑇 = 1, then we got: 

 𝛼𝑖(1) =  𝑃(𝑥1, 𝑦1) 

= 𝑃(𝑥1|𝑦1)𝑃(𝑦1) 
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= 𝑏𝑖(𝑥1)𝜋(𝑦1) Eq. 3-18 

Then 𝑇 = 2, we got: 

 𝛼𝑗(2) =  𝑃(𝑥1, 𝑥2, 𝑦2) 

= ∑ 𝑃(𝑥1, 𝑥2, 𝑦1 = 𝑖, 𝑦2 = 𝑗)

𝑁

𝑖=1

  

= ∑ 𝑃(𝑥2|𝑦2)𝑃(𝑦2|𝑦1)𝑃(𝑥1, 𝑦1)

𝑁

𝑖=1

  

= 𝑏𝑗(𝑥2) ∑ 𝑎𝑖,𝑗

𝑁

𝑖=1

𝛼𝑖(1) 

 

 

 

 

 

 

 

 

 

 

 

Eq. 3-19 

From above, we can get that: 

 

  𝛼𝑗(𝑇) =  𝑏𝑗(𝑥𝑇) [∑ 𝑎𝑖,𝑗

𝑁

𝑖=1

𝛼𝑖(𝑇 − 1)] 

= 𝑃(𝑥1, ⋯ , 𝑥𝑡, 𝑦𝑇 = 𝑗) 

 

 

Eq. 3-20 

 

𝑃(𝑥1, ⋯ , 𝑥𝑇) = ∑ 𝛼𝑗(𝑇)

𝑁

𝑗=1

 

 

Eq. 3-21 

This is called the Forward Algorithm. There is another algorithm called the 

Backward Algorithm which is the time-reversed version of the Forward Algorithm. We 

need to find the probability of hidden state 𝑌𝑖 at time t, to generate the remaining part of 

the sequence of the visible symbol 𝑋𝑇.  

Similarly, we let 𝛽 =  𝑃(𝑥𝑡+1, 𝑥𝑡+2, ⋯ , 𝑥𝑇|𝑦𝑡 = 𝑖, 𝜆). This is at time t when the 

state is 𝑞𝑖, the probability of partial sequence of 𝑥𝑡+1, ⋯ , 𝑥𝑇. 

Using the same process, we did for the forward algorithm, we can also get the 

backward algorithm: 
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𝛽𝑖(𝑡)  =  𝑃(𝑥𝑡+1 ⋯ 𝑥𝑇 |𝑦𝑡 = 𝑞𝑖) 

= ∑ 𝑃(𝑥𝑡+1 ⋯ 𝑥𝑇 , 𝑦𝑡+1 = 𝑞𝑗 |𝑦𝑡 = 𝑞_𝑖)

𝑁

𝑗=0

 

= ∑ 𝑃(𝑥𝑡+2 ⋯ 𝑥𝑇|𝑥𝑡+1, 𝑦𝑡+1 = 𝑞𝑗 , = 𝑞𝑖)𝑃(𝑥𝑡+1, 𝑡𝑡+1 = 𝑞𝑗|𝑦𝑡 = 𝑞𝑖)

𝑁

𝑗=0

 

= ∑ 𝑃(𝑥𝑡+2 ⋯ 𝑥𝑇|𝑥𝑡+1, 𝑦𝑡+1 = 𝑞𝑗 , 𝑦𝑡 = 𝑞𝑖)𝑃(𝑥𝑡+1|𝑡𝑡+1 = 𝑞𝑗 , 𝑦𝑡 = 𝑞𝑖)

𝑁

𝑗=0

 

𝑃(𝑦𝑡+1 = 𝑞𝑗|𝑦𝑡 = 𝑞𝑖) 

= ∑ 𝑃(𝑥𝑡+2 ⋯ 𝑥𝑇|𝑦𝑡+1 = 𝑞𝑗)𝑃(𝑥𝑡+1|𝑡𝑡+1 = 𝑞𝑗)𝑃(𝑦𝑡+1 = 𝑞𝑗|𝑦𝑡 = 𝑞𝑖)

𝑁

𝑗=0

 

= ∑ 𝛽𝑗(𝑡 + 1)𝑏𝑗(𝑥𝑡+1)𝑎𝑖,𝑗

𝑁

𝑗=0

 

 

 

 

 

 

 

 

 

 

 

 

Eq. 3-22 

 

𝑃(𝑥1, ⋯ , 𝑥𝑇) = ∑ 𝛽𝑗(1)𝜋𝑗𝑏𝑗(𝑥1)

𝑁

𝑗=1

 
 

Eq. 3-23 

Next, we can find out the relationship between the forward and backward 

algorithm: 

 𝑃(𝑦𝑡 = 𝑞𝑖 , 𝑋|𝜆) 

=  𝑃(𝑋|𝑦𝑡 = 𝑞𝑖, 𝜆)𝑃(𝑦𝑡 = 𝑞𝑖|𝜆) 

=  𝑃(𝑥1 ⋯ 𝑥𝑡 , 𝑥𝑡+1 ⋯ 𝑥𝑇|𝑦𝑡 = 𝑞𝑖 , 𝜆) 

=  𝑃(𝑥1 ⋯ 𝑥𝑡|𝑦𝑡 = 𝑞𝑖, 𝜆)𝑃(𝑥𝑡+1 ⋯ 𝑥𝑇|𝑦𝑡 = 𝑞𝑖, 𝜆)𝑃(𝑦𝑡 = 𝑞𝑖|𝜆) 

= 𝑃(𝑥1 ⋯ 𝑥𝑡|𝑦𝑡 = 𝑞𝑖, 𝜆)𝑃(𝑥𝑡+1 ⋯ 𝑥𝑇|𝑦𝑡 = 𝑞𝑖, 𝜆) 

=  𝛼𝑖(𝑡)𝛽𝑖(𝑡) 

 

 

 

 

 

 

 

Eq. 3-24 
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From the conclusion we can easily see that at moment 𝑡 if the state is known to be 

𝑖, then this can be blocked before and after 𝑡 and finally transformed into forward and 

backward probabilities. 

Then we can find the probability of a single state: 

 𝛾𝑡(𝑖) = 𝑃(𝑦𝑡 = 𝑞𝑖|𝑋, 𝜆) 

=
𝑃(𝑦𝑡 = 𝑞𝑖, 𝑋|𝜆)

𝑃(𝑋|𝜆)
 

=
𝛼𝑖(𝑡)𝛽𝑖(𝑡)

𝑃(𝑋|𝜆)
 

=
𝛼𝑖(𝑡)𝛽𝑖(𝑡)

∑ 𝛼𝑖(𝑡)𝛽𝑖(𝑡)𝑁
𝑖=1

 

 

 

 

 

 

 

Eq. 3-25 

Think further: what if the joint probability of state 𝑖 at moment 𝑡 and state 𝑗 at 

moment t + 1 is required? We would get the following: 

  𝜉_𝑡(𝑖, 𝑗) = 𝑃(𝑦_𝑡 = 𝑞_𝑖, 𝑦_{𝑡 + 1} = 𝑞_𝑗|𝑋, 𝜆)) 

=
𝑃(𝑦𝑡, 𝑦𝑡+1, 𝑋|𝜆)

𝑃(𝑋|𝜆)
 

=
𝑃(𝑦𝑡, 𝑦𝑡+1, 𝑋|𝜆)

∑ ∑ 𝑃(𝑦𝑡, 𝑦𝑡+1, 𝑋|𝜆)𝑁
𝑗=1

𝑁
𝑖=1

 

= 𝛼𝑖(𝑡)𝑎𝑖𝑗𝑏𝑗(𝑥𝑡+1)𝛽𝑡+1(𝑗) 

 

 

 

 

 

 

Eq. 3-26 

So we can have the marginal distribution 𝑃(𝑦𝑡 = 𝑖, 𝑦𝑡+1 = 𝑗|𝑋) 

 
𝑃(𝑦𝑡 = 𝑞𝑖 , 𝑦𝑡+1 = 𝑞𝑗|𝑋) =

𝛼𝑖(𝑡)𝑎𝑖𝑗𝑏𝑗(𝑥𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑋)
 

 

Eq. 3-27 

3.4 Viterbi Algorithm for Prediction  

After using the forward-backward algorithm to get the transition matrix and 

emission matrix we need for the Hidden Markov model, we can use the Viterbi 
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Algorithm to predict the state. The Viterbi Algorithm is actually a dynamic programming 

solution to the Hidden Markov Model prediction problem, dynamic programming is used 

to find the probabilistic maximum path (optimal path). A path corresponds to a sequence 

of states (Churbanov 2008). 

According to the dynamic programming principle, the optimal path has the 

property that if the optimal path passes through node 𝐴 at moment 𝑡, then the partial path 

of this path from node 𝐴 to endpoint 𝐵 must be optimal for all partial paths from 𝐴 to 𝐵.  

Based on this principle, we simply start from moment 𝑡 = 1 and recursively calculate the 

maximum probability of each partial path with state 𝑖 at moment 𝑡 until we obtain the 

maximum probability of each path with state 𝑖 at moment 𝑡 = 𝑇. The maximum 

probability at moment 𝑡 = 𝑇 is the probability of the optimal path 𝑃. The endpoint 𝐵 of 

the optimal path is also obtained at the same time. After that, starting from the endpoint 

𝐵, the previous nodes are obtained step by step from back to front. 

 𝜙𝑡(𝑖) = max
𝑖1,⋯,𝑖𝑡−1

𝑃 (𝑥1𝑥2 ⋯ 𝑥𝑡, 𝑦1𝑦2 ⋯ 𝑦𝑡−1, 𝑦𝑡 = 𝑞𝑖) Eq. 3-28 

which represents the highest probability that the first t observations are on a single 

path ending in state 𝑞𝑖. 

Similarly, we can find that: 

 𝜙𝑡+1(𝑗) = max
𝑖1⋯𝑖𝑡

𝑃 (𝑥1𝑥2 ⋯ 𝑥𝑡+1, 𝑦1𝑦2 ⋯ 𝑦𝑡 , 𝑦𝑡+1 = 𝑞𝑗) 

= max
1≤𝑖≤𝑁

𝜙𝑡 (𝑖)𝑎𝑖𝑗𝑏𝑗𝑥(𝑡 + 1) 

 

 

Eq. 3-29 

 So, we need to maximize 𝜙𝑡(𝑖) at each time step 𝑡 to get the hidden states 

sequence. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝜙𝑡(𝑖) Eq. 3-30 
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Then we will get the last hidden state, trace back the most likely hidden path. That 

is how Viterbi Algorithm works for the Hidden Markov Model. 
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CHAPTER 4 

 

DATA DESCRIPTION 

 

4.1 Data Definition 

Once we have established the methodology, we begin to collect the necessary 

information. We collect NASDAQ from Yahoo Finance starting from Jan. 2016 to Dec. 

2020. We also collected data on the unemployment rate for Federal Reserve Economic 

Data (FRED) on the same date. Since the NASDAQ price did not have the record every 

day due to the holiday and other situations, the daily dataset will have lots of missing 

data; this will have a significant impact on model parameters, data analysis, and 

forecasting, so we decide to use the monthly average price as a reference. Also, since the 

unemployment rate is recorded monthly, no modifications are needed for the data 

required. 
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Figure 4-1 NASDAQ and Unemployment Rate Trend 

Next, let us take a look at the NASDAQ and unemployment rate datasets' trend. 

The above is a graph showing the trend in NASDAQ data and the unemployment rate 

from 2016 to 2020. 

From the Figure 4-1, we can see that the NASDAQ and the unemployment rate 

change in opposite trends, when the NASDAQ rises, the unemployment rate falls, and 

when the NASDAQ rises, the unemployment rate rises. 

From this, we can see that the change in the NASDAQ (upward or downward) is a 

very good variable for predicting the evolution of the unemployment rate (upward or 

downward). 

4.2 Data Pre-process 

For data pre-processing, there are several features of the NASDAQ data:  

⚫ Date: The current month. 
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⚫ Open: The price when the stock market opened on the first day of the current 

month. 

⚫ High: The highest price of the current month. 

⚫ Low: The lowest price of the current month. 

⚫ Close: The price when the stock market closed, the price is adjusted for splits. 

⚫ Adjusted Close: Adjusted close price adjusted for both dividends and splits. 

⚫ Volume: The monthly traded volume of the NASDAQ. 

For our model, we will use the adjusted closing price for the observation feature. 

Since it is adjusted for both dividends and splits, the data will be more accurate for the 

analysis. 

To use the Hidden Markov Model to predict the trend of the unemployment rate, 

we need to turn the data into different levels. Here we will use the difference between 

two adjacent months. For the NASDAQ price data, if the current month's data is 

subtracted from the previous month's data and the result is a negative number, set this to 

"F"(Fall), which means that the NASDAQ is decreasing from the previous month; if the 

result is a positive number, set this to "R"(Rise), which means that the NASDAQ is 

increasing from the previous month to this month. Similarly, for the unemployment rate 

data, let the current month's data subtract the previous month's data; and if the result is a 

negative number, set this as "D"(Down), which means that the unemployment rate is 

decreasing from the previous month to this month; if the result is a positive number, set 

this as "U"(Up), which means that the unemployment rate is increasing from the previous 

month. 
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After defining the fall/rise for NASDAQ and up/down for unemployment rate, we 

sort out the feature and data we need from the NASDAQ, which are the date and the 

Adjusted Close, then taking the difference for each month to month, we get the modified 

data shown below: 

Table 4-1 NASDAQ trend 

Date Trend Date Trend Date Trend 

2016/2/1 Fall 2017/10/1 Rise 2019/6/1 Rise 

2016/3/1 Rise 2017/11/1 Rise 2019/7/1 Rise 

2016/4/1 Fall 2017/12/1 Rise 2019/8/1 Fall 

2016/5/1 Rise 2018/1/1 Rise 2019/9/1 Rise 

2016/6/1 Fall 2018/2/1 Fall 2019/10/1 Rise 

2016/7/1 Rise 2018/3/1 Fall 2019/11/1 Rise 

2016/8/1 Rise 2018/4/1 Rise 2019/12/1 Rise 

2016/9/1 Rise 2018/5/1 Rise 2020/1/1 Rise 

2016/10/1 Fall 2018/6/1 Rise 2020/2/1 Fall 

2016/11/1 Rise 2018/7/1 Rise 2020/3/1 Fall 

2016/12/1 Rise 2018/8/1 Rise 2020/4/1 Rise 

2017/1/1 Rise 2018/9/1 Fall 2020/5/1 Rise 

2017/2/1 Rise 2018/10/1 Fall 2020/6/1 Rise 

2017/3/1 Rise 2018/11/1 Rise 2020/7/1 Rise 

2017/4/1 Rise 2018/12/1 Fall 2020/8/1 Rise 

2017/5/1 Rise 2019/1/1 Rise 2020/9/1 Fall 

2017/6/1 Fall 2019/2/1 Rise 2020/10/1 Fall 

2017/7/1 Rise 2019/3/1 Rise 2020/11/1 Rise 

2017/8/1 Rise 2019/4/1 Rise 2020/12/1 Rise 

2017/9/1 Rise 2019/5/1 Fall 
  

 

Also, after taking the same steps for the unemployment rate data, we get the 

following data: 
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Table 4-2 Unemployment rate trend 

Date Trend Date Trend Date Trend 

2016/2/1 Up 2017/10/1 Down 2019/6/1 Down 

2016/3/1 Up 2017/11/1 Up 2019/7/1 Down 

2016/4/1 Up 2017/12/1 Down 2019/8/1 Up 

2016/5/1 Down 2018/1/1 Down 2019/9/1 Down 

2016/6/1 Up 2018/2/1 Up 2019/10/1 Up 

2016/7/1 Down 2018/3/1 Down 2019/11/1 Down 

2016/8/1 Up 2018/4/1 Down 2019/12/1 Down 

2016/9/1 Up 2018/5/1 Down 2020/1/1 Down 

2016/10/1 Down 2018/6/1 Up 2020/2/1 Down 

2016/11/1 Down 2018/7/1 Down 2020/3/1 Up 

2016/12/1 Down 2018/8/1 Down 2020/4/1 Up 

2017/1/1 Down 2018/9/1 Down 2020/5/1 Down 

2017/2/1 Down 2018/10/1 Up 2020/6/1 Down 

2017/3/1 Down 2018/11/1 Down 2020/7/1 Down 

2017/4/1 Up 2018/12/1 Up 2020/8/1 Down 

2017/5/1 Down 2019/1/1 Up 2020/9/1 Down 

2017/6/1 Down 2019/2/1 Down 2020/10/1 Down 

2017/7/1 Down 2019/3/1 Down 2020/11/1 Down 

2017/8/1 Up 2019/4/1 Down 2020/12/1 Down 

2017/9/1 Down 2019/5/1 Down 
  

 

After preprocessing the data, we combine the two sets of data using the NASDAQ 

index rise and fall as our observations, so that the unemployment rate rises and falls as 

the hidden states of the Hidden Markov Model. We then get the data set below: 
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Table 4-3 Combine table 

Date Obs. State Date Obs. State Date Obs. State 

2016/2/1 Fall Up 2017/11/1 Rise Up 2019/8/1 Fall Up 

2016/3/1 Rise Up 2017/12/1 Rise Down 2019/9/1 Rise Down 

2016/4/1 Fall Up 2018/1/1 Rise Down 2019/10/1 Rise Up 

2016/5/1 Rise Down 2018/2/1 Fall Up 2019/11/1 Rise Down 

2016/6/1 Fall Up 2018/3/1 Fall Down 2019/12/1 Rise Down 

2016/7/1 Rise Down 2018/4/1 Rise Down 2020/1/1 Rise Down 

2016/8/1 Rise Up 2018/5/1 Rise Down 2020/2/1 Fall Down 

2016/9/1 Rise Up 2018/6/1 Rise Up 2020/3/1 Fall Up 

2016/10/1 Fall Down 2018/7/1 Rise Down 2020/4/1 Rise Up 

2016/11/1 Rise Down 2018/8/1 Rise Down 2020/5/1 Rise Down 

2016/12/1 Rise Down 2018/9/1 Fall Down 2020/6/1 Rise Down 

2017/1/1 Rise Down 2018/10/1 Fall Up 2020/7/1 Rise Down 

2017/2/1 Rise Down 2018/11/1 Rise Down 2020/8/1 Rise Down 

2017/3/1 Rise Down 2018/12/1 Fall Up 2020/9/1 Fall Down 

2017/4/1 Rise Up 2019/1/1 Rise Up 2020/10/1 Fall Down 

2017/5/1 Rise Down 2019/2/1 Rise Down 2020/11/1 Rise Down 

2017/6/1 Fall Down 2019/3/1 Rise Down 2020/12/1 Rise Down 

2017/7/1 Rise Down 2019/4/1 Rise Down 
   

2017/8/1 Rise Up 2019/5/1 Fall Down 
   

2017/9/1 Rise Down 2019/6/1 Rise Down 
   

2017/10/1 Rise Down 2019/7/1 Rise Down 
   

 

The above steps complete the preprocessing of the data. Next, we will start 

training the parameters needed for the corresponding data, build up the Hidden Markov 

Model, and then use the model to predict the existing data. 

4.3 Model Training 

Before starting to build the model, we must separate the data to the training 

dataset and the test dataset. Generally, when we use data for the model training, we may 

choose the training data randomly so the model can be more accurate; however, in our 

case, because the Hidden Markov Model is time-related, therefore we cannot choose the 
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training data randomly. Thus, we use the data from 2016 to 2019 for the training dataset 

and the whole 2020 years' data as the testing dataset. 

Following this, we begin to form the parameters of the Hidden Markov model: the 

transition probability and the emission probability. The transition probability matrix 

represents the probability that the unemployment rate will rise or fall in the next month 

when the previous month's state is rising or falling. In our initial Hidden Markov Model, 

we set the probability be 0.5 for each state. This means that the probability for the next 

month's state is a drop in the unemployment rate given that this month's state is an 

increase in the unemployment rate is 0.5. The initial transition probability is: 

Table 4-4 Transition probability 

 
Down Up 

Down 0.5 0.5 

Up 0.5 0.5 

 

The emission probability matrix represents the probability that when the 

unemployment rate is rising, the probability of the NASDAQ Price to rise or fall. Take 

our model as an example, we set that when the unemployment rate is rising, the 

probability of the NASDAQ Price rise is 0.3, and when the unemployment rate is falling, 

the probability of the NASDAQ Price fall is 0.4. The initial emission probability is: 

Table 4-5 Emission probability 

 
Down Up 

Down 0.4 0.6 

Up 0.7 0.3 
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This setup makes sense for our research; the particular reason for the 

circumstance is, as we can see from the previous graph of the trend the NASDAQ and 

unemployment rate trend, when the unemployment rate rises, the probability of the 

NASDAQ rising is very low, and similarly, when the NASDAQ falls, the probability of 

the unemployment rate rising is also very low. This allows us to temporarily establish a 

negative correlation between the two. 

After setting the initial value for the parameters, we can use the forward-

backward algorithm to maximize the transition probability and the emission probability. 

The algorithm is shown above in the methodology section. 

4.4 Forecasting 

After determining the parameters of the Hidden Markov Model, we can use the 

new model to make predictions for our testing dataset which is to predict the trend of 

2020 year's unemployment rate. We can then compare the result of our prediction and the 

actual situation.  

From the training process, we get our new transition probability matrix: 

Table 4-6 Transition probability 

 
Down Up 

Down 0.648798 0.351202 

Up 0.868314 0.131686 

 

Also, we get the new emission probability matrix: 
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Table 4-7 Emission probability 

 
Down Up 

Down 0.072929 0.927071 

Up 0.68403 0.31597 

 

With the model determined, we can now use Viterbi algorithm to forecast the 

monthly trend of the unemployment rate in 2020, before we use the new Hidden Markov 

Model for the 2020 dataset, we need to use it on the training dataset first to check the 

accuracy rate of the prediction. After the prediction of the training set, we get the result in 

the below table: 

Table 4-8 Training set prediction with actual result 

Date Prediction Actual Date Prediction Actual 

2016/2/1 Up Up 2018/2/1 Up Up 

2016/3/1 Down Up 2018/3/1 Down Down 

2016/4/1 Up Up 2018/4/1 Down Down 

2016/5/1 Down Down 2018/5/1 Down Down 

2016/6/1 Up Up 2018/6/1 Down Up 

2016/7/1 Down Down 2018/7/1 Down Down 

2016/8/1 Down Up 2018/8/1 Down Down 

2016/9/1 Down Up 2018/9/1 Down Down 

2016/10/1 Up Down 2018/10/1 Up Up 

2016/11/1 Down Down 2018/11/1 Down Down 

2016/12/1 Down Down 2018/12/1 Up Up 

2017/1/1 Down Down 2019/1/1 Down Up 

2017/2/1 Down Down 2019/2/1 Down Down 

2017/3/1 Down Down 2019/3/1 Down Down 

2017/4/1 Down Up 2019/4/1 Down Down 

2017/5/1 Down Down 2019/5/1 Up Down 

2017/6/1 Up Down 2019/6/1 Down Down 

2017/7/1 Down Down 2019/7/1 Down Down 

2017/8/1 Down Up 2019/8/1 Up Up 

2017/9/1 Down Down 2019/9/1 Down Down 

2017/10/1 Down Down 2019/10/1 Down Up 

2017/11/1 Down Up 2019/11/1 Down Down 

2017/12/1 Down Down 2019/12/1 Down Down 

2018/1/1 Down Down 
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From the prediction result and the actual result of the unemployment rate in the 

training dataset, we can calculate the accuracy rate of the current Hidden Markov Model. 

By using the confusion matrix, we can get the table: 

Table 4-9 Confusion matrix for training set prediction 

Prediction  Down Up 

Down 26 9 

Up 5 7 

 

From the table, we can get that the true positive is 26, true negative is 7, false 

positive is 9, and the false negative is 5. We can now get the accurate rate of the 

prediction: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

=
26 + 7

26 + 7 + 9 + 5
 

=  0.7021 

Now, we can use the new Hidden Markov Model to predict the unemployment 

rate for the 2020 dataset. After running the code, we get the results table below. 

From the table below, we have the predicted results of 2020: 
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Table 4-10 Prediction for 2020 

Date Prediction 

2020/1/1 Down 

2020/2/1 Up 

2020/3/1 Up 

2020/4/1 Down 

2020/5/1 Down 

2020/6/1 Down 

2020/7/1 Down 

2020/8/1 Down 

2020/9/1 Up 

2020/10/1 Up 

2020/11/1 Down 

2020/12/1 Down 

 

Now we can now compare the results with the real situation: 

Table 4-11 2020 prediction and actual situation 

Date Prediction Actual 

2020/1/1 Down Down 

2020/2/1 Up Down 

2020/3/1 Up Up 

2020/4/1 Down Up 

2020/5/1 Down Down 

2020/6/1 Down Down 

2020/7/1 Down Down 

2020/8/1 Down Down 

2020/9/1 Up Down 

2020/10/1 Up Down 

2020/11/1 Down Down 

2020/12/1 Down Down 

 

Next, let us find the accuracy rate of the testing set. We get the below table of the 

prediction of 2020 by using the confusion matrix function: 
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Table 4-12 Confusion matrix for testing set prediction 

Prediction  Down Up 

Down 7 1 

Up 3 1 

 

The result showed us that the true positive is 7, true negative is 1, false positive is 

1, and the false negative is 3. Then the accuracy rate of the testing set prediction is: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

=
7 + 1

7 + 1 + 1 + 3
 

= 0.6667 

We can see that our model's prediction accuracy rate for the testing set is around 

67\%. The accuracy rate is close enough to the training set accuracy rate. Our Hidden 

Markov Model is based on time-related, so when external factors intervene, the model 

will have a certain prediction error. Since we only have 12 months to predict, that may 

make the accuracy rate easily affected. 

So we try to use more data for the training and testing datasets. We then choose 

the NASDAQ price and unemployment rate data from 2009 to 2021 for our model. With 

the same procedure we did in the Data Pre-process section, we get our new data sets from 

2009 to 2021. Then split the dataset to training and testing datasets. As before, since the 

Hidden Markov Model is related to time series, so we cannot split the data randomly, we 

have to choose the data by timeline. So we use the data from 2009 to 2018 be the training 

dataset to train our model and get the parameters, then use the data from 2019 to 2021 for 

the testing dataset for the new model prediction.  
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After training the model, we get the transition probability matrix and the emission 

probability for our Hidden Markov Model: 

Table 4-13 Transition probability 

 
Down Up 

Down 0.5765922 0.4234078 

Up 0.6261266 0.3738734 

Table 4-14 Emission probability 

 
Down Up 

Down 0.2321136 0.7678864 

Up 0.5711989 0.4288011 

 

With the new fitted model, we start to make a prediction with the training set. 

Then, we get the result compare with the actual result: 

Table 4-15 Prediction vs actual results for 2009-2018 data 

Date Actual Prediction Date Actual Prediction Date Actual Prediction 

    2009/2/1   Up       Up       2012/6/1   Down       Down       2015/10/1   Down       Down  

    2009/3/1   Up       Up       2012/7/1   Down       Down       2015/11/1   Up       Down  

    2009/4/1   Up       Up       2012/8/1   Down       Down       2015/12/1   Down       Up  

    2009/5/1   Up       Down       2012/9/1   Down       Down       2016/1/1   Down       Down  

    2009/6/1   Up       Down       2012/10/1   Down       Down       2016/2/1   Up       Down  

    2009/7/1   Down       Up       2012/11/1   Down       Down       2016/3/1   Up       Down  

    2009/8/1   Up       Down       2012/12/1   Up       Down       2016/4/1   Up       Up  

    2009/9/1   Up       Up       2013/1/1   Up       Down       2016/5/1   Down       Down  

    2009/10/1   Up       Up       2013/2/1   Down       Down       2016/6/1   Up       Up  

    2009/11/1   Down       Down       2013/3/1   Down       Down       2016/7/1   Down       Down  

    2009/12/1   Down       Down       2013/4/1   Up       Up       2016/8/1   Up       Down  

    2010/1/1   Down       Up       2013/5/1   Down       Down       2016/9/1   Up       Up  

    2010/2/1   Down       Down       2013/6/1   Down       Down       2016/10/1   Down       Up  

    2010/3/1   Up       Down       2013/7/1   Down       Up       2016/11/1   Down       Down  

    2010/4/1   Down       Up       2013/8/1   Down       Up       2016/12/1   Down       Down  

    2010/5/1   Down       Up       2013/9/1   Down       Down       2017/1/1   Down       Down  
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Table 4-15 Continued 

    2010/6/1   Down       Up       2013/10/1   Down       Down       2017/2/1   Down       Down  

    2010/7/1   Down       Down       2013/11/1   Down       Down       2017/3/1   Down       Up  

    2010/8/1   Up       Up       2013/12/1   Down       Down       2017/4/1   Up       Up  

    2010/9/1   Down       Down       2014/1/1   Down       Up       2017/5/1   Down       Up  

    2010/10/1   Down       Down       2014/2/1   Up       Down       2017/6/1   Down       Down  

    2010/11/1   Up       Down       2014/3/1   Down       Up       2017/7/1   Down       Down  

    2010/12/1   Down       Down       2014/4/1   Down       Down       2017/8/1   Up       Down  

    2011/1/1   Down       Down       2014/5/1   Up       Down       2017/9/1   Down       Down  

    2011/2/1   Down       Down       2014/6/1   Down       Down       2017/10/1   Down       Up  

    2011/3/1   Down       Up       2014/7/1   Up       Down       2017/11/1   Up       Down  

    2011/4/1   Up       Down       2014/8/1   Down       Down       2017/12/1   Down       Up  

    2011/5/1   Down       Up       2014/9/1   Down       Up       2018/1/1   Down       Down  

    2011/6/1   Up       Up       2014/10/1   Down       Down       2018/2/1   Up       Up  

    2011/7/1   Down       Up       2014/11/1   Up       Down       2018/3/1   Down       Down  

    2011/8/1   Down       Up       2014/12/1   Down       Down       2018/4/1   Down       Down  

    2011/9/1   Down       Up       2015/1/1   Up       Up       2018/5/1   Down       Down  

    2011/10/1   Down       Down       2015/2/1   Down       Down       2018/6/1   Up       Up  

    2011/11/1   Down       Down       2015/3/1   Down       Down       2018/7/1   Down       Down  

    2011/12/1   Down       Up       2015/4/1   Down       Up       2018/8/1   Down       Down  

    2012/1/1   Down       Down       2015/5/1   Up       Down       2018/9/1   Down       Up  

    2012/2/1   Down       Down       2015/6/1   Down       Up       2018/10/1   Up       Down  

    2012/3/1   Down       Up       2015/7/1   Down       Down       2018/11/1   Down       Down  

    2012/4/1   Down       Up       2015/8/1   Down       Down       2018/12/1   Up       Up  

    2012/5/1   Down       Up       2015/9/1   Down       Down      
   

 

Next, we need to use the prediction results and the confusion matrix function to 

find the accuracy rate for the prediction. After the run the code, we get the table: 

Table 4-16 Confusion matrix for training set prediction 

Prediction  Down Up 

Down 55 20 

Up 28 16 
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The table showed us that the true positive is 55, true negative is 16, false positive 

is 20, and the false negative is 28. With the number we have, we can find that the 

accuracy rate of the prediction is: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

=
55 + 16

55 + 16 + 20 + 28
 

=  0.5966 

Next, we start to use the fitted model to predict the testing set we have, which is 

the 2019 to 2021 set. After the prediction, we get the following predictions to compare to 

the actual results in the following table: 

Table 4-17 Prediction vs actual result for 2019 - 2021 

Date Actual Prediction Date Actual Prediction 

    2019/1/1   Up       Down       2020/3/1   Up       Up  

    2019/2/1   Down       Down       2020/4/1   Up       Down  

    2019/3/1   Down       Up       2020/5/1   Down       Down  

    2019/4/1   Down       Down       2020/6/1   Down       Down  

    2019/5/1   Down       Up       2020/7/1   Down       Down  

    2019/6/1   Down       Down       2020/8/1   Down       Down  

    2019/7/1   Down       Down       2020/9/1   Down       Up  

    2019/8/1   Up       Down       2020/10/1   Down       Up  

    2019/9/1   Down       Up       2020/11/1   Down       Down  

    2019/10/1   Up       Down       2020/12/1   Down       Down  

    2019/11/1   Down       Down       2021/1/1   Down       Down  

    2019/12/1   Down       Down       2021/2/1   Down       Down  

    2020/1/1   Down       Down       2021/3/1   Down       Down  

    2020/2/1   Down       Up       2021/4/1   Up       Down  

 

The confusion matrix for the testing set prediction is the next value we need to 

calculate. After the code running, we get the matrix:  
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Table 4-18 Confusion matrix for testing set prediction 

Prediction  Down Up 

Down 16 5 

Up 6 1 

 

The table showed us that the true positive is 16, true negative is 1, false positive is 

5, and the false negative is 6.  With the number we have, we can find that the accuracy 

rate of the prediction is: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

=
16 + 1

16 + 1 + 5 + 6
  

=  0.6071 

After completing the models that were formed after analyzing the two sets of data, 

we obtained the prediction accuracy of the two models: 

Table 4-19 Prediction accuracy 

Accuracy  Training Testing 

Model I 0.7021 0.6667 

Model II 0.5966 0.6071 

 

The accuracy rate shows that the Model I is more accurate than the other model, 

which means that using more data for the training will not make the prediction more 

accurate. The reason for this phenomenon may be due to the time-related properties of 

the Hidden Markov Model and the Markov Chain assumption. Since the Hidden Markov 

Model is based on the Markov Chain, it means the current state is influenced only by the 

state of the previous moment, which means the if we use more data for the model fitting, 
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the model may be not accurate. The same situation happened in some time-series 

research: the more data used, the less accurate the prediction is for the time series model 

(Brown 1987).  

Now, we have all the results and data we need for our conclusion. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

So far, we have predicted the unemployment rate's trend for all 12 months of 

2020, with the Hidden Markov Model trained by the data from 2016 to 2019. Since we 

had some doubts about the accuracy rate of this model, we decided to use more data to 

train the model. Then we used the data from 2009 to 2018 as the training set for the 

model fitting, then used the new Hidden Markov Model to predict the unemployment rate 

for 2019 to 2021 and compare to the actual result, then got the accuracy rate for the new 

model.  

From the result, we can see that the new model's accuracy rate is lower than the 

old model we trained, for both the training set and testing set. From this result, we can 

figure out the reason is that the model is over-fitting. Since the Hidden Markov Model is 

time related, and by the Markov Assumption, we can conjecture that our model is time-

sensitive or even current time sensitive. This means that if we use too much data to train 

the model, our model will be less accurate. We need to use recent years' data for the 

training to have an accurate model.  

The other thought is that since we only have 12 months to predict and we have a 

big impact of the coronavirus. In September and October 2020, the NASDAQ price was 

falling. The particular reason for this circumstance is that the coronavirus hit America 
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very hard in the previous months, so the stock market price kept falling, but in September 

and October, the increase in coronavirus cases slowed, so many companies started back 

to work; therefore, more person were getting hired than the previous months and that 

makes the unemployment rate start to drop. 

For our research, we use the model trained by the 2016 to 2019 data to predict the 

12 months' unemployment rate in 2020. If we exclude the effects of the pandemic, our 

prediction results are closer to the reality, and there 8 prediction results are the same with 

the actual situation; for the different predictions, maybe the effects of Covid19 on the 

economy caused the prediction failures or maybe our model training can be even more 

accurate. This leads to the possibility of future work in our study. 

5.2 Future Work 

In the future, after the pandemic, the NASDAQ price and unemployment rate will 

be more stable and normalized, so that will make our model more accurate. Therefore, 

the prediction will be more accurate based on the NASDAQ price.  

Also, the other way that may make the model more precise is to use less current 

data. Like we stated earlier,  our model is time-sensitive or current time-sensitive. So in 

the future, we can use less current data to train the model, maybe the model can predict 

the unemployment rate more accurately. 
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APPENDIX A  

 

R CODE AND FIGURES 

 

A.1 R Code 

library(dplyr) 

library(ggplot2) 

library(reshape2) 

library(HMM) 

library(caret) 

library(pROC) 

#Import dataset 

nas = read.csv("D:\\Data\\NASDAQ.csv", header = TRUE) 

rate = read.csv("D:\\Data\\UNRATE.csv", header = TRUE) 

str(nas) 

str(rate) 

#data preprocess 

#select the variable we need 

data = nas %>% select(Date, Adj.Close) 

temp_ts = ts(data = data$Adj.Close, frequency = 12, start = c(2016,1)) 

plot.ts(temp_ts, ylab = 'NASDAQ Price(Monthly)',  main = "NASDAQ Price from 2016 to 2020", 

type = "o") 

temp_tsrate = ts(data = rate$UNRATE , frequency = 12, start = c(2016,1)) 

plot.ts(temp_tsrate21, ylab = 'Unemployment Rate(Monthly)', main = "Unemployment Rate from 

2016 to 2020", type = "o") 

#calculate the difference 

NASdata = diff(data$Adj.Close)   

date = data$Date[-1] 

#combine date and data together. 

data = data.frame(date = date, Diff = NASdata) 

#if difference is nagetive or 0 then Fall, else Rise. 

data$Diff = ifelse(NASdata <= 0, "F", "R") 

data #observation 

#remove the last row since NAS data only have until 2020-12-01 

rate = rate[-61,] 

#calculate the difference 

ratediff = diff(rate$UNRATE) 

ratedate = rate$DATE[-1] 

#combine date and data together. 

ratec = data.frame(date = ratedate, ratediff = ratediff) 

#if difference is nagetive or 0 then rate go Down, else rate go up. 

ratec$ratediffe = ifelse(ratec$ratediff <= 0, "D", "U") 

rate = subset(ratec, select = -c(ratediff)) 
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rate #state 

#creat the data table 

df = data.frame(NAS = data$Diff, Rate = rate$ratediffe) 

#Split data, use 2016 to 2019 data to be the training set, 2020's data be the testing set. 

train <- df[c(1:47),] 

test <- df[c(48:59),] 

#set the inital HMM 

hmm = initHMM(c("D","U"),c("F","R"), 

              transProbs=matrix(c(.5,.5,.5,.5),2), 

              emissionProbs=matrix(c(.4,.7,.6,.3),2)) 

observations = train$NAS 

#Max transprob and emissionprob use the training set 

bw = baumWelch(hmm,observations,30) 

#use viterbi algorthm and new hmm to predict the training and testing set and compare with the real 

answer. 

predtrain = viterbi(bw$hmm,train$NAS) 

predtrain 

train$Rate 

data.frame(train$Rate) 

##Accuracy rate for training set 

xtabtrain <- table(predtrain, train$Rate) 

confusionMatrix(xtabtrain) 

##Prediction for Testset 

pred = viterbi(bw$hmm,test$NAS) 

pred 

test$Rate 

##Accuracy rate for testing set 

xtabtest <- table(pred, test$Rate) 

confusionMatrix(xtabtest) 

#Use more data for training and testing 

nas21 = read.csv("D:\\Data\\NDAQ09-21.csv", header = TRUE) 

rate21 = read.csv("D:\\Data\\UNRATE09-21.csv", header = TRUE) 

str(nas21) 

str(rate21) 

#data preprocess 

#select the variable we need 

data21 = nas21 %>% select(Date, Adj.Close) 

temp_ts21 = ts(data = data21$Adj.Close, frequency = 12, start = c(2009,1)) 

plot.ts(temp_ts21, ylab = 'NASDAQ Price(Monthly)', main = "NASDAQ Price from 2009 to 2021", 

type = "o") 

temp_tsrate21 = ts(data = rate21$UNRATE , frequency = 12, start = c(2009,1)) 

plot.ts(temp_tsrate21, ylab = 'Unemployment Rate(Monthly)', main = "Unemployment Rate from 

2009 to 2021", type = "o") 

#calculate the difference 

NASdata21 = diff(data21$Adj.Close)   

date21 = data21$Date[-1] 

#combine date and data together. 

data21 = data.frame(date = date21, Diff = NASdata21) 

#if difference is nagetive or 0 then Fall, else Rise. 

data21$Diff = ifelse(NASdata21 <= 0, "F", "R") 

data21 #observation 

#calculate the difference 

ratediff21 = diff(rate21$UNRATE) 
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ratedate21 = rate21$DATE[-1] 

#combine date and data together. 

ratec21 = data.frame(date = ratedate21, ratediff = ratediff21) 

#if difference is nagetive or 0 then rate go Down, else rate go up. 

ratec21$ratediffe21 = ifelse(ratec21$ratediff <= 0, "D", "U") 

rate21 = subset(ratec21, select = -c(ratediff)) 

rate21 #state 

#creat the data table 

df21 = data.frame(NAS = data21$Diff, Rate = rate21$ratediffe21) 

train21 <- df21[c(1:119),] 

test21 <- df21[c(120:147),] 

hmm = initHMM(c("D","U"),c("F","R"), 

              transProbs=matrix(c(.5,.5,.5,.5),2), 

              emissionProbs=matrix(c(.4,.7,.6,.3),2)) 

observations = train21$NAS 

bw = baumWelch(hmm,observations,30) 

#use viterbi algorthm and new hmm to predict the training and testing set and compare with the real 

answer. 

predtrain21 = viterbi(bw$hmm,train21$NAS) 

predtrain21 

train21$Rate 

data.frame(train21$Rate) 

#Accuracy rate for training set 

xtabtrain <- table(predtrain21, train21$Rate) 

confusionMatrix(xtabtrain) 

##Prediction for Testset 

pred21 = viterbi(bw$hmm,test21$NAS) 

pred21 

test21$Rate 

#Accuracy rate for testing set 

xtabtest <- table(pred21, test21$Rate) 

confusionMatrix(xtabtest) 
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A.2 Figures  

 

Figure A-1 NASDAQ and Unemployment Rate Trend 

 

Figure A-2 NASDAQ Price from 2016 to 2020 
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Figure A-3 Unemployment Rate from 2016 to 2020 

 

Figure A-4 NASDAQ Price from 2009 to 2020 
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Figure A-5 Unemployment Rate from 2009 to 2020 
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