Winter 2017

Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

Louis G. Reis
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations
Part of the Biomedical Engineering and Bioengineering Commons, and the Nanoscience and Nanotechnology Commons

Recommended Citation
https://digitalcommons.latech.edu/dissertations/58

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact digitalcommons@latech.edu.
DEVELOPMENT OF A NONLINEAR MODEL FOR THE PREDICTION OF RESPONSE TIMES FOR GLUCOSE AFFINITY SENSORS USING CONCANAVALIN A AND DEXTRAN AND THE DEVELOPMENT OF A DIFFERENTIAL OSMOTIC GLUCOSE AFFINITY SENSOR

by

Louis G. Reis IV, B.S., B.S., M.S.

A Dissertation Presented in Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE LOUISIANA TECH UNIVERSITY

February 2017
We hereby recommend that the dissertation prepared under our supervision by Louis G. Reis IV entitled Development of a Nonlinear Model for the Prediction of Response Times of Glucose Affinity Sensors Using Concanavalin A and Dextran and the Development of a Differential Osmotic Glucose Affinity Sensor be accepted in partial fulfillment of the requirements for the Degree of Doctorate of Philosophy in Biomedical Engineering.

Supervisor of Dissertation Research
Head of Department
Biomedical Engineering

Recommendation concurred in:

Advisory Committee

Approved:
Director of Graduate Studies
Dean of the College

Approved:
Dean of the Graduate School

GS Form 13
(8/10)
ABSTRACT

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors.

In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of the
system. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin A-dextran assay would experience higher response times in the hypoglycemic range.

This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to negate additional effects that could cause artifacts or irregular readings such as external osmotic differences and external pressure differences. However, the experimental setup and execution faced numerous setbacks that highlighted the additional difficulty that sensors using asymmetrical ceramic membranes and the concanavalin A-dextran affinity assay may experience.
APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction is for his personal use and that subsequent reproduction will not occur without written approval of the author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at any time, any or all portions of this Dissertation.

Author

Date 2/9/07

GS Form 14
(8/10)
DEDICATION

This work is dedicated to my family

especially my loving and supportive wife

and children.
TABLE OF CONTENTS

ABSTRACT ... iii
DEDICATION ... vi
LIST OF TABLES ... xi
LIST OF FIGURES .. xii
ACKNOWLEDGMENTS ... xv

CHAPTER 1 INTRODUCTION ... 1

1.1 The Prevalence and Cost of Diabetes ... 1
1.2 The Importance of Glucose Monitoring ... 2
1.3 An Alternative to Enzymatic Glucose Sensors: Glucose Affinity Sensors 4
1.4 The Need for an Accurate Model ... 5
1.5 Problems with Older Models ... 7
1.6 Devices Used in Model .. 8
1.6.1 Ballerstadt and Schultz .. 9
1.6.2 Boss and Colleagues .. 10
1.6.3 Krushinitkaya and Colleagues ... 11
1.7 Improving the Osmotic Glucose Sensor ... 12

CHAPTER 2 MODEL DEVELOPMENT ... 15

2.1 Derivation of the Continuity Equations ... 15
2.2 Determining the Diffusivity in the Affinity Solution ... 16
2.3 Modeling the Kinematics of the System ... 21
2.4 Identifying the Geometry of the Sensor .. 22
2.5 Continuity Equations for the Affinity Assay Solution .. 23
2.6 Defining the Semipermeable Membranes .. 24
 2.6.1 Regenerated Cellulose Membranes ... 25
 2.6.2 Anodic Aluminum Oxide Membranes ... 26
2.7 Continuity Equations for Transport through the Membrane 29
2.8 Continuity Equations for the External Solution ... 32
2.9 Initial Conditions ... 33
 2.9.1 Affinity Solution – Initial Conditions ... 33
 2.9.2 Membrane – Initial Conditions ... 34
 2.9.3 External Solution – Initial Conditions ... 35
2.10 Boundary Conditions .. 36
2.11 Calculation of the Response Time ... 40
2.12 Selection of Values for Model Parameters ... 42
 2.12.1 Reaction Rate Constants .. 43
 2.12.2 Geometric Parameters and Operating Conditions .. 43
 2.12.3 Initial Concentrations of Chemical Species in Model 44
2.13 Execution of the Nonlinear Model ... 45

CHAPTER 3 EXPERIMENTAL METHODS .. 46
 3.1 Design and Fabrication of the Sensors ... 46
 3.1.1 First Prototype .. 46
 3.1.2 Second Prototype .. 48
 3.2 Preparation of the Test Solutions ... 49
 3.2.1 Affinity Assay .. 49
 3.2.2 Albumin Solution .. 50
 3.2.3 Glucose Test Solution ... 50
LIST OF TABLES

Table 2-1. Reaction rate constants used in nonlinear model. .. 43
Table 2-2. Geometric and operating parameters used in nonlinear model. 44
Table 2-3. Initial concentrations of glucose, dextran, and concanavalin A used in nonlinear model. ... 45
Table 5-1. Comparison of calculated predicted response times from the model with experimentally reported response times from the literature. .. 80
LIST OF FIGURES

Figure 1-1. Representation of interactions between glucose affinity assay components. Glucose competes with dextran for binding sites on the concanavalin A proteins. As glucose concentrations increase, glucose replaces dextran at the binding sites displacing the dextran. As glucose concentrations decrease, glucose releases from the receptor sites and is replaced by dextran.. 4

Figure 1-2. Cross-view schematic of glucose sensor designed and tested by Boss and colleagues. The schematic of the design used by Boss et al. shows the two 200 mm-deep wells with the actuating and sensing diaphragms on the bottom. The affinity assay containing conA and dextran fills both wells and the microchannel connecting the two wells. An asymmetric AAO membrane rests on top of the wells and the microchannel [11]. (Figure not drawn to scale.).. 10

Figure 2-1. Plot of viscosity of affinity assay as a function of glucose concentration and temperature. Plot was reconstructed using data published by Boss et al. by permission. Data were collected from an affinity assay with dextran 3200 and conA concentrations of 2% w/w and 0.4% w/w, respectively [11].......................... 18

Figure 2-2. Comparison plot showing affinity solution viscosity data from Boss et al. and viscosity data approximated using Eq. 2-6. The plot was generated using actual viscosity data collected by Boss et al. [11] and viscosity values calculated using Eq. 2-6 with values of temperature and glucose concentration used by Boss et al.. 19

Figure 2-3. Geometries and coordinate systems that might be encountered when modeling a glucose affinity sensor.. 23

Figure 2-4. Scanning electron micrograph of cross-section of AAO membrane at interface between active and support layers. Image of ceramic ultrafiltration membrane (UniKera UF) from Synkera Technologies, Inc. [28].. 27

Figure 3-1. Parts of sensor casing designed for first prototype. The bottom half (A) and the top half (B) of the sensor casing designed for the first prototype were fabricated out of impact-resistant polycarbonate. The bottom half of the casing contained the internal solution and pressure transducer. The top half contained the channel allowing for the external solution to flow over the AAO membrane that was positioned between the two casing halves.. 47
Figure 3-2. Cross-sectional view of computer-aided drawing of the assembled first prototype. The AAO membrane (A) was placed between the two parts of the sensor casing. The USB-pressure transducer (B) was threaded into the bottom of the assembly. Two injection ports (C) were drilled into the casing for the loading of the internal solution and evacuation of air; after the internal solution was loaded, the ports were sealed off with a sealing screw (on the right) (sealing screw is not shown on the left). A bleeding port (D) was added to allow for pressure relief during the loading phase. The external solution was pumped through the sensor via channel (E) located in the top half of the casing.

Figure 3-3. Side view of computer-aided drawing of second prototype. The second prototype was fabricated from a single block of impact-resistant polycarbonate. The external basin (A) held the external solution. Two slots (B) were carved at the bottom of the basin to hold the AAO membrane; the membrane was sealed using epoxy. Injection ports (C) were drilled into both sides of device for each internal chamber to allow for the loading of the internal solution and the evacuation of air. The two USB-pressure transducers were threaded into the large wells (D) at the bottom of the casing.

Figure 4-1. Step response of glucose sensor designed by Ballerstadt and Schultz using parameters from Clark, Barbari, and Rao. Results are shown for both the linear (Clark) and nonlinear (Reis) models for the case where the external solution is well mixed (Case I) and the case where an external boundary layer resistance forms (Case II). The 90% response times for each the cases were: Clark (Case I) 11 seconds; Clark (Case II) 47 seconds; Reis (Case I) 90 seconds; Reis (Case II) 138 seconds. The experimental response time for the system was reported within the range of 3-5 minutes [24].

Figure 4-2. Step response of glucose affinity sensor designed by Ballerstadt and Schultz. Initial glucose concentrations (in the affinity assay) and external glucose concentrations were taken from Table 2-3. All three cases assumed the presence of an external boundary layer resistance. The response times were 138 seconds (-----), 109 seconds (- - -), and 123 seconds (-----). The experimental response time was reported in the range of 3-5 minutes [23] [24].

Figure 4-3. Step response of glucose affinity sensor designed by Boss and colleagues. Increasing step changes started with an initial glucose concentration of 2 mM and a final concentration of 20 mM. Decreasing step changes started with an initial glucose concentration of 20 mM and a final concentration of 2 mM. Two internal lengths (Li) were used: the microchannel depth (100 μm) and the well depth (200 μm). The response times using the microchannel depth were 6.3 minutes and 5.1 minutes for increasing and decreasing step changes, respectively. The response times using the well depth were 12.5 minutes and 13.3 minutes for increasing and decreasing step changes, respectively. The experimentally determined response times were 3.6 ± 0.7 minutes and 12.8 ± 1.4 minutes for increasing and decreasing step changes, respectively.
Figure 4-4. Step response of system designed by Krushinitskaya and colleagues. The plot shows the response of the glucose affinity sensor designed by Krushinitskaya et al. using an initial internal glucose concentration of 40 mM and various external glucose concentrations. The response times were: 47.7 minutes (30 mM), 59.3 minutes (20 mM), 68.7 minutes (10 mM), and 82.8 minutes (2 mM). The experimentally determined response times were within the range of 40 minutes to 2.5 hours [21].

Figure 4-5. Effects of glucose range and direction of glucose flux on step response. Response times for the sensor design by Ballerstadt and Schultz with varying initial internal and external glucose concentrations. The model was executed using the assumption of a well-mixed external solution. For increasing glucose concentration cases, the response times were: 88 seconds (2-5), 68 seconds (5-10), 59 seconds (10-15), and 54 seconds (15-20). For decreasing glucose concentration cases, the response times were: 102 seconds (2-5), 75 seconds (5-10), 60 seconds (10-15), and 52 seconds (15-20).

Figure 4-6. Effects of system temperature on response time for sensor designed by Krushinitskaya and colleagues. The nonlinear model was solved using the parameters from Krushinitskaya et al. [21] with varying temperatures and a glucose step change between 10 mM and 20 mM.

Figure 4-7. Rate of change in response time with increasing temperature. The plot shows the percent rate of change in the response time per °C increase in temperature for systems designed by Krushinitskaya et al. [21] and Ballerstadt and Schultz [24]. Results are also shown for increasing and decreasing step changes in glucose concentrations for both systems.

Figure 4-8. Effects of AAO membrane orientation on the response time of system designed by Krushinitskaya and colleagues. The plot was created using parameters specified by Krushinitskaya et al. [21] with an initial internal glucose concentration of 40 mM. The response times are shown for the case where the support layer of the AAO membrane is in contact with the internal chamber and for the case where the active layer of the AAO membrane is in contact with the internal chamber of the sensor.

Figure 4-9. Response time of system designed by Boss et al. as a result of AAO membrane orientation. The chart shows the response times for a system designed by Boss et al. using the microchannel as the internal length (i.e. Li = 100 μm) [11]. The chart compares increasing step change (from 2 mM to 20 mM) and decreasing step change (from 20 mM to 2 mM) for the cases where the active layer or the support layer is in contact with the internal chamber. The increasing step response times for the active and support layer are 6.3 minutes and 7.7 minutes, respectively. The decreasing step response times for the active and support layer are 5.1 minutes and 8.9 minutes, respectively.
ACKNOWLEDGMENTS

I would like to extend my sincerest gratitude to my advisor, Dr. Eric Guilbeau, who has been an extraordinary mentor, teacher, and friend to me. I would like to extend my sincerest thanks to Dr. Steven Jones who, during Dr. Guilbeau’s absences, served as an advisor and mentor to me. I would like to thank all of the faculty who serve or have served on my advisory committee at any point during my tenure at Louisiana Tech University including: Dr. Hisham Hegab, Dr. Niel Crews, Dr. Teresa Murray, and Dr. June Feng. I would like to thank my fellow colleagues who worked in Dr. Guilbeau’s lab, Varun Kopparthy and Gergana Nestorova, for their advice, support, and assistance. I would like to thank the National Science Foundation (NSF) for funding my graduate work through the NSF Graduate Research Fellowship Program (GRFP).

I would finally like to thank my family for their unwavering support. I would like to offer my greatest gratitude to my wife who stayed by my side through all of my challenges and tribulations.
CHAPTER 1
INTRODUCTION

1.1 The Prevalence and Cost of Diabetes

Diabetes mellitus is a chronic disease that has been become a global health concern because of the alarming increase in the number of cases; it is considered one of four priority noncommunicable diseases that have been addressed by world leaders [1]. Diabetes can occur in individuals who cannot produce insulin (Type I) or cannot effectively use the insulin produced by the pancreas to control blood sugar in the body (Type II). In 2014, it was estimated that over 422 million adults, or 8.5% of the adult population, worldwide were living with diabetes. This prevalence represents a huge increase from the 4.7% of the adult population affected in 1980 [1]. The outlook in the United States is equally grim with an estimated 29.1 million people or 9.1% of the population living with diabetes in 2012; 1.7 million new cases of diabetes were diagnosed in 2012. Of those living with diabetes, more than a quarter of them (estimated to be about 8.1 million) are undiagnosed and are likely not receiving adequate treatment and care [2].

If left unchecked, diabetes can lead to many complications including heart disease, stroke, kidney failure, blindness, neuropathy, and non-traumatic amputations [1] [2]. Diabetes was considered the direct cause of 1.5 million deaths worldwide in 2012. It is estimated that diabetes may have indirectly contributed to an additional 2.2 million deaths [1]. In addition to the number of health problems and the increase risk of death [2],
diabetes imposes a huge financial burden on individuals and families of diabetics. Those who suffer from diabetes take on additional medical costs from necessary medication, particularly insulin, and additional visits to medical specialists to treat or to prevent the development of diabetic-related problems. In addition to costs, diabetics face the potential of lost wages due to health complications [1]. From a national standpoint, estimated diabetes costs in the United States are about $245 billion, where $69 billion of those costs develop from lost productivity, disability, and early death [2].

1.2 The Importance of Glucose Monitoring

People diagnosed with diabetes can implement a number of interventions to postpone or prevent future complications. Some interventions include the control of blood glucose through diet, exercise, and medication and regular medical screenings to prevent or quickly identify and treat complications that are more prevalent with diabetes [1]. One of the most important actions that diabetics can take to help reduce risks and complications is routinely measuring and logging blood glucose levels. Repetitive daily measurements can help identify and correct abnormal glucose levels through the administration of insulin or consumption of carbohydrates [3] [4]. The conventional methods of monitoring blood glucose involve modified versions of the sensor first proposed by Clark and Lyons in 1962 [5]. The method requires a blood sample, usually taken through a somewhat painful finger prick, that is placed on prepared strips coated with an enzyme such as glucose oxidase. However, patient compliance and poor accuracy [5] of these devices have prompted research into continuous glucose monitoring (CGM) systems.
CGM systems allow for the accurate and timely detection of potentially dangerous hypo- or hyperglycemic events that can be corrected quickly through some form of intervention [4]. CGM systems can be non-invasive or minimally invasive though non-invasive devices generally have low reliability and limited accuracy [3]. To date, a number of commercially available minimally invasive CGM devices are available, [6] [7] [8] including the Medtronic MiniMed 530G System [9] and the Dexcom G5 Mobile CGM System [10]. These CGM systems use subcutaneously implanted glucose sensors that measure glucose concentrations in the interstitial fluid using electrochemical techniques similar to the technique first developed by Clark and Lyons decades ago [6] [11] [12].

The use of enzymes like glucose oxidase, glucose dehydrogenase, or glucokinase [13] in these CGM systems can introduce a number of problems. These enzymatic sensors have an oxygen dependence and produce byproducts such as hydrogen peroxide that rapidly decrease the enzyme activity over time. Diffusion-limited and irreversible glucose consumption rates affect the sensitivity of the sensor. Biofouling of the membranes affecting glucose transport and electrode fouling can produce inaccurate measurements [14] [15] [16]. All of these problems observed in electrochemical glucose sensors lead to decreases in reliability, sensitivity, and long-term stability [14] [16]. Because of the drops in accuracy and stability, these systems must undergo frequent calibrations daily, which are usually performed using the aforementioned finger prick blood sampling technique [7].
1.3 An Alternative to Enzymatic Glucose Sensors: Glucose Affinity Sensors

Within the past decade, an alternative is being developed. The glucose affinity sensor was first explored by Schultz and colleagues in 1982 [17]. Glucose affinity sensors rely on the reversible binding of glucose to specific receptors that have a high affinity to glucose. Most of these glucose affinity sensors, including the one developed by Schultz et al., use a mixture of high-molecular weight glucose-based polysaccharide dextran and the lectin concanavalin A (conA). The glucose molecules compete with the dextran chain ends for binding sites on the conA proteins as shown in Figure 1-1. When glucose concentrations within the affinity assay solution increase, the glucose molecules displace the dextran at the conA binding sites. Likewise, when glucose concentrations decrease, the glucose molecules dissociate from the conA binding sites and are replaced by the glucose-ends of the dextran molecules.

Figure 1-1. Representation of interactions between glucose affinity assay components. Glucose competes with dextran for binding sites on the concanavalin A proteins. As glucose concentrations increase, glucose replaces dextran at the binding sites displacing the dextran. As glucose concentrations decrease, glucose releases from the receptor sites and is replaced by dextran.

Unlike the enzymatic reactions in the electrochemical glucose sensors, the binding reactions in the glucose affinity sensors are reversible and independent of other
constituents (e.g. oxygen). To contain the dextran and conA within the sensing environment, glucose affinity sensors usually use a semipermeable membrane. Glucose can freely pass through the membrane while containing the much larger high molecular weight dextran and conA within the sensor. Unlike electro-chemical sensors, the diffusion of glucose through the membrane does not affect the magnitude of the signal generated by the sensor, but only affects the response time of the system [6] [18] [19].

In the past decade, glucose affinity sensors have been extensively studied, and several analytic techniques have been developed to measure glucose concentrations. Glucose affinity sensors have used changes in fluorescence [8] [17] [20], viscosity [11] [14], osmotic pressure [15] [21], hydrogel rheology [22], and capacitance [13] to monitor glucose concentrations.

1.4 The Need for an Accurate Model

As with any event, natural or artificial, accurate models are needed to describe and predict the behavior of a specific system. Biosensors are not exempt from this need, and glucose sensors, which are widely used in both medical settings and domestic settings, need accurate models to predict the sensor's responses to different glycemic events. These models also identify shortcomings of the sensor that can be addressed and corrected or closely monitored. By creating models that can accurately describe the physical phenomena that occur in or around the sensor, we can obtain additional and important information regarding the characteristics of the device including shape, size, material-makeup, and internal programming among others. Models allow for the identification of limitations and optimization of specific parameters that can improve device performance, enhance safety, and decrease costs.
Previously developed glucose affinity sensors have employed a variety of measurement techniques, but share a few common behaviors. Glucose affinity sensors rely on the binding mechanism of glucose with a ligand that has high affinity to glucose such as conA, boronic acid derivatives, and periplasmic binding proteins [13]. The most commonly used ligand in this group is conA because of its good stability and activity at physiological temperatures and pH [13]. Thus, one of the major components that any model of glucose affinity sensors should analyze is the reversible interactions between glucose and conA, and in the presence of a competing ligand like dextran the competitive binding between glucose and dextran with conA is also very important to accurately model.

The second important aspect that must be considered in the model is the diffusion of glucose molecules through a semipermeable membrane. Most glucose affinity sensors use a semipermeable membrane to allow for the diffusion of glucose into and out the sensing chamber while retaining the larger proteins and ligands that are needed for the sensor to function properly. A number of membranes that have been used or studied in glucose affinity sensors include regenerated cellulose (e.g. dialysis membranes), cellulose ester, anodic aluminum oxide (AAO), and polycarbonate. Factors such as porosity, pore size, membrane thickness, and tortuosity are important to consider in regards to the response of the device to a step change in external glucose concentration. Some of these membranes, like commercially available AAO, are heterogeneous in design, being composed of two distinct layers with different properties such as pore size, porosity, and thickness.
1.5 Problems with Older Models

Given the recent surge in interest in glucose affinity sensors, few models describe affinity sensor characteristics. Prior to this study, the only published glucose affinity sensor model that was available for comparison was one formulated by Clark, Barbari, and Rao in 1999 [23]. The model proposed by Clark and colleagues used data published by Schultz and his colleagues in one of the first recorded examples of a glucose affinity sensor. The model consisted of glucose continuity equations defining the 1D-radial diffusion of glucose from the external medium into the lumen of a hollow dialysis fiber where the affinity assay composing of dextran and conA was contained. Parametric studies were performed to analyze the significance of such variables that could alter the response time of the sensor including partition coefficients of the membrane and diffusivities of glucose through the selected membrane. Additional cases regarding the status of the immediate external environment around the sensor and membrane were investigated, specifically a constant glucose concentration case (as would be seen in a well-mixed external environment), a case where a boundary layer resistance was present, and a hypothetical case for in vivo applications where a fibrotic capsule layer formed around the sensor [23].

The results observed by Clark and colleagues by using the model were compared with experimental results determined by Schultz et al. from the proposed sensor. Given parameters specified by Schultz and his group, Clark and colleagues solved for response times of 13 seconds for the constant concentration (well-mixed) case and 49 seconds for the case with the presence of an external boundary layer resistance [23]. However, these model-predicted response times fall well short of the experimentally determined response
time of 4-5 minutes [24]. It is believed that the significant difference between the predicted times and the experimentally measured times originates from the equations used to model the diffusion of glucose inside the sensor lumen where the affinity assay components, dextran and conA, interact with glucose. Under the original model derived by Clark and colleagues, the diffusion of glucose is assumed constant which leads to a linear system of partial differential equations (PDEs). But it is suspected that the transfer of glucose through the affinity solution is not linear but instead highly nonlinear in nature [19].

To improve the glucose affinity sensor model, a system of nonlinear PDEs was derived to model the transport of glucose molecules through the membrane and into or out of the sensor chamber containing the affinity assay. To determine how effective the model was at predicting the response of a sensor to a step-change in external glucose concentration, the results obtained from the model proposed in this study were compared to the results obtained from the model published by Clark, Barbari, and Rao and to the experimentally obtained results from various literature sources. Unlike the model published by Clark and colleagues which looked solely at a device developed by Schultz and colleagues, this new proposed model was designed to be used with data from various research groups with sensors that have varying shapes and geometries, affinity assay concentrations, membrane properties, and operating conditions (e.g. temperature).

1.6 Devices Used in Model

Three unique glucose affinity sensors were analyzed using the developed nonlinear model. The systems were designed by three independent teams and vary with sensor geometry, membrane selection, and affinity assay concentrations. Other factors
that were reviewed that may have changed during multiple tests of a particular system included temperature and external glucose concentrations.

1.6.1 Ballerstadt and Schultz

The first system that was analyzed was a sensor designed and tested by Ballerstadt and Schultz. The sensor included a hollow dialysis fiber composed of regenerated cellulose membrane with a lumen diameter and wall thickness of 190 µm and 20 µm, respectively. It was assumed that glucose would diffuse into the dialysis fiber radially and interact with the affinity assay components (i.e. conA and dextran). The dextran used in the affinity assay was fluorescein-labeled and when not bound to conA it could be detected using an optical system. Thus, the glucose concentration was correlated to the fluorescence intensity detected due to the presence of unbounded dextran [24].

Schultz and colleagues created similar devices that use the same principles. In earlier works, Schultz and colleagues investigated different sized fibers and the immobilization of conA or dextran to the membrane wall [17]. From initial tests, the response time of their device was on the order of 10 minutes. A test using methylmannoside (instead of glucose) which has a higher affinity to conA gave a much faster response time of 2 minutes. This reduced time suggests that the reaction rates dominate the response [17].

The device published by Ballerstadt and Schultz was analyzed by Clark, Barbari, and Rao to predict the response time of the device. They developed a system of linear partial differential equations was developed to represent the diffusion of glucose from an external solution through the membrane into the internal lumen of the sensor that housed the affinity assay [23]. Most of the property information, such as reaction kinetics and
glucose diffusivities used in the model by Clark and colleagues, came from data published by Schultz and his colleagues [17] [24].

1.6.2 Boss and Colleagues

The second device that was reviewed was designed and tested by Boss et al. and it varies in many ways from the one designed by Ballerstadt and Schultz. The device designed by Boss et al. uses two micro-wells connected by a thin microchannel. The two wells each have a depth of 200 μm while a 1.2 mm-long glass capillary with a 100 μm by 100 μm square cross section served as the microchannel connecting the two wells. An anodic AAO membrane was placed on top of the wells and microchannel as shown in Figure 1-2. The AAO membrane consists of two layers: a thin 1-μm thick active layer with a pore size of 4-6 nm and a thicker 49-μm thick support layer with a pore size of 100-200 nm. One well contained an actuating piezoelectric diaphragm while the other well contained a sensing piezoelectric diaphragm. The wells and the microchannel were filled with 4 μL of the affinity assay contain dextran and conA [11].

Figure 1-2. Cross-view schematic of glucose sensor designed and tested by Boss and colleagues. The schematic of the design used by Boss et al. shows the two 200 mm-deep wells with the actuating and sensing diaphragms on the bottom. The affinity assay containing conA and dextran fills both wells and the microchannel connecting the two wells. An asymmetric AAO membrane rests on top of the wells and the microchannel [11]. (Figure not drawn to scale.)
It is assumed that glucose diffuses axially through the AAO membrane into the wells and microchannel directly below the AAO membrane. As glucose displaces dextran at the conA binding sites, the solution becomes less viscous. A transient or harmonic signal is sent through the actuating diaphragm to create a pressure change in the internal solution. This pressure wave then propagates through the microchannel into the second well where the sensing diaphragm is located. The small microchannel creates a resistance to the flow of the fluid which is also affected by the viscosity of the glucose-affinity assay solution. The sensing diaphragm can be used to measure the relaxation time during transient mode operation or the phase shift of the signal during harmonic mode operation [11] [18].

Boss and colleagues clearly show through their work that the viscosity of the affinity assay solution depends on the glucose concentration and temperature [11]. Additional studies by other groups have demonstrated the non-linearity of the glucose-conA-dextran system [12], but Boss and colleagues through their data have offered an opportunity to better model the response. Boss and colleagues have also demonstrated that the response time of their sensor depended on temperature and glucose concentrations [11].

1.6.3 Krushinitskaya and Colleagues

The device designed and tested by Krushinitskaya et al. uses a single, 0.5 mm deep chamber filled with the dextran-conA affinity assay. One end of the chamber houses a pressure transducer, while the other end is capped off with an AAO membrane (similar to the one used by Boss et al.). Glucose diffuses through the membrane into the internal chamber and displaces the dextran at the conA binding sites. The rise in concentration of
unbound dextran creates an increase in the osmotic pressure that is detected by the pressure transducer [21].

Krushinitskaya and colleagues demonstrated the high degree of selectivity of these glucose affinity sensors by testing the sensor in solutions containing other physiological constituents such as ethanol, lactate, and amino acids [5]. Similar research used the same physics to show that the device could be miniaturized. Additional tests have been performed with other membranes to increase long-term stability [15].

1.7 Improving the Osmotic Glucose Sensor

Johannessen and colleagues developed a glucose affinity sensor that measured the glucose concentrations in relation to the osmotic pressure created by unbounded dextran. The use of pressure sensing coupled with micro- and nano-technology allows for a system that uses a small fraction of the power that is required by other devices [15]. The use of osmotic sensing allows for mechanical simplicity and motion insensitivity, and because the detection mechanism does not require any activation of an actuator for data acquisition power consumption is minimal [21]. The osmotic glucose sensor designed by Krushinitskaya et al. demonstrated excellent stability in the presence of possible interfering metabolites and other components. These were all molecules with similar sizes to glucose and were all able to diffuse through the membrane into the affinity assay. Because the glucose has a higher affinity to conA than dextran, the sensor was more sensitive to changes in glucose concentration than the other metabolites [5].

The osmotic glucose sensor developed by Krushinitskaya, Johannessen, and colleagues measured the pressure of a single internal chamber filled with the affinity assay. In vitro tests demonstrating the proof-of-concept relied on an integrated pressure
transducer to negate fluctuations in atmospheric pressure. However, the system did not account for physiological scenarios that could disrupt the glucose signal. Specifically, changes in concentrations of macromolecules in the external solution that may create a negative osmotic pressure in the internal chamber along with changes in the hydrostatic pressure of the external environment could create artifacts that would lead poor readings of glucose concentrations.

The osmotic glucose sensor measures the osmotic pressure created by unbound dextran. Since conA and dextran cannot diffuse through the semipermeable membrane, a difference in the concentrations of the two macromolecules occurs across the membrane giving rise to osmotic pressure. The osmotic pressure of a solution can be calculated from Eq. 1-1:

$$\Pi = icRT$$ \hspace{1cm} \text{Eq. 1-1}

where the osmotic pressure Π exerted by a single component is calculated as the product of the concentration, c, of the component, the universal ideal gas constant R, and the absolute temperature of the solution T. The van't Hoff's factor, i, is used for concentrations of ionic compounds [21].

This study proposes the use of two nearly identical compartments to measure pressure. Both compartments would be sealed by the same type of semipermeable membrane and be exposed to the same external environment. However, one chamber would contain the conA-dextran affinity assay, while the other internal chamber would contain a glucose solution free of conA and dextran. Because both chambers (each with their own pressure transducer) are exposed to the same environment, they will both experience the same changes in pressure caused by external factors. The signal recorded
by the transducer with the affinity assay could then be “smoothed” by subtracting the
signal generated by the negative control removing all other pressure terms except the
osmotic pressure generated by the dextran and conA concentrations which is proportional
to the glucose concentration.
CHAPTER 2

MODEL DEVELOPMENT

2.1 Derivation of the Continuity Equations

The transport of some solute molecule A in a solvent B due to the presence of a concentration gradient can be described by Fick's Law of Diffusion (Eq. 2-1):

$$\vec{N}_A = -D_{AB} \nabla C_A$$ \hspace{1cm} Eq. 2-1

where \vec{N}_A, the molar flux of solute A, is equivalent to product of the concentration gradient of A, ∇C_A, and the mass diffusivity D_{AB}.

If a mass balance is performed on a control volume, and if there is no convective mass transfer, the continuity equation or mass balance (Eq. 2-2) can be obtained:

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$ \hspace{1cm} Eq. 2-2

where the generation or consumption of solute A is described by the reaction rate R_A.

Substituting Eq. 2-1 into Eq. 2-2 and rearranging the variables we get the following partial differential equation that can be used to determine the concentration profile of solute A (Eq. 2-3):

$$\frac{\partial C_A}{\partial t} = \nabla \cdot (D_{AB} \nabla C_A) + R_A$$ \hspace{1cm} Eq. 2-3

It is common in most mass transport cases to assume that the diffusivity is constant and thus Eq. 2-3 simplifies into Eq. 2-4:
This equation was employed to model the transport of glucose in the external solution and in the membrane. However, Eq. 2-4 does not accurately describe the transport of glucose (or any of the other components, as explained in Section 2.2) in the sensor compartment holding the affinity solution. Thus, Eq. 2-3 was needed to model the mass transfer occurring within the affinity solution.

2.2 Determining the Diffusivity in the Affinity Solution

In most applications, it is usually reasonable to assume a constant diffusivity. As long as operating conditions such as temperature are constant and the solute molecules do not undergo any significant structural changes, the assumption is usually valid. However, changes in the solvent must be considered when modeling the diffusion, and in this specific case using conA and dextran, the solvent environment changes notably and can significantly alter the diffusivities of the different solute particles.

A number of equations have been formulated to describe the diffusion of a particle through a given medium. According to hydrodynamical theory, the liquid diffusion coefficient is related to the mobility of the solute molecule. The Stokes-Einstein equation shown in Eq. 2-5 uses the hydrodynamical theory to determine the diffusivity of solute A in a liquid solvent B:

$$D_{AB} = \frac{\kappa T}{6\pi r_A \mu_B}$$ \hspace{1cm} \text{Eq. 2-5}

where κ is the Boltzmann constant, T is the absolute temperature, r_A is the radius of solute A, and μ_B is the dynamic viscosity of solvent B. Though temperature fluctuations can occur during experimental runs with glucose affinity sensors, most performed
experiments operate at a constant temperature. The viscosity, on the other hand, is not controllable and can play a significant role in adjusting the diffusivity of glucose in the affinity assay.

As was shown in Figure 1-1, at low glucose concentrations, the dextran chain ends occupy binding sites on the conA protein. Due to the presence of multiple chain ends and the presence of multiple binding sites, at low glucose concentrations, the binding of dextran and conA can create a crosslinked matrix that can impede glucose transfer into the bulk solution. Thus at low glucose concentrations, the affinity solution experiences high viscosities. Whereas at high glucose concentrations, when the binding sites are replaced with glucose instead of the dextran chain ends, the viscosity decreases. This change in viscosity has been demonstrated and even used to correlate changes in viscosity with glucose concentration changes using viscometers [11] [14] [18].

Since the viscosity of the affinity assay changes with glucose concentrations and this change in viscosity ultimately affects the diffusivity of glucose in the affinity solution, it is important to formulate a function that relates the affinity solution viscosity with the glucose concentration present in the affinity solution. Data from Boss et al. show a clear relationship between viscosity and the glucose concentration (as well as temperature). A plot of the viscosity as a function of glucose concentration and temperature can be seen in Figure 2-1. The data collected by Boss and colleagues is specific for the dextran and conA concentrations used in their experimental protocols; the affinity assay used in that specific work was composed of 2% w/w dextran 3200 and 0.4% w/w conA [11]. It is unknown if there are other unstated factors that could alter the viscosity in other glucose affinity sensors.
Figure 2.1. Plot of viscosity of affinity assay as a function of glucose concentration and temperature. Plot was reconstructed using data published by Boss et al. by permission. Data were collected from an affinity assay with dextran 3200 and conA concentrations of 2% w/w and 0.4% w/w, respectively [11].

Because of the little data that exists on the relationship between viscosity and glucose concentrations in the affinity assay, it is assumed that the data presented by Boss et al. would be sufficient to develop an equation that relates the viscosity of the affinity solution with the glucose concentration. Also, due to variations in operating temperatures used in previously published works the effects of temperature on the viscosity were factored into the equation. Using the data supplied by Boss and colleagues, Eq. 2-6 was developed:

$$\mu_{AA} = 1.464 \times 10^6 [C_G]^{-0.3818} e^{(-0.03729 T)}$$ Eq. 2-6

where μ_{AA} is the dynamic viscosity of the affinity assay solution in mPa s, C_G is the concentration of glucose in mM (mol/m3), and T is the absolute temperature in K. Figure 2-2 shows how well the equation predicts the viscosity using the temperatures and glucose concentrations used by Boss and colleagues. As seen from the plot, the equation is fairly accurate for the given viscosity data though it becomes less reliable at lower
glucose concentrations which is where the viscosity is more sensitive to changes in

Figure 2-2. Comparison plot showing affinity solution viscosity data from Boss et al. and viscosity data approximated using Eq. 2-6. The plot was generated using actual viscosity data collected by Boss et al. [11] and viscosity values calculated using Eq. 2-6 with values of temperature and glucose concentration used by Boss et al.

Since the viscosity of the affinity solution is a function of glucose concentration, and through the Stokes-Einstein equation (Eq. 2-5) the diffusivity of glucose is a function of viscosity, the glucose diffusivity is a function of the glucose concentration and cannot be treated as a constant as it was shown in Eq. 2-4. Due to the varying operating temperatures between experimental runs and different research groups, the temperature factor in Eq. 2-5 and Eq. 2-6 helps make the model more universal in its application. However, other factors that were not considered due to a lack of explicitly stated design parameters could affect the viscosity, and ultimately the diffusivity. Specifically, the concentrations of conA and dextran could have a significant impact on the viscosity. The size (or molecular weight) of the dextran used in the affinity solution could also affect the
affinity solution viscosity. However, it is believed that even with this lack of information, the current model using Eq. 2-6 to describe the relationship between the viscosity and glucose concentrations should significantly improve the glucose affinity sensor model by adding the nonlinear component.

Eq. 2-5 shows that the solute radius must be defined to determine the diffusivity. The radius can be approximated by Eq. 2-7 with the assumption that the solute is a sphere with a density equal to the density of the solute in the solid phase. The result is

$$r_A = \left(\frac{3 \text{MW}}{4\pi \rho N_A} \right)^{1/3}$$ \text{Eq. 2-7}$$

where \(\text{MW}\) is the molecular weight of the solute, \(\rho\) is the density, and \(N_A\) is Avogadro’s number. Eq. 2-7 can be used to determine that the solute radius for glucose (\(\rho = 1.56\) g/cm\(^3\); \(\text{MW} = 180\) g/mol) is approximately 0.359 nm which is similar to reported results [25]. Various sizes of dextran used in the different published studies place the Stoke’s radius of dextran between 4.95 nm (\(\text{MW} = 10\) kg/mol) and 27 nm (\(\text{MW} = 2000\) kg/mol) [26]. Using Eq. 2-7, the conA (\(\rho \approx 1\) g/cm\(^3\); \(\text{MW} = 104\) kg/mol) used in the affinity assay has an approximate radius 3.46 nm.

Because of the significantly larger molecular weights and Stoke’s radii of the dextran and conA compared to glucose, the diffusivity of glucose in the affinity assay will be orders of magnitude greater than the diffusivities of dextran, conA, and the bound compounds (i.e. glucose-conA and dextran-conA). Since the glucose diffusivity is significantly larger than the other diffusivities in the affinity assay, the diffusion coefficients used in Eq. 2-3 to describe the transport of dextran, conA, glucose-conA, and dextran-conA can be neglected.
2.3 Modeling the Kinematics of the System

Glucose affinity sensors rely on specific receptors that have a high affinity to glucose. In the case of most glucose affinity sensors, a mixture of conA and dextran is used. Glucose and the chain ends of dextran compete for binding sites on the conA protein in reversible competitive reactions:

\[
\begin{align*}
\frac{k_{fG}}{k_{rG}} G + cA & \rightleftharpoons cA^*G \\
\frac{k_{fD}}{k_{rD}} D + cA & \rightleftharpoons cA^*D
\end{align*}
\]

where G, D, and cA represent glucose, dextran, and conA, respectively, and cA*G and cA*D represent the glucose-conA and the dextran-conA complexes, respectively. For most of the glucose affinity sensors that employ the dextran and conA, the reactions are homogenous within the sensor chamber that is separated from the external bulk medium by a semipermeable membrane. However, some devices have conA immobilized on the internal surface of the membrane [17], but our model will only analyze systems that use homogenous solutions of conA and dextran.

The glucose molecules and dextran chain ends compete for the same receptor sites on the conA protein. The monovalency of glucose makes it evident that the binding mechanism between glucose and conA is bimolecular in nature. The high molecular weight dextran, on the other hand, potentially has multiple chain ends each with the capability to bind to conA. This configuration suggests that the binding reaction between conA and dextran is not bimolecular. However, kinetic studies have shown the binding of dextran to conA can be modeled as a bimolecular reaction [13]. Thus the reaction rates
for the competing reactions of glucose (Eq. 2-8) and dextran (Eq. 2-9) can be expressed as:

\[\tau_G = -k_{fG} C_G C_{CA} + k_{rG} C_{CA}^* C \]
Eq. 2-8

\[\tau_D = -k_{fD} C_D C_{CA} + k_{rD} C_{CA}^* C \]
Eq. 2-9

where \(k_{fG} \) and \(k_{rG} \) represent the forward and reverse glucose reaction rate constants, respectively, and \(k_{fD} \) and \(k_{rD} \) represent the forward and reverse dextran reaction rate constants, respectively, and \(C_i \) represents the concentration of species \(i \). The reaction rates described in Eq. 2-8 and Eq. 2-9 can be substituted into Eq. 2-3 to model the mass transfer of any of the components in the affinity assay.

2.4 Identifying the Geometry of the Sensor

To make the model more universal, the various geometries and diffusion paths of glucose into and out of the sensor were taken into consideration. The model only looks at 1D-diffusion of glucose into or out of the sensor. Thus, the model will look at axial and radial diffusion in a cylinder structure, as well as radial diffusion in a spherical structure. Note that any 1D-diffusion in a slab geometry would be equivalent to the cylindrical axial diffusion. Thus the continuity equation Eq. 2-3 can be rewritten for Cartesian (Eq. 2-10), cylindrical (Eq. 2-11), and spherical (Eq. 2-12) coordinates.

\[\frac{\partial C_A}{\partial t} = \frac{\partial}{\partial z} \left(D_{AB} \frac{\partial C_A}{\partial z} \right) + R_A \]
Eq. 2-10

\[\frac{\partial C_A}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D_{AB} \frac{\partial C_A}{\partial r} \right) + R_A \]
Eq. 2-11

\[\frac{\partial C_A}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_{AB} \frac{\partial C_A}{\partial r} \right) + R_A \]
Eq. 2-12
To generalize the model, the equations were rewritten as \textbf{Eq. 2-13} with a geometric parameter:

$$\frac{\partial C_A}{\partial t} = x^{-m} \frac{\partial}{\partial x} \left(x^m D_{AB} \frac{\partial C_A}{\partial x} \right) + R_A$$ \hspace{1cm} \text{Eq. 2-13}$$

where \(m \) is a geometric parameter representing the type of diffusion in the system. For axial diffusion, \(m = 0 \); for radial cylindrical diffusion, \(m = 1 \); for radial spherical diffusion, \(m = 2 \). The previous spatial variables (\(z \) for \textbf{Eq. 2-10} and \(r \) for \textbf{Eq. 2-11} and \textbf{Eq. 2-12}) have been replaced with the generic spatial variable \(x \). Possible geometries of these glucose affinity sensors are shown in \textbf{Figure 2-3}, along with the coordinate system and location of the origin.

![Possible geometries of glucose affinity sensors](image)

\textbf{Figure 2-3.} Geometries and coordinate systems that might be encountered when modeling a glucose affinity sensor.

\subsection{2.5 Continuity Equations for the Affinity Assay Solution}

Continuity equations can be expressed for each of the species that can be found in the affinity assay. The species include unbound forms of glucose, dextran, and conA in addition to the glucose-conA and dextran-conA complexes. Thus, \textbf{Eq. 2-13} can be rewritten for each of the five components (\textbf{Eq. 2-14} - \textbf{Eq. 2-18}):
for $0 < x < L_i$

$$\frac{\partial C_G}{\partial t} = x^{-m} \frac{\partial}{\partial x} \left(x^m D_{G,AA} \frac{\partial C_G}{\partial x} \right) + r_G$$ \hspace{1cm} \text{Eq. 2-14}$$

$$\frac{\partial C_D}{\partial t} = r_D$$ \hspace{1cm} \text{Eq. 2-15}$$

$$\frac{\partial C_{cA}}{\partial t} = r_G + r_D$$ \hspace{1cm} \text{Eq. 2-16}$$

$$\frac{\partial C_{cA\cdot G}}{\partial t} = -r_G$$ \hspace{1cm} \text{Eq. 2-17}$$

$$\frac{\partial C_{cA\cdot D}}{\partial t} = -r_D$$ \hspace{1cm} \text{Eq. 2-18}$$

where L_i represents the interface between the affinity assay solution and the internal membrane surface and $D_{G,AA}$ represents the diffusivity of glucose in the affinity assay solution calculated using Eq. 2-5 and Eq. 2-6. The reaction rates, r_G and r_D, are calculated from Eq. 2-8 and Eq. 2-9, respectively. The diffusive terms are not shown in Eq. 2-15 - Eq. 2-18, because the larger molecular weights ultimately decreases the diffusivity of these components to a couple of orders of magnitude less than the diffusivity of glucose; this assumption treats these four components as immobilized within the homogenous affinity solution [23].

2.6 Defining the Semipermeable Membranes

Glucose affinity sensors use a semipermeable membrane that allows glucose to freely permeate into the sensor but contains the much larger conA and dextran components. A variety of membranes have been explored with glucose affinity sensors including AAO, polyamide, polycarbonate, cellulose ester, regenerated cellulose, and polysilicon-silicon nitride [15] [17] [21]. Each of these membranes has a set of optimal
properties as well as potential disadvantages. Depending on the sensor geometry and the measurement technique used to detect changes in glucose concentrations, membrane properties such as rigidity and tensile strength can be important factors. Regardless, all of these membranes must possess a minimum pore size capable of containing both the dextran and conA while maximizing the permeation of glucose into the sensor.

Of the devices used to analyze the nonlinear model, two unique membranes were identified. In two independent devices developed by Boss et al. and Krushinitskaya et al., AAO membranes were used for sensors with glucose-diffusion paths being described as axial-cylindrical [5] [11] [18] [21]. The second membrane used in device designed by Ballerstadt and Schultz was cellulose regenerated from acetate, which is a common material used for dialysis fibers [17]. The device that used the membrane composed of regenerated cellulose (RC) was modeled as a radial-cylindrical device. Krushinitskaya et al. examined the use of other membranes including polycarbonate, polyamide, and cellulose ester, but found that AAO membranes had the highest permeability to glucose while they contained larger proteins such as albumin (MW: 66 kg/mol) which is similar in size or smaller than the dextran and conA used in the affinity assay [21].

2.6.1 Regenerated Cellulose Membranes

Regenerated cellulose (RC) membranes have been used in the fabrication of fibers used in dialysis ultrafiltration [17]. These RC membrane-bound fibers can be flexible and pre-filled with an affinity assay solution before being combined with a sensor. The fibers used by Schultz and colleagues (Cordis Dow) are isotropic having surface properties that represent the properties of the bulk material. Some commercially available anisotropic
fibers have external fibers and internal lumens that are covered in a skin that is primarily responsible for the molecular selectivity of the fiber [17] [23].

Because of its polymer construction, RC membranes may be tortuous and thus it is difficult to apply a generic model in calculating the diffusion coefficient of glucose through the membrane. Permeability measurements performed by Schultz and colleagues place the glucose diffusion coefficient in this type of RC membrane at $3 \times 10^{-6} \text{ cm}^2/\text{s}$ [17]. Because membrane characteristic data is lacking for these RC membranes, the diffusion coefficient for the RC membrane was set at $3.1 \times 10^{-6} \text{ cm}^2/\text{s}$, which is the value used by Clark, Barbari, and Rao in the creation of their model [23]. When identical diffusivities are used for the dialysis fiber used in the experimental studies performed by Schultz and colleagues, the effects of using a nonlinear model for the affinity solution can be highlighted.

2.6.2 Anodic Aluminum Oxide Membranes

Anodic aluminum oxide membranes were used in devices presented by Boss et al. and Krushinitskaya et al.; both groups purchased membranes from the same supplier (Synkera Technologies) [11] [21]. AAO membranes are made of self-organized nanostructured anodic alumina that is electrochemically oxidized. The pore diameters and porosity can be modified by altering the fabrication process [27]. The AAO membranes used by Boss et al. and Krushinitskaya et al. were asymmetric with a nanoporous “active layer” that is responsible for the membrane selectivity and a larger porous “support layer” [28]. A generic scanning electron micrograph of a cross-section of an AAO membrane (UniKera UF) similar to ones analyzed in these models is shown in Figure 2-4. The AAO membranes are composed of two distinct layers: the thicker support layer and the very
thin active layer. Both devices designed by Boss et al. and Krushinitskaya et al. used AAO membranes (UniKera UF, Synkera Technologies) that had support layers that were roughly 49 μm thick with an average pore diameter of 150 nm. The active layer was approximately 1-μm thick with pore sizes ranging between 4-6 nm [28]. As seen from Figure 2-4, the active layer has a low porosity (10-15%) whereas the support layer has a much higher porosity (30-60%) [28]. It can be seen from the image in Figure 2-4, the pores are nearly linear and parallel; in other words, unlike the RC membranes, the degree of tortuosity is minimal.

The asymmetry and transparency of the membranes prevent the position of the membrane relative to the sensor, the affinity assay, or the external bulk solution from being determined. Regardless of its orientation, the nanoporous active layer will still contain the conA and dextran while allowing glucose to freely permeate. However, membrane orientation can be problematic for the model, particularly if the support layer
which consists of pores large enough for conA and dextran to occupy, is adjacent to the affinity solution. If the membrane is positioned so that the support layer is in contact with the internal chamber containing the affinity solution, it will increase the diffusive length of glucose through the highly viscous solution. On the other hand, if the support layer is adjacent to the external glucose solution, the diffusive resistance will be less than if the membrane was reversed. To possibly account for membrane orientation and other factors that might affect glucose membrane diffusivity (e.g. temperature), the Renkin model is used to evaluate the glucose diffusion coefficient in the AAO membrane. The Renkin equation, Eq. 2-19, is well suited for structures with relatively straight pores with a narrow pore size distribution. It applies correction factors that account for the effects of steric exclusion at the mouth of the pores and the hydrodynamic drag that solute molecules experience while diffusing through the nano-pores [29]. The Renkin equation calculates the diffusion of a solute molecule in a membrane as:

\[D_m = D_K \omega_r \] \hspace{1cm} \text{Eq. 2-19a} \\
\[D_m = D(1 - \lambda)^2[1 - 2.1\lambda + 2.09\lambda^3 - 0.95\lambda^5] \] \hspace{1cm} \text{Eq. 2-19b}

where \(D_m \) is the diffusion coefficient of the solute molecule in the membrane, \(D \) is the diffusivity of the solute in the bulk solvent (this can be calculated using Eq. 2-5), \(K \) is the partition coefficient, \(\omega_r \) is the hydrodynamic drag factor, and \(\lambda \) is the ratio of the solute radius to the pore radius.

To highlight the effect of porous channels on the diffusivity, the hydrodynamic drag factor and partition coefficient can be calculated for both the active and support layers. For glucose transport in the support layer (\(\lambda = 4.79 \times 10^{-3} \)), the partition coefficient and hydrodynamic drag factor are 0.990 and 0.990, respectively. For glucose
diffusing through the active layer ($\lambda = 0.18$), the partition coefficient and hydrodynamic
drag factor are 0.673 and 0.635, respectively; these values ultimately decreases the
diffusion coefficient by as much as 57%.

2.7 Continuity Equations for Transport through the Membrane

With a better understanding of the diffusion of glucose through the semi-
permeable membrane, continuity equations can be derived for the region within the
membrane pores. Because the membranes possess pore sizes that allow the passage of
glucose, but not the larger conA and dextran particles, the derived continuity equations
need only to examine the transport of glucose and not the other components. The
continuity equation used for any generic isotropic membrane (e.g. RC membrane) can be
expressed as:

for $L_i < x < L_e$

$$\frac{\partial C_{Gm}}{\partial t} = D_{Gm} x^{-m} \frac{\partial}{\partial x} \left(x^m \frac{\partial C_{Gm}}{\partial x} \right)$$

Eq. 2-20

where L_e represents the location of the interface between the membrane and the external
solution, C_{Gm} is the concentration of glucose inside the membrane, and D_{Gm} is the
diffusion coefficient of glucose inside the membrane. The diffusion coefficient is
assumed to be constant inside the membrane, since the conA and dextran cannot infiltrate
the membrane environment and alter the diffusivity by changing the viscosity.

In the case of an anisotropic membrane, such as the AAO membranes used by
Boss et al. [11] and Krushinitskaya et al. [21], two continuity equations must be used,
one for the transport of glucose in the active layer and one for the transport of glucose in
the support layer. If it is assumed that the active layer is in contact with the affinity solution, then the two continuity equations can be expressed as:

For $L_i < x < L_{as}$

$$\frac{\partial C_{Gma}}{\partial t} = D_{Gma} x^{-m} \frac{\partial}{\partial x}(x^m \frac{\partial C_{Gma}}{\partial x}) \quad \text{Eq. 2-21}$$

For $L_{as} < x < L_e$

$$\frac{\partial C_{Gms}}{\partial t} = D_{Gms} x^{-m} \frac{\partial}{\partial x}(x^m \frac{\partial C_{Gms}}{\partial x}) \quad \text{Eq. 2-22}$$

where L_{as} represents the location of the interface between the active and support layers of the membrane. The continuity equation Eq. 2-21 represents the transport of glucose in the active layer of the membrane, C_{Gma}, with a diffusivity of D_{Gma}. The continuity equation Eq. 2-22 represents the transport of glucose in the support layer of the membrane, C_{Gms}, with a diffusivity of D_{Gms}. Since the active layer of the membrane prevents the passage of conA and dextran and separates the affinity solution from the support layer, the diffusion coefficient of glucose in the support layer can be assumed to be constant.

One final case that could be considered is the reversal of the anisotropic AAO membrane; in other words, if the support layer is in contact with the affinity solution. The active layer would be in contact with the external solution, but still would prevent the transport of conA and dextran through the active layer of the membrane into the external medium. Thus, the continuity equation would look similar to the one expressed in Eq. 2-21, but the region that the equation applies to will change as shown in Eq. 2-23:
Because the pores in the support layer allow for the presence of conA and dextran in addition to glucose, continuity equations must be written for each of the three individual species and the two complexes (glucose-conA and dextran-conA). The competitive binding reactions would still occur in the pores, and thus reaction rates for the glucose and dextran binding reactions must also be included. The five continuity equations of the different components in the support layer of the membrane would appear as Eq. 2-24 - Eq. 2-28:

for \(L_i < x < L_{as} \)

\[
\frac{\partial C_{Gms}}{\partial t} = x^{-m} \frac{\partial}{\partial x} \left(x^m D'_{Gms} \frac{\partial C_{Gms}}{\partial x} \right) + r_G \quad \text{Eq. 2-24}
\]

\[
\frac{\partial C_{Dms}}{\partial t} = r_D \quad \text{Eq. 2-25}
\]

\[
\frac{\partial C_{Ams}}{\partial t} = r_G + r_D \quad \text{Eq. 2-26}
\]

\[
\frac{\partial C_{A^*Gms}}{\partial t} = -r_G \quad \text{Eq. 2-27}
\]

\[
\frac{\partial C_{A^*Dms}}{\partial t} = -r_D \quad \text{Eq. 2-28}
\]

where \(D'_{Gms} \) is the diffusion coefficient of glucose in the support membrane in the presence of the affinity assay components and can be calculated using the combination of Eq. 2-5, Eq. 2-6, and Eq. 2-19. Since the diffusion coefficients of the large conA, dextran, and conA complexes were significantly smaller than glucose, the diffusion
coefficients were assumed to be negligible in the affinity assay. For the same reason, the diffusion coefficients are considered negligible in what is basically an extension of the affinity assay into the pores of the support layer.

Since the ratio of the glucose solute radius and the support layer pore radius is very small, the product of the hydrodynamic drag factor and partition coefficient should decrease the diffusion coefficient no more than 2%. Then, reasonably, all five continuity equations in the support layer (Eq. 2-24 – Eq. 2-28) could be combined with the continuity equations for the bulk affinity solution (Eq. 2-14 – Eq. 2-18); only the boundaries of the equations would change (i.e. for \(0 < x < L_{as} \)).

2.8 Continuity Equations for the External Solution

The external solution surrounding the glucose affinity sensor can offer a few cases that must be considered while modeling. Factors such as the size of the container holding the sensor and external solution as well as the degree of mixing of the external solution can affect the flux of glucose through the semipermeable membrane. In the case where the external solution is considered well-mixed thus providing a relatively constant glucose concentration throughout the external medium, no continuity equations are needed and only a boundary condition at the external surface of the membrane is needed to represent this case. However, if the solution is not mixed thoroughly during operation of the sensor, a boundary layer resistance can form near the membrane surface. As glucose permeates in or out of the membrane, the concentration of glucose in the immediate environment at the membrane surface is altered creating a diffusive resistance that separates it from the bulk external solution. Thus, it is important in the case of an
arising boundary layer resistance to apply a glucose continuity equation (Eq. 2-29) to the external solution as given by:

for $x > L_e$

$$\frac{\partial C_{Ge}}{\partial t} = D_{Ge} x^{-m} \frac{\partial}{\partial x} \left(x^m \frac{\partial C_{Ge}}{\partial x} \right) \quad \text{Eq. 2-29}$$

where C_{Ge} is the concentration of glucose in the external solution and D_{Ge} is the diffusion coefficient of glucose in the external solution. Since the external solution lacks conA and dextran, the diffusion coefficient can be assumed constant and be calculated using Eq. 2-5 (substituting in the viscosity of water at the specific operating temperature).

2.9 Initial Conditions

Initial concentrations of the different components were determined using specific concentrations listed by the authors in the published studies. A review of the general initial conditions that were applied is described in this section.

2.9.1 Affinity Solution – Initial Conditions

Initial concentrations of the glucose and the affinity assay solution components specified by the authors were specified in Eq. 2-30 - Eq. 2-34:

at $t = 0$; for $0 \leq x < L_i$

$$C_G = C_{G,0} \quad \text{Eq. 2-30}$$

$$C_D = C_{D,0} \quad \text{Eq. 2-31}$$

$$C_{ca} = C_{ca,0} \quad \text{Eq. 2-32}$$

$$C_{ca^*G} = C_{ca^*G,0} \quad \text{Eq. 2-33}$$
where \(C_{i,0} \) represents the initial concentration of species \(i \) in the affinity assay solution.

Since the binding reactions between glucose and conA and between dextran and conA happen almost immediately, the initial concentrations of the glucose-conA and dextran-conA complexes were assumed to be zero.

2.9.2 Membrane – Initial Conditions

Initial conditions of the semipermeable membrane can depend on the type of membrane used in the device as well as its orientation (specifically with the AAO membrane). It was assumed that the membranes were wetted prior to the initiation of the experimental test and thus share similar initial concentrations to those possessed by the internal affinity solution. For the common case where either an isotropic membrane was used (e.g. RC membrane) or if the active layer of an anisotropic membrane (e.g. AAO membrane) is in immediate contact with the affinity solution, a separate initial condition (Eq. 2-35) was applied:

\[
\text{at } t = 0; \quad \text{for } L_i \leq x \leq L_e
\]

\[c_{Gm} = C_{G,0} \quad \text{Eq. 2-35} \]

where, in this specific case, \(C_{Gm} \) would represent the glucose concentrations in both the active and support layers of the anisotropic AAO membrane. Because conA, dextran, and the conA complexes cannot pass through the nano-size pores, initial conditions are unnecessary.

If the case where the support layer of the anisotropic membrane was in contact with the affinity solution, basically extending the volume of the affinity solution, initial conditions (Eq. 2-36 - Eq. 2-40) for all five components must be noted. The active layer,
however, would remain unchanged with the exception of the boundary limits for which the initial condition (Eq. 2-41) is applied.

At $t = 0$; for $L_i \leq x < L_{as}$

\[
C_{Gms} = C_{G,0} \quad \text{Eq. 2-36}
\]
\[
C_{Dms} = C_{D,0} \quad \text{Eq. 2-37}
\]
\[
C_{cAms} = C_{cA,0} \quad \text{Eq. 2-38}
\]
\[
C_{cA^*Gms} = C_{cA^*,G,0} \quad \text{Eq. 2-39}
\]
\[
C_{cA^*Dms} = C_{cA^*,D,0} \quad \text{Eq. 2-40}
\]

and at $t = 0$; for $L_{as} \leq x < L_e$

\[
C_{Gma} = C_{G,0} \quad \text{Eq. 2-41}
\]

As previously stated, initial conditions for the non-glucose components are not needed for the region occupied by the active layer of the AAO membrane since they are too large to permeate through the nanoporous channels.

2.9.3 External Solution – Initial Conditions

The initial condition of the glucose in the external solution, which ultimately would serve as the final equilibrium concentration of the sensor (at least in cases where the external volume was much larger than the internal sensor volume), was specified by the literature in Eq. 2-42.

At $t = 0$; for $x \geq L_e$

\[
C_{Ge} = C_{Ge,0} \quad \text{Eq. 2-42}
\]
2.10 Boundary Conditions

Boundary conditions were based on the geometry of the sensor and the selection of the semipermeable membrane. For the sensors that had geometry labeled as axial-cylindrical (i.e. $m = 0$), a non-permeable wall-boundary was applied. For the sensors that had geometry labeled as radial-cylindrical (i.e. $m = 1$) or radial-spherical (i.e. $m = 2$), a symmetry-boundary was applied. Regardless, both boundary conditions have identical boundary condition equations (Eq. 2-43 - Eq. 2-47):

at $x = 0$

\[
\frac{\partial C_G}{\partial x} = 0 \quad \text{Eq. 2-43}
\]
\[
\frac{\partial C_D}{\partial x} = 0 \quad \text{Eq. 2-44}
\]
\[
\frac{\partial C_{CA}}{\partial x} = 0 \quad \text{Eq. 2-45}
\]
\[
\frac{\partial C_{CA^*G}}{\partial x} = 0 \quad \text{Eq. 2-46}
\]
\[
\frac{\partial C_{CA^*D}}{\partial x} = 0 \quad \text{Eq. 2-47}
\]

where $x = 0$ serves as the bottom of a sensor’s internal chamber for axial-cylindrical devices or the center axis of radial-cylindrical devices.

At the interface between the semipermeable membrane and the affinity solution, a number of scenarios could exist. In the more common case where either an isotropic membrane (e.g. RC membrane) is used or if the active layer of an anisotropic membrane (e.g. AAO membrane) is in contact with the affinity solution, the following boundary conditions (Eq. 2-48 - Eq. 2-53) are required:
at $x = L_t; \ t > 0$

$$D_G \frac{\partial C_G}{\partial x} = D_{Gm} \frac{\partial C_{Gm}}{\partial x} \quad \text{Eq. 2-48}$$

$$\kappa_1 C_G = C_{Gm} \quad \text{Eq. 2-49}$$

$$\frac{\partial C_D}{\partial x} = 0 \quad \text{Eq. 2-50}$$

$$\frac{\partial C_{cA}}{\partial x} = 0 \quad \text{Eq. 2-51}$$

$$\frac{\partial C_{cA^*G}}{\partial x} = 0 \quad \text{Eq. 2-52}$$

$$\frac{\partial C_{cA^*D}}{\partial x} = 0. \quad \text{Eq. 2-53}$$

The boundary conditions Eq. 2-50 – Eq. 2-53 are used to model the non-permeable wall condition at the surface of the nanoporous membrane where the larger molecules cannot pass through. Because glucose can exist on either side of the membrane-affinity solution interface, two boundary conditions were applied at the interface. Eq. 2-48 represents a constant flux of glucose between the affinity solution and the membrane. Eq. 2-49 represents the continuous or discontinuous glucose concentration profile at the interface depending on the value of κ_1, the equilibrium partition coefficient between the affinity solution and the membrane.

In case of the anisotropic AAO membrane (assuming the active side is in contact with the affinity solution), another two boundary conditions (Eq. 2-54 and Eq. 2-55) can be applied at the interface between the active and support layers:
at \(x = L_{as}; \ t > 0 \)

\[
D_{Gma} \frac{\partial C_{Gma}}{\partial x} = D_{Gms} \frac{\partial C_{Gms}}{\partial x} \tag{Eq. 2-54}
\]

\[
\kappa_{as} C_{Gma} = C_{Gms} \tag{Eq. 2-55}
\]

where \(\kappa_{as} \) is the equilibrium partition coefficient between the active and support layers of the AAO membrane.

If the support layer of the anisotropic AAO membrane is in contact with the affinity solution, then a new set of boundary conditions is needed. All five components (glucose, dextran, conA, and the two conA complexes) can exist in both the affinity solution and the pores of the support layer of the membrane. The two regions would normally require two boundary conditions for each component; however, since the diffusion coefficients of the larger non-glucose components were considered negligible, only one boundary condition is needed for each component (Eq. 2-56 - Eq. 2-59).

Glucose would still require the same two boundary conditions, Eq. 2-48 and Eq. 2-49, at the interface since it has a non-zero diffusion coefficient; the only differences are the values of the equilibrium partition coefficient \(\kappa_1 \) and the membrane diffusion coefficient \(D_m \).

At \(x = L_i; \ t > 0 \)

\[
\kappa_D C_D = C_{Dm} \tag{Eq. 2-56}
\]

\[
\kappa_{cA} C_{cA} = C_{cAm} \tag{Eq. 2-57}
\]

\[
\kappa_{cA^*G} C_{cA^*G} = C_{cA^*Gm} \tag{Eq. 2-58}
\]

\[
\kappa_{cA^*D} C_{cA^*D} = C_{cA^*Gm} \tag{Eq. 2-59}
\]
where κ_i represents the equilibrium partition coefficient of species i, at the interface between the affinity solution and the support layer of the AAO membrane.

At the interface of the support and active layers of the AAO membrane, in the case where the membrane is oriented with the support layer in contact with the affinity solution, non-permeable wall conditions are applied for the non-glucose molecules that cannot pass through the nano-pores of the active layer. The boundary conditions (Eq. 2-60 - Eq. 2-63) for glucose would be identical to the ones specified by Eq. 2-54 and Eq. 2-55.

At $x = L_{as}; \ t > 0$

$$\frac{\partial C_{Dm}}{\partial x} = 0 \quad \text{Eq. 2-60}$$

$$\frac{\partial C_{CAm}}{\partial x} = 0 \quad \text{Eq. 2-61}$$

$$\frac{\partial C_{CAm}Gm}{\partial x} = 0 \quad \text{Eq. 2-62}$$

$$\frac{\partial C_{CAm}Dm}{\partial x} = 0. \quad \text{Eq. 2-63}$$

Regardless of the membrane used or its orientation the system can undergo two possible scenarios. In the first scenario, if the external solution is well mixed (and the volume of the external solution is larger than the volume occupied by the membrane and the internal affinity solution), a constant glucose concentration boundary condition (Eq. 2-64) can be applied:

at $x = L_e; \ t > 0$

$$\kappa_2 Gm = C_{Ge} \quad \text{Eq. 2-64}$$
where κ_2 is the equilibrium partition coefficient of glucose at the interface between the membrane and the external solution.

In a second scenario, where the external solution is not well-mixed, the presence of a boundary layer resistance would create addition boundary condition. At the membrane-external solution interface, two boundary conditions for glucose would be needed. The glucose concentration boundary condition \textbf{Eq. 2-64} would be used in addition to a flux condition at the boundary (\textbf{Eq. 2-65}).

At $x = L_e; \ t > 0$

\begin{equation}
D_{Gm} \frac{\partial C_{Gm}}{\partial x} = D_{Ge} \frac{\partial C_{Ge}}{\partial x}.
\end{equation}

\textbf{Eq. 2-65}

Finally, in the presence of a boundary layer resistance, one last boundary condition (\textbf{Eq. 2-66}) is needed for the distant end of the system. It is assumed that the glucose concentration far away from the membrane is equal to the initial bulk external glucose concentration.

As $x \to \infty$

\begin{equation}
C_{Ge} = C_{Ge,0}.
\end{equation}

\textbf{Eq. 2-66}

2.11 Calculation of the Response Time

To evaluate the accuracy of the developed nonlinear model, the response time of the sensor will be calculated and compared with times reported by the authors. In all cases that will be compared using the model, the response time is defined as the time necessary for the system to cover 90% of the difference between the initial and final equilibrium states. Characteristics of the sensor and accompanying circuitry were ignored when the reported and predicted response times were compared. For the model, only the
response of the glucose affinity solution was evaluated. Thus, we can examine the time it takes for the internal glucose mass to increase or decrease by 90% of the difference between the initial and final equilibrium states. For a system that is modeled as a 1D axial diffusion (i.e. \(m = 0 \)), the calculation of the response time (Eq. 2-67) would appear as:

\[
\frac{M_G - M_{G,0}}{M_G^\infty - M_{G,0}} = 0.9
\]

where \(M_G \) is the total mass of glucose in the affinity solution at some time \(t \), \(M_{G,0} \) is the total mass of glucose in the affinity solution at time \(t = 0 \), \(M_G^\infty \) is the total mass of glucose in the affinity solution when the system reaches its final equilibrium state (i.e. when the internal glucose concentration is equal to the external glucose concentration), and \(t_{90\%} \) is the time when Eq. 2-67 is satisfied. Note that the response time of the system is independent of the area \(A \) normal to the diffusion direction.

For a system that can be modeled as a 1D radial-cylindrical diffusion (i.e. \(m = 1 \)), the glucose mass ratio and the calculation of the response time (Eq. 2-68) is:

\[
\frac{M_G - M_{G,0}}{M_G^\infty - M_{G,0}} = 0.9
\]

\[
\frac{2\pi H \int_0^{L_1} C_G(x, t_{90\%}) dx - \pi H L_i^2 C_{G,0}}{\pi H L_i^2 (C_{G,e,0} - C_{G,0})} = 0.9
\]

\[
\frac{2 \int_0^{L_1} C_G(x, t_{90\%}) dx - L_i^2 C_{G,0}}{L_i^2 (C_{G,e,0} - C_{G,0})} = 0.9
\]
where \(H \) is the length of the cylindrical device and is normal to the radial diffusion of glucose. Like the cross-sectional area for the 1D axial diffusion case, the length of the cylindrical device is not important for the calculation of the response time.

Though no systems were compared that could be modeled as a 1D radial-spherical diffusion (\(m = 2 \)), the calculation of the response time (Eq. 2-69) would appear as:

\[
\frac{M_G - M_{G,0}}{M_G^\infty - M_{G,0}} = 0.9 \quad \text{Eq. 2-69a}
\]

\[
\frac{4\pi \int_0^{L_i} C_G(x, t_{90\%}) x^2 dx - \frac{4}{3} \pi L_i^3 C_{G,0}}{\frac{4}{3} \pi L_i^3 (C_{G,e,0} - C_{G,0})} = 0.9 \quad \text{Eq. 2-69b}
\]

\[
\frac{3 \int_0^{L_i} C_G(x, t_{90\%}) x^2 dx - L_i^3 C_{G,0}}{L_i^3 (C_{G,e,0} - C_{G,0})} = 0.9 \quad \text{Eq. 2-69c}
\]

The use of the spatial geometric parameter \(m \) can help develop a general equation that is independent of the size and geometry of the sensor. The glucose mass ratio and the calculation of the response time for any 1D-diffusion case (Eq. 2-70) is:

\[
\frac{M_G - M_{G,0}}{M_G^\infty - M_{G,0}} = 0.9 \quad \text{Eq. 2-70a}
\]

\[
\left(m + 1 \right) \int_0^{L_i} C_G(x, t_{90\%}) x^m dx - L_i^{m+1} C_{G,0} \over L_i^{m+1} (C_{G,e,0} - C_{G,0}) = 0.9 \quad \text{Eq. 2-70b}
\]

2.12 Selection of Values for Model Parameters

The values of the different variables presented in the equations in this chapter were gathered from published sources that were used to compare the experimentally determined response times with the predicted response times from the nonlinear model. In cases, where specific data were not available, a general value was selected from a similar case (e.g. using reaction rate constants for a specific molecular weight of dextran).
Parameters related to the size and geometry of the sensor and the initial concentrations used during experiments were taken directly from published sources that were being compared with the model.

2.12.1 Reaction Rate Constants

The reaction rate constants for the glucose-conA and dextran-conA binding reactions, shown in Eq. 2-8 and Eq. 2-9, were taken from values used by Schultz, Mansouri, and Goldstein [17] [23]. The reaction rates, which are listed in Table 2-1, are for reactions with conA in a solution with a pH of 7.2 and a temperature of 27°C; the molecular weight of dextran for these reactions rates is 70 kg/mol [17]. It was assumed that these reaction rate constants would be applicable regardless of the difference in specific operating conditions such as temperature, pH, and molecular weight of dextran between the different comparable cases.

Table 2-1. Reaction rate constants used in nonlinear model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{fG}</td>
<td>$40 , \text{m}^3/(\text{mol} \cdot \text{s})$</td>
<td>k_{fD}</td>
<td>$50 , \text{m}^3/(\text{mol} \cdot \text{s})$</td>
</tr>
<tr>
<td>k_{rG}</td>
<td>$400 , \text{s}^{-1}$</td>
<td>k_{rD}</td>
<td>$3 , \text{s}^{-1}$</td>
</tr>
</tbody>
</table>

2.12.2 Geometric Parameters and Operating Conditions

The key dimensions of the sensor were taken from the appropriate literature sources. Important lengths, membrane characteristics, and operating temperatures for each of the sources used in the comparison are shown in Table 2-2. For the irregular shaped device presented by Boss et al. two length scales were studied, (1) the depth of
the wells containing the affinity solution and the actuating and sensing diaphragms, and (2) the depth of the microchannel connecting the two wells [11].

Table 2-2. Geometric and operating parameters used in nonlinear model.

<table>
<thead>
<tr>
<th>Source</th>
<th>Membrane</th>
<th>(m)</th>
<th>(L_i) ((\mu \text{m}))</th>
<th>(L_e) ((\mu \text{m}))</th>
<th>(D_{Gm}) (cm(^2)/s)</th>
<th>(T) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[24]</td>
<td>RC</td>
<td>1</td>
<td>95</td>
<td>115</td>
<td>3.1 \times 10^6</td>
<td>22</td>
</tr>
<tr>
<td>[11]</td>
<td>AAO</td>
<td>0</td>
<td>200(^a)</td>
<td>250(^a)</td>
<td>--(^c)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100(^b)</td>
<td>150(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[21]</td>
<td>AAO</td>
<td>0</td>
<td>500</td>
<td>550</td>
<td>--(^c)</td>
<td>23.4</td>
</tr>
</tbody>
</table>

\(^a\) Lengths when \(x = 0 \) represents the bottom of the well containing the affinity solution and the sensing or actuating diaphragm.

\(^b\) Lengths when \(x = 0 \) represents the bottom of the microchannel containing the affinity solution that connects the two wells.

\(^c\) Due to the anisotropy of the membrane, a constant diffusion coefficient was not used. Instead, the diffusion coefficient was calculated using Eq. 2-5 and Eq. 2-19.

Where \(m \) is the geometric parameter, \(L_i \) is the location from the origin at the location of the membrane-affinity assay internal solution, \(L_e \) is the location from the origin at the location of the membrane-external solution, \(D_{Gm} \) is the diffusion coefficient of glucose in the membrane, and \(T \) is the temperature at which the sensor is operated.

2.12.3 Initial Concentrations of Chemical Species in Model

The initial concentrations of the different components were taken from the concentrations expressed in the literature regarding the preparation of the affinity assay and the external glucose solution used with the device. Some of the sources admit to making the affinity solution in bulk, thus the exact concentrations used in the affinity solution in the sensor are unknown and may be different from the bulk concentrations.

The devices used to evaluate the model were evaluated for a number of experimental runs
using different concentrations of glucose which is seen in Table 2-3. The molecular weights of dextran used in the affinity solution for each source were noted as well.

Table 2-3. Initial concentrations of glucose, dextran, and concanavalin A used in nonlinear model.

<table>
<thead>
<tr>
<th>Source</th>
<th>$C_{cA,0}$</th>
<th>$C_{D,0}$</th>
<th>$C_{c,G,0}$</th>
<th>$C_{Ge,0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[24]</td>
<td>0.5 mg/mL</td>
<td>0.1 mg/mL</td>
<td>0</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>[11]</td>
<td>0.4% w/w</td>
<td>2% w/w</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>[21]</td>
<td>3 mol/m³</td>
<td>0.5 mol/m³</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

a Molecular weight of RITC and FITC-labeled dextran: 2000 kg/mol. [24]

b Molecular weight of dextran: 60-80 kg/mol.

c Glucose concentration values were taken from model developed by Clark et al. [23]; all other values were taken directly from the listed source.

2.13 Execution of the Nonlinear Model

The system of nonlinear partial differential equations, along with the accompanying boundary and initial conditions, were entered into a PDE solver (MATLAB) that used a second-order accurate spatial discretization and a stiff ode15s for time integration. A sample of the program that was written to solve for the system of equations can be found in Appendix B. Response times gathered by executing the program were then compared with the response times reported by the authors.
CHAPTER 3

EXPERIMENTAL METHODS

3.1 Design and Fabrication of the Sensors

Many designs were considered, fabricated, and partially tested in this study. All the designs incorporated a two independent sensor setup where two pressure transducers were used to record pressure readings and the difference between the two signals would be used to isolate a glucose-specific signal. The transducers were used to measure the pressure in two separate chambers each separated by the external solution with an AAO membrane. One chamber contained the concanavalin A-dextran affinity assay while the second and separate internal chamber contained a glucose solution lacking conA and dextran. Only two of the designs will be presented in this work. One design was implemented into a flow network to negate pressure effects from the flow of the external solution. A second design was used to simplify the system by ignoring effects caused by external flow and only examining the effects caused by hydrostatic pressure and external osmotic pressure.

3.1.1 First Prototype

The first prototype was designed to examine the effects of flow on the measurements taken by the glucose affinity sensors. The sensor casing was fabricated in two parts as shown in Figure 3-1. The two parts were fabricated from clear impact-resistant polycarbonate. The bottom half held the internal solution and allowed for the
USB-pressure transducer (PX409-005GUSB, Omega) to be threaded into the casing. The top half held the flow channel that was connected to the flow loop. An AAO membrane (Synkera Technologies) was inserted between the two parts of the casing. Initially the assembly was tested without an O-ring, as shown in Figure 3-2. But due to complications with the membrane in initial tests, an O-ring was inserted between the membrane and the top half of the sensor casing. A notch was cut into the top half of the sensor casing to allow for bleeding of the internal solution and pressure relief during the loading phase.

Figure 3-1. Parts of sensor casing designed for first prototype. The bottom half (A) and the top half (B) of the sensor casing designed for the first prototype were fabricated out of impact-resistant polycarbonate. The bottom half of the casing contained the internal solution and pressure transducer. The top half contained the channel allowing for the external solution to flow over the AAO membrane that was positioned between the two casing halves.
Figure 3-2. Cross-sectional view of computer-aided drawing of the assembled first prototype. The AAO membrane (A) was placed between the two parts of the sensor casing. The USB-pressure transducer (B) was threaded into the bottom of the assembly. Two injection ports (C) were drilled into the casing for the loading of the internal solution and evacuation of air; after the internal solution was loaded, the ports were sealed off with a sealing screw (on the right) (sealing screw is not shown on the left). A bleeding port (D) was added to allow for pressure relief during the loading phase. The external solution was pumped through the sensor via channel (E) located in the top half of the casing.

3.1.2 Second Prototype

The second prototype used the same USB-pressure transducers and AAO membranes used in the first prototype. To simplify the design, a single basin was used to hold the external solution as shown in Figure 3-3. The entire part was fabricated from impact-resistant polycarbonate. The AAO membranes were placed in slots cut into the basin and sealed with high-purity epoxy. The USB-pressure transducers were threaded into the part at the bottom. Two ports were added to allow for simultaneous loading of the internal solution and evacuation of air during the loading phase.
Figure 3-3. Side view of computer-aided drawing of second prototype. The second prototype was fabricated from a single block of impact-resistant polycarbonate. The external basin (A) held the external solution. Two slots (B) were carved at the bottom of the basin to hold the AAO membrane; the membrane was sealed using epoxy. Injection ports (C) were drilled into both sides of device for each internal chamber to allow for the loading of the internal solution and the evacuation of air. The two USB-pressure transducers were threaded into the large wells (D) at the bottom of the casing.

3.2 Preparation of the Test Solutions

3.2.1 Affinity Assay

The conA-dextran affinity assay was prepared in the same manner described by Krushinitskaya et al. [21]. ConA Type IV (Sigma Aldrich) and dextran 80 (MW 80,000) (Sigma Aldrich) was dissolved in 10 mM Trizma buffer solution at concentrations of 3 mM and 0.5 mM, respectively. To activate the sugar binding properties of the conA 10 mM of CaCl₂ and 10 mM of MnCl₂ were added; 150 mM of NaCl was added to balance the osmotic pressure of the solution. Prior to the addition of conA and dextran, 40 mM of glucose was added to prevent precipitation of the affinity assay and to decrease the solution viscosity to allow for adequate mixing. The pH of the solution was adjusted to 7.4 by adding sodium hydroxide.
3.2.2 **Albumin Solution**

Three batches of albumin (MW 66,000) (Sigma Aldrich) solutions were prepared to test the sensors' capabilities to measure the osmotic pressure of a macromolecule. Because the size of the albumin protein is on the same order of magnitude in size of the conA and dextran used in the affinity assay, the albumin served a cost-efficient method of ensuring that the membrane or sensor body would not leak the conA-dextran affinity assay. Three concentrations of 0.25 mM, 0.5 mM, and 1 mM of albumin were prepared in deionized water. Solutions were alternated in the external solution to examine the step changes in osmotic pressure.

3.2.3 **Glucose Test Solution**

Glucose solutions with various glucose concentrations were prepared to be used as the test solution in the external environment and the internal solution in the negative (non-affinity assay) internal chamber. Glucose in concentrations of 2 mM, 5 mM, 10 mM, and 20 mM were dissolved in deionized water. The 2 mM glucose solution was also used as a “rinsing” fluid in between experimental runs. It was critical to not let the glucose concentration drop too low as to avoid irreversible precipitation of the affinity assay.

3.3 **Experimental Setup and Operation**

3.3.1 **First Prototype**

The first prototype discussed in this work was designed to be implemented into a flow loop to examine the effects of fluid flow may have on the osmotic sensor readings. The two separate assembled sensors were implemented into a flow loop that was circulated using a peristaltic pump. A bubble chamber was used to remove air bubbles
initially present in the flow loop. To mitigate any effects caused by changes in temperatures, the entire system was placed in an incubator set at 24 °C. The USB cables were wired out of the incubator to a nearby computer with recording software. The two USB-pressure transducers recorded the pressure in the two sensors simultaneously, each with a sampling rate of 1 Hz.

To determine if the sensor body and the AAO membrane were assembled correctly without any flaws, albumin was used instead of the affinity assay solution. One chamber was loaded with 0.5 mM solution of albumin, while the other chamber was filled with deionized water. The flow loop was filled with alternating solutions of 0 mM, 0.25 mM, 0.5 mM, and 1 mM albumin solutions. The recording software was used to monitor changes in pressure were monitored using the recording software. Solutions were changed out after the signal reached its maximum response (which depending on the step change was on the order of hours).

3.3.2 Second Prototype

The second prototype discussed in this work ignored the effects of external flow by exposing both sensors to a single basin filled with the external solution. The two sensors were incorporated into a single basin that was filled with 10 mL of the external solution. The system was placed in the incubator and kept at a constant temperature of 24 °C. The USB cables were wired out of the incubator to a nearby computer with recording software. The two USB-pressure transducers recorded the pressure in the two sensors simultaneously, each with a sampling rate of 1 Hz.

To check that the system was assembled correctly and that there were no cracks in the AAO membrane, an albumin solution was used. One internal chamber was filled with
0.5 mM of albumin, while the other chamber was filled with deionized water. The external basin was filled with alternating solutions of 0 mM, 0.25 mM, 0.5 mM, and 1 mM albumin. Efforts were taken to monitor the water level in the basin to maintain a minimum height of water in the basin. The recording software was used to monitor changes in pressure. Solutions were changed out after the signal reached its maximum response (which depending on the step change was on the order of hours).
CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Nonlinear PDE models

The PDE models developed in Chapter 2 and parameters gathered from published studies were used to calculate response times of concanavalin A-dextran glucose affinity sensors. The models were designed to accommodate different geometries, diffusion lengths, membrane selections, operating conditions (e.g. temperature), and initial concentrations. The calculated response times were compared to the reported response times found in the literature. In addition, parameter studies were performed to analyze optimal conditions and potential setbacks when using these specific glucose affinity sensors.

4.1.1 Comparison with Linear PDE Models

The first model to predict the response times of conA-dextran glucose affinity sensors was developed by Clark, Barbari, and Rao in 1999 [23]. The group developed a set of linear partial differential equations to describe the diffusion of glucose from an external solution through a semipermeable membrane into an internal lumen where homogenous reactions between glucose, conA, and dextran occurred. Clark and colleagues used a device designed and tested by Ballerstadt and Schultz which was a cylindrical dialysis fiber with a regenerated cellulose membrane [24]. Glucose diffused radially into the lumen and reacted with the conA-dextran affinity assay. The device
correlated glucose concentrations to the fluorescence intensity from unbounded fluorescein-labeled dextran, obtained through an optical fiber [24].

The linear model developed by Clark and colleagues analyzed three cases for the glucose sensor: (I) case where the external medium was well mixed during sensor operation, (II) case where the external medium was not mixed, thus creating an external boundary layer resistance at the membrane surface, and (III) the case for an in vivo implantation of the device where a fibrous capsule would form around the sensor [23]. Since no experimental data were identified for the in vivo operation of the sensor, only cases I and II were used in the comparative study between the linear and nonlinear models. The development of the linear model was similar to the development of the nonlinear model discussed in Chapter 2, except within the internal lumen with the affinity assay. Whereas the nonlinear model uses the Stokes-Einstein equation (Eq. 2-5) in combination with the empirical viscosity equation developed from the data presented by Boss et al. (Eq. 2-6), the linear model proposed by Clark and colleagues assumed a constant diffusivity of glucose in the affinity assay. In their model, the authors used a constant value of 7.3×10^{-6} cm2/s for the diffusion coefficient ($D_{G,AA}$ in Eq. 2-14).

The Clark model was executed with the parameters for the device by Ballerstadt and Schultz and with an initial internal glucose concentration of 0 and an initial external glucose concentration of 5.6 mM. The response time for the well-mixed external solution case (case I) was 11 seconds. For the case where the external solution is not well-mixed thus leading to the formation of an external boundary layer resistance (case II), the response time was 45 seconds. The experimental response time reported by Ballerstadt and Schultz was in the range of 3-5 minutes. The response times predicted by the Clark
model were well below the reported value. Clark and colleagues performed parameter studies to decrease the difference, namely changing the values of the partition coefficients (κ_1 and κ_2 in Eq. 2-49 and Eq. 2-64, respectively) and the membrane diffusion coefficient ($D_{G,m}$ in Eq. 2-20). The parameter studies showed that the partition coefficients did not significantly affect the calculated response times. However, the glucose-membrane diffusion coefficient did significantly affect the results. It was found that using a glucose-membrane diffusion coefficient between 1% and 2% of the value of the used external glucose diffusivity (7.3×10^{-6} cm2/s) could place the response time within the reported range by Ballerstadt and Schultz [23]. However, Clark and colleagues do not give any justification or explanation for why this is the case.

For comparison, the developed nonlinear model used the parameters specified by Clark and colleagues except instead of a constant diffusion coefficient for the affinity assay, the glucose-affinity assay diffusion coefficient was calculated using the Stokes-Einstein equation (Eq. 2-5). The model was tested on the first two cases that were tested by Clark and colleagues; (Case I) a well-mixed external solution (which allows for a constant concentration boundary condition at the membrane's external surface) and (Case II) an external solution that is not mixed giving rise to a boundary layer resistance at the membrane surface. For the well-mixed scenario (Case I), the calculated response time from the nonlinear model was 90 seconds. For the boundary layer resistance case (Case II), the response time from the nonlinear model was 138 seconds. The step responses from both the linear and nonlinear models for the two cases are shown in Figure 4-1.
Figure 4-1. Step response of glucose sensor designed by Ballerstadt and Schultz using parameters from Clark, Barbari, and Rao. Results are shown for both the linear (Clark) and nonlinear (Reis) models for the case where the external solution is well mixed (Case I) and the case where an external boundary layer resistance forms (Case II). The 90% response times for each the cases were: Clark (Case I) 11 seconds; Clark (Case II) 47 seconds; Reis (Case I) 90 seconds; Reis (Case II) 138 seconds. The experimental response time for the system was reported within the range of 3-5 minutes [24].

The results show a marked improvement in the calculated response time, however, it is still short of the experimentally reported response time by Ballerstadt and Schultz. Parameter studies were not performed using the nonlinear model. Clark, Barbari, and Rao demonstrated that changes in the membrane partition coefficient did not significantly change the response time. Since the nonlinear behavior of the system occurs in the bulk of the internal affinity assay solution, it is believed that the partition coefficient of the membrane (which exhibits linear behavior) would still not cause significant changes in the response time.

Clark and colleagues demonstrated that a decrease in the membrane diffusion coefficient would increase the response time. The membrane diffusion coefficient for the
nonlinear model was taken from Clark and colleagues [23] and Schultz and colleagues [17]. However, this value was reported as the diffusion coefficient of glucose in the membrane at a temperature of 27°C [17]. According to Ballerstadt and Schultz, the sensor was operated at a temperature of 22°C [24]. The decrease in temperature could decrease the diffusion coefficient and thus increase the response time of the system, though it is unreasonable to believe that it would reduce it by as much as 98%. Other factors that may have also decreased the membrane diffusion coefficient included pore occlusion from the conA and dextran molecules and swelling of the membrane which would reduce the pore diameters. Because regenerated cellulose is highly tortuous [21], the Renkin equation (Eq. 2-19), which was used for the calculation of the membrane diffusion coefficients for the straight-pore AAO membranes, could not be used to calculate the membrane diffusion coefficient. If additional information such as the membrane diffusion coefficient at the specific operating temperature was available or membrane property information (e.g. tortuosity, porosity, etc.) was readily available, the response time might improve and fall within the experimental calculated range.

4.1.2 Ballerstadt and Schultz Sensor

In addition to using the parameters published by Clark, Barbari, and Rao, initial and external glucose concentrations used by Ballerstadt and Schultz in experimental runs of their glucose affinity sensor were inserted into the model to determine the response time. To compare with the values obtained with the Clark parameters, the response time was computed using the other listed initial and external glucose concentrations (see source [24] in Table 2-3). Since the case where an external boundary layer resistance was present gave the closest response time to the experimentally reported value based on the
Clark parameters, the same boundary conditions were applied for the other computations.

The responses of the system given the three step changes in glucose concentration are shown in Figure 4-2.

![Figure 4-2](image)

Figure 4-2. Step response of glucose affinity sensor designed by Ballerstadt and Schultz. Initial glucose concentrations (in the affinity assay) and external glucose concentrations were taken from Table 2-3. All three cases assumed the presence of an external boundary layer resistance. The response times were 138 seconds (—), 109 seconds (- - -), and 123 seconds (— — —). The experimental response time was reported in the range of 3-5 minutes [23] [24].

As seen from Figure 4-2, the response times for the other two cases are slightly less than the one calculated from the concentrations used by Clark and colleagues in their model. For an increasing step change from 7.5 mM to 20 mM, the response time was 109 seconds. For the decreasing step change from 20 mM to 0 mM, the response time was 123 seconds. Both cases still fall short of the experimentally determined response time between 3-5 minutes.

The responses of the affinity sensor under the different step changes in glucose concentration demonstrate an interesting behavior of the dextran-conA affinity assay. The
first case, where the system experienced a step change of +5.6 mM glucose concentration, had a longer response time than the other two cases that had larger magnitude step changes. It is believed that at lower glucose concentrations, where the affinity assay solution experiences its highest viscosity and thus lowest glucose diffusivity, the response time is dominated by an increased mass transfer resistance caused by the increased cross-linking of dextran and conA. In the second case, where a step change of +12.5 mM glucose was experienced, because the system initially had a larger concentration of glucose in the affinity assay, it did not feel the full extent of the resistance caused by the dextran-conA crosslinked matrix.

Comparing the third case (which experienced a step change of -20 mM glucose) to the second case also confirms the suggestion that the increased presence of crosslinked dextran with conA at low glucose concentrations significantly impedes glucose transport in or out of the internal lumen, thus increasing the response time of the system. As seen from Figure 4-2, the third case which initially starts at a higher glucose concentration has a quick response initially due to the large step change and the decreased presence of bounded dextran. But as glucose leaves the lumen, dextran replaces the glucose at the conA binding sites increasing the resistance over time. The increased resistance in turn slows the response of the system. In the second case, since glucose enters the sensor, the diffusion resistance decreases over time. The only factor that slows the response in the second case is the decreasing difference between the internal and external glucose concentration.
4.1.3 **Boss and Colleagues Sensor**

The system designed and tested by Boss *et al.* has a number of aspects that differ than the system designed by Ballerstadt and Schultz, in addition to initial concentrations of the affinity assay components and glucose. It uses an asymmetrical AAO membrane instead of the RC membrane used in the dialysis fiber. Also, glucose diffuses axially rather than radially into the internal chamber.

The unique structure of the system designed by Boss *et al.* provides some complications when applying the model to predict the response time of the system. Because the depths of the wells (200 μm deep) differ from the microchannel depth (100 μm), selecting the appropriate diffusion length for the system is not obvious. When the actuator on the sensor creates a pressure wave, the wave travels down the microchannel into the well housing the sensing diaphragm. Most of the resistance occurs in the narrow microchannel, thus it is believed that the time for the microchannel to achieve its final viscosity would control the response time of the sensor. However, due to the extended depth of the wells, changes in the viscosity of the affinity assay solution in the wells could also impact the response time.

Boss *et al.* examined the response times both increasing step changes and decreasing step changes and observed a notable difference in the response time. To evaluate the model and its effectiveness of predicting the response of the system, both increasing and decreasing step changes were tested. In addition, both the depth of the wells and the depth of the microchannel were used to identify patterns in the sensor behavior.
Experimental data from Boss et al. showed that the response time for the system during an increasing step change was 3.6 ± 0.7 minutes, while the response time for a decreasing step change was 12.8 ± 1.4 minutes. Inserting the same step change used by Boss et al, response times were calculated using the depth of the well as the primary diffusion length and using the depth of the actuating and sensing wells. The response times when using the microchannel depth were 6.3 minutes for the increasing step change and 5.1 minutes for the decreasing step change. The response times when using the well depth were 12.5 minutes for the increasing step change and 13.3 minutes for the decreasing step change. The responses calculated for all four cases are shown in Figure 4-3.

![Figure 4-3. Step response of glucose affinity sensor designed by Boss and colleagues.](image)

Increasing step changes started with an initial glucose concentration of 2 mM and a final concentration of 20 mM. Decreasing step changes started with an initial glucose concentration of 20 mM and a final concentration of 2 mM. Two internal lengths (L_i) were used: the microchannel depth (100 μm) and the well depth (200 μm). The response times using the microchannel depth were 6.3 minutes and 5.1 minutes for increasing and decreasing step changes, respectively. The response times using the well depth were 12.5 minutes and 13.3 minutes for increasing and decreasing step changes, respectively. The experimentally determined response times were 3.6 ± 0.7 minutes and 12.8 ± 1.4 minutes for increasing and decreasing step changes, respectively.
An interesting comparison arises when the response times for both increasing and decreasing step changes and using different internal depths are compared with the experimentally determined response times by Boss and colleagues. The response times calculated using the well depth fall within the time range Boss and colleagues determined for a decreasing step change, whereas the times calculated using the microchannel depth were just slightly above the time determined by Boss and colleagues for an increasing step change. Boss et al. suggests that the increased response time for the decreasing step change could be caused by the decrease mobility of glucose in the highly viscous affinity assay solution.

The concentration gradient can affect the penetration depth of the diffusing glucose. In other words, for an increasing step change, the affinity assay initially with a low glucose concentration has a higher viscosity and thus a lower diffusion coefficient for glucose. However, the large step change and steep gradient caused by a much higher glucose concentration trying to diffuse into the sensor can provide the potential needed to overcome the low diffusivity. As glucose enters the sensor, the diffusivity rises making it easier for other glucose molecules to diffuse into the sensor despite the decreasing glucose concentration difference that drives the flux of glucose into the sensor. The opposite is seen for a decreasing step change. Initially the high glucose concentration in the affinity assay gives rise to a higher diffusion coefficient of glucose out of the sensor; the only limiting factor is the reduction in diffusivity caused by the active layer of the membrane. However, as glucose leaves the sensor the diffusivity decreases, creating more resistance for glucose molecules further from the membrane to travel. This increased resistance is also accompanied by the gradual reduction in the change in
concentration across the membrane making it even more difficult for glucose molecules to diffuse out of the sensor.

Both the experimental results by Boss et al. and the response times calculated from the nonlinear model indicate that an asymmetrical device can connect response times with the flux direction of glucose. However, the response of this particular system could also be greatly affected by the interaction between the actuating and sensing diaphragms in addition to the design of the microchannel connecting the two wells.

4.1.4 Krushinitskaya and Colleagues Sensor

The last system that was modeled using the nonlinear model was the system proposed by Krushinitskaya and colleagues [21]. Like the device designed by Boss et al. the glucose affinity sensor designed by Krushinitskaya used the same AAO membrane and required glucose to diffuse axially through the membrane into the internal chamber. However, unlike the system designed by Boss and colleagues, only one chamber, with a uniform depth, was used. The depth of the chamber (500 μm) [21] is much larger than the depths seen in the other systems studied and it was expected to give significantly larger response times.

Krushinitskaya and colleagues initially loaded the internal chamber with 40 mM of glucose. This is the highest glucose concentration seen thus far when executing the model given the different parameters from the literature. Krushinitskaya and colleagues examined the response time for four decreasing step changes with final external glucose concentrations of 30 mM, 20 mM, 10 mM, and 2 mM. As predicted, the much larger diffusion length through the affinity assay led to a significantly larger experimentally determined response time than those times reported by Ballerstadt and Schultz and Boss
and colleagues. Krushinitskaya et al. reported that the response time for their system was in the range of 40 minutes to 2.5 hours, depending on the step change observed.

The response times calculated using the nonlinear model all fall within the range reported by Krushinitskaya and colleagues. For the smallest step change with an external glucose concentration of 30 mM, the response time was 47.7 minutes. For external glucose concentrations of 20 mM and 10 mM, the response times were 59.3 minutes and 68.7 minutes, respectively. For the largest step change with an external glucose concentration of 2 mM, the response time was 82.8 minutes. The responses of the system for all four cases are shown in Figure 4-4.

![Figure 4-4. Step response of system designed by Krushinitskaya and colleagues.](image)

The plot shows the response of the glucose affinity sensor designed by Krushinitskaya et al. using an initial internal glucose concentration of 40 mM and various external glucose concentrations. The response times were: 47.7 minutes (30 mM), 59.3 minutes (20 mM), 68.7 minutes (10 mM), and 82.8 minutes (2 mM). The experimentally determined response times were within the range of 40 minutes to 2.5 hours [21].

All of the response times were within the range reported by Krushinitskaya et al., but none of the calculated times were close to the maximum time of 2.5 hours. The
greater response time could occur if pores in the membrane are occluded, decreasing the effective diffusivity of glucose out of the sensor. In addition, the AAO membrane, when exposed to an aqueous environment, will undergo some swelling [30]. The swelling can reduce the pore diameters of the membrane (specifically the active layer) thus decreasing the diffusion coefficient of glucose in the membrane. Another possible explanation for the larger response time is the orientation of the asymmetrical AAO membrane. In the models, it was assumed that the AAO membrane was positioned so that the smaller pore active layer was in contact with the affinity assay as to prevent the larger dextran and conA molecules from penetrating the membrane increasing the diffusion resistance. The opposite orientation is explored in more detail later in this work.

4.1.5 Effects from Glucose Concentration on Response Time

It is common knowledge that the magnitude of a step change greatly impacts the response time. However, because of the nonlinear behavior of the glucose affinity assay solution, the location of the step change on the glucose concentration spectrum can have a noticeable impact on the response time. At lower glucose concentrations, the affinity assay is more viscous and thus hampers the diffusion of glucose in and out of the sensor. Yet, at higher glucose concentrations the viscosity of the solution decreases, which does less to restrict the diffusion of glucose into or out of the sensor.

To see the effects, the nonlinear model was solved using the parameters set by Ballerstadt and Schultz. The only parameters that were altered were the initial internal glucose concentration in the affinity assay and the external glucose concentration. To specifically highlight how the glucose concentration affects the sensor system, the case where the external solution is well-mixed was applied to negate any effects that would be
caused by the existence of a boundary layer resistance. Glucose concentration step changes were spread between 2 mM and 20 mM. To determine if the location of the step change on the spectrum had a different effect depending on the direction of the flux of glucose, both decreasing and increasing glucose profiles were tested. The response times for the parameter study are shown in Figure 4-5.

![Graph showing response times for varying initial/internal and external glucose concentrations.](image)

Figure 4-5. Effects of glucose range and direction of glucose flux on step response. Response times for the sensor design by Ballerstadt and Schultz with varying initial internal and external glucose concentrations. The model was executed using the assumption of a well-mixed external solution. For increasing glucose concentration cases, the response times were: 88 seconds (2-5), 68 seconds (5-10), 59 seconds (10-15), and 54 seconds (15-20). For decreasing glucose concentration cases, the response times were: 102 seconds (2-5), 75 seconds (5-10), 60 seconds (10-15), and 52 seconds (15-20).

As seen from Figure 4-5, both increasing and decreasing glucose profiles experience a reduction in response time as the step change moves into the higher glucose concentration range. Also, noticeable from the chart is the noticeable difference in response time between the increasing and decreasing glucose concentration cases at smaller glucose concentrations. Because the viscosity is more sensitive to changes in glucose in this range, the glucose diffusive resistance increases significantly when
glucose leaves the sensor. But at higher glucose concentrations where the viscosity is not nearly as sensitive to glucose changes, the flux of glucose regardless of direction does not experience any additional resistance.

4.1.6 **Effects of Temperature on Response Time**

As shown from the Stokes-Einstein equation (Eq. 2-5) and the empirical glucose affinity viscosity equation (Eq. 2-6), the viscosity and diffusion coefficients are dependent on the temperature of the sensor. The effect of temperature on the system response time was analyzed for the expected temperature ranges of both in vivo and in vitro operation. The sensor designed by Krushinitskaya *et al.* was modeled with changes in the temperature. The initial internal and external glucose concentrations were selected so that only the effects of temperature would stand out; a glucose step change between 10 mM and 20 mM was selected for the temperature parameter study. To determine if temperature effects depended on the direction of the flux of glucose, both increasing and decreasing step changes were used. The reduction in response time as the system temperature increases is shown in **Figure 4-6**.
As seen from the graph in Figure 4-6, as temperature increases the response time decreases. This decrease is expected since an increase in temperature increases the diffusion coefficient. In addition, an increase in temperature decreases viscosity which in turn increases the diffusion coefficient. However, to confirm that the change in temperature affects glucose affinity sensors regardless of geometry or membrane, the model was executed using the parameters from Ballerstadt and Schultz. The same temperatures were used in addition to the same glucose concentration step change (between 10 mM and 20 mM). The response times decreased similarly with increasing temperature. The percent rate of decrease for both systems and for both glucose flux directions are shown in Figure 4-7.
Figure 4-7. Rate of change in response time with increasing temperature. The plot shows the percent rate of change in the response time per °C increase in temperature for systems designed by Krushinitskaya et al. [21] and Ballerstadt and Schultz [24]. Results are also shown for increasing and decreasing step changes in glucose concentrations for both systems.

Both systems, regardless of the direction of the flux of glucose, experience a 3 - 4% reduction in the system response time per degree increase in temperature. In the system presented by Ballerstadt and Schultz, a constant diffusion coefficient was used for the diffusion of glucose through the RC membrane and was not a function of temperature. If more information about the structure of the RC membrane were available, the diffusion coefficient could be modeled in a similar manner that was used for the diffusion coefficient in the AAO membrane, and thus reflect an additional decrease in the response time as the diffusion coefficient of glucose in the membrane should increase with rising temperatures. Another temperature-related factor that was not considered in the model was the reaction rate constants. Typically, with increasing temperatures, reaction rates increase; however, the effect it would have on the response time cannot be
determined without additional kinetic information. It cannot be said whether an increase in temperature would decrease the response time in respect to the reaction rates as both glucose and dextran reaction rate constants would be affected.

Though the effects of temperature on the system response time were marginal, the effect of temperature has a greater impact on the magnitude of the signal from the sensor particularly for sensors that may measure osmotic pressure or viscosity or other properties that are highly dependent on temperature. Boss et al. demonstrated significant differences in the magnitude of the sensor response when the sensor was operated at different temperatures. Thus, for these particular systems, temperature has a much larger impact on the sensory output than the response time.

4.1.7 Effects of AAO Membrane Orientation on Response Time

The asymmetrical AAO membrane used by Boss et al. and Krushinskaya et al. as the semipermeable membrane is composed of a thin 1-µm thick active layer and a 49 µm thick support layer. The active layer contains pores that have diameters 4-6 nm, while the support layer contains pores that have diameters 100-200 nm. It is the thin active layer that prevents the larger dextran and conA molecules from diffusing out of the sensor. It was assumed during early tests of the nonlinear model that the AAO membrane was positioned in such a manner that the active layer was in contact with the affinity assay solution in the internal chamber, thus preventing the larger dextran and conA particles from entering the support layer. The AAO membrane, however, is transparent and lacks any visible markers that would distinguish the active layer from the support layer without the aid of a powerful microscope. This could lead to a case where the AAO membrane is flipped, where the support layer is in contact with the internal chamber.
housing the affinity assay. Because the pores in the support layer are large enough for the larger dextran and conA molecules to diffuse into, they can potentially increase the length where the glucose molecules see the greatest diffusive resistance with the presence of the affinity assay inside the support layer of the membrane.

Krushinitskaya et al. reported experimentally determined response time between 40 minutes and 2.5 hours. Using the nonlinear model and the assumption that the active layer of the AAO membrane was in contact with the internal chamber housing the affinity assay, the largest response time calculated was 82.8 minutes for the largest step change. This value is well short of the 2.5 hour time that Krushinitskaya et al. reported, and factors such as temperature do not reflect the large difference. The orientation of the AAO membrane could drastically affect the response time of the system. To determine the effect that the orientation of the AAO membrane may have on the response time, the same parameters used when executing the model for the system designed by Krushinitskaya and colleagues were reinserted into the model with the only change coming from the orientation of the membrane. With the support layer in contact with the internal solution, the continuity equations changes for the support layer (Eq. 2-24 - Eq. 2-28) in addition to the initial conditions (Eq. 2-36 - Eq. 2-40) and boundary conditions (Eq. 2-60 - Eq. 2-63). The response times for the system for the case where the active layer is in contact with the internal chamber and the case where the support layer is in contact with the internal chamber are show in Figure 4-8.
Figure 4-8. Effects of AAO membrane orientation on the response time of system designed by Krushinitskaya and colleagues. The plot was created using parameters specified by Krushinitskaya et al. [21] with an initial internal glucose concentration of 40 mM. The response times are shown for the case where the support layer of the AAO membrane is in contact with the internal chamber and for the case where the active layer of the AAO membrane is in contact with the internal chamber of the sensor.

The results from the parameter study show that the response time is increased, as expected, by more than 20% when the AAO membrane is flipped so that the support layer is in contact with the internal chamber. The increase in response time from the membrane orientation might partially, but not completely, account for some of the difference between the experimentally determined response times and the response times calculated from the nonlinear model. Other factors such as changes in the concentrations of the affinity assay components in addition to changes in the membrane resistance from macro-molecule occlusion and membrane swelling [30] may account for the rest of the difference.

The extent that the membrane orientation may have on the response time is likely related to the depth of the internal region. In other words, a larger device would see a
smaller percent increase in response time than a smaller device. The support layer is
49 µm thick, but the internal chamber in the system designed by Krushinetskaya et al. is
500 µm deep. A device that has a smaller internal diffusion length (i.e. the microchannel
depth in the device presented by Boss et al.) would experience more than a 20% increase
in response time as demonstrated in Figure 4-9.

Figure 4-9. Response time of system designed by Boss et al. as a result of AAO
membrane orientation. The chart shows the response times for a system
designed by Boss et al. using the microchannel as the internal length (i.e.
$L_i = 100$ µm) [11]. The chart compares increasing step change (from 2 mM
to 20 mM) and decreasing step change (from 20 mM to 2 mM) for the cases
where the active layer or the support layer is in contact with the internal
chamber. The increasing step response times for the active and support
layer are 6.3 minutes and 7.7 minutes, respectively. The decreasing step
response times for the active and support layer are 5.1 minutes and 8.9
minutes, respectively.

When the parameters from Boss et al. were used in the AAO membrane study,
response time increased by only 22% for an increasing step change, but by 75% for a
decreasing step change. The change in orientation effectively increases the diffusion
distance of glucose through the viscous affinity assay by almost 50%. With further
miniaturization of the system, even more drastic increases in response time for a flipped membrane should occur.

4.2 Experimental Results

Unfortunately, no conclusive results were obtained during experimental runs with either prototype. The limited collected data were not repeatable and represented unknown artifacts and external interference. Despite the lack of conclusive results, complications that this particular glucose affinity sensor experience, which are not reflected in mathematical models, give rise to concerns that must be addressed during the design of a well-functioning glucose affinity sensor.

4.2.1 Problems with the AAO Membrane

The AAO membrane used in both prototypes was identical to the membrane used by Krushinitskaya et al. [21] and Boss et al. [11] in their sensors. The membranes were purchased from Synkera Technologies and were put through the same heat treatment used by both research groups. Because the ceramic membranes are extremely thin (50 μm thick), a small percentage of the membranes broke during shipping.

Placing the membranes into either of the prototypes proved equally difficult. Unnoticeable uneven surfaces in the fabricated sensor casing placed stress on the membrane when the membrane was fitted into the sensor casing; in many of these cases, the membrane would suffer noticeable cracks or complete fractures and would have to be removed. The first prototype used rubber O-rings to seal the membrane in the sensor casing. During the sensor casing assembly process, the pressure exerted by the casing on the O-ring and membrane created micro-cracks at the O-ring-membrane interfaces. These cracks quickly propagated into the middle of the membrane causing it to fail during the
injecting or loading stages. To address this problem in the second prototype, epoxy was used to seal the membrane. Though the membranes did not fail during the assembly process, the curing of the epoxy placed stress on the surfaces exposed to the epoxy and caused micro-cracks to form, ultimately leading to the failure of the membranes.

For the few membranes that were able to endure the assembly process and be used in the experimental runs, additional complications developed during the loading of the internal solution. The internal solution (either an albumin solution or glucose solution) was slowly injected into the internal chamber. In some cases, suction was applied to the other inject port to remove air while simultaneously pulling the solution into the internal chamber. In both cases, some of the membranes ruptured during the loading phase. It is unclear whether the pressure difference across the membrane caused it to fail or if micro-fractures in the membrane that occurred during the assembly phase propagated during the loading phase and led to failure.

The membranes used in the second prototype were able to endure both the assembly and loading stages. However, after exposure to the external glucose or albumin solution, the membrane would rupture. In nearly all of these cases, the membrane would remain intact for the early portion of the experimental run. However, over a short period of time (usually overnight), the membrane would crack and fail. The exposure to water may have caused the epoxy to expand. During this expansion process, additional stresses were placed on the membrane causing micro-cracks to form and propagate.

In addition to the possibility of flipping the AAO membrane during implementation, the difficulties of maintaining the structural integrity of these thin membranes are cumbersome to the experiment. At the expense of raising the response
time, a thicker support layer may be necessary to improve the structural strength of the membrane.

4.2.2 Problems with the Pressure Transducers

The USB-pressure transducers used in this study were purchased to avoid common problems such as electrical noise when the signals were fed to recording software on a nearby computer. The gauge pressures were implemented into the design to remove variations in atmospheric or external air pressure. However, on one of the sensors the gage vent was broken which was not noticed until much later during the execution of the experimental runs. It was quickly replaced by another similar USB-pressure transducer.

Ideally, the one pressure transducer measures osmotic pressure differences caused by albumin in the internal solution (later to be replaced with conA and dextran) while both transducers monitor external effects, such as external osmotic pressure or hydrostatic pressure. However, during external changes that should have caused equal changes in the signals recorded by both sensors, large (and sometimes opposite) differences appeared between the signals. Some of these differences lead to the identification of burst membranes or leaks in the sensor internal chamber that were not identified earlier.

The use of the USB-pressure transducers should have made data acquisition easier, but the particular pressure transducers used in the experiment had deep channels that extended from the flat face in contact with the internal solution into the transducer body. These channels created two problems: first, they increased the volume of the internal chamber, requiring more solution to be prepared and injected into the internal
chamber, and second, they also significantly extended the response time of the sensor by providing additional length. The transducer channel also allowed for the accumulation of air bubbles during the loading phase, which would require suction to be applied to the other injection port, placing stress on the membrane. The presence of air bubbles created various artifacts that were recorded by the transducers. Because the bubbles were not equally present in both transducers, these artifacts were difficult to remove during signal smoothing process.

4.2.3 Problems Caused by the External Environment

The external environment also affected the experiment, and additional steps were taken to reduce the impact these factors might have had on the results. During the early experimental runs, the systems were tested in the ambient environment. It was thought that small changes in pressure and temperature would not significantly affect the pressure signals recorded by the sensors. During the day, this assumption was fairly true; however, large noticeable spikes were detected in the evening while the tests were run overnight. Due to the expected large response time, many of the experimental runs required tests to run through the night into next morning. Unfortunately, late in the evening the external environment would undergo a drastic change that greatly affected the results making it difficult to get repeatable results. While monitoring the temperature of the environment, it was determined that the HVAC system was shutting off in the evening, which was a policy adopted by the facility. The lack of climate control in the room, led to an increase in temperature (or decrease during the winter months) and a drop in pressure.

To negate the effects caused by the changes in the environment, an incubator was purchased to provide a constant temperature environment. The incubator created a
constant temperature environment regardless of the settings of the HVAC system. However, the limited space of the incubator required the system to be scaled down so that both sensors and the peristaltic pump and tubing (in the first prototype) would fit inside. The incubator contained a port that allowed the USB cables from the transducers to be connected to a computer located outside the incubator. However, due to the length of the transducers and the minimal size requirements of the sensor casing, the space of the incubator was completely occupied, which made tasks such as monitoring liquid levels difficult.
CHAPTER 5

CONCLUSIONS

5.1 Model Performance

5.1.1 Comparison with the Linear Model

The nonlinear model developed in this work aimed to fill in the gaps that were present in the first linear model designed to predict the response time of a sensor designed by Ballerstadt and Schultz. The linear model underperformed and could not predict a response time in line with the experimental response times reported by Ballerstadt and Schultz. Parameter studies were used to manipulate the model to achieve a better response time, but the optimal variables do not match the observed properties of the system.

The nonlinear model did significantly better than the linear model. The nonlinear model gave a calculated response time of 138 seconds for the typical case where a boundary layer resistance would develop in an external solution that is not well-mixed; the experimentally determined response time was in the range of 3-5 minutes. Though the calculated response time did not fall within the experimental range, it is believed that factors that were not included in the model and a lack of property data may account for the difference. The diffusion coefficient of glucose in the membrane was taken from the literature and may not accurately reflect the diffusion coefficient in the experiment for the
different operating temperature. Regardless, the execution of the model shows that these parameters can easily be updated to reflect more real behavior.

5.1.2 Calculation of Response Times for Various Sensors

To determine if the model could be used for any system that employs a glucose affinity solution of concanavalin A and dextran with a semipermeable membrane, other devices were identified in a literature review and examined with the model. These devices differed from one another in geometry, membrane selection, temperature, and concentrations. The model was designed so that elements were interchangeable to accommodate differences in variables between systems. The predicted response times generally agreed with the experimentally determined response times, as shown in Table 5-1.

Table 5-1. Comparison of calculated predicted response times from the model with experimentally reported response times from the literature.

<table>
<thead>
<tr>
<th>Source</th>
<th>Predicted Response Time</th>
<th>Reported Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[24]</td>
<td>1.82 min(^a); 2.05 min(^b)</td>
<td>3-5 min</td>
</tr>
<tr>
<td>[11]</td>
<td>12.48 min(^a); 6.28 min(^a); 13.25 min(^b); 5.13 min(^b)</td>
<td>3.6 ± 0.7 min(^a); 12.8 ± 1.4 min(^b)</td>
</tr>
<tr>
<td>[21]</td>
<td>47.67 min – 1.34 hr(^b)</td>
<td>40 min – 2.5 hr(^b)</td>
</tr>
</tbody>
</table>

\(^a\) Increasing glucose step change.

\(^b\) Decreasing glucose step change.

\(^c\) Using actuating/sensing well depth as characteristic internal length.

\(^d\) Using microchannel depth as characteristic internal length.

The results expressed in Table 5-1 signify that the model did well in predicting the response time of various glucose sensors, especially for sensors that use an AAO membrane as the semipermeable membrane which allowed for glucose to diffuse axially into or from the affinity assay. Use of the Renkin equation to determine the diffusion
coefficient of glucose in the AAO membrane may have improved the accuracy of the model. If additional data regarding the properties of the RC membrane used by Ballerstadt and Schultz could be obtained, a similar equation could be used to calculate the diffusion coefficient of glucose in the membrane and account for changes that may occur with different temperatures.

5.1.3 Parameter Study on Variable Effects on the Response Time

Though the nonlinear model worked well in predicting the response times for the various systems, some differences were not accounted for in the model. In addition, notable trends in the response time calculations led to additional studies to determine the effects on the response times for various scenarios.

One notable trend was the significant difference in response time between increasing and decreasing step change. In addition to the direction of the flux of glucose, the location of the step change in the glucose concentration spectrum also had a huge impact on the response of the system. As seen from Figure 4-5, the response of the system is significantly slower at lower glucose concentrations than at higher glucose concentrations. Also, as seen from the chart, the difference between increasing and decreasing step changes is more evident at lower glucose concentrations where the viscosity, and thus diffusion coefficient, are more sensitive to glucose concentrations. This trend indicates a possible disadvantage for these particular glucose sensors during operation in hypoglycemic environments (3.9 mM glucose [31]).

The effects of temperature on the response time were also observed. As expected, increased temperature reduces response time by as much as 3-4% per °C increase. However, the effects of temperature were only noted for changes in the viscosity and
diffusion coefficients (with the exception of the diffusion coefficient in the RC membrane). The temperature would also affect the reaction rates to an unknown extent. Though temperature has a minimal effect on the response time, it would have a larger and equally important impact on the sensitivity of the sensor, particularly if the sensor correlates glucose concentrations with changes in temperature dependent properties such as viscosity [11] or osmotic pressure [21].

The asymmetrical AAO membrane used in two of the systems created a potential scenario where the larger pores of the support layer could extend the diffusion length glucose would experience in the affinity assay. In the original model calculations, it was assumed that the smaller-pore active layer would prevent the larger dextran and conA molecules from entering the support layer. A parameter study was conducted where the membrane was flipped allowing for the affinity assay to fill the pores of the support layer to determine the effects on the response time. The system developed by Krushinitskaya et al. experienced a 20% increase in response time when the membrane was flipped regardless of the direction of the step change. The large depth of the chamber (500 μm) may have reduced the effects and so the model was repeated for the system designed by Boss et al. with the flipped membrane. Because the depth of the microchannel is less (100 mm), the system experienced a 75% increase in response time for decreasing step changes and a 25% increase for increasing step changes. This finding demonstrates the importance of membrane selection and position, especially as these devices are miniaturized. Of course, other membrane properties should be considered such as biocompatibility, stability, and structural integrity.
5.2 Experimental Performance

The inability to obtain repeatable and conclusive results is disheartening. However, the complications that were encountered during the setup and execution of the experiment demonstrate some of the weaknesses that an osmotic glucose affinity sensor, especially one that uses a ceramic AAO membrane, may experience during operation. The osmotic glucose affinity sensor designed by Krushinitskaya et al. [21] can be affected by external pressure differences, particularly ones caused by the presence of external macromolecules (e.g. proteins). The sensors fabricated and tested in this study were designed to remove any effects caused by external changes that could displace the glucose signal. However, the choice of sensors and the limitations of the fabrication techniques used to build the sensor components created an internal environment that was subjected to long response time and breakage during the loading of the internal solution and simultaneous removal of air from the internal chamber.

The choice of membrane proved to be the most difficult challenge. The AAO membranes used in this study were identical to the membranes used by Krushinitskaya and colleagues [5] [21]. Initially, O-rings were used to prevent leaking of the glucose solution and the internal solution. However, the O-rings placed additional stress on the membranes causing them to crack and fail. Epoxy was used in second prototype to immobilize the membrane and seal it. However, the expansion of the epoxy while it cured and when it was exposed to water caused stress leading to cracks in the membrane. The difficulties encountered while using the AAO membrane, alongside the difficulties that were highlighted during parameter tests with the model, show that the AAO membrane
(specifically the membrane fabricated and distributed by Synkera Technologies) may not be ideal for glucose affinity sensors.
CHAPTER 6
FUTURE WORK

6.1 Future Developments in the Model

The nonlinear model developed in this work predicted the response times of various glucose affinity sensors reasonably well, and in many cases aligned with the experimental results. A number of areas could be improved to make the model better. Reaction rate constants that can be adjusted for temperature or even possibly the weight or size of the dextran would make the model useful for various compositions of the affinity assay. The use of the Renkin equation to model the diffusion of glucose in the AAO membrane greatly improved the accuracy of the model. However, the RC membrane lacked characteristic data that would allow for the calculation of an effective diffusion coefficient that could account for varying properties such as temperature. Another advancement that would help improve the model is a more universal viscosity equation. The equation derived for this model came from one set of data using a specific concentration and molecular weight of dextran. Additional experimental data on the viscosity of the affinity solution would help validate or improve the model. The model could be applied to other glucose affinity sensors that may vary in membrane selection, temperature, and concentrations.

The model was designed for glucose affinity sensors that use a mixture of concanavalin A and dextran. Other kinds of glucose affinity sensors have been studied.
Theoretically, the model could be adjusted to describe nonlinear behavior that other glucose affinity sensors may experience. Boronic acid-ended polymers with published viscosity data have been studied [4] [7] [32] [33]. Ideally, the viscosity data can be used to create an empirical equation that can be substituted into the model. All that is needed to execute the model is reaction rate constants for the reversible binding between the glucose molecules and the boronic acid polymer chain ends. This particular affinity assay experiences low viscosities at lower glucose concentrations (whereas the conA-dextran affinity assay experienced higher viscosities at lower glucose concentrations). It would be appealing to see how this particular system would behave in both hypoglycemic and hyperglycemic (≥ 7 mM for fasting plasma glucose for diabetics [34]) environments.

The ability to do parameter studies and expand the model to be used with other glucose affinity sensors (or any sensors that use a similar transport mechanism) makes the model ideal for reverse engineering. Problematic areas that could cause problems or increases in the sensor response time can be identified before the fabrication and experimentation process and be addressed in order to improve the sensor. The model in combination with calculations that can determine the strength or sensitivity of the sensor can be used to optimize glucose affinity sensors.

6.2 Future Experimental Work

Though no conclusive results were obtained through experimental runs of the designed glucose sensors, factors that cannot be identified in the nonlinear model became evident. Though the osmotic pressure sensing of glucose would a more power-conservative option [15], problems exist with the affinity assay components and membrane selection. As shown from the model, the conA-dextran affinity assay suffers
from an increase in response time in the hypoglycemic range. ConA is also toxic to cells
[4] [12] [18] [19], though studies have been performed to show that for the low
concentrations and volumes and the subcutaneous location seen in the sensors used in the
model, it does not create any harmful risks [35]. The selection of the membrane is also
critical. The membrane must be biocompatible and semipermeable to glucose and not the
affinity assay components without providing additional diffusive resistance which would
delay the response of the sensor. If osmotic pressure sensing is to be used, the membrane
must also be rigid. Finally, the membrane must have a long sensor life in an aqueous
environment; swelling of the membrane would need to be minimum as to not delay the
sensor response.

The model may be able to narrow the search for membranes and affinity assay
components. However, the model does not account for factors such as cost,
manufacturing difficulty, and sensor sensitivity. This work allows for engineers and
scientists to identify acceptable systems that at least meet the response time requisites for
medical sensors prior to design and fabrication.
APPENDIX A

NOMENCLATURE
\(\Pi \) Osmotic pressure
\(i \) van’t Hoff's factor
\(c \) Concentration
\(R \) Universal ideal gas constant
\(T \) Absolute temperature
\(N_A \) Flux of solute A
\(D_{AB} \) Mass diffusivity of A in solution B
\(C_A \) Concentration of A
\(t \) Time
\(R_A \) Reaction rate of A
\(\kappa \) Boltzmann constant
\(r_A \) Radius of solute A
\(\mu_B \) Dynamic viscosity of solution B
\(\mu_{AA} \) Dynamic viscosity of affinity assay (mPa s in Eq. 2-6)
\(C_G \) Glucose concentration (mM in Eq. 2-6)
\(MW \) Molecular weight of solute A
\(\rho \) Density of solute A
\(N_A \) Avogadro’s number
\(G \) Glucose
\(cA \) Concanavalin A
\(cA^*G \) Concanavalin A – glucose complex
\(k_{fG} \) Forward glucose reaction rate constant
\(k_{rG} \) Reverse glucose reaction rate constant
\(D \) Dextran
\(cA^*D \) Concanavalin A – dextran complex
\(k_{fD} \) Forward dextran reaction rate constant
\(k_{rD} \) Reverse dextran reaction rate constant
\(\tau_G \) Glucose reaction rate
C_{cA} Concanavalin A concentration
C_{cA*G} Concanavalin A – glucose concentration
r_D Dextran reaction rate
C_D Dextran concentration
C_{cA*D} Concanavalin A – dextran concentration
m Geometric parameter
L_i Location of interface between affinity assay and internal membrane surface
$D_{G,AA}$ Diffusion coefficient of glucose in affinity assay solution
D_m Diffusion coefficient in straight-pore membrane
D Diffusion coefficient in bulk solution
K Partition coefficient of straight-pore membrane
ω_r Hydrodynamic drag factor
λ Ratio of solute radius to pore radius
L_e Location of interface between external membrane surface and external solution
C_{Gm} Glucose concentration within the membrane
D_{Gm} Diffusion coefficient of glucose in membrane
L_{as} Location of interface between active and support layers of AAO membrane
C_{Gma} Glucose concentration within the active layer of AAO membrane
D_{Gma} Diffusion coefficient of glucose in active layer of AAO membrane
C_{Gms} Glucose concentration within the support layer of AAO membrane
D_{Gms} Diffusion coefficient of glucose in support layer of AAO membrane
D'_{Gms} Diffusion coefficient of glucose in support layer of AAO membrane with affinity assay
C_{Dms} Dextran concentration within the support layer of AAO membrane
C_{cAms} Concanavalin A concentration within the support layer of AAO membrane
C_{cA*Gms} Concanavalin A – glucose concentration within the support layer of AAO membrane
C_{cA*Dms} Concanavalin A – dextran concentration within the support layer of AAO membrane
C_{Ge} Glucose concentration in external solution
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Ge}</td>
<td>Diffusion coefficient of glucose in external solution</td>
</tr>
<tr>
<td>$C_{G,0}$</td>
<td>Initial concentration of glucose</td>
</tr>
<tr>
<td>$C_{D,0}$</td>
<td>Initial concentration of dextran</td>
</tr>
<tr>
<td>$C_{cA,0}$</td>
<td>Initial concentration of concanavalin A</td>
</tr>
<tr>
<td>$C_{cA'G,0}$</td>
<td>Initial concentration of concanavalin A – glucose</td>
</tr>
<tr>
<td>$C_{cA'D,0}$</td>
<td>Initial concentration of concanavalin A – dextran</td>
</tr>
<tr>
<td>$C_{Ge,0}$</td>
<td>Initial concentration of glucose in external solution</td>
</tr>
<tr>
<td>κ_1</td>
<td>Glucose equilibrium partition coefficient between affinity assay and membrane</td>
</tr>
<tr>
<td>κ_{as}</td>
<td>Equilibrium partition coefficient between active and support layers of AAO membrane</td>
</tr>
<tr>
<td>κ_D</td>
<td>Dextran equilibrium partition coefficient between affinity assay and membrane</td>
</tr>
<tr>
<td>κ_{cA}</td>
<td>Concanavalin A equilibrium partition coefficient between affinity assay and membrane</td>
</tr>
<tr>
<td>$\kappa_{cA'G}$</td>
<td>Concanavalin A – glucose equilibrium partition coefficient between affinity assay and membrane</td>
</tr>
<tr>
<td>$\kappa_{cA'D}$</td>
<td>Concanavalin A – dextran equilibrium partition coefficient between affinity assay and membrane</td>
</tr>
<tr>
<td>κ_2</td>
<td>Glucose equilibrium partition coefficient between membrane and external solution</td>
</tr>
<tr>
<td>M_G</td>
<td>Total mass of glucose in the affinity assay</td>
</tr>
<tr>
<td>$M_{G,0}$</td>
<td>Total mass of glucose in the affinity assay at time $t = 0$</td>
</tr>
<tr>
<td>M_G^{∞}</td>
<td>Total mass of glucose in the affinity assay at its final equilibrium state</td>
</tr>
<tr>
<td>A</td>
<td>Cross-sectional area normal to the flux of glucose</td>
</tr>
<tr>
<td>$t_{90%}$</td>
<td>Time at which 90% of the system response is achieved</td>
</tr>
<tr>
<td>H</td>
<td>Length of cylindrical device (for radial cylindrical diffusion only)</td>
</tr>
</tbody>
</table>
APPENDIX B

SAMPLE MATLAB CODE FOR NONLINEAR MODEL
A sample code used to compute the response times for the various glucose affinity sensors is shown in this appendix section. A general code used for the device presented by Ballerstadt and Schultz is given. A detailed description of the components of the code is given following the sample code. Places where new lines of code are inserted for unique devices (e.g. devices using AAO membranes) are also presented in the code description.

B.1 Sample Code

```matlab
function Model_name

m = 1;
C_Ge = 0;
C_G0 = 20;
Li = 95e-6;
Le = 115e-6;
L_inf = Le+500e-6;
t = [0 : 1 : 400];
dx = 1e-6;
x = (0 : dx : L_inf);
sol = pdepe(m,@pde,@ic,@bc,x,t);
Cg = sol(:, :, 1);
n = length(t);
x_AA = length(0 : dx : Li);

for i = 1:n
    Cgx = Cg(i, 1 : x_AA) .* x(1 : x_AA) .^ m;
    intCg = trapz(Cgx);
    MG(i) = intCg * dx;
    MGp(i) = ((m+1) * MG(i) - Li .^ (m+1) * C_G0) / (Li .^ (m+1) * (C_Ge - C_G0));
end
for i = 1:n
```

if (MGp(i) <= 0.9)
 t90 = t(i);
end

plot (t, MGp, t, 0.9);
axis ([0 400 0 1]);
xlabel ('Time (s)');
ylabel ('Glucose ratio MG');

function [c, f, s] = pde (x, t, u, DuDx)

kGf = 40;
kGr = 100;
kDf = 50;
kDr = 3;
r_G = 0.416e-9;
k_B = 1.38064852e-23;

Temp = 22;
Li = 95e-6;
Le = 115e-6;
L_inf = Le+500e-6;

mu_w = 2.414e-5 * 10 ^ (247.8 / (Temp+273.15 -140));
mu_AA = 1.464e6 * u(1) ^ (-0.3818) * exp(-0.03729 * (Temp+273.15)) * 1e-3;

DGAA = k_B * (Temp+273.15) / (6 * pi * r_G * mu_AA);
D_G = k_B * (Temp+273.15) / (6 * pi * r_G * mu_w);
rG = -kGf * u(1) * u(3) + kGr * u(4);
rD = -kDf * u(2) * u(3) + kDr * u(5);

D_Gm = 3.1025e-10;

if x > Le
 c = [1; 0; 0; 0; 0];
f = [D_G * DuDx; 0; 0; 0; 0];
s = [0; 0; 0; 0; 0];

elseif x < Li
 c = [1; 1; 1; 1; 1];
f = [DGAA * DuDx; 0; 0; 0; 0];
\[s = \begin{bmatrix} rG & rD & rG + rD & -rG & -rD \end{bmatrix}; \]

else

\[c = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}; \]

\[f = \begin{bmatrix} D_Gm \times DuDx & 0 & 0 & 0 \end{bmatrix}; \]

\[s = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}; \]

end

function u0 = ic(x)

Li = 95e-6;
Le = 115e-6;
L_inf = Le+500e-6;
C_Ge = 0;
C_G0 = 20;
C_D0 = 1.923e-3;
C_cA0 = 5e-5;

if x > Le
\[u0 = \begin{bmatrix} C_Ge & 0 & 0 & 0 \end{bmatrix}; \]

elseif x < Li
\[u0 = \begin{bmatrix} C_G0 & C_D0 & C_cA0 & 0 \end{bmatrix}; \]

else
\[u0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}; \]

end

function [p, q, p, q] = bc (xl, ul, xr, ur, t)

C_Ge = 0;
pl = \[0 ; 0 ; 0 ; 0 \];
ql = \[1 ; 1 ; 1 ; 1 \];
pr = \[ur(l) - C_Ge ; 0 ; 0 ; 0 \];
qr = \[0 ; 1 ; 1 ; 1 \];
B.2 Description of Code

Line 1: Declares function/code name.

Line 3-8: Declares variables specific to the system being modeled used in the calculation of the response time. The variable \(m \) represents the spatial geometry parameter where \(m = 1 \) represents a radial cylindrical model (\(m = 0 \) represents an axial model). The variables \(C_{\text{Ge}} \) and \(C_{\text{G0}} \) represent the external and initial glucose concentrations (in mol/m\(^3\)), respectively. The variables \(L_i \) and \(L_e \) represent the location from the origin (i.e. the center of the cylinder for radial diffusion or the bottom of the device for axial diffusion) to the internal surface of the membrane and external surface of the membrane (in meters), respectively. The variable \(L_{\text{inf}} \) represents a distance far from the external surface (in meters). The value of 500 \(\mu \text{m} \) added on to the value of \(L_e \) is needed to produce an external boundary layer resistance; a larger value can be used but it will increase computational time. The variable \(L_{\text{inf}} \) is only needed for cases analyzing the presence of a boundary layer resistance at the external surface of the membrane.

Line 10: Declares the time range and time step (in seconds) to perform the time integration with the ODE solver to compute the PDE. The maximum value (e.g. 400) and the time step (e.g. 1) can be altered for systems that have longer response times to decrease computational times.

Line 12-13: Declares mesh size by initializing distance between points, \(dx \) (in meters), and initial and end points (0 and \(L_{\text{inf}} \), respectively). For cases observing well-mixed behavior of the external solution \(L_e \) would be used instead of \(L_{\text{inf}} \).
Line 15-16: Executes the PDE solver function using spatial geometry parameter \(m \), PDE equations \(@pde\), initial condition \(@ic\), boundary conditions \(@bc\), and spatial and time meshes. The PDE equations and initial and boundary conditions are declared later in the code. The variable \(C_g \) represents the glucose concentration in the system as a function of position and time. The PDE solver yields five unique solutions, one for each component of the system (glucose \(\{1\} \), dextran \(\{2\} \), concanavalin A \(\{3\} \), conA-glucose \(\{4\} \), and conA-dextran \(\{5\} \)).

Line 18-19: Determine the size of time mesh, \(n \), and the size of the internal solution spatial mesh, \(x_{AA} \). These variables are used in the iteration process to determine the response time.

Line 21-26: Runs a \textit{for}-loop for each time step to determine the glucose mass ratio (refer to Eq. 2-70). The variable \(MG_p(i) \) represents the mass ratio as a function of the number of time steps taken (note: not the actual time). (Note: the functions “.*” and “.^” multiplication and power functions of the elements within the matrices as opposed to multiplication and power functions of the matrices themselves.)

Line 28-31: Runs a \textit{for}-loop for each time step to determine the time at which the glucose mass ratio reaches 90%. The \textit{if}-loop stops when the mass ratio reaches a value of 0.9 (or just below it) and records the last time at which the condition is satisfied. The variable \(t_{90} \) represents the 90%-response time (in seconds).

Line 32: Declares an end to the function defined in Line 1.

Line 34-37: Makes a plot of the glucose mass ratio as a function of time as well as the 90% response marker. This portion is optional but allows for visual confirmation of the response time. Additional lines can be added to add additional data sets (the
command "hold on" would be added) from other systems under various conditions (e.g. temperature, concentration differences, etc.). Additional code can be inserted to store data in an external file (e.g. Excel spreadsheet).

Line 40: Initializes function that defines the components of the PDE. The PDE has the form of:

\[c(x, t, u, \frac{\partial u}{\partial x}) \frac{\partial u}{\partial t} = x^{-m} \frac{\partial}{\partial x} \left(x^m f(x, t, u, \frac{\partial u}{\partial x}) \right) + s(x, t, u, \frac{\partial u}{\partial x}) \]

The functions \(c, f, \) and \(s \) are declared later for each of the five components for each of the distinct regions of the system (e.g. internal solution, membrane, etc.).

The variables \(u \) and \(DuDx \) represent the component solution (e.g. glucose) and the partial derivative of the solution with respect to position \(x \).

Line 42-47: Declares constants for determining reaction rates and diffusivities. These parameters are constant despite what system is analyzed. Lines 42-45 represent the forward and reverse reaction rate constants for the glucose and dextran reactions (in \(m^3 \text{ mol}^{-1} \text{ s}^{-1} \) for the forward reaction rate constants and in \(s^{-1} \) for the reverse reaction rate constants). The variable \(r_G \) represents the radius of a glucose molecule (in meters). The variable \(k_B \) represents the Boltzmann constant (in J/K).

Line 49-52: Declares variables that are specific for the system being analyzed. The variable \(Temp \) represents the temperature of the system (in °C). The other variable were initially declared in Lines 6-8 but are re-declared for the new function. In the case for analyzing a system that uses an AAO membrane, an additional line would be inserted to represent the location where the support and active layers of the membrane meet; this is usually done by adding 1 μm (for cases where the active
layer is in contact with the internal solution) or 49 μm (for cases where the support layer is in contact with the internal solution) to the value of Li.

Line 54-59: Expresses the functions used to calculate viscosity of water, μ_w, as a function of temperature (in Pa s), the viscosity of the affinity assay, μ_{AA}, as a function of both temperature and glucose concentration ($u(1)$) (in Pa s). The diffusion coefficients of glucose in the affinity assay, D_{GA}, and in water, D_G, are calculated as functions of the temperature and the viscosity of the aqueous solution (in m2/s). The reaction rates for glucose, r_G, and dextran, r_D, (in mol/s) are calculated using the concentrations of glucose ($u(1)$), dextran ($u(2)$), conA ($u(3)$), conA-glucose ($u(4)$), and conA-dextran ($u(5)$).

Line 61: Defines the diffusion coefficient of glucose in the membrane (in m2/s). For the systems using RC membranes, a constant value was used (as shown in the sample). For systems using AAO membranes, two separate equations were substituted in for the membrane diffusion, one for the active layer and one for the support layer. The diffusion coefficients equations used the Renkin equation (Eq. 2-19) and the appropriate diffusivity depending on the orientation of the membrane.

Line 63-66: Declares the values of c, f, and s for each of the five PDEs in the external solution. Since only glucose is present in the external solution, the values for the other four components are all zero. For cases where the external solution is well-mixed, this block of code can be deleted (though the “if” statement will have to be transferred down to the next group).
Line 68-71: Declares the values of c, f, and s for each of the five PDEs in the internal solution. It is assumed that the diffusivities of the non-glucose components is negligible due to their significantly larger size. It is also assumed that the reversible reactions occur homogenously in this region.

Line 73-76: Declares the values of c, f, and s for each of the five PDEs in the membrane. Since only glucose is present in the membrane, the values for the other four components are all zero. For AAO membranes, this segment of code can be duplicated and altered to reflect the active layer and the support layer. The values of c, f, and s for each of the five PDEs would depend on the orientation of the membrane.

Line 78: Declares an end to the "if" statement.

Line 81: Initializes function that evaluates initial conditions of the solution for the given PDE system.

Line 83-85: Re-declaration of the variables representing the interfaces between unique regions within the system.

Line 87-90: Declares initial concentrations of glucose in the external solution, C_{Ge}, glucose in the affinity assay, C_{G0}, dextran in the affinity assay, C_{D0}, and conA in the affinity assay, C_{cA0} (all values are in mol/m3).

Line 92-93: Declares initial glucose concentration in external solution. For cases where the external solution is well-mixed, this block of code can be deleted (though the "if" statement will have to be transferred down to the next group).

Line 95-96: Declares initial concentrations of glucose and affinity assay components in the internal solution.
Line 98-99: Declares initial concentrations of components in the membrane. For AAO membranes (specifically for the case where the support layer is in contact with the affinity assay), these lines can be duplicated and altered to reflect the various initial concentrations within the membrane.

Line 101: Declares an end to the "if" statement.

Line 104: Initializes function that evaluates boundary conditions of the solution for the given PDE system.

Line 106: Re-declares external glucose concentration (in mol/m^3).

Line 108-109: Declares boundary conditions at x = 0. The variable pl represents constant concentration boundary (none of the cases exhibit this condition). The variable ql represents flux boundary conditions. In the case of radial cylindrical diffusion (as in the sample shown), an axis symmetry condition was used. For axial diffusion cases, a wall condition was used; both conditions are identical in terms of their mathematical expressions.

Line 111-112: Declares boundary conditions at x = L_inf (or at x = Le for cases where the external solution is well-mixed). The variable pr represents constant concentration boundary; glucose concentrations are assumed constant in the external solution far from the membrane (or at the membrane surface for well-mixed cases). The variable qr represents flux boundary conditions. Since there is no diffusion of the other non-glucose components outside of the membrane, no flux conditions were applied.
REFERENCES

