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ABSTRACT

A tremendous effort continues in the development o f micro-total-analysis- 

systems; in support o f this, many chemical passivation methods have been developed to 

enhance the biocompatibility o f such microfluidic systems. However, the suitability of 

these passivation techniques to many fluorescence-based assays still remains inconsistent. 

This part o f this work is focused on the performance of a third generation intercalating 

DNA dye when used within microfluidic devices treated with a select variety of 

passivating coatings. The results of these tests indicate that passivation coatings which 

are intended to shed DNA based on electrostatic repulsion will in fact imbibe the 

fluorescent DNA intercalating dye by the same mechanism. Blocking this charge-based 

dye adsorption, such as with bovine serum albumen (BSA), has yielded mixed results in 

the literature. As an alternative, this present work indicates that preloading the bio­

passivated microchannel with a small amount of this dye will prevent both the DNA and 

the DNA dye from being adsorbed from solution onto the channel walls. By 

characterizing the saturating behavior o f this preloaded dye, a protocol is here suggested 

to optimize dye performance in passivated microfluidics. Furthermore, the intent and 

achievement o f this work has been to design a BSA-free treatment method, thereby 

eliminating common fluorescent artifacts. The amount of dye preloading required is 

found to be proportional to the microchannel surface area, and can be predicted by a new 

material property defined for each chemical coating processes. Theoretical and



experimental results indicate that this is independent of operating temperature, flow rate, 

and channel aspect ratio. Thus this is a property o f the material, and not just a product of 

the several operational parameters. This property has been measured for four coatings as 

part of this work.

Improvements in passivation are crucial to the development o f lab-on-a-chip 

devices, important in solving current medical and healthcare problems. Challenging 

topics include the need for fast pathogen detection (i.e. ebola epidemic, HIV, water-borne 

diseases typhoid, cholera, dysentery) and the need for personalized medicine (i.e. cancer 

genomics, drug susceptibility). A novel microfluidic DNA analysis device was 

developed, incorporating helicase dependent amplification (HDA) and sequence-specific 

fluorescence based detection. These are incorporated into a glass/polymer platform that 

is hand operated and powered by a laptop computer. Thermal modeling sets operation at 

less than 3 Watts and fabrication consistency testing ensures samples volumes of 17pL. 

The heating element and optical components are powered via 3 USB ports. The heating 

element consists o f a thin film heater and thermistor controlled in a feedback loop with 

Matlab and Arduino interfacing. Using fuzzy logic control, the temperature of the PCR 

chamber has been controlled by varying the heater voltage. On-chip amplification has 

been verified using a commercial LightScanner32 device and HDA detection and DNA 

melting analysis were performed on-chip.
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CH APTER 1

INTRODUCTION

1.1 Grand Challenges of Engineering

The advancement o f multiple fields o f science and engineering have allowed the 

development o f lab-on-a-chip devices, capable of performing biological, chemical, and 

other laboratory functions on a miniaturized device. The development o f these type of 

devices are important in solving current medical and healthcare problems, such as the 

need for fast pathogen detection (i.e. ebola epidemic, HIV, water borne diseases typhoid, 

cholera, dysentery) and the need for personalized medicine (i.e. cancer genomics, drug 

susceptibility). Some o f the key developments that enable these more portable and 

efficient technologies are materials and fabrication, surface passivation, and improved 

sample handling. One important technique used in nearly any type o f genetic testing is 

nucleic acid amplification. The goals of this work are to investigate and improve 

passivation in fluorescent-analysis based microfluidic devices and to develop a lab-on-a- 

chip device for sequence specific amplification and fluorescent detection. It incorporates 

helicase dependent amplification, fluorescent detection, hand operated sample 

manipulation, and complete USB power.
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1.2 DNA Analysis

1.2.1 History

The field o f genetics - beginning as far back as the mid-1800s with Gregor 

Mendel, Friedrich Mescher, and Thomas Hunt Morgan - saw advancements in heredity 

and the identification o f nucleic acids. Into the twentieth century, genetics had expanded 

into studying chromosomes and their functions (Barbara McClintock) as well as x-ray 

induced mutation (Hermann Joseph Muller), the role o f genes (Edward Tatum, George 

Beadle, and Joshua Lederberg), and identification and study of DNA (Oswald Avery, 

Evelyn Witkin). The 1950s saw an explosion of research in the structure o f DNA (Erwin 

Chargaff, Rosalind Franklin, Maurice Wilkins, Alfred Hershey and Martha Chase, Linus 

Pauling) leading to the discovery o f the double helix structure o f DNA (James Watson 

and Francis Crick), followed quickly by a development in understanding o f flow of 

information within the cell (Francis Crick), the action o f RNA (Paul Zamecnik, Matthew 

Meselson and Franklin Stahl, Sydney Brenner), and the isolation o f DNA polymerase -  

the enzyme responsible for replicating DNA (Arthur Komberg). In the 1960s, researchers 

revealed details about the genetic code and protein expression (Marshall Nirenberg, 

Francois Jacob and Jacques Monod, Roy Britten), followed in the 1970s with the 

discoveries o f reverse transcriptase -  the enzyme that transcribes DNA from RNA (David 

Baltimore and Howard Temin), recombinant DNA (Stanley Norman Cohen and Herbert 

Boyer), RNA splicing (Richard Roberts and Phillip Sharp), chromatin structure (Roger 

Komberg), and DNA sequencing (Frederick Sanger). In the next decade, these advances 

in understanding led to being able to identify specific genes and their functions, i.e. ones 

responsible for regulation of the cell cycle (Leland Hartwell) and those in embryonic
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development (Christiane Nusslein-Volhard and Eric Francis Weschaus). The 1980s also 

saw the development o f a technique directly important to this research, polymerase chain 

reaction (PCR) (Alec Jeffreys). The foundations for DNA fingerprinting/profiling were 

also laid (Alec Jeffreys) [1].

All o f these biological foundations have changed the way we understand 

medicine, healthcare, and overall how we interact with the living world around us. 

Advancements in material science and fabrication techniques have combined with 

biological knowledge in the field o f microfluidics, particularly bio-microfluidics. The last 

few decades have seen leaps and bounds in what kind are possible and at what scale 

biological and chemical testing can be done [2-5].

1.2.2 Modem Focus

Nucleic acid amplification is an important tool for many applications including 

pathogen detection, medical diagnostics, forensic identification, and genetics. The most 

common and oldest technique, PCR has been developed over the last several decades, 

with emphasis on improved speed and reduced size. Microfluidic PCR is a development 

dating back to the early 2000s [6] that opens the doors to many applications that require a 

portable device, both smaller and low power. These biological lab-on-a-chip devices aim 

to incorporate multiple functions, such as sample preparation, amplification, and 

detection into one device. This has been the focus o f much research and numerous 

approaches have been taken.

The objective o f this work is to improve microfluidic DNA analysis devices, 

enabling and furthering capabilities in diagnostics and research. Part o f this work is an 

investigation into compatibility o f biological passivation methods used in biological



4

microfluidics and fluorescent sensing techniques. A portable DNA analysis device was 

also developed, demonstrating the combination o f isothermal DNA amplification and 

fluorescent sensing techniques in a microfluidic device.



CHAPTER 2

BACKGROUND

2.1 DNA Amplification

Polymerase chain reaction (PCR) is fundamental technique, used across many 

disciplines and fields. It is a means of amplifying a biological signal by facilitating the 

activity o f the enzyme, DNA polymerase, in a controlled and focused way. A DNA 

sequence of interest is selected from a sample genome (i.e. template) and replicated, 

producing millions o f copies o f double stranded DNA (dsDNA) fragments, i.e. PCR 

product or amplicon. These fragments can be analyzed by a variety of methods, most 

commonly by fluorescent dyes.

The region of interest is targeted by specifically designed, short nucleic acid 

sequences, called primers. They are designed to bind (i.e. hybridize) to complementary 

regions o f the sample genome that bound the targeted region. Polymerase, under the right 

conditions will attach to the template/primer complex and begin incorporating 

complementary nucleotide bases, extending the primer in the 5’-3’ direction, and copying 

the DNA by producing a complementary strand. This occurs on each of the two DNA 

strands, producing two segments o f double stranded DNA from one. This occurs over and 

over, doubling the number target regions produced with each iteration (logarithmic 

amplification). Eventually the reaction slows and ceases due to multiple factors, 

including depletion o f reactants (primers, nucleotides), accumulation o f reaction

5
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inhibiting byproducts (pyrophospatase), and polymerase binding competition between 

primers and amplified product [7].

This process requires thermal management, activating the polymerase enzyme at 

specific temperature ranges (dependent on the strain of enzyme) and specific temperature 

ranges to control the separation of DNA strands primer annealing. Traditionally, three 

distinct temperatures or temperature ranges are defined and employed in PCR: 1) 

denaturing or melting, where the DNA strands are completely separated at high 

temperature (usually around 95°C), 2) annealing, when the temperature o f the system is 

quickly lowered, allowing the primers to attach to the complementary regions on the 

denatured single-stranded DNA (ssDNA) (occurring around 58 -  66°C), and 3) 

extension, where the temperature is increased to increase polymerase activity and copy 

the targeted sequence (around 72 -  75°C for traditional techniques). PCR systems usually 

achieve this through thermal cycling, heating and cooling the sample between these target 

regions [8].

2.2 Nucleic Acid Detection

A variety o f methods for detecting nucleic acids, including, but not limited to, 

fluorescent intercalating DNA dyes, fluorescent or chemiluminescent tagged probes, and 

electro-chemical detection. These vary from being real-time detection methods, post 

amplification detection, or can be employed as either. Intercalating DNA dyes are 

fluorophores that bind to double stranded DNA, between the nucleotide bases, via 

hydrogen bonding. They produce a stronger fluorescent response when intercalated with 

double stranded DNA, and a much weaker response otherwise. The fluorescent signal of 

most dyes decrease, flowing a logarithmic decay, as temperature increases, whether
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isolated or in the presence o f DNA. This family o f dyes has been employed in real-time 

detection techniques (quantitative PCR, or qPCR) [9,10] as well as post amplification 

detection (melting curve analysis) [11].

2.2.1 Quantitative Polymerase Chain Reaction

qPCR is accomplished by measuring the fluorescent signal o f a sample as PCR is 

being conducted, usually during the same temperature phase each cycle. As DNA 

concentration increases, fluorescent signal increases, producing an amplification curve. 

The baseline signal (due to the innate behavior o f the fluorescent dye) is constant for the 

first several cycles, and as DNA concentration raises to a detectable limit (during the 

exponential phase o f the reaction), the fluorescent signal increases linearly. The slope of 

this increase is indicative o f the efficiency o f the reaction, and the point or cycle number 

at which the signal transitioned into the exponential phase is called the crossing point 

(Cp). The crossing point indicates the relative concentration o f the template DNA, or 

specifically the number o f copies. As the reaction slows and ceases, the linear increase in 

signal decreases in slope and levels off to a plateau. This plateau height, in relation to the 

initial background signal, is indicative of the final concentration of nucleic acid.

2.2.2 Melting Curve Analysis

Melting analysis is a post amplification technique, used to identify the amplified 

sequence, and potentially reveal details about change in its composition (i.e. mutation 

scanning [12], genotyping [11, 13, 14] or DNA damage detection [15, 16]). Similar to 

how dsDNA denaturation is induced in PCR cycling, an amplified target sequence is 

slowly heated and the fluorescent signal o f the sample is recorded. dsDNA separates in a 

very predictable and repeatable way, dependent on the sequence and nucleotide
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composition. As the DNA strands separate, the signal decreases, providing a DNA 

melting curve. The features of this curve are specific to the dsDNA sequence, serving as 

an identifiable melting signature. For visibility and ease o f use, the derivative of this 

signal is often analyzed, yielding peaks at the specific temperatures o f melting. Short 

sequences (on the order o f lOObp or less) often melt at a single temperature, producing a 

single peak at this temperature. Longer sequences with multiple regions o f varied 

sequence composition partially denature at one temperature (causing a decrease in signal) 

and completely denature at a higher temperature (causing an additional decrease). Longer 

sequences often produce multiple peaks at specific temperatures; this is often beneficial 

in positively identifying target sequences. Under extremely controlled thermal and optical 

conditions, slight changes in curve conformation can be detected, indicating small 

differences in sequence (i.e. single nucleotide polymorphisms) [17, 18]

2.2.3 Effect o f Dye Concentration on Melting Temperature

A study was performed to investigate the effects o f an intercalating DNA dye on 

DNA melting temperature. This work serves as a precursor and internal reference for 

later work in characterizing and developing DNA analysis systems, and is thus reported 

as ‘background’ information. It has been noted in literature [19] that intercalating dyes 

being in the presence of DNA stabilize the double stranded structure. By introducing a 

charged, planar molecule between the bases, the phosphate backbones and the 

nucleotides are bound not only by the existing hydrogen bonds (two in the case of 

adenine-thymine bonds and three in the case o f cytosine-guanine bonds) but also by weak 

electrostatic interactions between the intercalating molecule and the phosphate 

backbones. While many intercalating dyes only occupy one tenth or less o f the possible
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intercalation locations, third generation dyes or ‘saturating’ dyes, designed for high 

resolution melting curve analysis and mutation scanning, occupy a much higher 

proportion o f the available intercalation locations. This has been noted by the producer of 

LC Green Plus (BioFire Defense, UT, USA) that this dye can increase the melting 

temperature o f a PCR product by 1-3°C.

This effect was investigated for application to my work, testing the effect o f LC 

Green Plus on the melting temperature o f a 50 base pair (50bp), synthetic DNA sequence. 

In developing microfluidic DNA analysis devices and characterizing passivation of 

microfluidic devices for fluorescent assays, varying concentrations o f isolated DNA and 

intercalating dye are used, and it is important to establish some baseline values for some 

ATm associated with intercalating dye use. Melting analysis was performed using a 

LightScanner32 system (BioFire) with a variety of dye concentrations, ranging from 0.25 

X to 4 X LC Green, in samples containing 0.5 pM, 1 pM, and 2 pM oligonucleotides. 

Figure 2-1 shows the melting temperatures as a function o f dye concentration and 

oligonucleotide concentration. Triplicate samples o f each dye concentration were used 

for the 1 pM oligonucleotide samples and duplicate samples o f each dye concentration 

were used for the 0.5 and 2 pM oligonucleotide samples.
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Figure 2-1: DNA melting temperature as a function o f intercalating dye concentration 
and oligonucleotide concentration. High resolution melting analysis was performed in 
a LightScanner32 system.

This 50 base pair sequence was designed to exhibit a single peak melt profile 

around 81.9°C; a melting temperature of 81.7°C under standard conditions (1 X LC 

Green, 1 pM oligonucleotide concentrations) was detected. As could be expected, 

decreasing dye concentration slightly lowers Tm (by approximately 0.3°C at 0.25 X) and 

increasing dye concentration increases Tm (by approximately 2.5°C at 4 X LC Green). 

This trend vaguely follows a cubic trend, indicating a plateau in this increase around 

approximately 4 X LC Green. The increase in Tm with increase in oligonucleotide 

concentration indicates some limitation of thermal controls in the LightScanner32 

system. Such a limitation should also be considered and expected when designing 

microfluidic or pTAS DNA analysis devices, particularly when utilizing highly 

concentrated nucleic acid samples (typical PCR product concentrations are below the 

1 pM standard oligonucleotide concentration used here). Sequences longer than 50bp or 

o f higher G-C content may show a greater difference in Tm, with the overall increased
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energy o f melting (due to either more bases per DNA strand or the higher hydrogen bond 

density) being further increased by the stabilizing effect o f the intercalating dye. Further 

research into these effects would be o f interest to researchers developing intercalating 

dyes or specialized fluorescent based DNA melting assays.

2.2.4 Isothermal Amplification

Other techniques and modifications to PCR exist, in which multiple temperatures 

are not relied upon to achieve these goals. Numerous isothermal techniques have been 

developed, in which other enzymes, proteins, probes, and other modifications are used to 

replace the need thermal energy in the separation and management o f the DNA strands 

[20-22]. This allows for simplified systems and reduced thermal management, overall 

reducing size and, often, process time.

Several research groups have developed assays and pTAS devices that facilitate 

isothermal nucleic acid amplification, utilizing either off chip or integrated detection 

[23]. Fluorescent markers [24-27], fluorescent intercalating dyes [28,29], and 

electrochemical sensing [30-32] have all shown promise. Table 2-1 outlines research by 

several groups, separated by isothermal amplification technique employed.
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Table 2-1: Table outlining research in diagnostic isothermal nucleic acid amplification, 
sorted by amplification type.

Iso th erm a l
a m p lif ic a tio n
te c h n iq u e

R esearch  g ro u p D e te c t io n  m e th o d

R eco m b in a se  

p o ly m era se  

am p lifica tion  (RPA)

S an tiago-F elip e  (2 0 1 4 ) F lu o rescen t (on  a disk)

HDA

Kivlehan (20 1 1 )

E lectroch em ica l (R edox  

p ro b e  in terca la tes  w ith  

DNA, d ecrea sin g  co n c . in 

so l.)

M ah alan ab is (2 0 1 0 )
S ep a ra te  th erm o cy c ler  

d e v ic e  and gel 
B ioanalyzer

R everse-tran scrip tion  

h e lic a se  d e p e n d e n t  

a m p lifica tion  (RT- 
HDA)

Tang (20 1 0 )
C olorim etric (BESt 

c a s s e t te )

L o o p -m ed ia ted  

am p lifica tion  (LAMP)

Lee (20 0 7 )

O ptical (turbid ity  o f  
so lu tio n  from  M g  

p y r o p h o sp h a te  

p rod u ction )

N agatani (2 0 1 1 )
E lectroch em ica l 

(M e th y le n e  B lue b inds to  

e le c tr o d e  in tu b e )

Jiang (20 1 2 )
E lectroch em ica l 
(M B /red o x  p rob e)

N u cleic  ac id -b a sed

s e q u e n c e

am p lifica tion

Lucchi (2010) F lu o rescen t (tu b e  reader)

K ebe (2 0 1 1 ), Lilian 

(2 0 1 0 ), Halfon (20 1 0 )

F lu o rescen t (hybridize  

w ith  m o lecu la r  b ea co n )

One isothermal technique in particular, helicase-dependent amplification [21], 

relies on an enzyme, helicase, rather than thermal energy, to unwind and separate the 

DNA double helix. This allows for denaturing, primer hybridization, and extension to
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occur in the same temperature region. This technique is utilized in this work, in the 

development o f a portable DNA analysis device.

2.3 Microfluidics

Incorporating DNA amplification and detection methods into microfluidic 

platforms provides many operational advantages and broadens the potential applications 

of such devices. Reducing the sample sizes to microliter volumes, not only reduces the 

amount o f test material to be acquired (for example: less invasive sampling from patients, 

or more reliable testing in researching biological microenvironments), but also has 

positive effects on the thermal and power requirements o f the device. In the case o f PCR 

or isothermal DNA amplification, heating a smaller sample mass requires less energy, 

which in turn reduces power requirements, which in turn reduces overall sample size.

This trend very much lends itself to portable systems, capable o f addressing pressing 

issues such as healthcare and food safety in remote places, as well as biological research 

for spaceflight application. Beyond portability, reduced sample size and power 

requirements can lead to faster operating times.

2.3.1 Heat Transfer in Microfluidics

Microfluidic PCR devices have taken many approaches but have some common 

traits based on the requirements of the PCR reaction. Materials used in microfluidics can 

include material as varied as silicon, glass, elastomers, hydrogels, and paper [33].

Because PCR requires cycling between three precise high temperatures, silicon and glass 

are often used as substrates for their high thermal conductivity. Polymers such as PDMS 

and PMMA are employed for their varied and low cost fabrication options and often their 

elastic properties are employed in novel ways to control liquid samples [34, 35]. All
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materials have advantages and disadvantages in heat transfer, biocompatibility, 

fabrication costs, and material properties effecting sensing and sample transport.

Material selection is important, not only for biological tailoring and passivation, 

but also thermal management. Effective heating, temperature control, and insulation can 

be ensured by material selection and device geometry design, assessed by thermal

modelling. Heat transfer in microfluidics is primarily conduction based, with popular heat

sources including thin film heaters, heating/cooling blocks, embedded resistance wires, 

flexible printed circuits, and hot or cold fluid streams. Heat transfer in conduction based 

systems is dictated by Fourier’s law, which in its differential form states:

q = - k V T  Eq. 2-1

where q is the heat flux through a unit area per unit time (W/m2), k  is the conductivity of 

the material (W/m*K), and FT is the temperature gradient across the material.

Convective heat transfer often plays a role in heated microsystems as well, with 

either forced or natural convection being used to cool heated devices. Convective heat 

transfer is most basically defined as:

Q = hA(Ta - T b) Eq. 2-2

where Q is heat transferred per time (W), A is the area o f the area o f heat transfer (m2), h 

is the experimentally determined heat transfer coefficient (W/m2K), Ta is the temperature 

(K) o f the object, and Tb is the temperature (K) o f the fluid, or in the case o f natural 

convection, the temperature of the ambient environment.

These simple equations, and their integral forms, are employed in modeling heat 

transfer in microfluidic devices, either in simple analytical solutions or computer aided
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modeling. Finite element analysis employing these fundamental concepts was used to 

assess the thermal performance o f the proposed device.

2.3.2 Fabrication Technique -  Xurographv

Xurography is a fabrication technique used in microfluidics and sensor 

development [13, 36-39], where microstructures are cut into various films using a cutting 

plotter. The technique has become crucial to rapid prototyping and research applications, 

due to its low cost and fast turn-around time. Initial publications on the topic reported 

positive features as small as 35 pm and negative features as small as 18 pm cut into films 

ranging from 25 pm to 1000 pm [40]. These patterned films can be used as masks or 

molds in additive or subtractive manufacturing techniques, such as electroplating, 

etching, molding, or channel formation. Specifically in molding and channel formation, 

varying thickness films or multiple layers o f films can be used to control feature sizes 

beyond the two dimensional pattern cut into the film. For example a film can be patterned 

multiple times and stacked to varying heights, before pouring and curing a liquid polymer 

over the pattern. The molded polymer can be bonded to another substrate to create 

enclosed features o f varying depths [41,42]. Composite devices can be fabricated by 

joining a molded material with a different material substrate, such as a molded polymer 

with glass.

2.3.3 Passivation o f Microfluidic Devices

Surface passivation is an important tool in biological microfluidics for the 

prevention o f unwanted interaction o f samples with the surfaces contacted by the fluid. 

These surfaces are generally of the same material or substrate from which the entire 

device is fabricated. Passivation is more important for microscale geometries than for
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conventional macroscale devices because of their increased surface area to volume ratio 

(SVR), which can cause surface chemistry effects become more prevalent. Such 

unwanted interactions can inhibit biological processes or obstruct the detection of 

analytes. Common methods to passivate substrates for use in biochemical microfluidic 

devices can be categorized as either static and/or dynamic [6], Static methods consist of 

pretreatments in which a passivating or blocking agent is applied to the interior o f a 

microchannel before the biological samples are introduced. Examples o f this are 

covalently-bonded silane coatings or immobilized blocking agents such as proteins or 

surfactants, each providing many avenues for customization [43,44]. Popular blocking 

agents include bovine serum albumen (BSA), poly(N-vinyl-2-pyrrolidone) (PVP), and 

polyethylene glycol (PEG). Silane and silicone treatments to microfluidic devices provide 

permanent, reusable surfaces that are chemically tailored for specific biological 

applications, for example using dichlorodimethylsilane (DDMS) to passivate a device for 

droplet based PCR [45] or treating a surface with a fluorosilane to allow dielectrophoretic 

capture of cells without permanent cell adhesion [46]. In contrast to static passivation, 

dynamic methods involve adding components to the sample mixture itself that will 

protect reagents and/or competitively adhere to the channel walls as the fluid passes 

through the microfluidic device. Dynamic methods provide ease o f use but can suffer 

from low reproducibility and/or build-up of deposits with prolonged use [43],

While passivation coatings improve biochemical stability [45], some irregularities 

persist when implementing fluorescence analyses within high-SVR microfluidics. For 

example, in their exhaustive review of the field [47], Zhang et a l,  summarize that BSA 

passivation is incompatible with fluorescence-based detection techniques due to low
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reproducibility and interaction between BSA and the fluorescent dye/probes. In addition 

to poor compatibility with fluorescence and BSA, Pjescic et al., [48] report a severe loss 

o f intercalating dye during microfluidic DNA analysis. A similar dye depletion effect has 

been described by Guckenberger et al. [49] This causes loss o f signal from biological 

samples and causes some degree o f fluorescent background noise. Minimization o f these 

effects is o f particular interest.

Second generation intercalating DNA dyes - o f which SYBR Green is by far the 

most popular for PCR applications - can inhibit enzyme activity when used in high 

concentration. In response, a third generation of intercalating dyes have been created 

(which include LC Green, SYT09, EvaGreen, and others) which allow for full saturation 

of the DNA molecule without reducing PCR efficiency. These saturation dyes can 

provide extreme fluorescence resolution of the DNA denaturation process, and have 

catalyzed the research field of high resolution DNA melting analysis (HRMA) [11].

For DNA analysis microfluidics such as those that incorporate polymerase chain 

reaction (PCR) and associated fluorescent-based analysis techniques, quantitative 

polymerase chain reaction (qPCR) or melting curve analysis (MCA), combination 

passivation approaches have shown merit. Using both pretreatments and dynamic 

passivation methods allows for an inert environment and competitive binding to ensure 

any remaining charged surfaces are passivated. For example, Wang et al. combined 

hexamethyldisilazane (F1MDS) pretreatment in conjunction with BSA or Tween 20 in 

reaction solution [50] and Matsubara et al. combined a static BSA pretreatment and 

dynamic PVP passivation chemistry [51]. When silicon substrates are used, passivation
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has also been achieved by growing SiCh on the surface and using BSA in PCR solution 

[52].

The compatibility of substrates and additives in fluorescence-based microfluidic 

detection devices is vital to a wide range of lab-on-a-chip processes including DNA 

analysis [44], protein analysis [53], and cell manipulation [46]. In such devices, glass or 

clear polymers are often chosen for their optical qualities, the former also being selected 

for use in high temperature/heated devices because of its favorable thermal properties 

[43,44]. This article will focus on glass-based microfluidics in particular.

The compatibility o f these passivation methods with fluorescent markers is 

especially important for devices that require high resolution fluorescent imaging and 

differentiation o f signals either spatially or based on intensity. Examples o f these highly 

accurate yet sensitive processes include spatial DNA melting analysis [54], spatially 

resolved fluorescence mapping [55], and detection o f any analyte at considerably low 

concentrations such as a growth factor for point-of-care testing [56]. The research 

findings presented in this article identify the kinetic behavior of the adsorption process 

that occurs in passivated glass microfluidics. Based on these results, an experimental 

methodology is presented that will provide maximum performance for fluorescence- 

based microfluidic assays, in particular for high-temperature applications in the areas of 

PCR [48, 57, 58], cell lysis [59, 60], fluorescence in situ hybridization (FISH) [61, 62], 

laser induced fluorescence (LIF) [63] or proteomics [64, 65].



CHAPTER 3

PASSIVATION OF GLASS MICROFLUIDICS FOR 
FLUORESCENCE-BASED ASSAYS

3.1 Introduction

The first objective o f the work presented here was to characterize the interaction 

o f the intercalating dye with some common static passivation methods for glass 

microfluidics. With a quantitative understanding of this behavior, the second objective 

was to develop a pretreatment technique that is applicable to stationary as well as 

continuous-flow microfluidics, at temperatures from room temperature up to 100°C. For 

the characterization studies, continuous-flow microdevices were used with four different 

surface passivating coatings: two silanes and two silicones. Analysis o f reagent depletion 

was performed by flowing a buffered DNA-dye solution through the channels. This 

analysis was done (A) continuously, by collecting fluorescent images o f the channel 

during sample flow, and (B) at an end-point condition, by collecting and examining the 

mixture at the microchannel outlet. Once the depleting reagents were identified, a 

pretreatment mixture was designed that would preload the channel walls with those same 

reagents, and thereby reduce or eliminate depletion during sample flow. The performance 

of this pretreatment strategy was confirmed by MCA.
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3.2 Methods

3.2.1 Microfluidic Chip Fabrication

Microfluidic devices were fabricated by sandwiching a patterned, double-sided 

tape between microscope slides treated with different passivating agents. The glass 

microscope slides (FisherFinest, Fisher Scientific, PA, USA) were cleaned with detergent 

(Alconox Inc., NY, USA) and deionized water and dried with compressed air. Four 

coatings, pictured in Figure 3-1, were examined here, all o f which were obtained from 

Gelest (PA, USA) in >99 % purity liquid concentrations:

1. Dichlorodimethylsilane (DDMS), which is a low atomic weight, methyl 

terminated silane;

2. (Tridecafluoro-1,1,2,2-tetrahydroocty)triethoxysilane, which is a long

chain fluorine-terminated silane. In this article, it will be referred to as

simply “fluorosilane”;

3. Aquaphobe CM, a methyl-terminated silicone; and

4. Aquaphobe CF, a fluorine-terminated silicone.
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Figure 3-1: Four different passivation coatings were evaluated with respect to 
biological and fluorescence compatibility: (A) DDMS, (B) Long-chain fluorosilane,
(C) Aquaphobe CM, (D) and Aquaphobe CF.

DDMS and fluorosilane were prepared at a 10 % volume concentration in 

isopropyl alcohol (437522 - 2-Propanol, Sigma Aldrich, MO, USA). Aquaphobe CM and 

CF were prepared at a 10 % volume concentration in toluene (34866 - Toluene, Sigma 

Aldrich, MO, USA). In a nitrogen environment, approximately 50 pL of this solution was 

pipetted onto a cleaned microscope slide. Another slide was placed over the deposited 

solution, sandwiching and spreading out the liquid. The coated slides were left 

approximately four hours in the same nitrogen environment and, after evaporation o f the 

solution, removed, separated, and cured at 100°C for 1 hour. These treated glass slides 

were again cleaned with detergent, rinsed, and dried before assembly of the microdevice. 

The microfluidic device was fabricated as previously reported [48] by patterning a
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polyimide double-adhesive tape (PPTDE 1, Kaptontape.com, CA, USA) with a knife 

plotter (CE 6000, Graphtec, USA). The patterned tape was then sandwiched between the 

coated microscope glass slides and evenly pressed with a small vice to form channels, as 

seen in Figure 3-2. The channel sidewalls are formed by the tape (polyimide and silicone 

adhesive) and the top and bottom are the treated glass. The channels formed in this way 

have a rectangular cross-section, with a height equal to the thickness o f the tape, which is 

nominally 100 pm. After assembly the channel heights were measured to be between 80 

pm and 120 pm. To fabricate devices with deeper channels, two layers o f patterned tape 

were used (-200 pm total height), or two layers of tape sandwiching a thin 

polydimethylsiloxane (PDMS) film (-320 pm total height) were used in the assembly. 

MicroChannel widths between 0.5 mm and 1.5 mm were fabricated, and the channel path 

was either serpentine (as shown in Figure 3-2) or straight between the inlet and outlet. 

Since the channels are generally much wider than tall, the glass accounts for the

... Kapton tape

Figure 3-2: Double sided Kapton tape is patterned and sandwiched between two 
treated glass slides. The resulting channel is composed primarily o f treated glass 
surfaces, through which fluorescent signal is observed, and o f inert, thermostable 
polymer tape, which accounts for a small portion o f the surface area.

rattem cut into tape

PDMS ports

Glass
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overwhelming majority o f the surface area; therefore, the minor effect o f the tape 

sidewalls on the device performance is not included in this characterization study.

Polydimethylsiloxane (PDMS) ports were attached to the glass by ionizing both 

surfaces and pressing them together, forming a permanent bond [66]. For this, the mating 

surfaces were activated with an oxygen plasma generated from an ambient air line into a 

plasma cleaner (PDC-001, Harrick Plasma, NY, USA).

3.2.2 Optical and Heating System

For all tests, the device was imaged every 3 seconds using an uncooled 1.4 MP 

monochrome CCD camera (PL-B957U, Pixelink, ON, Canada) fitted with a 50 mm 

macro lens (Canon, Tokyo, Japan) while illuminated with a diffused LED light source 

(HPLS-Dragon, LightSpeed Technologies, CA,USA) to excite the dye in the sample. The 

camera was fitted with a low pass wavelength filter (HQ485LP, Chroma, VT, USA) and 

the LED with a band-pass wavelength filter (HQ450/50x, Chroma, VT, USA), limiting 

the LED source to a 50 nm band-pass (425^475 nm) and blocking wavelengths below 

480 nm from entering the camera. The excitation light source was located approximately 

10cm away from the microfluidic device to provide a mostly uniform spatial illumination 

across the analysis microchannel. The field o f view o f the imaging camera was 

approximately 30 mm x 30 mm. The camera was positioned such that it would image the 

central region o f the microfluidic channel where the excitation light was the most 

uniform, leaving at least 10 mm of channel length upstream out o f the field o f view. The 

device was held on a heater system that was designed in-house and previously reported 

[48]. Briefly, a heating platform with two heating elements was controlled by a closed- 

loop temperature controller to elevate the temperature of the device for investigation o f
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fluorescent behavior at elevated temperatures. An infrared (IR) camera (A320, FLIR, OR, 

USA) was used for non-contact measurement o f the device at the precise channel 

locations. Experiments were performed from room temperature up to 100°C. This 

experimental setup can be seen in Figure 3-3.

Figure 3-3: Experimental setup for fluorescence analysis in microfluidic channels. 
Microfluidic chip (A) rests on a heater block (B), while imaged via CCD camera (C), 
and illuminated by LED excitation source (D). Sample is flowed into the device via 
syringe pump (E). Device temperature is managed by PID controller (F) and verified 
via IR camera (G).

3.2.3 Experimental Conditions

Separate microchannels were passivated with each o f the four different coatings 

and evaluated: DDMS, fluorosilane, Aquaphobe CM and Aquaphobe CF. A fluorescent 

solution was flowed steadily through the channel, and images o f the channel were taken 

at two-second intervals. The solution was comprised o f 10 % volume concentration LC 

Green Plus dye (BioFire Diagnostics, UT, USA), 1 pM of a 50bp synthetic double­

stranded DNA sequence (Integrated DNA Technologies, IA, USA), 50 mM Triz buffer, 

and 3 mM MgCh. The sequence o f this double-stranded synthetic DNA can be found in
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Appendix C. (Note: Once it was determined that the dye, not the DNA, was being 

adsorbed onto the surface, experiments were continued with this solution less the 

oligonucleotides.)

The manufacturer would not disclose the molar concentration o f the dye, 

indicating that such details remain proprietary. The stock solution was only defined as 

being at a “ 10 X concentration”. Therefore, the final concentration o f the dye in the 

solution described here can only be given as 1 X/pL. This sample mixture was flowed 

through the device at a constant rate using a syringe pump (KDS100, KD Scientific, MA, 

USA) and a 250 pL syringe (#100, Hamilton, NV, USA). Flow rates in the range o f 1-9 

pL/min were evaluated. A short length o f ETFE (ethylene tetrafluoroethylene) tubing 

(#1516, Upchurch Scientific, WA, USA) was used between the syringe and the 

microfluidic device to minimize reagent losses between the syringe and the microdevice.

The presence o f the DNA and the dye in the channel outflow was analyzed using 

a commercial qPCR/HRMA instrument (Lightscanner 32/LS32, BioFire Diagnostics, UT, 

USA). The effect o f flow rate, channel dimensions, and operating temperature on 

adhesion was examined.

3.3 Results and Discussion

3.3.1 Identifying and Exploring Reagent Depletion

When less than 30 uL of the solution are flowed (at a nominal 2 pL/min) through 

a 1 mm wide channel with any of the silanes or silicone coatings, images o f the channel 

showed no fluorescence. After exiting the channel, this sample was melted on the LS32, 

which confirmed the lack o f fluorescence. The constituents o f the original reaction 

mixture were then added individually into the microchannel eluent and re-melted on the
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LS32. It was found that after adding another 10 % volume concentration o f the DNA dye 

to the flowed sample, its fluorescent melting profile matched that o f the original mixture. 

This indicates that the DNA remained in solution, while the intercalating DNA dye had 

adhered to the treated microchannel walls.

However, if  the flow continued for more than 30uL of solution, at some point 

(-100 uL for the DDMS-coated channel; different for other coatings), fluorescence began 

to be observable at the upstream end of the camera’s field o f view. As seen in Figure 3-4, 

the spreading of the fluorescence downstream occurred slowly but sharply. Rather than a 

gradual brightening o f the entire channel, there was a distinct interface between the 

brightly fluorescent and the non-fluorescent regions. This interface moved steadily 

downstream, giving the appearance o f a “fluorescence front” traveling down the channel 

at a slower velocity than that o f the fluid itself. In addition to having a nearly constant 

velocity, this leading edge o f fluorescence also possessed a consistent profile as it 

progressed along the channel.
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Figure 3-4: A sequence of fluorescence images of one microfluidic channel during 
sample flow. Initially, no fluorescence is observed. A fluorescence front appears after 
some time and moves in the direction of the sample flow at a steady rate. The specific 
experimental conditions for this series of images is provided in Table 3-2 (experiment 
G).

The sharp profile of the fluorescence front is distinctly different from that o f the 

laminar velocity flow profile (Reynold’s Number = 0.023) generated by this microfluidic 

channel geometry, which is known to have a flat leading edge. The shape o f the 

fluorescence profile, which remains unchanged for a given channel geometry, is

attributed to the lateral diffusion of the dye out from the center o f the flow stream to the
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edges where little dye arrives from upstream. The uniformity o f the upstream 

fluorescence, the constant velocity o f the fluorescence front, and the sharpness of that 

bright-dark interface suggests that:

A. The dye has a strong affinity to the surfaces that are treated with these bio­

passivation coatings.

B. There is some saturation limit at which no additional dye adheres to the 

surface.

C. Upstream of the fluorescence front, the dye remains in solution, at the 

original concentration.

D. Downstream of the fluorescent front, no dye is present in the solution. 

Therefore, it is hypothesized that the dye is pulled out o f solution to attach to the

surface only in the near vicinity to the fluorescent front; not upstream because those 

surfaces are already dye-saturated; not downstream because there is no dye remaining in 

the downstream solution; it all adheres at the fluorescent front. As the bright-dark 

interface saturates, the fluorescence front shifts further down the channel. The rate at 

which this front moves is simply a function of the saturation limit o f the channel walls 

and the rate at which new dye molecules are introduced down the channel.

3.3.2 Derivation o f Dye Saturation Model

A mathematical model was developed to explain the observed dye saturation 

behavior. Consider a microchannel with a rectangular cross-section, having a width much 

greater than its height, such that it can be approximated as two parallel walls, as shown in 

Figure 3-5.
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Figure 3-5: Diagram representing the movement o f the fluorescence front 
and the movement o f the liquid down a high-aspect-ratio microchannel. Edge 
effects are ignored, such that the channel can be treated as two parallel walls.

During an infinitesimal time, dt, the liquid moves a distance of dL down the 

length o f the channel, while the fluorescence front moves a smaller distance, dx. Thus, 

the average liquid velocity (ynq) and the fluorescence saturation velocity (via,) are, 

respectively:

_  dL

V l i q  ~ ~  d t
Eq. 3-1

Tsat —
dx  
d t ’

Eq. 3-2

The surface area {Asm) that is saturated over the time dt is:

Asal= 2-w -dx  Eq* 3-3

where w is the width o f the microchannel. Assuming that dx is smaller than dL, the 

volume o f liquid that passes over this newly saturated area is:

Vliq =  h ■ w • dx  Eq. 3-4

where h is the height o f the microchannel. Assuming that only and all the dye originally 

within this volume was what completely saturated that surface area, then that amount of 

dye (Dsai) is simply:
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Dsat ~  ^liq ' Cdye Eq. 3-5

where (Cdye) is the concentration of the dye in the original liquid mixture. The ratio (Nsat) 

between this saturating amount o f dye and the saturated surface area can be defined as a 

property o f the surface:

Ns m = J 2 L - Eq.3-6
™sat

By combining Equations 3-3, 3-5, and 3-6:

_ tl<J dye i I  7Nsat = 1 E q . 3 -7  
2 - w a x

and then substituting in Equation 3-4 and simplifying:

=  h~ ^

and finally by using Equations 3-1 and 3-2 to eliminate dL and dx from Equation 3-8, and 

simplifying:

^ ' Cdye ’ ("
't 'sa t'

Rather than assuming parallel walls, the microchannel could alternatively be modeled as 

a cylinder with a circular cross-section of constant radius (R). Following the same 

derivation process, the surface saturation property would be nearly identical:

NSa , = U - Q y e - ( ? r L) .  Eq. 3-9a
Z  \ l / o  n t '

Nsat
E q - 3 - 9 b^ s a t1

Repeating this derivation for a microchannel with an arbitrary cross-section yields:

^ sa t

where Dh is the hydraulic diameter of the microchannel

N s a t = 2 Dh -Cd y e - ( ^ )  Eq.3-9c
^ yVsnt/
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Therefore, with any known, wetted cross-sectional geometry, the dye saturation 

limit o f any surface coating can be established experimentally by measuring the velocity 

of the fluorescent front under known -  but essentially arbitrary -  operational parameters. 

Once determined, this Nsat value can be used to “dye passivate” any device used under 

any experimental conditions by using the following equation:

Dpx — Nsat ' ASurf Eq. 3-10

where Dpx is the amount o f dye that should be passed through the microchannel prior to 

any experiment requiring fluorescence imaging, and ^W /is the total interior surface area 

o f the microchannel.

The following sections present the empirical calculation o f the Nsat values for the 

four coatings previously described, as well as experimental results that support the 

validity o f Equation 3-9 and Equation 3-10.

3.3.3 Effect o f Passivation Coating on Dve Depletion

The position o f the visible fluorescence was tracked over time as dye/buffer 

solution was flowed through channels treated with different coatings. Multiple devices 

passivated with each silane or silicone (N = 5 for DDMS and the fluorosilane, N = 3 for 

Aquaphobe CM and Aquaphobe CF) were evaluated under identical experimental 

conditions. Fluorescence images such as those shown in Figure 3-3 were collected, and 

analyzed in MATLAB (Mathworks, MA, USA). The spatial distribution o f the 

fluorescence within these images was calculated as function o f time and position, as 

shown in Figure 3-6.
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Figure 3-6: Representative curves indicating the fluorescence along the length o f the 
microfluidic channel at time intervals of 12 seconds. Images such as those shown in 
Figure 3-4 were used to generate these curves (Image analysis algorithm follows that 
presented in [48]).

For all images, the channel position and time at which the fluorescence reached 

30% of its maximum value was calculated. Figure 3-7 shows representative results for: a 

1 mm x 100 pm x 50 mm straight channel, flow rate of 1.5 pL/min, at room temperature. 

Fluorescence signal progression was analyzed over a 20 mm section of the channel, 

where the excitation source most evenly illuminated the channels. The slope o f these 

lines is the velocity of the fluorescent front (vsat). These velocities are different for each 

surface treatment, indicating that each will have a unique Nsat value. The corresponding 

Nsat values for each coating are calculated based on the average saturation velocities and 

the specific experimental and geometric parameters, and provided in Table 3-1.
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Figure 3-7: Position o f fluorescence front as a function o f solution volume flowed and 
glass coating protocol. These curves show the average fluorescent signal progression 
over multiple trials (N = 5 for DDMS and Fluoro, N = 3 for CM and CF) in multiple 
microchannels. The standard deviation between trials was calculated for all 400+ pixels 
analyzed in the images; to aid in visualization, though, only a select number o f these 
deviations are shown on this graph.

Table 3-1: Empirical values o f Nsat calculated for each of the four coatings.

C o a tin g Nsat (in  X / m m 2)

D D M S 0 .1 5 5 1 0 .0 4

F lu o r o s ila n e 0 .3 0 6 1 0 .0 6

CM 0 .1 0 4 1 0 .0 0 4

CF 0 .1 4 9 1 0 .0 1

The silicone coatings, Aquaphobe CM and CF, have a lower Nsat than the silanes, 

indicating that less dye is required to passivate these channels. The Nsat value for DDMS 

is only slightly greater than that o f CF. Between the two silanes tested, DDMS adsorbed 

less dye than the fluorosilane. Possible trends relating coating type and fluorescent dye 

interaction can be further explored based on these results. Here, silicones interact with the 

dye to a lesser extent than the silanes tested. Furthermore, it is notable that both the
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fluorinated silane and the fluorinated silicone interact with the dye more than their 

methyl-terminated counterparts. This suggests that the electro-negative fluoro-terminated 

surfaces bind more strongly to the dye than the methyl-terminated surfaces. This is 

analogous to the charge interaction of the dye molecule with the negatively charged 

backbone of the DNA helix. It is also interesting to observe that there is no correlation 

between dye adsorption and the molecule length (DDMS has functional groups one 

carbon atom long while the fluorosilane and silicones range from 8-30 carbon atoms 

long).

3.3.4 Effect o f Experimental Parameters on N.^t

The dependence o f the Nsat values on a variety o f test conditions was investigated. 

The effect o f channel width, height, temperature, sample flow velocity, and dye 

concentration were evaluated independently. Data such as that shown in Figure 3-7 was 

collected, and the respective fluorescent velocities were calculated and compared against 

those predicted by Eq. 3-9a. Dependence on surface treatment was described in the 

previous section; thus, this additional parametric study was performed using a single 

coating chemistry for all tested channels - DDMS.

The analytical solution indicates that Nsai is a property o f the coating, and 

therefore is independent of all arbitrary experimental conditions as well as the 

microchannel geometry. If Nsat is truly a constant, then the saturation velocity vsal is the 

only dependent variable in Equation 3-9. Baseline experiments (n = 4) were performed 

with the following parameters: temperature = ~25°C; coating = DDMS; width = 1 mm; 

average height = 93 pm; length = 50 mm, straight; Cdye = lX/pL; average vuq = 0.27 

mm/s. The average and standard deviation o f vsat were calculated under these conditions.
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Single tests (n = 1) were conducted in which one or more o f these parameters were 

changed.

Since Equation 3-9a does not include the variables of channel temperature and 

width, changes in those variables should leave the ratio o f vnq to vsat unchanged. This was 

confirmed by conducting tests from room temperature (~25°C) to 75°C, and with channel 

widths from 0.5 mm to 1.5 mm; the fluid velocity (ynq) for each test was controlled by 

setting the volumetric flow rate.

Equation 3-9a predicts that vscU is directly proportional to channel height, dye 

concentration, and fluid velocity. The height dependency was examined in the 100 pm 

and the 320 pm deep channels described above. Dependence on dye concentration was 

investigated by increasing Cdye from 1 X/pL to 2 X/pL. The effect of fluid velocity was 

tested by evaluating vja/ for fluid velocities between 50 % and 600 % o f the baseline (0.27 

mm/s).

The results o f these experiments are summarized graphically in Figure 3-8. The 

average vsat for the baseline tests is shown (A), as well as error bars indicating one 

standard deviation above and below this average. For (B) through (H), the Nsai value for 

DDMS (see Table 3-1) was used along with the independent experimental parameters 

(shown in Table 3-2) to predict the values for each scenario. One standard deviation 

of each predicted value is indicated by a rounded rectangle; the actual measured vsat for 

each experimental case is shown by a circle. For each parametric test, the measured vsat is 

within one standard deviation o f the value predicted by Equation 3-9a, with the exception 

o f the test using the fastest flow velocity. This test resulted in the fluorescence front 

moving at a faster velocity than predicted. However, this is reasonable behavior. At high
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flow rates, it is expected that the dye does not diffuse to the surface within the distance dx 

(see Figure 3-4), but is carried further downstream in solution. Dye saturation o f the 

surface, then, does not occur instantaneously in this case, which is assumed in the Eq. 3-9 

derivation. Therefore, the data point (E) in Figure 3-8 is not a true measure o f the 

saturation velocity, but rather just a track o f the combined fluorescence o f the dye on the 

surface and the dye in solution. Although this highlights a “diffusion limit” that would 

interfere with the empirical calculation o f Nsat at high fluid velocities, the application of 

Eq. 3-10 is not similarly tied to a specific velocity range.

to
e 
£
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Figure 3-8: The effect o f various experimental conditions on the fluorescence 
saturation rate (vsai) were investigated by tracking signal velocities in DDMS coated 
microfluidic channels. The parameters used in the baseline experiments (A) as well as 
the subsequent tests (B-H) are provided in Table 3-2. The rounded rectangles indicate 
the range o f predicted values based on Table 3-1 and Eq. 3-9a.
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Table 3-2: Specific experimental conditions used for parametric tests. A-H correspond 
to experiments described in Figure 3-8. Tests (A-G) were conducted in channels 
fabricated with 100 pm thick tape and test (H) was conducted in a channel fabricated 
with a 320 pm thick tape-PDMS layer.

F lo w
v e lo c ity

( m m /s )

W id th

(m m )
H eig h t
(p m )

T e m p e r a tu r e

(°C)

D y e
C o n e .

(X)
A 0 .2 7 1 9 3 2 5 1
B 0 .5 4 0 .5 9 2 2 5 1

C 0 .6 1 1 .5 8 2 2 5 1

D 0 .6 0 1 8 3 7 5 1

E 1 .7 1 8 7 2 5 1

F 0 .1 6 1 1 0 3 2 5 1

G 0 .5 5 1 9 1 2 5 2

H 0 .7 0 1 3 2 3 2 5 1

The functional limit o f Eq. 3-9 is the scenario under which vuq and vsal are the 

same. Under this condition, dye saturation o f the surface happens simultaneously as the 

fluid front passes. Eq. 3-9 indicates that for a DDMS coating (Nsai = 0.155 ± 0.04 X/mm2) 

and a dye concentration of 1 X/pL, this will occur at a channel height of 310 ± 80 pm. 

This was confirmed experimentally as condition (H) of Figure 3-8. The automated 

algorithm as well as visual inspection o f the images confirmed that the fluid flow front 

and the fluorescence front were in fact superimposed under such conditions. Therefore, 

both analytical and experimental results agree that Eq. 3-9 can be used to empirically 

measure Nsat for any given surface coating or material.

3.3.5 Pretreatment

To demonstrate the functionality of Eq. 3-10, microfluidic devices were fabricated 

containing a serpentine channel in the geometry shown in Figure 3-2, all “DNA- 

passivated” with DDMS. Being 11 cm long x 1 mm wide, the microchannel contained
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220 mm2 of exposed glass. Table 3-1 with Equation 10 predicts that 34.1 X of LC Green 

Plus will “dye-passivate” this amount of DDMS-treated surface. Therefore, a mixture 

was prepared which contained a buffered solution of 1 X/pL (10 % v/v) dye. Some o f the 

devices were pre-treated with 35 pL o f this mixture, flowed at 0.5 mm/s (3 pL/min) and 

room temperature. DNA melting analysis was performed on these devices (DNA- 

passivated and dye-passivated) as well as those that were not pre-treated (i.e. DNA- 

passivated only), using a technique previously described [48]. In short, the microdevice 

was placed in a heating fixture that would maintain one long edge at a high temperature 

while cooling the other long edge. In this way, fluid passing through the channel would 

experience a cyclic temperature gradient between 65°C and 95°C. The DNA/dye solution 

was then flowed into the microchannel via a syringe pump at 2 pL/min (0.33 mm/s). 

Spatial MCA was performed using an in-house image analysis software [48] and was 

compared to a control experiment in the LightScanner32 system (which ramps 

temperature in time rather than position). Figure 3-9 shows identical sections of an (A) 

untreated and (B) treated microchannel after 8 uL o f DNA sample flow entered the 

imaged section o f channel. The fluorescent signal of the DNA sample is only able to be 

detected in the treated device. Only after an additional 25 minutes (50 pL) of continuous 

sample flow did the untreated microchannel begin to fluorescence to the point where 

spatial MCA was marginally possible. Spatial MCA results in the pretreated channel 

(Figure 3-9C) were compared to temporal MCA results from the LightScanner32 system 

(Figure 3-9D). Matching shape and position features o f both curves confirm the 

compatibility between the treated microchannel and the DNA/dye solution.
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Figure 3-9: A temperature gradient was established along a microchannel silanized 
with DDMS. Continuous-flow DNA melting was performed (A) without dye pre­
treatment, and (B) with dye pre-treatment. The melt curve and derivative plot for (B) is 
shown in (C). A control sample was also melted in the LightScanner32 system (D) for 
comparison.

A pretreatment mixture was prepared to passivate the interior o f the channel with 

fluorescent dye, preventing leaching from the sample. The LC Green Plus and MgCl-Tris 

buffer solution was flowed over a temperature gradient to investigate performance o f this 

technique at a range o f higher temperatures. The increase o f fluorescent signal due to 

flow o f the pretreatment solution was monitored over time. The dye adhesion to the walls 

o f the device, as measured by the rate o f fluorescent intensity increase, was seen to 

decrease over time (i.e. slowed increase o f intensity means less adhesion). As seen in
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Figure 3-10, fluorescence increases as more volume is flowed, with lower temperature 

regions increasing sooner and to higher intensities. The intensity is higher at lower
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Figure 3-10: Analysis o f pretreatment flow in a microfluidic channel on a temperature 
gradient. Images o f a channel flowed with pretreatment solution can be seen on left to 
show visibly increased fluorescence over time. The channel was analyzed at the three 
indicated channel positions (three different temperatures) and the resulting fluorescence 
profiles as functions o f volume flowed are color coded.
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temperatures and lower intensity at higher temperatures primarily because fluorescent 

dyes emit less photons at higher operating temperatures [58], but also likely because 

adhesion will occur less at elevated temperatures.

The channel was analyzed at three different positions, corresponding to 

temperatures 70, 80, and 88°C. These temperatures fall within a common range used in 

PCR and MCA, protein denaturation, and cell lysis. It was observed that the signal is 

lower at higher temperatures (due to the inherent behavior o f the dye) and that saturation 

occurs faster when compared to lower temperatures. Initial rise in intensity happens at 

500 arbitrary fluorescence units per microliter flowed (A.U./pL) for all temperatures. 

After 3 pL or less o f flow, the increase of fluorescence slowed to about 16-33 A.U./pL, 

varying with temperature. After 20 pL of sample flow for lower temperatures and only 12 

pL at higher temperatures, the fluorescence curves begin to level off, with increase less 

than 10 A.U./pL. This indicates the surface is becoming saturated with the dye. Sufficient 

saturation occurs at higher temperatures after approximately 12 pL and at lower 

temperatures after approximately 20 pi of pretreatment. After approximately 20 pL of 

flow, there is a slight decline in intensity o f the highest temperature (88°C) curve; it is 

believed to be due to photo-bleaching o f the comparably lower quantity o f adhered dye. 

This effect may be occurring at lower temperatures as well but a decline in intensity isn’t 

seen because there is a higher quantity of immobilized dye at lower temperatures and also 

because most fluorescent dyes emit less photons at higher operating temperatures.

Bubbles were formed in the channels of the microfluidic device after 10 pL and 

15 pL o f dye solution was introduced. The disturbances in the curves are due to these air 

bubbles flowing through the channel. Though these are brief there is some lasting
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influence; a small decrease in fluorescent intensity appears immediately after the bubble 

and takes approximately 2 or 3 pL of flow to recover to the previous increasing 

fluorescence trend.

3.3.6 Conclusions

The interaction between a third-generation intercalating DNA dye and passivating 

coatings was explored. A solution has been formulated to solve the problem o f dye loss 

that was observed in fluorescence based assays. The affinity o f the dye to attach to the 

walls of microfluidic devices was characterized by analyzing fluorescent images 

collected during sample flow. Numerous device conditions were considered and the 

saturation limit for different coatings was found to constant and independent from flow 

rate, temperature, dye concentration, and channel dimensions. Upon quantifying the 

amount o f dye that would saturate each surface, a pretreatment method was proposed and 

verified. By pre-treating the surface with a calculated amount of dye, it becomes 

saturated, such that no more dye is lost from the microfluidic samples, ensuring fast 

efficient detection. This technique can be used by other researchers to improve 

microfluidic fluorescence assays and expand knowledge in the area o f passivation/dye 

interactions.



CHAPTER 4

MICROFLUIDIC HELICASE-DEPENDENT AMPLIFICATION FOR 
jiTAS APPLICATION

4.1 Introduction

Helicase-dependent amplification (HDA) is a nucleic acid amplification technique 

o f interest for microfluidic application. Where traditional PCR requires cycling between 

multiple temperatures, HDA requires incubation at a single temperature, lowering 

thermal control and fluid handling requirements in pTAS applications. On-chip HDA has 

been performed [29] but on-chip amplification and sequence specific detection has yet to 

be achieved. A device is proposed which will accomplish the following:

1) On-chip HDA

2) On-chip amplification detection

3) On-chip melting curve analysis.

In order to approach these goals on a chip based system, HDA protocols were 

developed in a laboratory setting.

4.2 Isothermal DNA Amplification

4.2.1 Helicase-Dependent Amplification

Helicase dependent amplification is an isothermal nucleic acid amplification 

technique, utilized here for its robust performance and design adaptability. A HDA kit 

from BioHelix Corp (IsoAmp III tHDA kit, MA, USA) was used and adapted to facilitate

43
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on-chip amplification. The reaction was optimized to amplify a 110 base pair target on 

the well-studied Phi X 174 bacteriophage plasmid [67]. The complete sequence for the 

Phi X 174 template can be found in Appendix A and the 1 lObp target sequence and 

primers can be found in Appendix B. Before moving the reaction to a chip based device, 

the reaction was optimized on a commercial qPCR/HRMA instrument (Lightscanner 

32/LS32, BioFire Defense, UT, USA). This device was also later used for comparison 

and positive control tests. Quantitative HDA and melting analysis were performed, using 

the third generation intercalating DNA dye, LC Green Plus+ (BioFire Diagnostics, UT, 

USA), to detect amplification and melting of DNA products.

Initial tests using the HDA kit were performed by incubating the reaction mixture 

in a thin walled plastic centrifuge tube submersed in a water bath heated via hotplate 

(VWR, Radnor, PA, USA), monitoring the bath temperature near the tube via 

thermocouple. The reaction mixture contained Phi X 174 template (Integrated DNA 

Technologies, Coralville, I A, USA) at 20 pg/pL, primers (Integrated DNA Technologies) 

at 75 pM for each forward and reverse, deoxynucleotide (dNTP) mix (BioHelix), enzyme 

mixture (BioHelix), buffer mixture (BioHelix). The IsoAmpIII Enzyme Mix contains a 

proprietary mixture o f helicase, polymerase, and single stranded DNA binding protein, 

optimized for specific amplification o f short targets with reduced non-specific products. 

After incubation in a water bath, the intercalating DNA dye LC Green Plus+ was added 

to the amplified HDA mixture and Melting Curve Analysis was performed on the 

LightScanner32 system. The amplified product from the HDA reaction was compared to 

known melting curves for this sequence, showing matching melt signatures -  the negative 

derivative o f the melt curve shows a single peak at 81.5°C (data not shown).
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For further developing protocols, moving the incubation step onto the 

LightScanner32 platform was crucial. The LS32 is capable o f amplifying and melting 32 

samples in individual glass capillaries, holding 5-20 pL samples in each (a greatly 

reduced sample volume compared to a water bath incubation method). This allows for 

observation during amplification (quantitative or real-time HDA) and the comparison of 

samples with different component ratios. One obstacle was observed and overcome when 

performing HDA on the LS32: the HDA reaction is inhibited by LC Green. Initial tests 

performing HDA on the LS32 yielded no detectable product. This is believed to happen 

because, as described in the previous section concerning LC Green concentration 

effecting DNA melting temperature, LC Green stabilizes the dsDNA structure. This may 

in turn make it more difficult or require more energy input for the helicase to unwind and 

separate the strands, similar to DNA melting requiring more energy, i.e. higher 

temperature. To test the hypothesis of LC Green inhibiting the reaction, mixtures were 

incubated with and without added dye, and dye was added to the dye-free sample after 

incubation. They were then melted, and relative concentrations o f amplified target DNA 

could be determined. Each sample contained 10 pL o f the above described HDA mixture 

and 1 pL o f LC Green was added to one sample, yielding a 0.91 X LC Green 

concentration. This lowered the concentration of the other reagents by approximately 

9 %, but this is within a reasonable range for successful amplification. The samples were 

incubated for 90 min at 65°C. One microliter o f dye was added to the dye-free sample, 

yielding the same concentration. Figure 4-1 shows MCA results for the two samples.
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Figure 4-1: The effect of LC Green Plus+ on helicase-dependent amplification. 
Melting curve analysis results of products amplified in the presence and absence o f 1 X 
concentration LC Green Plus.

The amplified product o f the HDA reaction in the presence o f LC Green had a 

much lower fluorescent signal and MCA peak height compared to the amplified product 

o f the HDA reaction in absence of LC Green (3.5 times lower signal intensity between 

70°C and 79°C, the temperature region in which the DNA is double stranded and has not 

yet denatured). This indicates a much lower concentration o f nucleic acid was produced 

due to inhibition o f the HDA reaction. The peak in the -dF/dT curve for the dye 

containing sample is so low that much o f the defining features specific to this sequence 

are lost or distorted, such as accurate melting temperature, peak shape, and peak shoulder 

(visible in the dye free sample -dF/dT curve at 83°C). When these characteristics are lost,
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it becomes difficult to positively identify a product based on MCA results; therefore such 

low intensity samples are not desirable and this inhibition must be overcome.

It was hypothesized that, increasing enzyme mix concentration (helicase, 

polymerase, and ssDNA binding protein) would overcome HDA inhibition by LC Green. 

Samples containing 1 X and 2 X concentration enzyme mix, both with 1 X concentration 

LC Green, were incubated and melted as in the above experiment. In addition to melting 

curve analysis, real-time HDA was performed by monitoring the fluorescence of the 

samples every 2 minutes, yielding 45 acquisitions over the 90 min incubation. 

Amplification and melting curves can be found in Figure 4-2. Amplification curves show 

lift-off into the exponential phase after 25 min. After 50 min, another increase in 

fluorescence occurs, indicating production of a secondary product. Melting analysis 

showed similar results to the previous experiment, with the standard enzyme 

concentration sample yielding no detectable amplified DNA and the increased enzyme 

concentration sample yielding a melting curve o f identical shape and similar melting 

temperature (shifted 1.5°C lower). There is a low intensity peak (-25 times less intense 

compared to the product) with a Tm of approximately 87°C, likely caused by non-specific 

product produced later in the HDA incubation. Where primer dimer product formations, 

due to extension of secondary structures formed by primers annealing to themselves, 

typically have lower melting temperatures. This high Tm product is likely due to 

extension o f longer sections of the template, occurring after the primary amplification 

and resulting in a much lower concentration (as indicated by the difference in peak height 

in MCA). The Tm shift o f the primary product was likely due to an unintended interaction 

between the increased concentration of enzymes and the dye molecules.
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Figure 4-2: Increased enzyme concentration overcomes HDA inhibition by LC Green 
Plus. Real-time HDA (top) and MCA (middle and bottom) were performed on samples 
containing 1 X LC Green and either 1 X or 2 X HDA enzyme mix.
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4.2.2 Reduction o f Incubation Time

With inhibition overcome by increasing enzyme concentration, reduction o f 

the overall reaction time was explored. The bulk o f the overall micro-device 

performance time was projected to be the HDA reaction incubation time (1.5 hours), 

with the estimated sample preparation and loading time (-10 min) and analysis time 

(-10 min) being much shorter. Tests were conducted to lower the incubation time by 

increasing the concentration of the enzyme mixture component of the HDA reaction.

It was noted as an unpublished observation that increasing the concentration of this 

mixture can yield rapid amplification. Using reagent composition similar to the 

previous tests, four samples were prepared with 1 X concentration LC Green and 

increasing amounts of enzyme mix: 2 X, 3 X, 4 X, and 5 X concentrations. These 

samples were incubated for 30 min, rather than 90 min, and then melted. The resulting 

MCA can be seen in Figure 4-3.
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Figure 4-3: Increased enzyme concentration allows for decreased HDA incubation 
time. HDA mixtures containing enzyme concentrations o f 2 X to 5 X were 
incubated for 30 min and MCA was performed.

At 30 min incubation time, samples containing 2 X and 3 X enzyme were not 

produce products concentrated enough to identify, but 4 X and 5 X enzyme 

concentrations were much more identifiable. At lower temperatures, fluorescent 

intensities were 3.9 times higher when 5 X enzyme was used, and 3 times higher when 

4 X enzyme was used, indicating much higher concentrated product.

A helicase-dependent amplification assay was explored and optimized, with the 

intent to develop as pTAS DNA analysis device. Real time amplification and melting 

curve analysis, both utilizing an intercalating DNA dye, were the primary techniques
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used. Reaction inhibition was overcome and the incubation time was shortened from

1.5 hr to a potential 30 min.

4.2.3 Asymmetric Helicase-Dependent Amplification

Probe based detection mechanisms rely on attaching a short ssDNA probe to a 

single stranded or denatured double stranded DNA product. Where PCR and isothermal 

variants such as HDA produce double stranded DNA products, asymmetric variants 

produce double-stranded and single-stranded products. The greater quantity of single 

stranded product can be utilized for probe based detection mechanisms.

With the possibility for probe based detection in mind, asymmetric Helicase- 

dependent Amplification was explored. The optimal primer ratio for asymmetric 

amplification was determined by considering quantity and specificity o f  double stranded 

product as well as assessing the presence o f amplified single stranded product. This was 

done using amplification curves, MCA results, and gel electrophoresis results. The 

previously described HDA reaction was modified for asymmetric amplification by 

changing the ratios o f the Phi X 174 primers. Beginning with 75 pM of each, forward and 

reverse primer concentrations were individually increased to 2 to 1 ratio (150 pM to 

75 pM) and 3 to 1 ratio (225 pM to 75 pM). Table 4-1 outlines sample compositions.
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Table 4-1: Sample compositions for asymmetric HDA.

A b breviation Forward prim er  

Cone. (pM )
R everse  prim er  
co n c . (pM )

Control 75 75

F 2 :l 1 5 0 75
F 3 :l 2 2 5 75
R 2:l 75 1 5 0

R 3 :l 75 2 2 5

These samples were incubated for 90 min in the LS32, under real time 

monitoring, and then melted. Amplification and melting curves can be seen in Figure 4-4. 

Four copies o f each sample mixture were prepared and tested (N = 4), though one F2:1 

outlier was ignored due to low sample volume and low fluorescent signal (N = 3).
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Figure 4-4: Asymmetric HDA amplification (top) and melting curves (middle and 
bottom) for multiple primer ratios. Each curve was an average o f multiple trials (N = 4 
for each sample type, except F2:1 where N -  3).

While it would be expected that the control samples would amplify first or most 

efficiently (crossing point, Cp, o f 29.0 ± 0.90min), other asymmetric samples amplified 

just as quickly, though with more variation between duplicates:
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F2:l - Cp = 29.5 ± 2.6 min; R2:l - Cp = 27.1 ± 4.0 min; R3:l - Cp = 28.1 ± 4.2 min. The 

only sample that did not produce detectable fluorescent signal during incubation was the 

F3:l sample.

The plateau heights differ mostly predictably, with the R2:l samples being the 

highest, followed by the controls, F2:l samples, R3:l samples, and lastly the non- 

detectable F3:l samples. While the variation of the Cp values is small, the variation in 

plateau height is more revealing. These heights indicate the quantity o f dsDNA and the 

efficiency o f the overall reaction.

The presence and relative quantity of ssDNA was assessed by gel electrophoresis 

(Galileo Bioscience Inc., Cambridge, MA, USA). One each o f the above HDA samples 

were run in a 5 % agarose gel, at 60 V and 100 mA for 80 min, and imaged with a UVP 

GelDoc-It system (Upland, CA, USA). Figure 4-5 shows an image o f the asymmetric 

HDA gel, where the channels are as follows -  channel 1 is a PCR Marker or gel ladder 

(New England BioLabs Inc., Ipswich, MA, USA), channel 2 is empty (in order to avoid 

migration o f the ladder into a sample channel), channel 3 is control, channel 4 is F2:l, 

channel 5 is F3:1, channel 6 is R 2:l, and channel 7 is R3:l.



Figure 4-5: Gel electrophoresis imaging for asymmetric HDA. PCR marker (lane 1) is 
used to compare lengths o f samples in lanes 3 through 7.

The position o f the sample bands, in relation to the ladder, show the correct size 

o f the target, 1 lObp. There is some curvature across the bands due to heating o f the gel 

during the run, though the fragment lengths are easily discemable by comparing the 

control sample band (lane 3) to the ladder, showing product size < 150bp. The band in 

lane 5 is not visible, indicating no dsDNA was produced in the F3:l HDA reaction; this is 

in agreement with the amplification curve and the MCA results. A secondary band is 

visible with all samples, except the control lane. It is believed that this weak optical 

signal indicates the presence of ssDNA. While the ethidium bromide stain used in gel 

electrophoresis is typically intended to stain dsDNA, it is known that ssDNA can form 

secondary coiled structures that can be stained by ethidium bromide [68].



Symmetric and asymmetric HDA produced dsDNA, detectable by both MCA and 

gel electrophoresis. In addition to gel electrophoresis, MCA was also used to assess the 

relative concentration of ssDNA. It was hypothesized that additional primers added after 

amplification could act as a probe, showing a secondary melting signature, separate from 

that o f the target sequence. Because the previous experiment showed the strongest 

amplification in the R2:l sample, that ratio of primers was used in this experiment. After 

incubation o f a symmetric HDA control mixture and asymmetric HDA sample (N = 2 for 

each), 75 pM of the forward primer was added to the amplified sample. The forward 

primer is complementary to the 3 prime end of the resulting ssDNA and anneals at this 

location, and can then be melted and detected. Figure 4-6 shows MCA results for 

symmetric and asymmetric HDA products with added forward primers.
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Figure 4-6: Melting curve analysis used to detect ssDNA product o f asymmetric 
helicase-dependent amplification. A primer based probe was added to the symmetric 
HDA control and asymmetric HDA amplicon, resulting in increased probe-to-target 
signal ratio in the asymmetric sample.

The added primer probe produced a peak at Tm = 64°C in both the symmetric 

HDA control as well as the asymmetric HDA sample. This can be expected because the 

primer probe is complementary not only to a section o f the excess ssDNA produced in 

the asymmetric reaction, but also to the dsDNA in the symmetric control if  the strands are 

denatured and the primer probe can anneal. The temperature profile o f the MCA protocol 

includes a rapid denature step, ramping to 95°C and cooling to 40°C, followed by the 

MCA temperature ramp where fluorescent signal was acquired, in this case, from 55°C to
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95 °C. The denature step allowed the probes to anneal to the amplified ds- and ssDNA. 

The difference in fluorescent signal at 64°C shows the presence o f ssDNA in the 

asymmetric HDA sample. The ratio o f target MCA peak height to probe MCA peak 

height changed from 2.1:1 in the control to 1.2:1 in the asymmetric sample, indicating a 

77% increase in signal from the control to the asymmetric sample at the probe location.

A simple probe based detection mechanism was explored as a potential inclusion 

into a pTAS DNA analysis device, utilizing asymmetric HDA and MCA. An asymmetric 

HDA reaction was optimized on a commercial laboratory based thermocycler, and 

ssDNA was detected via gel electrophoresis and a probe based MCA technique. This 

method o f nucleic acid amplification and probe based detection is an option for future 

development o f pTAS based assays.



CHAPTER 5

DESIGN OF A PORTABLE DNA ANALYZER

5.1 Introduction

A lab-on-a-chip device is proposed that accomplishes the following goals:

1) On-chip HDA

2) On-chip amplification detection

3) On-chip melting curve analysis.

These three goals are accomplished by adopting the previously described biology 

into a glass/polymer composite device, interfaced with heating and fluorescence 

acquisition systems. All of these components are completely USB powered and 

controlled, allowing for a portable system, that requires only a laptop. A representative 

diagram of the overall system is provided in Figure 5-1.

59
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Figure 5-1: Diagram of the DNA analysis lab-on-a-chip system. The glass/polymer 
microfluidic device (A) is heated via USB power and interfaces via Arduino (B) with a 
laptop (D). Fluorescent signal is acquired with a USB spectrometer (D). Thermal and 
optical control and processing are managed simultaneously.

5.2 Fabrication

At the core o f the portable DNA analysis system is a glass/polymer microfluidic 

chip. A molded layer o f polydimethysiloxane (PDMS) (Sylgard 184, Dow Coming, 

Midland, MI, USA) is bonded with a microscope glass slide (Fischer, Hampton, NH, 

USA) to form microfluidic reservoirs and channels. These materials were chosen for their 

specific properties; the glass microscope slide for its moderate thermal conductivity (K = 

0.8 W/m K) and optical transparency and PDMS for its elasticity (360-870 KPa, 

dependent on base-to-crosslinker ratio) and optical transparency. Heat is applied to the 

reservoirs through the glass side of the device. The elasticity of the PDMS top of the
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device allows for hand controlled pumping, pulling in a liquid sample and moving it 

between reservoirs without the need of any external pumps or actuation hardware.

5.2.1 Composite Device Fabrication

Channel and reservoir features are produced by molding PDMS around a 

patterned tape layer. A 100 pm thick polyimide double-adhesive tape (PPTDE 1, 

Kaptontape.com, CA, USA) is patterned using a knife plotter (CE 6000, Graphtec, USA) 

and attached to the bottom of a plastic disposable petri dish. The pattern cut into the 

polyimide tape is shown in Figure 5-2. The outer area was removed, leaving the negative 

pattern - the thin 0.3 mm wide channels, 6 mm diameter circles, and the 1.5 mm by

2.5 mm channel openings attached to each circle. Additional circular tape layers were cut 

and layered over the pattern in the petri dish, creating areas o f 100 pm thickness 

(channels) and 500 pm thickness (reservoirs). PDMS pre-polymer was mixed as 90 % v/v 

base to 10 % v/v crosslinker, producing polymer o f moderate elasticity (with reference to 

the above stated range). The pre-polymer mix was poured into the petri dish, over the 

patterned tape mold, to a liquid depth of approximately 4 mm. The liquid was degassed in 

a desiccator chamber, under moderate vacuum (-200 mTorr), for 30 min or until all 

visible air bubbles were removed. The dish was cured at 80°C for 1 hour, with care not to 

exceed this temperature, which would cause warping of the dish and sample. The sample 

was left to cool and later the 1 inch by approximately 2.5 inch patterned PDMS area was 

cut out and removed. The patterned tape mold was removed from the PDMS with 

tweezers. The resulting features are 300 pm wide, 100 pm deep channels; 6 mm 

diameter, 300 pm deep reservoirs; 1.5 mm wide, 100 pm deep channel opening between 

reservoirs.
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Figure 5-2: Pattern o f microfluidic channels and reservoirs. A 100 pm thick polyimide 
double-adhesive tape was cut via xurography and used to mold a PDMS layer.

Before bonding the molded PDMS and glass microscope slide to form the 

enclosed channels, a secondary channel type was prepared. A flat, valve channel was 

formed between the two reservoirs (connecting the two 1.5 mm wide channel openings) 

by masking the unmolded PDMS with a 2 mm wide strip o f patterned polyimide tape. 

This masked, molded PDMS piece and glass microscope slide were bonded by 

chemically activating both surfaces via plasma cleaner (PDC-001, Harrick Plasma,

Ithaca, NY, USA). The materials were exposed to an oxygen plasma produced by an 

ambient air in-line for 2 min, then removed, the PDMS was un-masked, and the surfaces 

were evenly contacted. This produces a permanent covalent bond between the activated 

surfaces, but no the masked region of the PDMS. This region, while not molded, is also 

not bonded to the glass and can serve as a valve channel, able to be opened with flow 

pressure. The fabrication workflow is summarized in Figure 5-3.
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(A)

(B)(1)

(2)

(3)

(4)

(5)

Figure 5-3: Fabrication workflow (A) for microfluidic HDA chip - (1) Pattern tape via 
xurography (2) Cure PDMS over mold (3) Remove patterned tape and mask molded 
PDMS (4) Exposed PDMS and glass slide to oxygen plasma (5) Remove mask and 
bond PDMS to glass. Molded PDMS (B) is masked to form a flat valve channel. The 
finished chip (C).

The device can be passivated for biological application, prior to or after 

fabrication, using different methods. Case 1: The glass slide is treated with DDMS, or 

other silanes/silicones, and the reservoir area is protected with a polyimide tape mask 

during plasma surface activation. The mask is removed and the surfaces are bonded. Case 

2: Neither surface is passivated before bonding, but a flow through passivation technique 

is used after plasma treatment and bonding. Passivation flow through treatments must use 

solvents compatible with PDMS, to avoid swelling and damage to the structure [69]. One 

passivation treatment o f interest for Case 2 is Pico-Glide 1 (Dolomite Microfluidics, 

Charlestown, MA, USA), which is dissolved in a fluorinated oil (compatible with 

PDMS). Both pretreatment options, DDMS and Pico-Glide 1, were explored, and this
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research moved forward with Case 1. Fluorescence passivation techniques described in 

Chapter 3 were employed, introducing fluorescent dye (-15 pm of 1 X LC Green Plus+ 

pretreatment solution) into the device before use for biological assays.

Hand pumping and valve channel actuation is accomplished by thumb depression 

of the 6 mm diameter reservoirs. Depressing the empty chamber, contacting the end of 

the inlet channel (which is positioned at the bottom comer for ease o f access) to a liquid 

sample, and releasing the depressed reservoir, allows the PDMS to reform pull in the 

sample. The chamber is then sealed, either by manual clamping or by fast set epoxy; UV 

cure epoxies (Loctite 3105 and 3106, Henkel Corporation, Westlake, OH, USA) 

(shielding loaded sample from UV) and fast-setting, two-part epoxies (MinuteWeld, J-B 

Weld, Sulphur Springs, TX, USA) have both been shown to contain samples up to 80°C, 

but leak at higher temperatures. When used to seal the device, the sample is not in contact 

with the sealant, which is separated by a 4.5 cm long (100 pm tall by 400 pm wide) 

channel.

5.2.2 Fabrication Consistency Testing

5.2.2.1 Thickness Measurement

Multiple PDMS/glass composite devices were fabricated, to test the consistency 

of the described technique, related to this technique and resulting functionality: 1) device 

thickness and membrane thickness (potential effect on thumb push function), 2) sample 

uptake volume.

The devices are being created in an identical manner, according to the above 

described protocol. Patterned tape is applied in 100 mm diameter by 15 mm height petri 

dishes, capable o f holding two patterns. Petri dishes 145 mm in diameter, capable of
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holding eight repeated patterns, were also tested, changing only the volume of PDMS 

pre-polymer required to achieve a PDMS height o f 4 mm. The molded PDMS was 

bonded to the glass slides, creating a total o f ten devices.

Thickness measurements were taken on the ten devices, at seven different 

locations. A hand micrometer (PK-0505, Mitutoyo Corporation, Kawasaki, Japan) was 

used, avoiding deformation of the PDMS and particularly avoiding depression of the 

reservoirs while measurements were taken. The average o f three measurements was taken 

for each location on each chip. Figure 5-4 shows the locations o f measurement on a 

sample device. The height measurements were compared in two different ways. First, 

measurements at each location were averaged, to yield a single average thickness for each 

device. These average height measurements are shown in Figure 5-5.

6
5

7

Hand micrometer

Figure 5-4: The thicknesses o f ten identically fabricated PDMS/glass composite 
devices were measured at points 1-7. The measurements include both PDMS and glass 
layers.
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Figure 5-5: Device thickness across ten similarly fabricated PDMS/glass composite 
microfluidic devices.

The overall average thickness is 3.82 ± 0.37 mm, or 3.82 mm ± 9.8 %. The 

maximum thickness for a single device was 4.39 ± 0.15 mm and the minimum thickness 

was 3.21 ± 0.20 mm. These values include both layers, PDMS and glass. Reducing the 

average thickness by the thickness of the microscope slide (1 mm) and by the depth of the 

reservoir (500 pm), the average thickness o f the deflecting PDMS over the reservoir is 

2.32 ± 0.37 mm (or varying by 15.9 %).

Another analysis method used was to find an average thickness at each 

measurement location, 1-7, across all chips. This provides insight into the variation 

across the features in a single device. Figure 5-6 shows height measurements at each 

location, normalized for variation between each devices average height.
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Figure 5-6: Height measurements at each location (shown in Figure 5-5), normalized 
for average height o f each device.

Each location number corresponds to a different area or feature on the devices, as 

seen previously in Figure 5-4. Location 1 is the thickness at the inlet channel, Location 2 

and 5 are reservoirs, and Locations 3 and 4 and Locations 6 and 7 are on either side of the 

reservoirs (2 and 5 respectively). Most locations vary less than 5 % o f the average 

thickness for that device, with Location 1 varying the most at 6.1 %. There does not 

appear to be a correlation between average thickness and distance down the chip, either 

lengthwise or widthwise. While measurements at the reservoirs, Locations 2 and 5, yield 

some o f the lowest thicknesses, they are not significantly lower than average (within 1 %) 

and have lower than average standard deviation.

5.2.2.2 Sample Volume Uptake

Because the thickness of the PDMS membrane above the reservoirs was found to 

vary by up to 15.9 %, it is important to investigate the consistency o f the pumping action 

o f devices fabricated using this technique. Sample volume uptake was measured for the
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ten devices, using thumb actuated pumping action. Four measurements were taken for 

each device by pipetting 50 pL of DI water on paraffin film, hand pumping the fluid into 

the device, then with a pipettor measuring the fluid volume remaining on the paraffin 

film. Figure 5-7 shows the average sample volume measurements for each o f 10 devices.
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Figure 5-7: Sample uptake volume using thumb actuated pumping in PDMS/glass 
composite microfluidic chips.

These tests show an average sample uptake o f 17.0 ± 1.2 pL (variation o f 7.1 %). 

Device 5 is somewhat o f an outlier, with the lowest average sample uptake (14.75 pL,

13.2 % lower than average) and the highest variation between subsequent measurements 

(standard deviation o f 1.2 pL, 40 % higher than the average standard deviation). While 

special care was taken to fully evacuate each chamber after each measurement, Device 5 

showed a decrease in volume uptake after the first sample, indicating some liquid 

remained inside between measurements. Removing Sample 5 results in an average 

sample uptake o f 17.2 ± 0.9 pL (variation of 5.2 %, which is considerably less than the 

variation thickness).
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5.3 Thermal Management

5.3.1 Heating Element Design

To perform Helicase-dependent amplification, the liquid sample must be 

incubated at 65°C for 30 to 90 min (incubation time optimized dependent on reaction 

mixture components, as discussed in Chapter 4). Glass was chosen as one o f the 

microfluidic device materials, for its thermal conductivity, as well as optical properties 

and surface passivation options. The bottom glass slide acts as route through which heat 

is applied to the device and to the sample. To create a portable analysis device, heating 

power and control are managed by laptop USB.

Initial on-chip HDA tests were done by placing the microfluidic chip on an in 

house heater block (also referenced in Chapter 3). The aluminum blocks, containing PID 

controlled cartridge heaters, contacted the bottom edge of the microfluidic device, save a 

1 cm gap down the length o f the device. The heaters were each set to 68°C, maintaining a 

device temperature o f 65°C, monitored via IR Camera.

This heating method was replaced by incorporating a polyimide thin film heater 

that is USB powered and controlled. A 55 mm by 6 mm, 6 Q (measured 5.3 Q) thin film 

heater (Minco, Minneapolis, MN, USA) was attached to the underside o f the glass/PDMS 

device via innate acrylic adhesive. A laptop computer USB 3.0 port supplied 5 V to the 

heater. Because o f power requirements, a USB 3.0 port must be used over a USB 2.0, 

because it is capable o f supplying 900 mA to 1.5 A, up from USB 2.0’s 500 mA limit. 

When 5 V is applied to this heater, the current draw is just under 1.5 A, also producing 

temperatures well above our intended range of 65 to 95°C. A feedback control loop is 

implemented by putting the heater and 5 V source in series with a solid state relay, which
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is controlled via Arduino microcontroller (Arduino Uno, Arduino, New York, NY, USA) 

and thermistor temperature sensing.

A 10 KQ negative temperature coefficient thermistor (U.S. Sensor Corp., Orange, 

CA, USA) was attached to the surface of the thin film heater via epoxy (Loctite E-05CL, 

Henkel Corporation, Westlake, OH, USA). The device was insulated with melamine 

foam (McMaster-Carr, Douglasville, GA, USA), which has a conductivity as low as 

0.045 W/m K, to mitigate heat losses. The heater/thermistor assembly is able to be 

removed and attached to a new microfluidic chip after each biological test. This exchange 

prevents any cross contamination, but requires further analysis o f thermal behavior 

should the application o f the heater vary. A model of the device can be seen in 

Figure 5-8.

Figure 5-8: The glass/PDMS composite device with mounted thin film heater, 
thermistor, and insulating foam.

The thermistor’s resistance versus temperature profile was measured using a 

simple voltage divider circuit and by controlling the thin film heater with a PID controller
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(CN79000, Omega, Norwalk, CT, USA) and DC power. The temperature value measured 

by the thermistor is provided by:

where Tvai is the temperature (K) measured, Bvai is the calibration constant specific to the 

thermistor, Tcai is the temperature at which the thermistor was calibrated, Real is the 

resistance o f the thermistor at the calibration temperature, and Rvai is the resistance o f the 

thermistor at the measured temperature. Bvai, Tcai, and Rcai are all provided by the 

manufacturer, and used to convert measurements take with the thermistor. The Rvai 

resistance (Q) is measured using a simple voltage divider circuit. This circuit is interfaced 

with the Arduino microcontroller and the signal is communicated to a Matlab interface 

(MathWorks, Natick, MA, USA) for signal processing and control.

A Matlab based fuzzy logic controller is used to control the temperature o f the 

sample chamber, maintaining the 65°C target. The voltage signal from the thermistor- 

voltage divider is converted to a temperature using the relationship in Eq. 5-1 and input to 

the fuzzy logic controller; the output is a voltage value. The membership functions (and 

thus the output voltage) were tuned based on temperature measurements o f the system at 

thermal equilibrium for different applied heater voltages, ranging from 3 to 4 V. The 

output from the fuzzy controller is converted to a number between 5 and 100, used to 

control the percent o f the time that the heater is exposed to the USB 5 V source, and thus 

approximating voltages in the required 3 to 4 V range. This converted time value is 

communicated back to the Arduino, which pulses the heater to maintain temperature. 

Using the Mamdani fuzzy inference mechanism, different sets o f membership functions

Eq. 5-1
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have been defined in order to achieve specific temperatures on the microfluidic device. 

These settings were able to be changed, depending on requirements established by 

thermal modeling. The circuit layout for the heating and control systems is in 

Appendix D.

5.3.2 Thermal Modeling

Thermal model simulations were performed to investigate the functionality o f this 

design, primarily concerned with a few parameters: 1) target temperature in the reaction 

reservoir, 2) the impact o f thermal contact resistance associated with the heater/glass 

contact, and 3) response time of the heating of the system. An investigation o f these 

topics was performed using Solidworks Simulation (Dassault Systemes SOLID WORKS 

Corp., Waltham, MA, USA), both steady state and transient models.

The target temperature for the isothermal amplification reaction was defined as 

65 ± 2°C. Although the incubation time has been optimized to be lower (30-45 min), the 

original duration o f 1-1.5 hrs was considered. A simplified model of the device was 

created for use in thermal studies, as seen in Figure 5-9. The thermistor and connection 

wires to the heater were removed, and the heater was treated as a 0.5 mm thick polyimide 

rectangle on the bottom side o f the glass slide, with the same area as the thin film heater 

(55 mm by 6 mm). The features o f the channels and reservoirs were maintained, and 

treated to contain water. Material properties were specified for glass and water using 

material libraries available in Solidworks, while other literature sources were used for 

PDMS [70], polyimide (Dupont, Wilmington, DE, USA), and melamine foam (BASF 

Corporation, St. Laurent, Quebec, Canada).
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Figure 5-9: Simplified model o f glass/PDMS microfluidic device, used for thermal 
modeling.

First a steady state model was used to assess the heat distribution in the device. 

The top surface of the heater was treated to be a set temperature source o f 67°C; this is 

2°C higher than the target temperature to compensate for heat loss through the 1 mm 

thick glass slide. A thermal resistance between the heater and the glass slide was 

assumed, and two cases were modeled: a best case, in which 10 % of the surface area is 

occupied by 10 pm thick air voids, and a worst case, in which 90 % of the surface area is 

occupied by 40 pm thick air voids. Distributed resistance values were calculated for these 

two cases and applied to the model: 9.05 x 10-5 m2K/W and 1.16x10-3 m2K/W 

respectively. Ambient conditions o f 25°C and a convection coefficient, h, o f 10 W/m2K 

were used. Temperatures were probed through the thickness o f the device, at the center of 

the reservoir area, while at equilibrium state. Figure 5-10 shows temperature as a function 

o f distance through the device thickness, for each defined contact resistance scenario.
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Figure 5-10: Modelled effect o f heater contact resistance on the device temperature. 
Based on the best case and worst case scenarios described above, the temperature due 
to a 67°C heat source can be seen in the three zones: 1) the glass slide, 2) the reservoir, 
3) the PDMS.

These results verify the reservoir temperature and explore the role o f contact 

resistance on sample temperature during incubation. Using a heat source o f 67°C was 

shown to produce temperatures between 65 and 66°C in the sample reservoir, within the 

defined target range. Changing the contact resistance between these two cases yielded a 

change < 0.5°C in the sample reservoir.

A series o f transient studies were performed in order to assess the temperature 

difference between the temperature sensor used in the feedback control system and the 

sample reservoir. This is especially important when the temperature is system is 

changing, such as during melting curve analysis or when ramping to the incubation 

temperature. The temperature difference, or thermal lag, between the thermistor sensor 

and sample is due to heat dissipated into the 1 mm of glass, the surrounding insulating 

material, and the ambient environment.
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A transient model of the heating of the device was used to investigate the 

response time. A step size of 5 sec was used for all transient models. Initially a power 

source (rather than temperature source) was applied to the heater/glass interface. A 

2.67 W power source was used to simulate the power draw from a 4 V potential applied 

to the 6 Q heater. This yields an uninhibited temperature increase, where in reality the 

controller limits the voltage when the target temperature is reached. To more accurately 

model the response, the temperature profile of the heater in response to a 2.67 W load of 

was recorded and then input as a time dependent temperature source. From 0 to 35 sec 

the temperature response due to the power source was input, and after reaching the target 

temperature at 40 seconds, a value of 67°C was used. This resulted in a piecewise 

function temperature input, which, while not completely realistic, can be used to 

approximate a critically damped version o f an actual response from a closed loop 

controlled heater. The temperature response at the center o f the reservoir was modeled in 

response to this input heater temperature profile, as shown in Figure 5-11.
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Figure 5-11: Modelled time response o f reservoir temperature to an input time-variable 
heater temperature.
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The heater is set to 67°C and the final temperature o f the reservoir is 65.69°C.

The time constant describing the response of the system was found. The temperature at 

which 63.2 % of the total temperature change, AT (40.69°C), had occurred is 50.7°C.

This is reached after 25 sec. This shows that the system heats up very fast but does not 

realistically represent damping effects. When 4 V (2.67 W) is used, the system will heat 

up to the set temperature very quickly, but is not guaranteed to equilibrate this quickly.

As the device temperature approaches the set temperature, the voltage is reduced, 

extending this time somewhat.

Despite the response time model, the actual device heat up time was much higher 

(time constant o f about 75 sec). Two methods were taken to reconcile this in the models: 

by increasing the ambient convective heat transfer away from the device or by decreasing 

the effective power to the heaters. The first method, changing the convection coefficient 

from 10 W/m2K to 25 or 50 W/m2K, resulted in an increase in time coefficient 

(approximately 35 and 45 sec respectively), but more notably caused a drop in 

equilibrium temperature (reaching only 64.2°C and 62.3°C, compared to the previous 

equilibrium temperatures o f 65.7°C). A decrease in effective power to the heaters (by Va 

and by lA) did not decrease the equilibrium temperatures but did decrease time constants 

(to about 40 sec and 60 sec, respectively). It is theorized that some combination of 

increased losses and/or reduced power to the device is responsible for the lower 

experimental time constant, but this heat up time is manageable (and expected in 

experimental practice) and does not negatively affect device performance.
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One last concern is the temperature lag prior to reaching equilibrium. This is a 

greater problem when conducting melting curve analysis, where the change in fluorescent 

signal is a function o f temperature, and changes in fluorescence at specific temperatures 

are unique to the DNA samples. The convection coefficient was varied between 10 and 

20 W/m2K and additional heat losses in the form of conductive heat flux away from the 

system from all sides, with values of 10,100, and 200 W/m2. These were all applied to a 

low power system, 2 W supplied to the heater, with the intent o f creating a wide range of 

scenarios o f heat loss. For each o f these cases the difference between the heater and 

reservoir temperatures was monitored and the average across all scenarios was found to 

be 6.0 ± 0.2°C. Because the results were comparable for every case, a correction of 6°C 

was used when calibrating MCA on this device.

5.4 Optical System

Fluorescent detection of the HDA reaction and sample is made possible by 

incorporating a spectrometer and LED excitation source. The intercalating DNA dye in 

the sample is excited via specific wavelengths from the filtered LED, emission from the 

dye is filtered and passed through the cable, and the spectrometer detects the signal. The 

signal is digitally filtered and plotted versus time to detect intensity changes associated 

with DNA amplification or melting. The LED and spectrometer are USB powered, 

furthering the portability of the system. The system is operated in a dark room 

environment (ignoring laptop monitor light), but can also be used in ambient lighting if 

properly covered with an opaque material. Further testing on thermal effects of such an 

enclosure are required.
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An Ocean Optics USB 4000 spectrometer is coupled with a 0.2 m long, 1 mm 

core fiber optic cable (ThorLabs Inc., Newton, NJ, USA) and then filtered with a band­

pass optical filter, allowing transmission through a 40nm band centered on 500 nm or 

approximately 480-520 nm (ThorLabs Inc.). The cable is attached to the spectrometer via 

SMA and to a SMA-to-one-inch adaptor that is coupled with a 1/3 inch long, one inch 

diameter optics tube. The optics tube houses the band-pass optical filter and a protective 

glass insert. The excitation source is a blue 447.5 nm peak wavelength LED (Luxeon Star 

LEDs, Brantford, ON, CA) mounted to an one inch diameter optics tube cap that serves 

as a heat sink and attaches to a 1/2 inch long optics tube that houses another band-pass 

optical filter, allowing transmission through a 50 nm band centered around 450 nm or 

approximately 425-475 nm (ThorLabs Inc.). It is important to note that the filtered light 

band into the spectrometer and the filtered light band out o f the LED do not overlap, 

ensuring that no light from the LED is detected by the spectrometer. In addition to being 

equipped with a filter, this LED is also equipped with a 3 mm by 15 mm slit. The LED 

fixture is positioned perpendicular to the 1 inch side of the glass/polymer device, 

illuminating the sample reservoir through < XA inch of glass and PDMS. The fiber optic 

cable with filter is positioned directly in front of the microfluidic chip, centered on the 

sample well. The microfluidic device, spectrometer cable, and LED are secured in a foam 

cutout during development testing, in order to stabilize and standardize their orientations. 

The orientation o f the optical, thermal, and biological systems are shown in Figure 5-12.
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Figure 5-12: Experimental setup for on-chip DNA analysis testing. Microfluidic chip 
with heating element (A), filtered fiber optic cable (B), and filtered LED excitation 
source (C) are mounted in a cutout foam block (D). Spectrometer (E), heating, and 
illumination are all USB powered and controlled.

The spectrometer detects light emission from the DNA dye, ranging from 470 nm 

to 520 nm, which corresponds to the light allowed through the spectrometer band-pass 

filter. A sample spectra is shown in Figure 5-13. The intensity values over the peak 

emission region, taken to be 500-510 nm, were smoothed over wavelength using a 

Savitzky-Golay digital filter. An average value was calculated from the smoothed values 

over this wavelength range for each sample time and these average values were also 

smoothed using a Savitzky-Golay filter. The resulting curves, intensity as a function of 

time, are used to generate amplification and melting analysis curves, depending on 

biological and heating profile conditions.
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Figure 5-13: Sample spectra resultant of the described optics configuration, shown in 
the OceanOptics spectrometer interface, OceanView. The filtered LED excitation 
source is detected and seen as the shorter wavelength peak (-445-470 nm) and the 
sample’s fluorescent emission signal is detected and seen as the longer wavelength 
peak (-445-520 nm). The intensity of the sample fluorescent signal is tracked over time 
during both incubation and melting.

5.5 On-Chip Testing

5.5.1 On-Chip Amplification

On-chip Helicase-dependent amplification was initially performed without the 

integrated fluorescence detection system, but was verified by removing the amplified 

sample and performing melting curve analysis on a separate commercially available
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device (LightScanner32). The previously described HDA mixture was used: Biohelix 

IsoAmpIII kit with Phi X 174 1 lObp target, 2 X enzyme mix, and 1 X LC Green Plus+. 

The on-chip product was compared to amplicon from positive and negative control 

(reaction mixture with no template) reactions performed on the commercial device. MCA 

results are shown in Figure 5-14.
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Figure 5-14: Melting curve analysis was used to compare products from on-chip 
helicase dependent amplification and a control reaction performed on a commercially 
available device.
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Specific amplification o f the target sequence was achieved on the glass/PDMS 

device, verified by matching melting temperature (Tm = 82°C), and comparable 

concentration (84 % peak height signal compared to the control).

The glass/PDMS device proved capable o f HDA, containing the sample mixture 

at the incubation temperature o f 65 °C. As previously noted, sample containment became 

difficult at temperatures in excess of 80°C, causing sample to evaporate and pressurize 

the chamber. The epoxy sealant and clamping methods did not completely prevent 

sample loss through the device inlet. To circumvent this issue, a secondary microfluidic 

device design was used for melting curve analysis. A glass/polyimide composite device 

was fabricated via xurography as detailed in Chapter 3. This device possesses many of 

the same qualities as the glass/PDMS device: the same reservoir and sample size (15 pL), 

identical interchangeable heating system, optics orientation (LED position, fluorescent 

signal detected through 1 mm glass rather than 1.3 mm of PDMS). As with the 

glass/PDMS device, melamine foam is used to insulate the bottom glass side o f the 

device, but melamine is also used to insulate the top surface, avoiding the reservoirs and 

signal acquisition area. This device differs in sample insertion; rather than thumb 

actuated pumping, a syringe is used to insert the sample via microfluidic tubing into the 

reservoir through mounted PDMS ports. The glass microscope slides were passivated 

with DDMS prior to assembly, and the device was fluorescence passivated as discussed 

in Chapter 3.

On-chip HDA and MCA were performed on this device, interfaced with the USB 

powered/controlled heating and optics systems. To obtain amplification curves, 

fluorescent signal was acquired via spectrometer in a 200 ms window every 30 seconds,
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over a 45 min incubation period. The signal was smoothed with respect to wavelength 

using a Savitzky-Golay filter, averaged over a 10 nm wavelength range, and smoothed, 

again using Savitzky-Golay filtering, with respect to time. Baseline signal measurements 

were taken by heating and monitoring a negative control sample, comprised o f only a 

buffered dye solution. These baseline measurements were subtracted from the HDA 

incubation signal, to produce an amplification curve, shown in Figure 5-15 with an 

amplification curve obtained on the commercial device.
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Figure 5-15: Amplification curves from HDA reactions carried out in the portable 
device (top) and commercial system (bottom).
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Heating began at time 0 min, reaching the incubation temperature, 3 min into the 

45 min incubation time. Most notably, the on-chip sample showed signal increase as 

early as 5 min. A crossing point o f 5 or 6 min o f incubation is not possible when 

compared to amplification in the commercial system yielding a crossing point o f 37 min. 

This is due to the sample mixture being held at room temperature during extended 

preparation time. While the sample was not jeopardized, quantitative analysis during the 

incubation phase was not possible with current workflow for this system. Improved 

sample handling and process time are required.

Melting curve analysis was performed on-chip, by measuring the fluorescent 

signal in 200 ms windows every 5 sec as temperature was increased to upwards of 90°C. 

Two synthetic DNA melting duplexes were measured: a 50bp high temperature melting 

sequence Tm = 81.9°C and a 50bp low temperature melting sequence Tm = 58°C. The 

50bp sequence was injected into a glass/polymide device, and the fluorescence signal was 

monitored as the temperature was ramped from 45 °C to 90°C. Because the temperature 

does not vary linearly with time, time stamp information was collected in the heater 

controller as well as the spectrometer measurements. These were matched, producing a 

fluorescence versus temperature curve. Background measurements were taken for this 

heating protocol, measuring the fluorescence versus temperature profile for a buffered 

dye, negative control. Employing Savitzky-Golay smoothing, the background signal was 

normalized with respect to and was subtracted from the DNA fluorescent signal, resulting 

in a melting curve for this sequence, seen in Figure 5-16.
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Figure 5-16: On-chip melting curve analysis (top) results for a synthetic 50bp DNA 
melting duplex (Tm = 81.9°C), compared to control MCA performed on a commercial 
thermocycler (bottom).

The resulting melt curve produced by the on-chip analysis is very close to the 

control melt, decreasing nearly linearly while heating from 70°C to 78°C, then decreasing 

more rapidly during melting between 78°C to 85°C. The produced melting temperature is 

easily estimated from the melting curve, but detailed curve features are not clearly 

discemable from the negative first derivative.
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MCA was also conducted, melting two sequences simultaneously, the high and 

low temperature melting duplexes. This technique o f including two distinct melting 

temperatures, i.e. two known signals, the thermal profile o f this device and other devices 

can be calibrated. An additional processing technique was explored; the fluorescent 

profile was smoothed with a small window Savitzky-Golay filter (with special care not to 

obscure any signal curvature details) and a high order polynomial was fit to the curve 

using a designated curve fitting software (Curve Expert, CurveExpert.net, Madison, AL, 

USA). The resulting melt curves are seen ic cn Figure 5-17.
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Figure 5-17: On-chip melting curve analysis (top) for two synthetic DNA sequences, 
compared to control MCA performed on a commercial thermocycler (bottom). Curve 
fitting was employed in addition to signal filtering.
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Comparing results from the two processing methods, the second method of 

polynomial fitting yields a much clearer result, but upon close inspection, a downward 

shift in Tm of the higher sample can be detected. Smoothing methods, are potentially the 

cause o f this 2-3 °C shift, though other factors, such as thermal disturbances, could 

contribute. The difference in peak height between high and low melting sequence can be 

expected due to the thermal behavior of intercalating DNA dyes; this is seen in on-chip 

melting and in the control.

5.6 Summary

A portable pTAS DNA analyzer was designed and developed. Thermal and 

optical subsystems were powered and controlled via USB, lending to portability of the 

system. Helicase dependent amplification was illustrated on-chip, as well as amplification 

detection and melting analysis capabilities.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

6.1.1 Accomplishments

Microfluidic DNA analysis systems were improved in two ways: 1) a technique 

was established to passivate glass microfluidic devices for fluorescence based assays, and 

2) a portable DNA analysis device that incorporates helicase-dependent amplification and 

on-chip fluorescent detection was designed.

6.1.2 Impact

Improvements and innovations have been made to the field o f bio-microfluidics. 

Passivation of fluorescent-based, glass microfluidics had not been sufficiently 

investigated prior to this work.

The interaction between a third-generation intercalating dye and common 

passivating coatings was investigated for use in glass based microfluidic devices. It was 

observed that these coatings left the glass benign to DNA, but not to the dye. The 

adsorption o f dye to passivated surfaces was compared for different coatings and was 

characterized by analyzing fluorescent images collected during sample flow. The 

saturation limit for each coating was demonstrated to be a stable material property, 

independent o f experimental conditions. Upon quantifying the amount of dye that would 

saturate each surface, a pretreatment method was proposed and verified. By pre-treating
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the surface with a calculated amount of dye, it becomes “dye-passivated”, such that 

following fluorescent samples are immediately visible.

It is beyond the scope o f this work to provide a full study of the chemical and 

physical mechanisms that contribute to a material’s Nsat property. Rather, this work 

serves to establish a method with which to quantify the dye-surface interaction, and to 

suggest an experimental procedure to negate the initial dye adsorption loss o f fluorescent 

signal. Use o f these techniques and knowledge of dye/coating interaction can benefit 

future fluorescence-based microfluidic assays and devices, allowing for improved signal- 

to-noise ratio and consistent, repeatable signal acquisition.

While portable systems do exist, there is much room for advancement in handling, 

operation, and cost o f DNA analysis systems. A portable, USB powered device was 

illustrated, combining microfluidic helicase-dependent amplification and paired with on- 

chip detection. Isothermal amplification techniques, such as HD A, become crucial to 

miniaturizing analysis systems required to tackle global issues in epidemiology, 

healthcare, and food safety, among others.

6.2 Future Work

As mentioned, because o f the wide range of surface chemistry modifications in 

microfluidic, for passivation and tailor-made applications, other passivation/dye 

interactions can be explored. The methodology for preparation o f surfaces for 

fluorescent-based assays can be applied and a database o f surface/dye interactions can be 

made available to researchers.

The portable DNA analysis device combined many aspects, some of which 

require more development. The thumb activated sample intake proved reliable, but
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handling issues related to this design prevented sample retention at temperatures over 

80°C. Modified sealing methods or reorientation of microfluidic geometry is required to 

fully combine this type o f sample handling with melting curve analysis. At this stage in 

development, data analysis and post processing is cumbersome. After physical 

parameters, such as modified microfluidic geometry and sealing, are modified, the 

thermal behavior will be even more predictable, eliminating the need for any additional 

temperature-sensitive background fluorescence measurements. These assays can be 

streamlined by developing automated corrections for each heating or fluorescence 

measurement protocol.

Fully integrated pTAS devices require not only sound operation and design, but 

special attention to the development of sample preparation and processing. This device 

only illustrated biological tests from isolated DNA, where in realistic applications, field 

tests with such portable systems encounter cellular, tissue, and blood samples. Ideally 

integrated sample processing, such as cell lysis, chemical washes, or nucleic acid capture 

can be incorporated into the glass/polymer composite devices presented here. The simple 

fabrication techniques and low cost polymer materials employed here lend themselves to 

rapid innovation and customization.



APPENDIX A

NUCLEIC ACID SEQUENCES FOR DNA ANALYSIS DEVICE 
DEVELOPMENT

A.I Phi X 174 Sequence

1.1 Phi X 174 Template Sequence

1 gagttttatc gcttccatga cgcagaagtt aacactttcg gatatttctg atgagtcgaa 

61 aaattatctt gataaagcag gaattactac tgcttgttta cgaattaaat cgaagtggac 

121 tgctggcgga aaatgagaaa attcgaccta tccttgcgca gctcgagaag ctcttacttt 

181 gcgacctttc gccatcaact aacgattctg tcaaaaactg acgcgttgga tgaggagaag 

241 tggcttaata tgcttggcac gttcgtcaag gactggttta gatatgagtc acattttgtt 

301 catggtagag attctcttgt tgacatttta aaagagcgtg gattactatc tgagtccgat 

361 gctgttcaac cactaatagg taagaaatca tgagtcaagt tactgaacaa tccgtacgtt 

421 tccagaccgc tttggcctct attaagctca ttcaggcttc tgccgttttg gatttaaccg 

481 aagatgattt cgattttctg acgagtaaca aagtttggat tgctactgac cgctctcgtg 

541 ctcgtcgctg cgttgaggct tgcgtttatg gtacgctgga ctttgtggga taccctcgct 

601 ttcctgctcc tgttgagttt attgctgccg tcattgctta ttatgttcat cccgtcaaca 

661 ttcaaacggc ctgtctcatc atggaaggcg ctgaatttac ggaaaacatt attaatggcg 

721 tcgagcgtcc ggttaaagcc gctgaattgt tcgcgtttac cttgcgtgta cgcgcaggaa 

781 acactgacgt tcttactgac gcagaagaaa acgtgcgtca aaaattacgt gcggaaggag 

841 tgatgtaatg tctaaaggta aaaaacgttc tggcgctcgc cctggtcgtc cgcagccgtt
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901 gcgaggtact aaaggcaagc gtaaaggcgc tcgtctttgg tatgtaggtg gtcaacaatt 

961 ttaattgcag gggcttcggc cccttacttg aggataaatt atgtctaata ttcaaactgg 

1021 cgccgagcgt atgccgcatg acctttccca tcttggcttc cttgctggtc agattggtcg 

1081 tcttattacc atttcaacta ctccggttat cgctggcgac tccttcgaga tggacgccgt 

1141 tggcgctctc cgtctttctc cattgcgtcg tggccttgct attgactcta ctgtagacat 

1201 ttttactttt tatgtccctc atcgtcacgt ttatggtgaa cagtggatta agttcatgaa 

1261 ggatggtgtt aatgccactc ctctcccgac tgttaacact actggttata ttgaccatgc 

1321 cgcttttctt ggcacgatta accctgatac caataaaatc cctaagcatt tgtttcaggg 

1381 ttatttgaat atctataaca actattttaa agcgccgtgg atgcctgacc gtaccgaggc 

1441 taaccctaat gagcttaatc aagatgatgc tcgttatggt ttccgttgct gccatctcaa 

1501 aaacatttgg actgctccgc ttcctcctga gactgagctt tctcgccaaa tgacgacttc 

1561 taccacatct attgacatta tgggtctgca agctgcttat gctaatttgc atactgacca 

1621 agaacgtgat tacttcatgc agcgttacca tgatgttatt tcttcatttg gaggtaaaac 

1681 ctcttatgac gctgacaacc gtcctttact tgtcatgcgc tctaatctct gggcatctgg 

1741 ctatgatgtt gatggaactg accaaacgtc gttaggccag ttttctggtc gtgttcaaca 

1801 gacctataaa cattctgtgc cgcgtttctt tgttcctgag catggcacta tgtttactct 

1861 tgcgcttgtt cgttttccgc ctactgcgac taaagagatt cagtacctta acgctaaagg 

1921 tgctttgact tataccgata ttgctggcga ccctgttttg tatggcaact tgccgccgcg 

1981 tgaaatttct atgaaggatg ttttccgttc tggtgattcg tctaagaagt ttaagattgc 

2041 tgagggtcag tggtatcgtt atgcgccttc gtatgtttct cctgcttatc accttcttga 

2101 aggcttccca ttcattcagg aaccgccttc tggtgatttg caagaacgcg tacttattcg 

2161 ccaccatgat tatgaccagt gtttccagtc cgttcagttg ttgcagtgga atagtcaggt 

2221 taaatttaat gtgaccgttt atcgcaatct gccgaccact cgcgattcaa tcatgacttc
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2281 gtgataaaag attgagtgtg aggttataac gccgaagcgg taaaaatttt aatttttgcc 

2341 gctgaggggt tgaccaagcg aagcgcggta ggttttctgc ttaggagttt aatcatgttt 

2401 cagactttta tttctcgcca taattcaaac tttttttctg ataagctggt tctcacttct 

2461 gttactccag cttcttcggc acctgtttta cagacaccta aagctacatc gtcaacgtta 

2521 tattttgata gtttgacggt taatgctggt aatggtggtt ttcttcattg cattcagatg 

2581 gatacatctg tcaacgccgc taatcaggtt gtttctgttg gtgctgatat tgcttttgat 

2641 gccgacccta aattttttgc ctgtttggtt cgctttgagt cttcttcggt tccgactacc 

2701 ctcccgactg cctatgatgt ttatcctttg aatggtcgcc atgatggtgg ttattatacc 

2761 gtcaaggact gtgtgactat tgacgtcctt ccccgtacgc cgggcaataa cgtttatgtt 

2821 ggtttcatgg tttggtctaa ctttaccgct actaaatgcc gcggattggt ttcgctgaat 

2881 caggttatta aagagattat ttgtctccag ccacttaagt gaggtgattt atgtttggtg 

2941 ctattgctgg cggtattgct tctgctcttg ctggtggcgc catgtctaaa ttgtttggag 

3001 gcggtcaaaa agccgcctcc ggtggcattc aaggtgatgt gcttgctacc gataacaata 

3061 ctgtaggcat gggtgatgct ggtattaaat ctgccattca aggctctaat gttcctaacc 

3121 ctgatgaggc cgcccctagt tttgtttctg gtgctatggc taaagctggt aaaggacttc 

3181 ttgaaggtac gttgcaggct ggcacttctg ccgtttctga taagttgctt gatttggttg 

3241 gacttggtgg caagtctgcc gctgataaag gaaaggatac tcgtgattat cttgctgctg 

3301 catttcctga gcttaatgct tgggagcgtg ctggtgctga tgcttcctct gctggtatgg 

3361 ttgacgccgg atttgagaat caaaaagagc ttactaaaat gcaactggac aatcagaaag 

3421 agattgccga gatgcaaaat gagactcaaa aagagattgc tggcattcag tcggcgactt 

3481 cacgccagaa tacgaaagac caggtatatg cacaaaatga gatgcttgct tatcaacaga 

3541 aggagtctac tgctcgcgtt gcgtctatta tggaaaacac caatctttcc aagcaacagc 

3601 aggtttccga gattatgcgc caaatgctta ctcaagctca aacggctggt cagtatttta
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3661 ccaatgacca aatcaaagaa atgactcgca aggttagtgc tgaggttgac ttagttcatc 

3721 agcaaacgca gaatcagcgg tatggctctt ctcatattgg cgctactgca aaggatattt 

3781 ctaatgtcgt cactgatgct gcttctggtg tggttgatat ttttcatggt attgataaag 

3841 ctgttgccga tacttggaac aatttctgga aagacggtaa agctgatggt attggctcta 

3901 atttgtctag gaaataaccg tcaggattga caccctccca attgtatgtt ttcatgcctc 

3961 caaatcttgg aggctttttt atggttcgtt cttattaccc ttctgaatgt cacgctgatt 

4021 attttgactt tgagcgtatc gaggctctta aacctgctat tgaggcttgt ggcatttcta 

4081 ctctttctca atccccaatg cttggcttcc ataagcagat ggataaccgc atcaagctct 

4141 tggaagagat tctgtctttt cgtatgcagg gcgttgagtt cgataatggt gatatgtatg 

4201 ttgacggcca taaggctgct tctgacgttc gtgatgagtt tgtatctgtt actgagaagt 

4261 taatggatga attggcacaa tgctacaatg tgctccccca acttgatatt aataacacta 

4321 tagaccaccg ccccgaaggg gacgaaaaat ggtttttaga gaacgagaag acggttacgc 

4381 agttttgccg caagctggct gctgaacgcc ctcttaagga tattcgcgat gagtataatt 

4441 accccaaaaa gaaaggtatt aaggatgagt gttcaagatt gctggaggcc tccactatga 

4501 aatcgcgtag aggctttgct attcagcgtt tgatgaatgc aatgcgacag gctcatgctg 

4561 atggttggtt tatcgttttt gacactctca cgttggctga cgaccgatta gaggcgtttt 

4621 atgataatcc caatgctttg cgtgactatt ttcgtgatat tggtcgtatg gttcttgctg 

4681 ccgagggtcg caaggctaat gattcacacg ccgactgcta tcagtatttt tgtgtgcctg 

4741 agtatggtac agctaatggc cgtcttcatt tccatgcggt gcactttatg cggacacttc 

4801 ctacaggtag cgttgaccct aattttggtc gtcgggtacg caatcgccgc cagttaaata 

4861 gcttgcaaaa tacgtggcct tatggttaca gtatgcccat cgcagttcgc tacacgcagg 

4921 acgctttttc acgttctggt tggttgtggc ctgttgatgc taaaggtgag ccgcttaaag 

4981 ctaccagtta tatggctgtt ggtttctatg tggctaaata cgttaacaaa aagtcagata
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5041 tggaccttgc tgctaaaggt ctaggagcta aagaatggaa caactcacta aaaaccaagc 

5101 tgtcgctact tcccaagaag ctgttcagaa tcagaatgag ccgcaacttc gggatgaaaa 

5161 tgctcacaat gacaaatctg tccacggagt gcttaatcca acttaccaag ctgggttacg 

5221 acgcgacgcc gttcaaccag atattgaagc agaacgcaaa aagagagatg agattgaggc 

5281 tgggaaaagt tactgtagcc gacgttttgg cggcgcaacc tgtgacgaca aatctgctca 

5341 aatttatgcg cgcttcgata aaaatgattg gcgtatccaa cctgca

A. 1.2 Phi X 174 110bp Target Sequence

1 cgttcgtcaa ggactggttt agatatgagt cacattttgt tcatggtaga gattctcttg 

61 ttgacatttt aaaagagcgt ggattactat ctgagtccga tgctgttcaa

A. 1.3 Phi X 174 1 lObp Primer Sequences

Forward

5’- GGT TCG TCA AGG ACT GGT TT -3’

Reverse

5’- TTG A AC AGC ATC GGA CTC AG -3’

A.2 Synthetic Melting Duplex Sequences

A.2.1 Low Tm Sequence 158°C')

Forward

5’-TTA AAT TAT AAA ATA TTT ATA ATA TTA ATT ATA TAT ATA TAA 

ATA TAA TA/3ddC/

A.2.2 High Tm Sequence (81.9°C)

Forward

5'-GAG CGA CCT GTA ATG ACA TTT GAC GGC CGA GCG ACT GAT 

GGA GGT GCT TA/3ddC/



APPENDIX B

I^TAS HDA SYSTEM CONTROL DOCUMENTS

B .l Circuit Diagram for Heating Control and LED Illumination Systems
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B.2 fiTAS Control Codes

B.2.1 Matlab Heater Control Code

si = serial('COM3'); % define serial port
s 1 .BaudRate= 115200; % define baud rate

try
fopen(s 1); % open serial port

catch 
allPorts^instrfind; 
if  isempty(allPorts)==0 

fclose(allPorts); 
end

fopen(sl);
end

for i—1:5 % You can kind o f ignore these lines for now
onePt=fscanf(s 1); % They are just used to flush the junk characters

end % out of the serial port that the Arduino prints
% when it first starts up.

fis=readfis('heater67');
% fis=readfis('heater90'); 
goVal=l;
i=l;
% goVal=get(onOff_toggle,'Value');

refV=5; % reference voltage
R_top=2930; % resistance o f other resistor in Ohms
V_in=5; % input voltage (from the Arduino)
B_val=3470; % calibration value of the thermistor
R_cal= 10000; % resistance o f thermistor at the calibration value
T_cal=273+25;

cl=clock; % exp start time 
tic
while goVal==l % Using this syntax, the variable 'i' will

% start at one, then increase by 1 each time 
% time through the loop until it get to 1000.

onePt=fscanf(sl ,'%u'); % read one line of characters from s i .
% The '%u' is the syntax that indicates 
% that the characters should be read as
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% unsigned integers.

if  size(onePt)==0 % check for a value for val from arduino
onePt=512; % j ust in case it hangs up

end

Vval= refV-refV*onePt/1024;
%Vval=onePt;
Rval=(R_top* V val)/( V_in-V val); 
Tval=:B_val/log(Rval/(R_cal*exp(-B_val/T_cal)))-273;

if  Tval>100 
error('Too hot!') 

end

Rfis=refV-Vval;
fizout(i)=evalfis(Rfis, fis); % perform fuzzy operation on V across thermistor

% u=(fizout(i)-2.6)* 100/(1.3); % convert the value out o f the controller
% to a usee val, 3.9 is Vmax, 2.6 is min,
% 1.3 is the difference between 

u=(fizout(i)-1.9)* 100/(2); % for 67 in foam block
% u=(fizout(i)-.8)* 100/(3.1); % better for 67
% u=(fizout(i)-0)* 100/(4);

if  u<5 
u=5; 

end

fwrite(sl, u,'int8');

% c2=clock;
% if c2(6)<=3 
% y=300;
% fwrite(sl, y,'int8');

% else 
% y=400;
% fwrite(sl, y,'int8');
% end

timeList(i)=toc; 
tempList(i)=Tval; 
if  length(tempList)<l 01 

plot(timeList,tempList,'g.-') 
else

plot(timeList(end-100 :end),tempList(end-100 :end),'g. -')

%for 95 control, peak fuzzy output is 4V 
% make 5millisec the min

% u is the output from the fuzzy logic

% y is a value that will be read by arduino to 
%trigger the LED
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end
xlabel('Time(s)') 
ylabel('Temperature (\circC')

% xlim([0 pts2get/10]) 
ylim([15 100]) 
grid on 
drawnow
i=i+l;

end

fclose(sl); % close the serial port!

B.2.2 Matlab Fuzzy Logic Toolbox Code

B.2.2.1 For 67°C Setting

[System]
Name='test2'
Type='mamdani'
Version=2.0
Numlnputs=l
NumOutputs=l
NumRules=3
AndMethod='min'
OrMethod='max'
ImpMethod='min’
AggM ethod-max'
DefuzzMethod='centroid'

[Input 1]
Name='inputl'
Range=[1.95 3.82]
NumMFs=3
M F l-m fl': 'tr im f,[1.40283068783069 2.15283068783069 2.61583068783069] 
MF2=’mf2':'trim f,[2.62527777777778 2.68 2.75]
M F3-m O ':'trim f,[2.74 3.90162698412698 4.23]

[Output 1]
Name='outputl'
Range=[2.3 4.5]
NumMFs=3
M Fl= 'm fl':'trim f,[1.57368253968254 2.45368253968254 3.17668253968254] 
MF2='mf2':'trim f,[3.19 3.25 3.33888888888889]
M F3-mf3':'trimf,[3.244 3.973 4.474]
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[Rules] 
1 , 3 ( 1 ) :  1 
2, 2 (1) :  1 
3, 1 (1):  1

B.2.2.2 For MCA Protocol

[System]
Nam e-collin'
Type-mamdani'
Version=2.0
Numlnputs=l
NumOutputs=l
NumRules=3
AndM ethod-min'
OrMethod='max'
ImpM ethod-min'
AggM ethod-max'
DefuzzMethod='centroid'

[Input 1]
Name='inputl'
Range=[1.36 1.57]
NumMFs=3
M Fl= 'm fl':'trim f,[1.276 1.36 1.444] 
MF2='mf2,:,trim f,[1.426 1.491 1.535] 
M F3-m f3':'trim f ,[1.486 1.57 1.654]

[Output 1]
N am e-output 1'
Range=[3.65 4]
NumMFs=3
M Fl^'m flV trim f^S.eS 3.65 3.774] 
MF2='mf2':'trimf,[3.76 3.8875 3.96] 
M F3='mO':'trimf,[3.853 4 4.14]

[Rules]
1, 1 (1) : 1 
2, 2 (1) :  1 
3, 3 (1):  1

B.2.3 Arduino Heater and LED Control Code

//
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// This program gathers input from a sensor,

// records the time at which the measurement was taken,

// and passes both through the serial connection

//

int val; // the variable named "val" will be an integer

unsigned long time; // the variable "time" will be an unsigned long integer

int val2; // the incoming serial value from fuzzy

int ledState = LOW;

unsigned long previousMillis = 0;

const long interval = 12*1000;

const long in te rv a l = 18*1000;

void setup() {

Serial.begin( 115200); // setup serial display

pinMode(2,OUTPUT); // establish pin out for heater transistor control

pinMode(4,OUTPUT); // establish pin out for LED transistor control

delay(100);

}

void loop() {

// send signal from thermistor/voltage divider to Matlab 

val = analogRead(O); // read the input pin
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Serial.println(val); 11 print value to serial monitor

//begin LED control 

unsigned long currentMillis = millis(); 

if  (currentMillis >= previousMillis + interval2) { 

if  ( ledState =  HIGH){ 

previousMillis = currentMillis; 

ledState = LOW; 

digitalWrite(4, ledState);

}}

if  (currentMillis - previousMillis >= interval) { 

if  (ledState =  LOW) { 

previousMillis = currentMillis; 

ledState = HIGH; 

digitalWrite(4, ledState);

}}

//delay(lOO); //only use if heater control is commented out 

//end LED control

//check for value from Matlab and use it to control heater

if (Serial.available() > 0){

val2 = Serial.readQ; // read val from fuzzy
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digitalWrite(2, HIGH); // write value from fuzzy logic to heater transistor 

delay(val2); // use fuzzy val to control time heater is on 

digitalWrite(2, LOW); // the heater is turned off

delay(l 00-val2); } // and kept off for the remainder o f a 100ms interval

else{

delay( 100);} // if  there is no fuzzy signal to read it will just wait 100ms

}
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