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ABSTRACT

The dissertation presents an improved method for the inverse scattering problem 

to obtain better numerical results. There are two main methods for solving the inverse 

problem: the direct imaging method and the iterative method. For the direct imaging 

method, we introduce the MUSIC (M ultiple Signal Classification) algorithm, the multi- 

tone method and the linear sampling method with different boundary conditions in 

different cases, which are the smooth case, the one comer case, and the multiple comers 

case. The dissertation introduces the relations between the far field data and the near field 

data.

When we use direct imaging methods for solving inverse scattering problems, we 

observe artificial lines which make it hard to determine the shape o f targets. We try to 

eliminate those lines in different frequencies, but the artificial lines are still in the results 

and we are forced to get the shape of the targets. Hence, we try to apply multiple 

frequency data to obtain better results.

There are several reasons to cause the artificial lines. For example, the creation of 

the response matrix, the error o f solving the forward problem and the error o f the 

computation. We propose a signal space test to study the cause o f the artificial lines and 

to use multiple frequency data to reduce the effect from them.

Finally, we use the active contour method to further improve the imaging results. 

This dissertation introduces the active contour method and the level-set algorithm. We



use the results o f the multiple frequencies to obtain the level-set data by utilizing the 

active contour method and the level-set algorithm. By using the level-set data, we 

reconstruct the shape o f the targets without artificial lines. In order to demonstrate the 

robustness o f the MUSIC algorithm, we add noise to the response matrix.
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NOMENCLATURE

u  The total field

u l The incident field
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/  The identity operator

g 0 The illumination vector 

Vs The signal space
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E The electric field

H The magnetic field
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p The pressure
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CHAPTER 1 

INTRODUCTION

1.1 Introduction of the Work

Scattering theory has played more o f an important role in 20th Century 

mathematical physics. By sending probing waves and collecting the scattered waves, we 

can identify the location and shape o f the targets. For direct scattering problems, if  we 

view the total field as the sum o f an incident field u 'and a scattered field u s, then the 

problem is to determine u s from the u l and the differential equation [1] [2] [3] [4] [5] [6 ] 

[7] [8 ], which is the Helmholtz Equation, with proper boundary conditions.

The Helmholtz Equation is obtained from the wave equation [9], The wave 

motion is given by Euler’s equation (see Eq. 1-1)

dv  1
—  + (v -  V)u +  -V p  =  0, Eq. 1-1
Ot p

with the equation o f continuity (see Eq. 1-2)

dp
—  + V • (p v ) =  0. Eq. 1-2
Ot

We then have the state equation (see Eq. 1-3)

P =  / ( p ,  s), Eq. 1-3

and the hypothesis o f adiabatic (see Eq. 1-4)

1
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dS
—  + v  - VS = 0, Eq. 1-4

where v  = v(x ,  t ) is the velocity field, p =  p(x,  t)  is the pressure, p = p(x,  t ) is the 

density, S  =  S(x, t ) is the entropy, and /  is a function related to the property o f the fluid.

We now consider the case, in which we assume that v 0 =  0, p0 =  constant, 

pQ =  constant, and S0 =  constant. Then we rewrite Eq. 1-1, Eq. 1-2 and Eq. 1-3 and 

obtain Eq. 1-5, Eq. 1-6 and Eq. 1-7

By combining Eq. 1-5, Eq. 1-6 and Eq. 1-7, we have the wave equation (see 

Eq. 1-8 and Eq. 1-9)

and also by combining Eq. 1-5, Eq. 1-6 and Eq. 1-7, we obtain the potential o f velocity

U = U(x, t ) (see Eq. 1-10 and Eq. 1-11)

1
v - — Vu, Eq. 1-

Po

Eq. 1-5

dp
—  +  p0V • v  =  0, Eq. 1-6

d V _ df  ( c J p

~dt~~dp ~dt'
Eq. 1-7

Eq. 1-8

where c is the speed of sound

Eq. 1-9

dU
Eq. 1-11
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and Eq. 1-10, Eq. 1-11 satisfy the wave equation (see Eq. 1-12)

Eq. 1-12

We have the form of the time-harmonic acoustic wave (see Eq. 1-13)

U(x, t ) =  Re{u(x)e  lwt}, Eq. 1-13

with frequency (o >  0, and u  satisfies the Helmholtz Equation (see Eq. 1-14)

Au + k 2u  =  0, Eq. 1-14

where k  is the wave number given by k  =  a)/c.

For the inverse scattering problem, there are two main ways to solve the problem: 

iterative methods and direct methods. The iterative methods [10] [11] [12] [13] [14] [15] 

[16] [17] are accurate but more expensive, and the direct methods [18] [19] [20] [21] [22] 

are efficient but less accurate. However, we are not focusing on the iterative methods, 

because for each iteration, it costs too much time to solve an adjoint forward problem.

Direct imaging methods are more popular nowadays. They are not based on 

nonlinear optimization and do not require forward iterations, for example, the M ultiple 

Signal Classification (MUSIC) algorithm [23] [24] [25] [26] [27], We first set up the 

response matrix; then we could obtain the singular values and singular vectors by taking 

the Singular Value Decomposition (SVD) o f the response matrix. By using the imaging 

function involving Green's function, the inverse scattering problem can be solved.

There are many important applications based on direct and inverse scattering 

problems such as in radar, sonar, medical imaging, and nondestructive testing, showing in 

Figure 1-1.
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Figure 1-1: Applications o f direct and inverse problems.

The linear sampling method [28] [29] is also a direct imaging algorithm for the 

inverse scattering problem. It characterizes the domain o f an unknown scatterer by the 

behavior o f the solution to an integral equation o f the first kind. The main idea is that the 

norm of a certain solution blows up on the target boundary. Kirsch [30] modified the 

linear sampling method by using a factorization for the scattering operator. It appears that 

the linear sampling method is an extension of the MUSIC algorithm [31] [32], so it can 

also produce the location and shape o f the target by using all the eigenvalues and 

eigenfunctions.

We refer to [33] for the uniqueness in inverse acoustic and electromagnetic 

obstacle scattering problems.
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When we use the MUSIC algorithm or other direct imaging methods to obtain the 

shape of the target, we observe many artificial lines. We wonder how the artificial lines 

form, and how we can avoid the artificial lines. Hence, we propose a signal space test to 

study the cause o f the artificial lines. In order to decrease the effect o f these lines, we 

combine multiple frequency results. We use both the multiple frequency MUSIC 

algorithm and the multi-tone method [2 0 ] [2 1 ].

Finally, we propose a novel method by using the active contour method [34] to 

improve the imaging results. Even though this method exists in the literature for decades, 

it has not been applied to improve the inverse problem solver. The idea is that the average 

location of the two sharp gradient lines is a reasonable estimate for the target shape. 

Numerical examples for smooth target, targets with one comer and multiple comers are 

presented with excellent results.

1.2 Research Objectives

The objective o f this dissertation is to improve the imaging method, to obtain a 

better result o f the unknown targets, and relations between far field data and the near field 

data.

In detail, we list the research objectives o f this dissertation in detail:

1. Using forward and inverse problem to reconstruct shape o f the unknown 

targets.

2. Using the signal space method to test what caused the artificial lines.

3. Using the multiple frequency data to try to decrease the artificial lines.

4. Using the active contour method to find the exact shape of the unknown 

targets.
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1.3 Organization and Review of the Dissertation

In Chapter 1, we will briefly introduce the work, knowledge o f the background, 

research objectives and the organization o f the dissertation.

In Chapter 2, we will introduce the basic background o f the forward scattering 

problem in both Dirichlet and Neumann boundary condition [35]. In particular, we will 

go through the work by Colton and Kress [9]. The Nystrom method is used to solve the 

forward scattering problem, and the numerical results will be shown. We also state the 

relations between far field data and the near field data [9] [19]. My original work is to 

show the relations o f the near field data and the far field data with different distance for 

source and receiver. Also, we present the numerical results o f the near field data and the 

far field data in different cases, and verify the relations o f these cases.

In Chapter 3, we will introduce two main direct methods by [25] [29], the MUSIC 

method and the linear sampling method, for the inverse scattering problem. The multi- 

tone method [20] is introduced to get better experiment results. My original work is to 

present all the numerical results o f the MUSIC method and the multi-tone.

In Chapter 4, we will express the signal space method, including the steps o f this 

new method. This is my original work. We want to use this method to prove the cause of 

the artificial lines. Also, all the numerical results will be shown in this chapter.

In Chapter 5, we will develop a new method to improve the imaging method. We 

will introduce the active contour method and the level-set algorithm [34] [36], with which 

we can obtain better experiment results. My original work is to do the averaging for the 

shape gradient contour and to involve the idea o f using ACWE to improve the direct



7

imaging method for inverse problem. The results are presented excellently compared to 

the old imaging method in different cases.

In Chapter 6 , we will provide a conclusion and future work for this dissertation.

In the Appendix, we will list my codes for both forward and inverse scattering 

problems.

The flow chart for our proposed method is shown in Figure 1-2.

Set up the integral equation f 
or the forward problem

Solve for the density 
function <p

Obtain the response matrix P Optional: add 
100% noise to  P

Apply the MUSIC type imaging 
functions with single frequency

Observe the artificial lines 
in numerical results

Apply the Multi-tone 
imaging functions with 
multiple frequencies

ts'

Apply th e  Music; imaging 
functions w ith multiple 

 frequencies_______

Sum up the numerical results to  
decrease the artificial lines

Take average ol the tw o contours to  obtain the 
_ _ _ _ _ _ sh a£ eo f^h e_ u n k n o w n _ targ e ts^_ ^_

Apply the ACWE m ethod to  obtain 
tw o contours of the targets

Figure 1-2: Flow chart for proposed method.



CHAPTER 2

FORWARD PROBLEM

In this chapter, we will discuss the forward scattering problem in two main 

boundary conditions, which are the Dirichlet boundary condition and the Neumann 

boundary condition. Also, the Nystrom discretization [9] will be introduced for 2D 

scattering problem.

2.1 Forward Scattering Problem in the Dirichlet Boundary Condition

In this section, we introduce the Helmholtz Equation [9] with the Dirichlet 

boundary condition (see Eq. 2-1)

Au +  k 2u  =  0, in R2\D,  

u  = 0, on dD, 

where k  is the wavenumber and d E S1 is the incident direction.

The incident field satisfies the homogeneous equation (see Eq. 2-2)

Au l + k 2u l =  0, Eq. 2-2

where the time-harmonic wave is shown in Eq. 2-3

u l _  g ik x  d Eq 2_3

The total field consists o f the incident field u l and the scattered field u s (see Eq. 2-4)

u  = u l + u 5. Eq. 2-4

Eq. 2-1

8



From Eq. 2-1, Eq. 2-3 and Eq. 2-4, the scattered field satisfies Eq. 2-5 and Eq. 2-6

Au s +  k 2u s = 0, in R 2\D,  Eq. 2-5

us =  —u1, on dD. Eq. 2-6

For the scattered wave u s, we have the radiation condition (see Eq. 2-7)

lim Vr (—-------ik u A  =  0, r =  |x|. Eq. 2-7
r->oo \  dr  )

Equation 2-7 is called the Sommerfeld radiation condition, and the limit is assumed to 

hold uniformly in all directions x /|x |.  Equation 2-7 is imposed for u s for the physical 

meaning and it also guarantees the uniqueness result for the forward scattering problem.

By introducing the fundamental solution which satisfies the Helmholtz Equation, 

we have Eq. 2-8

4>(x,y) = ‘2Ho ( k \ x - y j ) ,  x ± y .  Eq.2-8

We now go through the layer approach for finding a solution to the Dirichlet 

problem using boundary integral equations [9].

Definition 2.1.1. Acoustic Single-layer Potential. Given any integral function <p, define 

the integral u  such that (see Eq. 2-9)

u ( x ) = [  <p(y)<P(x,y)ds(y), Eq. 2-9
JdD

where 0 (x , y) is the fundamental solution in Eq. 2-8; u (x) is called the acoustic single­

layer potential with density (p.

Definition 2.1.2. Acoustic Double-layer Potential. Given any integral function (p, 

define the integral v  such that (see Eq. 2-10)

V W  =  L d ^  ^  ^ ^  E q ’ 2 1 0
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where 4>(x,y) is the fundamental solution in Eq. 2-8; v (x )  is called the acoustic double­

layer potential with density (p.

We know that u  and v  are solutions to the Helmholtz Equation. We could express 

the combination o f single-layer and double-layer potentials as the solution to the 

Helmholtz Equation.

Here, we explain why we use the combined single- and double-layer potential, 

rather than double-layer potential (see Eq. 2-11 -  Eq. 2-15).

Definition 2.1.3. Exterior Dirichlet Problem. Given a continuous function /  on dD, 

find a radiating solution u E C2( R 2\D )  n  C(R2\D)  to the Helmholtz Equation

Au + k 2u  =  0 in R 2\D,  Eq. 2-11

which satisfies the boundary condition

u  = f  on dD. Eq. 2-12

By Definition 2.1.2, we know that v(pc) satisfies Eq. 2-7 and Eq. 2-12. If v (x ) is the 

solution to the Exterior Dirichlet Problem, v (x )  only needs to satisfy Eq. 2-12.

By the jump relations [9], (p is the solution to the equation in Eq. 2-13 

1 f  94*(x  v)
-<p(x) +  J ^  j ^ - ( p ( y ) d s ( y )  = f ( x ) ,  x  E dD. Eq. 2-13

With using the operator K, Eq.2-13 can be written as

<p + K<p = I f ,  Eq. 2-14

which is

( / +  K)<p = 2f .  Eq. 2-15

Definition 2.1.4. Interior Neumann Problem. Given a continuous function g  on dD, 

find a radiating solution u G C2(D) n C(D) to the Helmholtz Equation (see Eq. 2-16)
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Au  +  k 2u  =  0 in D, Eq. 2-16

which satisfies the boundary condition (see Eq. 2-17)

du
—  =  g, on dD, 
on

Eq. 2-17

where (see Eq. 2-18)

ft-* 4- 0
h • n(x)). Eq. 2-18

When g  =  0, if  the interior Neumann Problem has nontrivial solution u, then k 2 

is the eigenvalue o f —A on D, u  is the eigenvector.

Then we define the linear space, which is (see Eq. 2-19)

U =  (u lan lu  e  C2 (D) n  C(D),Au  +  k 2u  =  0 inD,

From these two equations, we know that if  fc2 is not the eigenvalue on D, then we 

have U = 0  [37].

Theorem  2.1.1. k e r(/ + K) = U. [37]

According to Theorem  2.1.1, when k 2 is the eigenvalue, we have U & 0, which 

means k e r(/ +  K) + 0, operator /  +  K is not injection.

After we use the combined double- and single-layer potential, we have an 

equation o f the smooth target case as Eq. 2-21

du
—  =  0 on dD),

Eq. 2-19

dn

where (see Eq. 2-20)

—  (x) =  lim n(x )  ■ Vu(x  -  h ■ n(x))- Eq. 2-20
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u (x )  = f  (  
JdD I

ir)Q>(x, y )  <p(y)ds(y),
Eq. 2-21

x  e  E 2\dD,

with a density (p E C(dD) and the parameter rj =£ 0. Note that if  r) =  0, the problem is 

not uniquely solvable.

Then from the jump relations, we have the integral equation Eq. 2-22

the operators K,S: C(dD) -* C(dD) are compact [9].

By Theorem  2.1.1, when r] = 0, the operator /  +  K — irjS has no inverse, if  k 2 

is the singular value of the interior Neumann problem. Hence, Eq. 2-22 may not have a 

solution. In order to fix this problem, we apply the combined single- and double-layer 

potential to solve Eq. 2-21, where t] & 0.

For the Dirichlet problem, we parametrize Eq. 2-22 and obtain Eq. 2-23

0  <  t  < 2n,

where V'CO =  <p(x(t)), g ( t )  =  2 f ( x ( t ) )  and the kernels are given by (see Eq. 2-24 - 

Eq. 2-34)

(p + K<p- ir)S(p = 2 f , Eq. 2-22

[L(t, t )  +  ir)M(t, T)]xp(r)dr = g { t ) ,
Eq. 2-23

M (t.T) =  t ) ) ( [ i ; ( t ) F  +  te ( T  )}2y l \  Eq. 2-25
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For t  =£ t , let

r ( t , r )  = {foCO -  x x(r)]2 + [x2 (t) -  x 2 ( t ) ] 2} 1 /2 . Eq. 2-26

By the numerical method introduced in [38], we need to split the kernels into

L(t, t )  =  Lx( t , r ) \ n ( 4  sin2 —̂ —j  + L2(t, t ) ,  Eq. 2-27

M(t,  t )  =  Mt (t, t )  In ^4 sin2 —— )  +  M 2 (t , t ) ,  Eq. 2-28

where

where we can write the kernel K as Eq. 2-35

t  — r

Eq. 2-29

Li ( t , t )  =  {x2( t ) [ x x (t) -  x x(r)]

-  x[(r)[x2(t)  -  * 2 (t)D  

L2 (t, t )  =  L (t, t )  -  Lx ( t , t )  In ^4 sin2 Eq. 2-30

M ,( t , t )  =  - ^ , ( « t » ; ( l ) ] 2 +  K W l !) 1/!, Eq. 2-31

M2( t , i ) =  M (t,t)  -  M iC t . r j ln ^ s in 2 ^ — Eq.  2-32 

In particular, we have the diagonal terms for t  — T, then we obtain

■{[xi(t)]2 + [^ (t)]2}1/2,

Eq. 2-33

1 x{(t)X2 ( t)  -  X^CO^l'CO 
l 2 it, t)  =  L(t, t)  =  —  +  [x ' ( t ) ]2  ' Et»- 2 "34

K (t, t )  =  Kt (t, r) In ^4 sin2 ^ j  +  K2 ( t , r ) , Eq. 2-35



14

with analytic functions = L1 + ikM1 and K2 = L2 + ikM2 in [9]. We now introduce 

the Nystrom method, which uses an approximation of the integrals by quadrature 

formulas. We need to choose the equidistant set tj — n j / n ,  where j  =  0 ,..., 2n  — 1 

because the boundary o f the target is a 27T-periodic form. Then we have the quadrature 

rule (see Eq. 2-36 and Eq. 2-37)

so we can represent the function /  by any integration kernel.

In the Nystrom method, we can combine Eq. 2-35, Eq. 2-36 and Eq. 2-38 and 

replace them by the finite summation to obtain Eq. 2-39

2n-l

2n-l
Eq. 2-36

with

Eq. 2-37
m= 1

then we have the Trapezoidal rule (see Eq. 2-38)

2n-l
Eq. 2-38

Eq. 2-39j =o

=  g i t ) ,

where 0  <  t  < 2n.

Therefore, Eq. 2-39 has the value o f the solution (see Eq. 2-40)

=  xp(n) (tj), i = 0 , ..., 2 n  -  1 , Eq. 2-40
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which satisfies the linear system (see Eq. 2-41) 

2n -l

;= 0

so for i , j  =  0 ,..., 2n — 1, we have Eq. 2-42

n- 1

fiw  =  KW (0) =  -  *  V  i COŜ  Eq. 2.42
1 1 n  / L a m  n  n 2

m=l

The computational cost for solving the linear system is 0 ( n 3). When we are 

given a solution ip f 1̂ for the linear system of Eq. 2-41, the function x p ^  can be defined 

as Eq. 2-43

2n -l

v,<n)( o = y  {R)n)w K 1( t , t j) + ^ 2 (t,t,.)} i/l(n)(tJ)
p o  Eq. 2-43

+  g{t) ,  0  <  t  <  27t.

We now briefly introduce the one comer case in the Dirichlet boundary condition. 

Here, we meet a new challenge, which is more complicated.

With the fundamental solution, we rewrite Eq. 2-8 for the case with one comer. 

For x  G R 2\dD,  we have Eq. 2-44

\ d $ ( x , y )uw=Ud v (y ) 

d®o(.x,y)

— ir}<P(x,y) <p(y)

Eq. 2-44

<p(x 0) ds(y),
dv(y)

where x 0 is the comer location.

The new challenge in the comer case is that, in addition to the logarithmic 

singularity shown in Eq. 2-21, there is a comer singularity. A change o f variable using 

the graded mesh is proposed in [9].
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Again, by using jump relation, we have Eq. 2-45

(pix) -  (p{xo )  +  2  J  |  dv(y)  ~  i r )H x ,y ) \ ( p ( y ) d s ( y )

Eq. 2-45

-  2  f  ^ ; y ) y M < fa (y )  =  2/(*)<
JdD d v (y)

for x  £ dD, at comer x0, where ‘hnCx,y) =  — In — x  & y.u uv J J 2n |x-y|

The Nystrom method for the one comer case is similar to the smooth case. We

will present some details handling the comer in the next section when dealing with the

Neumann boundary condition.

2.2 Forward Scattering Problem in the Neumann Boundary Condition

In this section, we will introduce the Neumann boundary condition [35] as 

Eq. 2-46 and Eq. 2-47

Aus +  k 2u s = 0, in R 2\D,  Eq. 2-46

d u s d u 1 „  .
on dD, Eq. 2-47

dn dn

together with Eq. 2-7, which is introduced as the radiation condition.

Like the Dirichlet problem, the Neumann problem also has the single- and 

double-layer operators. We consider the case that the boundary has one comer [35].

We define the single-layer operator as Eq. 2-48

(Ki<p)(?) = P V jr ?2gj= £4> (y)is(y). x o n d D ,  Eq.2-48

and the double-layer operator as Eq. 2-49

d 2Gk( x - y ) d 2Gk ( x - y )  ,  „ v , v
a » M 8 n (y )  a t w a t f r )  +  ? > " (* ) - n b o ,  E q .2 -4 9
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where Gk is the Green’s function. For n  =  (n 1( n 2), we have t  =  ( - n 2, rij); — is the

tangential derivative on dD.

With Eq. 2-46 - Eq. 2-49, the integral equation with one comer parametrically 

can be expressed [39] [40] (see Eq. 2-50)

g i t )  = +

- J  ( l  +  y )^ o ( L t) ( i /» ( t )  — t/»(0 ) ) d r

f 2nM f t  r )  /  f 2,r \
- i i ?  J  ' ( J  ^ T ' ^  +  M ^T' z ^ ^ d z ) d r  E q " 2-50

/• 271 / r 27T
- ii) J  H0(t, r )  I J  (H0(t, 2) -  / /o(0 ,z))(i/>(z)

-  ip(Q))dz^ dr, 

where we define $  as Eq. 2-51

d u 1
g i t )  =  u ‘(x ( t) )  +  ir; J  M0 ( t , r )  —  (x (r))d r . Eq. 2-51

From Eq. 2-51, a combination o f a graded-mesh quadrature will be applied to the 

integrals. Therefore, we need to do the change-of-variables. We have t  =  m (s), where 

(see Eq. 2-52 and Eq. 2-53)

[v(s)F
W(s) -  +  0  S  5  S  2* ' E<<-2 - 52

/ I  1 \ /7T — S\ 3 I s  — n  1
v(s) = ---- r ) ( -------- ) +  +  - ,  p > 2 .  Eq. 2-53

\p  2 /V  f  /  p JT 2

With Eq. 2-52 and Eq. 2-53, we could further obtain the kernel K  and its diagonal term 

(see Eq. 2-54 - Eq. 2-60)



K(t ,  t) =  K (co(s) , co((t))

Kt (o)i s), m ( » )  log (4  sin2 ^ - j —j2

+  K 2 ( s , a ) ,

K2(s ,a )  = /f(m(s),6)((T))

-  Kx (o>(s), <u(<t)) log ( 4  sin2 S—^ ~ )

=  ^ ( ( o i s ) ,  of(cr)) log ( -  —
V ^ s i n ^ - y -

+  K2(o)(s ),

K 2 ( s , s )  =  2/Cx(t, t) logCtu'Csjlx'COI) + K 2 

Then we could obtain the quadrature o f the forms after further decomposition

.2* 2n- x
I  f W d a ^ Y f i s j ) .

j =0

2n-ln__ 1 
C s  “  a  » 1

J  / O )  log(4 sin2 ~ y ~ )  d o ~ Y  ^  
0 J= 0

where 0  <  s  <  27T, and s.- =  —.
J n

We now define the weights

n- 1
2 7 r v - ' l  f  \  71 r \RAs) =  > — co s m [ s  — Sj) — r c o s n ls  —s.).

7 n  Z_i m  v 77 n z v 77m=l

Also, we observe that when Rj(si) = R\i-j\, we have

27T 1 m k n  ( - l ) fc7r
= ----------- > —  COS--------------------- r--- .

n  / L a m  n  n l
m= 1

Eq. 2-54

Eq. 2-55

Eq. 2-56

Eq. 2-57

Eq. 2-58

Eq. 2-59

Eq. 2-60
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When the points t  =  t t = 0)(si), the quadrature for f * n K(t,  T)/x(r)dr is expressed in 

Eq. 2-61.

- 2n-l' Z7T

0 ;= i Eq. 2-61

where we have (Oj = ^(t)'(Sj), and the weights Wy  is given as Eq. 2-62 and Eq. 2-63

? log( j [ ! % ! ^ Y L (s,),
n  s i „ 2 £L_SLyy * •"w a  =  I « IM  + - |oe |  1 1“  W  E1 - 2 - 62

w li = («o +  ^ l ° g ( “ '(S i) |x '( t( ) |) )  tt)’(Si). Eq. 2-63

Then we obtain the Nystrom discretization (see Eq. 2-64 - Eq. 2-69)

— \2  4 J V2 4 / °

2n-l

;=1

2n-l

-  j ]  <y) -  f  Ho(0 . £; ) )  «y(«,W  -  «o”’)  
1=1 '  '

2n-l 

k=l

2n_1 /
. V  ( M0l\tm

171 u  \  k f e
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2n-l 

k = i

Z n -l

7=1 

/2n-l

£  ("o fe . £») -  "oCO, t*)) (D^u'"’ -  u ‘">) 1
k=l /

where we have ~  u ( x ( t m)),  and we define the load vector G as

Gm = u*(x(tjn))  +

d u 1 2-65
^  /  (M oifen. -h ^ 02 (j-mi t j )0*]) (x(t/))-

7=0

Hence, we list the parameters, given by the 27r-periodic, and we define xp(t) =  0 (x ( t) ) .  

Let x (t)  =  (% i(t),x2 ( t) ) , so that we have |x '( t ) | >  s0 >  0 and x 0 =  x 2n =  x 0.

r  =  r ( t ,  t) =  x ( t)  -  x (r) , r  =  r ( t ,  t) =  |r ( t ,  t) |, Eq. 2-66

lx , ^ l  Rf rt  ^  _  I x ' C O U o g d^ o i ( L t ) — ^  * MQ2\ t , t )  — —  , Eq. 2-67

v ( t)  =  n (x(T ))|x '(r)| =  (-* £  (*),*£(*)), EQ-2-68

,  x " ( t)  ■ v (t)

Ho(t ' =  ~47r|x;( t ) l2 ' f ° r  f *  ° ' 2U’ E q ‘ 2 "69

otherwise, f/0 (t, i )  -> 1 /  r  as t  -» 0 and r  -> 27T, or as t  -» 271 and r  -» 0. We have the 

relations among the kernel H, M and L, which we will introduce as follows.

For H, we have H(t,  r )  =  Hx(t, t )  lo g rz +  H2( t , r ) ,  and the diagonal terms 

Hx(t, t )  =  H2(t, t)  =  0. From the non-diagonal terms, we obtain Eq. 2-70 - Eq. 2-78

Hx (t, t )  =  k j x (k r) r 4 J ^ , Eq. 2-70
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H ji t .x )  =  H(t,  t )  — Hx( t ,T ) \o g r 2. Eq. 2-71

For M, we have M (t,r )  =  k 2v ( t ) ■ v ( r )F ( r )  =  Mx(t,T) lo g r 2 +  M2 ( t , r ) ,  where

M if e T ) = ^ _ v W ( i _ /o(fcr))> E q 2 . 72

Af2 (t, t )  =  M (t, t )  -  Mi (t, t )  log r 2, Eq. 2-73

and the diagonal terms Mx and M2

M,(t,t) =  0, M2( t , t ) = y ( i - i ^ S ) | x ' ( t ) | 2, Eq. 2-74

for L, we have L(t, r )  =  (F '( r )  -  F " ( r ) )  -  F '( r )  and

L ( t,r )  =  Lx(t, t )  lo g r 2 +  L2 ( t , r ) ,  where

k (  Jx( k r ) \ r - x ' ( t )
Ll(t,T ) =  4 n \  ~  j- j — r—

r-x '(t)  k j x(kr)  
■x (t) ■ x (t),

Eq. 2-75

r  47TT

AzCLr) =  L (t,t) -  L iC L ^ lo g r2, Eq. 2-76

and the diagonal terms Lx and L2

Lx( t , t ) - ^ \ x ' ( t ) \ 2, Eq. 2-77

h i t ,  t)  — ~~~ — K +  l0 g f e )  +  2 ^  |x >(t)|2) E q > 2 . 78

where y «  0.5772156649 is called the Euler-Msacheroni constant.

Now, we define F (z), so let F (z) =  then we have Eq. 2-79



Eq. 2-79

1 V  ( - l ) mhm f k z \ 2m 1 - J 0(kz)
5? Z “ S S ) S - (  T )  +  “ £ “  h * < * 7 '2n La (m!)

m= l

where hm =  is the m th harmonic number. Hence, we could obtain the solutions

in the Neumann boundary condition.

2.3 Numerical Experim ents

For both the Dirichlet problem and the Neumann problem, we have the far field 

formula (see Eq. 2-80)

Uoo(x) =

in
e 4 r

I (fcv(y) • £  +  77)e lk*'y <p(y)ds(y),
V8nkJda

where |£ | =  1. Normally, the far field means the distribution o f the scatter field is at 

infinity. We can evaluate Eq. 2-80 by the trapezoidal rule after we obtain (p. The multiple 

comer case is more complicated and we refer to [41]. We take the flower-shaped case, in 

the Dirichlet boundary condition, as an example in Figure 2-1.

Figure 2-1: The original shape o f the flower.



The analytic presentations o f the flower shape (see Eq. 2-81 and Eq. 2-82)

x ( t)  =  (1 +  0.5 cos(3 t)) • cos t, Eq. 2-81

and

y (t)  =  (1 +  0.5 cos(3 t)) • sin t, Eq. 2-82

where 0  <  t  < 2n.

The approximate values for the far field pattern u 00(d) and Uoo(—d) are given 

from Table 2-1. We define the direction d o f the incident wave is d = (1 ,0 ), and the 

parameter is 1} = k.

Table 2-1: Numerical results for the Nystrom method.

n Re UooCd) Im Uoo(d) Re u ^ i - d ) Im Uoo(-d)

k  = 1 8 -1.49426582 0.45292727 0.59613494 1.01158165

16 -1.49468553 0.45141193 0.60125973 1.00591697

32 -1.49468215 0.45140755 0.60126160 1.00591949

64 -1.49468215 0.45140755 0.60126160 1.00591949
LOII-it* 8 -1.82503291 1.38164916 0.80398653 0.32856810

16 -2.09749806 1.49174144 1.21112794 0.46321826

32 -2.10891458 1.49489236 1.21660030 0.48036662

64 -2.10891469 1.49489227 1.21660033 0.48036664

From the table above, we could observe that it is the exponential convergence. 

Hence, the Nystrom method is accurate and can be applied on simple targets.
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2.4 The Near Field Data and the Relation to the Far Field Data

In numerical experiments, we also need to compute the near field data. Normally, 

the near field means the scatter field is evaluated near the targets. By Eq. 2-80, we know 

how to compute the far field data. By introducing the near field data, we can now 

introduce the implementation for the near field [9] (see Eq. 2-83 - Eq. 2-85).

Eq. 2-83

Eq. 2-84
x t -  r  cos 0

^J(r cos 6 -  x j 2 + ( r  sin 6 -  x 2) 2

a .
—  HlQcf) =  friC*! -  r  cos 6) -I- r2(x2 -  r  sin 0 )] 
or

Eq. 2-85

y]{r cos 6 -  Xi) 2 +  ( r  sin 6 -  x 2) 2 

The formula for the near field data [9] is as Eq. 2-86

ir]<t>(x,y) <p(y)ds(y),
Eq. 2-86

x  e  R 2\dD,

where 0 (x ,y ) =  ^//o(fc|x — yl)-

Now we replace e ikx'd with - H q (k \x  — y |)  for point source incident instead of4

plane wave. We need to know that the d in term e lkx d is a direction, not dimensity in a

later notation.
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We define the term f  as Eq. 2-87

f  =  7 ( r  cos 6 -  xO 2 +  ( r  sin 6 — x 2) 2, Eq. 2-87

and the four kinds o f situation are 

Px: Point source near field 

P2: Point source far field 

P3: Plane wave near field 

P4: Plane wave far field 

then we obtain Eq. 2-88 - Eq. 2-90

c ttlMI /  , x v \

e * m *

P2 =  PPI,  Eq. 2-89

e »ll*ll /  / i  v \

P3 = — 3 p ( P- +  0 ( w ) }  E<l-2-9»
\x\\ 2

For 2-D: /? =  -j==. For 3-D: (3 = — .V8nk 4n

We have the relation between these corresponding singular values [9] as Eq. 2-91 

- Eq. 2-93

1
ffi.i Eq. 2-91

<r„ =  ^ = ffi,3, Eq. 2-92

1
aii3 * t - p o iA . Eq. 2-93

Vr

From Eq. 2-91 to Eq. 2-93, we observe that the relations o f the singular value in 

four cases are proportional, which means if  we present the numerical results o f these four
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cases, the results should be similar. In other words, the results should have same shape 

but different scale.

Now let the source distance be R, and the receive distance be r ,  then We 

generalize the relations o f these four cases and show four formulas as Eq. 2-94 - Eq. 2-97

Px is the point source incident from distance R, and the near field receiver at 

distance r .

P2 is the point source incident from distance R, and the far field receiver.

P3 is the plane wave incident, and the near field receiver at distance r .

P4 is the plane wave incident, and the far field receiver.

If R = r ,  we obtain Eq. 2-98 and Eq. 2-99

We want to verify the relations o f the singular value among the four conditions as 

above. Now that we know the numerical relations between the far field data and the near 

field data, we will plot both the images and the singular value o f these four experiments

Eq. 2-94

Eq. 2-95

Eq. 2-96

Eq. 2-97

Eq. 2-98

Eq. 2-99



in which we take the kite-shape as an example. The figures look identical with different 

scales, which verifies the relations o f these four cases. In Figure 2-2 and Figure 2-3, the 

left top is ?! case, the right top is P2 case, the left bottom is P3 and the right bottom is P4 

case.

Figure 2-2: Kite shaped in four conditions with the Dirichlet boundary condition.
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o to x c *> *c a  ra

;c k- *■ v ho

Figure 2-3: Singular values o f four conditions.

2.5 Summary for Forward Problem

In this chapter, we introduce the Helmholtz Equation with two main boundary 

conditions. After a series o f transforming and rewriting, we obtain certain integral 

equations with kernels. Therefore, we need to discretize the integral equations, which are 

applied to make discretization by the Nystrom method. Compared to the Galerkin 

method, the Nystrom method requires the least computational effort, because we only 

need to compute two integral equations. We clearly observe that the error converges 

exponentially between the numerical results and the real data.



CHAPTER 3 

DIRECT METHOD FOR INVERSE PROBLEM

In this chapter, we will introduce two main direct imaging methods, the MUSIC 

method and the linear sampling method. Sometimes, when we need to obtain a better 

image o f the targets, the multi-tone method is also applied.

3.1 The MUSIC (Multiple Signal Classification) Algorithm

Now we illustrate the setup of the imaging experiment (see Figure 3-1).

We set unknown targets in the middle o f the region and transducers around the 

targets. The transducers can be considered as both receiver and transmitter. We consider

Figure 3-1: Generate the response matrix.

29
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the background medium of the region being homogeneous. Suppose there are N  

transducers around the targets with equal spacing in terms o f angles, and we label them as 

x 1, . . . , xN. Then we have the Response Matrix P*; , where the j  stands for the receiving 

signal at the j th transducer for a probing pulse sent out from transducer i.

Definition 3.1.1. The matrix P = ( P ^ n x n  >s called a Response Matrix if and only if  Py 

is the received signal at j th transducer for an incident plane wave sent from the i th 

direction or an incident wave sent by the i th transducer and N  is the number o f 

transducers.

In some cases, P may not be a square matrix. There are two main ways to obtain 

P, one is to use the solved Helmholtz Equation, and the other one is to obtain it from the 

physical experiments and measurements. Figure 3-2 shows how to obtain P by physical 

experiments.

Figure 3-2: Obtain the response matrix from lab.

We could handle both near field and far field data. For far field data, the plane 

incident wave is used at different angles and the far field pattern of the scattered field is
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recorded at different angles. For near field data, it just uses the sources and receivers 

mentioned above.

Due to the Dirichlet boundary condition [20], the scattered far field data (see 

Eq. 3-1)

in
p 4 r  d u

Uoo(£) =  — J =  I J -  (y )e~ ikXyds(y ),  E *F 3-1
yjQnk jq n

where % is the incident plane wave direction. Hence, the response matrix Py can be 

written as Eq. 3-2

in

Pa =  « 4 M i )  = - ^ ! a a ^ ( y : e ‘y , k h y d s M - E q ' 3 ' 2

Definition 3.1.2. Illumination Vector. Let G0 (y )  and GD(y ) be the homogeneous and 

inhomogeneous Green’s function, respectively. Define Eq. 3-3 and Eq. 3-4

g 0(x) = [GqO i.x), Gq(x2ix),  ...,G0 (xn ,x ) ]t , Eq. 3-3

g D(x) = [Gd ( x ^ x ) ,  Gd (x2,x),  ...,Gd (xn ,x )  ]t , Eq. 3-4

where x lt x 2, ..., xN are the locations o f N  transducers. Then g 0(x) and g D (x) are called 

the illumination vectors.

Now we have the illumination vector as Eq. 3-5

g(y)  = [e“ikXiy, ..., e~ik*Ny]T. Eq. 3-5

Hence, we can write the matrix form as Eq. 3-6

nr
p 4 f  du

p = - ^ L t o S H ( y ) i s W '

where u is the vector with components being u  corresponding to different incident 

angles.
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When we obtain the response matrix, the next step is to determine the signal space 

by SVD of the response matrix. We need to determine a threshold r  and use the first r  

singular vectors to image the shape o f the targets. We have a thresholding strategy in 

[19].

The computational cost o f SVD is 0 ( n 3) [42],

We define the MUSIC imaging function for far field data by using the 

illumination vectors [20] (see Eq. 3-7).

1

/W  = 7 Vr" I ~ f  \H  I2' Et»- 3‘7

where g Q is the normalized illumination vector, and v1(..., vr  is the first r  leading 

singular vectors o f the response matrix. We need to use the results o f multiple 

frequencies, and we combine the different frequencies o f the MUSIC imaging functions, 

then we have [20] (see Eq. 3-8).

1
/(x ) =

where m  is the number o f frequencies that we use in the MUSIC imaging function.

We just use the denominator part in the above imaging functions in [20]. The 

nonlinear transform of 1 /x  is not essential. If the denominator is close to zero, it could 

make the boundary of the target look disconnected, which would make it difficult for 

edge detection in Chapter 5. Using the denominator part helps to avoid this problem.

We refer to [21] for the multi-tone imaging function, which is similar to the 

MUSIC algorithm but used phase coherence.
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3.2 The L inear Sampling M ethod

There is another direct imaging method called linear sampling method [29] [37] 

[43] [44] [45]. Cheney [32] gave a brief description on the linear sampling method. We 

summarize it as follows: Kirsch [30] considers a situation o f the scattering problem, 

which is when one or more impenetrable objects are scattered off by the incident waves. 

He also considers the far field operator F, which satisfies a reciprocity condition but is 

not self-adjoint, as an integral operator, and the kernel o f F is the far field scattering 

amplitude.

Kirsch forms the self-adjoint operator [30] (see Eq. 3-9)

A =  F*F =  FF, Eq. 3-9

and considers the eigenvalues A* >  A2 >  ••• and corresponding eigenfunctions v t , v 2, ....

Based on the theorem [30], the linear sampling method is that the range of A 1̂  

coincides with the range o f the operator H. We will define the operator H as follows.

Suppose u  is equal to h on the boundary o f the object. If u  both satisfies the 

Helmholtz Equation in the region’s exterior o f the object and the outgoing radiation 

condition, then we have H, which maps the Dirichlet data h to the far field pattern o f u.

In the linear sampling method, the boundary of the object is determined by testing 

points p. We denote the far field amplitude by g p, which is corresponding to the Green’s 

function G(x, p ). If p is inside one o f the objects, it means in the region’s exterior of the 

object, then G(x ,p ) satisfies the Helmholtz Equation and g v is in the range of H. 

However, if  p is the exterior of the object, G (x , p) cannot satisfy the Helmholtz Equation 

because it has a singularity at p, which means g p cannot be in the range o f H.



34

The eigenvalues and eigenfunctions o f A can determine the range o f H, which is

the linear sampling method. By Kirsch [30], we know that the plot will be nonzero if p is 

inside one of the scatterers, and identically zero if p is outside all the scattering objects.

The linear sampling method can also be applied to electromagnetic waves and in 

three dimensions by finding an electric field. We briefly summarize the work in [43] as 

follows:

Let D c  E 3 be a bounded domain. We can formulate the direct scattering 

problem as finding an electric field E and a magnetic field H (see Eq. 3-11 - Eq. 3-13)

where v is the unit outward normal to dD, and constant A >  0 which is assumed.

identical to the range o f A x^  as Kirsch [30] showed. Particularly, we have the range of 

A 1!* as Eq. 3-10

RanA1/4 = f :

J

_ j j2 2
To plot the quantity l / ( E / | ^ y  | \{Vj, g p)| ) at each point, p is the algorithm of

curlR -  ikH =  0, Eq. 3-11

curlH  +  ikE =  0, in  E 3\D,  

where E,H E C1(E 3\D ) n  C (E 3\Z?), then we could obtain

Eq. 3-12

v x  curlE -  iA(v x  E)  x  v =  0, Eq. 3-13

The total fields E, H are defined as Eq. 3-14 - Eq. 3-18

E = El + Es, Eq. 3-14

H = H l + Hs, Eq. 3-15

where Es , H s are scattered field, and E l, Hl are the incident field.



where k  is the positive wave number, d is a unit vector and p is the polarization vector. 

We refer to [9] [45] for the existence and uniqueness o f a solution to Eq. 3-11- Eq. 3-17. 

Equation 3-16 is called the Silver Muller radiation condition, where x  = —  and r  =  \x\.

Hence, E s has the asymptotic behavior [9] following the Stratton-Chu formula, we have 

Eq. 3-19

gikM t /  1
E s ix)  =  -^ -{ E o o C * ,d ,p ) +  0  Eq. 3-19

where E^  is the electric far-pattem. When k  is fixed, we can simply observed that E ^  is 

infinitely differentiable.

Before we introduce the far-field operator and the corresponding to the Herglotz 

pairs, we first need to state the Hilbert space r 2(JQ) (see Eq. 3-20)

r 2( n )  =  {a : n  -» C3|a  e L2(n ) ,  a ■ x  =  0 f o r  5t E f t ) ,  Eq. 3-20

then we define the far-field operator F (see Eq. 3-21)

( F g ) ( X ) = [  EM( S i , d , g m d s i d ) ,  2 E ft, Eq.3-21
Ja

where g  E r 2 ((l). Hence, the operator F is a compact linear operator on T 2 (n ) after we 

define Eq. 3-18 and Eq. 3-19. We now define a pair of vector fields, which we 

mentioned as the Herglotz pair before (see Eq. 3-22 and Eq. 3-23)

E(x)  = f  e ikxda(d)ds(d) ,  Eq. 3-22
Ja
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1
H(x) = —  curl E (x), Eq. 3-23

IK

where £ M3 , and a  £ F 2 (fl) is the kernel o f E,H.

We now define a parameter q, which is considered as the electric dipole with 

polarization (see Eq. 3-24 - Eq. 3-27)

i
Ee (x, z ,q )  = -  curlx curlx q<P(x, z),  Eq. 3-24

K

He( x , z , q ) =  curlx q<t>(x,z), Eq. 3-25

where z  £ D, and

1 e ik \x - z \
<&(x,z) = — - x  ±  z. Eq. 3-26

471 \x -  z\

For further research, we need to find fixed q £ M3 in g  £ T 2 (H)

Fg(5c) =  Eem {x,z,  ( ? ) = ^ - ( ^ x q ) x  %e~ikXz, Eq. 3-27
47T

where Ee oo is the far-field pattern o f Ee.

Now we illustrate the numerical algorithm. We first set an orthonormal basis of 

M3, where the basis is (x, ex(x), e2 (x)), associated with x  £ SI. Then for all x ,d  E£l  and 

all p £ C3, we have E^(x ,  d, p)  ■ x  = 0. We could rewrite Eq. 3-27 as Eq. 3-28 and 

Eq. 3-29

f  ex(X) ■ Ex { x , d , g { d , z ,q ))d s(d ) =  ex(£) ■ Eei00(x ,z ,q ) ,  Eq. 3-28 
J n

f  e2(X) ■ EooCX,d,g(d,z, q ) )ds (d )  = e2(x) ■ ECj00(£ ,z, q), Eq. 3-29 
Ja

with the reciprocity relation, we have Eq. 3-30

p ■ Em(x, d ,q )  = q- Em( - d , - x , p ). Eq. 3-30



Eq. 3-31

Eq. 3-32
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Hence, Eq. 3-28 and Eq. 3-29 can be written as Eq. 3-31 and Eq. 3-32

( Eco^—d . —x, e ^ x ) )  • g (d , z ,q )d s { d )

= ■ Eet00(X,z,q),

f  E00( - d , - x , e 2( x ) ) - g ( d , z , q ) d s ( d )
7ft

=  e2( £ ) ' Eei00($,z ,q),  

where for all 5L, d  G SI and all p,q  G C3.

We then use the numerical approximation of the integral to get the discrete form 

of Eq. 3-31 and Eq. 3-32 (see Eq. 3-33 and Eq. 3-34)

7=1
> o i j E ^ - d j ,  ex(x))  ■ g(d j ,z ,  q )d s (d )
n Eq- 3-33

=  ejC*)

7=1
> (OjEooC-dj, - x ,  e2(x))  ■ g(d j ,z ,  q )d s (d )

V  Eq. 3-34

=  e2(x) ■ Ee oo($,z ,q) .

Let Th be a triangulation of fi, where h =  m a x KSThdiam(K),  and a>y =

|K|
TiKeTh;djeTh~ -  We also define \K\ is the area o f K.

We define (a ,/?) G 1 ,22, and ( i ,/ )  G { 1 , IV}2, then we obtain Eq. 3-35

<*jE„ ^ dj, Xi, 6a (Xj)^ ■ ep(dj),  Eq. 3-35

and after we combine Eq. 3-33, Eq. 3-34 and Eq. 3-35, we have Eq. 3-36
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N 2

^ ^ ' Agtp(dj,Xj)gp(dj,z ,  q) — 6a (%i)Ee oo(xi,z,  q)
7=1 0 =i Eq. 3-36

=  /a (* i^ ,  9). 

where for all a  G 1,2 and all i G {1,..., N}.

Therefore, we simplify Eq. 3-36 and obtain Eq. 3-37 - Eq. 3-40

A^G  (z, q) =  F(z, q), Eq. 3-37

■̂oo — (Aa,/?)isa,ji£2> Eq. 3-38

G(z, q) =  {gp (z, q ) ) l sps2, Eq. 3-39

K z , q) =  (fa(z> q)) 1̂ 2, Eq. 3-40

where A is a 2iV X 2iV matrix, which represent the far field data. G (z, q) is the vector 

that we need to compute, and F(z, q) is the right hand side that we need to choose.

3.3 Examples for the MUSIC Algorithm

The analytic presentations o f the kite shape are Eq. 3-41 and Eq. 3-42

x ( t )  =  cos t  + 0.65 cos 21 -  0.65, Eq. 3-41

y ( t)  =  1.5 sin t. Eq. 3-42

The analytic presentations o f the teardrop shape are Eq. 3-43 and Eq. 3-44

t
x ( t ) =  2 s in -, Eq. 3-43

Lt

y (t)  =  — sin t. Eq. 3-44

In Figure 3-2, Figure 3-3, Figure 3-4, and Figure 3-5, the frequency of the left 

top is 4, the right top is 7, the left bottom is 10, and the right bottom is 12. We present 

four shapes by using the MUSIC imaging function with the Dirichlet boundary condition. 

We let the frequency k = 4 , 7 , 10,12 in the kite-shape, teardrop-shape and flower-shape
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experiments. In Figure 3-6, we let the frequency o f the top figure be 6  and the bottom 

figure be 7 in the two-object-shape experiment [25]. Also, we let N = 64 for all these 

four experiments. We observe that there are a lot o f artificial lines in these numerical 

results with single frequency.

»  '») Iffl m  S I  »  'CD 'SO XE

Figure 3-3: MUSIC: kite shaped in four different frequencies.



Figure 3-4: MUSIC: flower shaped in four different 
frequencies.

Figure 3-5: MUSIC: teardrop shaped in four different 
frequencies.
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Figure 3-6: MUSIC: two objects shaped in two different 
frequencies.

3.4 Example for the M ulti-tone M ethod Using M ultiple Frequency D ata

In the last section, we observe the artificial lines when we use the MUSIC 

method. There are three possibilities that form the artificial lines, for example, by solving 

the forward problem, computational error and the error o f forming the response matrix. 

However, we do need to decrease the effect o f the artificial lines. We sum up different 

multiple frequencies [20] [21] to try to eliminate the lines. The location o f the real shape 

does not change in the different single frequency. However, the artificial lines are 

affected by the wavelength and if  we sum up different numerical results in different 

frequency, the artificial lines should be decreased.
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We present some numerical experiments after we sum up multiple frequencies, 

including the MUSIC algorithm and the multi-tone method. The multi-tone method is 

shown in Eq. 3-45

m

100 = ]T |& (x )HU;||0r(x)Hv,! Eq. 3-45
/=1

For all these four numerical experiments, we let the number o f transducers 

N  =  64. The frequency k  is set to be 4, 5, 6 , 7, 8 ,..., 12 in the kite-shape, teardrop-shape 

and flower-shape experiments, and k  is set to be 4, 4.5, 5, 5.5,..., 7 in the two-object- 

shape experiment. Figure 3-7- Figure 3-10 show the summation o f multiple frequencies 

by using the MUSIC algorithm and the multi-tone method, and the results o f summing 

both the MUSIC algorithm and the multi-tone method [20] [21]. Compared Figure 3-7- 

Figure 3-10 to Figure 3-3- Figure 3-6, after summation, the artificial lines obviously 

decrease.

50 

100 

150 

200 

250

Figure 3-7: MUSIC and Multi-tone: kite shape of multiple frequencies.
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Figure 3-8: MUSIC and Multi-tone: teardrop shape o f multiple frequencies.

Figure 3-9: MUSIC and Multi-tone: flower shape o f multiple frequencies.
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Figure 3-10: MUSIC and Multi-tone: two-objects-shape o f multiple frequencies.

3.5 Summary for Inverse Problem

There are two main methods for solving the inverse problem, the iterative method 

and the direct method. Compared to the iterative method, the direct method is more 

efficient. We do not need to compute the forward iteration when we use the direct 

method. The MUSIC method and the linear method are direct methods. It appears that the 

linear method is an extension o f the MUSIC method.



CHAPTER 4 

THE SIGNAL SPACE METHOD

In this chapter, we introduce the signal space method. We need to propose a new 

method to verify if  the artificial lines are caused by the error o f forward problem. Also, 

the numerical results are shown in this chapter.

4.1 The Signal Space Test

When we use the MUSIC imaging functions to show the location and the shape of 

the targets, the artificial lines always come out. However, we want to decrease the effect 

of the artificial lines and find out if  we could eliminate these lines by using the signal 

space method.

Definition 4.1.1. Signal Space. Let U; be the singular vectors with singular values o f 

the response matrix P. Define the signal space (see Eq. 4-1)

=  span{Ui\i < n), Eq. 4-1

where n  is a threshold depending on the resolution of the array and the noise level.

By numerical experiments, we can determine the threshold parameter n  using the 

resolution analysis.

Steps o f the signal space test are shown below:

1. Create the shape o f the targets by using their parametric equations.

45
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2. For each sample point on the target boundary, generate a far field illumination 

vector corresponding to it. Collect these illumination vectors to create a 

matrix.

3. Take S VD of the matrix [ 19] [20].

4. Determine threshold r and use from the r  +  1 singular vector to the last. These 

vectors span the noise space orthogonal to the signal space. Now compute the 

project to the noise space for the illumination vectors corresponding to each 

point. Those in the signal space would show a low projection value.

Note that this procedure uses the target shape information. The purpose is to 

check if the artificial lines are due to the error in the forward solver. The key idea o f the 

MUSIC algorithm uses the concept o f signal space. Ideally, those points on the boundary 

have their illumination vectors falling in the signal space and therefore the projection to 

the noise space is zero. In reality, some other points not on the boundary also have their 

illumination vectors with nearly zero projection to the noise space. The above signal 

space test would show whether we still observe artificial lines with the knowledge o f the 

exact shape o f the targets. Figure 4-1 and Figure 4-2 show the original shape of the 

targets.



Figure 4-1: Three shapes o f the targets by their parametric equations.

100
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250
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Figure 4-2: Two-objects-shape of the targets by their parametric equations.
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4.2 Numerical Results 

In Figure 4-3-Figure 4-6, by using the signal space method, we let frequency 

k  =  4 ,7 ,10,12 in the kite-shape, teardrop-shape and flower-shape experiments, and 

k  = 6, 7 in the two-object experiment. Let N = 64 for all these four experiments. Even 

though we do not apply imaging functions and the response matrix here, the artificial 

lines still appear. Thus, we know that the artificial lines are not caused by the error o f the 

forward problems.

Figure 4-3: Signal space test: kite shape in four different frequencies.



Figure 4-4: Signal space test: teardrop shape in four different frequencies.

Figure 4-5: Signal space test: flower shape in four different frequencies.
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Figure 4-6: Signal space test: two-objects-shape in two different frequencies.

4.3 Summary for the Signal Space Method

There are many possible reasons to cause the artificial lines, such as the error o f 

computing the forward problem, and the creation of the response matrix. We could not 

use the signal space test to eliminate the artificial lines. However, we eliminate one 

possible reason to cause them. We do not solve the forward problem, but the artificial 

lines still come out.



CHAPTER 5

THE IMPROVED METHOD

In this chapter, we introduce the active contour method, and the level set data. We 

improved the imaging method by obtain the level set data and use them to recreate the 

shape o f the targets.

5.1 Active Contour Method

The active contour method [34] is based on the level set method, and 

segmentation o f the Mumford-Shah functional and curve evolution. By using the active 

contour method, we can detect objects (edges) in given images. The main idea is to 

construct a cost functional, then minimize it to evolve a curve and finally stop at the 

boundary (edges) o f the objects.

Steps are as follows:

1. In order to detect objects in a given image, we first evolve a curve 

C(s): [0 , 1 ] -> K2, which is parameterized.

2. Let the given image u 0: 11 -> R. Let fl be a bounded open subset o f M2, and 

its boundary is dfl.

3. Around the object, we start with a curve (for example a box) to detect it. By 

minimizing an energy functional, the curve should move to the object and stop 

at the boundary.

51



52

Now we introduce the level set method [46] (see Eq. 5-1- Eq. 5-10)

C =  da) =  {(x,y) e  fl: (f)(x,y) =  0), Eq. 5-1

inside(C) =  o> =  {(.x , y ) e fl: <f{x,y) >  0), Eq. 5-2

outs ide(C)  = fl\n r =  { (x ,y )  E fl: <f)(x,y) <  0}, Eq. 5-3

where 0) c  fl is open and C = da). We follow [47] to replace C by <p.

By using the Heaviside function H and Dirac measure 60, we define

S0 =  Eq. 5-5
dz

and two constants ct  and c2 by function o f <p and H

f n u 0(x,y)H(<t>(x,y))dxdy
Ci(0 )

c2(<P)

fa  H(<t>(x,y))dxdy

i f  I  H(<p(x, y ) ) d x d y  > 0 ,
Jn

f n u 0(x, y ) ( l  -  H(<f>(x,y)))dxdy 

f n (1 -  H(<p(x,y)))dxdy

i f  f  (1  -  / / ( 0 (x ,y )))d x d y  >  0 ,
Jn

Eq. 5-6

Eq. 5-7

after we have clt c2 and Fe where e -* 0 [34], we define the equation for (f) with the 

initial contour (f)(0,x,y) = 4>o(x, y)

d(b
T t = s ‘ W

l*div -  v -  Xt (u0 -  Cl) 2

Eq. 5-8

+  ^ 2 (^ 0  -  c2) 2] =  0  in (0 , 00),
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(j) (0, x , y )  = (f)o (x , y )  in fl, Eq. 5-9

8e((f)) d<p
■ 4 £ r-= ^  =  0 on d a  Eq. 5-10
|V0| dn

We now try to derive Eq. 5-10. The energy functional F is defined as Eq. 5-11 

F^Cl  c2, C) = n  ■ Length(C ) +  v ■ Area(ins ide(C ))

Eq. 5-11

+AX J |u 0 (x ,y ) -  cx\2d x d y
* inside (C)

+ A2 I I u 0 O , y ) -  C2 1:2 dx d y
Joutside(C)

= fi j 6((f))\V<p\dxdy +  v f  H(<p)dxdy 
Jsi J n

+AX | |tt0 -  q  |2//(</>)dxdy 
Jsi

+ h  f  I Wo -  c2|2(1 -  H(cp))dxdy,

where g, v >  0 and A1( A2 >  0 are fixed parameters. We want to derive the Euler- 

Lagrange equation and compute the Gateaux Derivative. We have lim e^ 0 F^ +ex̂  

and set it equal to 0. Since H' =  5, then the terms o f Eq. 5-11 corresponding to 

Jn 8(4>)(v +  Ail u 0 — Cj | 2 — A2 |u 0 — c2 |2)i/idxdy, we just need to work on the term 

F fn 8(<p)\V<f>\dxdy.
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For simplicity o f notation, we let G (0) =  J  5 (0 ) |V 0 |d x d y . Hence, we have 

Eq. 5-12

G (0 +  60) -  G (0)
lim-
e-»0

J  (5 (0  +  e 0 ) ) |7 (0  +  6 0 )| -  5 (0 ) |V 0 |d x d y  
=  lim ---------------------------------------------------------------

£->0 e

f  (5 (0  +  £ 0 )) |V (0  +  60)1 -  5 (0 ) |V (0  +  6 0 ) |d x d y  
=  lim -------------------------------------------------------------------------

e-»0

f  (5 (0 ) |V (0  +  6 0 )| -  5 (0 ) |V 0 |)d x d y  
+  lim-

e->0 e

= f  5 '(0 ) |V 0 |0 d x d y  
Ja

+ f  w u j M ± ^ i z m dxdy
Ja  e ^ °  e

=  f  5 '(0 ) |V 0 |0 d x d y  
J a

. f  p/jlM- 2  6V0V0 + 62V0V0
+  J „

= f  <S'(0)|V0|i/idxdy + (  S ( 4 > ) \ im ^ ^ ~ - d x d y
J a  J a  e ^ " 2 | V 0 |

=  /  ( S ' ( * ) I W  +  « ( 0 ) ^ | j W * « i y .

Eq. 5-12
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Now we need to apply Green’s Theorem (see Eq. 5-13 and Eq. 5-14)

L  s w $ i v # d x d y

_  r

Jan  W  dn S

V0

therefore,

~ L  v ' ( s w m ) ’l' i x d y :

G((f> + e\p) -  G(<f)) 
l i m - - - - - - - - - - - - - - - - - - - - - -
e-»0 F

r s(<p)a<p

+ L m * + i s

= f  s ' W W W -

~ m v - ©  * ' " * + L w M H s

= ~ L  s w v ' & * * * ’’

r s w d *
+ J „ w r * r * * -

Eq. 5-13

Eq. 5-14



Finally, when we put the terms together, we have Eq. 5-15

F (0  +  e 0 ) - F ( 0 )
lim-------------------------
£—■>0 £

/an IV0 I 3n 

and both integrals above are set to 0 .

Now we are introducing pseudo time (see Eq. 5-16 and Eq. 5-17)

£0
dt

=  5 (0 ) f l  ■ -  v -  AJuo -  c j 2 + X2\u0 -  C2 12

=  0 ,

and

£(0)£0 
|V0| 3n

= 0 on dft.

3F dF
Then we use —  =  —  =  0 to get Eq. 5-6 and Eq. 5-7.dc± dc2 o - i  -i

56

=  /n <s(0 ) [_ ) u V ' ( m )  +  v  +  ;1i Iu o " Ci12 E q - 5- ^

-  A2 |u 0 -  c2 |2]0 d x d y +  f  j ^ ^ i p d s ,
Ja i

Eq. 5-16

Eq. 5-17

5.2 Level-set Algorithm

The steps o f the level-set algorithm [34] are as follows:

1. Use 0 °  to initialize 0 O, where n  =  0.

2. Use Eq. 5-6 and Eq. 5-7 to compute ^ ( 0 ” ) and c2 ( 0 n).

3. In order to obtain 0 n+1, we use Eq. 5-8, Eq. 5-9 and Eq. 5-10 to solve PDE 

in 0 .

4. If the solution is stationary, stop. If not, n  +  1 and repeat.
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Using the finite differences equations, we implement Eq. 5-16 [48] and obtain Eq. 5-18.

~
At

( \

J L  A* .
h 2 ~

a ? * r ; 1

( A f e ) 2 , f e +1 -  C - 0 2

. \ y h2 1 (2 /i) 2 /

+ v
h2

y j.n+1
K M ]

f e l j  ~ 0P-1.;)2 , (^0g/)2
(2h)2 fc2

Eq. 5-18

-  u -  Aj (uofU -  q ( 0 n))

+  A2 (w o,i,;-C 2 (0 n) )  ■

When we finish detecting the contours o f the targets, the solution is stationary. 

We obtain all the level-set data from the images. Then we need to find the data which is 

exactly located on the boundary o f the targets.

5.3 Numerical Results

The kite-shape and flower-shape have no comers. The teardrop-shape and two- 

object-shape have just one comer. In order to make sure the active contour method is 

proper, we take the multiple comers plane-shape [41] as an example. Parameters for the 

plane-shape, k  is set to be 4, 5, 6 , 7, 8 ,..., 12, and the number o f transducers is 64.
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The equations for each arc o f the plane-shape are Eq. 5-19 - Eq. 5-27

y  = ~ \ t 2 + \> Eq. 5-19

y  = l * 2 - l  E <*-5 -2 0

y  =  6 t 2 -  1, Eq. 5-21

y  =  —S t 2 + 1, Eq. 5-22

y  =  i  Eq. 5-23

y  =  -  i  Eq. 5-24

x ~ ~ \  Eq. 5-25

16 5 .  2 „  ,  _
y  =  y ( t  +  - ) 2 - - ,  Eq. 5-26

1 6 /  5 \ 2 2 _  ___
J' =  - T ( t  + i )  + 3- E q - 5 ' 2 7

In Section 3.4, we know that when we use the multi-tone method with multiple 

frequency, we can obtain better images o f the unknown targets, which means we can 

obtain the images with less artificial lines compared with the images o f the single 

frequency. However, there are still some artificial lines in the images, we need to know 

the exact shape o f the targets. That is why we need to use the active contour method and 

the level-set algorithm. We will introduce the detail o f the procedures.

In the numerical experiments, we first need to find the contour o f the targets by 

using the active contour method, we use Figure 3-7- Figure 3-10 as the given images 

and the box of each figure as the initial contours. We obtain the figures with contours on 

the boundary o f the targets (See Figure 5-1 - Figure 5-5).
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Figure 5-1: Contours o f the kite shape.

Figure 5-2: Contours o f the teardrop shape.
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Figure 5-3: Contours o f the flower shape.

Figure 5-4: Contours o f the two-object-shape: the figure on top is the contours of the 
left object; figure on the bottom is the contours of the right object.
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Figure 5-5: Contours o f the plane shape.

In the two-object-case, by using the active contour method, we could not directly 

find both contours. We first fix the center-point in each target, then split the image, and 

find each contour at one time. After we have both contours, we combine both contours 

together and put the center-point o f the contour back to the fixed center.

From Figure 5-1 - Figure 5-5, we observe there are some contours in the images. 

We need to distinguish what contours belong to the targets, and eliminate the rest of 

them. We know that the contours o f the targets are close, but when we look for them 

from the level-set data, which forms the contours, we need to find the two lines which are 

close (see Figure 5-6 - 5-10).
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Figure 5-7: The level set lines o f the teardrop shape.
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Figure 5-6: The level set lines o f the kite shape.
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Figure 5-8: The level set lines o f the flower shape.

Figure 5-9: The level set lines o f the two objects shape.



64

300

260

200

150

100

50 100 150 200 250 300 350

Figure 5-10: The level set lines o f the plane shape.

We want to use the level set data to create figures to see if the MUSIC algorithm 

is robust and improve the MUSIC algorithm. So we collect level set data [36] from the 

kite-shape, flower-shape, teardrop-shape, two-object-shape and plane-shape by using the 

active contour method. For the star-like shape, we take the flower shape case as an 

example (see Figure 5-11).
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Figure 5-11: Obtain points for star-like shape.

Since the ACWE method can detect the edges, we can see that each target 

corresponds to two edges in the reconstruction combining the multiple frequency MUSIC 

algorithm and the multi-tone algorithm: one inside and one outside. The artificial lines 

have been suppressed and would not bother the ACWE method. We would expect the 

ACWE method to generate two level set curves, one inside and one outside the target. 

The reason is that for all the plots of imaging functions, for each target there is a sharp 

gradient curve (edge) outside and a sharp gradient curve (edge) inside. The ACWE 

method detects edges. The average o f the two curves is expected to be a good result for 

shape reconstruction. Our next step is to propose a systematic way to do the averaging.

For the star-like shape (Figure 5-11), we first set a point in the middle o f the 

figure, then make radials from the center point in different directions to make sure each 

direction meets exactly two points, one on each o f the two level set curves. Then we can

_ J____________I___________ I___________ I____________1____________I___________ L _
50 100 150 200 250 300 350
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collect the midpoints o f such pairs, making an average shape o f the two level set curves 

to compare with the original shape o f the target(s).

For other kinds o f shapes (see Figure 5-12), this method is not proper, because 

the intersection points may be more than two points. However, we know the level set data 

o f the shapes. For the points which are from the interior, we find the points which are the 

shortest distance from each exterior point. For the points which are from the exterior, we 

find the points which are the shortest distance from each interior point. Finally, we have 

all the points we need, and we create the shapes by connecting the pairs o f points and find 

the midpoint o f each pair. The collection o f the midpoints forms the average shape to be 

compared with the original shape o f the target(s).

300
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so 100 tso 300 360

Figure 5-12: Obtain points for non-star-like shape.

We remap the level-set data to the figures o f the original shape o f the targets, and 

we obtain the coordinates o f the level-set data (See Figure 5-13 - Figure 5-17).
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Figure 5-13: Compare the active contour method to the original shape o f the kite.

300

250

200

150

100

100 150 200 250 300 350

Figure 5-14: Compare the active contour method to the original shape o f the teardrop.
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Figure 5-15: Compare the active contour method to the original shape o f the flower.
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Figure 5-16: Compare the active contour method to the original shape o f the two
objects.
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Figure 5-17: Compare the active contour method to the original shape o f the plane.

Finally, we have all the points we need, and we create the shapes by connecting 

the pairs o f points and find the midpoint o f each pair. The collection o f the midpoints is 

to be compared with the original shape of the targets (See Figure 5-18 - Figure 5-22).
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Figure 5-18: Compare the averaged active contour method to the original shape o f the
kite.
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Figure 5-19: Compare the averaged active contour method to the original shape o f the
teardrop.
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Figure 5-20: Compare the averaged active contour method to the original shape of the
flower.
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Figure 5-21: Compare the averaged active contour method to the original shape of the
plane.
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Figure 5-22: Compare the averaged active contour method to the original shape o f the
two objects.

In Figure 5-13, Figure 5-14, Figure 5-15, Figure 5-16 and Figure 5-17, we post 

the figures that include level-set lines and original lines. The black and blue parts are the 

shape o f the target which is created by level-set data, and the red part is the original shape 

o f the target. In Figure 5-18, Figure 5-19, Figure 5-20, Figure 5-21 and Figure 5-22,

after taking the average o f the level set data, we want to compare the average shape o f the 

target to the original one. The red parts are the original shapes o f the target, and the black 

parts are the shapes o f the target after taking the average by the active contour method.

According to the numerical experiments above, we could see that if  the target is 

smooth or has few comers, the shape of the target by the active contour method is very 

close to the original shape. The result o f the target with multiple comers and more targets
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in one plane is not good enough. However, the active contour method still improves the 

MUSIC algorithm.

5.4 Dealing with the Noise

In real applications, there is always noise, such as the measurement noise. 

However, sometimes we cannot obtain the exact form o f the background o f Green's 

function because there may exist some inhomogeneity in the background medium. We 

need to assume a form o f the measured field at the array under the Dirichlet boundary 

condition. Now we introduce the response matrix with measurement noise in the 

Dirichlet boundary condition [19], that is, the real and imaginary parts o f P^ are 

perturbed (see Eq. 5-28 - Eq. 5-30).

Pij =  Pijjreal + i * P i j jm ag ,  Eq. 5-28

Pij_real_with_noise = Pijjreal * (1 +  s^ ), Eq. 5-29

P i j jm a g jv i th jn o i s e  = P y j m a g  * (1 +  t*; ), Eq. 5-30

where and t;;- are uniformly distributed between —a% ~  a%. We choose a =  100 

here, which means we add 100% noise to the response matrix.

We want to show the comparison after we add noise the response matrix to see if 

the MUSIC algorithm and the active contour method are still accurate. We add 100% 

noise to the response matrix o f the kite-shape, the teardrop-shape, the flower-shape, the 

two-object-shape, and the plane-shape. To be precise, the real and imaginary parts of 

each element of the response matrix are perturbed using a uniform distribution with 

100% error. Parameters for adding noise are the same as in Section 5.3. We follow the 

procedures o f the flow chat (see Figure 1-2) and obtain the numerical results with 100% 

noise. The red parts in Figure 5-23, Figure 5-24, Figure 5-25, Figure 5-26, and Figure
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5-27 are the original shape of the target, and the black parts are the shape o f the target 

after taking the average by the active contour method. The results show our method is 

robust with respect to noisy data. The robustness is due to the use of singular value 

decomposition. Mirsky [49] proved a singular value perturbation result that for a matrix 

A and a perturbation matrix E (see Eq. 5-31)

MaXilffiiA + E) -  <TiC4)| <  \\E\\2, f o r  i = 1 ,2 ,3  Eq. 5-31

where Oi means the ith  singular value. In other words, the maximum absolute error o f the 

singular value perturbation cannot exceed the 2-norm o f the perturbation matrix. This 

explains that singular values are robust. We used SVD in our imaging functions. We 

could understand our robust results as a consequence o f the robustness o f singular values, 

though the rigorous proof of the robustness o f our result is an extremely challenging open 

problem.
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Figure 5-23: Compare the averaged active contour method to the original shape o f the
kite with 100% noise.
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Figure 5-24: Compare the averaged active contour method to the original shape o f the
teardrop with 100% noise.
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Figure 5-25: Compare the averaged active contour method to the original shape o f the
flower with 100% noise.
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Figure 5-26: Compare the averaged active contour method to the original shape
of the plane with 100% noise.
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Figure 5-27: Compare the averaged active contour method to the original shape of
the two-object with 1 0 0 % noise.
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From the Figure 5-23 - Figure 5-27, we can observe that, even when we add the 

1 00% noise to the response matrix, the images o f adding noise is still close to the non­

noise images, which proves the robustness o f the MUSIC algorithm.

From the numerical results we obtained by using the active contour method, we 

observe that they are close to the original shape of the targets. We set a center point, then 

find a pair o f points in each direction to calculate the error.

By observation, we find that the kite and teardrop cases have the best result, and 

the plane-shape case is not very close to the original shape o f the target.

We calculate the distance between each pair of the points so we could calculate 

the error o f the entire shape. This method (single linkage method) [50] to calculate the 

numerical error is much easier, compared to partial shape matching method based on the 

Smith-Waterman algorithm [51], IS-match (integral shape match) [52] and MCMC 

(Markov chain Monte Carlo) based algorithm [53]. All the methods in the references use 

quite advanced techniques while we simply compare the relative errors for different 

angles. Our cost is 0 (m ), where m  is the number o f angles. It is a simply way to 

quantitatively measure the error o f a shape. Here, we show how we compute the 2-norm 

error and the oo-norm error as Eq. 5-32 and Eq. 5-33

5.5 Numerical Analysis

2 — n orm  error  =
Eq. 5-32

oo — norm error =
m ax\di\

D
Eq. 5-33



78

where d* is the ith  distance of two point in one direction, and D, which is called the 

diameter, is the longest distance o f two points on the boundary o f the targets.

The error analysis is shown in Table 5-1 and Table 5-2.

Table 5-1: Numerical analysis for the cases without noise.

2 -  n orm  error oo -  n orm  error

Kite shape case 1.06% 1 .8 8 %

Teardrop case 1.23% 2.34%

Flower case 0 .8 6 % 1.39%

Two objects case 3.65% 4.58%

Plane shape case 3.67% 5.0%

Then we post the numerical analysis for the cases with noise.

Table 5-2: Numerical analysis for the cases with 100% noise.

2 -  norm  error oo — n orm  error

Kite shape case 1.05% 1.72%

Teardrop case 1.17% 1.74%

Flower case 0 .8 6 % 1.39%

Two objects case 3.7% 4.64%

Plane shape case 3.67% 5.0%

We simply explain how we do the numerical analysis. For the star-like shape 

case, we do the same when we find the level-set data to create the shape o f the targets 

(see Figure 5-12). For the non-star-like shape case (see Figure 5-28), we divide the 

shape into parts, fix the center of each part, then make the radius in different directions to
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meet two points: one belongs to the numerical results and the other one belongs to the 

original shape o f the target.
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Figure 5-28: Method for doing numerical analysis for non-star-like shape.

5.6 Summary for the Active Contour Method

When we obtain the images o f the unknown targets by using the MUSIC 

algorithm, it is hard to find the exact object because the artificial lines always come with 

the numerical results. After we use the active method, we could obtain better results, even 

from the multiple comers case and the multiple-object case. By the error analysis, we 

know that if  the unknown targets are simple, the numerical results are very close to the 

original shape o f the targets.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we propose the signal space method to show we cannot avoid 

artificial lines for the MUSIC imaging function, even if we do not use the response 

matrix. However, we could reduce the effect from artificial lines by summing multiple 

frequencies from the MUSIC and the multi-tone methods, and get a better shape o f the 

targets. In order to improve the imaging results, we apply the active contour method. 

After using this method, we could easily obtain the shape o f the targets. It is clear that 

extensive numerical experiments demonstrate the effectiveness o f our proposed method, 

even with the presence of 100% noise to the elements o f the response matrix. The 

improved imaging method (see Figure 1-2), is accurate and robust, comparing to the 

direct imaging methods. We eliminate the artificial lines by applying the improved 

imaging method and obtain the numerical results which are very close to the original 

shape o f the targets. Also, compared to the iterative method, the improved imaging 

method cost less because when we use the iterative method, it is needed to solve the 

forward solver in each iteration. Recall we have a flow chart Figure 1-2. The 

computational complexity o f my overall algorithm including the forward problem is 

0(iVn3), where N  is the number of transducers when we solve the forward problem. The

80
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reason is as follows: for each incident wave angle, we need to solve the linear system, see 

Eq. 2-41, and the computational complexity o f the system is 0 (n 3). There are N angles 

(transducers) when we solve the forward problem. Further, it is the forward problem part 

that costs the most.

6.2 Future W ork

In this dissertation, all the numerical results are in the Dirichlet boundary 

condition. There are two main reasons why we cannot apply the improved method to the 

case in the Neumann boundary condition. One is that when we solve the forward and 

inverse problem, it costs much more time compared to the case in the Dirichlet boundary 

condition. The other one is that we cannot obtain good numerical results from the comer 

case, flower-case and the two-object-case, even after we use the multi-tone method (See 

Figure 6-1, Figure 6-2, Figure 6-3 and Figure 6-4), in which we apply the method in 

Section 2.2, and compare these four figures to Figure 3-3, Figure 3-4, Figure 3-5 and 

Figure 3-6. By comparison, we find the numerical results with the Neumann boundary 

condition are not as good as the numerical results with the Dirichlet boundary condition 

because there are more artificial lines and the exact shape is disguised. Even with 

human’s eyes the targets in these figures are harder to identify. Multiple frequency 

approach cannot help to clean most artificial lines. The ACWE is unable to capture the 

exact shape with so many artifacts, which means it is hard to apply the improved imaging 

method to the numerical results with the Neumann boundary condition.
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Figure 6-1: MUSIC: kite-shape in four different frequencies with the Neumann
boundary condition.

Figure 6-2: MUSIC: teardrop-shape in four different frequencies with the Neumann
boundary condition.



Figure 6-3: MUSIC: flower-shape in four different frequencies with the Neumann
boundary condition.

Figure 6-4: MUSIC: two-object-shape in two different frequencies with the Neumann
boundary condition.
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Our next purpose is to find a better algorithm to decrease the implementation 

time, and improve the direct imaging function to obtain better numerical results. After we 

have better results, we could apply the multi-tone and the active contour method to them, 

which are with the Neumann boundary condition.
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APPENDIX 

IMPORTANT FUNCTIONS AND LIBRARY

A. Forward problem for smooth case.m 

syms y

x 1 _=cos(y)+0.65 * cos(2*y)-0.65;

x2_=1.5*sin(y);

xldp=diff(xl_);

x2 dp=diff(x2_);

x 1 ddp=diff(x 1 _,2 );

x2 ddp=diff(x2_,2 );

n=32;

C=0.57721566490153286060651209; 

ntrs=64;

for p = l:l:2 *n

tp=pi*(p-l)/n; 

xl(p)=subs(xl_, tp); 

x2 (p)=subs(x2_, tp); 

xld(p)=subs(xldp, tp); 

x2 d(p)=subs(x2 dp,tp); 

xldd(p)=subs(xlddp, tp); 

x2 dd(p)=subs(x2 ddp,tp);

end

K=zeros(2 * n,2 * n); 

for k=4:1 :12 

for tran l= l:l:n trs
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tranl

theta 1 = 2  * pi * tran 1 /ntr s; 

d=[cos(thetal ),sin(thetal)]; 

for t= l : l :2 *n 

for j= l : l :2 *n 

S=0;

for m m = l:l:n -l;

S=S+( 1 /mm) * cos((mm *pi * abs(t-j ))/n);

end

R=(-2*pi/n)*S-(((-l)Aabs(t-j))*pi)/(nA2); 

if  t = j

c=abs(x 1 d(t)A2 +x2 d(t)A2 ); 

l l( tj)= 0 ;

12(t,j)=( 1 /(2 *pi))* (x 1 d(t)*x2dd(t)-x2 d(t)*x 1 dd(t))/c; 

m 1 (t j ) = ( - 1 /(2 *pi))*besselj(0 ,k*abs(((x 1 (t)-x 1 (j))A2 +(x2 (t)- 

x2(j))A2))A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5);

m2(t,j )=( 1 i/2 -C/pi- 

(log(k*abs((xld(t)A2+x2d(t)A2)A0.5)/2))/pi)*abs((xld(t)A2+x2d(t)A2)A0.5); 

K(t,j)=R*(ll(t,j)+li*k*ml(t,j))+(pi/n)*(12(t,j)+li*k*m2(t,j)); 

else

u=log(4*(sin(( pi*(t-l)/n -pi*(j-l)/n)/2))A2); 

l(t j)= ( 1 i*k/2 )*(x2d(j)*(x 10 )-x 1 (t))-x 1 

x2(t)))*besselh(l, 1 ,k*abs(((x 1 (t)-x 1 G))A2+(x2(t)-x2(j))A2))A0.5)/abs(((x 1 (t)- 

x 1 (j))A2+(x2(t)-x2(j))A2)A0.5);

11 (t,j)=(k/(2 *pi))*(x2 d(j)!|!(x 1 (t)-x 1 (j))-x 1 d(j)*(x2 (t)- 

x2(j)))*besselj(l,k*abs(((xl(t)-xl(j))A2+(x2(t)-x2(j))A2))A0.5)/abs(((xl(t)- 

x 1 (j))A2+(x2(t)-x2(j))A2)A0.5);

12(t j ) - l( t  j)-l 1 (t,j)*u;

m(t,j)=( 1 i/2 )*besselh(0 ,1 ,k*abs(((x 1 (t)-x 1 (j))A2 +(x2 (t)- 

x2(j))A2 » A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5);
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m 1 (t,j) = ( - 1 /(2 *pi))*besselj(0 ,k*abs(((x 1 (t)-x 1 (j))A2 +(x2 (t)- 

x2(j))A2))A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5); 

m2 (t j) -m (t j)-m l (t,j)*u;

K(tJ)-R*(ll(t,j)+li*k*ml(t,j))+(pi/n)*(12(t,j)+li*k*m2(t,j));

end

end

x=[xl(t), x2 (t)]; 

g(t)=-2 *exp(li*k*dot(x,d)); 

end

A=(eye(2*n)-K)\g.'; 

for t= l : l :2 *n

miu 1 (t)=x2 d(t)/sqrt(x 1 d(t)A2 +x2 d(t)A2 ); 

miu2 (t)=-x 1 d(t)/sqrt(x 1 d(t)A2 +x2 d(t)A2 ); 

end

for tran2 =l:l:n trs

theta2 =2 *pi*tran2 /ntrs+pi; 

xhat=[cos(theta2 ),sin(theta2 )]; 

sum=0 ; 

for t= l: l :2 *n

Z(t)=(k*(miul (t)*xhat( 1 )+miu2(t)*xhat(2))+k)*exp(-

1 i*k*(xhat( 1 )*x 1 (t)+xhat(2)*x2(t)))*A(t)*sqrt(x 1 d(t)A2+x2d(t)A2);

sum:=sum+Z(t);

end

U(tranl,tran2,k-3)=exp(-li*pi/4)/sqit(8*pi*k)*pi/n*sum;

end

end

end

B. Forward problem for comer case.m 

n=32;

P=8 ;
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C=0.57721566490153286060651209; 

ntrs=64; 

syms y 

x l_= 2 *sin(y/2 ); 

x2_=-sin(y);

x3_=( 1 /P -1 /2) * (1 -y/pi) A3 +(y-pi)/P/pi+1 /2;

x4_=(2*pi*x3_AP)/(x3_AP+((l/P-l/2)*(-l+y/pi)A3+(-y+pi)/P/pi+l/2)AP); 

x 1 dp=diff(x 1 _,y, 1); 

x2dp=diff(x2_,y, 1); 

x 1 ddp=diff(x 1 _,y,2 ); 

x2 ddp=diff(x2 ,y,2 ); 

wdp=diff(x4_,y, 1); 

for p = l:l:2 *n 

s(p)=pi*(p-l)/n; 

vs(p)=( 1 /P -1 /2) * (1 -s(p)/pi) A3+(s(p)-pi)/P/pi+1 /2;

ws(p)=(2 *pi * vs(p)AP)/(vs(p)AP+(( l/P -l/2)*(-l +s(p)/pi) A3+(- 

s(p)+pi)/P/pi+l/2)AP); 

x 1 (p)=subs(x 1 ws(p)); 

x2 (p)=subs(x2_, ws(p)); 

xld(p)=subs(xldp, ws(p)); 

x2 d(p)=subs(x2 dp, ws(p)); 

xldd(p)=subs(xlddp, ws(p)); 

x2dd(p)=subs(x2 ddp,ws(p)); 

wd(p)=subs(wdp,s(p)); 

end

Kl=zeros(2*n,2*n); 

for k=4:1:12 

yita=k; 

for tran l= l:l:n trs 

tranl

theta 1 = 2  *pi * tran 1 / ntrs;
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d=[cos(theta 1 ),sin(theta 1)]; 

for t= l : l :2 *n 

for j=2 : l :2 *n 

S=0; 

for m m = l:l:n -l;

S=S+(l/mm)*cos((mm*pi*abs(t-j))/n);

end

R=(-2*pi/n)*S-(((-1 )Aabs(t-j))*pi)/(nA2); 

i f t“ j

c=abs(x 1 d(t)A2 +x2 d(t)A2 ); 

u=log(4*(sin((ws(t)-ws(j))/2)A2));

H (tj)=0;

12(t,j)=( 1 /(2 *pi))* (x 1 d(t)*x2 dd(t)-x2d(t)*x 1 dd(t))/c;

m l(t,j)=(-l/(2 *pi))*besselj(0 ,k*abs(((xl(t)-xl(j))A2 +(x2 (t)-

x2(j))A2))A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5);

m2(t,j)=(li/2-C/pi-(log(k*abs(cA0.5)/2))/pi)*abs(cA0.5); 

H(t,j)=(x2d(t)*x 1 dd(t)-x 1 d(t)*x2dd(t))/pi/c;

H(tj)=H(t,j)/2;

Kl(tj)=(R*(ll(t,j)+li*yita*ml(t,j))+(pi/n)*((12(t,j)+li*yita*m2(t,j))+2!'!log(w 

d(t))*(l 1 (t,j)+l i*yita*ml (t,j))))*wd(j); 

else

u=log(4*(sin((ws(t)-ws(j))/2)A2)); 

l(t,j)=( 1 i*k/2 )*(x2 d(j)*(x 1 (j)-x 1 (t))-x 1 d(j)*(x2 (j)- 

x2(t)))*besselh( 1,1 ,k*abs(((x 1 (t)-x 1 (j))A2+(x2(t)-x20'))A2))A0.5)/abs(((x 1 (t)- 

x ia ))A2+(x2(t)-x2(j))A2)A0.5);

11 (t,j)=(k/(2 *pi))*(x2 d(j)*(x 1 (t)-x 1 (j))-x 1 d(j)*(x2 (t)- 

x2(j)))*besselj( 1 ,k*abs(((x 1 (t)-x 1 (j))A2+(x2(t)-x2(j))A2))A0.5)/abs(((x 1 (t)- 

xlG))A2+(x2(t)-x2(j))A2)A0.5);

12(t,j)=l(t,j)-l 1 (t,j)*u; 

m(t,j)=( 1 i/2 )*besselh(0 ,1 ,k*abs(((x 1 (t)-x 1 (j))A2 +(x2 (t)- 

x2(j))A2))A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5);
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m 1 (t j ) = ( - 1 /(2 *pi))*besselj(0 ,k*abs(((x 1 (t)-x 1 (j))A2+(x2 (t)- 

x2(j))A2))A0.5)*abs(((xld(j))A2+(x2d(j))A2)A0.5); 

m2 (t j)=m (t j)-m l (t j)*u;

H(tj)=(x2d(j)*(x 1 (t)-x 1 (j))-x 1 d(j)*(x2(t)-x2(j)))/pi/((x 1 (t)- 

xlG))A2 +(x2 (t)-x2 G))A2 );

K1 (t j)=(R*(l 1 (t,j)+1 i*k*m 1 (t j))+(pi/n)*((l 1 (t,j)+l i*yita*m 1 (t,j))*u+12(t,j)+l 

i*yita*m2(t,j)-(ll(t,j)+li*yita*ml(t,j))*log(4*(sin((s(t)-s(j))/2))A2)))*wd(j); 

end

Kl(t,j)=-Kl(t,j);

end

sum 1=0 ; 

for nn = l:l:2 *n-l 

sum 1 =sum 1 +pi/n*H(t,nn)*wd( 1 ,nn); 

end

T(t,l)=sum l; 

x=[xl(t), x2 (t)]; 

g(t)=-2 *exp(li*k*dot(x,d));

end

K2 =zeros(2 *n,2 *n);

K3=eye(2*n);

K1=K3+K1;

K l(:,l)=-1-T(:,l);

K1 (1,1 )=-T( 1,1);

A=Kl\g.'; 

for t—1 :1 :2 *n

miul (t)=x2 d(t)/sqrt(xl d(t)A2 +x2 d(t)A2 ); 

miu2 (t)=-x 1 d(t)/sqrt(x 1 d(t)A2 +x2 d(t)A2 ); 

end

for tran2 = l:l:n trs

theta2 =2 *pi*tran2 /ntrs+pi; 

xhat=[cos(theta2 ),sin(theta2 )];
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sum=0 ;

for t= l : l :2 *n

Z(t)=((k*(miul(t)*xhat(l)+miu2(t)*xhat(2))+k)*exp(-

li*k*(xhat(l)*xl(t)+xhat(2)*x2(t)))*A(t)*sqrt(xld(t)A2+x2d(t)A2))*wd(t);

sum=sum+Z(t);

end

UU(tranl ,tran2,k-3)::=exp(-l i*pi/4)/sqrt(8*pi*k)*pi/n*sum;

end

end

end

C. Forward problem with NBC.m 

n=32; 

ntrs=64;

C=0.57721566490153286060651209; 

syms y

xl_=cos(y)+0.65*cos(2*y)-0.65;

x2_=1.5*sin(y);

x 1 dp=diff(x 1 _,y, 1); 

x2 dp=diff(x2_,y, 1); 

x 1 ddp=diff(x 1 _,y,2 ); 

x2 ddp=diff(x2_,y,2 ); 

x 1 dddp=diff(x 1 __,y,3); 

x2dddp=diff(x2_,y,3); 

for p = l;l:2 *n 

tp=pi*(p-l)/n; 

xl(p)=subs(xl_, tp); 

x2 (p)=subs(x2_, tp); 

xld(p)=subs(xldp, tp); 

x2 d(p)=subs(x2 dp,tp); 

x 1 dd(p)=subs(x 1 ddp, tp);
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x2 dd(p)=subs(x2 ddp,tp); 

x 1 ddd(p)=subs(x 1 dddp,tp); 

x2 ddd(p)=subs(x2 dddp,tp); 

end

for t= l : l :2 *n 

m iul (t)=x2 d(t)/sqrt(x 1 d(t)A2 +x2 d(t)A2 ); 

miu2 (t)=-x 1 d(t)/sqrt(x 1 d(t)A2 +x2 d(t)A2 ); 

end

K=zeros(2*n,2*n); 

for k l= l:l :5  

k=kl/2 ; 

yita=k; 

for tran l= l:l:n trs  

tranl

thetal =2 *pi*tranl/ntrs; 

dd=[cos(thetal ),sin(thetal)]; 

for t= l: l :2 *n

for j= l : l :2 *n 

S=0; 

for m = l:l:n -l;

S=S+(l/m)*cos((m*pi*abs(t-j))/n);

end

R=(-2*pi/n)*S-(((-l)Aabs(t-j))*pi)/(nA2);

i f t“ j

a=sqrt(abs(x 1 d(t)A2 +x2 d(t)A2 )); 

b=x2d(t)*x 1 dd(t)-x 1 d(t)*x2 dd(t); 

c=xld(t)*xld(j)+x2 d(t)*x2 d(j); 

nl (t,j)=-(kA2)*(aA2)/4/pi; 

n2(t,j)=(pi* 1 i-1 -2*C- 

2 * log(k* a/2)) * (kA2 * aA2/ 4/pi)+1 /12/pi+((x 1 d(t) * x 1 dd(t)+x2d(t) * x2dd(t)) A2)/2
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/pi/aA4-(x 1 dd(t)A2+x2dd(t)A2)/4/pi/aA2- 

(x 1 d(t)*x 1 ddd(t)+x2 d(t)*x2 ddd(t))/6 /pi/aA2 ; 

m l(t,j)=-l/(2 *pi); 

m2(t,j)=li/2-C/pi-(log(k*a/2))/pi; 

h l( t j)= 0 ; 

h2 (tj)=b/(2 *pi*a);

K(tJ )=-n/2+R* (kA2 *m 1 (t,j) * c-n 1 (t,j )- 

li*yita*hl(tj))+(pi/n)*(kA2 *m2 (t,j)*c-n2 (t,j)-li*yita*h2 (t,j)); 

else

u=log(4*(sin(( pi*(t-l)/n -pi*(j-l)/n)/2))A2); 

c=x 1 d(t)*xl d(j)+x2d(t)*x2 d(j); 

l=(abs(x 1 d(j)A2+x2d(j)A2))A0.5; 

e=x2d(t) * x 1 (j)-x2 d(t) * x 1 (t)-x 1 d(t) *x2 (j )+x 1 d(t) * x2 (t); 

d=k*abs(((x 1 (t)-x 1 (j))A2 +(x2 (t)-x2 (j))A2 ))A0 .5; 

nw=(x 1 d(t)*x 1 (t)-x 1 d(t)*xl (j)+x2 d(t)*x2 (t)- 

x2d(t)*x2 (j))*(x 1 d(j)*x 1 (t)-x 1 d(j)*x 1 (j)+x2 d(j)*x2 (t)-x2d(j)*x2 (j))/((d/k)A2 ); 

M(t,j)=( 1 i/2)*besselh(0,1 ,d); 

m 1 (t,j )= (-1  /(2*pi))*besselj (0 ,d); 

m2(t,j)=M(t,j)-m 1 (t ,j)*u;

N(t,j)=(l i*nw/2)*(kA2*besselh(0,1 ,d)- 

2 *k*besselh( 1,1 ,d)/(d/k))+( 1 i *k*c*besselh( 1,1 ,d)/(2 *d/k))+1 /(4*pi*(sin(( 

pi*(t-l)/n -pi*(j- 1 )/n)/2 ))A2 );

nl(t,j)-(-nw /(2 *pi))*(kA2 *besselj(0 ,d)-2 *k*besselj(l,d)/(d/k))- 

(k*c*besselj(l ,d)/(2 *pi*d/k)); 

n2(t,j)=N(t,j)-nl (t,j)*u;

h(t,j)=(li*k/2 )*e*(besselh(l, 1 ,d)/(d/k))*l; 

hl(t,j)=(-k/(2 *pi))*e*(besselj(l,d)/(d/k))*l; 

h2 (t,j)=h(t,j)-hl(t,j)*u; 

if  mod(abs(t-j),2 )==0 ;

T=0;

else mod(abs(t-j),2 );



94

T=l/(2*n*(sin(abs(t-j)*pi/n/2))A2);

end

K l(tj)=  (kA2 * m 1 (t,j) * c-n 1 (t,j)-1 i * yita*h 1 (t,j)); 

^ 2 ( t j )=(kA2 *m2 (t,j)*c-n2 (t,j)-li*yita*h2 (t,j));

K(t,j )=T+R* K 1 (t,j )+(pi/n)*K2(t,j); 

end 

end

x=[xl(t), x2 (t)];

f(t)= 2  * ((abs(x 1 d(t) A2 +x2 d(t)A2 )) A0  • 5) *(- 

(1 i*k*dd( 1 )*exp(l i*k*dot(x,dd))*miu 1 (t) + 1 i*k*dd(2 )*exp( 1 i*k*dot(x,dd))* 

miu2 (t)));

K(t,t)=K(t,t)+li*yita*sqrt(xld(t)A2+x2d(t)A2);

end

A=K\f.'; 

for tran2 = l:l:n trs

theta2 = 2  *pi *tran2 /ntrs+pi; 

xhat=[cos(theta2 ),sin(theta2 )]; 

sum=0 ; 

for t= l : l :2 *n

Z(t)=(k*(miul(t)*xhat(l)+miu2(t)*xhat(2))+k)*exp(- 

1 i*k*(xhat(l )*xl (t)+xhat(2)*x2(t)))*A(t)5|!sqrt(xld(t)A2+x2d(t)A2); 

sum=sum+Z(t); 

end

U(tranl,tran2,k*2)=exp(-li*pi/4)/sqrt(8*pi!|!k)*pi/n*sum;

end

end

end

D. Inverse problem for kite case.m 

x 1 _m=round( 126+x 1*50); 

x2_m=round( 126+x2* 50);
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for k 1= 1 :1 :5 

k=kl/2 ;

UU=U(:,:,2*k);

[s,V,D]=svd(UU); 

for ii=l: 1:251 

ii

for jj= l: 1:251 

xii=(ii-126)/50; 

xjj=(jj-126)/50; 

xy=[xii,xjj]; 

for trandl= l:l:n trs 

theta 1 = 2  * pi * tr and 1 /ntr s+pi; 

dd=[cos(theta 1 ),sin(thetal)]; 

ghat(trand 1 )=exp( - 1 i*k*dot(dd,xy)); 

end

ghat=ghat/norm(ghat); 

sum_=0 ;

for r= l : 1 :round(2 *k)

sumj=sum_+abs(((dot(ghat,s(:,r)))))A2 ;

end

I(ii Jj»2*k)=( 1 -sum_); 

end 

end 

end

E. Signal space test for smooth case.m

[ul,sl,vl]=svd(C); 

for ii=l: 1:251 

ii

for jj= l: 1:251 

xii=(ii-126)/50;
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xjj=(jj-126)/50; 

xy_=[xii,xjj]; 

for trandl= l:l:n trs 

theta 1 = 2  *pi * trand 1 /ntrs+pi; 

dd=[cos(thetal ),sin(thetal)]; 

ghat(trand 1 )-exp ( - 1 i*k*dot(dd,xy_J); 

end 

ss=0 ;

for j 0=round(2  *k+1) :ntrs 

ss=ss+abs(dot(u 1 (: ,j 0 ),ghat.')); 

end

ssave(ii,jj,k-3)=ss;

end

end

end
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