
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Fall 2017

Spatiotemporal subspace feature tracking by mining
discriminatory characteristics
Richard D. Appiah
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Other
Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Appiah, Richard D., "" (2017). Dissertation. 49.
https://digitalcommons.latech.edu/dissertations/49

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/49?utm_source=digitalcommons.latech.edu%2Fdissertations%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


SPATIOTEMPORAL SUBSPACE FEATURE TRACKING BY MINING 

DISCRIMINATORY CHARACTERISTICS

by

Richard Darko Appiah, B. Sc., M. Sc., M. S.

A Dissertation Presented in Partial Fulfillment 
of the Requirements of the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

November 2017



ProQuest Number: 10753656

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10753656

ProQuestQue

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

AUGUST 2,2017
Date

We hereby recommend that the dissertation prepared under our supervision by

Richard Darko Appiah, M. S._______________________________________________

Entitled Spatiotemporal Subspace Feature Tracking by Mining Discriminatory 

Characteristics

be accepted in partial fulfillment of the requirements for the Degree of 

Doctor of Philosophy in Computational Analysis and Modeling

Supervisor o f  Dissertation Research

Head o f  Department 

Computational Analysis and Modeling
Department

concurred in:Recomi

Advisory Committee

Approved:

Director o f  Graduate Studies Dean o f  the Graduate School

Dean o f  the C ollege

GS Form 13
(8/10)



ABSTRACT

Recent advancements in data collection technologies have made it possible to 

collect heterogeneous data at complex levels of abstraction, and at an alarming pace and 

volume. Data mining, and most recently data science seek to discover hidden patterns and 

insights from these data by employing a variety of knowledge discovery techniques. At 

the core of these techniques is the selection and use of features, variables or properties 

upon which the data were acquired to facilitate effective data modeling. Selecting 

relevant features in data modeling is critical to ensure an overall model accuracy and 

optimal predictive performance of future effects. The problem of relevant feature 

selection becomes compounded when the relevance of previously selected features 

cannot be guaranteed due to changes in the underlying dataset. This dissertation proposes 

an algorithm based on the statistical Plaid Model for the discovery of high quality 

biclusters from which sets of features and their corresponding relevance scores are 

tracked in datasets that undergo changes with time.

Initially, the algorithm employs an enhanced Plaid Model that integrates multiple 

results from the traditional Plaid Model to generate a list of statistically significant 

biclusters. This is achieved through the recursive use of combined set operations and 

statistical inferential tests to guide the generation of persistent set of biclusters of high 

quality in goodness scores. Next, the sets of features that define these biclusters are 

selected and marked for tracking based on their discriminatory powers exerted on the 

host biclusters at different time instances. As the dataset changes with time, the originally



discovered biclusters also change together with the previously established discriminatory 

tendencies of the respective sets of features per biclusters. These changes in 

discriminatory powers among the sets of features that define the host biclusters are then 

modeled for tracking as the underlying dataset changes with time.

The proposed technique was tested on simulated spatiotemporal phenomena in a 

real microarray gene expression dataset. The results indicate that the algorithm was able 

to generate and track subsets of features successfully through their relevance based 

discriminatory characteristics over a span of time instances, as the underlying dataset 

underwent changes.
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CHAPTER 1

INTRODUCTION

Years of advancements in the use of data-driven information retrieval systems 

have necessitated the need for data analytics experts to acquire advanced knowledge in 

datasets, data modeling methodologies and the overall underlying market-oriented 

business objectives. These advancements in the age of big data have spawned relatively 

new disciplines such as machine learning, data mining and, quite recently, data science. 

At the core of this data-driven information acquisition revolution is data with such 

characteristic attributes as sparseness, evolving size and dimensionality. These attributes 

have motivated intensive research and algorithm development to handle different 

complex problems that arise in domains that rely on effective ways of turning these 

available data into useful knowledge.

In order to unravel useful but mostly hidden insights from the massive amount of 

data collected by organizations and devices around the globe, researchers in the past three 

decades have proposed and implemented a plethora of algorithms to aid in making sense 

of the ever increasing amount of data. Major goals for most of these algorithms range 

from classification and clustering to complex predictive models that require huge 

amounts of data from several different sources and formats. Generally, these algorithms 

are formulated based on various characteristic features or attributes that are collectively 

used to obtain data on the phenomena under investigation. These attributes are usually

1



subjected to relevance analysis to establish their weighted inclusion in any potential 

algorithmic models for knowledge discovery in the datasets under investigation.

Spatiotemporal datasets are a class of datasets that have both spatial and temporal 

dimensions. Temporal dimension allows for features that define the associated spatial 

dataset to be investigated and modeled over time to learn their differential effects as the 

dataset changes in size and spatial orientation. Domains that generate and analyze 

datasets with temporal dimension include biomedical data analytics, geographical 

information systems, urban and traffic planning systems, communication systems, 

multimedia systems, behavioral pattern analytics, wireless sensors and video data 

analytics, and collaborative filtering for marketing [1,2]. This dissertation aims at 

designing and implementing algorithms to model for tracking the discriminatory effects 

of data features or attributes as the related dataset undergoes spatiotemporal 

modifications.

1.1 Data Mining

Data mining is considered to be an interdisciplinary subject, and hence, several 

different working definitions exist in the literature. From a working definition standpoint, 

data mining is defined as the analysis of observational datasets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 

useful to the data owner [3]. Functionally, data mining is also defined as the process of 

discovering interesting patterns and knowledge from large amounts of data [4, 5]. In 

practice, data mining is considered to be an essential phase in a broader context of 

knowledge discovery from data (KDD), a term that originated from artificial intelligence 

(AI) research [3, 4, 6]. Figure 1-1 shows the various stages involved in the KDD process



for knowledge discovery. They include data selection, data preprocessing, data 

transformation, data mining, patterns evaluation, and knowledge discovery.

1. Data Selection: This involves the retrieval of records usually from existing 

data warehouse or data center, to form a target dataset to be considered for 

further processing in the knowledge discovery cycle. This might involve 

selecting subsets of data attributes or features and record samples that are 

deemed relevant for efficient knowledge discovery.

2. Data Preprocessing: This is the process of data cleaning to remove noisy data 

containing errors or outliers and inconsistent records. It might also include 

data integration where multiple data sources are combined to form a single 

improved dataset that enhances efficient data mining [4, 7].

3. Data Transformation: This step involves transforming and consolidating 

data into forms appropriate for specific data mining tasks. Activities here 

include data normalization, data discretization, feature construction and data 

smoothing.

4. Data Mining: This is where intelligent data modeling techniques are applied 

to extract hidden data patterns from the target dataset.

5. Evaluation: Extracted patterns are analyzed at this phase to identify truly 

interesting patterns to represent the knowledge discovered from the 

underlying dataset. This eventually leads to knowledge presentation where 

visualization and knowledge representation techniques are used to present 

mined knowledge to users of the system [4],
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Figure 1-1: The KDD process.

1.2 Feature Selection

Datasets originating from areas such as internet text documents processing, gene 

expression array analysis, and combinatorial chemistry are characterized by high

dimensional attributes, variables or features that run into hundreds of thousands. This 

poses a challenge to most machine learning algorithms in terms of model accuracy and 

efficiency.
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Due to advanced information and location-aware technologies, data are generated 

and stored at an incredible pace, volume and variety from diverse sources like social 

media, weather records, gene expression datasets, and various forms of customer 

management datasets. Other spatiotemporal data sources include global positioning 

system (GPS) tracking data of vehicles and animals, credit card transaction history, and 

records of residential address changes of individuals [8].

Data mining and data science seek to discover hidden patterns and insights from 

these available data by employing a variety of knowledge discovery techniques. At the 

core of these knowledge discovery techniques is the use of features, variables or 

properties upon which the data were collected. The difficulty in selecting the right set of 

features for pattern recognition mostly depends on the specific problem formulation and 

the underlying dataset [9], and most feature selection methods base their decision on the 

degree of feature relevance [10]. However, feature relevance which describes the 

discriminatory power of a given feature tends to fluctuate in datasets that undergo 

structural changes with time by either dropping from or adding to existing records.

Hence, effective tracking of feature relevance in datasets that change with time is 

paramount for accurate and reliable knowledge discovery undertakings that rely on them.

Feature selection has become an active area of research with the objectives of 

improving the prediction performance of model predictors, providing faster and more 

cost-effective predictors, and providing a better understanding of the underlying process 

that generated the datasets [10]. Some potential benefits of feature selection include 

facilitating data visualization and data understanding, reduction in measurements, storage



requirements, training and utilization times, and controlling the curse of dimensionality to 

improve prediction performance.

Features can either be selected as individuals based on their ranking scores, or as 

a subset of candidate features based on their ability to achieve optimal performance 

together. The works of Guyon and Elisseeff [10] and Kohavi and John [11] highlight the 

different criteria for feature selection, as summarized in the ensuing subsections. The 

following notations are used: Let {Xk ,Yk} with k = 1 , . . . ,  m be a set of m examples 

consisting of n input features x ki with i = 1,.. . ,  n and one output variable y k.

1.2.1 Correlation Based Feature Selection

Under this scheme, a feature X, is selected if its Pearson correlation coefficient, 

/?(£) with the output variable Y, given by Eq. 1-1 and estimated by Eq. 1-2, is the 

highest, where var and cov are the respective variance among the x ki and the covariance 

between X, and Y; x L and y  are the input and output averages over the index k, 

respectively:

Jvar(Xi)var(Y)
Eq. 1-1

IfcU (xkii -  x j ( y k -  y)
Eq. 1-2

1.2.2 Single Feature Classifiers

This involves the ranking and selection of features for the construction of 

regression models according to the goodness of linear fit of individual features.



Individual features are substituted in the regression model and the feature with the 

highest coefficient of determination, designated by R(i)2 based on either Eq. 1-lor Eq. 

1-2 is selected.

1.2.3 Information Theoretic Ranking Criteria

This approach uses the empirical estimates of the mutual information between 

each feature and the target variable. This criterion estimates the dependency / (i) between

the density of feature x* and the density of the target y. I(i) is computed by Eq. 1-3, 

where p(Xj) and p(y ) are the probability densities of x t and y, respectively, and p{xity ) 

is their joint density:

KO = 11P(X i ,y ) log^ § ^ d x d y .  Eq. 1-3

1.2.4 Feature Subset Selection

In practice, there are situations where features exhibit weaker discriminatory 

abilities individually, but put together by some established criteria, they tend to 

demonstrate excellent predictive power, as opposed to ranking them by their individual 

predictive powers [10,11]. Many machine learning algorithms are also faced with 

performance degradation in terms of prediction accuracy when challenged with many 

features some of which are not necessary for predicting the desired output. Hence, there 

is the need to define an optimal feature subset with respect to the underlying induction 

algorithm, taking into account its heuristics, biases, and tradeoffs. Three methods exist in 

the literature for selecting a group or subset of features for the purpose of improving the 

predictive power of a particular algorithm [12,13]. They are wrappers, filters and 

embedded methods.
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1. Wrappers for Feature Subset Selection: In its general formulation, wrapper 

methods employ the prediction performance of a given learning machine to 

assess the relative usefulness of subsets of the features [11, 14]. For effective 

implementation of wrappers, one needs to define: (i) how to exhaustively 

search the space of all possible feature subsets; (ii) how to quantify the 

prediction performance of the learning machine to guide the search and halt it; 

and (iii) the most appropriate predictor to use [10]. Although the complexity 

of the wrapper problem formulation is known to be NP-hard where exhaustive 

search becomes quickly intractable computationally [15], a range of heuristic 

search strategies are used in practice, including best-first, branch-and-bound, 

simulated annealing and genetic algorithms [10], Algorithms that implement 

wrappers include decision trees, naive Bayes, least-square linear predictors, 

and support vector machines. Wrappers generally employ either forward 

feature selection or backward feature elimination. In forward selection mode, 

features are progressively incorporated into larger subsets, and in backward 

elimination mode, the algorithm starts with the set of all available features and 

progressively eliminates the least relevant ones to come up with the optimal 

feature set.

2. Filters for Feature Subset Selection: Filter methods are mostly used for 

preprocessing to reduce space dimensionality and overcome overfitting. They 

serve as linear predictors whose outcome form a set of selected features to 

train more complex, usually non-linear predictors. Filters are considered to be



faster, and those based on mutual information criteria provide a generic 

selection of features that are not tuned for specific learning machines.

3. Embedded Methods for Feature Selection: These methods are usually 

learning machine specific, and perform feature selection in the process of 

algorithm training. Embedded methods tend to implement the feature selection 

process as an integral part of a classifier at the training phase where the 

selection is done based on the performance of the classifier [12]. They make 

better use of features data available by not needing to split the training data 

into training and validation sets. As a result, solutions are reached faster by 

avoiding retraining a predictor from scratch for every feature subset 

investigated.

1.3 Clustering for Feature Selection

Clustering is the process of partitioning a set of data objects or observations into 

subsets known as clusters. The objects in a cluster exhibit high intra-cluster similarity and 

data objects between different clusters exhibit low inter-cluster similarity [4, 16, 17, 18]. 

In the literature, clustering technique is mostly used for feature construction from existing 

features where a group of features that define a given cluster is replaced by what is 

known as the cluster centroid. The centroid can be defined in several different ways, such 

as the mean or median of the feature scores located within a given cluster. The overall 

cluster quality Q is measured by the within-cluster variation, which is the sum of squared 

errors between all features within a cluster and the centroid of that cluster. Let 

C1,C2 '" > Ck be a set of k clusters such that Ct n Cj =  0 for 1 < i ,j  < k, f  E Ci be a 

feature in cluster Q, and d{ be the centroid of the cluster Q, then the Euclidean distance



dist( f ,  dj) defines the distance between any feature /  £ Q and the centroid d t\ the 

overall cluster quality Q is computed by Eq. 1-4:

k

The remainder of the dissertation is divided into five chapters. Chapter 2 outlines 

existing works related to the problem domains of feature selection and object tracking. 

Chapter 3 details the basics of spatiotemporal feature selection and tracking based on 

feature discriminatory characteristics. The chapter presents notations, formal definitions 

and the main algorithm for tracking sets of spatiotemporal features based on relevance in 

a changing dataset. Chapter 4 presents the use of a proposed enhanced biclustering 

algorithm in this dissertation for the discovery of high quality biclusters used for feature 

selection, and its application on real gene expression dataset. Chapter 5 illustrates how 

sets of selected features are tracked over time in a changing dataset to demonstrate 

differing feature discriminatory powers as the underlying dataset changes. Chapter 6 

concludes the dissertation with a brief on future research directions.

Eq. 1-4
i = l  f eC i

1.4 Dissertation Organization



CHAPTER 2

RELATED WORKS

Recent advancements in data collection technologies have made it possible to 

collect data at complex levels of abstraction to facilitate the presentation, analysis and 

tracking of objects and events in spatiotemporal domains. Of immense research interest is 

the tracking of features or variables in spatiotemporal domains, which typifies the 

problem of path-finding of objects across dimensions in space and time. Different 

approaches exist in the literature, ranging from general spatiotemporal object tracking to 

the detection and tracking of rare events in space and time. The rest of the chapter 

outlines existing works on object tracking and techniques for selecting relevant features 

that aid in the tracking process.

2.1 Object Tracking

Most existing algorithms for spatiotemporal object tracking work on two major 

assumptions, which are 1) unchanged spatial configuration over time, and 2) object’s 

identity remains unchanged as its location and content change. Under these assumptions, 

the work of Yilmaz et al. [19] categorizes object tracking into three groups, namely, point 

tracking, kernel tracking and silhouette tracking.

1. Point Tracking: This uses deterministic and statistical models where points are 

utilized to represent objects to be detected for tracking in consecutive frames. The

11
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association of the points is based on the object’s previous state that might include 

information on its position and motion. Algorithms in this group include the 

modifying greedy exchange (MGE) algorithm [20], greedy optimal assignment 

(GOA) tracker algorithm [21], and iterated Kalman filters for nonlinear object 

tracking [22].

2. Kernel Tracking: Kernel refers to the appearance and shape of an object, and 

this approach is based on template and density appearance models. By this 

approach, objects are tracked by computing the motion of the kernel in 

consecutive frames. Sample algorithms in this group include the mean-shifit 

algorithm [23], and the layering algorithm [24].

Silhouette Tracking: Silhouette tracking involves the estimation of the object 

region in each frame of the image being tracked. This tracking method performs either 

shape matching or contour evolution. This is achieved through the use of information 

encoded within the object region in the form of appearance density and shape models. 

Sample algorithms include the state space models [25], variation methods [26], and 

heuristic methods [27].

The work of Wang et al. [28] demonstrates the tracking of words as features in 

multiple connected documents by employing a nonparametric Bayesian model for topics 

modeling. Here, observations of words are treated as tracking objects on trajectories of 

documents. The algorithm accomplishes its goal by partial use of available information 

generated with Gibbs sampling of the established semantic regions. In order to track 

groups of features, vectors of features that define a set of images being tracked are 

initially transformed to a higher dimensional space. These are then categorized into usual
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and unusual events by the abnormality detection algorithm based on nearest neighbor 

discovery, proposed by Breitenstein et al. [29]. A relatively robust subspace feature 

tracking algorithm has been implemented in [30] which is based on a robust l-norm 

objective function. The objective function estimates and tracks non-stationary subspaces 

involving streaming data vectors corrupted with outliers. This is done on the condition 

that the subset of features to be tracked must always be orthonormal.

Density based rare events detection approaches also exist for tracking features in 

spatiotemporal datasets where the features might undergo rare or subtle changes with 

time. Binary space-time descriptors of data streams to map the data vectors of an object 

to a higher-dimensional feature density estimates to cluster events into frequently 

observed and rare is implemented in [31]. Lima de Carvalho et al. [32] proposed an 

online tracking of multiple objects using a model called the Wilkie, Stonham and 

Aleksander’s Recognition Device (WiSARD). WiSARD works with binary datasets and 

uses the weightless neural networks model whose neurons store either ‘O’ or ‘ 1’ in the 

random access memory (RAM) to indicate the presence or otherwise an input pattern 

during classification for tracking.

There are algorithms designed to handle specific problems encountered in object 

tracking to enhance the overall tracking accuracy. Oversampling technique in signal 

processing is employed in the work of Pemici and Del Bimbo [33] to build a robust 

discriminative objects classifier. Object tracking is based on nonparametric algorithm and 

transitive matching property to handle tracking updates on objects under occlusion, where 

the physical appearance of the tracked object might undergo changes. This method relies 

on the oversampling of local features and potentially suffers from local minima and



maxima problems. The work of Zhu et al. [34] achieves consistent multi-scale object 

representation through the use of correlation filters for tracking. This is achieved through 

a kernel of multi-scale correlation filter and failure detection based on adaptive learning.

By this, model accuracy and efficiency is maintained in situations of scale 

variation and model drifting where existing models cannot accurately track the target 

objects due to changes in their spatial and structural configurations. As objects move 

across different spatial dimensions and configurations, the existing associations and 

correlations among its inherent features undergo changes, too. This is particularly 

problematic in visual feature tracking and constitutes a problem known as tracking drift. 

Tracking drift is experienced in a model when there is inconsistency in the target object 

representation in different scenarios and at different times, thereby introducing significant 

accumulated errors into the model. This problem has been solved by the sparsity-induced 

subspace learning technique proposed by Sui et al [35].

This algorithm utilizes useful temporally acquired mutual relations among the 

observed features for effective subspace representation in visual tracking. However, the 

over-reliance of this approach on previously established mutual information whose 

relevance tend to fluctuate with time makes this technique less attractive. The model drift 

problem has also been addressed by the algorithm proposed by Liu et al. [36] where the 

authors introduced a technique that uses multiple weaker classifiers that are selected 

based on their performances over individual instance significance estimates learned over 

time. Although innovative, the use of instance-specific weaker algorithms to handle 

different aspects of the same visual tracking problem exposes this method to potential 

local optimization problems.
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One area of active research in object tracking is real-time object tracking.

Contrary to the tracking of objects whose shape and appearance remain unchanged, real

time object tracking require different representation schemes and models for effective 

tracking. Recently, researchers have proposed the use of different algorithms to handle 

different aspects of the same problem of real-time object tracking. The work of 

Moujtahid et al. [37] employs independent heterogeneous algorithms trained on different 

sets of features corresponding to different aspects of an object to track the object. By this 

approach, the model switches algorithms based on the object’s spatiotemporal 

appearance, and eventually integrates the results from all the participating algorithms.

2.2 Feature Relevance

Different definitions of feature relevance exist in the literature, and they are based 

on a set of assumptions that are designed to reflect the nature and characteristics of the 

target datasets [11]. Almuallim and Dietterich [38] assume an all-Boolean feature set 

with no noise, and propose that for a feature Xi in the feature vector space X  =

{Xlt X2, ••• ,Xn} to be relevant to a concept C, Xt must appear in every Boolean formula 

that represents C, and irrelevant otherwise. Gennari et al. [39] assume datasets with 

multi-valued features in the presence of noise, and define features to be relevant if their 

values systematically vary with categorical membership. Formally, a feature Xt is 

relevant i f f  there exists some elements x t and y  for which = xf) > 0 such that Eq.

2-1 holds:

P(Y = y \ X i  = Xi) *  P(Y = y).  Eq. 2-1

Under the definition given by Eq. 2-1, Xt is relevant if knowing its current value changes 

the estimate for the class label Y to indicate the conditional dependency of Y on Xt. To
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account for the relevance of all the features in the parity concept where every datapoint in 

the given dataset is equally probable, Kohavi and John [11] modify the definition given 

by Eq. 2-1 as follows: Let fy =  {Xlt •••, Jfi+1, ■■■, A„} be the set of all features 

except Xif and f  denote possible values of all features in fy, then Xt is relevant i f f  there 

exists some x t, y  and f  for which = x;) > 0 such that Eq. 2-2 hold:

P(Y = y,Fi = f i \X i = Xi) *  P(Y = y ,F i=  f t). Eq. 2-2

A modified version of Eq. 2-2 is the case defined by Eq. 2-3 where Xi is relevant if the 

probability of some class labeled Y, given all other features except Xh can change when 

we eliminate knowledge about the value of JQ. That is, Xt is relevant i f f  there exists 

some Xi, y  and f  for which P(Xi = x t, Ft =  ft) > 0 such that Eq. 2-3 holds:

P(Y = y\Xi = Xi>Fi = f )  ± P ( Y  = y \ F i =  ft). E q.2-3

2.2.1 Degree of Feature Relevance

Feature relevance estimates are categorized into degrees of relevance to reflect 

whether the removal or otherwise of any given features results in a measurable change in 

the underlying model’s prediction accuracy. In order to define optimal probabilistic 

classifiers, feature relevance scores are divided into two degrees, namely, weak relevance 

and strong relevance [11,18]. A feature X  is weakly relevant if there exists a subset of 

features, F such that the performance of a given model on F is worse than the 

performance on F U {Jf}. A feature X  is strongly relevant if its exclusive removal from a 

given feature set results in a noticeable performance degradation of an optimal classifier. 

Any feature that is neither strongly nor weakly relevant is classified to be irrelevant.
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2.2.2 Formal Definition: Degree of Feature Relevance

A given feature is said to be weakly relevant i f f  it does not qualify to be 

strongly relevant, and for a given set of features Fj, there exists a subset of F*, F- for 

which there exists some elements x h y  and f- with P(Xi = x it F{ =  / / )  >  0 such that 

Eq. 2-4 holds:

P(Y = y \ X i  = xit F( =  / / )  *  P(Y = y  \ F( = / / )  ■ Eq. 2-4

A feature Xt belonging to the feature set Ft is said to be strongly relevant i f f  there exists 

some elements x t, y  and f  with P(Xt = Xi, Ft- =  f )  > 0 such that Eq. 2-5 holds:

P(Y = y \ X t = Xi.Fi =  f d  *  P(Y  =  y  I Fi =  ft). Eq. 2-5

2.3 Biclustering for Feature Selection

In cluster analysis of datasets to identify functionally related patterns, the entire 

feature set is considered in deciding datapoints membership of a cluster, and datapoints 

are only allowed to belong to a single cluster [40]. However, datapoints may not 

necessarily portray the desired pattern within all the attributes under consideration but 

might be evident only under a subset of attributes. Similarly, a given datapoint might 

express significant phenomena under different subsets of attributes [40,41]. Given a data 

matrix A  with a set of rows X  and a set of columns Y  such that the element a Lj  represents 

the relation between row i and column j ,  a bicluster, on the contrary, is defined as a 

subset of X  that exhibits similar behavior across a subset of Y,  and vice versa [42,43,44], 

As with cluster analysis, bicluster quality assessment is based on the sum of squared 

errors over all features and datapoints within the bicluster. This work proposes and 

explores effective biclustering techniques from which the set of features that define a
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bicluster could be selected and marked for tracking over time, as the underlying dataset 

changes.

Several biclustering algorithms exist, and comprehensive surveys of the most 

widely used biclustering techniques [40,42,45,46,47] highlight the Plaid Model (PM) 

[48,49,45], statistical algorithmic method for bicluster analysis (SAMBA) [50], Cheng 

and Church (CC) [45, 51], flexible overlapped biclustering (FLOC) [52], order- 

preserving submatrices (OPSM) [53, 54], iterative signature algorithm (ISA) [55], and 

Spectral [56]. Others include BiMax [57], xMOTIFs [58], Bayesian biclustering (BBC) 

[59], combinatorial algorithm for expression and sequence-based cluster extraction 

(COALESCE) [60], correlated pattern biclusters (CPB) [61], qualitative biclustering 

(QUBIC) [62], and factor analysis for bicluster acquisition (FABIA) [45, 63].

The PM generates randomly observable data values to fit the given dataset such 

that the underlying parameters of the target model are iteratively estimated to minimize 

the mean squared error (MSE) between the true and the fitted datasets [45,48,49]. 

SAMBA uses graph formalism to identify statistically significant biclusters by 

discovering the equivalent maximum weighted subgraphs. CC minimizes a fitness 

function in a greedy approach based on the mean squared residue (MSR) associated with 

the discovery of biclusters with least variances [45, 51]. FLOC uses the bicluster 

definition by CC to unravel a set of overlapping biclusters [52], based on probabilistic 

assignments followed by an iterative process to improve the biclusters. This is achieved 

by the addition or removal of one row or column at a time to determine the action that 

best improves the average MSR. OPSM discovers biclusters by a greedy approach that 

ensures the generation of order-preserving submatrices with column-wise linear order to
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realize row values of the identified submatrices either increasing or decreasing linearly 

[45, 53, 54], ISA finds a bicluster using a seed bicluster made up of randomly selected 

rows and columns that is continuously updated until convergence in a greedy fashion [45, 

55],

Both Spectral and BiMax discover checkerboard patterned biclusters. Spectral 

employs a technique based on singular value decomposition to find biclusters with least 

variance relative to a stated threshold [45, 56]. It achieves this by reformulating the 

biclustering problem as a sequential search for individual bicluster sequences based on 

the message passing optimization algorithm of the generalized distributive law family, 

known as the max-sum algorithm. BiMax recursively employs divide and conquer 

algorithm on a binary dataset to find upregulated biclusters. xMOTIFs uses greedy 

approach to find a bicluster in a discretized dataset with same values on the rows in a 

nondeterministic fashion [45, 54, 58]. BBC generates a form of the PM with Bayesian 

properties based on Gibbs sampling techniques and with the restriction that no two 

biclusters share the same data elements by ensuring only row-wise or column-wise 

overlaps, and not both [45, 59].

COALESCE initiates the bicluster discovery process with a row pair that are 

correlated, followed by a series of iterative updates on both rows and columns until 

convergence [45, 60]. CPB [45, 61] uses a greedy approach and relies on high row-wise 

Pearson correlation coefficient to discover biclusters in such a way that rows are 

systematically added to an initially randomly selected row to achieve higher correlations 

above a set threshold. It also ensures that biclusters have rows and columns with least 

MSE.



20

QUBIC uses a deterministic approach to reformulate the biclustering problem to 

that of the subgraph discovery task in bipartite graphs, which results in the discovery of 

biclusters exhibiting column-wise constant values in a discretized dataset [45, 62].

FABIA discovers biclusters by fitting a model to the data where the set of rows and 

columns per bicluster are treated as sparse vector sets and the concerned bicluster being 

the outer product of these vector sets, with an additional factor to account for any 

potential noise [45,63].

The work of Denitto and Bicego [64] reformulates the biclustering problem as a 

sequential search for individual bicluster sequences based on the message passing 

optimization algorithm of the distributive law family, known as the max-sum algorithm.

2.4 Conclusion

This chapter highlights existing research in the area of object tracking that are 

related to this dissertation. Following a brief introduction, the chapter discusses the three 

major categories of object tracking in the literature: point tracking, kernel tracking and 

silhouette tracking. This was followed by detailed summaries and weaknesses, where 

applicable, of existing models and algorithmic implementations for tracking objects 

under varieties of tracking conditions. Next, the chapter presents existing works on 

biclustering, and discusses formal ways of estimating feature relevance in datasets.



CHAPTER 3

SPATIOTEMPORAL FEATURE TRACKING

Research in subspace discovery and biclustering predominantly involves the 

development and use of algorithmic techniques to identify biclusters based on their 

association with subspaces in high dimensional data structures. Spatiotemporal subspace 

biclustering employs specialized biclustering techniques that incorporate an additional 

dimension of time to the biclusters. This makes it possible for time-dependent 

biclustering criteria to be established adaptively on a temporal basis. A set of features that 

defines a given bicluster, and their collective set of relevance scores constitute the 

biclustering criteria of the bicluster at any time. In this chapter, we outline the formal 

notations, definitions, and the main problem formulation relating to the analysis and 

discovery of reliable biclustering criteria for the purpose of feature relevance tracking.

The rest of the chapter is organized as follows. Section 3.1 presents formal 

notations used in formulating the subspace feature tracking problem and the subsequent 

algorithmic presentations. Section 3.2 discusses and presents some formal definitions 

pertaining to spatiotemporal subspace feature tracking, and Section 3.3 outlines the 

symbolic presentation of the main problem formulation.

21
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3.1 Notations

Let A {J = (XL) be a real-valued data matrix that represents a dataset with a set of 

rows X  =  {x !, x2,--' ,Xr} and a set of columns Y =  {y1( y2, , ys)- Let atj be an element

of A,j  that corresponds to the relation between row i and column j.  For the data matrix 

Aij, let A,, and A,, represent the sum and average of values on the I th row, respectively; 

A.j and A.j represent the sum and average of values in the Jth column, respectively;

A., and A., represent the overall sum and average of values in A/y, respectively.

Let [Bii t] = {Bl t, B2t, •••, BK t] denotes a set of K biclusters generated at time 

t  for t  E N and 1 <  t < T, where T is the most recent time at which the bicluster set 

{Bk T} was generated, N is a set of natural numbers, and 1 <  k  <  K. For the 

bicluster Bk t, Row(Bk t) and Col(Bk t) represent the row and column elements of Bk t, 

respectively. Without reference to time, let {Bk} = {Blt B2, •••, BK} denotes a set of K 

biclusters.

3.2 Formal Definitions

The notations in Section 3.1 are used in this section to provide formal definitions 

that are utilized in the tracking of spatiotemporal subspace of features and feature 

relevance in this work.

Definition 3.1 (Bicluster): Given a real-valued R x 5 data matrix A,j = (X, F), with a 

set of rows X = [x1, x 2, •••,xR) and a set of columns Y = {y1,y 2,-",ys}, a bicluster A^is 

a submatrix of A/j  defined as the ordered pair given by Eq. 3-1 such that i =

{i1( i2, •••, iM} with i c  X, M < R and j  =  {j1, j2, with j c f  and P < S.

A U = (i J ) -  Eq. 3-1
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Definition 3.2 (Subspace): Let S  = {51,52 ••• ,SK] denote a set of K subspaces. Then, 

given C as a conceptualized space that commensurate a R x S data matrix A = (X,Y),C  

can be partitioned into S  =  {Slt S2 •••, SK] subspaces each of which is defined as the 

ordered pair given by Eq. 3-2 where, respectively, /; =  {/1( I2, , /M}, 1 <  i < M with

M < R and Fj = {F1, F2, •••, FP], 1 < j  < P with P < S are the instance and feature 

vectors corresponding to the rows and columns of Sk:

Sk = 0uFj).  Eq. 3-2

Definition 3.3 (Conserved Biclusters): A set of K biclusters {Bk} = {Bt , B2, •••, BK] 

with 1 <  k < K is said to be conserved if for any given data matrix A,j that 

contains {Bk}, there exists no further biclusters that can be discovered without altering 

the elements of A,j.

Definition 3.4 (Bicluster Mean): For a set of K biclusters {Bk} =  {B1, B2, •••, BK), the 

bicluster mean, fik associated with each Bk is defined as the bicluster-specific effect that 

is exerted on the data matrix Aij, and is given by Eq. 3-3, Eq. 3-4 or Eq. 3-5, where 

Mand P are the respective number of rows and columns of A

Hk =  A... Eq. 3-3

E<1-3-4

= TXkfLUAtj Eq. 3-5
M*P

Definition 3.5 (Row or Instance Effect): For a data matrix Ai;- that constitutes the 

bicluster Bk, an instance effect a L is defined as the row-specific effect exerted on Bk by
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the ith row in Bk, and is given by Eq. 3-6 where A( is the mean value of the i th row in 

Bk with bicluster mean [ik :

a t =  A;. -  fxk . Eq. 3-6

Definition 3.6 (Column or Feature Effect): The feature effect pj, given by Eq. 3-7, is 

the column-specific effect exerted on bicluster Bk of data matrix A^  by the j th column 

of Bk with bicluster mean fik, and column mean A

Pj = &.j ~  Pk- Eq. 3-7

Definition 3.7 (Instance Relevance Score): For a set of instance effects {a*} =

(a 1; a2, •••, % }  pertaining to the bicluster Bk, the instance relevance score Pa. for each 

di, given by Eq. 3-8, measures the discriminatory power exerted by the instance i on Bk.

Definition 3.8 (Feature Relevance Score): For a set of feature effects {/?y} =

{Pi>Pi>'• • >Pp) associated with the bicluster Bk, the feature relevance score Pp. for each 

Pj, given by Eq. 3-9, measures the discriminatory power exerted by the feature j  in Bk.

Definition 3.9 (Affinity Matrix): This is the transpose of a vector whose elements are 

the relevance scores with respect to either the instances or features of a given 

bicluster Bk. The instance affinity matrix AMi(Bk) and the feature affinity matrix 

AMj{Bk) that correspond to the bicluster Bk are given by Eq. 3-10 and Eq. 3-11, 

respectively:
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AMt(Bk) =  (Pth ,Pcl2, - , P aM) T- E1 -3'1#

AMj(B„) =  (Ph ,Pf2, - , P fp f -  Eq. 3-11

Definition 3.10 (Bicluster Purity and Efficiency): Let Bk i be a target bicluster and 

Bl i+1 a retrieved bicluster to be compared with Bk i. The purity of Bl i+1? Purity(Bli+1) 

measures its compositional closeness to Bk i, and it is given by Eq. 3-12 or Eq. 3-13. The 

efficiency of Biii+1, Ef f ic iency  (Bli+1) measures how comprehensive the biclustering 

criteria of Bi i+1 truly replicates the target bicluster Bk i, and it is given by Eq. 3-14 or 

Eq. 3-15:

Purity(B lM1) =  Eq. 3-12

n  .’A -.r r» A _  \Row(Bk i - )nRow(Bu+1) \ x \ c o l ( B u ) n C o l ( B u +1 )\
Purity[Bl>i+1) -  |Row(Bfcl)| x |coZ(Bfc,i)| ' Eq. 3-13

Eff ic iency(Blii+1) = lg*jtn g tj+1l Eq. 3-14

Eff ic iency  (Bli+1) =

|Row(Bk {) n  Row(Bj i+1)| x

|R0 W(SU+1) | x  \Col(Bl i+1)\

Eq. 3-15

Definition 3.11 (Bicluster Specificity and Sensitivity): Given Bk i and Bl i+1 as the

target and discovered biclusters, respectively, the specificity of Bl i+1,

Specif  icity(Bli+1) measures the proportion of datapoints in Bk i that has been 

successfully retrieved by Bt i+1, and the sensitivity of Bli+1, Sensitivity  (Bii+1) 

measures the proportion of datapoints in Bli+X that are also in Bk i. Computationally, 

Speci f  icity{Bi i+f)  and Sensitivity{Bli+1) are defined by Eq. 3-13 and Eq. 3-15, 

respectively.
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Definition 3.12 (F-value): Given Bk i and Bli+1 as the target and retrieved biclusters, 

respectively, the F-value associated with the biclustering criterion of Bt i+15 

F — value (Bl i+1) measures with equal weighting of sensitivity and specificity, an 

overall bicluster quality that represents the harmonic mean of the sensitivity and 

specificity which cannot be factorized into marginal components, and is given by Eq.

3-16:

F — value(Bli+x) =

, , , Eq. 3-16
2\Row(Bkii) 0  Row(Bi ii+ l)I x  |Col(Bk i ) 0  Col{B

Definition 3.13 (Jaccard index): For the two biclusters Bk i and Bii+1, the Jaccard 

index, Jac(Bk i,Bi i+1) given by Eq. 3-17 or Eq. 3-18, measures the equality or 

otherwise of the two biclusters by computing the fraction of row-column combinations in 

both biclusters from all row-column combinations in at least one bicluster:

Jac(Bkii,Blii+1) =

. , , Eq. 3-18
IRow(Bk i ) n  RowjB i f+1) | X ICol{BkX) n  Cot(Bu + 1 ) |

|j?OW(Sw ) U R0W(Bli+ 1)| X |Col(Bk i ) U Col(Bli+1)\'

Definition 3.14 (z — score  Normalization): An entry Xij in a data matrix is normalized 

with respect to the column j  to Zy by either Eq. 3-19 or Eq. 3-21. In Eq. 3-19, 0} is the 

standard deviation of the column j  as given by Eq. 3-20; and in Eq. 3-21, Sj is the mean 

absolute deviation associated with the column j, given by Eq. 3-22. In both Eq. 3-20 and 

Eq. 3-22, n  is the total number of rows in the underlying data matrix:



Definition 3.15 (min-max Normalization): This performs a linear transformation on the 

original data matrix entries Xtj .  Let the column j  of a given data matrix have mitij and 

maxj  as the respective minimum and maximum values, then the min-max normalization

For a data matrix A , j  with a set of rows X and a set of columns Y such that the 

element ay  represents the relation between row i and column j ,  a bicluster is defined as a 

subset of X  with similar behavior across a subset of Y, and vice versa [42,43]. 

Biclustering algorithm has the goal of discovering a set of biclusters {Bk}, such that each 

Bk satisfies localized properties [42]. The Plaid Model (PM) [65,48,49, 66] is a 

statistical biclustering model that fits each data entry ay  of A , j  with Eq. 3-24,

where k  is the bicluster index such that 1 <  k  <  K, K is the number of biclusters in A y ,  

0i jo models the background bicluster which contains the entirety of A y ,  9ijk models the

process maps a value Xy  of the column j  to X'y in a new range [mmj, max-] by 

computing Eq. 3-23 [4,18]:

X i j - m i n
[maxj -  min'j] +  min'j

maxj-min—  ■ {max- -  min'j] + min'.  Eq. 3-23in i L J J 1 ^

3.3 Biclustering with the Plaid Model

Q-ij — 9 y o  +  H k = l  Pik^-jk^ijk 4" € y - Eq. 3-24



bicluster k, pik and Ajk are the respective row-wise and column-wise bicluster 

membership parameters, and €y is the residual error associated with the model.

The parameters pik and Ajk are binary assignments with values (0,1), defined for k > 1. 

An iterative process is used to estimate the model parameters when searching for the next 

bicluster such that for the r th iteration, let Ajjr-1^be the residual matrix of 

A/y corresponding to the (r  -  l ) th iteration, then plk and AJk are the estimates of p ik and 

Ajk, given by Eq. 3-25 and Eq. 3-26, respectively.

Prik =

(i. if i K 1" 1’ -  + & ) f  <  i ; ( » : r i)) 2. Eq' 3’25
0, otherwise

r jk =

[i. if + ^ ) ] 2 <
0, otherwise

Eq. 3-26

The rest of the model parameters estimates fik, a[k, Pik and 9[jk are given by Eq. 3-27, 

Eq. 3-28, Eq. 3-29 and Eq. 3-30, respectively, for bicluster k with M rows and 

P columns:
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3.4 Problem Formulation

In this work, the columns of a bicluster Bk are conceptualized as a subspace of 

features for spatiotemporal subspace feature tracking based on feature relevance. The 

problem constitutes the establishment and tracking of biclustering criteria that define 

different biclusters Bkt  at different times t  =  i, (i +  1), •••, T. At t  = i, an initial set of 

biclusters referred to as the base or core biclusters, are generated with the PM 

from the given dataset which can be conceptualized as the parent space. Next is the 

establishment of biclustering criteria for each of the biclusters in the base bicluster 

set {Bk t} =  (Sl t, B2it, , BK t). The goal is to track changes in this initially established 

biclustering criteria over time as the underlying dataset undergo changes. This is 

achieved by computing and tracking the discriminatory powers of features that define the 

individual biclusters. This is done temporally such that at any time t, a corresponding 

affinity matrix is constructed based on the computed discriminatory powers of individual 

features that uniquely define the concerned bicluster Bk t . Potentially, the spatiotemporal 

changes in the underlying dataset could alter the structural composition and the 

corresponding biclustering criteria of existing biclusters. Such changes might result in the 

formation of new biclusters, the splitting, merging, or disappearance of existing ones.

3.4.1 Problem Statement

Given that a real-valued R x S  data matrix at time t  with a set of rows 

X = {xr} such that {xr } =  {xlt x2, •••, xR) with 1 <  r  <  R and a set of columns 

Y= {ys} such that {ys} =  {ylt y 2, •••, ys) with 1 <  s < 5, contains the set of K 

biclusters {Bk t } = [Bl t , B2it, , BKt] with 1 <  k < K, where each Bkt  has a set of rows 

i = {x[, x 2, •••, x'M} and a set of columns j  =  {y[, y 2, , y ’P} such that M < R and P< 5,
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the goal is to compute for feature subspace tracking, the biclustering criteria associated 

with the set of initially discovered biclusters and the subsequently modified 

bicluster sets at times (t +  1), ( t +  2), , T as undergoes spatiotemporal changes to

become A(t+1), A(t+2), •••,A(r).

3.5 The Proposed Model for Spatiotemporal Subspace Feature Tracking 

Figure 3-1 shows the proposed model for the identification and subsequent 

tracking of spatiotemporal feature subspaces from a given data matrix that represents a 

parent space of features.

D ataM atrixatT > l IData Matrix at T = 1

Feature
Effects

per
Bicluster

Feature 
Relevance 
Scores per 
Bicluster

Feature
Affinity
Matrix

Relevance
scores

Conserved
biclusters

Affinity
matrices

Bicluster Similarity Updated Core
Module Biclusters

Figure 3-1: The proposed feature subspace discovery and tracking model.

Output

In the proposed model, BKT represents bicluster K generated at time instance T. 

The model gives a high level presentation of the algorithm outlined in Figure 3-2.



3.5.1 Major Phases of the Proposed Model

1. Core Biclusters Generation: Initially, the PM is used to fit the available data 

matrix at time T = 1, with the purpose of generating a core set of biclusters, 

BkT =  (B1 t , B2j , •••, Bk t ) to form the initial subspaces whose features are to 

be marked for tracking based on their discriminatory influences exerted on the 

containing biclusters.

2. Bicluster Similarity Module: At time (T + 1), a new set of biclusters that 

correspond to the current state of the underlying changing dataset is generated 

and compared with those generated at previous time T. Different scenarios 

could materialize, such that (a) previously generated biclusters could remain 

unchanged or conserved, (b) an existing bicluster might disappear due to its 

feature members’ weakened discriminatory powers, and (c) some existing 

biclusters could gain more features but continue to maintain their previously 

established biclustering criteria.

3. Updated Core Biclusters: The outcome of the bicluster similarity module is 

used to update the current core bicluster set to obtain an updated core bicluster 

set from which such measures as feature effects from Eq. 3-7, relevance 

scores from Eq. 3-9, and affinity matrices from Eq. 3-llare computed.

3.5.2 The Algorithm for Spatiotemporal Subspace Feature Tracking

Figure 3-2 outlines the main algorithm for the discovery and tracking of subsets 

of features that form the biclusters within a given dataset.
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A lgorithm : Feature Subspace Discovery and Tracking
Input: Real-valued Rx S data matrix A, biclusters merging threshold, 6
Output: Conserved biclusters, instance and feature relevance scores, affinity matrices

1. At time t, generate the core biclusters {Bk t } =  {Bl t , B2it, —, BK t] such that 
each Bkt = Aij, 1 < i < M,1  < j  < P, and 1 < k < K using the PM.

2. for k  =  1: K do // loop through the set of biclusters 
Compute the bicluster mean, nk =  A

for j=  1: P do
Feature effect due to column j, Pj =  A y — ytk 

end for 
for j  = 1: P do

Feature Relevance Score: Pp. =  P^  

end for
Feature Affinity Matrix, AMj{Bk t) = (PPl ,Pp2,--‘, PpPY  

end for
3. At time instance t  + 1, generate the bicluster set

1} = {^i,t+i» B2,t+i,---, BL,t+i} that corresponds to the dataset at ( t  +  1).
4. for k  = 1: K do // loop through the current set of biclusters

for I = 1: L do
if ( Bk t D Blit+1 *  0) and (jac( Bk t , Blit+1) > S)  then 
Bk t is conserved 

merge ( Bk t, Bl t+1) II perform row and column updates 
else if ( Bk>t n Blit+1 ±  0) and (jac( Bk t, Blit+1) < 8)  then 

Bk t is conserved; and a new bicluster Bl t+1 is discovered
end if
if ( Bk t n Blit+1 = 0) then

{ Bk t] have disappeared; new set of biclusters {Bi>t+1} are 
discovered

end if 
end for 

end for
5. Update the core bicluster set to a new core { Bk t] such that 1 < k < K + L
6. Repeat Steps 2 -  5 for subsequent times t  + 2, t  + 3, • • ■, T
7. At time t = T, list:

i. All conserved and newly discovered biclusters
ii. All feature relevance scores, Pp.

iii. The feature affinity matrix, A My ( Bk t )
8. Stop_____________________________________________________________

Figure 3-2: Algorithm for tracking subspace of features in a real-valued data matrix.



3.6 Conclusion

This chapter introduces the various notations and symbols used to present formal 

definitions and computational relations utilized in this dissertation. It presents an outline 

of biclustering with the statistical Plaid Model, followed by the problem formulation and 

problem statement of the dissertation. Next, the proposed model and detailed algorithmic 

steps are presented.



CHAPTER 4

PERSISTENT BICLUSTERS FOR FEATURE TRACKING

Given a real-valued data matrix described by a set of attributes called features in 

this work, a biclustering algorithm determines submatrices of the original matrix where 

subsets of rows exhibit a correlated pattern over subsets of columns [67]. This chapter 

proposes the use of biclustering as a means of feature subsets selection from a vector of 

features upon which the data were collected. A group of features that defines a bicluster 

tend to offer common local feature relevance and local feature correlation [68]. In order 

to track these features accurately, it is challenging to select an optimal set of features at 

the beginning of the tracking process to ensure reliability and optimal performance of the 

tracking algorithm. Many biclustering algorithms exist in the literature and the PM is one 

of the most widely used techniques. This chapter outlines the use of an enhanced PM 

(EPM) for the generation of persistent and reliable subsets of features whose relevance 

scores can be tracked in a spatiotemporal dataset.

4.1 Research Motivation

The work by Lazzeroni and Owen [49] first proposed the use of the PM as a 

biclustering technique for the analysis of gene expression dataset. The technique 

discovers biclusters in a given numeric data matrix by treating its elements as a sum of 

terms called layers or biclusters that are used to fit a linear function to describe the

34
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elements of the underlying dataset [69]. However, the nondeterministic nature of the 

solutions by the original PM problem formulation leads to situations where the number of 

discovered biclusters and the overall biclusters quality is not guaranteed. The outputs 

associated with different executions of the model fluctuate erratically for the same 

dataset. As it is with other existing biclustering algorithms, the PM is either based on 

generative or greedy algorithms that do not offer guarantees of the inclusiveness and 

completeness of biclustering solutions [67]. Hence, there is the need for an algorithmic 

technique that ensures the generation of a set of biclusters that can be considered 

persistent or conserved and reflects the true nature and number of biclusters contained in 

the underlying dataset.

4.2 Problem Statement

Given a real-valued R x  S data matrix A tj = (X, Y), with a set of rows X  =

{xlf x 2, • • •, xR} and a set of columns Y  = [y1; y 2, • ■ •, y$}, the goal is to discover a set of K 

conserved biclusters {Bk} = [B1,B 2, •••, BK) with 1 <  k < K by imposing a 

convergence technique on the nondeterministic outputs of multiple iterations of the PM 

until convergence on {Bk}.

4.3 Methodology and Materials

Most biclustering algorithms currently in use avoid prohibitive exhaustive search 

and rely on heuristics to explore the solution space due to the NP-hard nature of the 

biclustering problem formulation [42, 70, 71, 72,73]. The proposed EPM takes 

advantage of this by using, as the input, a set of nondeterministic outputs of the PM to 

generate a conserved list of biclusters that are more coherent and statistically significant.
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4.3.1 The Proposed Model

Figure 4-1 shows the proposed EPM.

Conserved
Biclusters

DATA
MATRIX

Biclusters at instance T

Iteration

Updated Core 
Biclusters

BSTGMPM

'1,T

'2,T

T,T'l.T + l

'K/r+i

2,T+1

'2,T

1,T

Similarity Analytics Engine 

Figure 4-1: The EPM for conserved biclusters discovery.

The following abbreviations (in the format abbreviation: meaning) are used in the 

model. Cl: Core Interface, II: Iterative Interface, GM: Goodness Measure, BK: Bicluster 

K, Bk t : Bicluster K  generated at instance T, GBK : Goodness measure for bicluster BK, 

and BST: Bicluster Significance Test.
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4.3.2 Phases of the EPM

1. Core Biclusters Generation: The initial phase of the EPM involves the

generation of a set of biclusters, BkT =  (B1 t , B2T, , BKT), known as the 

core biclusters. This is realized via the core interface (Cl) of the model in 

Figure 4-1, whereby the PM is run on the given data matrix to generate the set 

of K biclusters, BK T at the initial instance T.

2. Bicluster Goodness Measure: The bicluster’s goodness measure which 

represents the coherence or quality of each discovered bicluster is computed 

based on the differential co-expression score proposed by Chia and Karuturi 

[2] to generate a vector of goodness scores, GBk =  (GBV GB2,---, GBK), to be 

utilized in a statistical significance analysis of the discovered biclusters in step 

3. Each GBk is computed by Eq. 4-1 where Th(k) quantifies the T-type co

expression in bicluster k  to indicate strong rows only effect in group h, Bh{k) 

quantifies the B-type co-expression in bicluster k  to indicate strong columns 

only effect, and a  is a small fudge effect factor to offset large ratios based on 

very small co-expression in both groups of biclusters such that 0 <  a «  1. As 

proposed by the authors, the higher positive the bicluster goodness score the 

better:

max{T2(k ) +  a, B2(k) +  a}
Eq. 4-1

3. Bicluster Significance Test (BST): In this step, we perform a statistical

significance test on the vector GBk generated in step 2. We assume the set of
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goodness scores represented by the vector GBk to be a sample of 

independently distributed random variables drawn from a normally distributed 

population with mean p and standard deviation a  i.e. N(p, a 2), and test the 

following null hypothesis H0 for the given data matrix A:

H0: The mean goodness score of the current list of GBk, p.GBk =  p.

Hi: B-GBk ^  B-

Under the null hypothesis H0, the test statistic t  given by Eq. 4-2 has a t- 

distribution with (n — 1) degrees of freedom where n is the size of the sample 

with sample mean x  and standard deviation s:

x  -  u
t  =  Eq. 4-2

s/V n

The EPM maximizes the power, T  =  (1 — /?) with T  6 [0,1] associated with 

the test hypotheses, where /? is the Type II error of the test which measures 

the probability of incorrectly retaining a false null hypothesis H0. The t.test 

and power, t.test functions in core R [74] were used to obtain the t-statistic 

and T . These functions assume a universe, from which a sample is drawn, to 

be distributed normally with N (0,1). Thus, as the distribution of 

GBk approaches the standard normal distribution over time, the power of the 

test T  approaches 1. T  is utilized in an objective function to control the 

iteration process of the algorithm. The acceptance of H0 leads to a conclusion 

that GBkis a true representation of the current core biclusters inA; otherwise, 

the selection of Hx invokes a series of iterations to improve the richness of the



previously generated elements in GBk. This process eventually leads to the 

modification of the goodness scores vector to guide the generation of 

conserved biclusters as outlined in the iteration process phase in step 4.

The Iteration Process: Each time H0 in step 3 is rejected, the PM module in 

the EPM is re-run via the iterative interface (II), and the outcome used to 

improve the set of biclusters generated at instance T (it is customary here to 

refer to the previously generated biclusters as those generated at instance T, 

and the most current list as those generated at instance T+l) as follows:

i. A new set of biclusters BkT+1 = (*  1,T+1> #2 / T+l >> Bk,T+i ) is 

generated at instance (T+l) to be compared with those generated at T 

through an in-depth similarity analysis via the similarity analytics 

engine of the model. The EPM employs a systematic set of operations 

and bicluster comparisons based on the Jaccard index, Jac [49, 45,

75], defined by Eq. 3-17 or Eq. 3-18 to modify either existing 

biclusters in the list from instance T or append to it a set of newly 

discovered biclusters at instance (T+l), which were not revealed at T.

ii. Modification of existing biclusters is enforced based on Jac computed 

between the existing and any of the newly generated biclusters. For 

extensive comparisons at different levels of similarity between 

biclusters, this work employs an objective function based on biclusters 

merging threshold, 6 written as EPM (6) or EPM @6. 

Computationally, 5 signifies the degree of overlap between any two 

given biclusters with values in [0,1] where a value of 0 means no



overlap and that of 1 means 100% overlap between two biclusters. We 

reported results for 6 =  {0.90,0.95,0.99} to indicate the merging of 

any two biclusters that produced Jac signifying 90%, 95% and 99% 

similarities between them.

iii. Goodness measures for the biclusters in the currently updated core list 

are then obtained, followed by the BST as in steps 2 and 3, 

respectively.

iv. The iterative process is repeated until a desired vector of goodness 

measures is obtained, and the process ends with an output of conserved 

biclusters.

Termination Criteria: At the end of every iteration, the quality in terms of

goodness scores of the most recent bicluster set forming the core is used to 

assess its closeness to the desired conserved list inherent in the given data 

matrix. To achieve this, the model utilizes the Type II error associated with 

the BST module in such a configuration that the error tends to approach zero 

as the optimal bicluster set is realized. Let Bcore and Bconserved be the 

respective set of core and the desired conserved biclusters in the data matrix 

A at any given point in the discovery process. If /? and T  are the respective 

Type II error and the power under the null hypothesis in step 3, then either 

Eq. 4-3 or Eq. 4-4 ensures the termination of the EPM algorithm as the 

conserved biclusters in A  are realized:
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Figure 4-2 illustrates the behavior of T  based on Eq. 4-4 during the iterative process 

leading to unveiling the final list of biclusters contained in the given dataset.
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Figure 4-2: Illustrating the convergence technique of the EPM. Both the EPM and the 
PM were run on the same dataset. The EPM terminated after 20 iterations, and the PM 
was independently run 20 times.

It shows how the EPM achieves this, compared with scores obtained by individual 

runs of the PM. Here, the power scores by the EPM converge smoothly to 1 as the inherent 

biclusters are revealed after 20 iterations, while 20 individual runs of the PM portray a 

rather erratic trend for the power scores.
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4.3.3 The EPM Algorithm

Figure 4-3 outlines the main steps of the proposed EPM algorithm. The algorithm 

takes as input, a real data matrix A and outputs a set of conserved biclusters.

Algorithm: Conserved Biclusters Discovery
Input: Real-valued R x S data matrix A, merging threshold 6
Output: A list, L of conserved biclusters inherent in A
1. At T, generate BkT = {B1T, B2T, , BKT) : each BkT =  Ai;-, 1 <  i < M 

and 1 < j  < P, using the PM.
2 . for k =  1: K  do

Compute GBk =  (GBX, GB2, , GBK) 
end for

3. Perform BST on GBk 11H0 versus Hx
Compute /?, T
if ((Hq *- TRUE) AND (/3 == 0)) then 
{L <- Bk T 
go to 5} else
Generate Bit+1 = (B1t+i >I32,t+i >"'»Bpt+1) atT  + 1 
end if

4. while (J3 ! = 0) do
for k = 1: K do

for / = 1: P do
if (jac(B kT,B lT+1) >  S) then 
merge (Bk r , Bl T+1) //row or column updates 
if (]ac{BkT,B iT+1) = =  0) AND (GBt > GBk) then 
Bk,T «- append (Bk T,B l)T+x) 
end for 

end for 
go to 2 
end while

5. STOP

Figure 4-3: Core steps of the EPM algorithm.

4.3.4 Comparison with other Biclustering Algorithms

To ascertain and validate the performance of the proposed EPM algorithm, four 

state-of-the-art non plaid and one plaid biclustering algorithms were compared with the 

EPM. The non-plaid algorithms are BiMax, CC, xMOTIFs, Spectral, and the plaid
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algorithm is the PM. The biclust package in R [76] was used to run all five competing 

algorithms considered, and the EPM was entirely implemented in R.

4.3.5 Parameter Settings

Parameters of the different algorithms considered in this work were set to either 

the default values recommended by their authors, or specific values were chosen to suite 

the dataset distribution under consideration. Here, we outline those specific parameters 

among the default settings that were changed to enhance individual algorithm 

performances. For Spectral, the normalization and numberofEigenvalu.es parameters were 

respectively set to bistochastization and 7. We set the maximum accepted score, delta and 

the scaling factor, alpha parameters of the CC algorithm to 0.02 and 1, respectively. In 

particular, a smaller value of 0.02 was chosen for delta to ensure the detection of more 

refined patterns in the dataset, as recommended by the authors, Cheng and Church [51]. 

The max. layer parameter of the PM indicating the maximum number of layers to include 

in the model was set to 100. All parameters were kept at default values for BiMax and 

xMOTIFs. BiMax only works with binary data, and all datasets to it were converted with 

the binarize function from the biclust package in R, with the median score as the 

threshold parameter value. xMOTIFs requires discrete data input and all datasets to it 

were converted with the discretize function from the biclust package in R, with equally 

spaced interval from minimum to maximum values. Three different values of 0.90, 0.95, 

and 0.99 were chosen for the merging threshold parameter, 5 of the EPM, to indicate the 

degree of overlap between different biclusters.
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4.3.6 Artificial Dataset Generation

Artificial datasets with implanted biclusters were used to assess the performance 

of the proposed EPM. In the literature, researchers have generated synthetic datasets with 

either a single data model [67], or multiple data models [45,46, 75]. A Gaussian-based 

single data model that favors no specific algorithm was used in this work to generate a set 

of five datasets, each with a different number of hidden biclusters to be discovered by the 

proposed algorithm, EPM. The Gaussian distribution represented by N(fx, a 2) where is 

the mean and a  is the standard deviation was used for the synthetic data generation, with 

parameter settings as detailed in Table 4-1.

Table 4-1: Outline of the five synthetic datasets specifying the number of hidden 
biclusters, standard deviation of each bicluster and the size of each dataset.

Dataset

Number of 
Implanted 
Biclusters Bicluster Standard Deviation

Size 
(Rows X 

Cols)
1 2 {0.2, 0.4} 100X20
2 4 {0.2, 0.4, 0.6, 0.8 } 200 X 30
3 8 {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} 500 X 60
4 10 {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} 1000 X 100

5 15
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 

2.2, 2.4, 2.6, 2.8, 3.0} 2000 X 160

Each dataset was generated by the following steps: (1) A data matrix, A for the 

background layer was generated with the standard normal distribution, N(0,1) (2) Pre

defined biclusters were created with the distributions N(10, a*), where a* =

{a2, a 2, ••• , o'!} to introduce different noise levels to the K biclusters per dataset, and (3) 

The pre-defined biclusters in step (2) were then implanted in A  without allowing 

overlaps.
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4.3.7 Real Dataset

The Saccharomyces cerevisiae gene expression dataset, originally generated by 

Eisen et al. [74, 76, 77] was used to assess the performance of the proposed EPM. It is a 

microarray data matrix with information about the expression levels of 6,221 yeast genes 

over 80 conditions. Missing values in the original dataset were imputed using k-nearest 

neighbor averaged with the impute, knn function from the impute library in core R [74], 

with default k value of 10, resulting in 10-nearest neighbors averaged.

4.3.8 Evaluation Techniques on Synthetic Dataset

Biclusters generated by the proposed EPM on the synthetic datasets were 

validated following the protocol proposed by Eren et al. [45], adopted from the work of 

Prelic et al. [57]. Given two sets of biclusters, B1 and B2, the method calculates what is 

called a set score, S(Bl , B2) which compares the two sets by assigning higher scores to 

similar bicluster pairs and lower scores to dissimilar pairs, based on the Jaccard 

coefficient s(bx, b2) £ [0,1] with b1 E B1 and b2 E B2 defined by Eq. 4-5, where 

|hi fl b21 and \bx U b2 | are the respective bicluster data points intersection and union 

between bx and b2 \

E« n - 5

Let Sjand B2 respectively represent the ground truth of the expected bicluster set 

implanted in the matrix A  and the set discovered by the algorithm, then the Recovery, 

S(B1, B2) and Relevance, S(B2, Bx) scores are obtained by Eq. 4-6 and Eq. 4-7, 

respectively:
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S{B1,B 2) =  j^E < ,lGf?imaxb2eij2 s(i>1(i»2). Eq. 4-6

S(£2, BO =  i^ j£ t,2eB2 maxfc1GS15(&i, b2)- Eq. 4-7

The recovery score measures the percentage of the ground truth B1 that was 

discovered by the proposed algorithm and it is maximized for Bx £  B2. The relevance 

score measures the percentage of the discovered biclusters B2 that overlaps with the 

ground truth, Bu  and it is maximized for B2 Q Bx. All the algorithms considered and 

compared with the proposed EPM were evaluated for biclusters quality based on the 

goodness score procedure developed by Chia and Karuturi [2], given by Eq. 4-1.

4.3.9 Evaluation Techniques on Real Gene Expression Dataset

Validation of biclusters discovered by the EPM from real gene expression dataset 

was done using both internal and external evaluation protocols. In this dissertation, the 

evaluation protocols by Eren et al. [45] and Oghabian et al. [46] were followed where 

internal bicluster validation involved the use of algorithmic and dataset properties, while 

external validation involved the use of other external sources of information to establish 

the quality of biclusters generated. Internally, biclusters generated from the gene 

expression dataset were evaluated by measuring their goodness based on the differential 

co-expression scoring function suggested by Chia and Karuturi [2], defined by Eq. 4-1 

and available in the R package, biclust by Kaiser et al. [76]. With this protocol, a stronger 

positive goodness score indicates a bicluster’s superiority. Externally, biclusters from the 

real gene expression dataset were evaluated by carrying out enrichment analysis to 

calculate the Gene Ontology (GO) term enrichments for the genes per bicluster.
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GO enrichment was done using the Web-based Gene Set Analysis Toolkit 

(WebGestalt) by Wang et al. [78], and reported on all the three categories of Biological 

Processes, Molecular Functions and Cellular Components at three significant levels 

(0.05, 0.02 and 0.01) of analysis. Following the protocol used by both Sun et al. [75] and 

Eren et al. [45], the first phase of the enrichment analysis involved using the list of genes 

within a bicluster as input for a hypergeometric test with the Entrez Gene identifiers list 

[79] as the gene universe to generate the initial raw p-values. A second phase to adjust 

the raw p-values via multiple significance test correction using the Hochberg and 

Benjamini [80] correction method was performed to obtain adjusted p-values. A bicluster 

is considered to be enriched if the adjusted p-value of at least one GO term is smaller 

than the significance level under consideration.

4.4 Results and Discussions

This section presents the experimental and performance assessments of the 

proposed EPM and the other competing algorithms mentioned earlier on the five 

synthetic datasets and the real Saccharomyces cerevisiae gene expression dataset. Results 

on the synthetic datasets are reported first, followed by the performance assessment on 

the real gene expression dataset.

4.4.1 Synthetic Datasets

The proposed EPM algorithm and the others considered in this work were 

evaluated on the artificial datasets outlined in Table 4-1. The experiments were repeated 

five times on each dataset and the average results were reported as follows:
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4.4.1.1 Number and Scalability Experiments

The EPM and the other competing algorithms were assessed and compared on 

their ability to accurately discover increasing number of implanted biclusters in the 

underlying datasets. The average numbers of biclusters discovered are shown in Table 

4-2 and Figure 4-4.

Table 4-2: Number of biclusters discovered by the individual algorithms on the 
synthetic datasets. BM: BiMax, xMs: xMOTIFs, Sp: Spectral.

Number of 
Implanted 
Biclusters BM xMs Sp CC PM

EPM 
5 = 
0.90

EPM 
5 = 
0.95

EPM 
6 = 
0.99

2 89 6 601 30 13 6 5 4
4 100 37 593 53 4 10 11 11
8 100 86 554 100 10 12 16 16
10 43 93 111 100 12 15 14 15
15 100 0 719 100 18 16 16 17
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Figure 4-4: The number of biclusters discovered by different algorithms.

Scalability in term of each algorithm’s ability to accurately discover hidden 

biclusters as the number of biclusters and data size increase were measured as the 

recovery and relevance scores of the different algorithms. The respective average 

recovery and relevance scores are shown in Table 4-3 and Table 4-4, with Figure 4-5 

and Figure 4-6 showing the corresponding bar charts.
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Table 4-3: Recovery scores by the different algorithms. BM: BiMax, xMs: xMOTIFs, 
Sp: Spectral.

Number
of

Implanted
Biclusters BM xMs Sp c c PM

EPM 
8 = 
0.90

EPM 
8 = 

0.95

EPM 
8 = 
0.99

2 1.00 0.05 0.05 0.05 1.00 1.00 1.00 1.00
4 0.83 0.30 0.02 0.02 0.82 0.98 0.98 0.96
8 1.00 0.01 0.01 0.01 0.85 0.95 0.96 0.96
10 1.00 0.00 0.01 0.01 0.78 0.92 0.93 0.92
15 0.16 0.00 0.13 0.00 0.33 0.34 0.39 0.35

Table 4-4: Relevance scores by the different algorithms. BM: BiMax, xMs: xMOTIFs, 
Sp: Spectral.

Number
of

Biclusters BM xMs Sp CC PM

EPM 
8 = 
0.90

EPM 
8 = 
0.95

EPM 
8 = 
0.99

2 0.47 0.05 0.05 0.05 1.00 0.97 0.99 1.00
4 0.33 0.30 0.02 0.02 0.82 0.94 0.95 0.96
8 0.52 0.00 0.01 0.01 0.79 0.82 0.84 0.76
10 0.35 0.00 0.01 0.01 0.68 0.77 0.76 0.65
15 0.15 0.00 0.06 0.00 0.49 0.45 0.45 0.49
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Figure 4-5: A chart showing the mean recovery scores by the different algorithms.
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Figure 4-6: A chart showing the mean relevance scores by the different algorithms.

For the datasets with 2,4, 8 and 10 implanted biclusters, BiMax, PM and the 

EPM performed best in discovering the hidden biclusters. With the exception of the case 

with 2 hidden biclusters, the EPM outperformed the PM in recovery scores. All the 

algorithms dropped in recovery rates when the number of implanted biclusters was 15, 

with the EPM scoring the best rate of 0.39 when the merging threshold 8 = 0.95. 

Generally, with the exception of BiMax, similar trends were observed for the relevance 

scores with the EPM and PM outperforming the rest. BiMax’s poor relevance scores 

could be attributed to the relatively large number of biclusters found, most of which are 

differentially different from the implanted biclusters.
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4.4.1.2 Bicluster Quality Experiment

The average bicluster goodness scores for each algorithm on the five synthetic 

datasets are shown in Table 4-5 and Figure 4-7.

Table 4-5: Bicluster goodness scores reported by the different algorithms on the five 
synthetic datasets considered.

Algorithm

Goodness Scores
Number of Implanted £liclusters

2 4 8 10 15
BiMax 4.15 3.77 4.54 4.59 3.87

xMOTIFs -0.90 -0.72 -0.09 0.00 0.00
Spectral 0.10 0.10 0.06 0.02 0.52

CC 0.53 0.80 0.56 0.52 0.34
PM 0.68 0.59 0.51 0.40 0.30

EPM 
8 = 0.90 0.68 0.65 0.51 0.42 0.30

EPM 
5 -  0.95 0.68 0.66 0.53 0.42 0.29

EPM 
8 = 0.99 0.68 0.66 0.53 0.41 0.36
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Figure 4-7: A chart showing the biclusters goodness scores reported by each algorithm 
on the five synthetic datasets.

The EPM with 5 =  0.99 gave better goodness scores than the PM in all the cases 

except with 2 implanted biclusters where the scores were equal. BiMax had the best 

goodness scores across all the cases of the artificial datasets. xMOTIFs scored worse 

across all the datasets considered.

4.4.1.3 Runtime Experiment

This section presents an assessment of the benchmark used to ensure that the 

proposed EPM executes within a reasonable amount of time. The central processing unit 

(CPU) execution times of the EPM were compared with those of the PM and the other



algorithms on the five artificial datasets considered in this work. The results are shown in 

Table 4-6, Figure 4-8 and Figure 4-9.

Table 4-6: Algorithms CPU execution times in seconds (s).

Number
of

Biclusters BiMax xMOTIFs Spectral CC PM

EPM 
8 = 
0.90

EPM 
8 = 
0.95

EPM 
8 = 
0.99

2 0.14 0.14 4.65 0.53 0.25 0.26 0.21 0.24
4 0.20 0.50 11.69 1.41 0.33 0.09 0.24 0.20
8 0.28 1.79 22.41 4.97 1.36 1.89 1.70 1.88
10 0.24 4.53 45.55 10.45 5.91 7.95 8.45 10.02
15 1.82 0.00 106.08 15.63 17.56 18.71 21.33 16.89

</>
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Number of Implanted Bi clusters

Figure 4-8: CPU execution times in seconds (s), reported by the different algorithms 
on the four artificial datasets with 2,4, 8 and 10 implanted biclusters.



BiMax xMOTIFs Spectral CC PM EPM(0.9) EPM(0.95) EPM(0.99)
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Figure 4-9: CPU execution times in seconds (s), reported by the different algorithms 
on the artificial dataset with 15 implanted biclusters.

In general, all the algorithms including the proposed EPM portrayed linear 

execution times with potential exponential growth as the number of implanted biclusters 

and data sizes grow for all five cases considered. Spectral was the slowest algorithm 

among the set considered.
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4.4.1.4 Memory Usase Experiment

The mean random access memory (RAM) size in megabytes (MB) used by the 

EPM, along with the other competing algorithms on the synthetic datasets are shown in 

Table 4-7, Figure 4-10, Figure 4-11 and Figure 4-12.

Table 4-7: Memory usage by the EPM and the other competing algorithms in MB.

Number
of

Biclusters BiMax xMOTIFS Spectral CC PM

EPM 
8 = 
0.90

EPM 
8 = 
0.95

EPM 
8 = 
0.99

2 516.13 530.31 506.37 617.09 591.47 579.72 570.09 524.18
4 533.74 603.24 547.93 573.60 519.25 496.40 592.13 628.61
8 546.84 546.37 538.93 611.90 413.44 456.26 438.55 433.73
10 543.50 635.01 545.58 464.91 422.89 438.83 432.25 377.27
15 576.53 - 545.97 432.00 426.77 408.60 439.46 457.18
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Figure 4-10: A chart showing the amount of memory utilized by the different 
algorithms on the synthetic datasets with 2 and 4 implanted biclusters.
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Figure 4-11: A chart showing the amount of memory utilized by the different 
algorithms on the synthetic datasets with 8 and 10 implanted biclusters.
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Figure 4-12: The amount of memory utilized by the different algorithms on the 
synthetic datasets with 15 implanted biclusters.

The EPM with 8 = 0.90 showed decreasing memory usage as data size and the 

number of implanted biclusters increased. On the whole, the EPM with 8 = 0.99 and 10 

implanted biclusters recorded the least memory usage of 377.27 MB while xMOTIFs 

recorded the most memory usage of 635.01 MB for the same number of implanted 

biclusters. With 15 implanted biclusters, xMOTIFs could not execute on the dataset, and 

the corresponding memory usage is shown with a dash (-) in Table 4-7.

4.4.2 Real Gene Expression Dataset

The EPM was evaluated and compared with the other five algorithms on the 

Saccharomyces cerevisiae gene expression dataset described earlier in the chapter.



Benchmarks considered include the number of biclusters discovered, algorithm execution 

time, memory (RAM) usage, bicluster quality in terms of goodness measure and GO term 

enrichment analysis. Table 4-8 summarizes the results obtained for the number of 

biclusters found, execution times and memory usage across all the algorithms considered, 

and Figure 4-13, Figure 4-14 and Figure 4-15 show the corresponding bar charts.

Table 4-8: Algorithm performance scores using the real gene expression dataset. It 
shows the number of biclusters found, CPU execution times and the size of RAM used.

Algorithm

Performance Measures
Number of 
Biclusters CPU Time (Seconds) Memory Usage (MB)

BiMax 100 11.50 558.82
xMOTIFs 46 22.80 526.74
Spectral 41 171.49 2722.25

CC 100 29.56 2447.46
PM 21 75.17 570.02

EPM 
8 = 0.90 81 45.28 565.27

EPM 
8 = 0.95 116 34.92 560.77

EPM 
8 = 0.99 101 86.14 542.04
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Figure 4-13: The number of biclusters discovered from the real gene expression 
dataset.
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Figure 4-14: A chart showing the times taken by the individual algorithms to complete 
the biclustering task from the real gene expression dataset.
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BiMax xMOTIFs Spectral CC PM EPM(0.9) EPM(0.95) EPM(0.99)

Algorittim

Figure 4-15: The amount of memory utilized by each algorithm in discovering 
biclusters from the real gene expression dataset.

Compared with the PM, the EPM with 8 = 0.95 discovered the most biclusters of 

116 used lesser execution time of 34.92 seconds and memory size of 542.04 MB. 

Spectral was both the slowest and worse algorithm in memory usage.

4.4.2.1 Bicluster Quality Experiment

The goodness scores indicating the quality of the top 10 biclusters discovered by 

each algorithm from the gene expression dataset are shown in Table 4-9. Figure 4-16 

gives the corresponding distribution plots for each set of goodness scores per algorithm.
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Table 4-9: Goodness scores for the top 10 biclusters reported by each algorithm on the 
real gene expression dataset. BM: BiMax, xMs: xMOTIFs, Sp: Spectral.

Bicluster

Algorithm

BM xMs Sp CC PM

EPM 
8 = 
0.90

EPM 
8 = 
0.95

EPM 
8 = 
0.99

1 2.56 2.11 0.76 0.39 3.79 3.90 3.89 3.95
2 2.52 0.39 0.76 0.37 3.76 3.89 3.89 3.90
3 2.48 -0.36 0.76 0.36 3.56 3.89 3.89 3.89
4 2.35 -0.84 0.76 0.35 3.50 3.89 3.89 3.89
5 2.29 -1.34 0.76 0.17 3.48 3.79 3.89 3.89
6 2.28 -1.41 0.66 0.08 3.26 3.79 3.89 3.89
7 2.26 -1.51 0.66 0.06 3.24 3.79 3.89 3.89
8 2.26 -1.80 0.66 0.06 2.73 3.77 3.89 3.89
9 2.25 -1.86 0.45 0.06 2.31 3.77 3.89 3.89
10 2.24 -2.06 0.45 0.03 2.30 3.76 3.79 3.80
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Figure 4-16: Goodness scores distribution for the top 10 biclusters by each algorithm 
on the gene expression dataset.

The EPM with 5 = 0.99 outperformed the PM and all the non-plaid algorithms in 

terms of goodness scores. This performance can be attributed to the EPM’s ability to 

iteratively improve the quality of prior biclusters until convergence on the inherent 

biclusters. The comparatively poorer performances of the remaining approaches can be 

attributed to their inability to: 1) improve the already generated biclusters with 

substandard quality scores and 2) check plaid effects due to possible pairwise interactions
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and select an adequate number of expression levels, as explained by Henriques and 

Madeira [67].

4.4.2.2 GO Term Enrichment Analysis

GO term enrichment analysis for all the three categories, namely biological 

processes, molecular functions and cellular components were reported. For the top 10 

biclusters by each algorithm, the number of genes per bicluster, and the percentage of 

genes enriched are shown in Table 4-10 and Table 4-11, respectively.

Table 4-10: The number of genes per bicluster for the top 10 biclusters by each 
algorithm.

Algorithm

Bicluster

1 2 3 4 5 6 7 8 9 10

BiMax 470 932 296 599 446 486 246 518 198 487

xMOTIFs 2 18 76 40 52 3598 1271 544 255 114

Spectral 7 7 7 7 7 7 7 7 7 7

CC 19 22 16 17 31 22 24 28 16 23

PM 282 493 139 206 720 2 8 60 42 486
EPM 

8 = 0.90 479 493 493 493 367 319 319 393 305 323
EPM 

5 = 0.95 487 487 493 493 493 493 493 493 493 365
EPM 

8 = 0.99 536 477 489 487 493 493 493 493 494 159
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Table 4-11: Percentage o f genes enriched per biclusters discovered by each algorithm.

Algorithm
Bicluster

1 2 3 4 5 6 7 8 9 10
BiMax 94 88 96 94 93 93 95 95 93 94

xMOTIFs 100 83 91 88 94 88 91 93 91 87

Spectral 100 100 100 100 100 100 100 100 100 100

CC 84 82 75 88 87 86 75 96 88 83
PM 90 92 90 92 92 100 63 87 93 92

EPM 
6 = 0.90 92 92 92 92 89 93 93 90 90 90

EPM 
5 = 0.95 92 92 92 92 92 92 92 92 92 89

EPM 
8 = 0.99 93 92 92 92 92 92 92 92 92 91

The five most enriched terms for the best bicluster per algorithm at a significance 

level of a = 0.05 were reported, where RawP and AdjP represent the raw and adjusted p- 

values of the analysis results, respectively. Table 4-12 and Table 4-13 show the 

biological process GO term enrichment analysis results.

Table 4-12: Biological process GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)
oxidation-reduction process (5.60e-12/6.38e-09)
small molecule metabolic process (6.82e-09/3.88e-06)
generation of precursor metabolites and energy (4.84e-08/1.10e-05)
small molecule biosynthetic process (3.33e-08/l. 10e-05)

BiMax single-organism biosynthetic process (4.10e-08/1.10e-05)
cell wall organization (0.0010/0.0024)
external encapsulating structure organization (0.0010/0.0024)
cellular cell wall organization (0.0010/0.0024)
fungal-type cell wall organization (0.0007/0.0024)

xMOTIFs fungal-type cell wall organization or biogenesis (0.0009/0.0024)
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Table 4-13: Biological process GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)
cytokinesis, completion of separation (1.24e-13/1.39e-l 1)
cytokinetic cell separation (2.29e-12/1.28e-10)
cytokinesis (1.53e-10/5.71e-09)
cytokinetic process (7.16e-09/2.00e-07)

Spectral cell division (7.95e-08/1.78e-06)
CC None

sporulation (2.35e-30/l .87e-27)
anatomical structure formation involved in morphogenesis (1.14e- 
29/3.02e-27)
sporulation resulting in formation of a cellular spore (1.10e-29/3.02e- 
27)
anatomical structure morphogenesis (2.28e-28/3.63e-26)

PM anatomical structure development (2.28e-28/3.63e-26)
cytoplasmic translation (3.23e-86/3.01e-83)
translation (8.60e-31/4.00e-28)
organic substance biosynthetic process (2.15e-25/6.67e-23)

EPM ribosome biogenesis (3.97e-25/9.24e-23)
(5 = 0.90) biosynthetic process (5.81e-25/1.08e-22)

cytoplasmic translation (2.82e-85/2.63e-82)
translation (2.30e-30/l .07e-27)
ribosome biogenesis (1.44e-24/3.36e-22)

EPM organic substance biosynthetic process (1.27e-24/3.36e-22)
(6 = 0.95) biosynthetic process (3.47e-24/6.48e-22)

cytoplasmic translation (1.00e-78/1.02e-75)
translation (4.98e-24/2.53e-21)
ribosome biogenesis (1.80e-23/6.1 le-21)

EPM biosynthetic process (5.00e-23/1.02e-20)
(6 = 0.99) organic substance biosynthetic process (4.13e-23/1.02e-20)

Table 4-14 and Table 4-15 show the molecular function GO terms enrichment

analysis results.
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Table 4-14: Molecular function GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)

BiMax

oxidoreductase activity (1.22e-08/3.79e-06)

oxidoreductase activity, acting on the CH-OH group of donors, NAD or 
NADP as acceptor (7.60e-08/1.18e-05)
oxidoreductase activity, acting on CH-OH group of donors (1.46e- 
07/1.51e-05)
catalytic activity (9.74e-07/7.57e-05)
hydrogen ion transporting ATP synthase activity, rotational mechanism 
(7.57e-06/0.0004)

xMOTIFs structural constituent of cell wall (0.0048/0.0144)

Spectral

hydrolase activity, hydrolyzing O-glycosyl compounds (4.07e-10/7.73e- 
09)
hydrolase activity, acting on glycosyl bonds (9.20e-10/8.74e-09)
glucosidase activity (2.51e-06/1.59e-05)
glucan endo-l,3-beta-D-glucosidase activity (6.48e-06/3.08e-05)
beta-glucosidase activity (2.26e-05/8.59e-05)

CC None

PM

lysophospholipid acyltransferase activity (1.32e-05/0.0025)
triglyceride lipase activity (8.68e-05/0.0082)
lysophosphatidic acid acyltransferase activity (0.0003/0.0189)
retinyl-palmitate esterase activity (0.0012/0.0459)
chitin deacetylase activity (0.0017/0.0459)
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Table 4-15: Molecular function GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)
structural constituent of ribosome (2.02e-74/5.58e-72)
structural molecule activity (4.84e-54/6.68e-52)

rRNA binding (3.76e-12/3.46e-10)

EPM translation factor activity, nucleic acid binding (9.04e-09/6.24e-07)
(6 = 0.90) siderophore transporter activity (2.45e-05/0.0011)

structural constituent of ribosome (1.06e-74/2.99e-72)
structural molecule activity (5.27e-54/7.43e-52)
rRNA binding (5.26e-12/4.94e-10)

EPM translation factor activity, nucleic acid binding (1.22e-08/8.60e-07)
(5 = 0.95) siderophore transporter activity (2.63e-05/0.0012)

structural constituent of ribosome (4.92e-67/1.47e-64)
structural molecule activity (5.36e-47/7.99e-45)
rRNA binding (3.33e-l 1/3.3le-09)

EPM 
(5 = 0.99)

translation factor activity, nucleic acid binding (3.48e-07/2.59e-05)

siderophore transmembrane transporter activity (3.93e-05/0.0017)

Table 4-16 and Table 4-17 show the cellular component GO terms enrichment

analysis results.

Table 4-16: Cellular component GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)
cell wall (1.05e-07/7.94e-06)
fungal-type cell wall (3.77e-08/7.94e-06)

external encapsulating structure (1.05e-07/7.94e-06)
extracellular region (1.40e-06/7.95e-05)

BiMax cytosolic small ribosomal subunit (5.49e-06/0.0002)
fungal-type cell wall (0.0002/0.0019)
external encapsulating structure (0.0003/0.0019)
cell wall (0.0003/0.0019)
extracellular region (0.0002/0.0019)

xMOTIFs plasma membrane (0.0050/0.0260)
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Table 4-17: Cellular component GO terms enrichment analysis at a = 0.05.

Algorithm Enriched Terms (RawP/AdjP Value)
fungal-type cell wall (8.95e-l l/9.98e-10)
external encapsulating structure (1.21 e-10/9.98e-10)
cell wall (1.21 e-10/9.98e-l 0)
extracellular region (6.92e-l l/9.98e-10)

Spectral cell septum (3.24e-06/2.14e-05)
intrinsic to Golgi membrane (0.0016/0.0328)

CC integral to Golgi membrane (0.0016/0.0328)
intracellular immature spore (4.27e-l l/2.42e-09)
prospore membrane (4.27e-l l/2.42e-09)
ascospore-type prospore (4.27e-l l/2.42e-09)
spore wall (1.13e-09/4.80e-08)

PM ascospore wall (1.71e-08/5.81e-07)
cytosolic ribosome (1.84e-86/3.66e-84)
ribosomal subunit (7.58e-75/7.54e-73)
ribosome (1.28e-72/8.49e-71)

EPM cytosolic part (8.18e-68/4.07e-66)
(8 = 0.90) ribonucleoprotein complex (9.19e-60/3.66e-58)

cytosolic ribosome (1.64e-85/3.31e-83)
ribosomal subunit (4.42e-75/4.46e-73)
ribosome (1.60e-72/1.08e-70)

EPM cytosolic part (6.97e-67/3.52e-65)
(8 = 0.95) ribonucleoprotein complex (3.23e-59/1.30e-57)

cytosolic ribosome (6.43e-79/1.35e-76)
ribosomal subunit (3.62e-66/3.80e-64)
ribosome (3.23e-62/2.26e-60)

EPM cytosolic part (1.03e-60/5.41e-59)
(8 = 0.99) ribonucleoprotein complex (2.53e-50/1.06e-48)

Compared with the PM algorithm, the EPM had more genes enriched for 

biclusters 1, 3,4, 5, 7, 8 and 10 out of the ten cases reported, while the PM was better in 

biclusters 2, 6 and 9. Although Spectral had every gene discovered enriched for the top 

10 biclusters, it also recorded the least number of genes per biclusters across the board, as 

shown in Table 4-10. Similar small-sized bicluster effect on gene enrichment analysis 

can be observed in bicluster 1 of xMOTIFs with 2 genes and bicluster 6 of the PM also



with 2 genes where both algorithms recorded 100% genes enrichment per bicluster. 

Results for additional enrichment analysis at two significance levels of a = 0.02 and a =

0.01 are shown in the APPENDIX.

4.5 Conclusion

This chapter proposes and presents an enhanced Plaid Model technique to 

generate high quality biclusters in a given numerical dataset. The proposed approach 

aims at addressing the problem of generating and selecting the best set of biclusters 

hidden in a given dataset, a scenario that is difficult to achieve under the current 

implementation of the PM. The EPM algorithm iteratively combines and refines several 

outputs from the PM to generate a list of statistically significant biclusters of higher 

differential co-expression based goodness scores.

Extensive comparison between the EPM and five state-of-the-art biclustering 

algorithms on both synthetic and real gene expression datasets was conducted. The 

results on the real gene expression dataset indicate that the EPM outperformed the current 

implementation of the PM algorithm on the number and quality of biclusters discovered, 

execution time and the amount of memory used. The EPM also outperformed all the 

other four non-plaid algorithms on the real gene expression dataset in discovering more 

biclusters of higher quality in terms of goodness scores. All the top 10 biclusters 

discovered by the EPM were GO enriched at three different levels of significance. On the 

artificial datasets, the EPM indicated a comparable performance with the PM.



CHAPTER 5

SUBSPACE FEATURE TRACKING BASED ON RELEVANCE IN 
SPATIOTEMPORAL DATASETS

Many data modeling and object tracking algorithms rely on effective use of the 

available features upon which the data were collected. Most algorithms tend to use only a 

subset of features after subjecting the available set of feature to relevance analysis. 

Selecting the most relevant features in data modeling is critical to ensure higher accuracy 

in predictive analysis, model reliability and the realization of an optimal overall model 

performance. Relevance based feature selection becomes compounded in situations 

where feature relevance is not guaranteed to remain constant over time due to changes in 

the underlying dataset. For instance, in order to track subspaces of features that define 

space-time paths in a large spatiotemporal dataset, Shaw et al. [8] proposed a technique 

that identifies spatial cluster centers of individual events at different time periods and 

then connect them according to their temporal sequences. In this chapter, we focus on a 

technique that uses biclustering as a relevance-based feature selection method where the 

set of features constituting the biclustering criteria are selected and tracked in datasets 

that change with time.

5.1 Research Motivation

Relevance based feature selection is at the core of many predictive algorithms to 

ensure effective and accurate prediction of both current and future events. However, the
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selection process becomes a challenge in situations where the effectiveness of previously 

selected features cannot be guaranteed due to changes in the underlying dataset. This 

chapter presents a proposed technique based on the enhanced Plaid Model EPM for the 

discovery and tracking of feature relevance scores in datasets that undergo changes with 

time. Initially, the algorithm discovers a set of biclusters with the EPM based on plaid 

assumptions, and then selects sets of features that represent the biclustering criteria as 

candidates whose relevance scores are computed and tracked over time.

5.1.1 Problem Statement

Given a set of P feature relevance scores Rp2> associated

with the k th bicluster BkT at time T in a given data matrix A^T\  the goal is to model 

changes in [ftp.,j as undergoes spatiotemporal changes with time.

5.2 Methodology

Initially, at time T = 1, an exhaustive set of biclusters are generated by running 

the EPM on the initial dataset. The set of relevance scores per feature sets per individual 

biclusters that indicate their within-bicluster discriminatory powers are then computed 

and marked for tracking. In the subsequent phases at times T > 1, the EPM is run with an 

updated version of the initial dataset to generate a new set of biclusters that 

commensurate the current structural configuration of the dataset. These are then 

compared with the previous set of biclusters via the similarity analytics engine of the 

EPM algorithm, as explained under the methodology subsection of Chapter 4, to generate 

a newly updated list of biclusters whose feature relevance scores are then marked for 

tracking.
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5.2.1 The Proposed Model

Figure 5-1 shows the proposed model for the generation, selection and tracking 

of feature relevance in a given changing dataset.

DATA MATRIX 
a t  T = 1

DATA MATRIX t 
a t  T > 1 l

Visualize
Feature

Relevance

EPM

’2 , T

1 , T

Feature 
Effects per 
Bicluster

Biclusters a t Feature Relevance
instance T Scores a t instance T

Figure 5-1: The proposed feature relevance tracking model. T: time instance, EPM: 
the enhanced Plaid Model, Bk,t: bicluster k generated at time instance T, Rn: relevance 
score for the Nth feature.

Figure 5-2 outlines the algorithmic steps involved in the process of generating a 

set of features whose relevance scores are to be tracked as the underlying dataset changes 

with time.
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Algorithm: Feature relevance tracking
Input: Initial and subsequently updated datasets, similarity threshold, 8
Output: Feature relevance scores at time 7

i. Initial phase:
1. At time 7 = 1 ,  generate a set of biclusters with the EPM on the initial dataset
2. Select the set of features per biclusters to be tracked
3. For each feature j  per bicluster k, compute the feature effect, [ijk it exerts on the 

bicluster
4. For each feature, compute the corresponding feature relevance per bicluster at 

current time T
5. Visualize the feature relevance scores at current time T

ii. Subsequent phases:
6. At time T > 1, generate a set of biclusters with the EPM on the most currently 

updated dataset
7. Compare the current set of biclusters generated at T with the previous set at (T -  

1) and select biclusters with similarity scores greater than or equal to the similarity 
threshold, 8

8. Go To step 2
9. Stop

Figure 5-2: Feature relevance generation and tracking algorithm.

The initial phase of the algorithm generates the sets of features whose relevance 

scores are updated and tracked over time in the subsequent phases.

5.2.2 Computation of Feature Relevance Scores

The individual feature relevance scores are computed with respect to the hosting 

bicluster to indicate their influence in terms of the discriminatory effect they exert on the 

bicluster in relation to the other features in the same bicluster. Knowing the individual 

feature effects, as computed by Eq. 3-29, then for a set of feature effects {/?/, fc, fiP) 

associated with any given bicluster, the corresponding individual relevance scores are 

given by Eq. 5-1.

Rpi =  Z jU M  E q ‘ 5-1
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5.2.3 Feature Relevance Tracking

At time T, the biclustering algorithm discovers a set of biclusters, each of which is 

associated with a set of features with individual relevance scores. When the dataset 

undergoes changes at a different time instance, say (T + 1), due to either the removal of 

existing records or the introduction of new records, the inherent biclusters tend to 

undergo changes to reflect the effects introduced by any new features and/or records 

membership. Depending on the degree of change experienced by the current state of the 

dataset, a set of features that defined a bicluster previously and are still together in a 

current bicluster might not exert the same discriminatory effects they commanded 

previously. Hence, tracking a set of features that defines a common bicluster over time 

gives us the ability to track their relevance scores as the underlying dataset changes.

5.3 Experiment and Results

This section presents details of the dataset used to assess the performance of the

proposed algorithm, parameter settings and the results obtained.

5.3.1 Dataset and Parameter Settings

The ability of the proposed algorithm to accurately and successfully identify sets

of features and track their relevance over time as the underlying dataset changes was 

tested on the real Saccharomyces cerevisiae gene expression dataset, EisenYeast [76, 77]. 

The dataset is a microarray data matrix with information about levels of 6,221 genes over 

80 conditions. The EPM was implemented in R [74] where the similarity threshold 

parameter of the proposed model 8 was set to 0.95 after averaging out initial training tests 

of twenty repeated experiments, each at 8 = 0.90, 0.95 and 0.99.
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5.3.2 Experiments

In order to simulate the phenomenon of a changing dataset using the gene

expression dataset, the following approach was employed: initially, at time T = 1, the 

EPM was executed with the first 500 genes and the entire 80 features. The set of features 

per biclusters discovered as a result formed the initially selected sets of features whose 

relevance scores are to be tracked. In the next steps, the algorithm sequentially adds 300 

genes at the various subsequent time instances until a total of 6,200 genes per dataset was 

reached at a time instance of T = 20. This allowed us to track and observe subsets of 80 

features, also known as experimental conditions in the case of gene expression data 

analysis, as we introduce additional genes at different time instances of T = 1, 2 ,.. .,  19, 

20.

5.3.3 Results

The results of the topmost bicluster discovered in the experiment are reported in

this section. All the biclusters discovered in the work were evaluated and ranked for 

bicluster quality based on the bicluster goodness score procedure developed by Chia and 

Karuturi [2], and implemented in the biclust package in R [76]. Out of the 20 time 

instances considered in the experiment, the proposed algorithm successfully tracked the 

topmost bicluster's features relevance scores of 12.

Initially, the topmost bicluster contained the six features Sporulation_5h, 

SporulationJh, Sporulation_9h, Sporulation_1 lh, Sporulation_7h_(v._5h),

Sporulation jidt80o\er. As the dataset changed with time, four among them persisted 

together at nine time instances, and three persisted together at all 12 successfully tracked 

instances. The results of their tracked relevance scores are shown in Table 5-1.
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Table 5-1: Relevance scores for features from the topmost bicluster per dataset at time 
instance T. T: Time instance; #: Number of genes; S_5h: Sporulation_5h; S_7h: 
Sporulation_7h; S_9h: Sporulation_9h; S_llh: Sporulationllh.

T #

Feature Relevance Score

S 5h S 7h S 9h S l lh
1 500 0.1632 0.1820 0.2031 0.2145
2 800 0.2154 0.2327 0.2516 0.2494
4 1400 0.2250 0.2281 0.2595 0.2367
5 1700 0.2218 0.2357 0.2702 0.2466
6 2000 0.1676 0.1702 0.2050 0.1891
8 2600 0.0259 0.0186 0.2503 -

10 3200 0.2306 0.2132 0.2619 0.2533
11 3500 0.0489 0.0732 0.0276 -

14 4400 0.0735 0.2130 0.0001 -

15 4700 0.2442 0.2154 0.2642 0.2502
16 5000 0.1423 0.0017 0.2461 0.1811
17 5300 0.2470 0.2127 0.2717 0.2534

At different time instances, the feature relevance scores reflected the changing 

underlying datasets, and these are indicated by the changes in their scores, and hence, 

their varying discriminatory effects exerted on the hosting biclusters within which they 

are located. The results are presented with relevance scores distribution charts where the 

length of the individual bars in the charts indicates the relevance score of the feature 

concerned. Figure 5-3 shows the results for time instances T = 1 and 2; Figure 5-4 

shows the outcome for time instances T = 4 and 5; Figure 5-5 gives the results for time 

instances T = 6 and 8; Figure 5-6 shows the results for time instances T = 10 and 11; 

Figure 5-7 shows the results for time instances T = 14 and 15; and Figure 5-8 shows the 

outcome for time instances T = 16 and 17.
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Figure 5-3: Feature relevance distribution charts for time instances T = 1, 2.
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Figure 5-5: Feature relevance distribution charts for time instances T = 6, 8.
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As shown in Figure 5-9, the behavior patterns of the three features 

Sporulation_5h, Sporulation_7h and Sporulation_9h indicate that as they transition from 

bicluster to bicluster due to changes in the underlying dataset, they experience 

fluctuations in their relevance scores.

Features Tracked.
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Figure 5-9: Feature relevance distribution plots showing the trend lines of feature 
relevance as the underlying dataset changes with time.

This is an indication that they tend to exert different discriminatory powers within 

those biclusters that contain them. It is also evident from the results that as the underlying 

dataset changes with time, an existing feature in a bicluster could lose so much 

discriminatory power that it might leave the bicluster entirely. This was the case with the
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feature Sporulation_7h_(v._5h) that had an initial relevance score of 0.128 at time 

instance T = 1, but was never again observed in subsequent instances.

We can also observe from Figure 5-9 that changes introduced into the underlying 

datasets either strengthen or weaken the discriminatory powers of those features that 

define the host bicluster.

5.4 Conclusion

This chapter proposes an algorithm that uses the EPM to discover high quality 

biclusters for the generation and selection of feature sets that can be marked for tracking. 

This is based on their bicluster-specific feature relevance discriminatory characteristics in 

datasets that undergo changes with time. This is useful in assigning accurate weights to 

variables that are utilized in predictive models for cluster and bicluster analysis involving 

spatiotemporal datasets. The algorithm was tested on real gene expression dataset, and 

the results indicate that it was able to successfully track subsets of features based on their 

relevance scores that defined those biclusters that host them over a span of time 

instances, as the dataset changed.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

The research presented in this dissertation is aimed at developing techniques for 

selecting and tracking subsets of features from spatiotemporal datasets based on their 

discriminatory characteristics. The problem was formulated to be the selection of subsets 

of features whose changing discriminatory characteristics are tracked with time in a 

changing dataset. The initial phase of the proposed approach involved the use of an 

enhanced Plaid Model technique to integrate multiple outputs from the traditional 

statistical Plaid Model to generate a list of statistically significant biclusters. This 

approach recursively combined a series of set operations and statistical inferential tests to 

generate biclusters of high quality in goodness scores. Following this, the sets of features 

that define these biclusters were selected and marked for tracking based on the 

discriminatory powers they exert on the host biclusters at different times as the dataset 

changes. Subsequently, these changes in discriminatory powers among the sets of 

features that define the host biclusters were modeled for tracking as the underlying 

dataset changed. Some specific contributions by this dissertation are presented in the 

following subsections.

8 6
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6.1 Contribution to Bicluster Analysis

The work in this dissertation proposed the use of biclustering technique as means 

of selecting relevant features from a given dataset for the purpose of feature tracking in 

changing spatiotemporal datasets. The statistical Plaid Model (PM) was adopted as the 

biclustering technique for generating statistically significant biclusters whose features can 

be selected for tracking purposes. The challenge of using the PM, however, was the non- 

deterministic nature of its output where different runs of the PM on the same given 

dataset resulted in different sets of biclusters. This is due to the NP-complete nature of 

the biclustering problem formulation. Against this backdrop, this work proposed an 

enhanced Plaid Model (EPM) approach where the recursive use of combined set 

operations and statistical inferential tests were utilized to improve the quality of biclusters 

generated. Extensive experimental results on both synthetic and real datasets reported in 

the work shows the viability and effectiveness of the proposed EPM algorithm in 

generating reliable and more stable biclusters of higher quality. The results also show that 

the EPM is scalable, tractable and efficient in memory usage in discovering high quality 

biclusters from both synthetic and real datasets, and biologically significant biclusters 

from a real gene expression dataset.

6.2 Contribution to Feature Subspace Tracking

One of the core challenges in predictive modeling is feature selection for optimal 

performance. It becomes a model performance challenge when machine learning models 

are built with features whose relevance cannot be guaranteed due to changes in the 

underlying dataset. This work proposed a technique to track subsets of features by mining 

the relevance based discriminatory characteristics of sets of features in datasets that
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undergo changes with time. The algorithm uses the proposed EPM to generate sets of 

statistically significant biclusters from which features are marked for tracking based on 

their discriminatory powers exerted on the host biclusters at any point in time. As the 

underlying dataset changes, the originally discovered biclusters also change together with 

the biclustering criteria which are controlled by the discriminatory tendencies of the 

respective sets of features per biclusters. The proposed technique was tested on real 

microarray gene expression dataset. The results show that it was able to track subsets of 

features successfully via their relevance based discriminatory characteristics over time as 

the dataset changed.

6.3 Future Work

The work presented in this dissertation has triggered some research ideas that 

could further be explored in the near future. First is the possibility of exploring the use of 

relevance scores of individual records in a dataset, instead of features, or an integration of 

both to effectively track subspaces of events that undergo spatiotemporal changes. Such a 

work is envisioned to generate and rely on more comprehensive information content in 

making decisions regarding subspace tracking. Next is the use of relevance scores of both 

features and records to build predictive models to forecast future subspace events.
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The GO term enrichment analysis at significant levels of a = 0.02 and a = 0.01 are 

presented in this appendix.

Table A-l: Biological process GO terms enrichment analysis at a  = 0.02.

Algorithm Enriched Terms (RawP/AdjP Value)

BiMax

oxidation-reduction process (5.60e-12/6.38e-09)
small molecule metabolic process (6.82e-09/3.88e-06)

generation of precursor metabolites and energy (4.84e-08/1.10e-05)
single-organism biosynthetic process (4.10e-08/1.10e-05)
small molecule biosynthetic process (3.33e-08/1.10e-05)

xMOTIFs

cell wall organization (0.0010/0.0024)
external encapsulating structure organization (0.0010/0.0024)
cellular cell wall organization (0.0010/0.0024)
fungal-type cell wall organization (0.0007/0.0024)

fungal-type cell wall organization or biogenesis (0.0009/0.0024)

Spectral

cytokinesis, completion of separation (1.24e-13/1.39e-l 1)
cytokinetic cell separation (2.29e-12/1.28e-10)
cytokinesis (1.53e-10/5.71e-09)
cytokinetic process (7.16e-09/2.00e-07)
cell division (7.95e-08/1.78e-06)

CC None

PM

sporulation (2.35e-30/1.87e-27)
sporulation resulting in formation of a cellular spore (1.10e-29/3.02e- 
27)
anatomical structure formation involved in morphogenesis (1.14e- 
29/3.02e-27)
anatomical structure development (2.28e-28/3.63e-26)
anatomical structure morphogenesis (2.28e-28/3.63e-26)
cytoplasmic translation (3.23e-86/3.01e-83)
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Table A-2: Biological process GO terms enrichment analysis at a = 0.02.

Algorithm Enriched Terms (RawP/AdjP Value)
translation (8.60e-31/4.00e-28)
organic substance biosynthetic process (2.15e-25/6.67e-23)
ribosome biogenesis (3.97e-25/9.24e-23)

EPM biosynthetic process (5.81e-25/1.08e-22)
(8 = 0.90) cytoplasmic translation (2.82e-85/2.63e-82)

translation (2.30e-30/1.07e-27)
ribosome biogenesis (1.44e-24/3.36e-22)
organic substance biosynthetic process (1.27e-24/3.36e-22)

EPM biosynthetic process (3.47e-24/6.48e-22)
(5 = 0.95) cytoplasmic translation (1.00e-78/1.02e-75)

translation (4.98e-24/2.53e-21)
ribosome biogenesis (1.80e-23/6.1 le-21)

EPM biosynthetic process (5.00e-23/1.02e-20)
(5 = 0.99) organic substance biosynthetic process (4.13e-23/1.02e-20)

Table A-3: Molecular function GO terms enrichment analysis at a  -  0.02.

Algorithm Enriched Terms (RawP/AdjP Value)

BiMax

oxidoreductase activity (1.22e-08/3.79e-06)
oxidoreductase activity, acting on the CH-OH group of donors, NAD or 
NADP as acceptor (7.60e-08/1.18e-05)

oxidoreductase activity, acting on CH-OH group of donors (1.46e- 
07/1.51e-05)
catalytic activity (9.74e-07/7.57e-05)
hydrogen ion transporting ATP synthase activity, rotational mechanism 
(7.57e-06/0.0004)

xMOTIFs structural constituent of cell wall (0.0048/0.0144)

Spectral

hydrolase activity, hydrolyzing O-glycosyl compounds (4.07e-10/7.73e- 
09)

hydrolase activity, acting on glycosyl bonds (9.20e-10/8.74e-09)
glucosidase activity (2.51e-06/1.59e-05)
glucan endo-l,3-beta-D-glucosidase activity (6.48e-06/3.08e-05)
beta-glucosidase activity (2.26e-05/8.59e-05)
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Table A-4: Molecular function GO terms enrichment analysis at a = 0.02.

Algorithm Enriched Terms (RawP/AdjP Value)
CC SNAP receptor activity (4.67e-05/0.0051)

lysophospholipid acyltransferase activity (1.32e-05/0.0025)
triglyceride lipase activity (8.68e-05/0.0082)

PM lysophosphatidic acid acyltransferase activity (0.0003/0.0189)
structural constituent of ribosome (2.02e-74/5.58e-72)
structural molecule activity (4.84e-54/6.68e-52)
rRNA binding (3.76e-12/3.46e-10)

EPM 
(8 = 0.90)

translation factor activity, nucleic acid binding (9.04e-09/6.24e-07)

siderophore transmembrane transporter activity (2.45e-05/0.0011)
structural constituent of ribosome (1.06e-74/2.99e-72)
structural molecule activity (5.27e-54/7.43e-52)
rRNA binding (5.26e-12/4.94e-10)

EPM translation factor activity, nucleic acid binding (1.22e-08/8.60e-07)
(8 = 0.95) siderophore transporter activity (2.63e-05/0.0012)

structural constituent of ribosome (4.92e-67/1.47e-64)
structural molecule activity (5.36e-47/7.99e-45)
rRNA binding (3.33e-l 1/3.3le-09)

EPM 
(8 = 0.99)

translation factor activity, nucleic acid binding (3.48e-07/2.59e-05)
siderophore transmembrane transporter activity (3.93e-05/0.0017)
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Table A-5: Cellular component GO terms enrichment analysis at a = 0.02.

Algorithm Enriched Terms (RawP/AdjP Value)
fungal-type cell wall (3.77e-08/7.94e-06)
cell wall (1.05e-07/7.94e-06)
external encapsulating structure (1.05e-07/7.94e-06)
extracellular region (1.40e-06/7.95e-05)

BiMax cytosolic small ribosomal subunit (5.49e-06/0.0002)
extracellular region (0.0002/0.0019)
fimgal-type cell wall (0.0002/0.0019)
external encapsulating structure (0.0003/0.0019)

xMOTIFs cell wall (0.0003/0.0019)
cell wall (1.21e-10/9.98e-10)
fungal-type cell wall (8.95e-l l/9.98e-10)
external encapsulating structure (1.21 e-10/9.98e-10)
extracellular region (6.92e-l l/9.98e-10)

Spectral cell septum (3.24e-06/2.14e-05)
CC SNARE complex (5.29e-05/0.0056)
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Table A-6: Cellular component GO terms enrichment analysis at a = 0.02.

Algorithm Enriched Terms (RawP/AdjP Value)
intracellular immature spore (4.27e-l l/2.42e-09)
prospore membrane (4.27e-l l/2.42e-09)
ascospore-type prospore (4.27e-l l/2.42e-09)
spore wall (1.13e-09/4.80e-08)

PM ascospore wall (1.71e-08/5.81e-07)
cytosolic ribosome (1.84e-86/3.66e-84)
ribosomal subunit (7.58e-75/7.54e-73)
ribosome (1.28e-72/8.49e-71)

EPM cytosolic part (8.18e-68/4.07e-66)
(6 = 0.90) ribonucleoprotein complex (9.19e-60/3.66e-58)

cytosolic ribosome (1.64e-85/3.31e-83)
ribosomal subunit (4.42e-75/4.46e-73)
ribosome (1.60e-72/l .08e-70)

EPM cytosolic part (6.97e-67/3.52e-65)
(5 = 0.95) ribonucleoprotein complex (3.23e-59/1.30e-57)

cytosolic ribosome (6.43e-79/1.35e-76)
ribosomal subunit (3.62e-66/3.80e-64)
ribosome (3.23e-62/2.26e-60)

EPM cytosolic part (1.03e-60/5.41e-59)
(5 = 0.99) ribonucleoprotein complex (2.53e-50/1.06e-48)
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Table A-7: Biological process GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)
oxidation-reduction process (5.60e-12/6.38e-09)
small molecule metabolic process (6.82e-09/3.88e-06)
single-organism biosynthetic process (4.10e-08/1.10e-05)
generation of precursor metabolites and energy (4.84e-08/1.10e-05)

BiMax small molecule biosynthetic process (3.33e-08/1.10e-05)
cell wall organization (0.0010/0.0024)
external encapsulating structure organization (0.0010/0.0024)
cellular cell wall organization (0.0010/0.0024)
fungal-type cell wall organization (0.0007/0.0024)

xMOTIFs fungal-type cell wall organization or biogenesis (0.0009/0.0024)
cytokinesis, completion of separation (1.24e-13/1.39e-l 1)
cytokinetic cell separation (2.29e-12/1.28e-10)
cytokinesis (1.53e-10/5.71e-09)
cytokinetic process (7.16e-09/2.00e-07)

Spectral cell division (7.95e-08/1.78e-06)
CC None
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Table A-8: Biological process GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)

PM

sporulation (2.35e-30/1.87e-27)

sporulation resulting in formation of a cellular spore (1.10e-29/3.02e- 
27)

anatomical structure formation involved in morphogenesis (1.14e- 
29/3.02e-27)
anatomical structure development (2.28e-28/3.63e-26)
anatomical structure morphogenesis (2.28e-28/3.63e-26)

EPM 
(5 = 0.90)

cytoplasmic translation (3.23e-86/3.01e-83)
translation (8.60e-31/4.00e-28)
organic substance biosynthetic process (2.15e-25/6.67e-23)
ribosome biogenesis (3.97e-25/9.24e-23)
biosynthetic process (5.81e-25/1.08e-22)

EPM 
(5 = 0.95)

cytoplasmic translation (2.82e-85/2.63e-82)
translation (2.30e-30/1.07e-27)
organic substance biosynthetic process (1.27e-24/3.36e-22)
ribosome biogenesis (1,44e-24/3.36e-22)
biosynthetic process (3.47e-24/6.48e-22)

EPM 
(5 = 0.99)

cytoplasmic translation (1.00e-78/1.02e-75)
translation (4.98e-24/2.53e-21)
ribosome biogenesis (1.80e-23/6.1 le-21)
biosynthetic process (5.00e-23/1.02e-20)
organic substance biosynthetic process (4.13e-23/1.02e-20)
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Table A-9: Molecular function GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)
oxidoreductase activity (1.22e-08/3.79e-06)
oxidoreductase activity, acting on the CH-OH group of donors, NAD or 
NADP as acceptor (7.60e-08/1.18e-05)
oxidoreductase activity, acting on CH-OH group of donors (1.46e- 
07/1.5 le-05)
catalytic activity (9.74e-07/7.57e-05)

BiMax
hydrogen ion transporting ATP synthase activity, rotational 
mechanism (7.57e-06/0.0004)

xMOTIFs None
hydrolase activity, hydrolyzing O-glycosyl compounds (4.07e-10/7.73e- 
09)
hydrolase activity, acting on glycosyl bonds (9.20e-10/8.74e-09)
glucosidase activity (2.51e-06/1.59e-05)
glucan endo-l,3-beta-D-glucosidase activity (6.48e-06/3.08e-05)

Spectral beta-glucosidase activity (2.26e-05/8.59e-05)
CC SNAP receptor activity (4.67e-05/0.0051)
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Table A-10: Molecular function GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)
lysophospholipid acyltransferase activity (1.32e-05/0.0025)

PM triglyceride lipase activity (8.68e-05/0.0082)
structural constituent of ribosome (2.02e-74/5.58e-72)
structural molecule activity (4.84e-54/6.68e-52)
rRNA binding (3.76e-12/3.46e-10)

EPM translation factor activity, nucleic acid binding (9.04e-09/6.24e-07)
(8 = 0.90) siderophore transmembrane transporter activity (2.45e-05/0.0011)

structural constituent of ribosome (1.06e-74/2.99e-72)
structural molecule activity (5.27e-54/7.43e-52)
rRNA binding (5.26e-12/4.94e-10)

EPM translation factor activity, nucleic acid binding (1,22e-08/8.60e-07)
(8 = 0.95) siderophore transmembrane transporter activity (2.63e-05/0.0012)

structural constituent of ribosome (4.92e-67/l .47e-64)
structural molecule activity (5.36e-47/7.99e-45)
rRNA binding (3.33e-l 1/3.3le-09)

EPM translation factor activity, nucleic acid binding (3.48e-07/2.59e-05)
(8 = 0.99) carbon-carbon lyase activity (3.76e-05/0.0017)
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Table A -ll: Cellular component GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)
cell wall (1.05e-07/7.94e-06)
external encapsulating structure (1.05e-07/7.94e-06)
fungal-type cell wall (3.77e-08/7.94e-06)
extracellular region (1.40e-06/7.95e-05)

BiMax cytosolic small ribosomal subunit (5.49e-06/0.0002)
extracellular region (0.0002/0.0019)
fungal-type cell wall (0.0002/0.0019)
external encapsulating structure (0.0003/0.0019)

xMOTIFs cell wall (0.0003/0.0019)
cell wall (1.21 e-10/9.98e-10)
fungal-type cell wall (8.95e-l l/9.98e-10)
external encapsulating structure (1.21 e-10/9.98e-10)
extracellular region (6.92e-l l/9.98e-10)

Spectral cell septum (3.24e-06/2.14e-05)
CC SNARE complex (5.29e-05/0.0056)
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Table A-12: Cellular component GO terms enrichment analysis at a = 0.01.

Algorithm Enriched Terms (RawP/AdjP Value)
ascospore-type prospore (4.27e-l l/2.42e-09)
intracellular immature spore (4.27e-l l/2.42e-09)
prospore membrane (4.27e-l l/2.42e-09)
spore wall (1.13e-09/4.80e-08)

PM ascospore wall (1.71e-08/5.81e-07)
cytosolic ribosome (1.84e-86/3.66e-84)
ribosomal subunit (7.58e-75/7.54e-73)
ribosome (1.28e-72/8.49e-71)

EPM cytosolic part (8.18e-68/4.07e-66)
(5 -  0.90) ribonucleoprotein complex (9.19e-60/3.66e-58)

cytosolic ribosome (1.64e-85/3.31e-83)
ribosomal subunit (4.42e-75/4.46e-73)
ribosome (1.60e-72/1.08e-70)

EPM cytosolic part (6.97e-67/3.52e-65)
(8 = 0.95) ribonucleoprotein complex (3.23e-59/1.30e-57)

cytosolic ribosome (6.43e-79/1.35e-76)
ribosomal subunit (3.62e-66/3.80e-64)
ribosome (3.23e-62/2.26e-60)

EPM cytosolic part (1.03e-60/5.41e-59)
(8 = 0.99) ribonucleoprotein complex (2.53e-50/1.06e-48)
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