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ABSTRACT

Abdominal aortic aneurysm (AAA) is indicated when the diameter of the abdominal
aorta is larger than 30 mm. The primary risk associated with AAA is an increased risk of
aortic rupture, which is fatal in 68-90% of cases. Once a patient is diagnosed with AAA, the
AAA is monitored via abdominal ultrasound. The rationale for the regular surveillance is that
the risk of rupture is low for AAA, less than 55 mm in size, but increases dramatically in
diameter larger than 55 mm. Early surgery on patients with smaller AAA diameters (lower
risk of rupture) has a higher mortality rate than taking no action. Despite numerous
researches done about prediction of AAA size, there is a lack of a design that quantifies the
risk of surgery and rates of rupture and mortality at surveillances and integrates it with the
process of decision making. This research addresses the necessity of integrating the rupture
rate in different time periods.

A Monte-Carlo simulation technique was applied to a growth model based on
Bayesian Analysis to simulate 10,000 and 1,000,000 hypothetical patients. To ensure that the
generated data correlated to the original data, the Cholesky decomposition was determined
from the patient cohort data and applied to generation of characteristics of the hypothetical
patients. The probability of each possible growth trajectory and cumulative risk of rupture is
computed by Bayesian Analysis for each patient. Mortality and rupture rates are calculated

individually, applying the Monte-Carlo simulation on meta-analysis paper and National Vital



Statistics System data for 2014. The risk of rupture increases in patients with increase in the
size and the mortality rate increases with the time.

Different protocols regarding the surgical intervention threshold, risk of surgery, and
observation time limits were designed, and the effects of life expectancy simulated.
Simulating all 10,000 and 1,000,000 hypothetical patients and comparing the results for
different designed protocols and current available protocols in different countries, gave us a
unique opportunity to analyze the effect of the surveillance and surgery decisions on patients'

mortality.
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CHAPTER 1

BACKGROUND ON ABDOMINAL AORTIC ANEURYSM AND
RESEARCH OBJECTIVES

1.1 Background on Abdominal Aortic Aneurysm (AAA)

Abdominal aortic aneurysm (AAA) is indicated when the diameter of the abdominal
aorta is larger than 30 mm [1]. The primary risk associated with AAA is aortic rupture,
which is fatal in 68-90% of cases [2-3]. AAA is generally asymptomatic, so most AAA
diagnoses are from non-related abdominal ultrasounds or x-rays. Given that the prevalence of
AAA is 2-8% in men over the age of 65 years old, [4-6] Britain, Australia, and the United
States have implemented AAA screening programs at least for high-risk patients (patients
with AAA size larger than 30 mm).

Once a patient is diagnosed with AAA, the AAA growth in size is monitored via
abdominal ultrasound with recommended surveillance every 3 - 60 months. The rationale for
the regular surveillance of AAA size is that the risk of rupture is low (less than 3.2% per
1,000 person-years) for AAA less than 55 mm in size but increases rapidly once the diameter
is larger than 55 mm [7]. Therefore, the surveillance provides information about the current
AAA diameter and the associated risk of rupture.

1.1.1 Risk of AAA Prevalence and Rupture

To understand the risk of AAA rupture, recent research has focused on the growth,

rupture, and incidence of AAA [8]. Men over the age of 65 years are at highest risk for AAA.



Therefore, going under a screening/surveillance program is beneficiary and preventive. For
example, the UK Multicentre Aneurysm Screening Study (MASS) took a single ultrasound
screening scan from 70,000 random patients between 65-74 years old and after 13 years they
observed a 42% reduction in mortality related to AAA rupture [9]. This result supports the
theory that screening for AAA reduces mortality.

One could ask then why patients do not go under surgery before the diameter gets
large and the risk of rupture gets high. Several trials have been conducted to determine if
early repair is more preventive in comparison to going under surveillance; the result show no
significant difference between the two groups [2 and 10-13]. The mortality rate for surgical
repair of un-ruptured AAA is less than 3% [13] but this is still better than the risk of rupture
for small AAA (less than 3.2% per 1,000 person-years).

1.1.2 Screening Protocols to Reduce AAA Mortality

There are different obstacles regarding screening protocols and its frequency. One is
patients’ compliance with surveillance protocols. While implementing AAA screening
programs reduces the mortality rate of screening participants, the participation rates are not
100% and can vary: there was 80% participation rate in the Multicentre Aneurysm Screening
Study (MASS) [14], 45% in Northern Ireland [15] and 85% in central part of Sweden [16].
There are two types of factors that lead to the low rate of participation of patients: patient and
organization factors. Patient factors, such as younger age, female sex, being married, higher
level of education, greater income and shorter distance from the screening center [17-22] are
associated with increased rates of screening. The organization of screening, the type of

invitation, and the ability to reschedule [23] are also associated with rates of screening.



Another difficulty in recommending AAA surveillance, which is considered in this
dissertation, is that the growth of AAA has a large amount of inter-patient variability. That
is, the AAA in one patient may expand rapidly (and require more regular surveillance and
more immediate surgical intervention) while the AAA in some patients may grow slowly and
require years, or decades, before surgery is needed. There are several models that predict the
growth rate using data gathered from patients in different places. The lack of a model that
gives the patient an individual overview about the outcomes of the surveillance, the risks,
and the benefits can be a vital reason in the low participation of the people in screening
programs.

1.1.3 AAA Management

Life-style related factors and their contribution to AAA incidence, AAA size, and
growth rate were investigated and confirmed in different studies. A population-based study
based on a prospective cohort of 14,249 male participants diagnosed with AAA in Sweden
focused on several modifiable life style factors such as smoking, dietary consumption,
physical activity, other comorbidities, alcohol consumption, and obesity [24]. Results of that
research revealed that smoking, higher body mass index (BMI), and cardiovascular diseases
were associated with an increase in mean AAA size as well as a higher chance of AAA risk
[24-26]. Forsdahl et al. also confirmed the association of smoking with the occurrence of
AAA. They found that the odds of AAA were nearly 14 times higher in people who smoked
more than 20 cigarettes per day compared to those who never smoked [27]. Continued
smoking has been shown to increase the AAA growth rate by 20% to 25% by Powell et al.
[28]. Smoking has been proven to be a significant factor in both increasing the incidence of

AAA and higher growth rate of AAA size [25, 28].



Interestingly, alcohol consumption (more than a glass of alcohol per day) and
diabetes mellitus were shown to have an inverse effect on mean AAA size. Walking or
bicycling for more than 40 minutes per day was associated with a 41% lower AAA hazard
compared to never bicycling or walking [24]. The effects of using antibiotics in the
management of AAA has been studied by Vammen et al. [29]. Comparing patients taking
roxithromycin antibiotic with patients under placebo therapy, they found a decrease in the
mean annual expansion rate of AAA aneurysms in the former group. However, given the
known harms of using antibiotics in long term, more data is needed on this approach [30].

There are several approaches regarding management of AAA patients including
participating in a surveillance protocol, medical therapy (with beta-blockers), surgery and
endovascular stenting. Some studies have shown that in patients with small to medium AAA
sizes who have not undergone surgical intervention, medical therapy may be helpful [31].

Despite the fact that there is no clear evidence to support the idea of treating
cardiovascular diseases in order to lower the risk of AAA incident, growth rate, or rupture;
Patients with previous experience of undergoing AAA repair observed a decrease in all-
cause mortalities after using statin in long term [32]. Also, according to 2005 ACC/AHA
guidelines it is recommended that AAA patients control their blood pressure and lipids in the
same manner that atherosclerotic disease patients are recommended to [33].

Repair methods consist of surgical repair or endovascular repair (insertion of an
endograft into the lumen). Endovascular repair is preferred over open surgical repair in terms
of risk and cost. Endovascular repair has 83% to more than 95% short term technical success
[34-36] with mortality rate of 2.7% to 5.8% in major randomized trials [10, 13, and 37]. The

number of endovascular surgeries performed at hospital and expertise of the surgeon has



shown to impact the mortality rate after the surgery [38-39]. Patients will have a faster
recovery, shorter hospital stay, less blood loss, and return to baseline functional capacity
after endovascular repair [30].

1.1.4 Modeling the Growth of AAA

Although there has been research done about prediction of AAA size and rupture,
there is a lack of a design that quantifies the risk of surgery and rates of rupture and mortality
at surveillances and integrates it with the process of decision making. An accurate model that
can predict the risks of rupture for each interval can help patients to make a better decision
about whether, and when, to have a surgical intervention. Given an overview about the risks
in every single interval, there would be no need for patients with different growth rates to
participate in broad screening programs.

The objective of this project is to simulate the effect of surveillance protocols — using
a model that has been fit to patient data [1] — to identify the most preventive surveillance

intervals based on the AAA growth characteristics of individual patients.

1.2 Study Objectives

AAA surveillance reduces AAA mortality due to rupture by monitoring AAA size
and recommending surgery once the risk of surgery is less than the risk of rupture. Due to the
high level of inter-patient variability in AAA growth, the appropriate intervals of
surveillance, the risks for an individual patient, and the AAA size at which an individual
patient should go under surgery are unknown. Altering each one of these factors will change
the whole treatment schedule. For example, one patient may need to get monitored every 6
months while another one can wait for 2 years without any risk of rupture. Predicting the

risks of the rupture and surgery -if it takes place at any time- based on AAA size and other



patients’ characteristics increases the accuracy of recommendation whether it is surveillance
in future or it is surgical intervention. Given these facts, | proposed optimizing the AAA
surveillance intervals for individual patients based on patient characteristics associated with
AAA growth: age, surveillance history of AAA size measurement, D-dimer level, and
diabetes status.

The objectives of this research are separated into two major segments: model-based
and population-based. In the model-based phase my goal was to examine all possible
combinations of variables (risk of rupture, surgical intervention threshold, and surveillance
frequency) to find the optimum surveillance protocol and surgical intervention
recommendation. Whereas in the population-based phase, | extracted the optimum designed
protocol from step one and compared it with currently available protocols that are being
applied in different countries.

In both approaches, the ultimate goals were:

1) To determine the surveillance protocol that provides the greatest benefits (higher life
expectancy, less surveillance, and fewer numbers of fatalities).

2) To determine the AAA size at which surgical intervention provides the greatest benefits.

1.2.1 Objective #1: The Optimum Designed Protocol (Model-based)

There are models that capture the growth rate of AAA in patients [5-8]. Monitoring
the AAA diameter in patients is essential to develop a descriptive model of AAA growth
rate. Such models can then be used in simulations to predict the preventative effect of
potential AAA surveillance [5-8]. But it is unknown how often the intervals of the screening
should be, what the risk of rupture for an individual patient is, and at what size an individual

patient should go under surgery. This is because patients with different risks, characteristics,



and financial power will not choose the same way of surveillance and treatment. Therefore,
identifying the most preventive surveillance intervals based on the characteristics of an
individual patient is strongly needed.

New surveillance protocols were designed and new surgical intervention thresholds
were tested by changing different decisive factors in simulation. These new protocols
integrated the size of AAA with the risk of rupture assigned to that size and then compared it
to different risks of surgery. Risk of surgery was tested for 1% to 10% (1% increments), and
then based on sensitivity analysis, was narrowed down to 0.5% to 5%. Surveillance period
limit of 1, 2, 3, 5, 7.5, and 10 years were also tested on all different protocols. Surgical
intervention threshold was considered to be 50 mm, 55 mm, and 60 mm in order to ensure a
better insight of which can be more preventive. Simulating diverse protocols by applying
different risks of rupture, risks of surgical intervention fatality, surveillance period limits,
and surgical intervention thresholds enabled me to examine all possible combinations to
reach the most optimum protocol.

Different studies suggest 55 millimeters as the size threshold for surgical intervention
for patients with AAA and do not recommend earlier surgical intervention [8-9]. Due to the
lack of postmortem studies to check the size in which the rupture happened, and the small
number of cohorts who went under current surveillance protocols, it is unclear whether
smaller or larger threshold sizes for surgery is more efficient. Efficient here means having a
higher life expectancy in comparison with no treatment case with respect to having less
number of surveillances. The ideal outcome for each protocol is to recommend surgery right
before rupture happens, but is this possible with setting 55 millimeters as the threshold of

surgery? Or can we have a higher number of on-time surgeries with a smaller size threshold?



Suggesting two different sizes (50 and 60 millimeters) and simulating the behavior of all
generated hypothetical patients in different protocols is required to answer this vital question.
This is another important factor in the efficiency of the suggested protocol.

| proposed using a model of AAA growth that has been fit to AAA growth data [1] to
simulate the growth rate of AAA and predict the number of surveillances and benefits of
different potential surveillance protocols. Simulations helped us to find variable non-
dominated solutions for different patients. According to the solutions, we could find the
optimal surveillance program that provides the lowest number of surveillances with the most
effectiveness (increase in life expectancy and decrease in the number of surveillances). In
addition, these simulations could support patients with different characteristics that were not
available in the previous study cohort. This designed protocol can help patients to know
which protocol can prevent them from fatal surgeries after rupture.

1.2.2 Objective #2: Current AAA Surveillance Protocols (Population-based)

Observed size of AAA in the surveillance is the only decisive parameter in the
recommendation of next surveillance interval in the current available surveillance protocols
in different countries, such as the United States, United Kingdom, Norway, Sweden, New
Zealand, Australia, and Italy [7]. There is significant inter-patient variability in the AAA
growth rate, which makes these protocols less accurate in predicting the most efficient
interval for next surveillance or surgery. For instance, surveillance protocol in the United
States suggests patients with sizes between 30 and 35 millimeters to return for surveillance
after 3 years, while the same patients return for surveillance on a yearly basis in Britain (see

Table 1.1).



Table 1.1: AAA surveillance intervals by country [7].

Country Diameter (mm) Surveillance
Interval (month)
Western
Australia 3055 6-12
Britain 30-44 12
45-54 3
New Zealand 30-55 12
Norway 25-29 60
30-40 24
40-45 12
45-55 3-6
Sweden 25-29 60
30-39 24
40-44 12
45-50 6
50-55 3
United States 25-29 60
30-34 36
35-44 12
45-54 6
Italy 30-55 6

If there are two patients with an AAA size of 34 millimeters, say patient A with a
very fast growth rate and patient B with a constant or negative growth rate, will they have the
same outcome if they follow the same protocol that is being followed in the United States?
Patient A may reach the threshold size and even have a rupture before passing 3 years, while
patient B will show the same or smaller size as previous surveillance. On the other hand,
following the protocol that is being enforced in Britain, patient B will spend time and money
on surveillances every year that he does not need. This is not the only problem with these
protocols. Since having a large cohort of patients going under these surveillance protocols in

a long period of time is needed to analyze and compare the outcomes, one cannot be



10

confident that which protocol is more preventive and efficient. Simulating these protocols
with an accurate growth model, using a vast cohort of generated hypothetical patients and
different surgical intervention thresholds gave us the opportunity to compare the outcomes.
Additionally, according to the optimum results of the model-based approach, we created a
protocol with surveillance recommendations solely based on size and compared it to

different countries’ protocols.



CHAPTER 2

METHODOLOGY OF SIMULATION STEPS

To accomplish the research aims of determining the most beneficiary surveillance
protocol and the optimum AAA size for surgical intervention, | utilized Monte Carlo
simulations to quantify the effects of varying the surveillance intervals and AAA size
threshold for surgical intervention and integrate the risk of rupture in the process of
recommending surveillances.

There are four major phases to performing the Monte Carlo simulations (see

Figure 2.1):
Bayes Rule Application
(Section 2.4)
Generating s T ™ Predicting the
Hypothetical Simulation Model Future
Patients (Section 2.2) Outcome
(Section 2.1) - S (Chapter 3)

e ‘l' N
Mortality and Rupture

(Section 2.3)
N y

Figure 2.1: Overall flow-chart for methodology.
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“Generating Hypothetical Patients” phase (Section 2.1) generates characteristics and
covariate effects for hypothetical patients that mimic those observed in a clinical cohort.
These characteristics and covariate effects are inputs for the AAA growth model.

In the second phase, the hypothetical data is used in a model of AAA growth to calculate the
size of the abdominal aorta at different time intervals in the future (AAA Growth Simulation
Model — Section 2.2). While all of the patients are 65 years old and above (the model is
based on a cohort of screened patients with an inclusion criteria of 65 years), there are fair
possibilities of natural death and sudden rupture (before reaching the rupture threshold)
during the time of surveillances.

Therefore, the third phase is to simulate the natural death and sudden rupture outcomes for
each individual (Post Screening AAA Growth, AAA Rupture, and All-Cause Mortality —
Section 2.3).

In the fourth phase, Bayes’ theorem is applied to calculate the probabilities of different
outcomes that can occur for an individual patient. Bayes’ theorem modifies the probability of

an outcome at present time by the observations that have been done in the past (Section 2.4).

2.1 Hypothetical Patients’ Data Generation

2.1.1 Generating the Patient Characteristics of Baseline AAA Size Diabetes Status,
D-Dimer Protein Level, and Age

The distributions of hypothetical patient characteristics were generated to mimic
those of the clinical cohort. Three different characteristics were associated with AAA growth
parameters in the clinical cohort: baseline AAA size, status of diabetes mellitus, and level of

D-dimer protein. In addition, age is associated with patient mortality so this was included as
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a fourth parameter. To expand the data that mimics the original cohort, | followed these
steps:
Finding the correlation coefficients among four different characteristics

| used the pre-built correlation function in “R”, which is called “cor”. This function
gets two vectors as input and returns the correlation coefficient between them. All of the
characteristics of the original cohort (299 patients) are vectors, so using the “cor” function
for each two characteristics gives us the following results.

Table 2.1 shows a weak correlation between different characteristics. The largest
correlation is between the level of D-dimer protein and the baseline size, and we can say

there is no correlation between the age and baseline size.

Table 2.1: Correlation coefficients of the original cohort’s characteristics.

) ) Diabetes D-dimer
Baseline Size ] Age
Mellitus Level

Diabetes Mellitus 0.0461 1.0000 -0.0896 -0.0980

-0.0075 -0.0980 0.1540 1.0000

Building Cholesky decomposition matrix based on the correlation coefficients

The Cholesky decomposition matrix can be used to transform independent random
variables to non-independent random variable. I used the Cholesky decomposition matrix to
impose the correlations observed in the clinical data onto the hypothetical patients. The first
step in this process was to calculate the Cholesky decomposition matrix for the correlation

matrix of the clinical data.
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The Cholesky decomposition matrix is a square matrix, which is built based on the
coefficients matrix. Pre-built function of the Cholesky decomposition matrix is available in
the “R” library; therefore, [ used it to calculate the Cholesky decomposition matrix based on
my coefficients from the previous part. This function is called “chol”. It gets the square
matrix of correlation coefficients and returns the Cholesky matrix result (which is a square
matrix too).

Generating four random values from the normal distribution (rnorm function in R)

At this step four independent, normally distributed random variables are generated.
This function is called “rnorm” in “R” and its inputs are number of normally distributed
numbers desired, mean, and standard deviation. The output is the normally distributed
random numbers generated. It is noticeable that mean is zero and standard deviation is one in
default settings of “R”. For example, the “rnorm(2)” command in R gives two normally
distributed random numbers with a mean equal to zero and standard deviation equal to one.
Multiplying preceding four normally distributed random numbers in Cholesky
decomposition matrix

| then had a vector of four normally distributed random numbers and the Cholesky
decomposition matrix, which is a square matrix. The length of the vector is the same as the
dimensions of the Cholesky decomposition matrix. Since it is a vector, | transposed the
Cholesky decomposition matrix in order to perform the multiplication. The transpose of a

“t”

matrix can be formed in “R” using a function called “t”, which gets a matrix and returns
transpose of it. The importance of this step is about the Cholesky decomposition matrix.
When you generate a vector consisted of normally distributed random numbers and multiply

it by the Cholesky decomposition matrix, the result vector mimics the original data that was
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built that the correlation coefficients are based on. In other words, different columns in the
product matrix have the same correlation between them as the original data.
Finding Cumulative Density Function (pnorm function in R)

To go back to the original cohort characteristics data and read the assigned data to
each of the numbers in the matrix that I made in the previous part, | needed to do one more
step. Elements in the vector of the previous part gave me the height of the probability density
function. Since | had the cumulative density function of my characteristics, | needed to
change the previous part’s output into probabilities. I applied a function that calculates the
probability of a normally distributed random number to be less than the given number. This
function is called “pnorm” in “R”. Input in this function is the vector of quantiles, mean, and
the standard deviation, and the output is the cumulative density function.

Call back the data from each row in the original cohort (quantile function in R)

All of the previous steps were needed to be done, so | can go back to the original
cohort’s data and recall the characteristics for a hypothetical patient. These are called
hypothetical patients because I built their characteristics by generating random numbers and
then transforming them through the explained process so that they act like the original
cohort. There is the original cohort’s data, consisting of different columns of four
characteristics of the patients, and there is a vector of probabilities with the same number of
columns. It is important that columns of the probabilities’ vector are consistent with the
original cohort’s data in all of the steps. For instance, the first column in the original data
represents baseline size in the original cohort. Therefore, the first column in the probability
vector should demonstrate the baseline size’s probability. If T go through each column of the

original data using these probabilities, I can return the desired characteristic for that patient.
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“Quantile” function in “R” has two inputs. One is the vector that you want to extract data
from it and the other one is its related probability. It returns the value of the characteristic
from the data based on the probability that you give. Therefore, | was able to recall all four
characteristics for a patient.

Repeating these steps 10,000 times generated four characteristics for 10,000 patients,
knowing that their behavior is just similar to the original cohort. | tested the previous
statement by plotting and comparing both the original and the generated data’s cumulative
distribution functions (see Figures 2.2 through 2.4). The upper plots are for the original
cohort and the lower plots show the generated hypothetical data. Table 2.2 shows the
similarity between generated hypothetical data and the original cohort’s data. The only

difference is the number of patients that | increased to have a more reliable analysis.

Table 2.2: Median (g1, g3) of characteristics of original cohort and generated
hypothetical data.

Hypothetical Patients

Original Cohort (N=299)

(N=10,000)
Median Baseline Size, mm

(a1, g3)

Diabetes Mellitus, N (%) 42 (14%)

D-dimer Level

1402 (14%)

(91, a3)

Median Age, year 72 72

(a1, g3) (69, 75) (69, 75)
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Figure 2.2: Age cumulative distribution function for (top) 299 AAA subjects from
Western Australia and (bottom) hypothetical patients.
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Figure 2.3: Baseline size cumulative distribution function for (top) 299 AAA subjects
from Western Australia and (bottom) hypothetical patients.
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Figure 2.4: D-dimer level cumulative distribution for (top) 299 AAA subjects from
Western Australia and (bottom) hypothetical patients.

2.1.2 Generating Covariates for Hypothetical Patients

The growth model that | used [1] to predict the future AAA sizes has model
parameters with covariate effects based on a patient’s characteristics. So it needs the patient
characteristics of an individual to predict the growth rates of this individual patient. Given

the posterior matrix of covariate effect values from the WinBUGS fit of the prediction model
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to the data (5,000 sets of covariate values), | was able to implement the same approach as |
did for characteristics. The rationale behind this part is that | wanted to be able to have a
growth trajectory (based on hypothetical characteristics and hypothetical covariates) assumed
as actual trajectory for each individual (described in Section 2.3.1).

Finding the correlation coefficients among eight different characteristics

| applied the pre-built function called “cor” in “R” again for this part. This time my
input was an 8 in 5,000 matrix; including seven covariates, which are used in the predicting
model (explained later), and a deviation variable, which shows the effect of the noise of
surveillance.

Building the Cholesky decomposition matrix based on the correlation coefficients

Because | wanted to generate new hypothetical covariates for the hypothetical
patients, | needed to use the Cholesky decomposition matrix again to be reliable on the
original output of the model based on real patients. The “chol” function in “R” was built
based on the correlation matrix given by the previous step.

Generating 8 random values from the normal distribution (rnorm in R)

There were seven different covariates in the data set plus one deviation factor;
therefore, | needed to generate eight random values. The “rnorm” function in “R” is used to
do so as. This function is completely explained in the Section 2.1.1.

Multiplying preceding 8 normally distributed random numbers in the Cholesky
decomposition matrix

Again, it was a vector of eight normally distributed random numbers that | wanted to
multiply in the Cholesky decomposition matrix. | used “t” function to make it possible for

the vector and the matrix to be multipliable.
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Finding Cumulative Density Function (pnorm in R)

I used “pnorm” function in “R” to change the height of the probability density
function to the cumulative density function to be able to use the original data set (posterior)
to call back the generated data.

Call back the data from each row in the original data set (quantile function in R)

All the previous steps made it possible to go to the posterior matrix of covariates that
| had from the output of WinBUGS and recall the assigned parameter to each hypothetical
patient.

Implementing these steps 10,000 times results in having a matrix of correlated
posterior values, which includes the required covariates needed to calculate the parameters in
the growth model and the deviation factor used in observations.

These parameter values for k™ Markov chain Monte Carlo iteration, and the ;™
hypothetical patient are ﬁé‘,)c for baseline AAA size, 31(2 for baseline AAA growth rate, and

®

2.« for constant first derivative of AAA growth rate with size. | used these formulas to

calculate the covariates for each individual in my data set:

@ _ px(0) 1)
0,k Ok median (Y (0))’

Eq. 2.1

i) _ (0 (¥(0)) __ Yi(0) (c(D-dimen), logy o (€ (P~dimen)y
1k = Pric ¥ ﬁl’k median (¥(0)) TPk median( logyo(c(P-dimer))y’ Eq.2.2
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W _ p©@ 4 p(r©) Y;:(0)
2k 2k 2k median (Y(O))

(c(D-dimen) loglo(c(D—dimer)) Eq. 2.3

+ ,
ﬁz,k median( loglo(c(D—dzmer)))

+ ,B’é'DkiabEtes)Diabetes,
where Y;(0) is the baseline AAA size measurement, C(P~4imen) js plasma D-dimer

concentration, and Diabetes is the diabetes status for the i*® patient. In the posterior matrix,

(C(D—dimer)) (C(D—dimer))

and consequently, in the correlated posterior matrix, 31((;3 Z(Ok) Lk Bk :

©) p((0) g 'B(Diabetes) (Y (0))
0k

ik Bar 2k areavailable and B, is the baseline AAA size of the patient,

which is provided in the characteristics data. Therefore, | could use the hypothetical
covariates to calculate the hypothetical parameters in the growth model. Table 2.3 shows the
median values (Q1, Q3) of final model’s fixed parameters and the median values (Q1, Q3) of
generated hypothetical covariates and its similarity to the original data. Table 2.4 shows the

median values (Q1, Q3) of the covariance matrix form the original study [1].
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Table 2.3: Median values (q1, g3) of the final model’s fixed parameters and generated

hypothetical parameters.

Y(0
B(()())

denotes covariate effect of baseline AAA size
measurement on baseline AAA size model parameter

32.6 (32,5,
32.7)

32.6 (32.5, 32.7)

0 . .
B g ) denotes offset from covariate effects for baseline

-1.61 mm/year

-1.47 mm/year

AAA growth rate model parameter (-3.08, -0.30) (-2.72,-0.33)
B gy(o)) denotes covariate effect of baseline AAA size 2.03 mm/year 1.94 mm/year
measurement on baseline AAA growth rate model (0.87, 3.40) (0.93, 3.07)

parameter

(E(D—dimer)) .
1 denotes covariate effect of plasma D-

0.90 mm/year

0.86 mm/year

dimer concentration on baseline AAA growth rate (0.11, 1.64) (0.17, 1.55)
model parameter

B gO) denotes offset from covariate effect of baseline -1.05/year -1.07/year
AAA size measurement on first derivative of AAA (_1_52' -0.53) (_1.;53, -0.59)
growth rate with size model

B () denotes covariate effect of baseline AAA size

2 0.59/year 0.61/year
measurement on first derivative of AAA growth rate (0.11, 1.03) (0.16, 0.99)
with size model parameter

(E(D—dimer)) q .

2 enotes covariate effect of plasma D- 0.37/year 0.38/year
dimer concentration of first derivative of AAA growth (0.13, 0.62) (0.15, 0.62)
rate with size model
ﬁgmabews) denotes covariate effect of diabetes status -0.32/year -0.31/year
on first derivative of AAA growth rate with size model (_0.45, -0.18) (_0_'45’ -0.18)

parameter
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Table 2.4: Median values (g1, g3) of the final model’s fixed parameters covariance
matrix.

Fixed Parameters Value

af;o = ).1,1 denotes variance of baseline AAA size model parameter 0.19 mm? (0.13, 0.28)

0'12; L= Y.2,2 denotes variance of baseline AAA growth rate model 1.11 mm? /year?

parameter (0.86, 1.42)

o%o = ).3,3 denotes variance of first derivative of AAA growth rate 0.10/year? (0.07,
0.13)

with size model parameter

O'fgoﬁl = 112 denotes covariance between baseline AAA size and 0.30 mm?/year (0.20,

baseline AAA growth rate model parameter 0.41)

o%o,ﬁz = 113 denotes covariance between baseline AAA size and first  -0.06 mm/year (-0.09,

derivative of AAA growth rate with size model parameters -0.03)

2 . .
o = denotes covariance between baseline AAA growth rate
Bupz = 223 0.59/year (0.11, 1.03)

and first derivative of AAA growth rate with size model

2.2 AAA Growth Simulation Model

The AAA growth simulation model used in this research is based on the output of a
Bayesian analysis on the growth of screen-detected AAA in men by Sherer et al., 2012 [1].
Out of 875 men diagnosed with AAA (above 30 mm) in a Western Australia screening, 299
were followed with serial AAA diameter measurements. This model is based on this 299
patient cohort who were followed for a median of 5.5 years and provided a median of 6 AAA
size measurements per patient. Table 2.5 shows the characteristics that are used in the model
and will be used in this study. The explanation of the growth model, characteristics, and

covariates effects are included in the previous section (Section 2.1).
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Table 2.5: Characteristics of patients included in the simulation model [1].

‘ Characteristic Value ‘
Number of men 299
AAA diameter at baseline, median (g1, g3) 32.7 mm (30.8, 36.0)
Duration of follow-up, median (g1, g3) 5.5 years (5, 6)
AAA measurements per patient, median (g1, g3) 6 (6,7)
Age, median (g1, g3) 72 years (69, 75)
Diabetes, N (%) 42 (14%)
D-dimer protein, median (g1, g3) 326 ng/ml (142,785)

2.2 Post-Screening AAA Growth, AAA Rupture, and All-Cause Mortality

2.2.1 Simulation of AAA Growth for Individual Patients

It is very important to know how an AAA grows in the upcoming years. Does it grow
fast? Does it have a constant growth rate? Does it have a negative growth rate? All of these
possibilities are vital for making a decision in the future of the patient. If the AAA is a fast
grower, it will reach the threshold of surgery and rupture faster than a AAA that has a small
or negative growth rate. Now that both characteristics and covariates were generated, | could
generate the parameters for all the patients. Giving different values to t, provided us the size
of the abdominal aorta in the future time (Section 1.1.3).

| separated the growth model outputs into two different categories; one is what |
assumed as actual growth trajectory, in which I used the generated hypothetical patients’
characteristics and correlated covariates. The other category which is modeled growth
trajectory was also based on hypothetical patients’ characteristics, but this time | used
WinBUGS posterior distribution from the clinical data as covariates. In this case we could

have one actual trajectory for each hypothetical patient and 5,000 modeled trajectories that
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we could compare and analyze the differences in size in future. Figure 2.5 shows the actual
growth trajectory for one patient in grey, with modelled growth trajectories in black. A dense
area of modelled growth trajectories can be seen when the number of modelled trajectories

increase.

Expected Baseline Growth vs. Time Expected Baseline Growth vs. Time

55
90 100

Baseline Size (mm)
50 5
Baseline Size (mm)
70

45

50

40
40

0 2 4 6 8 10 0 2 4 6 8 10
Time (Year) Time (Year)

Figure 2.5: AAA size versus time for 10 and 5,000 growth trajectories (actual growth
trajectory: grey, modelled growth trajectory: black).

2.2.2 Simulation of the Age of AAA Rupture for an Individual Patient

For patients diagnosed with abdominal aortic aneurysm, even if their aorta diameter
is less than the threshold for elective surgery, having a rupture is possible [10-12]. Therefore,
| had to consider rupture as an outcome in the future of the patients. According to numerous
researches in the past 30 years, | have found that the risk of rupture is highly related to the
size of aorta. The largest cohort was for the Rescan 2013 meta-analysis by Bown et al. 2013
[7], which showed a clear relationship between the baseline size and the rate of rupture.

Because | have had a growth model that predicts the size in different time intervals, | was



27

able to predict the time of rupture using the assigned risk of rupture to each size and use the
Monte Carlo simulation to select when the AAA will rupture for each hypothetical patient.

| used the Monte Carlo simulation to estimate the age at which a patient’s AAA will
rupture. In the Monte Carlo simulation, we can determine the interval of quiescence (the time
period in which nothing happens — which is the time until rupture here) based on the known
state of system (AAA size) at the current time [40]. To know the state of system at the
current time, we could use the AAA growth rate to predict the AAA size at any future time.
Then to find the interval of quiescent, we needed the transition rates; a transition rate is a
function of state that describes the occurrence that we were looking for, which is AAA
rupture in this case. As | mentioned before, multiple studies during the past 30 years have
shown that the size of abdominal aorta is the most effective factor in the risk of rupture [7].
The Rescan 2013 meta-analysis by Bown et al. 2013 [7] with a cohort of 15,471 patients
quantified the relationship between the baseline sizes of abdominal aorta and the rupture rate.
| adopted the data from their paper (for specific baseline sizes; 30 mm, 35 mm, 40 mm, 45
mm, and 50mm) and fit the data in the most accurate way possible in Microsoft Excel (see
Figure 2.6). The reason for fitting to data is because size is a continuous parameter and the
size of the aorta can be any real number, and not only the exact numbers that | adopted from
the Rescan study. Data was best fit using a fourth degree polynomial with R-squared value of
1. The largest baseline size related to a rupture rate available in this study was 50 mm
(because surgery is generally recommended around this size), but it is possible for abdominal
aorta to grow more than 50 mm without rupture and surgical intervention. Despite the fact
that extrapolating can be risky in predicting the behavior of a function at unknown points due

to fluctuations and possible different behavior of functions, | had to use this function for
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unknown points, too, to be able to calculate the age of rupture for those patients who will
have abdominal aorta larger than 50 mm without having rupture. | extrapolated this fourth
degree polynomial up to 100 mm in size to check if it has any undesired behavior, such as
fluctuations, but the function is monotonically increasing, which is fairly a good estimate

since the risk of rupture increases with size in the available data.

Rupture Rate vs. AAA Size
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Figure 2.6: Rupture rate versus size.

Determining the transition rate (rupture rate versus the abdominal aorta’s size)
provided the quiescent interval as a function of the status of the patient (AAA size). The
rupture age is the desired variable, but the transition rate function gives the rupture rate
versus size. At this point we utilized the growth model function once again to relate the size
to the time (age). In every step of the process we could use the growth model to find the size
related to the age. If we consider t as the current time and take a step equal to dt in time, we

can say that the interval of quiescence is greater than 7 + dt since the event did not occur in
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the period of (t, 7 + dt). The shortest period of time that was recommended to a patient for
surveillance is one year; therefore, | decided to choose dt equal to three months to be fairly
accurate and avoid further errors. In mathematical terms:

P(t +dt|x;) = P(t|x)[1 — b(x(t + 7, x¢, 1))], Eq. 2.4
where b is the transition rate (i.e., rupture rate) and x is the AAA size which is a function of
the growth rate which is dependent to the size at current point and time. Rearranging terms

and dividing by dt, letting dt — 0:

%P(Tlxt) = —P(t|lx)[b(x(t + T, x¢, )] Eq. 2.5

We know the fact that quiescence interval is greater than 0, so:
P(0]xy) =1, Eq. 2.6
and
P(z|x;) = exp[— forb(x(t + 17, %, t) dT']. Eq. 2.7
Giving the cumulative distribution function for the quiescence interval:

T
F(t|x;) =1 —exp [—f b(x(t + 7', xo,t) dt'l : Eq. 2.8
0

Randomly selecting a uniformly distributed random variable R on the cumulative

distribution function, a sample value of the quiescence interval T is then found from:

T
R=1—exp I—f b(x(t + 1, X, t)) drl, Eq. 2.9
0
T
R—1=—exp [—f b(x(t + 7, %0, 1)) drl, Eq. 2.10
0

T
In(1-R) = —f b(x(t + 7,x0,t)) dr, Eqg. 2.11
0
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T
—In(1-R) = f b(x(t + 7, %0, t)) d. Eqg. 2.12
0

| generated a uniformly distributed random variable, R for each patient, and solved
this equation to find the age of rupture, T. To solve this equation | had to use bisection
method for root finding. | wrote the code in R with error precision of seven decimal points
(Appendix B). For the ranges in bisection method | used the current age as lower limit and
120 years as the upper limit, which is fairly rational since there are not many people who live
past this age. This formula starts from time zero to time T, when the incident happens. With
a little modification | can start from the current age (4,) to the age when the AAA will

rupture (1,):

2z
—In(1—R) =f b(x(7, %)) d. Eq. 2.13

A
In the programming and calculations, | used trapezoid rule for small intervals to
calculate the integrations for each step. The transition rate function is a fourth degree
polynomial and with the function’s behavior in the desired interval, trapezoid rule could be
an accurate method.

2.2.3 Simulation of the Age of Non-AAA Related Mortality of a Patient

Another likely occurrence that may happen to the patients in the study cohort is death
by all non-AAA related causes. All the patients are above 65 years old, so non-AAA related
death is a likely outcome. To calculate the age when patients die by non-AAA related causes,
| had an easier approach. Using the Monte Carlo simulation this time, as | have had the
mortality rate versus age given by National Vital Statistics System in 2014 [41], needed less

effort because | did not have to call back age by size using an additional function.
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To find the transition rate for death by natural causes, | used the data from National
Vital Statistics System data of 2014 [41]. This data set gives the death rate per 10,000
populations for specific ages. | first converted the death rates form per 100,000 populations
to per person and applied an interpolating polynomial to the data with the most accurate
function, because age is a continuous function. | adopted data for 50 to 90 years old men
with 5 years intervals and fitted the data with sixth degree polynomial with R-squared value

equal to 1 (see Figure 2.7).
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Figure 2.7: Death rate versus age.

Equation (2.13) can be easily modified for natural cause death. The only differences
are that the transition rate is the mortality rate (rather than the AAA rupture rate) and the
mortality rate is a function of age, which increases uniformly with time (so the growth model

function does not need to transform size into age):
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2z
—In(1—R) =f b(x(7, %)) dr, Eq. 2.14

A
Where A, is current age of the patient, 1, is natural death age, b is the transition rate (i.e.,
mortality rate), and x is the age at current time. Again, | generated 10,000 uniformly
distributed random variables for each patient and used trapezoid rule and bisection method to
solve the equation and fine the natural death age.
After this section, I had the data of natural cause death and the age of rupture for each

one of 10,000 patients in my data set, which gave me an overview about their future.

2.3 Application of Bayes’ Rule to Predict AAA Size
with Age of an Individual Patient

At the beginning of predicting the future of AAA size in a patient based on the
patient characteristics, there are many potential growth paths dependent on the set of
covariates that we used in the growth model. As mentioned before, I assumed the growth
trajectory of a patient to be the actual growth trajectory if the generated characteristics and
generated covariates are used in the growth model. The modelled growth trajectory is when
the generated characteristics of a patient are used with the covariates from posterior matrix
(WIinBUGS posterior distribution from clinical data). Because there are 10,000 sets of
characteristics and 10,000 sets of covariates generated, there are 10,000 different actual
trajectories for each one of the hypothetical patients. It is important to note that this is just an
assumption for further calculations and all other trajectories can be the actual trajectory for a
specific patient. For each patient, using generated characteristics and 5,000 different
covariates from posterior matrix, there were 5,000 different modelled growth trajectories. |
used these trajectories to compare with the one which is assumed to be the actual growth

trajectory. At the initial time for each patient, all of the 5,000 different trajectories are
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equally likely to happen. As time passes and observations determine the actual size of
abdominal aorta (the size which is read from the actual growth trajectory of the patient) the
likelihood of other possible trajectories (modelled growth trajectories) can be computed.
Trajectories with sizes more similar to the actual trajectory are more likely to happen and

those with sizes far from the actual observation are less likely to be the actual trajectory of

the patient. At the beginning, the probability of each trajectory was Floo but after each

observation, I could update this probability based on our observation, using the Bayes’ rule.

According to the Bayes’, rule we can write:

Gilx) = pxlj) pGy)
P N ICIDEID)

Eq. 2.15

Where x is vector of size measurements and j; is the i™® growth trajectory. This
equation states that the probability of the i*® trajectory (p(j;|sizes)), given a specific size
(observed size), is equal to the probability of that size, given the i*" trajectory (p(sizes|j;))
multiplied by the current probability of the i*? trajectory (p(j;)) over the sum of probabilities

based on previous quantities. For example, in the first observation, the probability of each
trajectory is ﬁ This number keeps getting updated during later observations and that is

how the probability of trajectories close to the actual trajectory gets larger and the probability
of the trajectories far from the actual observations gets smaller. To perform these updates |
used “R” software. First, | had to determine the actual size based on the actual growth
trajectory. For this purpose, once again, I used “rnorm” function. This time I did not want to
generate randomly distributed numbers. | generated this number based on the distribution
over that specific time on the actual growth trajectory. As input, | set the number of

observations as one and the data set as actual growth trajectory and the deviation from the



34

correlated posterior matrix. When | explained the formation of the correlated posterior
matrix, | mentioned a column consisting of deviation (noise) in observations. Here is where
we use the deviation to have the effect of noise in our calculations. The feedback of this
function is the actual size at that specific time, centered on the actual growth trajectory. The
next step was to compare this actual size in a specific time with other modelled growth
trajectories to find the likelihood. In this step, Tused “dnorm” function and set the actual size
found in the previous step, and the size of the desired trajectory, to find the likelihood.
Output of this function is the likelihood between the observation and the size in a modelled
trajectory. Finally, | multiplied the previous probabilities in the likelihood of the modelled
trajectory based on new observations and divide it by the sum. | repeated this approach each
time | needed to do an observation and kept updating the probabilities of different
trajectories. Another use of this approach in my research is calculating the cumulative risk of
rupture. In Chapter 2.3, | explained how | found a function to relate the size in abdominal
aorta to the risk of rupture. When the probability of each modeled growth trajectory is known
at different observations, we can find the cumulative risk of rupture by multiplying the
probabilities’ of different trajectories in the assigned risk of rupture for that specific size. We
define the cumulative risk of rupture as:
Cumulative Risk of Rupture = }}; p(j;|1x) Risk;. Eq. 2.16
By this calculation, I have an estimate about the risk of rupture in a patient based on
5,000 different possible trajectories. This data is also updated based on actual observation,

which makes it more precise and more reliable on the patient’s actual size.



CHAPTER 3

EXPERIMENTAL PROTOCOLS AND
ANALYZING PARAMETERS

The methods described in Chapter 2 can be used to generate actual growth
trajectories, rupture ages and sizes, and non-AAA related mortality ages for hypothetical
patients in addition to predict the likelihood of rupture for an individual patient. In this
chapter, | describe how | used this simulation model to address the questions about when
patients should receive surgery and how often they should receive AAA surveillance.

One of the objectives of this study was to identify the most effective surveillance
protocol by integrating the effect of risk of rupture at each interval to recommend the next
surveillance (Section 3.1). On the other hand, current surveillance protocols in different
countries are solely based on the AAA size. These protocols recommend patients to return
for another surveillance based only on the size that is observed at current observation. After
extracting the most optimum surveillance protocol from the first phase (Section 3.1) we were
able to compare it to current available protocols in different countries in the second phase
(Section 3.2).

In this section | will explain the procedure of simulation and decision making in both
designed protocols and current available protocols. In the last section | will discuss the

parameters that quantified these assessments.
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3.1 Designed Protocols — Proposed Protocols by Integrating
Risk of Rupture in Surveillance Intervals

As The ultimate purpose of designed protocol is to integrate the risk of rupture in the
process of decision making about surveillance intervals. Figure 3.1 shows the overall
procedure of simulation by referring to each section in the methods. The smallest interval for
surveillance, due to current protocols, is three months and, in medical terms, having
surveillance in less than three months rarely happens. Therefore, the minimum time step in
this procedure is three months. The simulation will stop if the patient reaches the end time,
which is defined as the time he dies by natural causes (Section 2.3.3) or has a sudden rupture
(Section 2.3.2). The other case that stops the simulation is when surgery happens: when the
patient passes the AAA size threshold for surgery (50, 55, or 60 mm based on different
simulations). After taking a step in time through the growth model, the cumulative risk of
rupture (Section 2.4) is compared with the risk of surgery. If the risk of rupture is more than
the risk of surgery, or if we reach the time limit without risk of rupture passing the risk of
surgery, the patient should go for a surveillance which updates the probabilities (Section
2.4). The size, in which patients go for surveillance, and the time of the intervals, were also

recorded for further comparison with current protocols.
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Figure 3.1: Flow-chart of designed protocols (model-based).

This procedure was implemented on 10,000 hypothetical patients, each having 5,000
modeled trajectories with different risks of surgery and time limits for surveillance to check
the effect of each of these two parameters on the results. Primary simulations have been
conducted for 1% to 10%, with the increment of 1%. The highest variability in the results
was associated to the smallest risks. Therefore, the simulations were narrowed down to
0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, and 5%. Time limits for the cases that the risk of
rupture does not pass the risk of surgery are 1, 2, 3, 5, 7.5, and 10 years. Considering three
different thresholds for surgery (50, 55, and 60 mm) gives us 144 different protocols for
simulation.

3.2 Available Protocols — AAA Surveillance Protocols
in Different Countries

As mentioned in Chapter 1, because there is not a vast cohort of patients who have
been under surveillance by these protocols, one cannot say which protocol has fewer deaths

due to sudden rupture or which protocol results in higher number of surveillances. Therefore,
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by using the accurate growth model that is available, as well as data of generated
hypothetical patients, | simulated these protocols in the long term on a much larger
population. | used the baseline AAA size in the hypothetical generated data as the first
observation, and, according to the protocol, set the next observation. In this approach I only
used the actual growth trajectory for each patient, because I did not have to calculate the
cumulative risk of rupture based on modeled trajectories. | also set the threshold for surgery
as 55 mm, so the patient will be recommended to go under surgery if he reaches the
threshold during the observations (Figure 3.2). Doing this simulation on 1,000,000
hypothetical patients by applying different protocols (see Table 1.1), provided me with the
number of surveillances, number of surgeries, number of deaths caused by natural causes,
and number of sudden ruptures. All these results can show how the outcome of these
protocols are different and which one is the most preventive. Additionally, | did the
simulation again by setting the surgical intervention threshold as 50 mm, to be able to answer
my hypothesis on the credibility of the threshold for surgery. Setting surgical intervention
threshold at 60 mm was not applied in this simulation. According to the preliminary results,
60 mm did not lead to any benefit to patient’s life expectancy, surveillances, or number of

ruptures (Section 4.1).
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To make a fair comparison between the optimum designed protocol from the model-
based simulations with the current available protocols in different countries, | needed to
modify the designed protocol in a way that its basis is similar to current available protocols
in different countries. In the designed protocols, the decision of when to do another
surveillance on the patient is made by integrating risk of rupture and comparing it to the risk
of surgery. However, in population-based simulations (and in reality) timing of next
surveillance is based on the patients’ AAA size at current observation. Using records from
the model-based simulations, | created a protocol like the ones that are being used in
different countries. By analyzing the timing and the size in which patients went for
surveillance in the most optimum outcome of model-based simulations, | categorized
surveillances based on different AAA size slots. This enabled me to create surveillance
intervals only based on AAA size for the most optimum outcome of the model-based

simulations.
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3.3 Analysis Parameters

3.3.1 Outcome #1: Life Expectancy

To point out the difference among protocols for surveillance in long term, | defined a
parameter that compares the effectiveness of these protocols on the life expectancy of the
patients. In this parameter, | compared the estimated lifetime of the patient with and without
treatment. | had two different approaches toward fatality of sudden rupture;

- worst-case scenario which assumed that 90% of those who experience sudden

rupture die and 10% will survive (Figure 3.1)

- and best-case scenario which considers fatality rate at 70% [1].

Also 2% of those who go under surgery are assumed to die [13]. In no treatment
scenario, | only used data from Section 3.2 and 3.3 to estimate the age that patients will die
by natural causes or will have sudden rupture. Data regarding each patient going under
surveillance protocols were also available in the designed protocols, so the change in lifetime
could be calculated in this case too:

Change in Life Expectancy(Patient;)
= Lifetime  eatment (Patient;) Eq. 3.1
— Lifetimey treatment (Patient;).

3.3.2 OQutcome #2: Number of Surveillances

Change in life Expectancy by itself is not a complete metric for the comparison of
different protocols. For example, a patient may go under surveillance every 3 months and go
under surgery right before the time of sudden rupture. Excessive number of surveillances is
not desired because it is not possible for patients due to economic issues and patients’

inconvenience. Number of surveillances is looked into in this study as a measure of
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efficiency in each protocol. By focusing on this parameter, it is possible to compare two
protocols more accurately. The most preventive protocol is considered to be the one with
highest increase in life expectancy and fewer number of surveillances at the same time.

3.3.3 Outcome #3: Number of Ruptures

Sudden rupture, if happens before natural death or elective surgery, is the least
desired outcome of the simulation because it is highly fatal [2-3]. A higher ratio of the
number of surgeries to the number of sudden ruptures is preferred, because it recommends
patients to go under surgery before the rupture happens. In other words, in the timeline of the
events, the most preventive protocol suggests elective surgery right before the rupture
happens. However, it is really important to note that in population-based simulation this
parameter (number of sudden ruptures) loses its value. This is because when surgery is being
recommended solely based on size and not the calculated risk of rupture, number of sudden

ruptures are independent from simulation.

3.4 Analysis on the Results

3.4.1 Primary Analysis: Pareto Fronts

Increased life expectancy is the most important goal of the treatment protocols.
Patients spend time and money on surveillances and take the risk of surgery in order to
increase their life expectancy but there are always constraints that should be considered.
Keeping an eye on increase in life expectancy in a protocol, the efficiency of that protocol
should be examined too. Having surveillances too often can obviously leads into an increase
in life expectancy but it comes with expense of time and money for unnecessary
surveillances that could have been avoided. An effective model should be efficient at the

same time to be practical. Efficiency of a surveillance can be measured by the number of
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surveillances that each patient goes through (defined in Section 3.3.2). This factor gives us
an idea if a protocol is increasing its effectiveness by increasing the number of surveillances
unnecessarily (which is not desired). The last parameter (number of sudden ruptures) also is
a valuable measure to evaluate a designed protocol. This parameter is useful in designed
protocol analysis, because cumulative risk of surgery was calculated in different periods.
However, in current protocols (population-based analysis) this factor is not decisive since
decision making for surveillance or surgery is only based on AAA size and not a comparison
risk of rupture and surgery.

To evaluate protocols both in model-based and population-based simulations, 1 used a
series of two-dimensional plots with the combination of three analyzing parameters; change
in life expectancy, number of surveillances, and number of sudden ruptures. In each of three
plots, I distinguished the protocols that reside on the Pareto Fronts. These are protocols that
are non-dominated by others with respect to analyzing parameters. For example, in the plot
of increase in life expectancy versus number of surveillances, protocols that have higher
increase in life expectancy while keeping the number of surveillances fewer are considered
non-dominated. Protocols that were available in all Pareto Fronts (model-based) and on two
(population-based) were considered to be the most optimum protocols regarding decisive
factors.

3.4.2 Secondary Analysis: Patient Categories

Categorizing patients based on their characteristics (age, AAA size, and diabetes
mellitus status) and then observing how they benefited from a treatment protocol give
significant insight about the effectiveness of each protocol. For instance, if patients with

smaller sizes benefit less from protocol, or if older patients benefit more. Results from
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simulation on all protocols were combined and then divided into different groups based on
specific criteria. This analysis was implemented both on model-based and population-based

results.



CHAPTER 4

SIMULATION RESULTS

Results of this research are separated into two phases. The first phase is model-based
simulations performed on 10,000 hypothetical patients to identify optimum surveillance
protocol. The second phase is a population-based analysis, which applies the optimum
protocol of the model-based analysis to a larger population. Simulations were performed on
10,000 hypothetical patients through designed protocols and for 1,000,000 hypothetical
patients through the most optimum outcome (protocol) as well as current protocols followed
in seven different countries. For each category of simulation, the timing and number of
surveillances, ruptures, surgeries, and deaths by natural causes were measured. Based on
these measurements, | analyzed which surveillance protocol leads to the highest life
expectancy while keeping the number of surveillances and sudden ruptures as low as
possible. In the designed protocols, the AAA size at each recommended observation and the
time interval between observations, were recorded for each hypothetical patient. These data
provided us the opportunity to address the objectives of this research on identifying the
surveillance protocol and surgical intervention threshold that provides the greatest benefits
(higher life expectancy, fewer surveillances, and fewer number of fatalities).

In the first section of this chapter (Section 4.1), results of the model-based analysis,

(Section 3.4.1) are shown. Due to the large number of designed protocols, only three result
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tables (including the best protocol) are reported here in Section 4.1.1 and the results of the
rest of the protocols can be found in appendix A.

The second section of this chapter (Section 4.2) is assigned to the population-based
analysis which using the methods of Section 3.4.2, was performed on the most optimum
protocol from the model-based simulation and protocols that are currently being enforced in
different countries. The results of the second analysis on the designed protocols are available

in Section 4.2.1.

4.1 Model-based Analysis Results

4.1.1 Designed Protocols

All analysis parameters explained in Section 3.3 (increase in life expectancy, number
of surveillances, and number of sudden ruptures) are summarized in tables for all 144
designed protocols. This gives a better look on how different designed protocols led to
different outcomes in term of increase in life expectancy, number of surveillances, and
number of ruptures.

Tables 4.1 to 4.3 show the results for varying the AAA size threshold of surgery of
50, 55, and 60 mm, respectively for 7.5 years time limit. Results for 7.5 years time limit were
chosen because it includes the optimum protocol. Each surgery size threshold was tested as
part of eight different protocols varying the estimated risk of surgery. The minimum time
limit between observations was varied from 1 year to 10 years. Detailed results of all other

protocols are available in Appendix A.
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Table 4.1: Simulation results for effects of varying the surgical intervention risk for 7.5
years observation time limit and 50 mm surgery threshold.

Surgery

Number of
Ruptures
Number of

. 2898 2796 2706 2628 2589 2521 2449 2347
Surgeries
Number of

Natural
Deaths

6993 6911 6657 6394 6510 6492 6258 6140
Expectancies

Table 4.2: Simulation results for effects of varying the surgical intervention risk for 7.5
years observation time limit and 55 mm surgery threshold.

Surgery
Number of
[ o o o m om o w w ow
Number of
Surgeries

2334 2190 2210 2181 2142 2101 2025 1980
Number of
Natural

Deaths -------

Sum of Llf.e 6644 6611 6588 6441 6450 6287 6387 5907
Expectancies
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Table 4.3: Simulation results for effects of varying the surgical intervention risk for 7.5
years observation time limit and 60 mm surgery threshold.

Surgery
Number of
Ruptures

Number of 1001 1814 1762 1760 1707 1726 1712 1664
Surgeries

Number of
Natural

6263 6041 5716 5932 5987 5807 5865 5779

Deaths
Sum of Life
Expectancies

Figures 4.1 through 4.3 show the simulation outcomes of all 144 designed protocols
for life expectancy versus number of surveillances, life expectancy versus number of
ruptures, and number of surveillances versus number of ruptures, respectively. Figures 4.1
through 4.3 are based on aggressive approach in analysis, in which, fatality rate of sudden
rupture was assumed to be 90%. This will be discussed in more details in sensitivity analysis
section.

Data points on each Pareto front were distinguished by size (Figure 4.1), filling
(Figure 4.2), and diamond shape (Figure 4.3). There is one protocol which is available on all
three Pareto fronts (large filled diamond data point). This unique protocol suggests 50 mm as
the threshold for surgery, 7.5 years as the threshold for surveillance, and 0.5% as the decisive

risk of rupture for surveillance compared to size-relative risk of rupture.
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Figure 4.1: Increase in life expectancy versus number of surveillances for 90% rate of
fatality after AAA rupture (larger data points are non-dominated).
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Figure 4.3: Number of surveillances versus number of ruptures for 90% rate of
fatality after AAA rupture (diamond shaped data points are non-dominated).

The features of protocols that are non-dominated in at least two of the three outcomes
(e.g. appear on the Pareto front in at least two of the Figures 4.1 to 4.3 are listed in Table 4.4.
All the protocols available on the Pareto fronts apply the 50 mm as the threshold for surgery.
Therefore, these protocols provide higher life expectancy, fewer number of surveillances,
and fewer numbers of ruptures if the patients with AAA size above 50 mm go under elective

surgery.
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Table 4.4: Optimum protocols available on at least two pareto fronts in figures 4.1
through 4.3.

Increase in
Figure | Figure | Figure
Life Number of Ruptures
Surgery Surveillance Decisive 4.1 4.2 4.3
Expectancy Surveillances per
Threshold Time Limit Risk Pareto | Pareto | Pareto
per 10,000 per Patients Patients
front front front
patients
50 mm 7.5 years 0.5% 6,993 years 2.72 0.0167 v v v
50 mm 10 years 2.5% 6,726 years 0.82 0.0179 v v
50 mm 10 years 3% 6,326 years 0.77 0.0229 4 v
50 mm 10 years 5% 5,967 years 0.74 0.0236 v v
50 mm 1 years 0.5% 6,630 years 9.54 0.0143 v v

Increasing surgery threshold to 55 mm in the optimum protocol results in 5%
decrease in life expectancy, 31% increase in number of surveillances, and 29% increase in
number of ruptures. For 60 mm the differences are even greater (10% decrease in life
expectancy, 60% increase in number of surveillances, and 62% increase in number of
ruptures).

The surveillance time limit of 7.5 years gives the most beneficial outcome. The
surveillance time limit of 10 years for the optimum protocol may result in slightly less
surveillances (-1%) and fewer ruptures (-4%), but it causes decrease in life expectancy (-
2.5%). The scenario is different for shorter surveillance time limits. Such protocols increase
the number of surveillances and the number of ruptures while lowering the life expectancy,
leading to a no-win situation. For instance, the life expectancy drops by 3% for 5 years, 6%

for 3 years, 1% for 2 years, and 5% for 1 year surveillance time limits in the optimum
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protocol, while the numbers of surveillances rises by 6% for 5 years, 33% for 3 years, 79%
for 2 years, and 250% for 1 year. The numbers of ruptures are also higher in the protocols
with shorter surveillance time limits (1% for 5 years, 2% for 3 years, 5% for 2 years, and
15% for 1 year).

4.1.2 Sensitivity Analysis: Lower Rate of Fatality after AAA Rupture

In a sensitivity analysis, the life expectancy versus number of surveillances (Figure
4.4) and life expectancy versus number of ruptures (Figure 4.5) are plotted for the
conservative approach, in which the fatality rate of rupture was considered to be 70%. The
number of ruptures versus number of surveillances plot remain the same in both analyses,
since these outcomes are independent from the fatality rate of rupture (Figure 4.4 and 4.5).
Increase in life expectancy declined for all protocols. However, the order of protocols in term

of increase in life expectancy and consequently optimum protocol did not change.
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Figure 4.4: Increase in life expectancy versus number of surveillances for 70% rate of
fatality after AAA rupture (larger data points are non-dominated).
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Figure 4.5: Number of surveillances versus number of ruptures for 70% Fatality after
AAA rupture (filled data points are non-dominated).

4.1.3 Patient Benefits by AAA Baseline Size

Categorizing patients based on different criteria gives a stronger understanding of
which patients benefit more from the optimum protocols (Table 4.1). Patients with baseline
size of 45 mm or higher experienced 4.97 years increase in their life expectancy in average
under the optimum protocol. This number is 42% lower in patients with baseline size
between 40 and 45 mm (2.89 years), 81% lower in patients with baseline size between 35
and 40 mm (0.95 year), and 98% lower in patients with baseline size less than 35 mm (0.09
year). This is due to the fact that in patients with smaller AAA size, it takes longer to reach
surgical intervention threshold or rupture. Therefore, in patients with smaller AAA size, the
difference in life expectancy with or without following surveillance and surgical protocol is

less than the patients with larger AAA sizes (Figure 4.6).
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Figure 4.6: Average increase in life expectancy based on AAA baseline size (all
scenarios).

Regarding the number of surveillances, patients with baseline size of 45 mm or
higher went under 1.03 surveillances on average. Patients with baseline size of 40-45 mm
went under 74% extra surveillances (1.8 surveillances). This number is 160% more for
patients with baseline size of 35-40 mm (2.68 surveillances), and 211% higher for patients
with baseline size less than 35 mm (3.21 surveillances). Other outputs (number of ruptures,
surgical interventions and number of deaths due to natural cause) are also in favor of the

patients with larger baseline size (Figure 4.7).
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Figure 4.7: Average number of surveillances based on AAA baseline size (all
scenarios).

4.1.4 Patient Benefits by Age

There was a greater increase in life expectancy for patients who are diagnosed at
younger ages (Figure 4.8). Patients younger than 70 years old averaged 0.98 year increase in
life expectancy while older patients took less advantage of the optimum protocols (increase
of 0.57 years for 70-75 years old, 0.27 years for 75-80 years old, and 0.10 years for >80

years old).
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Figure 4.8: Average increase in life expectancy based on age (all scenarios).

Younger patients experience a greater number of surveillances since they live longer.
Patients below 70 years of age averaged 3.53 surveillances. This number is 2.82 for patients
between 70 to 75, 2.15 for 75 to 80, and 1.63 for patients older than 80 years old (Figure

4.9).
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Figure 4.9: Average number of surveillances based on age (all scenarios).
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Another criterion that was analyzed was the diabetes status of the patients; the
average increase in life expectancy is 0.79 years for non-diabetic patients versus 0.12 years

for diabetic patients.

4.2 Population-based Analysis Results

4.2.1 Optimum Designed Protocol versus Current Protocols

The average time for a patient to go under surgery in the most optimum designed
protocol (Table 4.1) is 6.95 years. Surveillance recommendations based on AAA diameter
size is every 6.02 (SD 1.07) years for less than 35 mm, 3.73 (SD 0.80) years for 35-40 mm,
2.09 (SD 0.45) years for 40-45 mm, and 1.16 (SD 0.24) years for 45-50 mm. Recommended
timeline for surveillance based on AAA size in different countries can be seen in Table 1.1.

Figures 4.10 through 4.12 illustrate the results of population-based simulation on the
optimum designed protocol and protocols that are currently being enforced in 7 different
countries; United States, New Zealand, Britain, Sweden, Norway, Italy, and Australia. Life
expectancy versus number of surveillances, life expectancy versus number of ruptures, and
number of surveillances versus number of ruptures are plotted in three two-dimensional
plots. In this simulation 50 mm and 55 mm has been applied as the threshold for surgical
intervention. Results from previous simulations proved that sizes larger than 55 (i.e. 60 mm)

as the threshold for surgery do not provide a more preventive treatment.
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Figure 4.10: Increase in life expectancy versus number of surveillances for 7
countries (larger data points are non-dominated).
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(filled data points are non-dominated).
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Results of the population-based simulation that was based on the optimum designed
protocol and 7 protocols from different countries, along with their availability on Pareto
fronts of Figures 4.10 through 4.12 are summarized in Table 4.5. With a closer attention to
the number of ruptures it is obvious that this is irrelevant from the type of protocol that
patients go under because the patient’s probability of rupture is essentially insensitive to their
surveillance protocol. Focusing on the two factors that actually rely on the surveillance
protocol (increase in life expectancy and number of surveillances) leaves us with three
protocols: the optimum designed protocol from model-based simulation, the surveillance

protocol enforced in Britain, and the surveillance protocol followed by patients in Norway.



Table 4.5: Detailed results of population-based simulation.
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Increase in
Life Figure Figure | Figure
Number of
Expectancy Ruptures 4.10 411 412
Protocol Surveillances
per 1000,000 per Patients | Pareto Pareto | Pareto
per Patients
patients front front front
(years)
Designed 602,861 4.06 0.0222 v v
Britain 615,206 14.69 0.0204 4 v
Sweden 610,426 9.28 0.0204 v v
Australia 606,341 14.29 0.0216 v
Norway 612,644 9.28 0.0207 v
New Zealand 601,444 10.85 0.0221
Italy 609,832 21.18 0.0213
us 608,078 9.27 0.0212

4.2.2 Patient Benefits by AAA Baseline Size

As it was done for model-based simulation, hypothetical patients were again divided

into different groups based on their AAA baseline size, in order to have a greater

understanding of which group benefits the most from surveillance protocols (Figure 4.13).

Patients with baseline size of 45 mm or higher experienced 4.68 years increase in their life

expectancy in average. This number is 2.84 years in patients with baseline size between 40

and 45 mm (39% lower), 0.89 in patients with baseline size between 35 and 40 mm (81%

lower), and 0.09 in patients with baseline size less than 35 mm (98% lower). The rationale

behind this significant difference has been discussed in section 4.1.3.
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Figure 4.13: Average increase in life expectancy based on AAA baseline size for 7
countries (all scenarios).

The same analysis on number of surveillances was performed with respect to
patient’s AAA baseline size (Figure 4.14). Patients with baseline size of 45 mm or higher
went under 2.55 surveillances on average. Patients with baseline size of 40-45 mm went
under 5.54 surveillances (117% higher). This number is 9.62 for patients with baseline size
of 35-40 mm (277% higher), and 11.37 for patients with baseline size less than 35 mm

(345% higher).



61

p—
k2

—
(=]

AAA Baseline Size (mm)
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4.2.3 Patient Benefits by Age

Categorizing the results with respect to age in this phase was consistent to model-
based simulation. Younger patients benefited more from going under surveillance compared
to older patients (Figure 4.15). Average increase in life expectancy for patients younger than
70 years old is 1.02 year. This number is 0.61 for those between 70 and 75, 0.29 for those

between 75 and 80, and 0.11 for patients older than 80 years old.
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Figure 4.15: Average increase in life expectancy based on age for 7 countries (all
scenarios).

Due to time limit, older patients go through fewer number of surveillances. Average
number of surveillances is 12.52 for patients under 70, 10.11 for ones between 70 and 75,

6.62 for ones between 75 to 80, and 4.04 for older than 80 (Figure 4.16).

= B ==

Figure 4.16: Average number of surveillances based on age for 7 countries (all
scenarios).
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CHAPTER 5

CONCLUSIONS, DISCUSSION, AND FUTURE WORK

5.1 Conclusions

According to the results from model-based simulations (Section 4.1) and population-
based simulations (Section 4.2) going under surgery when the AAA diameter measures at
least 50 mm increases life expectancy and reduces both the number of surveillances and the
number of sudden ruptures. The 50 mm surgical threshold is smaller than the currently
recommended threshold of 55 mm in the surveillance polices available in different countries
[42]. Inthe study by Zarins et al. no rupture was seen in the group of patients with AAA size
less than 50 mm with the survival of 89% at 5 years while it was 3% of rupture and 73% of
survival in patients with AAA size from 50 to 59 mm [43]. Additionally, in a population-
based study, Nevitt et al. reported patients with AAA size smaller than 50mm free of rupture
in the 5 year follow up despite the 5% annual risk of rupture for patients with AAA size
larger than 50mm [44]. Even 3% of rupture is too high because of the high fatality rate upon
rupture; waiting for surgery until the AAA is 55 mm increase the overall mortality rate. They
also showed that in AAA sizes smaller than 50 mm there are fewer AAA-related deaths,
surgical interventions, and secondary interventions. The fewer secondary interventions
means that, if there is surgery at 55 mm, a patient is more likely to need a second surgery,

but patients who undergo surgery before reaching 50 mm are less likely to need a second
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surgery. Another significant factor weighing in for elective surgery (EVAR) in the earlier
stage of the surveillance is that surgery was shown to have a better outcome in patients with
smaller diameter compared to those with larger diameter [45-46].

The approach should not be either surgery for every patient with AAAs, nor a late
surgical intervention which increases the risk of rupture in the patient. Different randomized
trials have been conducted to identify the difference between early repair (open surgery or
EVAR) and surveillance for patients diagnosed with abdominal aortic aneurysms. However,
no significant difference in the outcome was observed [15, 47, and 48]. These studies show
that the majority of patients in the surveillance group will go under surgery eventually
(61.6% in Laderle et al., 60.9% in Powell et al., and 47.7% after 2 years in Cao et al.).
Brewster et al. reported that “early surgery is comparable to surveillance with later surgery,
so that patient preference is important, especially for AAA 4.5 cm to 5.5 cm in diameter”
[42]. Finding a balance between frequency of the surveillances and the risk of rupture is the
key to increase life expectancy while minimizing the number of surveillances. For example,
in a recent study based on all AAA patients admitted to hospitals in Sweden in a 4-year
period, Zommorodi et al. revealed the deficiency of current surveillance policies in
comparison with non-diagnosed patients and recommended more individualized protocols
based on patients [49]. We optimized the surveillance policies by quantifying the risk of
rupture with respect to size and recommend the surveillance for patients based on patient’s
unique growth trajectory. We found that the average number of surveillances per patient in
the most optimum protocol is 2.72 which show that the increase in the life expectancy of the

patients did not increase by redundant surveillances.
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5.2 Discussion

This study focused on integrating risk of rupture in decision making for surveillances
to overcome the inter-patient variability in AAA growth that is neglected in current protocols
offered in different countries. It also has generated a huge population of hypothetical patients
to effectively analyze the outcomes like sudden rupture -that cannot be researched on with a
large cohort because of ethical and logistical issues- or the correct size for surgical
intervention threshold. Despite these efforts, there are always limitations that should be
considered.

Using the meta-analysis for our estimate of risk of rupture [7] might be one. Due to
the lack of data for patients with AAA size above 50 mm, we used extrapolation to predict
the risk associated with larger sizes. Numerous studies confirm the increase in risk of rupture
with respect to increase in the AAA size, but assuming a lower rate of increase or even a flat
rate from 50 to 60 mm may result in improved outcomes of larger AAA sizes to be
considered the surgery threshold [13].

The growth model that was used in this study was limited to a group of patients in
Australia [13]. The growth model for Western-Australia in the meta-analysis fits fairly close
to the consensus of the whole study cohort, which confirms the credibility of the model and
utilization of the rupture risk from the same analysis.

The post-surgery outcomes were simulated with respect to a few assumptions in this
study. We assumed that patients are completely cured after the elective surgery and their
quality of life has not been affected. This can be a reasonable assumption since Zarins et al.
showed higher survival, no rupture, and fewer secondary interventions in patients with AAA

sizes above 50 mm [42].
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Given the fact of high fatality in AAA ruptures, risking on postponing the repair does
not seem to be reasonable. On the other hand, studies showed that early surgical intervention
is not preventive. Therefore, a practical surveillance plan with a smaller recommended
threshold for surgery and longer surveillance intervals (7 years, 6 years, 3.5 years, 2 years,

and 1 year) is less risky and more preventive.

5.3 Future Work

Cost-effective analysis is a potential research that can be conducted on the results of
this study. In different sections of this study there are a couple of optimum solutions
(protocols) on the Pareto front that one cannot be differentiated as the best protocol, because
one is higher in one parameter (i.e. increase in life expectancy), and the other one is more
beneficial in another parameter (i.e. number of surveillance). Considering the costs of
surveillances in different times of a patient’s life, and the cost of surgical intervention, will
enable comparing different protocols by their cost, which is an important factor in a patient’s

decision making.
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Table A.1: Simulation results for effects of varying the surgical intervention risk for 1
year observation time limit and 50 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
S
. 2912 2851 2840 2871 2881 2860 2880 2879
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6630 6440 6663 6769 6408 6252 6426 6827
Expectancies

Table A.2: Simulation results for effects of varying the surgical intervention risk for 1
year observation time limit and 55 mm surgery threshold.

gy | 00 | 0 [ 290 | 2o ] | o | e |
Surgery

Number of
Ruptures
Number of
. 2261 2237 2230 2235 2181 2203 2266 2227
Surgeries

Number of
Natural

Sum of Llf.e 62012 6533 6309 6286 6195 6166 6429 6329

Expectancies

Deaths
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Table A.3: Simulation results for effects of varying the surgical intervention risk for 1
year observation time limit and 60 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
Number of
. 1872 1836 1786 1776 1776 1761 1763 1794
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6096 6055 6217 5819 6118 5859 5934 6129
Expectancies

Table A.4: Simulation results for effects of varying the surgical intervention risk for 2
years observation time limit and 50 mm surgery threshold.

Surgery

Number of
Ruptures
Number of
. 2864 2794 2785 2738 2727 2759 2763 2751
Surgeries

Number of
Natural

Sum of L'f_e 6895 6882 6754 6541 6647 6323 6571 6607

Expectancies

Deaths
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Table A.5: Simulation results for effects of varying the surgical intervention risk for 2
years observation time limit and 55 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
Number of
. 2232 2254 2213 2145 2146 2130 2079 2115
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6344 6503 6446 6529 6340 6434 6378 6188
Expectancies

Table A.6: Simulation results for effects of varying the surgical intervention risk for 2
years observation time limit and 60 mm surgery threshold.

Surgery

Number of
Ruptures
Number of
. 1841 1866 1833 1810 1769 1730 1678 1701
Surgeries

Number of
Natural

Sum of Llf.e 6064 6136 6385 6156 5915 5695 5898 5773

Expectancies

Deaths
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Table A.7: Simulation results for effects of varying the surgical intervention risk for 3
years observation time limit and 50 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
Number of
2886 2805 2723 2664 2635 2608 2608 2637
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6557 6958 6660 6625 6582 6633 6370 6857
Expectancies

Table A.8: Simulation results for effects of varying the surgical intervention risk for 3
years observation time limit and 55 mm surgery threshold.

Surgery

Number of
Ruptures
Number of
. 2289 2276 2151 2098 2121 2070 2077 2020
Surgeries

Number of
Natural

Sum of Llf.e 6319 6545 6382 6272 6114 6215 6144 6312

Expectancies

Deaths
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Table A.9: Simulation results for effects of varying the surgical intervention risk for 3
years observation time limit and 60 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
Number of
. 1857 1848 1771 1773 1793 1748 1669 1702
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6150 6124 5934 5936 5999 6030 5976 5688
Expectancies

Table A.10: Simulation results for effects of varying the surgical intervention risk for 5
years observation time limit and 50 mm surgery threshold.

Surgery

Number of
Ruptures

2898 2794 2701 2628 2577 2488 2424 2425
Surgeries

Number of
Natural

Sum of Llf.e 6798 6860 6527 6394 6400 6474 6057 6585

Expectancies

Deaths
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Table A.11: Simulation results for effects of varying the surgical intervention risk for 5
years observation time limit and 55 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
S
. 2267 2222 2208 2198 2109 2109 2005 1956
Surgeries

Number of
Natural
Deaths

Sum of Ln‘_e 6354 6334 6356 6466 6522 6277 5968 5912
Expectancies

Table A.12: Simulation results for effects of varying the surgical intervention risk for 5
years observation time limit and 60 mm surgery threshold.

gy | 00 | 0 [ 290 | 2o ] | o | e |
Surgery

Number of
Ruptures
Number of
. 1894 1822 1768 1758 1754 1714 1731 1684
Surgeries

Number of
Natural

Sum of Llf.e 6288 6004 5895 5893 5758 5842 5955 6077

Expectancies

Deaths
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Table A.13: Simulation results for effects of varying the surgical intervention risk for 10
years observation time limit and 50 mm surgery threshold.

Risk of
Surgery

Number of
Ruptures
Number of
. 2906 2781 2652 2632 2618 2488 2446 2292
Surgeries

Number of
Natural
Deaths

Sum of Llf.e 5198 5068 5218 4886 5138 4834 4645 4564
Expectancies

Table A.14: Simulation results for effects of varying the surgical intervention risk for 10
years observation time limit and 55 mm surgery threshold.

Surgery

Number of
Ruptures
Number of
. 2232 2262 2177 2137 2139 2106 2082 1956
Surgeries

Number of
Natural

Sum of Llf.e 5160 4856 4979 4597 4766 4754 4664 4604

Expectancies

Deaths

74
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Table A.15: Simulation results for effects of varying the surgical intervention risk for 10
years observation time limit and 60 mm surgery threshold.

Surgery

Number of
Ruptures
Number of

. 1894 1819 1797 1791 1784 1770 1701 1700
Surgeries
Number of

Natural
Deaths

Nl 2060 4648 4465 4607 4545 4662 4321 4453
Expectancies
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*** This code calculates correlation between elements of square
matrix “x” with size “r” **¥*

f.correlation <- function(x,r) {
cormatrix <- matrix(nrow=r,ncol=r)
for (i in 1:r){
for (j in 1:r) {
cormatrix [i,3] <- cor(x[,il,xI[,31)
}
}

return (cormatrix)
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*** This code recalls patients characteristics from original
cohort based on uniformly distributed random numbers **¥*

f.generate.bdda <- function(x, r,n) {
g <- matrix(ncol=r, nrow=n, 0)
bdda <- matrix(ncol=r, nrow=n, 0)
for (i in 1:n) {
b <= rnorm(r)
qgl[i,] <- t(chol(f.correlation(x,r))) %*% b
ali,] <- pnorm(gql[i,])

bdda[i, 1] <= quantile(x[,11,9li,11)
if (g[i,2] < sum(cohort[,2]1)/ ) |
bddal[i, 2] =
} else {
bddal[i, 2]=
}
bdda[i, 3] <= quantile(x[,231,9li, 3])
bdda[i, 4] <- quantile(x[,4]1,q9li,4])

return (bdda)
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*** This code calculates the actual AAA size of the patient **x*

f.actual.size <- function(x,m,y, time) {

betalk = *x[m,1]/median(x[,1])

betalk = y[m,2] + y[m,6]1* x[m,1]/median(x[,1]) + y[m,4]1*
x[m, 3]1/median(x[, 3]1)

beta2k = y[m,3] + yIm,71* x[m,1]/median(x[,1]) + y[m,51%
x[m, 3] /median(x[,3]) + y[m,8]1*x[m, 2]

actual.size = (betalOk+ (betalk-betalk*betalk)/beta2k)*
exp (beta2k*time) - (betalk-betalk*betalk)/beta2k
return(actual.size)

}
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*** This code calculates the modelled AAA size of the patient
* % %

f.model.size <- function(x,m,vy,n,time) {
model.size <- matrix(ncol=n, nrow=l)
for (i in 1:n){
betalk = *x[m,1]/median(x[,1])
betalk = y[i,2] + y[i,6]1* x[m,1]/median(x[,1]) + y[i,4]1*
x[m, 3]1/median(x[, 31)
beta2k = y[i,3]1 + y[i,71* x[m,1]/median(x[,1]1) + y[i,51*
x[m, 3] /median(x[,3]) + y[i,8]1*x[m, 2]

model.size[l,i] = (betalOk+ (betalk-
beta2k*betalk) /betalk) * exp(betalk*time) - (betalk-
betalk*betalk) /beta’lk
}

return (model.size)

}
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*** This code estimates the natural death age of patients based
on their age ***

f.mortality <- function (x,m) {

p <= runif (1)

n <-

x 0 <= x[m, 4]

x 1 <= x[m, 4]

X u <-

xm<- (x 1+ xu)/

error <- *]ON=

epsilon <-

X m2 <-

f x 0 <- E-09*%(x 0)*~7/7 - E-
*(x 0)*6/6 + E-05%(x 0)*5/5 - E-
*(x_0)rA/0 + E-01%(x_0)~3/5 -

E+01*(x 0)*2/2 + E+02% (x_0)

while (epsilon > error)

{
fx1<- E-09%(x 1)*~7/7 - E-
*(x 1)*6/6 + E-05%(x 1)*5/5 - E-
*(x_1)"0/0 + E-01%(x 1)~3/3 -
E+01*(x 1)*2/2 + E+02*%(x 1) + log(l-p) -
f x 0
f x u<- E-09%(x u)*7/7 - E-
*(x u)re/o + E-05%(x u)*5/5 - E-
*(x_u)ra/4 + E-01%(x_u)*3/3 -
E+01*(x u)*2/2 + E+02*%(x u) + log(l-p) -
f x 0
f x m <- E-09%(x m)*7/7 - E-
*(x m)~ /6 + E-05%(x m)* /5 - E-
*(x m)~4/4 + E-01*(x m)~3/3 -
E+01*(x m)~2/2 + E+02*%(x m) + log(l-p) -
f x 0

if (£ xm * £ x 1 > 0)
{ x 1 <-xm

}

if (£ x m * £ x u > 0)
{ X u <= xXxm
}

x m2 <- (x 1 + x u)/
epsilon <- abs((x m2-x m)/x m2)
Xx m <= X m2

n <- n+



}
mortality.age <- x m
return(mortality.age)}
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*** This code estimates the age when patients will have rupture
based on their AAA size ***

f.rupture.age <- function(x,y,m) {

p <= runif (1)

left side <- -log(l-p)

betalk = *x[m,1]/median(x[,1])

betalk = y[m,2] + y[m,61* x[m,1]/median(x[,1]) + ylIm,4]1%
x[m, 3]1/median (x[, 31)

beta2k = y[m,3] + yIm,71* x[m,1]/median(x[,1]) + yIm,51%
x[m, 3] /median(x[,3]) + y[m,8]1*x[m, 2]

dtau <- 1/

tau <-

age <- x[m, 4]

right side <-

while(left side>right side & tau <595){
size old <- (betalOk + (betalk-betalk*betalk)/betalk)
* exp(betal2k*tau) - (betalk-betalk*betalk)/beta2k

rupture rate old <- E-08*(size old)*4 -
E-06*(size old)*> + E-04%(size old)*? -
E-03%(size old)”*1l + E-

tau <- tau + dtau
size new <- (betalOk+ (betalk-beta2k*betalk)/beta2k)*
exp (beta2k*tau) - (betalk-betalk*betalk)/betalk

rupture rate new <- E-08*(size new)*4 -
E-06*(size new)”> + E-04*(size new)”2 -
E-03%(size new)”l + E-

right side <- right side + dtau * (rupture rate old
+ rupture rate new) /
}
T <- tau - dtau/
rupture.age <- x[m,4] + T
return (rupture.age)
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*** This code runs the overall simulation for population-based
protocols and returns results ***

for (i in l:patients){

time <-

age <- cohortl[i, 4]

death.age <- f.mortality(cohortl, i)

rupture.age <- f.rupture.age(cohortl,corposterior, i)
end.time <- min(death.age, rupture.age)

actual.x <- cohortl[i, 1]

surveillance <-

d <-

actual.x <- cohort[i,1]

while (age + time < end.time & actual.x < ) |

tau <-

if (actual.x >= & actual.x < ) {
tau <-

} else if(actual.x >= & actual.x < ) {
tau <-

} else if(actual.x >= & actual.x < ) {
tau <-

} else {
tau <-

}

time <= time + tau
surveillance <= surveillance +

actual.size <-f.actual.size(cohortl,i,corposterior,time)
actual.x <= rnorm(l,actual.size,corposterior[i,1])

surveillance time[i,d] <- time

if (age + time < end.time) {
surveillance size[i,d] <- actual.x

}
d <- d+

}

result[i,
result[i,
result[i,
result[i,

<- age

<- death.age
<- rupture.age
<- age + time

el e hd  Rd
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result[i, 5] <- surveillance
result[i, 6] <= cohortl[i, 1]

}

write.table(result, file="result timeprotocol 55.csv",
sep=",", row.names= FALSE, col.names=TRUE)
write.table(surveillance time,
file="surveillance t timeprotocol 55.csv", sep=",", row.names=

FALSE, col.names=TRUE)
write.table(surveillance size,
file="surveillance s timeprotocol 55.csv", sep=",", row.names=

FALSE, col.names=TRUE)



*** This code runs the overall simulation for model-based
protocols and returns results ***

for (i in l:patients){

d <-

x 1 1 <-x 1[1i]

X 2 1 <= x 2[1i]

x 3 1 <- x 3[i]

probability <- matrix(ncol= , nrow=l, 1/ )
time <-

age <- cohortl[i, 4]

death.age <- f.mortality(cohortl, i)

rupture.age <- f.rupture.age(cohortl,corposterior, i)
end.time <- min(death.age, rupture.age)

actual.x <- cohortl[i, 1]

surveillance <-

while (age + time < end.time & actual.x <55){

cumulative.risk <-

tau <-
dtau <- 1/
integral <- matrix(ncol= , nrow=1l, 0)
while (cumulative.risk < & tau < ) |
cumulative.risk <-
for (j in 1: ) {
betalk = *x 1 i/median x 1
betalk = y 2[j] + y 6[J]1* x 1 i/median x 1 +
y 4[J1* x 3 i/median x 3
beta2k =y 3[j] + v 7[J]1* x 1 i/median x 1 +
y 5[3]1* x 3 i/median x 3 + y 8[jl*x 2 i

size old <- (betalOk + (betalk-

beta2k*betalk) /beta2k) * exp(betalk*(time + tau)) - (betalk-

betalk*betalk) /beta’lk

rupture rate old <- E-
*(size old)”*4 - E-06*(size old)"> +
*(size old)*2 - E-03*(size old)”*l +

size new <- (betalOk+ (betalk-

beta2k*betalk) /beta2k) * exp(betalk*(time + tau + dtau)) -

(betalk-beta2k*betalk) /beta’k
rupture rate new <- E-
*(size new)”4 - E-06*(size new)”> +
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*(size new)”"? -

E-03%(size new)”l +

integral[j] <- integral[j] + dtau *
(rupture rate old + rupture rate new) /
cumulative.risk <- cumulative.risk +

probability[j] * (
}
tau <=

}

- exp(-integrall[j]))

tau + dtau

time <- time + tau

surveillance <- surveillance +

actual.size <-
f.actual.size(cohortl, i, corposterior, time)
model.size <-

f.model.size(cohortl,i,posterior, , time)
actual.x <= rnorm(l, actual.size, corposterior[i,
numerator <- matrix(ncol= , nrow=l, 0)

for (k in

) {

likelihood <- dnorm(actual.x, model.sizel

posterior[k,11])

Ik]I

numerator[k] <- likelihood * probability[k]

}

denominator <- sum(numerator)
probability <- numerator/denominator

surveillance time[i,d] <- time
if (age + time < end.time) {
surveillance size[i,d] <- actual.x

}

d <- d+
}
result[i, 1] <-
result[i, 2] <-
result[i, 3] <-
result[i,4] <-
result[i,b>] <-
result[i, 6] <-
result[i, /7] <-

x 1 i/median x 1 +

age
death.age

rupture.age

age + time

surveillance

cohortl[i, 1]

corposterior[i,?] + corposterior|[i,
corposterior[i,4]* x 3 i/median x 3

]*

1)

87



result[i, 8] <- corposterior[i,3] + corposterior[i,/]*
x 1 i/median x 1 + corposterior[i,5]* x 3 i/median x 3 +
corposterior[i,8]*x 2 1

}

write.table(result, file="result 0.005 1 10000 risk.csv",
sep=",", row.names= FALSE, col.names=TRUE)
write.table(surveillance time,
file="surveillance t 0.005 1 10000 risk.csv", sep=",",

row.names= FALSE, col.names=TRUE)
write.table(surveillance size,
file="surveillance s 0.005 1 10000 risk.csv", sep=",",
row.names= FALSE, col.names=TRUE)
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