The Role of NOTCH3 in Determining Adipose Derived Stem Cell Fate

Jacob Cambre
Louisiana Tech University

Hannah Logan
Louisiana Tech University

Avery Bryan
Louisiana Tech University

Mengcheng Liu
Louisiana Tech University

Demi Sandel
Louisiana Tech University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.latech.edu/ans-research-symposium

Recommended Citation
Cambre, Jacob; Logan, Hannah; Bryan, Avery; Liu, Mengcheng; Sandel, Demi; Ogbonnaya, Ngozi; and Newman, Jamie, "The Role of NOTCH3 in Determining Adipose Derived Stem Cell Fate" (2018). *ANS Research Symposium*. 18.
Presenter Information
Jacob Cambre, Hannah Logan, Avery Bryan, Mengcheng Liu, Demi Sandel, Ngozi Ogbonnaya, and Jamie Newman
The Role of NOTCH3 in Determining Adipose Derived Stem Cell Fate

Jacob Cambre1, Hannah Logan1, Avery Bryan1, Mengcheng Liu2, Demi Sandel1, Ngozi Ogbonnaya2, Dr. Jamie Newman3

1 Undergraduate Biology, Louisiana Tech University
2 Graduate Biology, Louisiana Tech University
3 Professor, Biological Sciences

The NOTCH signaling pathway has been shown to play a vital role in determining cell fate of human Adipose Stem Cells (hASCs) and Mesenchymal Stem Cells (MSCs). Misregulation of the pathway is responsible for specific developmental diseases and cancers, including breast cancer. To date, the role of the four individual NOTCH receptors has not yet been characterized in adult stem cells. The aim of this project is to characterize the role of NOTCH3 in the maintenance and differentiation of hASCs. NOTCH3 appears to have the highest level of expression of the four receptors in hASCs. siRNA-mediated knockdown of NOTCH3 shows that while self-renewal and cell viability is unaffected by the loss of NOTCH3, there is a significant increase in adipogenesis when cells are encouraged to differentiate into adipocytes. This suggests that the NOTCH3 pathway is used to regulate adipogenic stem cell fate. We hypothesize that differentiation is caused by the contact dependent pathway. Future studies include a Notch 3 knockdown’s effect on the levels of Notch ligands Jagged 1 and 2, and delta like ligand 1, 3, and 5. Since regenerative medicine relies heavily on controlling stem cell fate, the characterization of the NOTCH signaling pathway will act as a gateway for clinical advances.