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ABSTRACT

This dissertation describes a knowledge-based system to create abstractive
summaries of documents by generalizing new concepts, detecting main topics and
creating new sentences. The proposed system is built on the Cyc development platform
that consists of the world’s largest knowledge base and one of the most powerful
inference engines. The system is unsupervised and domain independent. Its domain
knowledge is provided by the comprehensive ontology of common sense knowledge
contained in the Cyc knowledge base. The system described in this dissertation generates
coherent and topically related new sentences as a summary for a given document. It uses
syntactic structure and semantic features of the given documents to fuse information. It
makes use of the knowledge base as a source of domain knowledge. Furthermore, it uses
the reasoning engine to generalize novel information.

The proposed system consists of three main parts: knowledge acquisition,
knowledge discovery, and knowledge representation. Knowledge acquisition derives
syntactic structure of each sentence in the document and maps words and their syntactic
relationships into Cyc knowledge base. Knowledge discovery abstracts novel concepts,
not explicitly mentioned in the document by exploring the ontology of mapped concepts
and derives main topics described in the document by clustering the concepts.
Knowledge representation creates new English sentences to summarize main concepts

and their relationships. The syntactic structure of the newly created sentences is extended



beyond simple subject-predicate-object triplets by incorporating adjective and adverb
modifiers. This structure allows the system to create sentences that are more complex.
The proposed system was implemented and tested. Test results show that the system is
capable of creating new sentences that include abstracted concepts not mentioned in the
original document and is capable of combining information from different parts of the

document text to compose a summary.
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CHAPTER 1

INTRODUCTION

Problems with information overload have drawn attention because of the
exponential growth of information creation and distribution that has recently gained an
incredible pace. Ninety percent of the entire world’s recorded data has been generated in
the past few years with two and a half million terabytes of data being created daily [1].
Around eighty percent of the data is unstructured and represented in the form of
documents, web pages, images, and videos. This vast amount of data turns into a
distraction and has a negative impact on human productivity and decision-making [2]. It
is becoming harder for the public to navigate and comprehend information conveniently
[3]. The issue of information overload raises a number of important questions — how to
make this overwhelming amount of information accessible for users; how to find
necessary information and to filter out the useless ones; and how to absorb and employ
information effectively.

Information overload is very complex, and currently there is no known solution
that can solve it all together, yet a number of approaches exist that try to address some of
the issues. One of such approaches is text summarization. It aims to mitigate information
overload specifically in the domain of unstructured data. Summarization process
condenses text in a form of a summary while preserving the most important information,

which ensures its high relevance. This drastically reduces the amount of information



people would have to comprehend, thus decreasing the amount of time and effort spent
on finding relevant information. Automatic text summarization is part of a broader field
of natural language processing that combines advances in computer science, artificial
intelligence and computational linguistics [4].

Automatic text summarization can be divided into two main approaches —
extractive and abstractive. Extractive approach algorithms form a summary by choosing
the most significant words, phrases or sentences in the text. Summaries created by such
approach are highly relevant to the original text, but do not convey novel information.
Extractive text summarization is a well-studied topic that has reached its potential [5].
Abstractive approach algorithms, in contrast, aim to create new phrases or sentences by
analyzing the semantics of the text to form a summary. Such algorithms perform a
synthesis of source text to derive knowledge that is more general. This branch of
automatic text summarization is less studied and more complex. In order to create
abstractive summary of a text, the algorithm has to obtain novel knowledge form original
text and meaningfully combine information from different parts [6]. Summaries created
by abstractive approach algorithms are more favorable, but inherently harder to achieve.
The algorithm must use background knowledge of the subject matter to abstract new
information. It must perform deep syntactic analysis of the input text to be capable of
combining information from different parts appropriately. It must also use advances of
natural language generation process to represent newly created knowledge in a way that

is suitable for users to comprehend.



This dissertation provides the description of an abstractive text summarization

algorithm that:

e Derives deep syntactic structure of the text;

e Generalizes new concepts based on the information derived from the text;
e Automatically discovers general topics described in the text;

e Identifies most informative subjects based on discovered topics;

e Creates new sentences for identified subjects combining information from

different parts of the text to compose a summary.

Described algorithm uses Cyc development platform as a source of background
knowledge. Cyc development platform consists of the world’s largest ontology of
commonsense knowledge and a reasoning engine [7]. Cyc ontology serves as a backbone
for semantic analysis, knowledge generalization and natural language generation
functionality of the algorithm. Deep syntactic analysis is performed by using capabilities
of advanced natural language processing techniques. Combining both semantic
knowledge and syntactic structure allows the algorithm to have domain knowledge of the
subject matter and utilize relationships between words within given sentences. The
following is the Knowledge Based System (KBS) algorithm, the details of which will be
fleshed out in Chapters 3 and 4.

The KBS algorithm is composed of three main processes: knowledge acquisition,
knowledge discovery, and knowledge representation. Knowledge acquisition process
receives documents as an input and transforms them into syntactic representation. Then,

it maps each word in the text to an appropriate Cyc concept and assigns the word’s



weight and the word’s relationships to that concept. Knowledge discovery process finds

the ancestor for each mapped Cyc concept, records ancestor-descendant relationships,

and adds scaled descendant weight and descendant relationships to the ancestor concept.

This process allows the algorithm to abstract novel concepts that are not mentioned

directly in the original text. Then, the process identifies the main topics described in the

text by clustering the mapped Cyc concepts. The knowledge representation process

creates sentences in English for the most informative subjects identified in the main

topics. This process allows the summary sentences to be composed by using the

information from different parts of the text while preserving their coherence to the main

topics. The workflow diagram of the algorithm is outlined in Figure 1-1.

Input:
document(s)

KNOWLEDGE
ACQUISITION

N\

Extract syntactic structure.

Map words to Cyc concepts.

v

KNOWLEDGE
DISCOVERY

Abstract new concepts.
Identify main topics.

y

KNOWLEDGE

REPRESENTATION

Identify main subjects.
Create new sentences.

Gyc KB

Knowledge Based System

Output:
summary

Figure 1-1: KBS algorithm workflow diagram.



An automated modular framework has been implemented to test the functionality
of the proposed algorithm. Two sets of test experiments were conducted: first using
synthetically created data and second using various documents and encyclopedia articles.
Test results demonstrate that the algorithm is capable of generalizing concepts that are
not mentioned explicitly in the original text, deriving general topics of the text and
creating new sentences that combined information from different parts of the text to form
an abstractive summary.

Main contributions of proposed algorithm are outlined as follows:

e We introduce a method to derive the main topics automatically and
identify the most significant subjects based on the concepts clustering and
syntactic structure of the text;

e \We propose new sentence creation technique using semantic analysis and
natural language generation capabilities of Cyc development platform.
Proposed technique enhances the structure of newly created sentences by
adding adjective and adverb modifiers to subject-predicate-object triplets;

e We propose a mechanism of combining information from different parts

of the text to form a summary based on deep syntactic analysis of the text.

Proposed KBS algorithm falls into the intersection of text data mining, natural
language processing and artificial intelligence domains. It gathers and analyzes text data,
extracts deep syntactic structures of the text and generates new sentences as a summary.
It utilizes Cyc development platform — world’s longest-lived artificial intelligence

platform [7], as a backbone for the semantic reasoning.



The rest of the dissertation is organized as follows. Chapter 2 outlines previous
work in the field of automatic text summarization and gives background of knowledge-
based systems and advanced natural language processing techniques. The chapter
provides the description of extractive and abstractive approaches, highlighting recent
advances and gives an overview of Cyc development platform, its knowledge base and
inference engine. Chapter 3 thoroughly describes the methodology of the proposed KBS
algorithm. This chapter provides details of the knowledge acquisition, knowledge
discovery and knowledge representation processes. Chapter 4 presents details of the
implementation of the summarization system based on the proposed KBS algorithm.
Chapter 5 discusses the results obtained by applying the implemented system to
synthetically generated data and encyclopedia articles. Finally, Chapter 6 concludes the

dissertation and provides discussion of directions for the future work.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we outline related work undertaken in the field of automatic text
summarization. In addition, we provide an overview of the knowledge-based systems
employed in the area, and give the background of the advanced natural language

processing techniques used.

2.1  Automatic text summarization

Computational community has been studying automatic text summarization
problem since the late 1950s. In literature, automatic text summarization is traditionally
divided into two main areas, namely extractive and abstractive. The approaches in these
two areas differ fundamentally by the way they compose the summary of the text.

Extractive methods create a summary by selecting the most informative phrases
or sentences from the original text and filtering out those that do not convey useful
information. Such methods generally vary by the different intermediate representations of
the candidate phrases or sentences and different sentence scoring schemes [8]. The
advantage of the extractive approach is that it does not require much semantic knowledge
or deep syntactic analysis of the text because it is solely based on the statistics of word or

phrase occurrences in the text. Summaries created by the extractive approach methods



exhibit higher statistical correlation with the original text, which makes their performance
easier to evaluate.

In contrast with the extractive approach, abstractive methods aim to create new
sentences that carry novel knowledge or abstraction, not mentioned in the original text.
Such methods involve generalization and aggregation of the information based on the
content of the given text. New sentences are composed using natural language generation
techniques by fusing the information that belongs to the same concept from different
parts of the text. Summaries created by the abstractive approach methods tend to be more
desirable because they have a higher correlation with the human expert created
summaries [6]. At the same time, such summaries are harder to evaluate quantitatively
since most of the metrics are based on the statistics that measure an overlap between the
summary sentences and the sentences from the original text. Utilization of such metrics to
evaluate the abstractive approach methods is impractical, since the main aim of the
abstractive summarization is to deduce new information that was not explicitly
mentioned in the original text.

211 Extractive approach methods for text summarization

In this subsection, we cover the most prominent methods used in extractive
summarization. We progress through different intermediate representations of the
features used by the methods, starting with a simple word frequency count based methods
and progressing to more sophisticated graph representation of the text and machine

learning applications.



2111 Frequency-driven approaches

Methods based on the frequency counts are the simplest, oldest and most widely
used in the area of extractive text summarization. These methods select the most
representative sentences that contain significant words. The significance of the words is
evaluated by the various frequency measures.

The first paper in the field of text summarization that was published in the late
1950s described the method based on raw frequency as a measure. The author concluded,
however, that the raw frequency measure is not the best indicator, since some words
could be frequent in many documents [9]. To take into account the length of the text to be
summarized, word probability measure is introduced as an improvement on raw
frequency counts [10], [11]. Another major improvement in frequency-based approach
methods is the TF-IDF measure that is calculated by the product of term frequency (TF)
and inverse document frequency (IDF) measures.

TFIDF(t,d,D) = TF(t,d) X IDF(t, D) Eq. 2-1

This measure was adopted from information retrieval domain. It favors the terms
that are very frequent among a small number of documents in the corpus. In EqQ. 2-1, t
denotes the term, d denotes each document in the corpus, and D denotes the collection of
all documents in the corpus. Selecting the sentences that contain terms with high TF-IDF
score yields better extractive summaries [12], [13], [14]. A variation of TF-IDF score that
uses the log-likelihood ratio test is introduced to identify topic signatures. Topic signature
is the set of words that describes similar concept. The idea of this measure is similar to
the TF-IDF in terms that it gives a higher score to the words frequently used in the input

text and rare in the other texts, but it also provides a cutoff to include the words into topic



10

signatures [15]. In the methods that use topic signature measure, the sentences are
included in the summary by their significance that is computed by the number of topic
signature words contained in the sentence [16], [17].

21.1.2 Graph models for sentence importance

Graph representation of the text aided the automatic text summarization area in
many different ways. The main idea of such methods is to model a text as a graph, where
the nodes are words, phrases, sentences or paragraphs, and the edges are weights that
represent the similarity measure between text elements. Graph representation of an
arbitrary text is illustrated in Figure 2-1. Informative sentences for the summary are
selected based on the edges’ weights by using graph traversal algorithms, such as the

breadth-first search and the depth-first search.

text_element,

weight weight

text_element

text_elements

text_element; text_elements

Figure 2-1: Graph representation of an arbitrary text.



11

TextRank approach proposed by [18] models input text as a graph, where nodes
are represented as the words, phrases or sentences depending on the desired application.
Edges between the nodes are expressed as a similarity measure weight based on the
semantical or lexical relationships between the text elements or their contextual overlap.
Nodes with the highest similarity weight are picked to form the final summary of the
input text. The idea of graph ranking is exploited by [19] in the LexRank graph-based
summarization approach. Their proposed method represents a document cluster as a
graph where sentences are used as vertices, and the edges are defined as a degree of
similarity between sentences. Summary of the text is then composed by the sentences that
are chosen based on the number of links incident upon a node in the graph. Authors
define sentence centrality in terms of similarity to other sentences. The sentences that are
similar to many other sentences have higher centrality.

The idea of representing the document as a semantic graph is proposed by [20]. In
the semantic graph text representation, nodes are modeled as noun phrases or verb
phrases, and the edges connecting them are derived based on the syntactic relations
analysis of the text elements. The authors trained Support Vector Machines (SVM)
learning method on the described graph representation of the text using sets of various
attributes, such as linguistics attributes, graph and document structure, to identify
summary nodes and use them for extracting sentences that form a summary of the text.
An affinity graph representation of the text is introduced by [21]. Affinity graph
representation of the text expressed the semantic relations between sentences in terms of

their content similarity. Candidate sentences for a summary are evaluated by two factors
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— information richness and information novelty. These properties are computed based on
the number of the informative neighbors the sentence is linked to.

21.1.3 Machine learning and statistical applications

Statistical methods and machine learning techniques showed great potential in
scoring the candidate’s sentences that are to be extracted to form a summary. The
extractive approach methods based on such techniques improve state-of-the-art
performance for the variety of tasks in the domain of text summarization. Majority of the
methods utilize the idea of training a model using various sentence features to find most
appropriate sentences for the extraction.

Sentence selection is approached as a simple classification problem in [22]. Their
model, based on the Naive Bayes classifier, estimates the probability of a given sentence
to be included in the summary. The model is trained on the number of sentence features
such as thematic words, fixed phrases’ and proper names’ inclusiveness, sentence length
and sentence position in the paragraph. A similar set of features with a little variation is
used in [23]. The authors propose to use the Hidden Markov model classification instead
of the Naive Bayes classifier, since some of the features used to train the model are
violating the assumption of independence. Furthermore, they introduce the assumption
that the probability of including the next sentence into the summary depends on the
inclusion of the current sentence.

Another proposed method for the task of choosing sentences for summarization is
to treat it as a sequence-labeling problem [24]. The objective of the summarization task is
to label sentences as those that will be included in the summary and those that will not.

The authors proposed the solution to this sequence-labeling problem by applying the
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conditional random field (CRF) method, which was state-of-the-art in sequence labelling
at that time. Their approach also takes into consideration the sentence inclusion
dependency. When a new sentence is added to the summary, one or more already chosen
sentences might be deleted based on the calculated probability values. The sentence
feature space used in this method is extended by more complex features like similarity of
the sentence to its neighboring sentences, latent semantic analysis score and hyper-
induced topic scores.

SVM classification methods showed promising results when applied to the
sentence ranking problem for automatic text summarization. Methods based on the SVM
use different set of sentence features to extract the most informative sentences to form a
summary. Wide range of the semantic and the syntactic sentence features are used in a
method proposed by [25]. Authors trained Mapping-Convergence (MC) version of the
One-Class Support Vector Machine (OCSVM) classifier using following features: the
position of the sentence in the document; the total number of sentences in the document,
the total number of named entities found in the sentence; probabilities of the informative
words contained in the sentence, the existence of discourse markers and the existence of
particular words. Top ranked sentences extracted by a trained classifier are also checked
for redundancy before being included into the final summary. One of the drawbacks of
such supervised classification method is the need of large amount of labeled data for
training, which is usually not feasible to obtain in the domain of automatic text
summarization.

In order to address the lack of labeled data the semi-supervised SVM

classification approach is proposed by [26]. The authors co-train SVM classifier on both
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labeled and unlabeled data combining various sentence features. Their semi-supervised
method shows compatible performance while saving the time cost on labeling the data.
The authors propose four different groups of sentence features: surface, content, event
and relevance. The surface features consist of sentence position in the text and the length
of the sentence. The content features measure the quantity of the indicative words, such
as centroid words, signature terms and high frequency words. The event features are
based on “person”, “location”, “organization” and “date” named entities contained in the
text. Finally, the relevance features measure sentence relationships to other sentences in
the text. The authors describe a co-training mechanism using the Probabilistic Support
Vector Machine (PSVM) method for supervised training and the Naive Bayes
classification for semi-supervised training utilizing derived sentence features. The
summary is then composed of the sentences extracted by the described co-training
approach. The final order of the sentences is conditioned on the sentence length and its

position in the text.

2114 Shallow semantic analysis methods

Since statistical analysis is not capable of discovering the meaning of the words,
and performing deep semantic analysis has high computational cost, the number of
methods were proposed that leveraged parts of both approaches. Such methods are
categorized as the shallow semantic analysis methods. Most prominent techniques used
the idea of the lexical chains — sequences of related words; the concept lattice — document
representation using concepts semantically linked to each other; and the Latent Semantic
Analysis (LSA) — the process of clustering related words and sentences based on their

semantics.
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The idea of the lexical chains — representation of lexical cohesive structure of the
text expressed by the sequence of related words, was first applied to the problem of
automatic text summarization by [27]. The authors proposed the method for text
summarization that does not require computing the full semantic representation of the
text, but rather extracts significant sentences based on the strong lexical chains
constructed for the input text. The summarization process starts with composing a set of
candidate lexical chains. The construction process first selects a set of candidate words,
then finds an appropriate chain for each word based on the similarity measure derived
from the WordNet thesaurus and then updates the chain accordingly. After the set of
candidate lexical chains is constructed, the strongest among them are selected by the
ranking mechanism based on the scoring function. Finally, the significant sentences are
extracted based on the distribution of the strongest lexical chains.

The idea of using lexical chains for the summarization task was later exploited by
[28]. The authors propose improvements to the lexical chain construction process and a
method to evaluate lexical chains as an intermediate representation of the input text.
Their described approach uses scoring system based on the analysis of words
relationships to assess the contribution of a candidate element to the chain. To evaluate if
the lexical chains are a good representation of the text to use for the summarization task,
the authors analyzed manually created summaries for the exclusiveness of words from the
lexical chains. The results of the study shows great potential of the utilization of the
lexical chains as a form of shallow semantic representation of the text as opposed to the

single words and phrases frequencies.
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Another type of shallow semantic representation of the text is a document concept
lattice that is introduced by [29]. The concept lattice models the information contained in
the text using the idea of linked concepts that cover the main facts and topics of the text.
Such concepts are represented by the words that describe concrete or abstract entities
together with their behavior. The process of concept lattice construction starts with the
analysis of the input sentences parse trees to identify repeated concepts. Then the
maximal common concepts are determined according to the concepts’ frequency. The
hierarchical representation of the concepts is then formed to serve as a structure for the
document concept lattice. Final summary of the text is then composed by extracting an
optimal set of the sentences by utilizing the derived document concept lattice
representation as a basis. The advantage of the concept lattice representation method is in
selecting the sentences that covered as many concepts as possible with the least amount
of words.

Latent semantic analysis (LSA) is another shallow semantic analysis technique
applied to the problem of identifying candidate sentences to be extracted from a given
text to form a summary. LSA performs the singular value decomposition of the term by
sentence matrix representation of the text to discover words or phrases that describe
similar topic. This approach is driven by the assumption that the words that describe the
same topics will generally appear in a similar context and will be mapped near to each
other in the decomposed matrix. Such a decomposition allows to semantically group
terms or sentences operating solely on the words or phrases frequencies. Text
summarization method based on the shallow semantic representation of the text derived

by LSA is described by [30] and [31]. In their proposed summarization methods, the
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input text is first decomposed into a term by sentence matrix representation based on
various term frequency measures. Then the singular values decomposition technique is
applied on the matrix to discover vector representation of the salient topics contained in
the text. Finally, the sentences are extracted to form a summary based on the various
vector relations between the sentence vector representation and the topic vector
representation. Applying LSA method for text summarization allows extracting the
sentences that are semantically related to the main topics of the text without performing
the costly deep semantic analysis.
2.1.15 Conclusion

The described extractive text summarization methods suffer with the major
drawback of inability to synthesize new information, being limited to the words and
phrases comprised in the original text. The summaries produced by such methods tend to
have high statistical correlation with the input documents, but do not convey any novel
information.

2.1.2 Abstractive approach methods for text summarization

Abstractive text summarization methods are more desirable because they
resemble the summarization process that the human experts undergo when they create the
summaries, but such methods are inherently hard to develop and evaluate. Most of the
methods in the area involve transforming the text into a graph representation, where the
nodes denote text elements and the edges represent various relationships between these
text elements. The final summary of the text is constructed by applying the graph

transformation techniques, such as graph reduction, merging and compression.
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2121 Graph reduction based methods

The application of word graphs text representation for the purpose of the
abstractive text summarization was investigated by [32] and illustrated by their multi-
sentence compression algorithm. The algorithm is applied on a cluster of similar
sentences to compose a single sentence as a summary. The algorithm starts by creating a
word graph representation of a cluster using all words in the sentences. Such a graph is
constructed iteratively by adding one sentence at a time. The nodes in the graph represent
words, and the edges represent adjacency relation between words — carrying a weight,
which expresses the frequency of the syntactic relation of the words. After the word
graph representation of a cluster is built, the algorithm identifies the best path in the
graph to assure high compression and informativeness. The best path is evaluated based
on presence of the strong links and such a path has to follow through, what they refer to
as the salient nodes [32]. Both of these criteria are identified by experimenting with the
various weighting formulas. The path that has the lightest average edge weight is chosen
as the summary sentence for the cluster of the input sentences.

The application of words graphs was extended to cover the whole document
rather than a small cluster of sentences in [33]. The authors propose document-level
representation of the text using the word graphs. Their method employs Dijkstra’s
algorithm to find the shortest path in the graph to accommodate for the sentence
compression and to retain informative parts of the text. The algorithm that they describe
generates a number of the candidate summary sentences and the final summary of the
whole document is composed by choosing the most important ones, according to the

heuristic rules. Methods based on the word graphs representation are capable of
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effectively combining information from different sentences, but lack the ability to
produce novel information, not explicitly mentioned in the text.

Abstractive text summarization by the semantic graph text reduction technique
was proposed by [34]. The authors introduce the idea of the rich semantic graph text
representation, and enhancing graph nodes with the associative attributes derived from
domain ontology. In the described graph, the nodes represent the verbs and nouns, and
the edges represent the semantic and topological relationships among words. Such a rich
semantic graph is constructed for the input document utilizing deep syntactic analysis.
Initially, the sub-graphs are created for each sentence in the document and then merged
together to derive a rich semantic graph of the whole document. On the next step, the
graph is reduced according to the set of the heuristic rules. During the process, the nodes
of the graph are combined, replaced or removed based on the additional semantic
relationships derived from the WordNet thesaurus. Finally, the summary of the document
is created from the reduced rich semantic graph using domain ontology. The method
proposed by the authors uses the WordNet system to create a set of sentences with the
synonyms of the words from the original document. The sentences to be included in the
final summary are picked based on the frequency of the used words and the sentence
discourse relations.

2122 Graph merging based methods

Creating an abstractive summary of the text involves composing new sentences
that combine the information from different parts of the text. The new sentence creation
approach by the phrase selection and merging was proposed by [35]. The authors argue

that using more fine-grained syntactic units such as the noun and verb phrases improves
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the process of the new sentence creation. Their described algorithm starts by extracting
noun and verb phrases from each sentence dependency tree, and forming a set of the
concepts and facts described in the input text. Then the salience score is calculated for
each extracted phrase. This score incorporates the concept-based weight and the position-
based frequency of the phrases. Next, new sentences are generated by identifying the
most informative phrases and merging them while maximizing the salience and satisfying
the predefined construction constraints. The structure of the composed sentences is based
on the heuristic rules and the relations derived from the dependency trees, and follows the
summarization requirements, such as the sentence length constrains, the avoidance of the
redundancy and the utilization of the pronoun phrases. Finally, some of the post-
processing steps are carried out to improve the order of the elements in the sentence and
enhance the sentence readability.

The analysis of the discourse structure of the input text shows promising results in
the area of abstractive summarization as reported by [36]. They propose an algorithm that
creates a summary by using the discourse tree structure as an intermediate representation
of a text. Such a representation illustrates how the text spans are connected and related to
each other. The discourse trees of each sentence in the text are used to compose a
directed graph that allows multiple connections between the two nodes. Such a graph is
called the aspect rhetorical relation graph (ARRG). The nodes of ARRG represent the
concepts derived from the text, and the edges represent specific relations between them,
together with an importance weight. Their proposed algorithm starts the summarization
process by extracting the sub-graphs containing the most informative concepts from the

ARRG using the weighted page rank algorithm. Then the extracted sub-graphs are
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combined into the aspect hierarchical trees to be used by the abstract generation process
implemented by natural language generation techniques such as the microplanning and
the sentence realization.

Another type of graph text representation, namely Abstractive Meaning
Representation (AMR), was applied to the problem of summarization by [37]. The AMR
provides a semantic representation of each sentence in the text as the rooted, acyclic,
directed graph. Their proposed approach performs the graph transformation that
compresses the source graph into a summary graph and creates an abstractive summary
based on it. The summarization process starts by transforming each sentence into AMR
graph using the statistical semantic parser. Then the created graphs are merged and
transformed into a single AMR graph that represents the whole document. This process
involves pruning of the certain fragments of the graph and combining the parts of the
graph that has the same labels. While merging subgraphs represent different sentences,
every concept that is a root concept in the sentence graph is connected to new “ROOT”
node to assure the connectedness of the final graph. Finally, additional edges are added to
create a dense graph representation of the document. Such a representation is used to
select the subset to represent a summary graph that is concise, contains important
information and allows creating meaningful sentences. The final summary subgraph is
selected by the integer linear programming technique. Since there is no automatic process
to create natural language sentences from the AMR graphs, the authors propose a set of
the heuristic rules to create the text from the final graph.

The sentence enhancement technique applied to the graph representation of the

text to perform abstractive summarization was proposed by [38]. The novelty and
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advantage of the described approach is in allowing the conjunction of the syntactic
dependency trees from any sentence of the input text. The event co-reference resolution
algorithm controls correctness of such trees combination by using the distributional
semantics approach. The summarization process is implemented in several steps.
Initially, the algorithm finds the clusters of compatible sentences, ranks the clusters
based on their salience, and picks the top ranked cluster to represent the core. Next, the
algorithm composes sentence graph by merging similar vertices based on their syntactic
features and the external information derived from the WordNet thesaurus. Then, the
sentence graph is extended by adding the dependency trees of the sentences that were not
the part of the core cluster, but still had been expressed by the similar features. Such an
expanded sentence graph is pruned according to the defined heuristics. Finally, the
summary dependency tree is extracted from the sentence graph by the integer linear
programming techniques with the constraints for the salience, importance, grammatical
correctness and length characteristics. The summary dependency tree is transformed into
a final sequence of words with the help of the linearization technique.
2.1.2.3 Conclusion

Abstractive text summarization methods described above attempt to derive the
latent semantic structure of the given text by transforming it into the graph representation
and preserving various relationships among the text elements. While such techniques
allow obtaining the shallow semantic features of the text and combining the information
from different sentences, they lack the ability to generalize novel information that has not
been mentioned in the input text, and only merge the information from the compatible

sentences.
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2.2 Knowledge based systems

A knowledge-based system (KBS) is a computer system that utilizes a
combination of the data, information, and knowledge to allow solving complex problems
with domain expertise capabilities. Such systems use artificial intelligence techniques in
an attempt to understand the information related to the problem to provide a decision
supported by the underlying knowledge. Regular information systems operate on data,
but KBS exploit the knowledge contained in the information [39]. KBS generally consist
of three main parts: a knowledge base for information storage and organization; an
inference engine for the reasoning about the information stored in the knowledge base;
and the user interface to allow system-user communication. Knowledge base (KB)
resembles the idea of an intelligent database. Information is stored in the KB in an
ontological form that grants performing the reasoning and deduction. Inference engine
(IE) goes beyond simple search engine abilities by deducting new knowledge and
utilizing existing information for the effective problem solving. IE can reason with the
subjective fuzzy knowledge together with the explicit facts of established theories that
resemble the human experts approach for the problem solving [40]. User interface allows
users to communicate with KBS by providing access to the information contained in the
knowledge base and to the capabilities of the inference engine.

The ability to derive underlined semantics and to reason about the knowledge
comprised in the text are the crucial parts of the effective abstractive summarization
algorithm. These factors distinguish the abstractive approaches from the extractive
approaches in the area of text summarization. Achieving pure abstractive summary

requires the algorithm to combine text from different parts of the input document to
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abstract and synthesize new knowledge based on the information contained in the
document, and to utilize the common sense knowledge to compose the new sentences that
represent the summary. Such a functionality is not feasible without taking the advantage
of capabilities provided by the knowledge-based systems. Researchers attempting to
tackle abstractive summarization problem used various knowledge based systems with
WordNet, BabelNet, ConceptNet, and Cyc among the most noticeable.

221 WordNet lexical database

WordNet is a thesaurus that was developed with an aim to organize the lexical
knowledge with regards of the word semantics, rather than the word forms. This is
achieved by introducing the mappings between the word meaning and the word character
representation. The vocabulary in WordNet is divided into four categories that
correspond with the English language parts of speech: nouns, verbs, adjectives and
adverbs. The nouns are organized as the topical hierarchies, the verbs represent various
relationships, and the adjectives and adverbs serve as the modifiers for the nouns and
verbs. The central idea of the semantic representation in WordNet is the grouping of
words into synonym sets, known as “synsets”. The semantic relations are then defined as
the pointers between different “synsets”.

There are four main categories of pointers between “synsets”: synonymy,
antonymy, hyponymy, and meronymy. Synonymy and antonymy pointers form lexical
relations between word forms, hyponymy and meronymy define semantic relations
between word meanings. The latter two represent relations of a form “is-a” and “has-a”
that are allowed to represent knowledge in a hierarchical form [41]. WordNet thesaurus

showed promising potential in the area of abstractive text summarization providing a
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resource to enhance the algorithms with the semantic knowledge. However, the lack of
the commonsense knowledge and the ability to reason about it is a major drawback of
WordNet thesaurus to be widely applicable in the area of abstractive text summarization
problems.

222 BabelNet encyclopedic dictionary

BabelNet is an encyclopedic dictionary that was created as an attempt to enhance
WordNet thesaurus with the information from Wikipedia, a multilingual encyclopedic
knowledge repository. The project resulted in multilingual semantic network providing
the concepts and named entities connected by the numerous semantic relations. In
BabelNet, the knowledge is encoded as a graph where the vertices are the concepts
derived from Wikipedia and the edges are the semantic relations derived from WordNet.
Such a network is populated automatically by retrieving the semantic information, such
as the word senses and the semantic pointers from WordNet, and then merging it with the
encyclopedic entries from Wikipedia pages. The linkage between the content to be
merged is established by disambiguating the context in both Wikipedia pages and
WordNet senses, and computing the conditional probabilities of the candidate contexts.
The main advantage of BabelNet semantic network is adding more lexical structure to the
encyclopedic knowledge by linking the information repository with the organized
computation lexicon [42]. Although BabelNet enhanced WordNet with the world
knowledge, it still lacked the commonsense reasoning capabilities that are crucial in the

abstractive summarization domain.
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2.2.3 ConceptNet semantic network

ConceptNet is a commonsense knowledgebase with the natural language
processing capabilities. Inspired by the structure of WordNet knowledgebase,
ConceptNet was developed with an aim to capture the content of a general world
knowledge in a way that is more suitable for the natural language processing purposes.
The main advantage of ConceptNet knowledgebase is in its emphasis on the contextual
reasoning. The knowledgebase stores the information as a graph focusing on the
semantically rich relationships represented as the edges and the complex concepts
represented as the vertices. Such a graph is generated automatically by connecting over a
million facts into a semantic network of three hundred thousand nodes.

The corpus of the English sentences from the Open Mind Common Sense project
is taken as a basis for the semantic knowledge. The idea of WordNet graph knowledge
representation is extended by the several enhancements. Vertices of ConceptNet semantic
knowledge graph consist of the compound concepts, such as verb phrases rather than the
atomic words. The edges in such a graph represent a wider variety of the semantic
relationships between the concepts, including causality, affect, event hierarchy and
location. Finally, the knowledge represented in ConceptNet is more casual, informal and
applicable [43]. Although the aforementioned enhancements allow ConceptNet
knowledgebase to be used for the applied reasoning over the raw text data, the amount of
the knowledge captured and the types of the relationships between the concepts appear to
be a major drawback when creating purely abstractive and domain independent

summarization algorithm.
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224 Cyc development platform

Cyc project started in the mid-1980s with an ambitious goal of encoding the
commonsense knowledge of the whole world in the way that a computer can understand
and be able to reason. To this date, Cyc contains more than 600,000 concepts, around
40,000 relationships connecting these concepts, and more than 7,000,000 of assertions
about these concepts. The volume of the information captured in Cyc makes it the
world’s largest knowledge based system. The knowledge inside Cyc development
platform is organized in a form of an ontology, and the powerful inference engine is
provided to perform reasoning based on the knowledge. In order to formalize such an
enormous amount of knowledge and ensure the machine readability and inference, the
knowledge base is implemented in the CycL — flexible knowledge representation
language. CycL syntax is a combination of the features from the first-order predicate
calculus and Lisp high-level programming language. High expressiveness of CycL
language allows the inference engine to perform the effective reasoning about the
knowledge.

2241 Cyc knowledge base

Cyc knowledge base arranges enormous volumes of common sense knowledge
about the world such as the facts, rules of thumbs, concepts, and their interconnections,
into a hierarchy that forms the knowledge ontology. The organization of the knowledge
in Cyc ontology is illustrated in Figure 2-2 [44]. The ontology can be viewed as a
pyramid, where each layer is arranged by the level of the knowledge generalization.

Elements of the ontology are connected by the generalization relationships of
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specialization or instantiation. Therefore, the knowledge can be propagated bottom-up by

the specialization relation type or top-down by the instantiation relation type.
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Figure 2-2: Cyc knowledge organization.

The peak of the pyramid constitutes the upper ontology that contains abstract
concepts such as an idea of the event, individual, collection, temporal thing. Upper
ontology also describes the relations between general concepts. At the very top of the
upper ontology resides the most fundamental representation called A “Thing”. Every
element in the knowledge base is an instance of the “Thing”. The next layer of the
ontology is composed by the core theories that describe the space, time and causality
relations. The rules described in the core theories build the fundament for the reasoning
ability of the inference engine. The next layer is devoted to the domain-specific theories

that cover the information about the broad number of diverse domains from banking and
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finance to healthcare and chemistry. This knowledge gives an inference engine the ability
to perform the reasoning about the very specific domains of interest. The bottom layer of
the pyramid consists of the domain-specific facts and data. This layer describes the
specific ground level facts about the particular individuals or events and does not cover
any theories.

The knowledge, represented in the ontology, is divided into large number of
collections of assertions called the micro theories. The assertions are split into the micro
theories based on the shared topics, assumptions or sources. Some of the micro theories
characterize certain domain of knowledge when others contain information about the
certain period in history or describe certain geographical regions. Every assertion must
fall into at least one micro theory. The main function of the micro theories is to maintain
the local consistency of knowledge. Theories and facts may be contradictory across the
micro theories, but within a single micro theory, the assertions must be mutually
consistent. Such constraints allow the inference engine to perform the reasoning about the
knowledge more efficiently in narrowing down the scope of the facts and rules to a
particular micro theory of interest. Micro theories are also organized in a form of a
hierarchy linked by the generalization relations. The most general micro theory is called
“BaseKB” which holds the basic rules that describe the behavior of all micro theories.

22472 Cyc inference engine

Cyc development platform allows performing the deductive reasoning about the
vast amount of knowledge it comprises with the help of the inference engine. In general,
the inference mechanism allows concluding new facts from existing facts and rules

defined in the ontology. For example, if ontology contains the fact that “A” is an ancestor
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of “B” and “C”, then the fact that “B” and “C” are the relatives does not have to be
included in the knowledge base, but instead can be deducted by the inference engine.
Every deduction performed by Cyc inference engine is concluded in a context of the
particular micro theory with all corresponding inheritances to reduce the search domain.
Cyc inference engine functionality is based on the general logic deduction, such as the
universal and existential qualification, mathematical reasoning, quality and temporal
inference. Inference engine uses CycL language to perform the deduction effectively by
manipulating the knowledge inside the ontology.

Such a robust and powerful inference engine gives the Cyc development platform
an indisputable advantage over the other knowledge-based systems. It allows not only
reasoning about the existent knowledge and deducting novel information, but it is also
capable of performing the natural language generation tasks, such as deriving English
language equivalents of the concepts contained in the knowledge base.

2.25 Conclusion

Cyc knowledge based system is chosen as a backbone for KBS algorithm
described in this dissertation. Cyc surpasses WordNet, BabelNet and ConceptNet in a
number of characteristics, such as the breadth and depth of the knowledge represented in
the system, the variety of relations between concepts, and the capabilities of the inference

engine that allows robust knowledge reasoning.

2.3  Advanced natural language processing techniques
Natural language processing (NLP) is a field of study that combines the ideas
from the computer science, artificial intelligence and computational linguistics. NLP

allows developing computer algorithms that can automatically process, analyze and
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represent human language [45]. NLP techniques range from simple word occurrence
counting to complex analysis of the sentiment of a text passage. These techniques play a
pivotal role during text the data preprocessing step, which is the process of transforming
input data from the raw text to the format suitable for further interpretation and analysis.
Following are the main advanced NLP techniques that are frequently used to

perform automatic text summarization:

sentence segmentation;

tokenization;

lemmatization;

part of speech tagging;

dependency grammar analysis.

Sentence segmentation is a process of separating the text into individual
sentences. Punctuation marks, such as a period or a question mark, are used to define
sentence boundaries during the sentence segmentation process. Tokenization is a process
of breaking up sentences into the separate words based on the primitive white space
separator or more complex separator symbols. Tokenization is followed by the
lemmatization, the process of reducing the inflectional and derivationally related word
forms to a common form known as a lemma. Lemmatization performs the morphological
analysis of the words derived by the tokenization to derive their base forms.

For example, words “dark”, “darker” and “darkest” are all lemmatized to the base
form “dark”. Parts of speech tagging is a process of assigning a particular part of speech
tag to a word in a sentence. There are four major parts of speech tags, also known as the

open class tags: nouns, verbs, adjectives and adverbs. Sophisticated statistical methods



32

are used to derive appropriate part of speech tags for the words in the text. The proper
parts of speech tagging is crucial for the most of natural language processing techniques,
including the lemmatization and syntactic parsing. There is a number of conventions used
to denote parts of speech tags. In our research, we follow parts of speech tagging defined
by the Universal Dependencies (UD) framework treebank for English language. Parts of

speech tags with corresponding descriptions are provided in Table 2-1.

Table 2-1: Parts of speech tags from Universal Dependencies treebank.

Parts of speech tag Description
ADJ Adjective
ADP Adposition
AUX Adverb
CCONJ Coordination conjunction
DET Determiner
INTJ Interjection
NOUN Noun
NUM Numerical
PART Particle
PRON Pronoun
PROPN Proper noun
PUNCT Punctuation
SCONJ Subordinating conjunction
SYM Symbol
VERB Verb
X Other

Dependency grammar analysis derives the syntactic structure of the sentences
based on the words and the grammatical relations that link these words. During the

syntactic parsing, the sentence is being represented as a dependency tree. Such a tree
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structure has a root that states the head of the sentence and the nodes, represented by the
words of the sentence. The nodes are connected by their syntactic relationships. For
example, in the sentence, “I study computer science”, the verb “study” is the root of the
dependency tree, the pronoun “I” is the subject of the verb “study”, the noun “science” is
the object of the verb “study”, and the noun “computer” is a compound modifier of the
noun “science” [46]. There is a number of conventions used to denote the dependency
relation tags. In our research, we use dependency tags defined by the Universal
Dependencies (UD) framework scheme for the English language. Descriptions of the

dependency tags are provided in Table 2-2.

Table 2-2: Syntactic dependency relationships tags from Universal Depenencies

scheme.

Dependency relation tag

Description

ACOMP Adjectival complement
ADVMOD Adverbial modifier
AMOD Adjectival modifier
CSUBJ Clausal subject
CSUBJPASS Clausal subject (passive)
DOBJ Direct object
I0BJ Indirect object
NSUBJ Nominal subject
NSUBJPASS Nominal subject (passive)
OPRD Obiject predicate
OBJ Object
POBJ Object of preposition



CHAPTER 3

ABSTRACTIVE TEXT SUMMARIZATION USING CYC
DEVELOPMENT PLATFORM

This chapter provides a detailed description of the underlying methodology of the
proposed algorithm for abstractive text summarization.

The KBS algorithm described in pages 3 and 4 attempts to bring the machines
one-step closer to the comprehension of the knowledge comprised in the text. The
algorithm performs text summarization in three principal steps: the knowledge
acquisition, the knowledge discovery, and the knowledge representation. During the
knowledge acquisition step, the algorithm receives text documents as an input, performs
deep syntactic analysis, and maps the words with their syntactic relationships into the
Cyc knowledge base. During the knowledge discovery step, the KBS algorithm performs
a generalization of new concepts by propagating the concepts that were mapped into Cyc
knowledge base by the knowledge acquisition step. It also performs the task of the
identification of the main topics of the text based on the mapped and generalized
concepts. Finally, during the knowledge representation step, the KBS algorithm generates
new sentences using knowledge derived from the input text documents and the
capabilities of Cyc inference engine. The subsections of this chapter describe the

workflow of three steps of the KBS summarization algorithm.

34



35

3.1 Knowledge acquisition
The knowledge acquisition consists of two sub-processes. The first sub-process
extracts the syntactic structures from the given documents. This sub-process serves as a
data preprocessing and transformation step. It normalizes raw text data and transforms it
into syntactic representation. The second sub-process maps words from syntactic
representation of the text to Cyc concepts. Mapped Cyc concepts are utilized for
reasoning during subsequent steps of the algorithm.

3.11 Svyntactic structure extraction

The syntactic structure extraction sub-process starts by separating input text into
individual sentences. Then it applies the process of tokenization to separate sentences
into individual words and uses lemmatization to normalize word forms. Next, it assigns
the appropriate parts of speech tag for each lemmatized word in the sentence. Parts of
speech tags are required during the mapping process and help to address the
disambiguation issue. Only open class parts of speech tags such as noun, verb, adjective,
and adverb are used for the analysis.

Next, the sub-process applies the syntactic dependency parses to discover the
relationships between the words in the sentences. Syntactic dependency relationships are
recorded in the following format: (“word” “relationship type” “head”), where “word” is
the dependent element in the relationship, “relationship type” is the type of the
relationship, and “head” is the leading element in the relationship. For example, applying
syntactic parser on sentence “Rottweiler rarely eats raw veal” produces the following
relationships: (“Rottweiler” “nsubj” “eats”), (“veal” “dobj” “cats”), (“rarely” “advmod”

“eats”), (“raw” “amod” “veal”). Syntactic dependency relationships of the example
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sentence are illustrated in Figure 3-1. Syntactic dependency relationships are crucial
features for the new sentence generation sub-process of the knowledge representation

step of the summarization algorithm.

“nsu bj” “dobj”
/“advmod” /“amod”
Rottweiler rarely eats raw veal.

Figure 3-1: Example of syntactic dependency relationships in a sentence.

Finally, the sub-process counts and records frequencies of the word occurrences
and their relationships. These frequencies are used as weights for corresponding Cyc
concepts and their relationships during mapping sub-process of the knowledge
acquisition step.

The syntactic structure extraction sub-process produces syntactic representation of
the input text that consists of words, their frequencies, parts of speech tags, syntactic
dependency relationships and their frequencies. Workflow diagram of the sub-process is

outlined in Figure 3-2.
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Input text
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_Sepgra‘_[e .tEXt Tokenize each Lemmatize each
into individual —» >
sentence word
sentences
Assign part of Assign syntactic Couqt
dependency .| frequencies of
speech tag to > - .
relationships to words and
each word . .
each word relationships
\ 4
Syntactic

representation

Figure 3-2: Syntactic structure extraction sub-process workflow diagram.

3.1.2 Mapping words to Cyc concepts

The mapping words to Cyc concepts sub-process finds matching Cyc concept for
each word in the input document. Once algorithm finds correspondent Cyc concept it
assigns word’s weight, its syntactic dependency relationships and their weights to the
Cyc concept. Word’s weight is a frequency, the number of times it is mentioned in the
text. The dependency relationship is an association between two words in a sentence,
derived by the syntactic dependency parser. Each dependency relationship has a weight

associated with it that shows how frequently two words were used together in the text.
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Higher weights represent stronger syntactic dependency relationships. Our algorithm
enhances Cyc semantic knowledge about the concepts with the syntactic structures
derived from the input text. The semantic knowledge and the syntactic structures are two
crucial parts that make abstractive summary cohesive and meaningful. The steps of the
mapping words to Cyc concepts sub-process are outlined as follows:
e For each word in the syntactic representation obtained by the syntactic
structure extraction sub-process:

e Map word to the corresponding Cyc concept;

e Assign the word’s weight to the corresponding Cyc concept;

e Map relationship head word to the corresponding Cyc concept;

e Assign the word’s relationship and relationship’s weight to the

corresponding Cyc concept.

Workflow diagram of the sub-process is illustrated in Figure 3-3.

Syntactic Map each Assign word's
re r)(/esentaion word to Cyc — weight to Cyc
P concept concept

Map word’s Assign word's
relationship relationship to Mapped Cyc
head to Cyc concepts
Cyc concept
concept

Figure 3-3: Mapping words to Cyc concepts sub-process workflow diagram.
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3.2 Knowledge discovery

The knowledge discovery step performs two tasks: it abstracts new concepts and
identifies main topics described in the input text.

New concepts abstraction sub-process performs generalization of the information
derived from the text. It finds the ancestors of mapped Cyc concepts and assigns the
descendants’ propagated weight and syntactic dependency relationships to the ancestors.
It is an important part of abstractive summarization process as it allows deriving concepts
that are not explicitly mentioned in the input text. For example, concepts like “cat”,

“tiger”, “jaguar” and “lion” are generalized into more abstract “feline” concept. Another
example of concepts propagation is illustrated in Figure 3-4. The relationship between

2 ¢ 99 ¢ bEAN1Y

descendant concepts “banana”, “orange”, “apple”, “pear” and ancestor concept “edible

fruit” in Cyc ontology is represented by the “#$isA” Cyc predicate.

ancestor
concept

descendant ‘ s-a IS- ‘ descendant
banana
concept concept
orange apple
t d

descendan escendant
concept concept

Figure 3-4: Upward concepts propagation in Cyc ontology.
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The main topics identification sub-process detects topics described in the text
with an assumption that they are represented by the most frequently used micro theories.
Micro theories form the basis of knowledge organization in Cyc ontology being the
clusters of Cyc concepts and facts, typically representing one specific domain of
knowledge. For example, #$BiologyMt is a micro theory containing biological
knowledge, and #$MathMt is a micro theory containing concepts and facts describing the
field of mathematics. Each Cyc concept is defined within a micro theory.

3.21 New concepts abstraction

The new concepts abstraction sub-process consists of two steps: concepts
propagation step and concepts’ weight and relationships accumulation step. Concepts
propagation derives an ancestor concept for each mapped Cyc concept. Concepts’ weight
and relationships accumulation adds the descendant concepts’ accumulated weight and
relationships to ancestor concept based on the generalization parameter.

The concepts propagation starts by finding the ancestor concept for each concept
that was mapped to Cyc ontology during knowledge acquisition step. Then it records
ancestor-descendant relationship, updates the number of ancestor’s descendant concepts
and accumulated descendant’s weight. Accumulated descendant weight is scaled by the
generalization parameter a. This step of the new concepts abstraction sub-process is
described as follows:

e For each mapped Cyc concept:
e Find the concept’s ancestor;
e Record the ancestor-descendant relation;

e Update the ancestor’s number of descendants;
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e Update the ancestor’s descendants accumulated weight;
e Scale the descendant’s weight by a.

Workflow diagram of the concepts propagation step is illustrated in Figure 3-6.

Mapped Cyc
concepts
A
Update number
Find ancestor for Record ancestor- of descendants
each mapped »  descendant » and accumulated
concept relationship weight scaled by
o
Ancestor Cyc
concepts

Figure 3-5: Concepts propagation step workflow diagram.

The concepts’ weight and relationships accumulation step starts by calculating the
descendant-ratio — the number of mapped descendants divided by the number of all
descendants of a concept.

p tio = # mapped descendants Eq. 31
oeratie Ty of all descendants &

Next, if the descendant-ratio is higher than the defined generalization parameter f3,
then the descendants’ weight and descendants’ relationships are added to the ancestor
concept. Parameters o and 3 regulate the desired level of generalization. Higher o and

lower P yield greater level of generalization giving more emphasis to ancestor concepts.
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Concept’s weight and relationships accumulation step of the new concepts abstraction
sub-process is described as follows:
e For each ancestor Cyc concept:
¢ Find the number of concept’s mapped descendants;
¢ Find the number of all concept’s descendants;
e Calculate descendants’ ratio;
e If descendant-ratio is larger than the defined threshold f3:
e Add descendants’ accumulated weight to the ancestor’s
weight;
e Add descendants’ relationships to the ancestor’s
relationships;
e Scale descendant’s relationship weight by a.
Workflow diagram of the concepts’ weight and relationships accumulation step is

illustrated in Figure 3-6.
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Find numb?r of Find number of
concept’s ,
all concept’s
mapped descendants
descendants
Add descendants
Calculate accumulated
descendants’ weight and
ratio relationships to
ancestor
Updated Cyc
concepts

Figure 3-6: Concepts’ weight and relationships accumulation step workflow diagram.

3.2.2 Main topics identification

The main topics of the input text are identified by the most frequent micro
theories derived from the updated mapped Cyc concepts. The sub-process starts by
finding defining micro theory for each mapped Cyc concept. Next, it counts frequencies
of discovered micro theories. Then, it picks the top-n micro theories with the highest

frequencies that will represent the main topics of the input text.
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The main topics identification sub-process is described as follows:
e For each mapped Cyc concept:
e Find defining micro theories.
e Count the frequencies of discovered micro theories;
e Pick the top-n micro theories with the highest frequencies.

Workflow diagram of the sub-process is illustrated in Figure 3-7.

Mapped Cyc
concepts
A
Find defining Count Pick top-n micro
micro theory for| [ frequencies of . | theories with the
each mapped | the discovered highest
Cyc concept micro theories frequencies

h 4

Top-n micro
theories

Figure 3-7: Main topics identification sub-process workflow diagram.

3.3  Knowledge representation
The knowledge representation utilizes powerful capabilities of the Cyc inference
engine to generate new sentences based on the information discovered during knowledge
acquisition and knowledge discovery steps. This step uses mapped and generalized Cyc
concepts, their syntactic dependency relationships, and most frequent micro theories as
inputs. Knowledge representation step consists of two sub-processes — candidate subjects

discovery and new sentences generation. Candidate subjects discovery sub-process
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identifies significant subject concepts out of all the mapped and generalized Cyc
concepts. New sentences generation sub-process composes new sentences for each of the
identified candidate subject concept. Generated sentences serve as a final summary of the
input text.

3.31 Candidate subjects discovery

The candidate subjects discovery sub-process starts by finding all mapped Cyc
concepts in each main topic derived during knowledge discovery process. Then it
calculates the subjectivity ratio of each of the found Cyc concepts. Subjectivity ratio is
defined as the number of concept’s relationships labelled as subject relationship divided
by the total number of all concept’s relationships. This ratio allows identifying concepts
that have more subject relationships and helps distinguish concepts with a stronger
subject role in the input text.

) ) # of subject associations
subj_ratio = — Eqg. 3-2
# of all associations

Next, it calculates subjectivity rank for each found subject concepts. Subjectivity
rank is defined as a product of concept weight and concept subjectivity ratio. Subjectivity
rank scales the weight of the concept by the subjectivity ratio, which allows choosing
subjects that are more semantically meaningful in the context of the given text.

subj_rank = concept_weight * subj_ratio Eg. 3-3
Finally, concepts with the highest subjectivity rank are chosen as the candidate
subject concepts and new sentences are being created for each of them during new

sentence generation sub-process.
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The candidate subjects discovery sub-process is described as follows:
e For each top-n micro theory:

e For each concept mapped from the text:
e Find the number of subject associations;
e Find the number of all associations;
e Calculate subjectivity ratio;
e Calculate subjectivity rank;

e Pick the top-n subjects with the highest subjectivity rank.

Workflow diagram of the sub-process is outlined in Figure 3-8.

Top-n micro
theories

A 4
Find number of
subject
relationships for
each Cyc concept

Find number of all
relationships for

each Cyc concept Calculate

"| subjectivity ratio

h 4

. . in each micro
in each micro theary
theory
Pick top-n
Calculate subjects with the
subjectivity rank d highest
subjectivity rank

y

Top-n subject
concepts

Figure 3-8: Candidate subjects discovery sub-process workflow diagram.
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3.3.2 New sentences generation

The new sentences generation sub-process uses subject concepts identified during
the candidate subjects discovery sub-process and their syntactic dependency relationships
discovered during the knowledge acquisition process. This sub-process creates new
English sentences for each candidate subject concept to generate a summary of the input
text based on the discovered knowledge. The basic structure of newly created sentences
follows the shallow triplet model, where each sentence has subject, predicate and object
elements. Such basic triplet structure is enhanced by the adjective modifiers for the
subject and object elements and by the adverb modifiers for the predicate elements when
available. Subject, predicate and object elements of the sentences are mandatory while
adjective and adverb modifiers are optional. Figure 3-9 illustrates the enhanced structure

of newly created sentences.

adjective sublject adverb adjective
modifier ) modifier modifier

Figure 3-9: Enhanced structure of newly created sentence.

Described sentence structure enhancement allows creating new sentences with a
more complex structure that goes beyond simple subject-predicate-object model.
Sentence creation process starts by identification of the corresponding predicate and
object elements for each candidate subject based on the weights of the subject-predicate,

predicate-object and subject-object syntactic dependency relationships. Then it proceeds
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by deriving the appropriate adjective and adverb modifiers for subject, predicate and
object elements, based on the weights of subject-adjective, predicate-adverb and object-
adjective syntactic dependency relationships.

Subject, predicate, object, adverb, and adjective elements of new sentences are
derived from Cyc knowledge base as Cyc concepts that are expressed in a particular
format having a “#8$” prefix. For example, dog is expressed as a “#$Dog” concept in Cyc
knowledge base. New sentence generation sub-process uses natural language generation
capabilities of Cyc inference engine to derive English language representations of Cyc
concepts. Cyc command “generate-phrase” allows retrieving natural language word or
phrase equivalent of a Cyc concept. As an example, applying “generate-phrase” Cyc
command to "#$EatingEvent" Cyc concept produces the string "eat" as an output and
applying it to "#$Coyote-Animal" produces the string "coyote". This powerful natural
language generation functionality of Cyc inference engine is another advantage of using
Cyc development platform as a backbone.

The new sentence generation sub-process is outlined as follows:

e For each candidate subject:
e Convert subject Cyc concept to natural language representation;
e Pick the adjective with the highest subject-adjective relationship
weight;
e Convert adjective Cyc concept to natural language representation;
e Pick the top-n predicates with the highest subject-predicate
relationship weights;

e For each predicate in the top-n predicates:



49

e Convert predicate Cyc concept to natural language
representation;
e Pick the adverb with the highest predicate-adverb
relationship weight;
e Convert adverb Cyc concept to natural language
representation;
e Pick the top-n objects with the highest product of subject-
object and predicate-object relationships weights;
e For each object in the top-n objects:
e Convert object Cyc concept to natural language
representation;
e Pick the adjective with highest object-adjective
relationship weight;
e Convert adjective Cyc concept to natural language
representation;
e Compose the new sentence using subject, subject-
adjective, predicate, predicate-adverb, object, and
object-adjective natural language representations.

Workflow diagram of the sub-process is outlined in Figure 3-10.
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Figure 3-10: New sentences generation sub-process workflow diagram.



CHAPTER 4

IMPLEMENTATION OF THE ABSTRACTIVE TEXT
SUMMARIZATION SYSTEM

KBS algorithm was implemented as an abstractive text summarization system.
This chapter provides description of the system design and the technical details of the
system implementation.

The system was implemented using Python programming language. Python was a
natural choice because of the advanced Natural Language Processing tools and libraries
supplied by the language. Sentence segmentation, tokenization, lemmatization, parts of
speech tagging and dependency grammar analysis were implemented with the help of
SpaCy — Python library for advanced natural language processing. This library is the
fastest in the world with the accuracy within one percent of the current state of the art

systems for parts of speech tagging and dependency grammar analysis [47].

4.1  Cyc development platform integration
Our system uses Cyc knowledge base and its inference engine as a backbone for
the semantic analysis. Cyc development platform supports communications with the
knowledge base and utilization of the inference engine through the application
programming interfaces (APIs) implemented in Java. We utilize Java-Python wrapper
supported by JPype Python library to allow our system using Cyc Java API packages.

JPype library provides a code written in Python convenient access to Java class libraries.

51



52

It is essentially an interface at a basic level of virtual machines. Such wrapper allows
using Java API calls provided by Cyc development platform inside our system, which is
developed in Python. JPype library requires starting Java Virtual Machine before Java
packages or classes can be used within the Python code. Then any packages, methods or
classes are accessible given an appropriate path to their jar file implementation [48].
Communication between our system and Cyc development platform is illustrated in
Figure 4-1. To the best of our knowledge, our summarization system is the first Python-

based system that allows communication with Cyc development platform.

Summarization
system

Python code

]

JPype library
Cyc Java APIs

t1t
Ry

SRR R RSl
— ———
Cyc

development
platfrom
R e

Figure 4-1: Communication between summarization system and Cyc development
platform.
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4.2  Summarization system’s design

We designed our abstractive summarization system as a modular and pipelined
data-mining framework. Modularity provides the ability to conveniently maintain parts of
the system and to add new functionality as needed. Pipelined design of the system allows
comprehensible data flow between different modules.

The system consists of seven modules:

A. Syntactic structure extraction;

B. Mapping words to Cyc concepts;

C. Concepts propagation;

D. Concepts’ weight and relationships accumulation;
E. Main topics identification;

F. Candidate subjects discovery;

G. New sentences generation.

Modules A and B together constitute the knowledge acquisition step of the
summarization algorithm. Modules C, D and E together make up the knowledge
discovery step of the summarization algorithm. Modules F and G together form
knowledge representation step of the summarization algorithm. Each module is
implemented as a separate function with defined input parameters and generated outputs.
Modular system’s design is illustrated in Figure 4-2. The rest of the chapter provides the

description of system’s modules.
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Input: Document(s). Input: Dictionary of words.
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Cyc concepts with updated weights and Cyc concepts with assigned ancestor- Cyc concepts with assigned weights and
associations. descendant relations associations.

Concepts 'weights and
relationships
accumulation

Main topics
identification

A

A

Concepts propagation fe

Output: Dictionary of top-n topics.
Contains top-n micro theories and their

Output: Updated Cyc concepts.
Cyc concepts with updated weights and

weights. associations.

AANNRNNNNRNNY

Output: Ancestor Cyc concepts.
Cyc concepts with assigned ancestor-

descendant relations

Knowledge discovery

A 4

Inputs: Updated Cyc concepts &
Dictionary of top-n topics.

Input: Dictionary of top-n subjects.
Contains top-n Cyc subject concepts and their

weights.
Candidate subjects . New sentences
discovery generation
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Output: Newly generated sentences.
Constitute summary of the input documents.

Knowledge representation

Figure 4-2: Modular design of the system.

4.2.1 “Syntactic structure extraction” module

The “Syntactic structure extraction” module is implemented using SpaCy —

Python library for advanced natural language processing. This module operates outside of
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the Cyc development platform. The output of the module is a dictionary that contains
words, their part of speech tags, weights and syntactic dependencies. This dictionary
serves as an input for the “Mapping words to Cyc concepts” module. Source code of the
module implementation is provided in A.1

4.2.2 “Mapping words to Cyc concepts” module

The “Mapping words to Cyc concepts” module communicates with Cyc
development platform and updates weight and syntactic dependency relationships of Cyc
concepts. The output of the module are mapped Cyc concepts with assigned weights and
syntactic dependency relationships. The mapped Cyc concepts serve as an input for
“Concepts propagation” module. “Syntactic structure extraction” and “Mapping words to
Cyc concepts” modules together constitute the knowledge acquisition step of the
summarization process. Table 4-1 provides description of Cyc commands used to map
word to Cyc concept (a), assign the word’s weight (b), the word’s syntactic relationship
and syntactic relationship’s weight (c) to the Cyc concept. Source code of the module

implementation is provided in A.2.
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Table 4-1: Description of Cyc commands used by “Mapping words to Cyc concepts”
module.

ID Cyc command Description
€)) (#$and Command uses built-in “#$denotation”
(#$denotation ?Word ?POS ?Num Cyc predicate to relate a “word”, its

?Concept) (#$word-Forms ?Word part of speech tag (?POS), and a sense
?WordForm “word”) number (?Num) to concept (?Concept).
(#$genls ?POS ?POSTag)) It also uses “#$wordForms” and

“#$genls” predicates to accommodate

for all variations of word’s lexical

forms.
(b) (#$conceptWeight ?Concept Command uses user-defined
?Weight) “#$conceptWeight” Cyc predicate that

assigns the weight (?Weight) to the
concept (?Concept).
(©) (#$conceptAssociation ?Concept Command uses user-defined
?Type ?HeadConcept ?Weight) “#$conceptAssociation” Cyc predicate
that assigns a specific type (?Type) of
a syntactic dependency association, the
leading element (?HeadConcept) and
the weight (?Weight) to the concept
(?Concept).

423 “Concepts propagation” module

The “Concepts propagation” module communicates with Cyc development
platform to derive all mapped Cyc concepts (a), find closest ancestor concepts (b) and
update ancestor concepts’ relations (, d). The output of the module are ancestor Cyc
concepts with assigned descendant concepts’ weights and counts and ancestor-descendant

relations. The ancestor Cyc concepts are used by the “Concepts’ weight and relationships
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accumulation” module. Cyc commands used by the “Concepts propagation” module are

described in Table 4-2. Source code of the module implementation is provided in A.3.

Table 4-2: Description of Cyc commands used by “Concepts propagation” module.

ID Cyc command Description
@ (#$conceptWeight ?Concept Command uses user-defined
?Weight) “#$conceptWeight” Cyc predicate to

retrieve concepts (?Concept) that have
as-signed weights (?Weight).

(b) | (#$min-genls ?Concept) Command uses built-in “min-genls”
Cyc predicate to retrieve the closest
ancestor concept for the given concept

(?Concept).
(© (#$conceptDescendants ?Concept Command uses user-defined
?Weight ?Count) “#$conceptDescendants” Cyc

predicate to record the number of
descendants (?Count) and their weight

(?Weight) to the ancestor concept

(?Concept).
(d) | (#$conceptAncestorOf ?Concept Command uses user-defined
?Descendant) “#$conceptAncestorOf” predicate to

assign ancestor-descendant relation
between the ancestor concept
(?Concept) and the descendant concept

(?Descendant).

424 “Concepts’ weight and relationships accumulation” module

The “Concepts’ weight and relationships accumulation” module communicates
with Cyc development platform to derive all ancestor Cyc concepts (a), find the number

of ancestor’s mapped descendants (b), find the number of all ancestor’s descendants (c)
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and update ancestor’s weight and relations (d, ). The output of the module are the Cyc

concepts with updated weights and syntactic dependency relationships. Updated Cyc

concepts are used by the “Main topics identification” and the “Candidate subjects

discovery” modules. Cyc commands used by the “Concepts’ weight and relationships

accumulation” module are described in Table 4-3. Source code of the module

implementation is provided in A.4.

Table 4-3: Description of Cyc commands used by “Concepts weight and relationships
accumulation” module.

ID Cyc command Description
@) (#$conceptDescendants ?Concept Command uses user-defined
?Weight ?Count) “#$conceptDescendants” Cyc
predicate to retrieve all concepts
(?Concept) that have descendants.
(b) | (#$conceptAncestorOf 2AncConcept | Command uses user-defined
?MappedDesc) “#$conceptAncestorOf” predicate to
retrieve mapped descendant concepts
(?MappedDesc) of the given ancestor
concept (?AncConcept).
(c) | (#%genls 2AncConcept Command uses built-in “#$genls” Cyc
?DescConcept) predicate to retrieve all descendant
concepts (?DescConcept) of the given
ancestor concept (?AncConcept).
(d) | (#$conceptWeight 2AncConcept Command uses user-defined

?DescWeight)

“#$conceptWeight” Cyc predicate to
assigns the descendant concepts’
propagated weight (?DescWeight) to

the ancestor concept (?AncConcept).
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(e (and Command uses user-defined
(#$conceptAncestorOf 2AncConcept | “#$conceptAncestorOf” and
?DescConcept) “#$conceptAssociation” Cyc

(#$conceptAssociation ?DescConcept | predicates to assign descendant’s

?Type ?Head-Concept ?Weight)) association (?DescConcept) and its
propagated weight (?Weight) to the
ancestor concept (?AncConcept).

425 “Main topics identification” module

The “Main topics identification” module communicates with Cyc development
platform to derive defining micro theory for each mapped Cyc concept (a). Calculation of
the derived micro theories’ frequencies is handled outside of the Cyc development
platform. The output of the module is the micro theories dictionary that contains top-n
micro theories with the highest weights. This dictionary serves as an input for the
“Candidate subjects discovery” module. The “Concepts propagation”, the “Concepts’
weight and relationships accumulation” and the “Main topics identification” modules
together constitute knowledge discovery step of the summarization process. Table 4-4
provides the description of Cyc command used by the “Main topics identification”

module. Source code of the module implementation is provided in A.5.
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Table 4-4: Description of Cyc command used by “Main topic identification” module.

ID Cyc command Description

@ (#$and Command uses user-defined
(#$conceptWeight ?Concept “#$conceptWeight” Cyc predicate and
?Weight) built-in “definingMt” Cyc predicate to
(#$definingMt ?Concept derive  defining  micro  theory
?MicroTheory)) (?MicroTheory) for each concept
(?Concept) that have assigned weight

(?Weight).

4.2.6 “Candidate subjects discovery” module

The “Candidate subjects discovery” module communicates with Cyc development
platform to derive mapped Cyc concepts for each defining micro theory in the input
dictionary (a) and to find the number of the concept’s syntactic dependency associations
labelled as “subject” relation (b) and the number of all syntactic dependency associations
of the concept (c). Calculations of the subjectivity ratio and the subjectivity rank are
handled outside of the Cyc development platform. The output of the module is the
dictionary that contains top-n subjects with the highest subjectivity rank. This dictionary
serves as an input for the “New sentences generation” module. Table 4-5 provides the
description of Cyc commands used by the “Candidate subjects discovery” module.

Source code of the module implementation is provided in A.6.
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Table 4-5: Description of Cyc commands used by “Candidate subjects identification”

module.
ID Cyc command Description
(@ | (#%and Command uses built-in

(#$definingMt ?Concept
?MicroTheory)
(#$conceptWeight ?Concept
?Weight))

(b) | (#$conceptAssociation ?Concept
"nsubj" ?HeadConcept ?Weight)

(© (#$conceptAssociation ?Concept
?Type ?HeadConcept ?Weight)

427 “New sentences generation” module

“#8definingMt” Cyc predicate and
user-defined “conceptWeight” Cyc
predicate  to  derive  concepts
(?Concept) that have assigned weight
(?Weight) for each micro theory
(?MicroTheory) in micro theories
dictionary.

Command uses user-defined
“#$conceptAssociation” Cyc predicate
with “nsubj” parameter to derive the
concept’s (?Concept) syntactic
dependency associations labelled as
“subject” relations.

Command uses user-defined
“#$conceptAssociation” Cyc predicate
with no parameter specified (?Type) to
derive all concept’s (?Concept)

syntactic dependency associations.

The “New sentences generation” module communicates with Cyc development

platform to derive appropriate Cyc concepts for each sentence element based on the

weights of their syntactic dependency relationships (a, b, c, d, €) and to derive their

natural language representations (f). New sentences are composed outside of the Cyc

development platform and serve as an output for the module and the whole
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summarization system. The “Candidate subjects identification” and the “New sentences
generation” modules together constitute the knowledge representation step of the
summarization process. Table 4-6 provides the description of Cyc commands used by the
“New sentences generation” module. Source code of the module implementation is

provided in A.7.

Table 4-6: Description of Cyc commands used by “New sentences generation” module.

ID Cyc command Description
@ (#$conceptAssociation ?Concept Command uses user-defined
"amod" ?HeadConcept ?Weight) “#$conceptAssociation” Cyc predicate

with “amod” parameter to derive Cyc
concept  (?Concept)  associations
labelled as adjective modifier syntactic
dependency relation.
(b) | (#$conceptAssociation ?Concept Command uses user-defined
"pred” ?HeadConcept ?Weight) “#$conceptAssociation” Cyc predicate
with “pred” parameter to derive Cyc
concept  (?Concept)  associations
labelled as predicate  syntactic
dependency relation.
(©) (#$conceptAssociation ?Concept Command uses user-defined
"advmod" ?Head-Concept ?Weight) | “#$conceptAssociation” Cyc predicate
with “advmod” parameter to derive
Cyc concept (?Concept) associations
labelled as adverb modifier syntactic
dependency relation.
(d) | (#$conceptAssociation ?Concept Command uses user-defined
"obj" ?HeadConcept ?Weight) “#$conceptAssociation” Cyc predicate

with “obj” parameter to derive Cyc



(€)

(f)

(#$conceptAssociation ?Concept
"subj-obj" ?HeadConcept ?Weight)

(#$generate-phrase ?Concept)
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concept  (?Concept)  associations
labelled as object syntactic de-
pendency relation.

Command uses user-defined
“#$conceptAssociation” Cyc predicate
with “subj-obj” parameter to derive
Cyc concept (?Concept) associations
labelled as subject-object syntactic
dependency relation.

Command uses built-in “#$generate-
phrase” Cyc predicate to retrieve
corresponding  natural language
representation for a Cyc concept
(?Concept).



CHAPTER 5

EXPERIMENT AND RESULTS

Several experiments were conducted to highlight different capabilities of
proposed abstractive summarization system. The first experiment was performed using
artificially generated sentences to illustrate the process of concepts generalization. Other
experiments were conducted using real world data parsed from encyclopedia articles that

described concepts from various domains.

5.1  Experiments conducted on artificially generated data
Two sets of sentences were created to perform experiments with an artificial data.
The first set consisted of simple sentences, only containing subject, predicate and object

elements. The sentences are listed in Figure 5-1.

64



65

Eottweder eats veal
Fottweler eats muttorn.
Eottweiller eats poultry.
Dachshund hunts pheasant.
Dachshund hunts sparrow.
Dachshund hunts wren
Drachshund hunts finch,
Pocdle 12 gray.

Poodle is brown.

Pocdle 15 white.

Poodle 15 blue.

Poodle is yellow.

Figure 5-1: Artificial sentences with simple structure used for testing.

The results of applying summarization system to the set of described sentences

are illustrated in Table 5-1.

Table 5-1: Summarization results of applying system to the first set of artifical data.

Sentences expressed by Cyc concepts Natural language representation
#$Dog #$eatingEvent #$Meat Dog eating meat
#$Dog #$being #3coloredThing Dog being colored
#$Dog #$huntingEvent #$Bird Dog hunting bird

The results highlight the process of concepts generalization. Word “dog”
represented by Cyc concept “#$Dog” has not been mentioned in the input text implicitly

and has been generalized as an ancestor concept from “Rottweiler”, “Dachshund” and



“Poodle” descendant concepts, all being types of dog breeds. Figure 5-2 illustrates

described ancestor-descendant relationships.

ancestor
concept
is-a is-a
descendant . -
Rottweiler 1S-a ndan
concept Poodle descendant
concept
descendant
concept

Figure 5-2: “Dog” concept ancestor-descendant relationships in Cyc ontology.

Following this analogy, the word “meat” represented by Cyc concept “#$Meat”

was generalized from “veal”, “mutton” and “poultry” descendant concepts, all being

types of meats. Figure 5-3 illustrates described ancestor-descendant relationships.
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ancestor
concept

y /*\561
is-a

descendant
concept

descendant
concept

descendant
concept

Figure 5-3: “Meat” concept ancestor-descendant relationships in Cyc ontology.

The word “bird” represented by Cyc concept “#$Bird” was generalized from

“pheasant”, “sparrow”, “wren” and “finch” descendant concepts, all being types of birds.

Figure 5-4 illustrates described ancestor-descendant relationships.
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ancestor
concept
is-a is-a
descendant 15-a 1s-a descendant
concept concept
pheasant
descendant descendant
concept concept

Figure 5-4: “Bird” concept ancestor-descendant relationships in Cyc ontology.

The word “colored” represented by Cyc concept “#8$coloredThing” was

2 ¢¢

generalized from “grey”, “white”, “brown”, “blue” and “yellow” descendant concepts, all

being different colors. Figure 5-5 illustrates described ancestor-descendant relationships.
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ancestor
concept

colored

is-a is-a

) is-a

is-a

is-a
descendant descendant
concept concept
descendant brown descendant
concept concept
descendant
concept

Figure 5-5: “Colored” concept ancestor-descendant relationships in Cyc ontology.

The second set of artificial data consisted of more complex sentences that were

composed using adjective and adverb modifiers. Sentences are listed in Figure 5-6.
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Eottweiler rarely eats raw veal.
Eottweider eats raw toutton
Eottweiler rarely eats cooked poultry.
Dachshund hunts rapid pheasant.
Dachshund hunts slow sparrow.
Dachshund hunts wren.

Dachshund hunts rapdd finch

Pocdle iz usually dark gray.

Poodle is usually dark brown,
Poodle 15 always white.

Poodle 15 usually dark blue.

Poodle 15 always dark yellow.

Figure 5-6: Artificial sentences with complex structure used for testing.

The results of applying summarization system to the set of described sentences

are illustrated in Table 5-2.

Table 5-2: Summarization results of applying system to the second set of artifical data.

Sentences expressed by Cyc concepts Natural language representation
#$Dog #$rarity #$eatingEvent “Dog rarely eating raw meat”
#$rawThing #$Meat
#$Dog #$normalThing #$being “Dog normally being dark colored”

#$darkness #$coloredThing
#$Dog #$huntingEvent #$highRateEvent | “Dog hunting rapid bird”
#$Bird

In addition to exhibiting generalization capabilities (“dog”, “meat”, “bird” and

“colored” concepts), the presented results show that the system is able to create
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sentences with the structure that extends beyond simple subject-predicate-object triplets

utilizing adjective and adverb modifiers (“rarely”, “raw”, “normally”, “dark” and

“rapid” concepts).

5.2  Experiments conducted on encyclopedia articles
Several experiments were conducted using real world text data parsed from
encyclopedia articles describing various topics.
First, the system was applied to Wikipedia articles representing information from
different domains and describing domestic dog, personal computer and hamburger.
Original articles are illustrated in Figure B-1, Figure B-2, and Figure B-3. Concepts and

main topics derived from analyzed articles are summarized in Table 5-3.
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Table 5-3: Concepts and main topics derived from Wikipedia articles describing various

topics.
Article Topics Concepts
Cyc micro o Natural
name theory Description Cyc concept language
Dog #$BiologyMt | Micro theory that | #$Dog Dog
describes concepts | #$CanisGenus Canine
and relationships | #$Person Person
related to the field | #$BiologicalSubsp | Subspecies
of Biology. ecies
#$NaivePhys | Micro theory that | #$Breeder Breeder
icsMt describes concepts
and relationships
represented as
Naive physics
beliefs and
practices.
Hamburger | #8HumanFo | Micro theory that | #3Food Food
0dGMt describes concepts | #$Burger Burger
and  relationships | #$HamburgerSand | Hamburger
related to the topic | wich
of food normally | #$GroundBeef Ground beef
consumed by | #$Cheese Cheese
humans.
#$ProductG | Micro theory that
Mt describes concepts

and relationships
related to the
broader field of
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various

commodities.

Computer

#$Informatio | Micro theory that | #Computer Computer
nTerminolog | describes concepts | #3ComputerProgra | Programmer
yMt and  relationships | mmer
used to describe | #$outputs Outputs
terminology related | #$ComputerHardw | Computer
to the information | areltem hardware
technology field. #$ControlDevice | Controller
#$HumanSoc | Micro theory that
ialLifeMt describes concepts

and relationships

used to describe
various aspects of

human social life.

Some of the new sentences generated by the summarization process are presented

in Figure 5-7. The structure of each sentence consists of at least subject-predicate-object

elements. In addition, auxiliary adjective and adverb modifiers enhance the structure of

some sentences. Such enhancement is possible when subject, predicate or object sentence

elements

relationships.

have strong

subject-adjective,

object-adjective and predicate-adverb
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“Dog being cams.”

“Diog hawing shott external anatormc part”

“Burger utihzing traditional mammal meat”

“Ground beef bemg bowne meet”

“Cotmputer hawving computer program.”

“Computer hardware needing power.”

Figure 5-7: New sentences created for Wikipedia articles describing various topics.

Next, an experiment was conducted using multiple encyclopedia articles
describing grapefruit. The experiment consisted of three stages, where the number of
analyzed articles was increased during each stage. Original articles are illustrated in
Figure B-4, Figure B-5, and Figure B-6. Results of this experiment highlight the
system’s ability to improve summarization results by creating sentences that are more
complex when additional data is provided. New sentences created by the system are
demonstrated in Figure 5-8. The results exhibit the progression of newly created
sentences’ structure complexity which form simple subject-predicate-object triplet when
only a single article was provided as an input (part (a)) to more complex structure
extended by the adjective and adverb modifiers when more articles were processed by the

algorithm (part (b) and part (c)).
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“Grapefrut heing frot™ (&)

“Crapefiut bemng colored edible fruit.™ (b)

“Colored grapefrutt heing sweet edihle fruit™ (o)

Figure 5-8: Test results of new sentences created for multiple articles about

grapefruit; (a) — single article, (b) — two articles, (c) — three articles.

Finally, the system was applied to multiple Wikipedia articles describing different

types of felines: cat, tiger, cougar, jaguar and lion. Original articles are illustrated in

Figure B-7, Figure B-8, Figure B-9, Figure B-10, and Figure B-11. Table 5-4 outlines

the main topics and concepts obtained from the analyzed articles.

Table 5-4: Concepts and main topics derived from Wikipedia articles describing felines.

describes concepts
and

related to the field of

relationships

Biology.

Topics Concepts
Cyc MT Description Cyc term Natural language
#$BiologyMt Micro theory that | #$Cat Cat

#$HumanSocialLifeMt

Micro theory that
describes concepts
and  relationships
used to describe
various aspects of

human social life.

#$DomesticCat | Domestic cat
#$FelisGenus Felis
#$FelidaeFamily | Feline
#$Animal Animal
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Figure 5-9 shows new sentences created by the system as a summary of the
analyzed articles. Concepts like “canis”, “mammal meat” and “felis” were generalized by
the abstraction process and were not mentioned in the original text. The results of the
final experiment illustrate the system’s capability to derive main topics and concepts

described in the text and to create new sentences that contain generalized concepts

combining information from various parts of the input text.

“iZat usually being native atimal 7

“Big felis usually being natural predatory atimal ™
"Big felis usually bemg exotic ammal ™

“Big felis often vsing killing method”
“Big felis often using marking ™
“Male feline often klling prey”

“Mlale feline hving historical mountain range”

Figure 5-9: New sentences created as a summary for multiple articles about felines.

The algorithm proposed in this dissertation yields better results compared to the
results reported by [49]. New sentences created by the algorithm have more complex
syntactic structure and contain the information fused from different parts of the text.
These peculiar properties allow the summary of the text to be more abstractive,

informative, and meaningful.

5.3  System performance
The computational complexity of our proposed system is upper bounded by the

polynomial expression in the size of the vocabulary of the input documents and therefore,



the system is considered to be of the polynomial time complexity. Vocabulary of the

document is the number of the unique lemmas contained in the document.

Table 5-5 illustrates the performance of the system when applied to the

encyclopedia articles. The experiments were conducted on a machine with 2.0 GHz Intel

Xeon E5-2620 CPU and 32 GB of RAM.

Table 5-5: System performance scores using encyclopedia articles.

# of ] Vocabulary size CPU Time
) Article name(s) Source(s)
articles (Lemmas) (Seconds)
1 “Dog” Wikipedia 2087 2751
1 “Computer” Wikipedia 1604 2245
1 “Hamburger” Wikipedia 1348 1887
Wikipedia,
Morton,
3 “Grapefruit” 1988 2608
New World
Encyclopedia
“Cat”
GCTiger,’
5 “Cougar” Wikipedia 5812 6974
“Jaguar”
‘CLion)’




CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation describes a novel algorithm for creating an abstractive text
summary. The task of producing purely abstractive summary of a given text is still
considered challenging for people and therefore even more so for the machines. Human
experts use the generalization and synthesis of information together with the domain
competence to compose abstractive summary of a text. They rephrase the sentences and
reformulate the information based on the knowledge deducted from the text. Such a
summary becomes more informative and useful since it presents an aggregation and
analysis of a given text to distill and provide the knowledge that is more general or not
mentioned explicitly [6]. Described aggregation and generalization of the information is
not feasible without analyzing the semantics of the text and utilizing the domain
knowledge expertise. the analysis of the syntactic structure of the text also takes a
significant part in the process of abstractive summarization as it allows representing the
derived knowledge as grammatically correct sentences for the user convenience. KBS
algorithm described in this dissertation uses Cyc knowledge base and its reasoning engine
as a backbone to accommodate these capabilities. Employing the semantic features and
the syntactic structure of the text together with the world’s largest knowledge base
system shows great potential in creating abstractive summaries. The algorithm creates a

summary of a given text by composing new sentences that contain the information
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aggregated from the various parts of the text. The structure of the summary sentences is
enhanced from simple subject-predicate-object triplets to a more complex structure by
adding the adjective and adverb modifiers. The appropriate modifiers are derived by the
analysis of the syntactic relationships of the subjects, predicates and objects in the
sentences of the original text.

The contributions of the described algorithm can be summarized as follows:

e Automatically derives main concepts and topics that describe the text;

e Generalizes and synthesizes information derived from the text;

e Creates new sentences using syntactic relations and aggregating
information from various parts of the text;

e Enhances the structure of newly created summary sentences to include
adjective and adverbs modifiers;

e Uses the world’s largest ontology of commonsense knowledge and
reasoning engine as a backbone for semantic analysis.

The proposed algorithm has been implemented as a modular pipelined system
developed in Python programming language for the testing purposes. The experimental
results showed that the algorithm is able to abstract new concepts not mentioned in the
text, automatically identify main topics described in the text, and create new sentences
that combine the information from different parts of the text. Information synthesis and
complex structure of newly created sentences allows the described algorithm to yield
better results than the algorithm presented by [49] that is the closest in terms of the

functionality.
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The algorithm described in this dissertation showed promising results that open a
number of the future directions in the area of the knowledge based abstractive text
summarization. The first direction is to enhance the domain knowledge representation
since the semantic knowledge and reasoning are only limited to functionality and
performance of Cyc development platform. At this moment, the algorithm is as powerful
as the capabilities of the Cyc knowledge base, which is the largest ontology of
commonsense knowledge. For future improvement, the algorithm could use the
information derived from the whole World Wide Web as a domain knowledge. This
would possess challenging research questions such as information inconsistency and
sense disambiguation. In addition, a robust inference engine would be required to process
the information correctly and in a timely fashion.

The second future research direction could involve the improvement of the
syntactic structure of newly created sentences. Proposed algorithm uses subject-
predicate-object triplets enhanced by adjective and adverb modifiers. Although such
structure is more complex than the one used in previous research, it still does not
resemble the structure of the sentences created by people. Structure of newly created
sentences could be improved by using more sophisticated representation of syntactic
structure of the sentence. As an example, graph representation of the sentence could
capture and preserve more complex relations among words or phrases in a sentence.
Using the graph structure as a basis for new sentence creation could yield sentences that
have syntactic structures that are more complex.

The third direction for future research could be related to the problem of summary

sentences connectedness. At this moment, sentences created by the algorithm as a
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summary of the text are not conceptually connected to each other. Therefore, the
summary overall does not look like a concise abstract of the text. Analyzing the relations
and interactions of the main concepts of the text on the document level could help in
preserving coherency of the sentences created as a summary. This problem could be
approached by representing the whole document as a graph of connected concepts with
various relationships among them and then creating new sentences based on these
relationships.

The fourth future research direction could be the investigating of the
parallelizability of the proposed summarization algorithm. Since algorithm operates on
the enormous amounts of data comprised in Cyc knowledge base, its performance could
benefit from allowing the algorithm to run on parallel and distributed computing
platforms.

Finally, the fifth future research direction could be in developing a universal merit
for the evaluation of purely abstractive text summarization algorithms. This improvement
is not related directly to the proposed algorithm, but rather to the problem of abstractive
text summarization in general. Currently, there is a number of merits that are used to
statistically evaluate the performance of extractive summarization algorithms.
Abstractive summarization algorithms in contrast are inherently more challenging to
evaluate, since they tend to generalize and aggregate information in a given text, thus
producing the summary that might not overlap much with the original text. Most of the
abstractive summarization approaches try to compare their results to human experts
created summaries, which are not always available or costly and time consuming to

produce. Thus, developing an automatic and universal merit to evaluate the results of
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abstractive text summarization algorithms is an interesting and challenging area of future

research in the abstractive text summarization.



APPENDIX A

SOURCE CODE
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A.l  “Syntactic structure extraction” function

def preprocessing(dir):
import spacy
nlp = spacy.load('en_core_web_md')
nouns =[]
nouns_dep =]
verbs =]
verbs_dep =[]
adverbs =[]
adverbs_dep =[]
adjectives =[]
adjectives_dep =]
for filename in os.listdir(dir):
with open(filename) as file:
doc = nlp(file.read())
subj_obj =]
# preprocess text, attach POS and dependency to each word
for sent in doc.sents:
subjects =]
objects =[]
for word in nlp(sent.text):
if word.dep_ =='nsubj":
subjects.append((word.lemma_, word.pos_))
assoc = 'nsubj'
elif word.dep_ in ['acomp’, ‘ccomp’, 'xcomp', ‘dobj’, "iobj’,
‘pobj’, ‘attr’, ‘oprd:
objects.append((word.lemma_, word.pos_))
assoc = 'obj'
else:
assoc = word.dep_
if word.pos_ in [NOUN', 'PROPN':
nouns.append(""+word.lemma_+"")
nouns_dep.append((""+word.lemma_+"",
("+assoc+"", ""+word.head.lemma_+"", ""+word.head.pos_+"")))
elif word.pos_ == 'VERB'":
verbs.append(""+word.lemma_+"")
verbs_dep.append((""'+word.lemma_+"",
("'+assoc+"", ""+word.head.lemma_+"", ""+word.head.pos_+"")))
elif word.pos_ =="'ADV"
adverbs.append(""+word.lemma_+"")
adverbs_dep.append((""+word.lemma_+"",
("+assoc+"", " +word.head.lemma_+"", ""+word.head.pos_+"")))
elif word.pos_ =="ADJ"
adjectives.append("'+word.lemma_+"")
adjectives_dep.append((""+word.lemma_+"",
("+assoc+"", ""+word.head.lemma_+"", ""+word.head.pos_+"")))
for sub in subjects:
for obj in objects:
if sub[1] in [NOUN', 'PROPNT:
subj_obj.append(("*'+sub[0]+"", ("'subj-
obj™, "+obj[0]+"", ""+obj[1]+™)))
nouns_dep_tot = nouns_dep + subj_obj
# create a dictionary for each POS counting word and dependency frequencies
noun_dict = defaultdict(set)
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for word, deps in collections.Counter(nouns_dep_tot).items():
noun_dict[word[0]].add(word[1]+(deps,))
for k, v in collections.Counter(nouns).items():
noun_dict[k].add(v)
verb_dict = defaultdict(set)
for word, deps in collections.Counter(verbs_dep).items():
verb_dict[word[0]].add(word[1]+(deps,))
for k, v in collections.Counter(verbs).items():
verb_dict[k].add(v)
adj_dict = defaultdict(set)
for word, deps in collections.Counter(adjectives_dep).items():
adj_dict[word[0]].add(word[1]+(deps,))
for k, v in collections.Counter(adjectives).items():
adj_dict[k].add(v)
adv_dict = defaultdict(set)
for word, deps in collections.Counter(adverbs_dep).items():
adv_dict[word[0]].add(word[1]+(deps,))
for k, v in collections.Counter(adverbs).items():
adv_dict[K].add(v)
# create a dictionary for the whole text, organizing the words by POS and record dependencies
doc_dict = defaultdict(dict)
for k, v in noun_dict.items():
doc_dict['Noun].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps". [i for i in
list(v) if type(i) == tuple]}})
for k, v in verb_dict.items():
doc_dict['Verb].update({k : {'weight": [i for i in list(v) if type(i) == int], 'deps": [i for i in
list(v) if type(i) == tuple]}})
for k, v in adj_dict.items():
doc_dict['Adjective’].update({k : {'weight": [i for i in list(v) if type(i) == int], 'deps": [i for
i in list(v) if type(i) == tuple]}})
for k, v in adv_dict.items():
doc_dict['Adverb'].update({k : {'weight": [i for i in list(v) if type(i) == int], 'deps": [i for i
in list(v) if type(i) == tuple]}})
return doc_dict

A.2  “Mapping words to Cyc concepts” function

def mapping(inp_dict):
from jpype import *
# packages, classes and method from Java CYC Api
client = JPackage("com.cyc.kb.client")
base = JPackage("'com.cyc.base")
fact_impl = client.Factimpl
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
# for each key (word) and value (frequency count) in input dictionary:
# use key in a query to map word to CYC concept
# use value to assign weight to a concept
for global_POS, global_values in inp_dict.iteritems():
for word, attributes in global_values.iteritems():
# keep track of words part-of-speech tags to use them in "denotation” function
if global_POS =="'Noun".
global_string = "nounStrings"
elif global_POS == 'Verb".
global_string = "verbStrings"
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elif global_POS == "Adjective"
global_string = "adjStrings"
else:
global_string = "adverbStrings"
# construct query to map word to CYC concept through "denotation” function
try:
denotation_terms = access.converse().converseObject("(query-variable ?TERM '(#$and
(#%denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD #${2} {0}) (#$genls ?POS #${1}))
#$InferencePSC)".format(word, global_POS, global_string))
except:
print "CYC api error was raised, while mapping word: {0}".format(word)
if str(denotation_terms) !'= "NIL":
# go through each item in result set derived from a query
for term in set(denotation_terms):
# accumulate all weights of the mapped concept in case any words were mapped to it before
c_weight=0
try:
if '(" in str(term):
initial_w = str(access.converse().converseObject("(query-variable '2IWEIGHT
'(#$conceptWeight {0} ?2IWEIGHT) #$InferencePSC)".format(str(term).replace(' (', '(").replace(’ ', '
#$".replace('(, ' (#$")))
else:
initial_w = str((access.converse().converseObject("(query-variable ?2IWEIGHT
"(#$conceptWeight #${0} ?2IWEIGHT) #$InferencePSC)".format(term))))
except:
initial_w = "NIL"
try:
if initial_w !="NIL":
c_weight = sum(map(lambda x: float(x), initial_w.strip('()").split()))
for j in initial_w.strip(‘()").split():
fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, j), "BaseKB").delete()
fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, str(attributes['weight][0] +
float(c_weight))), "BaseKB")
except:
print "CYC api error was raised, while updating weight for term {0}.".format(term)
# map dependency words to CYC concepts
# keep track of words part-of-speech tags to use them in "denotation™ function
for dep_attributes in attributes['deps]:
# record only subject, predicate, object and modifier associations types
if dep_attributes[0] in ["'nsubj"', "'obj™, "'subj-obj"", "amod™, "‘advmod™]:
if dep_attributes[2] in ["NOUN", ""PROPN"]:
head_string = "nounStrings"
head_pos = 'Noun'
elif dep_attributes[2] == ""VERB"".
head_string = "verbStrings"
head_pos = 'Verb'
elif dep_attributes[2] == ""ADJ"".
head_string = "adjStrings"
head_pos = 'Adjective’
elif dep_attributes[2] == ""ADV"":
head_string = "adverbStrings"
head_pos = 'Adverb'
# construct query to map word from dependency to CYC concept through "denotation"
function
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head_denotation_terms = access.converse().converseObject(*(query-variable ?HTERM
'(#%and (#$denotation ?HWORD ?HPOS ?HNUM ?HTERM) (#$wordForms ?HWORD #${2} {0})
(#%genls ?HPOS #${1})) #$InferencePSC)".format(dep_attributes[1], head_pos, head_string))
# check if denotation head word is mapped to Cyc Concept
if str(head_denotation_terms) = "NIL":
# go through each item in result set derived from a query
for head_term in set(head_denotation_terms):
assoc_weight =0
try:
if '("in str(term) and '(" in str(head_term):
assoc_init_w = str(access.converse().converseObject("(query-variable "?W
'(#$conceptAssociation {0} {1} {2} ?W) #$InferencePSC)".format(str(term).replace(’ (', '(").replace( ',
#$").replace('(, ' (#$"), dep_attributes[0], str(head_term).replace(' (', '(").replace( ', ' #$').replace('(, ' (#$"))))
elif '(" in str(term) and ‘(" not in str(head_term):
assoc_init_w = str(access.converse().converseObject("(query-variable "?W
'(#$conceptAssociation {0} {1} #${2} ?W) #$InferencePSC)".format(str(term).replace(' (, '(").replace(’ ', '
#$").replace('(, ' (#%"), dep_attributes[0], head_term)))
elif '(" not in str(term) and '(" in str(head_term):
assoc_init_w = str(access.converse().converseObject("(query-variable "?W
'(#$conceptAssociation #3{0} {1} {2} ?W) #$InferencePSC)".format(term, dep_attributes[0],
str(head_term).replace(' (', '(').replace(’ ', ' #$').replace('(', ' (#$")))
else:
assoc_init_w = str(access.converse().converseObject("(query-variable "?W
'(#$conceptAssociation #${0} {1} #${2} ?W) #$InferencePSC)".format(term, dep_attributes[0],
head_term)))
except:
assoc_init_w = "NIL"
if assoc_init_w I="NIL":
assoc_weight = sum(map(lambda x: float(x), assoc_init_w.strip('()").split()))
for i in assoc_init_w.strip('()").split():
fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term,
dep_attributes[0], head_term, i), "BaseKB").delete()
total_mapped_weight = (assoc_weight + dep_attributes[3])
# use TERM as a parameter to assign dependencies to mapped CYC concept
try:
fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term,
dep_attributes[0], head_term, str(total_mapped_weight)), "BaseKB")
except:
print "Association cannot be created in current microtheory."
return

A.3  “Concepts propagation” function

def propagation():
from jpype import *
# packages, classes and method from Java CYC Api
query = JPackage(*'com.cyc.query™)
client = JPackage("com.cyc.kb.client™)
kb = JPackage("com.cyc.kb™)
base = JPackage("com.cyc.base™)
query_factory = query.QueryFactory
fact_impl = client.Factimpl
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
# query for CYC concepts that have assigned weights
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q_weight = query_factory.getQuery("(conceptWeight ?TERM1 ?CWEIGHT)")
res_weight = q_weight.getResultSet()
while res_weight.next():
# filter TERM and CWEIGHT variables from query results output
# TERM - CYC concept to be propagated
# CWEIGHT - weight of CYC concept to be propagated
term3 = str(res_weight.getKBObject("?TERM1", kb.KBIndividual))
cweight = str(res_weight.getKBObject("?CWEIGHT", kb.KBIndividual))
# generalization step
# use "min-genls" CYC command to find closest parent of CYC concept to be generalized
try:
# use formatting scheme in case CYC concept is composite
if '("in term3:
min_genls = access.converse().converseCycObject("(min-genls '{0})".format(term3.replace(’ (',
'(").replace(’ ', ' #$").replace('(', ' (#%"))
else:
min_genls = access.converse().converseCycObject("(min-genls #${0})".format(term3))
except:
print "CYC Api error - constant: {0} was not found".format(term3)
# check if CYC concept was successfully generalized
if len(min_genls) !=0:
for i in range(len(min_genls)):
# output generalized CYC concept
print "1st level generalized term: {0}".format(min_genls][i])
d_count=0
d_weight=0
g_gen_weight = query_factory.getQuery('(conceptDescendants {0} ?WEIGHT
?COUNT)".format(min_genls[i]))
res_sum_g_gen = ¢_gen_weight.getResultSet()
while res_sum_qg_gen.next():
try:
d_weight = str(res_sum_g_gen.getKBObject("?WEIGHT", kb.KBIndividual))
d_count = str(res_sum_q_gen.getKBObject("?COUNT", kb.KBIndividual))
fact_impl.findOrCreate(*(conceptDescendants {0} {1} {2})".format(min_genls[i],
str(d_weight), str(d_count)), "BaseKB").delete()
except:
print "CYC Api error while propagating: {0}".format(min_genls[i])
total_weight = (float(cweight) * 0.1 + float(d_weight))
total_count = float(d_count) + 1
# assign accumulated weight of generalized CY C concept (initial weight + propagated weight)
fact_impl.findOrCreate("(conceptDescendants {0} {1} {2})".format(min_genlsJi],
str(total_weight), str(total_count)), "BaseKB")
# record ancestor-descendant relation
fact_impl.findOrCreate(*(conceptAncestorOf {0} {1})".format(min_genls[i], term3"), "BaseKB")
return

A4 “Concepts’ weight and relationships accumulation” function

def accumulate_descendants():
from jpype import *
# packages, classes and method from Java CYC Api
query = JPackage(*'com.cyc.query™)
client = JPackage("'com.cyc.kb.client™)
kb = JPackage("com.cyc.kb™)
base = JPackage("'com.cyc.base")
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query_factory = query.QueryFactory
fact_impl = client.Factimpl
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
# query for CYC concepts that have descendants
concept_descendants_q = query_factory.getQuery("(conceptDescendants 2ANCTERM ?PROPWEIGHT
?DCOUNT)")
concept_descendants = concept_descendants_g.getResultSet()
while concept_descendants.next():
ancestor_concept = str(concept_descendants.getKBObject("?ANCTERM", kb.KBIndividual))
desc_weight = str(concept_descendants.getKBObject("?PROPWEIGHT", kb.KBIndividual))
# calculate "descendants percentage™ measure = # of concept descendants with weight / total # of
concept descendants
try:
if ‘(" in ancestor_concept:
ancestor_mapped_desc = access.converse().converseObject("'(query-variable "?M
'(#$conceptAncestorOf {0} ?M) #3$InferencePSC)".format(ancestor_concept.replace(’ (', '(").replace(' ', '
#$".replace('(, ' (#$"))
ancestor_total_desc = access.converse().converseObject("(query-variable '?T '(#$genls ?T {0})
#$InferencePSC)".format(ancestor_concept.replace(’ (', '(").replace(' ', ' #3$').replace('(’, ' (#$")))
else:
ancestor_mapped_desc = access.converse().converseObject("(query-variable "?M
'(#$conceptAncestorOf #3{0} ?M) #$InferencePSC)".format(ancestor_concept))
ancestor_total_desc = access.converse().converseObject("(query-variable 2T '(#$genls ?T #3${0})
#$InferencePSC)".format(ancestor_concept))
desc_percentage = float(len(ancestor_mapped_desc)) / float(len(ancestor_total_desc))
except:
print "CYC Api error while retrieving descendants for concept: {0}\n".format(ancestor_concept)
ancestor_mapped_desc =0
ancestor_total_desc =0
desc_percentage = 0
# if "descendants percentage" is higher than a threshold then add propagated descendants weight to
initial concept weight
if desc_percentage > 0.5:
# query for parent's initial concept weight
try:
if '(" in ancestor_concept:
init_weight = str(access.converse().converseObject("(query-variable ?WEIGHT
'(#$conceptWeight ({0}) ?WEIGHT) #$InferencePSC '(:max-number
1))".format(ancestor_concept.replace(' (, '(").replace(’ *, ' #$").replace('(, ' (#$"))).strip('()")
else:
init_weight = str(access.converse().converseObject("(query-variable ?WEIGHT
"(#$conceptWeight #${0} WEIGHT) #$InferencePSC '(:max-number
1))".format(ancestor_concept))).strip(‘'())
except:
print "CYC Api error while retrieving weight for concept: {0}\n".format(ancestor_concept)
init_weight = "NIL"
# if parent has concept weight then accumulate it with its descendant propagated weight
if init_weight !="NIL":
total_dweight = float(init_weight) + float(desc_weight)
fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(init_weight)),
"BaseKB").delete()
fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, total_dweight),
"BaseKB")
# if parent does not have concept weight then use its descendants propagated weight
else:



90

total_dweight = desc_weight
fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(total_dweight)),
"BaseKB")
# adding direct associations to propagated ancestors
g_accum = query_factory.getQuery('(and (conceptAncestorOf {0} ?DESC) (conceptAssociation
?DESC ?ATYPE ?AHEAD ?DESW))'.format(ancestor_concept))
res_g_accum = g_accum.getResultSet()
while res_g_accum.next():
desc_concept = str(res_g_accum.getKBObject("?DESC", kb.KBIndividual))
desc_level = str(res_q_accum.getKBObject("?LEVEL", kb.KBIndividual))
a_type = str(res_q_accum.getKBObject("?ATYPE", kb.KBIndividual))
a_head = str(res_g_accum.getKBObject("?AHEAD", kb.KBIndividual))
desc_a weight = str(res_g_accum.getKBObject("?DESW", kb.KBIndividual))
association w=0
try:
# handles multi-member concepts
if '(" in ancestor_concept and ‘(' in a_head:
anc_association_w = str(access.converse().converseObject(*"(query-variable ?ANCW
'(#$conceptAssociation {0} \"{1}\" {2} 2ANCW) #3$InferencePSC)".format(ancestor_concept.replace(' (',
'(").replace(' ', ' #$").replace('(', ' (#$"), a_type, a_head.replace(' (', '(").replace(’ ', ' #$").replace('(’,
(#$))).strip('()')
elif '(" in ancestor_concept and '(" not in a_head:
anc_association_w = str(access.converse().converseObject("(query-variable "2 ANCW
'(#$conceptAssociation {0} \"{1}\" #${2} PANCW) #$InferencePSC)".format(ancestor_concept.replace('
(,'().replace(’ ', ' #$").replace('(', ' (#%"), a_type, a_head))).strip('()")
elif '(" not in ancestor_concept and ‘(' in a_head:
anc_association_w = str(access.converse().converseObject("(query-variable ?ANCW
'(#$conceptAssociation #${0} \"{1}\" {2} 2ANCW) #$InferencePSC)".format(ancestor_concept, a_type,
a_head.replace(’ (', '(").replace(' ', ' #$").replace('(’, ' (#3$"))).strip('()")
else:
anc_association_w = str(access.converse().converseObject("(query-variable ?ANCW
'(#$conceptAssociation #3{0} \"{1}\" #${2} ?ANCW) #3$InferencePSC)".format(ancestor_concept, a_type,
a_head))).strip('()")
if anc_association_w != "NIL":
association_w = anc_association_w
fact_impl.findOrCreate('(conceptAssociation {0} "{1}" {2} {3})".format(ancestor_concept,
a_type, a_head, anc_association_w), "BaseKB").delete()
# use 0.1 scaling for propagation
p_prop_weight = float(association_w) + 0.1 * float(desc_a_weight)
# assign propagated weight to parent association
fact_impl.findOrCreate(
'(conceptAssociation {0} "{1}" {2} {3})".format(ancestor_concept, a_type, a_head,
str(p_prop_weight)), "BaseKB")
except:
print "CYC Api error while mapping concept: {0}".format(ancestor_concept)
# adding indirect associations to propagated ancestors
g_m_accum = query_factory.getQuery(‘(and (conceptAncestorOf {0} ?MDESC)
(conceptAssociation ?MTERM ?MATYPE ?MDESC ?MDESW))'.format(ancestor_concept))
res_g_m_accum = ¢_m_accum.getResultSet()
while res_g_m_accum.next():
m_desc_concept = str(res_gq_m_accum.getKBObject("?MDESC", kb.KBIndividual))
m_desc_level = str(res_g_m_accum.getKBObject("?MLEVEL", kb.KBIndividual))
m_a_type = str(res_qg_m_accum.getKBObject("?MATYPE", kb.KBIndividual))
m_a_term = str(res_g_m_accum.getKBObject("?MTERM", kb.KBIndividual))
m_desc_a_weight = str(res_g_m_accum.getKBObject("?MDESW", kb.KBIndividual))
m_association w =0
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try:
# handles multi-member concepts
if '("in ancestor_concept and '(' in m_a_term:
m_anc_association_w = str(access.converse().converseObject(*(query-variable ?MANCW
'(#$conceptAssociation {2} \"{1}\" {0} ?MANCW) #8$InferencePSC)".format(ancestor_concept.replace(’
(,'(").replace(’ ', ' #$").replace('(, ' (#$"), m_a_type, m_a_term.replace(' (', '(").replace(' ', ' #3$").replace('(’, "
(#$))).strip('()')
elif (" in ancestor_concept and ‘(' not in m_a_term:
m_anc_association_w = str(access.converse().converseObject(*(query-variable ?MANCW
"(#$conceptAssociation #${2} \"{1}\" {0} "MANCW)
#$InferencePSC)".format(ancestor_concept.replace(’ (', '(").replace( ', ' #$").replace('(’, ' (#$'), m_a_type,
m_a_term))).strip('()")
elif '(" not in ancestor_concept and ‘(" in m_a_term;
m_anc_association_w = str(access.converse().converseObject("(query-variable ?MANCW
'(#$conceptAssociation {2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept,
m_a_type, m_a_term.replace(’ (', '(").replace(’ ', ' #3$").replace('(’, ' (#$"))).strip('()")
else:
m_anc_association_w = str(access.converse().converseObject(*'(query-variable ?MANCW
'(#$conceptAssociation #${2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept,
m_a_type, m_a_term))).strip('()")
if m_anc_association_w != "NIL":
m_association_w = m_anc_association_w
fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})".format(ancestor_concept,
m_a_type, m_a_term, m_anc_association_w), "BaseKB").delete()
# use 0.1 scaling for propagation
m_p_prop_weight = float(m_association_w) + 0.1 * float(m_desc_a_weight)
# assign propagated weight to parent association
fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})".format(ancestor_concept,
m_a_type, m_a_term, str(m_p_prop_weight)), "BaseKB")
except:
print "CYC Api error while mapping concept: {0}".format(m_a_term)
return

A5  “Main topics identification” function

def top_mts(n):
from jpype import *
# packages, classes and method from Java CYC Api
base = JPackage(*'com.cyc.base")
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
mts_list =[]
terms = access.converse().converseObject("(new-cyc-query '(#%and (#$conceptWeight ?T ?W)
(#%definingMt ?T ?MT)) #$InferencePSC)")
for i in range(len(terms)):
mts_list.append(str(terms[i][2][1]))
mtc_dict = defaultdict(set)
for mt, mtc in Counter(mts_list).items():
mtc_dict[mt] = mtc
mts_count = OrderedDict(sorted(mtc_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:n])
return mts_count

A6  “Candidate subjects discovery” function

def top_subjects(mts, s):
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from jpype import *
# packages, classes and method from Java CYC Api
base = JPackage("com.cyc.base™)
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
term_dict = {}
for mt in mts:
terms = access.converse().converseObject("(new-cyc-query '(#$and (#$definingMt ?T #${0})
(#$conceptWeight ?T ?W)) #$InferencePSC)".format(mt))
for tin terms:
term = str(t[0][1])
weight = str(t[1][1])
if term not in term_dict.keys():
if '("in term:
try:
subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation
{0} \"nsubj\" ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(’ (', '(").replace(* ', "
#$".replace('(, ' (#$"))
tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation
{0} ?ATYPE ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(’ (', '(").replace(' ',
#$".replace('(, ' (#$"))
except:
subj_associations = 0
tot_associations = 0
else:
try:
subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation
#${0} \"nsubj\" ?2SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term))
tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation
#${0} ?2ATYPE ?SAHEAD ?SAWEIGHT) #3$InferencePSC)".format(term))
except:
subj_associations = 0
tot_associations =0
subj_ratio = float(len(subj_associations)) / float(len(tot_associations))
rank = (float(weight) * subj_ratio)
term_dict[term] = rank
subject_terms = OrderedDict(sorted(term_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:s])
return subject_terms

A.7  “New sentences generation” function

def summarization(path, subjects):
from jpype import *
# packages, classes and method from Java CYC Api
query = JPackage(*com.cyc.query")
kb = JPackage("com.cyc.kb™)
base = JPackage("com.cyc.base™)
query_factory = query.QueryFactory
cyc_access_mgr = base.CycAccessManager
access = cyc_access_mgr.getCurrentAccess()
# clear output file
open(path, 'w').close()
# empty dictionary to serve as a final summary
summary = {}
# SUBJECT
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# go through subject CYC concepts
for k, v in subjects.iteritems():
# find subject CYC concept natural language phrase
try:
if'("ink:
subj_nl = access.converse().converseString("(generate-phrase '{0})".format(k.replace(’ (',
'().replace(' ', ' #$").replace('(', ' (#%"))

else:
subj_nl = access.converse().converseString(‘(generate-phrase #${0})".format(k))
except:
print "CYC Api error when retrieving NL phrase for subject: {0}".format(k)
subj nl="

# SUBJECT-ADJECTIVE
adj_count = {}
# find all adjective associated with subject/object CYC concepts
# query for CYC concepts with "amod" dependency type
if '("in term:
# use formatting scheme in case CYC concept is composite
adj_term = query_factory.getQuery(‘(conceptAssociation 2ADJTERM "amod"
{0} 2ADJW)" format(term.replace(’ (', '(').replace(’ ', ' #$").replace('(’, ' (#$"))
else:
adj_term = query_factory.getQuery(‘(conceptAssociation 2ADJTERM "amod"
#${0} 2ADJW)".format(term))
try:
adj_term_res = adj_term.getResultSet()
except:
print 'CYC Api error when finding adjective for term: {0}'.format(term)
while adj_term_res.next():
# filter TERM1 and W1 variables from query results output
# TERML1 - adjective CYC concept
# W1 - adjective dependency weight
adj = str(adj_term_res.getKBObject("?ADJTERM", kb.KBIndividual))
adj_dep_w = str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual))
# record adjective weight times its dependency weight
adj_count[adj] = float(adj_dep_w)
if len(adj_count) '=0:
top_adjective = dict(sorted(adj_count.iteritems(), key=operator.itemgetter(1),
reverse=True)[:1])
subj_adj_term = top_adjective.keys()[0]
subj_adj_weight = top_adjective.values()[0]
# derive natural language phrase of adjective CYC concept
try:
if '(" in subj_adj_term:
subj_adj_nl = access.converse().converseString("(generate-
phrase '{0})".format(subj_adj term. replace(' (', '(").replace(’ ', ' #$').replace('(, ' (#$")))
else:
subj_adj_nl = access.converse().converseString('(generate-
phrase #${0})".format(subj_adj_term))
except:
print "CYC Api error when retrieving NL phrase for adjective:
{0}".format(subj_adj_term)
subj_adj_nl="
else:
subj_adj_weight =0
subj_adj_term = None
subj_adj_nl="
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# PREDICATE
# query for CYC concepts with "nsubj" dependency type
pred_count = {}
if '("ink:
try:
# use formatting scheme in case CYC concept is composite
pred_term_query = query_factory.getQuery(‘(conceptAssociation {0} "nsubj" ?PTERM
?PW)".format(k.replace(' (', '().replace(’ ', ' #$').replace(’(’, ' (#$')))
except:
print "CYC Api error when finding term: {0}".format(k)
pred_term_query = 'NIL'
else:
pred_term_query = query_factory.getQuery(‘(conceptAssociation #${0} "nsubj" ?PTERM
?2PW)'.format(k))
pred_term_res = pred_term_query.getResultSet()
while pred_term_res.next():
# filter TERM1 and W1 variables from query results output
# TERML - predicate CYC concept
# W1 - predicate dependency weight
pred = str(pred_term_res.getKBObject("?PTERM", kb.KBIndividual))
pred_dep_w = str(pred_term_res.getKBObject("?PW", kb.KBIndividual))
# record predicate weight times its dependency weight
pred_count[pred] = float(pred_dep_w)
top_predicate = OrderedDict(sorted(pred_count.iteritems(), key=operator.itemgetter(1),
reverse=True)[:5])
for pred_keys, pred_values in top_predicate.iteritems():
# generate natural language phrase for predicate with strongest (highest weight) relation
if '("in pred_keys:
predicate_nl = access.converse().converseString("(generate-phrase
'{0})".format(pred_keys.replace(' (', '(').replace(’ ', ' #$').replace('(', ' (#$"))
else:
predicate_nl = access.converse().converseString(‘(generate-phrase #${0})".format(pred_keys))
# PREDICATE-ADVERB
# find adverb CYC concepts assotiated with predicates concepts
if '("in pred_keys:
adv_query = query_factory.getQuery(‘(conceptAssociation
?ADVTERM "advmod" {0} 2ADVW)".format(pred_keys.replace(' (', '(').replace(’ ', ' #$").replace('(, ' (#$"))
else:
adv_query = query_factory.getQuery(‘(conceptAssociation
?ADVTERM "advmod" #${0} ?ADVW)".format(pred_keys))
adv_query_res = adv_query.getResultSet()
adv_count = {}
while adv_query_res.next():
# filter TERM1 and W1 variables from query results output
# TERML - adverb CYC concept
# W1 - adverb dependency weight
adv = str(adv_query_res.getKBObject("?ADVTERM",
kb.KBIndividual))

adv_dep_w = str(adv_query_res.getKBObject("?ADVW",
kb.KBIndividual))

# record adverb weight times its dependency weight

adv_count[adv] = float(adv_dep_w)

if len(adv_count) !'=0:

top_adverb = dict(sorted(adv_count.iteritems(),
key=operator.itemgetter(1), reverse=True)[:1])

pred_adv_term = top_adverb.keys()[0]
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pred_adv_weight = top_adverb.values()[0]
try:
if '("in pred_adv_term:
pred_adv_nl =
access.converse().converseString("(generate-phrase '{0})".format(pred_adv_term.replace(’ (’, '(').replace(’ ',
"#3$").replace('(’, ' (#$)))
else:
pred_adv_nl =
access.converse().converseString(‘(generate-phrase #${0})".format(pred_adv_term))
except:
print "Natural language word for adverb '{0}' cannot be
derived.".format(pred_adv_term)
pred_adv _nl="
else:
print "No adverb was found."
pred_adv_weight =0
pred_adv_term = None
pred_adv_nl ="
# OBJECT
# check all possible object associations
obj_count = {}
# find objects concepts associated with predicates
if '("in pred_keys:
try:
# use formatting scheme in case CYC concept is composite
g_obj = query_factory.getQuery('(conceptAssociation ?7OTERM "obj" {0}
?20W)'.format(pred_keys.replace(’ (', '(').replace(' ', ' #$").replace('(, ' (#%$")))

except:
print "CYC Api error when finding object for term: {0} via 'dobj".".format(pred_keys)
g_obj ="'NIL'
else:

g_obj = query_factory.getQuery(‘(conceptAssociation 20TERM "obj" #${0}
?20W)".format(pred_keys))
g_obj_res = g_obj.getResultSet()
# keep track of all objects associated with predicates
while g_obj_res.next():
obj = str(q_obj_res.getKBObject("?OTERM", kb.KBIndividual))
obj_dep_w = str(g_obj_res.getKBObject("?0W", kb.KBIndividual))
# find subject-object relation weight
try:
if '("inkand (" in obj:
subj_obj_w = str(access.converse().converseObject("(query-variable
?SOW'(#$conceptAssociation {0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(str(k).replace(' (,
'(").replace(’ ', ' #$").replace('(', ' (#%$"), str(obj).replace(’ (', '(").replace(* ', ' #%$").replace('(’, ' (#$"))).strip('()")
elif '("in kand '(" not in obj:
subj_obj_w = str(access.converse().converseObject("(query-variable
"?SOW'(#$conceptAssociation {0} \"subj-obj\" #${1} ?2SOW) #$InferencePSC)".format(str(k).replace(’ (,
'().replace(’ ', ' #3$").replace('(’, ' (#$"), obj))).strip(‘'()")
elif '(" not in k and '(* in obj:
subj_obj_w = str(access.converse().converseObject("(query-variable
"?SOW'(#$conceptAssociation #${0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(k, str(obj).replace('
(,'(").replace(" ', ' #$").replace('(, ' (#3%"))).strip('()")
else:
subj_obj_w = str(access.converse().converseObject("(query-variable
?SOW'(#$conceptAssociation #${0} \"subj-obj\" #${1} 2SOW) #$InferencePSC)".format(k,

obj)))-strip('())
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except:
subj obj w=0
if subj_obj_w I="NIL":
obj_rank = ((sum(map(lambda x: float(x), str(subj_obj_w).split()))) + float(obj_dep_w))
else:
obj_rank = float(obj_obj_rankdep_w)
obj_count[obj] = float(obj_rank)
if len(obj_count) 1= 0:
top_object = OrderedDict(sorted(obj_count.iteritems(), key=operator.itemgetter(1),
reverse=True)[:5])
for obj_keys, obj_values in top_object.iteritems():
try:
if '("in obj_keys:
object_nl = access.converse().converseString(*(generate-phrase
'{0})".format(obj_keys.replace(' (', '(").replace(’ ', ' #$").replace('(’, ' (#$")))

else:
object_nl = access.converse().converseString(‘(generate-phrase #${0})".format(obj_keys))
except:
print "CYC Api error when retrieving NL phrase for object: {0}".format(obj_keys)
object_nl ="

# OBJECT-ADJECTIVE
adj_count={}
# find all adjective associated with subject/object CYC

concepts
# query for CYC concepts with "amod" dependency type
if '("in term:
# use formatting scheme in case CYC concept is
composite

adj_term =
query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" {0} ?ADJW)'.format(term.replace(' (',
'().replace(' ', ' #$").replace('(', ' (#%"))

else:
adj_term =
query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" #3${0} ?ADJW)".format(term))
try:
adj_term_res = adj_term.getResultSet()
except:

print 'CYC Api error when finding adjective for term:
{0} .format(term)
while adj_term_res.next():
# filter TERM1 and W1 variables from query results
output
# TERML1 - adjective CYC concept
# W1 - adjective dependency weight
adj = str(adj_term_res.getKBObject("?ADJTERM",
kb.KBIndividual))
adj_dep_w =
str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual))
# record adjective weight times its dependency
weight
adj_count[adj] = float(adj_dep_w)
if len(adj_count) !=0:
top_adjective = dict(sorted(adj_count.iteritems(),
key=operator.itemgetter(1), reverse=True)[:1])
obj_adj_term =top_adjective.keys()[0]
obj_adj_weight = top_adjective.values()[0]
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# derive natural language phrase of adjective CYC
concept
try:
if '(" in obj_adj_term:
obj_adj_nl =
access.converse().converseString("(generate-phrase '{0})".format(obj_adj_term. replace(' (', '(").replace(' ',
#$".replace('(, ' (#$"))
else:
obj_adj_nl =
access.converse().converseString(‘(generate-phrase #${0})".format(obj_adj_term))
except:
print "CYC Api error when retrieving NL
phrase for adjective: {0}".format(obj_adj_term)

obj_adj nl="
else:
obj_adj_weight=0
obj_adj_term = None
obj_adj_nl ="
# SUMMARY
# record each Subject - Subject-Adjective - Predicate - Predicate-Adverb - Object - Object-

Adjective
# into an output file as a newly created sentence
with open(path, 'a") as f:
fwrite("{0} / {1} [ {2}/ {3} | {4} / {5} | {6} / {7} | {8} / {9} | {10} / {11}\n{12} | {13} |
{14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v, pred_adv_term,
pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys, obj_values,
subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl))
else:

obj_values =0

obj_keys = None

object_nl ="

obj_adj_term = None

obj_adj_weight =0

obj_adj nl="

with open(path, 'a") as f:

fwrite("{0} / {1} [ {2} / {3} | {4} / {5} | {6} / {7} | {8} / {9} |
{10} / {11}\n{212} | {13} | {14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v,
pred_adv_term, pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys,
obj_values, subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl))
return
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From Wikipedia, the free encyclopedia

This articie is about the domestic dog. For refated species known as "dogs”, see Canidae. For other uses, see Dog

(disambiguation)
"Doggie" redirects here. For the Danish artist, see Doggie (artist).

The domestic dog (Canis lupus familiaris or Ganis familiaris)i¥ is a member of the
genus Canis (canines), which forms part of the wolf-like canids [°l and is the most widely
abundant terrestrial carnivore [BITIEIEIN10] The dog and the extant gray walf are sister
taxal""I2013] a5 modern wolves are not closely related to the wolves that were first
domesticated, "'l which implies that the direct ancestor of the dog is extinct[" The
dog was the first species to be domesticated!'*I'5! and has been selectively bred over
millennia for various behaviors, sensory capabilities, and physical attributes.[6]

Their long association with humans has led dogs to be uniquely attuned to human
behavior''7l and they are able to thrive on a starch-rich diet that would be inadequate for
other canid species 1% New research seems to show that dogs have mutations to
equivalent genetic regions in humans where changes are known to trigger high
sociability and somewhat reduced intelligence ['9I2%] Dogs vary widely in shape, size
and colors 21 Dogs perform many roles for people, such as hunting, herding, pulling
loads, protection, assisting police and military, companionship and. more recently, aiding
handicapped individuals and therapeutic roles. This influence on human society has
given them the sobriquet "man's best friend".
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6 Intelligence, behavior and communication

Domestic dog
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Conservation status
Domesticated

Scientific classification

Kingdom: Animalia
Phylum: Chordata

Class: Mammalia
Order: Carnivora
Family: Canidae

Genus: Canis

Species: G. lupus
Subspecies C. I. familiaris!!

Trinomial name

Canis lupus familiaris'"
Linnasus, 1758

Synonyms

Canis familiaris Linnasus, 1758171

#

Figure B-1: Screenshot of the first page of “Dog” Wikipedia article.
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From Wikipedia, the free encyclopedia

"Computer system" redirecis here. For other uses, see Computer (disambiguation) and Computer system (disambiguation).

A computer is a device that can be instructed to carry out arbitrary sequences Computer

of arithmetic or logical operations automatically. The ability of computers to
follow generalized sets of operations, called programs, enables them to
perform an extremely wide range of tasks

Such computers are used as control systems for a very wide variety of
industrial and consumer devices. This includes simple special purpose devices
like microwave ovens and remote controls, factory devices such as industrial
robots and computer assisted design, but also in general purpose devices like
personal computers and mobile devices such as smartphones. The Internet is
run on computers and it connects millions of other computers

Since ancient times, simple manual devices like the abacus aided people in

doing calculations. Early in the Indusirial Revelution, some mechanical devices ' =
Computers and computing devices from different eras

were built to automate long tedious tasks, such as guiding patterns for looms

IMore sophisticated electrical machines did specialized analog calculations in
the early 20th century. The first digital electronic calculating machines were developed during World War Il. The speed, power, and
versatility of computers has increased continuously and dramatically since then.

Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU), and some
form of memory. The processing element carries out arithmetic and logical operations, and a sequencing and centrol unit can change
the order of operations in response to stored information. Peripheral devices include input devices (keyboards, mice, joystick, efc.),
output devices (monitor screens, printers, eic.). and input/output devices that perform both functions (e.g., the 2000s-era touchscreen).
Peripheral devices allow information to be retrieved from an external source and they enable the result of operations to be saved and
retrieved.

Contents [hide]

1 Etymology
2 History
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2.2 First computing device

2.3 Analog computers

2.4 Digital computers

2.5 Modern computers

2.6 Mobile computers become dominant
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3.1 Based on uses

3.2 Based on sizes

Figure B-2: Screenshot of the first page of “Computer” Wikipedia article.
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Wikipedia store lettuce, tomato, bacon, onion, pickles, or chiles; condiments such as mustard,
(T mayonnaise, ketchup, relish, or "special sauce”; and are frequently placed on sesame
o seed buns. A hamburger topped with cheese is called a cheeseburger.
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Figure B-3: Screenshot of the first page of “Hamburger” Wikipedia article.
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From Wikipedia, the free encyclopedia

This article is about the fruif. For other uses, see Grapefruit (disambiguation).

The grapefruit (Cifrus x paradisi) is a subtropical citrus tree known for its sour to semi-sweet,
somewhat bitter fruit Grapefruit is a hybrid originating in Barbados as an accidental cross
between two introduced species, sweet orange (C. sinensis) and pomelo or shaddock (G
maxima), both of which were infroduced from Asia in the seventeenth century [ when found, it
was named the "forbiddan fruit[2 and frequently, it has been misidentified with the pomelo [

The grapefruit's name alludes to clusters of the fruit on the tree, which often appear similar to

that of grapes.l*]

Contents [hide]

Description

~

History
2.1 Ruby Red
2.2 Star Ruby
3 Varieties
4 Production
5 Colors and flavors
6 Drug interactions
7 Mutritional properties
8 Grapefruit sweets
9 Other uses
10 Grapefruit relatives
11 See also
12 References
13 External links

Description |edi]

Grapefruit

Pink grapefruit

Scientific classification

Kingdom:
(unranked):
(unranked):
(unranked):
Order:
Family:
Genus:

Species:

Plantae
Angiosperms
Eudicots
Rosids
Sapindales
Rutaceae
Gitrus

C. x paradisi

Binomial name

Citrus x paradisi
Maciad

The evergreen grapefruit trees usually grow to around 5-6 meters (16-20 ft) tall, although they may
reach 13-15 m (43-49 ft). The leaves are glossy, dark green, long (up to 15 centimeters (5.9 in)), and

thin. It produces 5 cm (2 in) white four-petaled flowers. The fruit is yellow-orange skinned and

generally, an oblate spheroid in shape; it ranges in diameter from 10-15 ¢m (3.9-5.9in). The flesh is
segmented and acidic, varying in color depending on the cultivars, which include white, pink, and red
pulps of varying sweetness (generally, the redder varieties are the sweetest) The 1929 U.S. Ruby Red

(of the Redblush variety) has the first grapefruit patent [5)

Grapefrul

w4

it growing in the &

grape-like clusters from which

Figure B-4: Screenshot of the first page of “Grapefruit” Wikipedia article.
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Grapefruit

Citrus paradisi

Description

Origin and Distribution
Varieties

Climate

Soil

Propagation

Culture

Harvesting and Handling
Keeping Qualit
Dests and Diseases
Food Uses

Other Uses

A relative newcomer to the citrus clan, the grapefruit was originally believed to be a spontaneous sport of the pummelo (q.v). James MacFayden, in his Flora of
Jamaica, in 1837, separated the grapefruit from the pummelo, giving it the botanical name, Citrus paradisi Macf. About 1948, citrus specialists began to suggest
that the grapefruit was not a sport of the pummelo but an accidental hybrid between the pummelo and the orange The botanical name has been altered to reflect
this view. and it is now generally accepted as Cirrus X paradisi,

When this new fruit was adopted into cultivation and the name grapefruit came into general circulation, American horticulturists viewed that title as so
inappropriate that they endeavored to have it dropped in favor of "pomelo”. However. 1t was difficult to avoid confusion with the pummelo, and the name
grapefruit prevailed, and 1s m international use except in Spamish-speaking areas where the fruit is called roronja. In 1962, Flonda Citrus Mutual proposed
changing the name to something more appealing to consumers in order to stimulate greater sales. There were so many protests from the public against a name
change that the idea was abandoned.

Description

The grapefruit tree reaches 15 to 20 £t (4.5-6 m) or even 45 ft (13.7 m) with age. has a rounded top of spreading
branches; the trunk may excesd 6 1n (15 cm) in diameter; that of a very old tree actually attained nearly 8 ft (2.4 m)
in circumference. The twigs normally bear short. supple thorns. The evergreen leaves are ovate. 3 to 6 1n (7.5-15
cm) long, and 1 3/4 te 3 1n (4.5-7.5 cm) wide: dark-green above, lighter beneath, with minute, rounded teeth on the
margins, and dotted with tiny o1l glands; the petiole has broad. oblanceolate or obovate wings. The white, 4-
petalled flowers, are 1 3/4 to 2 1 (4.3-5 cm) across and borne singly or i clusters in the leaf axils. The fruit is
nearly round or oblate to slightly pear-shaped. 4 to 6 in {10-15 cm) wide with smooth. finely dotted peel. up to 3/8
in (1 cm) thick, pale-lemon, sometimes blushed with pink, and aromatic outwardly; white, spongy and bitter inside.
The center may be solid or semi-hollow. The pale-yellow, nearly whitish. or pink. or even deep-red pulp is in 11 to
14 segments with thin, membranous, somewhat bitter walls; very juicy. acid to sweet-acid in flavor when fully ripe. piate XV NAVEL GRAPEFRUIT, Citrus x paradisi
While some fruits are seedless or nearly so. there may be up to 90 white. elliptical. pointed seeds about 1/2 in (1.25

cm) in length. Unlike those of the pummelo, grapefruit seeds are usually polyembryonic. The number of fruits i a cluster varies greatly: a dozen is unusual but
there have been as many as 20

Figure B-5: Screenshot of the first page of “Grapefruit” Morton article.
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Grapefruit is a relatively large, evergreen citrus tree, Citrus paradisi. The term also refers to the round,
edible fruit of this plant, which grows in small bunches and has a yellow rind (outer skin) and typically a
juicy, acidic pulp.

Grapefruit (1)

Grapefruit belongs to the Cifrus genus, a taxa of flowering plants in the family Rutaceae. Other members
of the genus include oranges, lemons, limes, citrons, pomelos (pummelo, pommelo), and mandarins
(tangerines). Citrus fruits are a distinctive berry with the internal parts divided into segments. The number
of natural species is unclear, as many of the named species are hybrids. The grapefruit is believed to have
arisen from the pomelo or shaddock (Citrus grandis) or as a hybrid between pomelo and sweet orange
(Bender and Bender 2005).

Contents [hide]  individual purpose of reproduction, while at the same time providing Lk
a value for the whole, especially humans. For humans, the grapefruit Grapefruits

is nutritious, providing many nutrients and phytochemicals important

for a healthy diet, including vitamin C, pectin fiber, and the

antioxidant lycopene. In addition, the fruit stimulates the senses of Kingdom:  Flanize
sight, taste, and touch, the flowers add an aesthetic value, and the
tree, including leaves and fruit, provides ecological values (nutrition
for animals, habitat for insects and birds, efc.).

Scientific classification

Division® Magnoliophyta

Class Magnoliopsida

Subclass:  Rosidae

Overview Order: Sapindales
All cifrus trees are of the single genus Citrus and hybridize very Family: Rutaceae
easily. That is, there is only ane "superspecies,” which includes Genus: Citrus

lemons, limes, grapefruit, pomelos, tangerines, and oranges. Citrus
is likely the most widely planted fruit for direct human consumption in
the world (Katz and Weaver 2003) Binomial name

Species C. paradisi

Fruits of all members of the genus Citrus are considered berries

because they have many seeds, are fleshy and soft, and derive from
a single ovary The distinctive fruit is a hesperidium in that it 1s a specialized berry with the internal fleshy
parts divided into segments (typically 10 to 16) and surrounded by a separable rind (Katz and Weaver 2003). The citrus herpendium is
globose to elongated, 4 - 30 centimeters (1 6 - 11 8 inches) long, and 4 - 20 centimeters (1 6 - 7 8 inches) in diameter. The rind is
leathery and the segments, or "liths," are filled with pulp vesicles.

Citrus paradisi
Macfad

Figure B-6: Screenshot of the first page of “Grapefruit” New World Encyclopedia
article.
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From Wikipedia, the free encyclopedia

@E®

This article is about the cat species that is commonly kept as a pet. For the cat family, see Felidae. For other uses, see Cat

(disambiguation) and Cats (disambiguation).
For technical reasons, "Cat #1” redirects here. For that album, see Cat 1 (album)

The domestic cat (Felis silvestris catus or Felis catus) 8l is a small, typically furry,
camnivorous mammal. They are often called house cats!®l when kept as indoor pels or
simply cats when there is no need to distinguish them from other felids and felines. They
are often valued by humans for companionship and for their ability to hunt vermin. There
are more than seventy cat breeds recognized by various cat registries.

Cats are similar in anatomy to the other felids, with a strong flexible bedy, quick reflexes,
sharp retractable claws, and teeth adapted to killing small prey. Cat senses fita
crepuscular and predatory ecological niche. Cats can hear sounds too faint or too high in
frequency for human ears, such as those made by mice and other small animals. They
can see in near darkness. Like most other mammals, cats have poorer color vision and a
better sense of smell than humans. Cats, despite being solitary hunters, are a social
species and cat communication includes the use of a variety of vocalizations (mewing.
purring, trilling, hissing, growling, and grunting), as well as cat pheromones and types of
cat-specific body language.’)

Cats have a high breeding rate.[® Under controlled breeding, they can be bred and
shown as registered pedigree pets, a hobby known as cat fancy. Failure to control the
breeding of pet cats by neutering, as well as the abandonment of former household pets,
has resulted in large numbers of feral cats worldwide, requiring population control1) In
certain areas outside cats' native range, this has contributed, along with habitat
destruction and other factors, to the extinction of many bird species. Cats have been
known to extirpate a bird species within specific regions and may have contributed to the
extinction of isolated island populations 1'% Cats are thought to be primarily responsible
for the extinction of 33 species of birds, [Peter souree nseded] ang the presence of feral and
free-ranging cats makes some otherwise suitable locations unsuitable for attempted
species reintroduction.[]

Since cats were venerated in ancient Egypt, they were commanly believed to have been
domesticated there,'? but there may have been instances of domestication as early as
the Neolithic from around 9,500 years ago (7.500 BC).['3] A genetic study in 20071141
concluded that all domestic cats are descended from Near Eastern wildcats, having
diverged around 8,000 BC in the Middle East['21('3) A 2016 study found that leopard
cats were undergoing domestication independently in China around 5,500 BC, though
this line of partially domesticated cats leaves no trace in the domesticated populations of
today.[18117] A 2017 study confirmed that domestic cats are descendants of those first

Domestic cat'!]
"

Various types of domestic cat

Conservation status

Domesticated
Scientific classification Vd

Kingdom Animalia
Phylum: Chordata
Class: Mammalia
Order: Carnivora
Suborder: Feliformia
Family: Felidae
Genus: Felis
Species: F. silvestris
Subspecies F. s. catus

Trinomial name
Felis silvestris catus
Linnaeus, 17587
Synonyms
Felis catus (original combination)!]

Felis catus domestica (invalid junior
synonym)[4]

Figure B-7: Screenshot of the first page of “Cat” Wikipedia article.
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The tiger (Panthera tigris) is the largest cat species, most recognizable for their pattern of dark
vertical stripes on reddish-orange fur with a lighter underside. The species is classified in the
genus Panthera with the lion, leopard, jaguar, and snow leopard. Tigers are apex predators,

Donate to Wikipedia primarily preying on ungulates such as deer and bovids. They are territorial and generally
Wikipedia store solitary but social animals, often requiring large contiguous areas of habitat that support their
T prey requirements. This. coupled with the fact that they are indigenous to some of the more
el densely populated places on Earth, has caused significant conflicts with humans.

elp
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in the south, and from Kolyma to Sumatra in the east. Over the past 100 years, they have lost
93% of their histeric range, and have been extirpated from Western and Central Asia, from the
islands of Java and Bali, and from large areas of Southeast, Southem, and Eastern Asia.
Today, they range from the Siberian taiga to open grasslands and tropical mangrove swamps
The remaining six tiger subspecies have been classified as endangered by the International
Union for Conservation of Nature (IUCN). Major reasons for population decline include habitat
destruction, habitat fragmentation and poaching. The extent of area occupied by tigers is
estimated at less than 1,184,911 km? (457,497 sq mi), a 41% decline from the area estimated
in the mid-1990s.1

The global population in the wild is estimated to number between 3,062 and 3 948 individuals,
down from around 100,000 at the start of the 20th century, with most remaining populations
occurring in small pockets isolated from each other, in which about 2,000 tigers live on the
Indian subcontinent.[*] In 2016, an estimate of a global wild tiger population of approximately
3,890 individuals was presented during the Third Asia Ministerial Conference on Tiger
Conservation.BI®] The WWWF declared that the world's count of wild tigers has risen for the first
time in a century.[”]

Tigers are among the most recognisable and popular of the world's megafauna. They have
featured prominently in ancient mythology and folklore, and continue to be depicted in modem
films and literature. They appear on many flags, coats of arms, and as mascots for sporting
teams. The tiger is the national animal of Bangladesh, India, Malaysia and South Korea.
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For the car manufaciurer, see Jaguar Cars. For other uses, see Jaguar (disambiguation)

The jaguar (Panthera onca), is a wild cat species and the only extant member of the genus
Panthera native to the Americas. The jaguar's present range extends from Southwestern
United States and Mexico across much of Central America and south to Paraguay and
northem Argentina. Though there are single cats now living within the western United States,
the species has largely been extirpated from the United States since the early 20th century. Itis
listed as Near Threatened on the IUCN Red List: and its numbers are declining. Threats
include loss and fragmentation of habitat

The jaguar is the largest cat species in the Americas and the third-largest after the tiger and the
lion. This spotted cat closely resembles the leopard, but is usually larger and sturdier. It ranges
across a variety of forested and open terrains, but its preferred habitat is tropical and
subtropical moist broadleaf forest, swamps and wooded regions. The jaguar enjoys swimming
and is largely a solitary, opportunistic, stalk-and-ambush predator at the top of the foed chain
As a keystone species it plays an important role in stabilizing ecosystems and regulating prey
populations

While international trade in jaguar or its body paris is prohibited, the cat is still frequently killed,
particularly in conflicts with ranchers and farmers in South America. Although reduced, its

range remains large. Given its historical distribution, the jaguar has featured prominently in the
mythology of numerous indigenous American cultures, including those of the Maya and Aztec
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The lion (Panthera leo) is a species in the family Felidae and a member of the genus
Panthera. It is the second largest extant species after the tiger. It exhibits a pronounced sexual
dimerphism; males are larger than females with a typical weight range of 150 to 250 kg (331 to
551 Ib) for the former and 120 to 182 kg (265 to 401 Ib) for the latter. In addition. male lions
have a prominent mane, which is perhaps the most recognisable feature of the species. Both
sexes have hairy tufts at the end of their tails.

In the Pleistocene, lions were the most widespread large land mammals and ranged
throughout Eurasia, Africa and North America. Today, the lion occurs in fragmented populations
in Sub-Saharan Africa and one in westem India. It has been listed as Vulnerable on the IUCN
Red List since 1996, as populations in African range countries declined by about 43% since the
early 1990s. Lion populations are untenable cutside designated protected areas. Although the
cause of the decline is not fully understeod, habitat loss and conflicts with humans are the
greatest causes of concemn. The Asiatic lion and the West African lion are listed as Endangered
and Critically Endangered, respectively.

The lion typically inhabits grasslands and savannahs, but is absent in dense forests. It is
usually more diumnal than other big cats, but when persecuted adapts to being active at night
and at twilight. A lion pride consists of a few adult males, related females and cubs. Prides vary
in size and composition from three to 20 adult lions, depending on habitat and prey availability.
Females cooperate when hunting and prey mostly on large ungulates, including antelope, deer,
buffalo, zebra and even girafie.

The lion is one of the most widely recognised animal symbols in human culture. It has been
extensively depicted in sculptures and paintings, on national flags, and in contemporary films
and literature. Lions have been kept in menageries since the time of the Roman Empire, and
have been a key species sought for exhibition in zoos over the world since the Iate 18th
century. Cultural depictions of lions are known from the Upper Paleolithic period, with carvings
and paintings from the Lascaux and Chauvet Caves in France dated to 17,000 years ago,
through virtually all ancient and medieval cultures where they once cccurred.
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