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ABSTRACT 

This dissertation describes a knowledge-based system to create abstractive 

summaries of documents by generalizing new concepts, detecting main topics and 

creating new sentences. The proposed system is built on the Cyc development platform 

that consists of the world’s largest knowledge base and one of the most powerful 

inference engines. The system is unsupervised and domain independent. Its domain 

knowledge is provided by the comprehensive ontology of common sense knowledge 

contained in the Cyc knowledge base. The system described in this dissertation generates 

coherent and topically related new sentences as a summary for a given document. It uses 

syntactic structure and semantic features of the given documents to fuse information. It 

makes use of the knowledge base as a source of domain knowledge. Furthermore, it uses 

the reasoning engine to generalize novel information. 

The proposed system consists of three main parts: knowledge acquisition, 

knowledge discovery, and knowledge representation. Knowledge acquisition derives 

syntactic structure of each sentence in the document and maps words and their syntactic 

relationships into Cyc knowledge base. Knowledge discovery abstracts novel concepts, 

not explicitly mentioned in the document by exploring the ontology of mapped concepts 

and derives main topics described in the document by clustering the concepts. 

Knowledge representation creates new English sentences to summarize main concepts 

and their relationships. The syntactic structure of the newly created sentences is extended 
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beyond simple subject-predicate-object triplets by incorporating adjective and adverb 

modifiers. This structure allows the system to create sentences that are more complex. 

The proposed system was implemented and tested. Test results show that the system is 

capable of creating new sentences that include abstracted concepts not mentioned in the 

original document and is capable of combining information from different parts of the 

document text to compose a summary.  
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CHAPTER 1 

 

INTRODUCTION 
 

Problems with information overload have drawn attention because of the 

exponential growth of information creation and distribution that has recently gained an 

incredible pace. Ninety percent of the entire world’s recorded data has been generated in 

the past few years with two and a half million terabytes of data being created daily [1]. 

Around eighty percent of the data is unstructured and represented in the form of 

documents, web pages, images, and videos. This vast amount of data turns into a 

distraction and has a negative impact on human productivity and decision-making [2]. It 

is becoming harder for the public to navigate and comprehend information conveniently 

[3]. The issue of information overload raises a number of important questions – how to 

make this overwhelming amount of information accessible for users; how to find 

necessary information and to filter out the useless ones; and how to absorb and employ 

information effectively. 

Information overload is very complex, and currently there is no known solution 

that can solve it all together, yet a number of approaches exist that try to address some of 

the issues. One of such approaches is text summarization. It aims to mitigate information 

overload specifically in the domain of unstructured data. Summarization process 

condenses text in a form of a summary while preserving the most important information, 

which ensures its high relevance. This drastically reduces the amount of information 
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people would have to comprehend, thus decreasing the amount of time and effort spent 

on finding relevant information.  Automatic text summarization is part of a broader field 

of natural language processing that combines advances in computer science, artificial 

intelligence and computational linguistics [4]. 

Automatic text summarization can be divided into two main approaches – 

extractive and abstractive. Extractive approach algorithms form a summary by choosing 

the most significant words, phrases or sentences in the text. Summaries created by such 

approach are highly relevant to the original text, but do not convey novel information. 

Extractive text summarization is a well-studied topic that has reached its potential [5]. 

Abstractive approach algorithms, in contrast, aim to create new phrases or sentences by 

analyzing the semantics of the text to form a summary. Such algorithms perform a 

synthesis of source text to derive knowledge that is more general. This branch of 

automatic text summarization is less studied and more complex. In order to create 

abstractive summary of a text, the algorithm has to obtain novel knowledge form original 

text and meaningfully combine information from different parts [6]. Summaries created 

by abstractive approach algorithms are more favorable, but inherently harder to achieve. 

The algorithm must use background knowledge of the subject matter to abstract new 

information. It must perform deep syntactic analysis of the input text to be capable of 

combining information from different parts appropriately. It must also use advances of 

natural language generation process to represent newly created knowledge in a way that 

is suitable for users to comprehend. 
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This dissertation provides the description of an abstractive text summarization 

algorithm that:  

 Derives deep syntactic structure of the text;  

 Generalizes new concepts based on the information derived from the text;  

 Automatically discovers general topics described in the text;  

 Identifies most informative subjects based on discovered topics; 

 Creates new sentences for identified subjects combining information from 

different parts of the text to compose a summary.  

Described algorithm uses Cyc development platform as a source of background 

knowledge. Cyc development platform consists of the world’s largest ontology of 

commonsense knowledge and a reasoning engine [7]. Cyc ontology serves as a backbone 

for semantic analysis, knowledge generalization and natural language generation 

functionality of the algorithm. Deep syntactic analysis is performed by using capabilities 

of advanced natural language processing techniques. Combining both semantic 

knowledge and syntactic structure allows the algorithm to have domain knowledge of the 

subject matter and utilize relationships between words within given sentences. The 

following is the Knowledge Based System (KBS) algorithm, the details of which will be 

fleshed out in Chapters 3 and 4.  

The KBS algorithm is composed of three main processes: knowledge acquisition, 

knowledge discovery, and knowledge representation. Knowledge acquisition process 

receives documents as an input and transforms them into syntactic representation. Then, 

it maps each word in the text to an appropriate Cyc concept and assigns the word’s 
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weight and the word’s relationships to that concept. Knowledge discovery process finds 

the ancestor for each mapped Cyc concept, records ancestor-descendant relationships, 

and adds scaled descendant weight and descendant relationships to the ancestor concept. 

This process allows the algorithm to abstract novel concepts that are not mentioned 

directly in the original text. Then, the process identifies the main topics described in the 

text by clustering the mapped Cyc concepts. The knowledge representation process 

creates sentences in English for the most informative subjects identified in the main 

topics. This process allows the summary sentences to be composed by using the 

information from different parts of the text while preserving their coherence to the main 

topics. The workflow diagram of the algorithm is outlined in Figure 1-1. 

 

Figure 1-1: KBS algorithm workflow diagram. 
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An automated modular framework has been implemented to test the functionality 

of the proposed algorithm. Two sets of test experiments were conducted: first using 

synthetically created data and second using various documents and encyclopedia articles. 

Test results demonstrate that the algorithm is capable of generalizing concepts that are 

not mentioned explicitly in the original text, deriving general topics of the text and 

creating new sentences that combined information from different parts of the text to form 

an abstractive summary. 

Main contributions of proposed algorithm are outlined as follows:  

 We introduce a method to derive the main topics automatically and 

identify the most significant subjects based on the concepts clustering and 

syntactic structure of the text; 

 We propose new sentence creation technique using semantic analysis and 

natural language generation capabilities of Cyc development platform. 

Proposed technique enhances the structure of newly created sentences by 

adding adjective and adverb modifiers to subject-predicate-object triplets; 

 We propose a mechanism of combining information from different parts 

of the text to form a summary based on deep syntactic analysis of the text. 

Proposed KBS algorithm falls into the intersection of text data mining, natural 

language processing and artificial intelligence domains. It gathers and analyzes text data, 

extracts deep syntactic structures of the text and generates new sentences as a summary. 

It utilizes Cyc development platform – world’s longest-lived artificial intelligence 

platform [7], as a backbone for the semantic reasoning. 
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The rest of the dissertation is organized as follows. Chapter 2 outlines previous 

work in the field of automatic text summarization and gives background of knowledge-

based systems and advanced natural language processing techniques. The chapter 

provides the description of extractive and abstractive approaches, highlighting recent 

advances and gives an overview of Cyc development platform, its knowledge base and 

inference engine. Chapter 3 thoroughly describes the methodology of the proposed KBS 

algorithm. This chapter provides details of the knowledge acquisition, knowledge 

discovery and knowledge representation processes. Chapter 4 presents details of the 

implementation of the summarization system based on the proposed KBS algorithm. 

Chapter 5 discusses the results obtained by applying the implemented system to 

synthetically generated data and encyclopedia articles. Finally, Chapter 6 concludes the 

dissertation and provides discussion of directions for the future work.   
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CHAPTER 2 

 

BACKGROUND AND RELATED WORK 
 

In this chapter, we outline related work undertaken in the field of automatic text 

summarization. In addition, we provide an overview of the knowledge-based systems 

employed in the area, and give the background of the advanced natural language 

processing techniques used.  

2.1 Automatic text summarization 

Computational community has been studying automatic text summarization 

problem since the late 1950s. In literature, automatic text summarization is traditionally 

divided into two main areas, namely extractive and abstractive. The approaches in these 

two areas differ fundamentally by the way they compose the summary of the text.  

Extractive methods create a summary by selecting the most informative phrases 

or sentences from the original text and filtering out those that do not convey useful 

information. Such methods generally vary by the different intermediate representations of 

the candidate phrases or sentences and different sentence scoring schemes [8]. The 

advantage of the extractive approach is that it does not require much semantic knowledge 

or deep syntactic analysis of the text because it is solely based on the statistics of word or 

phrase occurrences in the text. Summaries created by the extractive approach methods 
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exhibit higher statistical correlation with the original text, which makes their performance 

easier to evaluate.  

In contrast with the extractive approach, abstractive methods aim to create new 

sentences that carry novel knowledge or abstraction, not mentioned in the original text. 

Such methods involve generalization and aggregation of the information based on the 

content of the given text. New sentences are composed using natural language generation 

techniques by fusing the information that belongs to the same concept from different 

parts of the text. Summaries created by the abstractive approach methods tend to be more 

desirable because they have a higher correlation with the human expert created 

summaries [6]. At the same time, such summaries are harder to evaluate quantitatively 

since most of the metrics are based on the statistics that measure an overlap between the 

summary sentences and the sentences from the original text. Utilization of such metrics to 

evaluate the abstractive approach methods is impractical, since the main aim of the 

abstractive summarization is to deduce new information that was not explicitly 

mentioned in the original text. 

2.1.1 Extractive approach methods for text summarization 

In this subsection, we cover the most prominent methods used in extractive 

summarization.  We progress through different intermediate representations of the 

features used by the methods, starting with a simple word frequency count based methods 

and progressing to more sophisticated graph representation of the text and machine 

learning applications. 
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2.1.1.1  Frequency-driven approaches 

Methods based on the frequency counts are the simplest, oldest and most widely 

used in the area of extractive text summarization. These methods select the most 

representative sentences that contain significant words. The significance of the words is 

evaluated by the various frequency measures.  

The first paper in the field of text summarization that was published in the late 

1950s described the method based on raw frequency as a measure. The author concluded, 

however, that the raw frequency measure is not the best indicator, since some words 

could be frequent in many documents [9]. To take into account the length of the text to be 

summarized, word probability measure is introduced as an improvement on raw 

frequency counts [10], [11]. Another major improvement in frequency-based approach 

methods is the TF-IDF measure that is calculated by the product of term frequency (TF) 

and inverse document frequency (IDF) measures.  

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐷) Eq. 2-1 

This measure was adopted from information retrieval domain. It favors the terms 

that are very frequent among a small number of documents in the corpus. In Eq. 2-1, t 

denotes the term, d denotes each document in the corpus, and D denotes the collection of 

all documents in the corpus. Selecting the sentences that contain terms with high TF-IDF 

score yields better extractive summaries [12], [13], [14]. A variation of TF-IDF score that 

uses the log-likelihood ratio test is introduced to identify topic signatures. Topic signature 

is the set of words that describes similar concept. The idea of this measure is similar to 

the TF-IDF in terms that it gives a higher score to the words frequently used in the input 

text and rare in the other texts, but it also provides a cutoff to include the words into topic 
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signatures [15]. In the methods that use topic signature measure, the sentences are 

included in the summary by their significance that is computed by the number of topic 

signature words contained in the sentence [16], [17]. 

2.1.1.2 Graph models for sentence importance 

Graph representation of the text aided the automatic text summarization area in 

many different ways. The main idea of such methods is to model a text as a graph, where 

the nodes are words, phrases, sentences or paragraphs, and the edges are weights that 

represent the similarity measure between text elements. Graph representation of an 

arbitrary text is illustrated in Figure 2-1. Informative sentences for the summary are 

selected based on the edges’ weights by using graph traversal algorithms, such as the 

breadth-first search and the depth-first search. 

 

Figure 2-1: Graph representation of an arbitrary text. 
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TextRank approach proposed by [18] models input text as a graph, where nodes 

are represented as the words, phrases or sentences depending on the desired application. 

Edges between the nodes are expressed as a similarity measure weight based on the 

semantical or lexical relationships between the text elements or their contextual overlap. 

Nodes with the highest similarity weight are picked to form the final summary of the 

input text. The idea of graph ranking is exploited by [19] in the LexRank graph-based 

summarization approach. Their proposed method represents a document cluster as a 

graph where sentences are used as vertices, and the edges are defined as a degree of 

similarity between sentences. Summary of the text is then composed by the sentences that 

are chosen based on the number of links incident upon a node in the graph. Authors 

define sentence centrality in terms of similarity to other sentences. The sentences that are 

similar to many other sentences have higher centrality.  

The idea of representing the document as a semantic graph is proposed by [20]. In 

the semantic graph text representation, nodes are modeled as noun phrases or verb 

phrases, and the edges connecting them are derived based on the syntactic relations 

analysis of the text elements. The authors trained Support Vector Machines (SVM) 

learning method on the described graph representation of the text using sets of various 

attributes, such as linguistics attributes, graph and document structure, to identify 

summary nodes and use them for extracting sentences that form a summary of the text. 

An affinity graph representation of the text is introduced by [21]. Affinity graph 

representation of the text expressed the semantic relations between sentences in terms of 

their content similarity. Candidate sentences for a summary are evaluated by two factors 
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– information richness and information novelty. These properties are computed based on 

the number of the informative neighbors the sentence is linked to.   

2.1.1.3 Machine learning and statistical applications 

Statistical methods and machine learning techniques showed great potential in 

scoring the candidate’s sentences that are to be extracted to form a summary. The 

extractive approach methods based on such techniques improve state-of-the-art 

performance for the variety of tasks in the domain of text summarization. Majority of the 

methods utilize the idea of training a model using various sentence features to find most 

appropriate sentences for the extraction. 

Sentence selection is approached as a simple classification problem in [22]. Their 

model, based on the Naïve Bayes classifier, estimates the probability of a given sentence 

to be included in the summary. The model is trained on the number of sentence features 

such as thematic words, fixed phrases’ and proper names’ inclusiveness, sentence length 

and sentence position in the paragraph. A similar set of features with a little variation is 

used in [23]. The authors propose to use the Hidden Markov model classification instead 

of the Naïve Bayes classifier, since some of the features used to train the model are 

violating the assumption of independence. Furthermore, they introduce the assumption 

that the probability of including the next sentence into the summary depends on the 

inclusion of the current sentence.  

Another proposed method for the task of choosing sentences for summarization is 

to treat it as a sequence-labeling problem [24]. The objective of the summarization task is 

to label sentences as those that will be included in the summary and those that will not. 

The authors proposed the solution to this sequence-labeling problem by applying the 
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conditional random field (CRF) method, which was state-of-the-art in sequence labelling 

at that time. Their approach also takes into consideration the sentence inclusion 

dependency. When a new sentence is added to the summary, one or more already chosen 

sentences might be deleted based on the calculated probability values. The sentence 

feature space used in this method is extended by more complex features like similarity of 

the sentence to its neighboring sentences, latent semantic analysis score and hyper-

induced topic scores. 

SVM classification methods showed promising results when applied to the 

sentence ranking problem for automatic text summarization. Methods based on the SVM 

use different set of sentence features to extract the most informative sentences to form a 

summary. Wide range of the semantic and the syntactic sentence features are used in a 

method proposed by [25]. Authors trained Mapping-Convergence (MC) version of the 

One-Class Support Vector Machine (OCSVM) classifier using following features: the 

position of the sentence in the document; the total number of sentences in the document, 

the total number of named entities found in the sentence; probabilities of the informative 

words contained in the sentence, the existence of discourse markers and the existence of 

particular words. Top ranked sentences extracted by a trained classifier are also checked 

for redundancy before being included into the final summary. One of the drawbacks of 

such supervised classification method is the need of large amount of labeled data for 

training, which is usually not feasible to obtain in the domain of automatic text 

summarization.  

In order to address the lack of labeled data the semi-supervised SVM 

classification approach is proposed by [26]. The authors co-train SVM classifier on both 
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labeled and unlabeled data combining various sentence features. Their semi-supervised 

method shows compatible performance while saving the time cost on labeling the data. 

The authors propose four different groups of sentence features: surface, content, event 

and relevance. The surface features consist of sentence position in the text and the length 

of the sentence. The content features measure the quantity of the indicative words, such 

as centroid words, signature terms and high frequency words. The event features are 

based on “person”, “location”, “organization” and “date” named entities contained in the 

text. Finally, the relevance features measure sentence relationships to other sentences in 

the text. The authors describe a co-training mechanism using the Probabilistic Support 

Vector Machine (PSVM) method for supervised training and the Naïve Bayes 

classification for semi-supervised training utilizing derived sentence features. The 

summary is then composed of the sentences extracted by the described co-training 

approach. The final order of the sentences is conditioned on the sentence length and its 

position in the text. 

2.1.1.4 Shallow semantic analysis methods 

Since statistical analysis is not capable of discovering the meaning of the words, 

and performing deep semantic analysis has high computational cost, the number of 

methods were proposed that leveraged parts of both approaches. Such methods are 

categorized as the shallow semantic analysis methods. Most prominent techniques used 

the idea of the lexical chains – sequences of related words; the concept lattice – document 

representation using concepts semantically linked to each other; and the Latent Semantic 

Analysis (LSA) – the process of clustering related words and sentences based on their 

semantics. 
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The idea of the lexical chains – representation of lexical cohesive structure of the 

text expressed by the sequence of related words, was first applied to the problem of 

automatic text summarization by [27]. The authors proposed the method for text 

summarization that does not require computing the full semantic representation of the 

text, but rather extracts significant sentences based on the strong lexical chains 

constructed for the input text. The summarization process starts with composing a set of 

candidate lexical chains. The construction process first selects a set of candidate words, 

then finds an appropriate chain for each word based on the similarity measure derived 

from the WordNet thesaurus and then updates the chain accordingly. After the set of 

candidate lexical chains is constructed, the strongest among them are selected by the 

ranking mechanism based on the scoring function. Finally, the significant sentences are 

extracted based on the distribution of the strongest lexical chains.  

The idea of using lexical chains for the summarization task was later exploited by 

[28]. The authors propose improvements to the lexical chain construction process and a 

method to evaluate lexical chains as an intermediate representation of the input text. 

Their described approach uses scoring system based on the analysis of words 

relationships to assess the contribution of a candidate element to the chain. To evaluate if 

the lexical chains are a good representation of the text to use for the summarization task, 

the authors analyzed manually created summaries for the exclusiveness of words from the 

lexical chains. The results of the study shows great potential of the utilization of the 

lexical chains as a form of shallow semantic representation of the text as opposed to the 

single words and phrases frequencies. 
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Another type of shallow semantic representation of the text is a document concept 

lattice that is introduced by [29]. The concept lattice models the information contained in 

the text using the idea of linked concepts that cover the main facts and topics of the text. 

Such concepts are represented by the words that describe concrete or abstract entities 

together with their behavior. The process of concept lattice construction starts with the 

analysis of the input sentences parse trees to identify repeated concepts. Then the 

maximal common concepts are determined according to the concepts’ frequency. The 

hierarchical representation of the concepts is then formed to serve as a structure for the 

document concept lattice. Final summary of the text is then composed by extracting an 

optimal set of the sentences by utilizing the derived document concept lattice 

representation as a basis. The advantage of the concept lattice representation method is in 

selecting the sentences that covered as many concepts as possible with the least amount 

of words. 

Latent semantic analysis (LSA) is another shallow semantic analysis technique 

applied to the problem of identifying candidate sentences to be extracted from a given 

text to form a summary. LSA performs the singular value decomposition of the term by 

sentence matrix representation of the text to discover words or phrases that describe 

similar topic. This approach is driven by the assumption that the words that describe the 

same topics will generally appear in a similar context and will be mapped near to each 

other in the decomposed matrix. Such a decomposition allows to semantically group 

terms or sentences operating solely on the words or phrases frequencies. Text 

summarization method based on the shallow semantic representation of the text derived 

by LSA is described by [30] and [31]. In their proposed summarization methods, the 
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input text is first decomposed into a term by sentence matrix representation based on 

various term frequency measures. Then the singular values decomposition technique is 

applied on the matrix to discover vector representation of the salient topics contained in 

the text. Finally, the sentences are extracted to form a summary based on the various 

vector relations between the sentence vector representation and the topic vector 

representation. Applying LSA method for text summarization allows extracting the 

sentences that are semantically related to the main topics of the text without performing 

the costly deep semantic analysis. 

2.1.1.5 Conclusion 

The described extractive text summarization methods suffer with the major 

drawback of inability to synthesize new information, being limited to the words and 

phrases comprised in the original text. The summaries produced by such methods tend to 

have high statistical correlation with the input documents, but do not convey any novel 

information. 

2.1.2 Abstractive approach methods for text summarization 

Abstractive text summarization methods are more desirable because they 

resemble the summarization process that the human experts undergo when they create the 

summaries, but such methods are inherently hard to develop and evaluate. Most of the 

methods in the area involve transforming the text into a graph representation, where the 

nodes denote text elements and the edges represent various relationships between these 

text elements. The final summary of the text is constructed by applying the graph 

transformation techniques, such as graph reduction, merging and compression. 
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2.1.2.1 Graph reduction based methods 

The application of word graphs text representation for the purpose of the 

abstractive text summarization was investigated by [32] and illustrated by their multi-

sentence compression algorithm. The algorithm is applied on a cluster of similar 

sentences to compose a single sentence as a summary. The algorithm starts by creating a 

word graph representation of a cluster using all words in the sentences. Such a graph is 

constructed iteratively by adding one sentence at a time. The nodes in the graph represent 

words, and the edges represent adjacency relation between words – carrying a weight, 

which expresses the frequency of the syntactic relation of the words. After the word 

graph representation of a cluster is built, the algorithm identifies the best path in the 

graph to assure high compression and informativeness. The best path is evaluated based 

on presence of the strong links and such a path has to follow through, what they refer to 

as the salient nodes [32]. Both of these criteria are identified by experimenting with the 

various weighting formulas. The path that has the lightest average edge weight is chosen 

as the summary sentence for the cluster of the input sentences.  

The application of words graphs was extended to cover the whole document 

rather than a small cluster of sentences in [33]. The authors propose document-level 

representation of the text using the word graphs. Their method employs Dijkstra’s 

algorithm to find the shortest path in the graph to accommodate for the sentence 

compression and to retain informative parts of the text. The algorithm that they describe 

generates a number of the candidate summary sentences and the final summary of the 

whole document is composed by choosing the most important ones, according to the 

heuristic rules. Methods based on the word graphs representation are capable of 
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effectively combining information from different sentences, but lack the ability to 

produce novel information, not explicitly mentioned in the text.  

Abstractive text summarization by the semantic graph text reduction technique 

was proposed by [34]. The authors introduce the idea of the rich semantic graph text 

representation, and enhancing graph nodes with the associative attributes derived from 

domain ontology. In the described graph, the nodes represent the verbs and nouns, and 

the edges represent the semantic and topological relationships among words. Such a rich 

semantic graph is constructed for the input document utilizing deep syntactic analysis. 

Initially, the sub-graphs are created for each sentence in the document and then merged 

together to derive a rich semantic graph of the whole document. On the next step, the 

graph is reduced according to the set of the heuristic rules. During the process, the nodes 

of the graph are combined, replaced or removed based on the additional semantic 

relationships derived from the WordNet thesaurus. Finally, the summary of the document 

is created from the reduced rich semantic graph using domain ontology. The method 

proposed by the authors uses the WordNet system to create a set of sentences with the 

synonyms of the words from the original document. The sentences to be included in the 

final summary are picked based on the frequency of the used words and the sentence 

discourse relations. 

2.1.2.2 Graph merging based methods 

Creating an abstractive summary of the text involves composing new sentences 

that combine the information from different parts of the text. The new sentence creation 

approach by the phrase selection and merging was proposed by [35]. The authors argue 

that using more fine-grained syntactic units such as the noun and verb phrases improves 
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the process of the new sentence creation. Their described algorithm starts by extracting 

noun and verb phrases from each sentence dependency tree, and forming a set of the 

concepts and facts described in the input text. Then the salience score is calculated for 

each extracted phrase. This score incorporates the concept-based weight and the position-

based frequency of the phrases. Next, new sentences are generated by identifying the 

most informative phrases and merging them while maximizing the salience and satisfying 

the predefined construction constraints. The structure of the composed sentences is based 

on the heuristic rules and the relations derived from the dependency trees, and follows the 

summarization requirements, such as the sentence length constrains, the avoidance of the 

redundancy and the utilization of the pronoun phrases. Finally, some of the post-

processing steps are carried out to improve the order of the elements in the sentence and 

enhance the sentence readability. 

The analysis of the discourse structure of the input text shows promising results in 

the area of abstractive summarization as reported by [36]. They propose an algorithm that 

creates a summary by using the discourse tree structure as an intermediate representation 

of a text. Such a representation illustrates how the text spans are connected and related to 

each other. The discourse trees of each sentence in the text are used to compose a 

directed graph that allows multiple connections between the two nodes. Such a graph is 

called the aspect rhetorical relation graph (ARRG). The nodes of ARRG represent the 

concepts derived from the text, and the edges represent specific relations between them, 

together with an importance weight. Their proposed algorithm starts the summarization 

process by extracting the sub-graphs containing the most informative concepts from the 

ARRG using the weighted page rank algorithm. Then the extracted sub-graphs are 
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combined into the aspect hierarchical trees to be used by the abstract generation process 

implemented by natural language generation techniques such as the microplanning and 

the sentence realization. 

Another type of graph text representation, namely Abstractive Meaning 

Representation (AMR), was applied to the problem of summarization by [37]. The AMR 

provides a semantic representation of each sentence in the text as the rooted, acyclic, 

directed graph. Their proposed approach performs the graph transformation that 

compresses the source graph into a summary graph and creates an abstractive summary 

based on it. The summarization process starts by transforming each sentence into AMR 

graph using the statistical semantic parser. Then the created graphs are merged and 

transformed into a single AMR graph that represents the whole document. This process 

involves pruning of the certain fragments of the graph and combining the parts of the 

graph that has the same labels. While merging subgraphs represent different sentences, 

every concept that is a root concept in the sentence graph is connected to new “ROOT” 

node to assure the connectedness of the final graph. Finally, additional edges are added to 

create a dense graph representation of the document. Such a representation is used to 

select the subset to represent a summary graph that is concise, contains important 

information and allows creating meaningful sentences. The final summary subgraph is 

selected by the integer linear programming technique. Since there is no automatic process 

to create natural language sentences from the AMR graphs, the authors propose a set of 

the heuristic rules to create the text from the final graph. 

The sentence enhancement technique applied to the graph representation of the 

text to perform abstractive summarization was proposed by [38]. The novelty and 
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advantage of the described approach is in allowing the conjunction of the syntactic 

dependency trees from any sentence of the input text. The event co-reference resolution 

algorithm controls correctness of such trees combination by using the distributional 

semantics approach. The summarization process is implemented in several steps. 

Initially, the algorithm finds  the clusters of compatible sentences, ranks the clusters 

based on their salience, and picks the top ranked cluster to represent the core. Next, the 

algorithm composes sentence graph by merging similar vertices based on their syntactic 

features and the external information derived from the WordNet thesaurus. Then, the 

sentence graph is extended by adding the dependency trees of the sentences that were not 

the part of the core cluster, but still had been expressed by the similar features. Such an 

expanded sentence graph is pruned according to the defined heuristics. Finally, the 

summary dependency tree is extracted from the sentence graph by the integer linear 

programming techniques with the constraints for the salience, importance, grammatical 

correctness and length characteristics. The summary dependency tree is transformed into 

a final sequence of words with the help of the linearization technique.   

2.1.2.3 Conclusion 

Abstractive text summarization methods described above attempt to derive the 

latent semantic structure of the given text by transforming it into the graph representation 

and preserving various relationships among the text elements. While such techniques 

allow obtaining the shallow semantic features of the text and combining the information 

from different sentences, they lack the ability to generalize novel information that has not 

been mentioned in the input text, and only merge the information from the compatible 

sentences.        
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2.2 Knowledge based systems 

A knowledge-based system (KBS) is a computer system that utilizes a 

combination of the data, information, and knowledge to allow solving complex problems 

with domain expertise capabilities. Such systems use artificial intelligence techniques in 

an attempt to understand the information related to the problem to provide a decision 

supported by the underlying knowledge. Regular information systems operate on data, 

but KBS exploit the knowledge contained in the information [39]. KBS generally consist 

of three main parts: a knowledge base for information storage and organization; an 

inference engine for the reasoning about the information stored in the knowledge base; 

and the user interface to allow system-user communication. Knowledge base (KB) 

resembles the idea of an intelligent database. Information is stored in the KB in an 

ontological form that grants performing the reasoning and deduction. Inference engine 

(IE) goes beyond simple search engine abilities by deducting new knowledge and 

utilizing existing information for the effective problem solving. IE can reason with the 

subjective fuzzy knowledge together with the explicit facts of established theories that 

resemble the human experts approach for the problem solving [40]. User interface allows 

users to communicate with KBS by providing access to the information contained in the 

knowledge base and to the capabilities of the inference engine.  

The ability to derive underlined semantics and to reason about the knowledge 

comprised in the text are the crucial parts of the effective abstractive summarization 

algorithm. These factors distinguish the abstractive approaches from the extractive 

approaches in the area of text summarization. Achieving pure abstractive summary 

requires the algorithm to combine text from different parts of the input document to 
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abstract and synthesize new knowledge based on the information contained in the 

document, and to utilize the common sense knowledge to compose the new sentences that 

represent the summary. Such a functionality is not feasible without taking the advantage 

of capabilities provided by the knowledge-based systems. Researchers attempting to 

tackle abstractive summarization problem used various knowledge based systems with 

WordNet, BabelNet, ConceptNet, and Cyc among the most noticeable.  

2.2.1 WordNet lexical database 

WordNet is a thesaurus that was developed with an aim to organize the lexical 

knowledge with regards of the word semantics, rather than the word forms. This is 

achieved by introducing the mappings between the word meaning and the word character 

representation. The vocabulary in WordNet is divided into four categories that 

correspond with the English language parts of speech: nouns, verbs, adjectives and 

adverbs. The nouns are organized as the topical hierarchies, the verbs represent various 

relationships, and the adjectives and adverbs serve as the modifiers for the nouns and 

verbs. The central idea of the semantic representation in WordNet is the grouping of 

words into synonym sets, known as “synsets”. The semantic relations are then defined as 

the pointers between different “synsets”.  

There are four main categories of pointers between “synsets”: synonymy, 

antonymy, hyponymy, and meronymy. Synonymy and antonymy pointers form lexical 

relations between word forms, hyponymy and meronymy define semantic relations 

between word meanings. The latter two represent relations of a form “is-a” and “has-a” 

that are allowed to represent knowledge in a hierarchical form [41]. WordNet thesaurus 

showed promising potential in the area of abstractive text summarization providing a 
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resource to enhance the algorithms with the semantic knowledge. However, the lack of 

the commonsense knowledge and the ability to reason about it is a major drawback of 

WordNet thesaurus to be widely applicable in the area of abstractive text summarization 

problems. 

2.2.2 BabelNet encyclopedic dictionary 

BabelNet is an encyclopedic dictionary that was created as an attempt to enhance 

WordNet thesaurus with the information from Wikipedia, a multilingual encyclopedic 

knowledge repository. The project resulted in multilingual semantic network providing 

the concepts and named entities connected by the numerous semantic relations. In 

BabelNet, the knowledge is encoded as a graph where the vertices are the concepts 

derived from Wikipedia and the edges are the semantic relations derived from WordNet. 

Such a network is populated automatically by retrieving the semantic information, such 

as the word senses and the semantic pointers from WordNet, and then merging it with the 

encyclopedic entries from Wikipedia pages. The linkage between the content to be 

merged is established by disambiguating the context in both Wikipedia pages and 

WordNet senses, and computing the conditional probabilities of the candidate contexts. 

The main advantage of BabelNet semantic network is adding more lexical structure to the 

encyclopedic knowledge by linking the information repository with the organized 

computation lexicon [42]. Although BabelNet enhanced WordNet with the world 

knowledge, it still lacked the commonsense reasoning capabilities that are crucial in the 

abstractive summarization domain. 
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2.2.3 ConceptNet semantic network 

ConceptNet is a commonsense knowledgebase with the natural language 

processing capabilities. Inspired by the structure of WordNet knowledgebase, 

ConceptNet was developed with an aim to capture the content of a general world 

knowledge in a way that is more suitable for the natural language processing purposes. 

The main advantage of ConceptNet knowledgebase is in its emphasis on the contextual 

reasoning. The knowledgebase stores the information as a graph focusing on the 

semantically rich relationships represented as the edges and the complex concepts 

represented as the vertices. Such a graph is generated automatically by connecting over a 

million facts into a semantic network of three hundred thousand nodes.  

The corpus of the English sentences from the Open Mind Common Sense project 

is taken as a basis for the semantic knowledge. The idea of WordNet graph knowledge 

representation is extended by the several enhancements. Vertices of ConceptNet semantic 

knowledge graph consist of the compound concepts, such as verb phrases rather than the 

atomic words. The edges in such a graph represent a wider variety of the semantic 

relationships between the concepts, including causality, affect, event hierarchy and 

location. Finally, the knowledge represented in ConceptNet is more casual, informal and 

applicable [43]. Although the aforementioned enhancements allow ConceptNet 

knowledgebase to be used for the applied reasoning over the raw text data, the amount of 

the knowledge captured and the types of the relationships between the concepts appear to 

be a major drawback when creating purely abstractive and domain independent 

summarization algorithm. 
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2.2.4 Cyc development platform 

Cyc project started in the mid-1980s with an ambitious goal of encoding the 

commonsense knowledge of the whole world in the way that a computer can understand 

and be able to reason. To this date, Cyc contains more than 600,000 concepts, around 

40,000 relationships connecting these concepts, and more than 7,000,000 of assertions 

about these concepts. The volume of the information captured in Cyc makes it the 

world’s largest knowledge based system. The knowledge inside Cyc development 

platform is organized in a form of an ontology, and the powerful inference engine is 

provided to perform reasoning based on the knowledge. In order to formalize such an 

enormous amount of knowledge and ensure the machine readability and inference, the 

knowledge base is implemented in the CycL – flexible knowledge representation 

language. CycL syntax is a combination of the features from the first-order predicate 

calculus and Lisp high-level programming language. High expressiveness of CycL 

language allows the inference engine to perform the effective reasoning about the 

knowledge. 

2.2.4.1 Cyc knowledge base 

Cyc knowledge base arranges enormous volumes of common sense knowledge 

about the world such as the facts, rules of thumbs, concepts, and their interconnections, 

into a hierarchy that forms the knowledge ontology. The organization of the knowledge 

in Cyc ontology is illustrated in Figure 2-2 [44]. The ontology can be viewed as a 

pyramid, where each layer is arranged by the level of the knowledge generalization. 

Elements of the ontology are connected by the generalization relationships of 
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specialization or instantiation. Therefore, the knowledge can be propagated bottom-up by 

the specialization relation type or top-down by the instantiation relation type.    

 

Figure 2-2: Cyc knowledge organization. 

The peak of the pyramid constitutes the upper ontology that contains abstract 

concepts such as an idea of the event, individual, collection, temporal thing. Upper 

ontology also describes the relations between general concepts. At the very top of the 

upper ontology resides the most fundamental representation called A “Thing”. Every 

element in the knowledge base is an instance of the “Thing”. The next layer of the 

ontology is composed by the core theories that describe the space, time and causality 

relations. The rules described in the core theories build the fundament for the reasoning 

ability of the inference engine. The next layer is devoted to the domain-specific theories 

that cover the information about the broad number of diverse domains from banking and 
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finance to healthcare and chemistry. This knowledge gives an inference engine the ability 

to perform the reasoning about the very specific domains of interest. The bottom layer of 

the pyramid consists of the domain-specific facts and data. This layer describes the 

specific ground level facts about the particular individuals or events and does not cover 

any theories.  

The knowledge, represented in the ontology, is divided into large number of 

collections of assertions called the micro theories. The assertions are split into the micro 

theories based on the shared topics, assumptions or sources. Some of the micro theories 

characterize certain domain of knowledge when others contain information about the 

certain period in history or describe certain geographical regions. Every assertion must 

fall into at least one micro theory. The main function of the micro theories is to maintain 

the local consistency of knowledge. Theories and facts may be contradictory across the 

micro theories, but within a single micro theory, the assertions must be mutually 

consistent. Such constraints allow the inference engine to perform the reasoning about the 

knowledge more efficiently in narrowing down the scope of the facts and rules to a 

particular micro theory of interest. Micro theories are also organized in a form of a 

hierarchy linked by the generalization relations. The most general micro theory is called 

“BaseKB” which holds the basic rules that describe the behavior of all micro theories.    

2.2.4.2 Cyc inference engine 

Cyc development platform allows performing the deductive reasoning about the 

vast amount of knowledge it comprises with the help of the inference engine. In general, 

the inference mechanism allows concluding new facts from existing facts and rules 

defined in the ontology. For example, if ontology contains the fact that “A” is an ancestor 
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of “B” and “C”, then the fact that “B” and “C” are the relatives does not have to be 

included in the knowledge base, but instead can be deducted by the inference engine. 

Every deduction performed by Cyc inference engine is concluded in a context of the 

particular micro theory with all corresponding inheritances to reduce the search domain. 

Cyc inference engine functionality is based on the general logic deduction, such as the 

universal and existential qualification, mathematical reasoning, quality and temporal 

inference. Inference engine uses CycL language to perform the deduction effectively by 

manipulating the knowledge inside the ontology.  

Such a robust and powerful inference engine gives the Cyc development platform 

an indisputable advantage over the other knowledge-based systems. It allows not only 

reasoning about the existent knowledge and deducting novel information, but it is also 

capable of performing the natural language generation tasks, such as deriving English 

language equivalents of the concepts contained in the knowledge base. 

2.2.5 Conclusion 

Cyc knowledge based system is chosen as a backbone for KBS algorithm 

described in this dissertation. Cyc surpasses WordNet, BabelNet and ConceptNet in a 

number of characteristics, such as the breadth and depth of the knowledge represented in 

the system, the variety of relations between concepts, and the capabilities of the inference 

engine that allows robust knowledge reasoning. 

2.3 Advanced natural language processing techniques 

Natural language processing (NLP) is a field of study that combines the ideas 

from the computer science, artificial intelligence and computational linguistics. NLP 

allows developing computer algorithms that can automatically process, analyze and 
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represent human language [45]. NLP techniques range from simple word occurrence 

counting to complex analysis of the sentiment of a text passage. These techniques play a 

pivotal role during text the data preprocessing step, which is the process of transforming 

input data from the raw text to the format suitable for further interpretation and analysis. 

Following are the main advanced NLP techniques that are frequently used to 

perform automatic text summarization: 

 sentence segmentation; 

 tokenization; 

 lemmatization;  

 part of speech tagging; 

 dependency grammar analysis.   

Sentence segmentation is a process of separating the text into individual 

sentences. Punctuation marks, such as a period or a question mark, are used to define 

sentence boundaries during the sentence segmentation process. Tokenization is a process 

of breaking up sentences into the separate words based on the primitive white space 

separator or more complex separator symbols. Tokenization is followed by the 

lemmatization, the process of reducing the inflectional and derivationally related word 

forms to a common form known as a lemma. Lemmatization performs the morphological 

analysis of the words derived by the tokenization to derive their base forms.  

For example, words “dark”, “darker” and “darkest” are all lemmatized to the base 

form “dark”. Parts of speech tagging is a process of assigning a particular part of speech 

tag to a word in a sentence. There are four major parts of speech tags, also known as the 

open class tags: nouns, verbs, adjectives and adverbs. Sophisticated statistical methods 



32 

are used to derive appropriate part of speech tags for the words in the text. The proper 

parts of speech tagging is crucial for the most of natural language processing techniques, 

including the lemmatization and syntactic parsing. There is a number of conventions used 

to denote parts of speech tags. In our research, we follow parts of speech tagging defined 

by the Universal Dependencies (UD) framework treebank for English language. Parts of 

speech tags with corresponding descriptions are provided in Table 2-1. 

Table 2-1: Parts of speech tags from Universal Dependencies treebank. 

Parts of speech tag Description 

ADJ Adjective 

ADP Adposition 

AUX Adverb 

CCONJ Coordination conjunction 

DET Determiner 

INTJ Interjection 

NOUN Noun 

NUM Numerical 

PART Particle 

PRON Pronoun 

PROPN Proper noun 

PUNCT Punctuation 

SCONJ Subordinating conjunction 

SYM Symbol 

VERB Verb 

X Other 
 

Dependency grammar analysis derives the syntactic structure of the sentences 

based on the words and the grammatical relations that link these words. During the 

syntactic parsing, the sentence is being represented as a dependency tree. Such a tree 
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structure has a root that states the head of the sentence and the nodes, represented by the 

words of the sentence. The nodes are connected by their syntactic relationships. For 

example, in the sentence, “I study computer science”, the verb “study” is the root of the 

dependency tree, the pronoun “I” is the subject of the verb “study”, the noun “science” is 

the object of the verb “study”, and the noun “computer” is a compound modifier of the 

noun “science” [46]. There is a number of conventions used to denote the dependency 

relation tags. In our research, we use dependency tags defined by the Universal 

Dependencies (UD) framework scheme for the English language. Descriptions of the 

dependency tags are provided in Table 2-2. 

Table 2-2: Syntactic dependency relationships tags from Universal Depenencies 

scheme. 

Dependency relation tag Description 

ACOMP Adjectival complement 

ADVMOD Adverbial modifier 

AMOD Adjectival modifier 

CSUBJ Clausal subject 

CSUBJPASS Clausal subject (passive) 

DOBJ Direct object 

IOBJ Indirect object 

NSUBJ Nominal subject 

NSUBJPASS Nominal subject (passive) 

OPRD Object predicate 

OBJ Object 

POBJ Object of preposition 
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CHAPTER 3 

 

ABSTRACTIVE TEXT SUMMARIZATION USING CYC 

DEVELOPMENT PLATFORM 
 

This chapter provides a detailed description of the underlying methodology of the 

proposed algorithm for abstractive text summarization.  

The KBS algorithm described in pages 3 and 4 attempts to bring the machines 

one-step closer to the comprehension of the knowledge comprised in the text. The 

algorithm performs text summarization in three principal steps: the knowledge 

acquisition, the knowledge discovery, and the knowledge representation. During the 

knowledge acquisition step, the algorithm receives text documents as an input, performs 

deep syntactic analysis, and maps the words with their syntactic relationships into the 

Cyc knowledge base. During the knowledge discovery step, the KBS algorithm performs 

a generalization of new concepts by propagating the concepts that were mapped into Cyc 

knowledge base by the knowledge acquisition step. It also performs the task of the 

identification of the main topics of the text based on the mapped and generalized 

concepts. Finally, during the knowledge representation step, the KBS algorithm generates 

new sentences using knowledge derived from the input text documents and the 

capabilities of Cyc inference engine. The subsections of this chapter describe the 

workflow of three steps of the KBS summarization algorithm. 
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3.1 Knowledge acquisition 

The knowledge acquisition consists of two sub-processes. The first sub-process 

extracts the syntactic structures from the given documents. This sub-process serves as a 

data preprocessing and transformation step. It normalizes raw text data and transforms it 

into syntactic representation. The second sub-process maps words from syntactic 

representation of the text to Cyc concepts. Mapped Cyc concepts are utilized for 

reasoning during subsequent steps of the algorithm. 

3.1.1 Syntactic structure extraction 

The syntactic structure extraction sub-process starts by separating input text into 

individual sentences. Then it applies the process of tokenization to separate sentences 

into individual words and uses lemmatization to normalize word forms. Next, it assigns 

the appropriate parts of speech tag for each lemmatized word in the sentence. Parts of 

speech tags are required during the mapping process and help to address the 

disambiguation issue. Only open class parts of speech tags such as noun, verb, adjective, 

and adverb are used for the analysis.  

Next, the sub-process applies the syntactic dependency parses to discover the 

relationships between the words in the sentences. Syntactic dependency relationships are 

recorded in the following format: (“word” “relationship type” “head”), where “word” is 

the dependent element in the relationship, “relationship type” is the type of the 

relationship, and “head” is the leading element in the relationship. For example, applying 

syntactic parser on sentence “Rottweiler rarely eats raw veal” produces the following 

relationships: (“Rottweiler” “nsubj” “eats”), (“veal” “dobj” “eats”), (“rarely” “advmod” 

“eats”), (“raw” “amod” “veal”). Syntactic dependency relationships of the example 
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sentence are illustrated in Figure 3-1. Syntactic dependency relationships are crucial 

features for the new sentence generation sub-process of the knowledge representation 

step of the summarization algorithm.  

 

Figure 3-1: Example of syntactic dependency relationships in a sentence. 

Finally, the sub-process counts and records frequencies of the word occurrences 

and their relationships. These frequencies are used as weights for corresponding Cyc 

concepts and their relationships during mapping sub-process of the knowledge 

acquisition step.  

The syntactic structure extraction sub-process produces syntactic representation of 

the input text that consists of words, their frequencies, parts of speech tags, syntactic 

dependency relationships and their frequencies. Workflow diagram of the sub-process is 

outlined in Figure 3-2. 

 

Rottweiler rarely eats raw veal.

 nsubj  dobj 

 advmod  amod 
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Figure 3-2: Syntactic structure extraction sub-process workflow diagram. 
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Higher weights represent stronger syntactic dependency relationships. Our algorithm 

enhances Cyc semantic knowledge about the concepts with the syntactic structures 

derived from the input text. The semantic knowledge and the syntactic structures are two 

crucial parts that make abstractive summary cohesive and meaningful. The steps of the 

mapping words to Cyc concepts sub-process are outlined as follows: 

 For each word in the syntactic representation obtained by the syntactic 

structure extraction sub-process: 

 Map word to the corresponding Cyc concept; 

 Assign the word’s weight to the corresponding Cyc concept; 

 Map relationship head word to the corresponding Cyc concept; 

 Assign the word’s relationship and relationship’s weight to the 

corresponding Cyc concept. 

Workflow diagram of the sub-process is illustrated in Figure 3-3. 

 

Figure 3-3: Mapping words to Cyc concepts sub-process workflow diagram. 
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3.2 Knowledge discovery 

The knowledge discovery step performs two tasks: it abstracts new concepts and 

identifies main topics described in the input text.  

New concepts abstraction sub-process performs generalization of the information 

derived from the text. It finds the ancestors of mapped Cyc concepts and assigns the 

descendants’ propagated weight and syntactic dependency relationships to the ancestors. 

It is an important part of abstractive summarization process as it allows deriving concepts 

that are not explicitly mentioned in the input text. For example, concepts like “cat”, 

“tiger”, “jaguar” and “lion” are generalized into more abstract “feline” concept. Another 

example of concepts propagation is illustrated in Figure 3-4. The relationship between 

descendant concepts “banana”, “orange”, “apple”, “pear” and ancestor concept “edible 

fruit” in Cyc ontology is represented by the “#$isA” Cyc predicate.   

 

Figure 3-4: Upward concepts propagation in Cyc ontology. 
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The main topics identification sub-process detects topics described in the text 

with an assumption that they are represented by the most frequently used micro theories. 

Micro theories form the basis of knowledge organization in Cyc ontology being the 

clusters of Cyc concepts and facts, typically representing one specific domain of 

knowledge. For example, #$BiologyMt is a micro theory containing biological 

knowledge, and #$MathMt is a micro theory containing concepts and facts describing the 

field of mathematics. Each Cyc concept is defined within a micro theory. 

3.2.1 New concepts abstraction 

The new concepts abstraction sub-process consists of two steps: concepts 

propagation step and concepts’ weight and relationships accumulation step. Concepts 

propagation derives an ancestor concept for each mapped Cyc concept. Concepts’ weight 

and relationships accumulation adds the descendant concepts’ accumulated weight and 

relationships to ancestor concept based on the generalization parameter. 

The concepts propagation starts by finding the ancestor concept for each concept 

that was mapped to Cyc ontology during knowledge acquisition step. Then it records 

ancestor-descendant relationship, updates the number of ancestor’s descendant concepts 

and accumulated descendant’s weight. Accumulated descendant weight is scaled by the 

generalization parameter α. This step of the new concepts abstraction sub-process is 

described as follows: 

 For each mapped Cyc concept: 

 Find the concept’s ancestor; 

 Record the ancestor-descendant relation; 

 Update the ancestor’s number of descendants;  
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 Update the ancestor’s descendants accumulated weight; 

 Scale the descendant’s weight by α. 

Workflow diagram of the concepts propagation step is illustrated in Figure 3-6. 

 

Figure 3-5: Concepts propagation step workflow diagram. 
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Concept’s weight and relationships accumulation step of the new concepts abstraction 

sub-process is described as follows: 

 For each ancestor Cyc concept: 

 Find the number of concept’s mapped descendants; 

 Find the number of all concept’s descendants; 

 Calculate descendants’ ratio; 

 If descendant-ratio is larger than the defined threshold β: 

 Add descendants’ accumulated weight to the ancestor’s 

weight; 

 Add descendants’ relationships to the ancestor’s 

relationships; 

 Scale descendant’s relationship weight by α. 

Workflow diagram of the concepts’ weight and relationships accumulation step is 

illustrated in Figure 3-6. 
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Figure 3-6: Concepts’ weight and relationships accumulation step workflow diagram. 
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The main topics identification sub-process is described as follows: 

 For each mapped Cyc concept:  

 Find defining micro theories. 

 Count the frequencies of discovered micro theories; 

 Pick the top-n micro theories with the highest frequencies. 

Workflow diagram of the sub-process is illustrated in Figure 3-7. 

 

Figure 3-7: Main topics identification sub-process workflow diagram. 
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identifies significant subject concepts out of all the mapped and generalized Cyc 

concepts. New sentences generation sub-process composes new sentences for each of the 

identified candidate subject concept. Generated sentences serve as a final summary of the 

input text.   

3.3.1 Candidate subjects discovery 

The candidate subjects discovery sub-process starts by finding all mapped Cyc 

concepts in each main topic derived during knowledge discovery process. Then it 

calculates the subjectivity ratio of each of the found Cyc concepts. Subjectivity ratio is 

defined as the number of concept’s relationships labelled as subject relationship divided 

by the total number of all concept’s relationships. This ratio allows identifying concepts 

that have more subject relationships and helps distinguish concepts with a stronger 

subject role in the input text.  

𝑠𝑢𝑏𝑗_𝑟𝑎𝑡𝑖𝑜 =
# 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠
 Eq. 3-2 

Next, it calculates subjectivity rank for each found subject concepts. Subjectivity 

rank is defined as a product of concept weight and concept subjectivity ratio. Subjectivity 

rank scales the weight of the concept by the subjectivity ratio, which allows choosing 

subjects that are more semantically meaningful in the context of the given text. 

𝑠𝑢𝑏𝑗_𝑟𝑎𝑛𝑘 = 𝑐𝑜𝑛𝑐𝑒𝑝𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑢𝑏𝑗_𝑟𝑎𝑡𝑖𝑜 Eq. 3-3 

 Finally, concepts with the highest subjectivity rank are chosen as the candidate 

subject concepts and new sentences are being created for each of them during new 

sentence generation sub-process.  
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The candidate subjects discovery sub-process is described as follows:  

 For each top-n micro theory: 

 For each concept mapped from the text: 

 Find the number of subject associations; 

 Find the number of all associations; 

 Calculate subjectivity ratio; 

 Calculate subjectivity rank; 

 Pick the top-n subjects with the highest subjectivity rank. 

Workflow diagram of the sub-process is outlined in Figure 3-8. 

 

Figure 3-8: Candidate subjects discovery sub-process workflow diagram. 
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3.3.2 New sentences generation 

The new sentences generation sub-process uses subject concepts identified during 

the candidate subjects discovery sub-process and their syntactic dependency relationships 

discovered during the knowledge acquisition process. This sub-process creates new 

English sentences for each candidate subject concept to generate a summary of the input 

text based on the discovered knowledge. The basic structure of newly created sentences 

follows the shallow triplet model, where each sentence has subject, predicate and object 

elements. Such basic triplet structure is enhanced by the adjective modifiers for the 

subject and object elements and by the adverb modifiers for the predicate elements when 

available. Subject, predicate and object elements of the sentences are mandatory while 

adjective and adverb modifiers are optional. Figure 3-9 illustrates the enhanced structure 

of newly created sentences.  

 

Figure 3-9: Enhanced structure of newly created sentence.  
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by deriving the appropriate adjective and adverb modifiers for subject, predicate and 

object elements, based on the weights of subject-adjective, predicate-adverb and object-

adjective syntactic dependency relationships. 

Subject, predicate, object, adverb, and adjective elements of new sentences are 

derived from Cyc knowledge base as Cyc concepts that are expressed in a particular 

format having a “#$” prefix. For example, dog is expressed as a “#$Dog” concept in Cyc 

knowledge base. New sentence generation sub-process uses natural language generation 

capabilities of Cyc inference engine to derive English language representations of Cyc 

concepts. Cyc command “generate-phrase” allows retrieving natural language word or 

phrase equivalent of a Cyc concept. As an example, applying “generate-phrase” Cyc 

command to "#$EatingEvent" Cyc concept produces the string "eat" as an output and 

applying it to "#$Coyote-Animal" produces the string "coyote". This powerful natural 

language generation functionality of Cyc inference engine is another advantage of using 

Cyc development platform as a backbone.     

The new sentence generation sub-process is outlined as follows: 

 For each candidate subject: 

 Convert subject Cyc concept to natural language representation; 

 Pick the adjective with the highest subject-adjective relationship 

weight; 

 Convert adjective Cyc concept to natural language representation; 

 Pick the top-n predicates with the highest subject-predicate 

relationship weights; 

 For each predicate in the top-n predicates: 
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 Convert predicate Cyc concept to natural language 

representation; 

 Pick the adverb with the highest predicate-adverb 

relationship weight; 

 Convert adverb Cyc concept to natural language 

representation; 

 Pick the top-n objects with the highest product of subject-

object and predicate-object relationships weights; 

 For each object in the top-n objects: 

 Convert object Cyc concept to natural language 

representation; 

 Pick the adjective with highest object-adjective 

relationship weight; 

 Convert adjective Cyc concept to natural language 

representation; 

 Compose the new sentence using subject, subject-

adjective, predicate, predicate-adverb, object, and 

object-adjective natural language representations. 

Workflow diagram of the sub-process is outlined in Figure 3-10. 
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Figure 3-10: New sentences generation sub-process workflow diagram. 
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CHAPTER 4 

 

IMPLEMENTATION OF THE ABSTRACTIVE TEXT 

SUMMARIZATION SYSTEM 
 

KBS algorithm was implemented as an abstractive text summarization system. 

This chapter provides description of the system design and the technical details of the 

system implementation. 

The system was implemented using Python programming language. Python was a 

natural choice because of the advanced Natural Language Processing tools and libraries 

supplied by the language. Sentence segmentation, tokenization, lemmatization, parts of 

speech tagging and dependency grammar analysis were implemented with the help of 

SpaCy – Python library for advanced natural language processing. This library is the 

fastest in the world with the accuracy within one percent of the current state of the art 

systems for parts of speech tagging and dependency grammar analysis [47]. 

4.1 Cyc development platform integration 

Our system uses Cyc knowledge base and its inference engine as a backbone for 

the semantic analysis. Cyc development platform supports communications with the 

knowledge base and utilization of the inference engine through the application 

programming interfaces (APIs) implemented in Java. We utilize Java-Python wrapper 

supported by JPype Python library to allow our system using Cyc Java API packages. 

JPype library provides a code written in Python convenient access to Java class libraries. 
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It is essentially an interface at a basic level of virtual machines. Such wrapper allows 

using Java API calls provided by Cyc development platform inside our system, which is 

developed in Python. JPype library requires starting Java Virtual Machine before Java 

packages or classes can be used within the Python code. Then any packages, methods or 

classes are accessible given an appropriate path to their jar file implementation [48]. 

Communication between our system and Cyc development platform is illustrated in 

Figure 4-1. To the best of our knowledge, our summarization system is the first Python-

based system that allows communication with Cyc development platform. 

 

Figure 4-1: Communication between summarization system and Cyc development 

platform. 
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4.2 Summarization system’s design 

We designed our abstractive summarization system as a modular and pipelined 

data-mining framework. Modularity provides the ability to conveniently maintain parts of 

the system and to add new functionality as needed. Pipelined design of the system allows 

comprehensible data flow between different modules.  

The system consists of seven modules: 

A. Syntactic structure extraction; 

B. Mapping words to Cyc concepts; 

C. Concepts propagation; 

D. Concepts’ weight and relationships accumulation; 

E. Main topics identification; 

F. Candidate subjects discovery; 

G. New sentences generation. 

Modules A and B together constitute the knowledge acquisition step of the 

summarization algorithm. Modules C, D and E together make up the knowledge 

discovery step of the summarization algorithm. Modules F and G together form 

knowledge representation step of the summarization algorithm. Each module is 

implemented as a separate function with defined input parameters and generated outputs. 

Modular system’s design is illustrated in Figure 4-2. The rest of the chapter provides the 

description of system’s modules. 
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Figure 4-2: Modular design of the system. 
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the Cyc development platform. The output of the module is a dictionary that contains 

words, their part of speech tags, weights and syntactic dependencies. This dictionary 

serves as an input for the “Mapping words to Cyc concepts” module. Source code of the 

module implementation is provided in A.1 

4.2.2 “Mapping words to Cyc concepts” module 

The “Mapping words to Cyc concepts” module communicates with Cyc 

development platform and updates weight and syntactic dependency relationships of Cyc 

concepts. The output of the module are mapped Cyc concepts with assigned weights and 

syntactic dependency relationships. The mapped Cyc concepts serve as an input for 

“Concepts propagation” module. “Syntactic structure extraction” and “Mapping words to 

Cyc concepts” modules together constitute the knowledge acquisition step of the 

summarization process. Table 4-1 provides description of Cyc commands used to map 

word to Cyc concept (a), assign the word’s weight (b), the word’s syntactic relationship 

and syntactic relationship’s weight (c) to the Cyc concept. Source code of the module 

implementation is provided in A.2. 
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Table 4-1: Description of Cyc commands used by “Mapping words to Cyc concepts” 

module. 

ID Cyc command Description 

(a) (#$and 

(#$denotation ?Word ?POS ?Num 

?Concept) (#$word-Forms ?Word 

?WordForm “word”) 

(#$genls ?POS ?POSTag)) 

Command uses built-in “#$denotation” 

Cyc predicate to relate a “word”, its 

part of speech tag (?POS), and a sense 

number (?Num) to concept (?Concept). 

It also uses “#$wordForms” and 

“#$genls” predicates to accommodate 

for all variations of word’s lexical 

forms.  

(b)  (#$conceptWeight ?Concept 

?Weight) 

Command uses user-defined 

“#$conceptWeight” Cyc predicate that 

assigns the weight (?Weight) to the 

concept (?Concept). 

(c) (#$conceptAssociation ?Concept 

?Type ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

that assigns a specific type (?Type) of 

a syntactic dependency association, the 

leading element (?HeadConcept) and 

the weight (?Weight) to the concept 

(?Concept). 
 

4.2.3 “Concepts propagation” module 

The “Concepts propagation” module communicates with Cyc development 

platform to derive all mapped Cyc concepts (a), find closest ancestor concepts (b) and 

update ancestor concepts’ relations (c, d). The output of the module are ancestor Cyc 

concepts with assigned descendant concepts’ weights and counts and ancestor-descendant 

relations. The ancestor Cyc concepts are used by the “Concepts’ weight and relationships 
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accumulation” module. Cyc commands used by the “Concepts propagation” module are 

described in Table 4-2. Source code of the module implementation is provided in A.3. 

Table 4-2: Description of Cyc commands used by “Concepts propagation” module. 

ID   Cyc command Description 

(a) (#$conceptWeight ?Concept 

?Weight) 

Command uses user-defined 

“#$conceptWeight” Cyc predicate to 

retrieve concepts (?Concept) that have 

as-signed weights (?Weight). 

(b) (#$min-genls ?Concept) Command uses built-in “min-genls” 

Cyc predicate to retrieve the closest 

ancestor concept for the given concept 

(?Concept). 

(c) (#$conceptDescendants ?Concept 

?Weight ?Count) 

Command uses user-defined 

“#$conceptDescendants” Cyc 

predicate to record the number of 

descendants (?Count) and their weight 

(?Weight) to the ancestor concept 

(?Concept). 

(d) (#$conceptAncestorOf ?Concept 

?Descendant) 

Command uses user-defined 

“#$conceptAncestorOf” predicate to 

assign ancestor-descendant relation 

between the ancestor concept 

(?Concept) and the descendant concept 

(?Descendant). 
 

4.2.4 “Concepts’ weight and relationships accumulation” module 

The “Concepts’ weight and relationships accumulation” module communicates 

with Cyc development platform to derive all ancestor Cyc concepts (a), find the number 

of ancestor’s mapped descendants (b), find the number of all ancestor’s descendants (c) 
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and update ancestor’s weight and relations (d, e). The output of the module are the Cyc 

concepts with updated weights and syntactic dependency relationships. Updated Cyc 

concepts are used by the “Main topics identification” and the “Candidate subjects 

discovery” modules. Cyc commands used by the “Concepts’ weight and relationships 

accumulation” module are described in Table 4-3. Source code of the module 

implementation is provided in A.4. 

Table 4-3: Description of Cyc commands used by “Concepts weight and relationships 

accumulation” module. 

ID   Cyc command Description 

(a) (#$conceptDescendants ?Concept 

?Weight ?Count) 

Command uses user-defined 

“#$conceptDescendants” Cyc 

predicate to retrieve all concepts 

(?Concept) that have descendants. 

(b) (#$conceptAncestorOf ?AncConcept 

?MappedDesc) 

Command uses user-defined 

“#$conceptAncestorOf” predicate to 

retrieve mapped descendant concepts 

(?MappedDesc) of the given ancestor 

concept (?AncConcept). 

(c) (#$genls ?AncConcept 

?DescConcept) 

Command uses built-in “#$genls” Cyc 

predicate to retrieve all descendant 

concepts (?DescConcept) of the given 

ancestor concept (?AncConcept). 

(d) (#$conceptWeight ?AncConcept 

?DescWeight) 

Command uses user-defined 

“#$conceptWeight” Cyc predicate to 

assigns the descendant concepts’ 

propagated weight (?DescWeight) to 

the ancestor concept (?AncConcept). 
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(e) (and 

(#$conceptAncestorOf ?AncConcept 

?DescConcept) 

(#$conceptAssociation ?DescConcept 

?Type ?Head-Concept ?Weight)) 

Command uses user-defined 

“#$conceptAncestorOf” and 

“#$conceptAssociation” Cyc 

predicates to assign descendant’s 

association (?DescConcept) and its 

propagated weight (?Weight) to the 

ancestor concept (?AncConcept). 
 

 

4.2.5 “Main topics identification” module 

The “Main topics identification” module communicates with Cyc development 

platform to derive defining micro theory for each mapped Cyc concept (a). Calculation of 

the derived micro theories’ frequencies is handled outside of the Cyc development 

platform. The output of the module is the micro theories dictionary that contains top-n 

micro theories with the highest weights. This dictionary serves as an input for the 

“Candidate subjects discovery” module. The “Concepts propagation”, the “Concepts’ 

weight and relationships accumulation” and the “Main topics identification” modules 

together constitute knowledge discovery step of the summarization process. Table 4-4 

provides the description of Cyc command used by the “Main topics identification” 

module. Source code of the module implementation is provided in A.5. 
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Table 4-4: Description of Cyc command used by “Main topic identification” module. 

ID   Cyc command Description 

(a) (#$and 

(#$conceptWeight ?Concept 

?Weight)  

(#$definingMt ?Concept 

?MicroTheory)) 

Command uses user-defined 

“#$conceptWeight” Cyc predicate and 

built-in “definingMt” Cyc predicate to 

derive defining micro theory 

(?MicroTheory) for each concept 

(?Concept) that have assigned weight 

(?Weight). 
 

4.2.6 “Candidate subjects discovery” module 

The “Candidate subjects discovery” module communicates with Cyc development 

platform to derive mapped Cyc concepts for each defining micro theory in the input 

dictionary (a) and to find the number of the concept’s syntactic dependency associations 

labelled as “subject” relation (b) and the number of all syntactic dependency associations 

of the concept (c). Calculations of the subjectivity ratio and the subjectivity rank are 

handled outside of the Cyc development platform. The output of the module is the 

dictionary that contains top-n subjects with the highest subjectivity rank. This dictionary 

serves as an input for the “New sentences generation” module. Table 4-5 provides the 

description of Cyc commands used by the “Candidate subjects discovery” module. 

Source code of the module implementation is provided in A.6. 
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Table 4-5: Description of Cyc commands used by “Candidate subjects identification” 

module. 

ID Cyc command Description 

(a) (#$and  

(#$definingMt ?Concept 

?MicroTheory)  

(#$conceptWeight ?Concept 

?Weight)) 

Command uses built-in 

“#$definingMt” Cyc predicate and 

user-defined “conceptWeight” Cyc 

predicate to derive concepts 

(?Concept) that have assigned weight 

(?Weight) for each micro theory 

(?MicroTheory) in micro theories 

dictionary.   

(b) (#$conceptAssociation ?Concept 

"nsubj" ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “nsubj” parameter to derive the 

concept’s (?Concept) syntactic 

dependency associations labelled as 

“subject” relations. 

(c) (#$conceptAssociation ?Concept 

?Type ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with no parameter specified (?Type) to 

derive all concept’s (?Concept) 

syntactic dependency associations. 
 

4.2.7 “New sentences generation” module 

The “New sentences generation” module communicates with Cyc development 

platform to derive appropriate Cyc concepts for each sentence element based on the 

weights of their syntactic dependency relationships (a, b, c, d, e) and to derive their 

natural language representations (f). New sentences are composed outside of the Cyc 

development platform and serve as an output for the module and the whole 
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summarization system. The “Candidate subjects identification” and the “New sentences 

generation” modules together constitute the knowledge representation step of the 

summarization process. Table 4-6 provides the description of Cyc commands used by the 

“New sentences generation” module. Source code of the module implementation is 

provided in A.7.  

Table 4-6: Description of Cyc commands used by “New sentences generation” module. 

ID Cyc command Description 

(a) (#$conceptAssociation ?Concept 

"amod" ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “amod” parameter to derive Cyc 

concept (?Concept) associations 

labelled as adjective modifier syntactic 

dependency relation. 

(b) (#$conceptAssociation ?Concept 

"pred" ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “pred” parameter to derive Cyc 

concept (?Concept) associations 

labelled as predicate syntactic 

dependency relation. 

(c) (#$conceptAssociation ?Concept 

"advmod" ?Head-Concept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “advmod” parameter to derive 

Cyc concept (?Concept) associations 

labelled as adverb modifier syntactic 

dependency relation. 

(d) (#$conceptAssociation ?Concept 

"obj" ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “obj” parameter to derive Cyc 
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concept (?Concept) associations 

labelled as object syntactic de-

pendency relation. 

(e) (#$conceptAssociation ?Concept 

"subj-obj" ?HeadConcept ?Weight) 

Command uses user-defined 

“#$conceptAssociation” Cyc predicate 

with “subj-obj” parameter to derive 

Cyc concept (?Concept) associations 

labelled as subject-object syntactic 

dependency relation. 

(f) (#$generate-phrase ?Concept) Command uses built-in “#$generate-

phrase” Cyc predicate to retrieve 

corresponding natural language 

representation for a Cyc concept 

(?Concept). 
 



 

64 

 

CHAPTER 5 

 

EXPERIMENT AND RESULTS 
 

Several experiments were conducted to highlight different capabilities of 

proposed abstractive summarization system. The first experiment was performed using 

artificially generated sentences to illustrate the process of concepts generalization. Other 

experiments were conducted using real world data parsed from encyclopedia articles that 

described concepts from various domains. 

5.1 Experiments conducted on artificially generated data 

Two sets of sentences were created to perform experiments with an artificial data. 

The first set consisted of simple sentences, only containing subject, predicate and object 

elements. The sentences are listed in Figure 5-1. 
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Figure 5-1: Artificial sentences with simple structure used for testing. 

The results of applying summarization system to the set of described sentences 

are illustrated in Table 5-1. 

Table 5-1: Summarization results of applying system to the first set of artifical data. 

Sentences expressed by Cyc concepts Natural language representation 

#$Dog #$eatingEvent #$Meat Dog eating meat 

#$Dog #$being #$coloredThing Dog being colored 

#$Dog #$huntingEvent #$Bird Dog hunting bird 

 

The results highlight the process of concepts generalization. Word “dog” 

represented by Cyc concept “#$Dog” has not been mentioned in the input text implicitly 

and has been generalized as an ancestor concept from “Rottweiler”, “Dachshund” and 
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“Poodle” descendant concepts, all being types of dog breeds. Figure 5-2 illustrates 

described ancestor-descendant relationships. 

 

Figure 5-2: “Dog” concept ancestor-descendant relationships in Cyc ontology. 

Following this analogy, the word “meat” represented by Cyc concept “#$Meat” 

was generalized from “veal”, “mutton” and “poultry” descendant concepts, all being 

types of meats. Figure 5-3 illustrates described ancestor-descendant relationships. 
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Figure 5-3: “Meat” concept ancestor-descendant relationships in Cyc ontology. 

The word “bird” represented by Cyc concept “#$Bird” was generalized from 

“pheasant”, “sparrow”, “wren” and “finch” descendant concepts, all being types of birds. 

Figure 5-4 illustrates described ancestor-descendant relationships. 
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Figure 5-4: “Bird” concept ancestor-descendant relationships in Cyc ontology. 

The word “colored” represented by Cyc concept “#$coloredThing” was 

generalized from “grey”, “white”, “brown”, “blue” and “yellow” descendant concepts, all 

being different colors. Figure 5-5 illustrates described ancestor-descendant relationships. 
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Figure 5-5: “Colored” concept ancestor-descendant relationships in Cyc ontology. 

The second set of artificial data consisted of more complex sentences that were 

composed using adjective and adverb modifiers. Sentences are listed in Figure 5-6. 
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Figure 5-6: Artificial sentences with complex structure used for testing. 

The results of applying summarization system to the set of described sentences 

are illustrated in Table 5-2. 

Table 5-2: Summarization results of applying system to the second set of artifical data. 

Sentences expressed by Cyc concepts Natural language representation 

#$Dog #$rarity #$eatingEvent 

#$rawThing #$Meat 

“Dog rarely eating raw meat” 

#$Dog #$normalThing #$being 

#$darkness #$coloredThing 

“Dog normally being dark colored” 

#$Dog #$huntingEvent #$highRateEvent 

#$Bird 

“Dog hunting rapid bird” 

 

In addition to exhibiting generalization capabilities (“dog”, “meat”, “bird” and 

“colored” concepts), the presented results show that the system is able to create 
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sentences with the structure that extends beyond simple subject-predicate-object triplets 

utilizing adjective and adverb modifiers (“rarely”, “raw”, “normally”, “dark” and 

“rapid” concepts). 

5.2 Experiments conducted on encyclopedia articles 

Several experiments were conducted using real world text data parsed from 

encyclopedia articles describing various topics.  

First, the system was applied to Wikipedia articles representing information from 

different domains and describing domestic dog, personal computer and hamburger. 

Original articles are illustrated in Figure B-1, Figure B-2, and Figure B-3. Concepts and 

main topics derived from analyzed articles are summarized in Table 5-3. 
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Table 5-3: Concepts and main topics derived from Wikipedia articles describing various 

topics. 

Article 

name 

Topics Concepts 

Cyc micro 

theory 
Description Cyc concept 

Natural 

language 

Dog #$BiologyMt Micro theory that 

describes concepts 

and relationships 

related to the field 

of Biology. 

#$Dog Dog 

#$CanisGenus Canine 

#$Person  Person 

#$BiologicalSubsp

ecies 

Subspecies 

#$NaivePhys

icsMt 

Micro theory that 

describes concepts 

and relationships 

represented as 

Naïve physics 

beliefs and 

practices.   

#$Breeder Breeder 

Hamburger #$HumanFo

odGMt 

Micro theory that 

describes concepts 

and relationships 

related to the topic 

of food normally 

consumed by 

humans. 

#$Food Food 

#$Burger Burger 

#$HamburgerSand

wich 

Hamburger 

#$GroundBeef Ground beef 

#$Cheese Cheese 

#$ProductG

Mt 

Micro theory that 

describes concepts 

and relationships 

related to the 

broader field of 
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various 

commodities.  

Computer #$Informatio

nTerminolog

yMt 

Micro theory that 

describes concepts 

and relationships 

used to describe 

terminology related 

to the information 

technology field.  

#$Computer Computer 

#$ComputerProgra

mmer 

Programmer 

#$outputs Outputs 

#$ComputerHardw

areItem 

Computer 

hardware 

#$ControlDevice Controller 

#$HumanSoc

ialLifeMt 

Micro theory that 

describes concepts 

and relationships 

used to describe 

various aspects of 

human social life. 

 

Some of the new sentences generated by the summarization process are presented 

in Figure 5-7. The structure of each sentence consists of at least subject-predicate-object 

elements. In addition, auxiliary adjective and adverb modifiers enhance the structure of 

some sentences. Such enhancement is possible when subject, predicate or object sentence 

elements have strong subject-adjective, object-adjective and predicate-adverb 

relationships. 
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Figure 5-7: New sentences created for Wikipedia articles describing various topics.  

 

Next, an experiment was conducted using multiple encyclopedia articles 

describing grapefruit. The experiment consisted of three stages, where the number of 

analyzed articles was increased during each stage. Original articles are illustrated in 

Figure B-4, Figure B-5, and Figure B-6. Results of this experiment highlight the 

system’s ability to improve summarization results by creating sentences that are more 

complex when additional data is provided. New sentences created by the system are 

demonstrated in Figure 5-8. The results exhibit the progression of newly created 

sentences’ structure complexity which form simple subject-predicate-object triplet when 

only a single article was provided as an input (part (a)) to more complex structure 

extended by the adjective and adverb modifiers when more articles were processed by the 

algorithm (part (b) and part (c)). 
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Figure 5-8: Test results of new sentences created for multiple articles about 

grapefruit; (a) – single article, (b) – two articles, (c) – three articles. 

Finally, the system was applied to multiple Wikipedia articles describing different 

types of felines: cat, tiger, cougar, jaguar and lion. Original articles are illustrated in 

Figure B-7, Figure B-8, Figure B-9, Figure B-10, and Figure B-11. Table 5-4 outlines 

the main topics and concepts obtained from the analyzed articles. 

Table 5-4: Concepts and main topics derived from Wikipedia articles describing felines. 

Topics Concepts 

Cyc MT Description Cyc term Natural language 

#$BiologyMt Micro theory that 

describes concepts 

and relationships 

related to the field of 

Biology. 

#$Cat Cat 

#$DomesticCat Domestic cat 

#$FelisGenus  Felis 

#$FelidaeFamily Feline 

#$Animal Animal 

#$HumanSocialLifeMt Micro theory that 

describes concepts 

and relationships 

used to describe 

various aspects of 

human social life. 
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Figure 5-9 shows new sentences created by the system as a summary of the 

analyzed articles. Concepts like “canis”, “mammal meat” and “felis” were generalized by 

the abstraction process and were not mentioned in the original text.  The results of the 

final experiment illustrate the system’s capability to derive main topics and concepts 

described in the text and to create new sentences that contain generalized concepts 

combining information from various parts of the input text.  

 

Figure 5-9: New sentences created as a summary for multiple articles about felines. 

The algorithm proposed in this dissertation yields better results compared to the 

results reported by [49]. New sentences created by the algorithm have more complex 

syntactic structure and contain the information fused from different parts of the text. 

These peculiar properties allow the summary of the text to be more abstractive, 

informative, and meaningful. 

5.3 System performance 

The computational complexity of our proposed system is upper bounded by the 

polynomial expression in the size of the vocabulary of the input documents and therefore, 
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the system is considered to be of the polynomial time complexity. Vocabulary of the 

document is the number of the unique lemmas contained in the document. 

 Table 5-5 illustrates the performance of the system when applied to the 

encyclopedia articles. The experiments were conducted on a machine with 2.0 GHz Intel 

Xeon E5-2620 CPU and 32 GB of RAM. 

Table 5-5: System performance scores using encyclopedia articles. 

# of 

articles 
Article name(s) Source(s) 

Vocabulary size 

(Lemmas) 

CPU Time 

(Seconds) 

1 “Dog” Wikipedia 2087 2751 

1 “Computer” Wikipedia 1604 2245 

1 “Hamburger” Wikipedia 1348 1887 

3 “Grapefruit” 

Wikipedia, 

Morton, 

New World 

Encyclopedia 

1988 2608 

5 

“Cat” 

“Tiger” 

“Cougar” 

“Jaguar” 

“Lion” 

Wikipedia 5812 6974 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 
 

This dissertation describes a novel algorithm for creating an abstractive text 

summary. The task of producing purely abstractive summary of a given text is still 

considered challenging for people and therefore even more so for the machines. Human 

experts use the generalization and synthesis of information together with the domain 

competence to compose abstractive summary of a text. They rephrase the sentences and 

reformulate the information based on the knowledge deducted from the text. Such a 

summary becomes more informative and useful since it presents an aggregation and 

analysis of a given text to distill and provide the knowledge that is more general or not 

mentioned explicitly [6]. Described aggregation and generalization of the information is 

not feasible without analyzing the semantics of the text and utilizing the domain 

knowledge expertise. the analysis of the syntactic structure of the text also takes a 

significant part in the process of abstractive summarization as it allows representing the 

derived knowledge as grammatically correct sentences for the user convenience. KBS 

algorithm described in this dissertation uses Cyc knowledge base and its reasoning engine 

as a backbone to accommodate these capabilities. Employing the semantic features and 

the syntactic structure of the text together with the world’s largest knowledge base 

system shows great potential in creating abstractive summaries. The algorithm creates a 

summary of a given text by composing new sentences that contain the information 
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aggregated from the various parts of the text. The structure of the summary sentences is 

enhanced from simple subject-predicate-object triplets to a more complex structure by 

adding the adjective and adverb modifiers. The appropriate modifiers are derived by the 

analysis of the syntactic relationships of the subjects, predicates and objects in the 

sentences of the original text.  

The contributions of the described algorithm can be summarized as follows: 

 Automatically derives main concepts and topics that describe the text; 

 Generalizes and synthesizes information derived from the text; 

 Creates new sentences using syntactic relations and aggregating 

information from various parts of the text; 

 Enhances the structure of newly created summary sentences to include 

adjective and adverbs modifiers; 

 Uses the world’s largest ontology of commonsense knowledge and 

reasoning engine as a backbone for semantic analysis. 

The proposed algorithm has been implemented as a modular pipelined system 

developed in Python programming language for the testing purposes. The experimental 

results showed that the algorithm is able to abstract new concepts not mentioned in the 

text, automatically identify main topics described in the text, and create new sentences 

that combine the information from different parts of the text. Information synthesis and 

complex structure of newly created sentences allows the described algorithm to yield 

better results than the algorithm presented by [49] that is the closest in terms of the 

functionality. 
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The algorithm described in this dissertation showed promising results that open a 

number of the future directions in the area of the knowledge based abstractive text 

summarization. The first direction is to enhance the domain knowledge representation 

since the semantic knowledge and reasoning are only limited to functionality and 

performance of Cyc development platform. At this moment, the algorithm is as powerful 

as the capabilities of the Cyc knowledge base, which is the largest ontology of 

commonsense knowledge. For future improvement, the algorithm could use the 

information derived from the whole World Wide Web as a domain knowledge. This 

would possess challenging research questions such as information inconsistency and 

sense disambiguation. In addition, a robust inference engine would be required to process 

the information correctly and in a timely fashion. 

The second future research direction could involve the improvement of the 

syntactic structure of newly created sentences. Proposed algorithm uses subject-

predicate-object triplets enhanced by adjective and adverb modifiers. Although such 

structure is more complex than the one used in previous research, it still does not 

resemble the structure of the sentences created by people. Structure of newly created 

sentences could be improved by using more sophisticated representation of syntactic 

structure of the sentence. As an example, graph representation of the sentence could 

capture and preserve more complex relations among words or phrases in a sentence. 

Using the graph structure as a basis for new sentence creation could yield sentences that 

have syntactic structures that are more complex. 

The third direction for future research could be related to the problem of summary 

sentences connectedness. At this moment, sentences created by the algorithm as a 
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summary of the text are not conceptually connected to each other. Therefore, the 

summary overall does not look like a concise abstract of the text. Analyzing the relations 

and interactions of the main concepts of the text on the document level could help in 

preserving coherency of the sentences created as a summary. This problem could be 

approached by representing the whole document as a graph of connected concepts with 

various relationships among them and then creating new sentences based on these 

relationships.  

The fourth future research direction could be the investigating of the 

parallelizability of the proposed summarization algorithm. Since algorithm operates on 

the enormous amounts of data comprised in Cyc knowledge base, its performance could 

benefit from allowing the algorithm to run on parallel and distributed computing 

platforms. 

Finally, the fifth future research direction could be in developing a universal merit 

for the evaluation of purely abstractive text summarization algorithms. This improvement 

is not related directly to the proposed algorithm, but rather to the problem of abstractive 

text summarization in general. Currently, there is a number of merits that are used to 

statistically evaluate the performance of extractive summarization algorithms. 

Abstractive summarization algorithms in contrast are inherently more challenging to 

evaluate, since they tend to generalize and aggregate information in a given text, thus 

producing the summary that might not overlap much with the original text. Most of the 

abstractive summarization approaches try to compare their results to human experts 

created summaries, which are not always available or costly and time consuming to 

produce. Thus, developing an automatic and universal merit to evaluate the results of 
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abstractive text summarization algorithms is an interesting and challenging area of future 

research in the abstractive text summarization.
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SOURCE CODE 
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A.1 “Syntactic structure extraction” function 

def preprocessing(dir): 

 import spacy 

 nlp = spacy.load('en_core_web_md') 

 nouns = [] 

 nouns_dep = [] 

 verbs = [] 

 verbs_dep = [] 

 adverbs = [] 

 adverbs_dep = [] 

 adjectives = [] 

 adjectives_dep = [] 

 for filename in os.listdir(dir): 

  with open(filename) as file: 

   doc = nlp(file.read()) 

   subj_obj = [] 

   # preprocess text, attach POS and dependency to each word 

   for sent in doc.sents: 

    subjects = [] 

    objects = [] 

    for word in nlp(sent.text): 

     if word.dep_ == 'nsubj': 

      subjects.append((word.lemma_, word.pos_)) 

      assoc = 'nsubj' 

     elif word.dep_ in ['acomp', 'ccomp', 'xcomp', 'dobj', 'iobj', 

'pobj', 'attr', 'oprd']: 

      objects.append((word.lemma_, word.pos_)) 

      assoc = 'obj' 

     else: 

      assoc = word.dep_ 

     if word.pos_ in ['NOUN', 'PROPN']: 

      nouns.append('"'+word.lemma_+'"') 

      nouns_dep.append(('"'+word.lemma_+'"', 

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"'))) 

     elif word.pos_ == 'VERB': 

      verbs.append('"'+word.lemma_+'"') 

      verbs_dep.append(('"'+word.lemma_+'"', 

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"'))) 

     elif word.pos_ == 'ADV': 

      adverbs.append('"'+word.lemma_+'"') 

      adverbs_dep.append(('"'+word.lemma_+'"', 

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"'))) 

     elif word.pos_ == 'ADJ': 

      adjectives.append('"'+word.lemma_+'"') 

      adjectives_dep.append(('"'+word.lemma_+'"', 

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"'))) 

    for sub in subjects: 

     for obj in objects: 

      if sub[1] in ['NOUN', 'PROPN']: 

       subj_obj.append(('"'+sub[0]+'"', ('"subj-

obj"', '"'+obj[0]+'"', '"'+obj[1]+'"'))) 

   nouns_dep_tot = nouns_dep + subj_obj 

 # create a dictionary for each POS counting word and dependency frequencies 

 noun_dict = defaultdict(set) 
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 for word, deps in collections.Counter(nouns_dep_tot).items(): 

  noun_dict[word[0]].add(word[1]+(deps,)) 

 for k, v in collections.Counter(nouns).items(): 

  noun_dict[k].add(v) 

 verb_dict = defaultdict(set) 

 for word, deps in collections.Counter(verbs_dep).items(): 

  verb_dict[word[0]].add(word[1]+(deps,)) 

 for k, v in collections.Counter(verbs).items(): 

  verb_dict[k].add(v) 

 adj_dict = defaultdict(set) 

 for word, deps in collections.Counter(adjectives_dep).items(): 

  adj_dict[word[0]].add(word[1]+(deps,)) 

 for k, v in collections.Counter(adjectives).items(): 

  adj_dict[k].add(v) 

 adv_dict = defaultdict(set) 

 for word, deps in collections.Counter(adverbs_dep).items(): 

  adv_dict[word[0]].add(word[1]+(deps,)) 

 for k, v in collections.Counter(adverbs).items(): 

  adv_dict[k].add(v) 

 # create a dictionary for the whole text, organizing the words by POS and record dependencies 

 doc_dict = defaultdict(dict) 

 for k, v in noun_dict.items(): 

  doc_dict['Noun'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i in 

list(v) if type(i) == tuple]}}) 

 for k, v in verb_dict.items(): 

  doc_dict['Verb'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i in 

list(v) if type(i) == tuple]}}) 

 for k, v in adj_dict.items(): 

  doc_dict['Adjective'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for 

i in list(v) if type(i) == tuple]}}) 

 for k, v in adv_dict.items(): 

  doc_dict['Adverb'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i 

in list(v) if type(i) == tuple]}}) 

 return doc_dict 

A.2 “Mapping words to Cyc concepts” function 

def mapping(inp_dict): 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    client = JPackage("com.cyc.kb.client") 

    base = JPackage("com.cyc.base") 

    fact_impl = client.FactImpl 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

 # for each key (word) and value (frequency count) in input dictionary: 

    # use key in a query to map word to CYC concept 

    # use value to assign weight to a concept 

    for global_POS, global_values in inp_dict.iteritems(): 

        for word, attributes in global_values.iteritems(): 

            # keep track of words part-of-speech tags to use them in "denotation" function 

            if global_POS == 'Noun': 

                global_string = "nounStrings" 

            elif global_POS == 'Verb': 

                global_string = "verbStrings" 
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            elif global_POS == 'Adjective': 

                global_string = "adjStrings" 

            else: 

                global_string = "adverbStrings" 

            # construct query to map word to CYC concept through "denotation" function 

            try: 

                denotation_terms = access.converse().converseObject("(query-variable '?TERM '(#$and 

(#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD #${2} {0}) (#$genls ?POS #${1})) 

#$InferencePSC)".format(word, global_POS, global_string)) 

            except: 

                print "CYC api error was raised, while mapping word: {0}".format(word) 

            if str(denotation_terms) != "NIL": 

                # go through each item in result set derived from a query 

                for term in set(denotation_terms): 

                    # accumulate all weights of the mapped concept in case any words were mapped to it before 

                    c_weight = 0 

                    try: 

                        if '(' in str(term): 

                            initial_w = str(access.converse().converseObject("(query-variable '?IWEIGHT 

'(#$conceptWeight {0} ?IWEIGHT) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$')))) 

                        else: 

                            initial_w = str((access.converse().converseObject("(query-variable '?IWEIGHT 

'(#$conceptWeight #${0} ?IWEIGHT) #$InferencePSC)".format(term)))) 

                    except: 

                        initial_w = "NIL" 

                    try: 

                        if initial_w != "NIL": 

                            c_weight = sum(map(lambda x: float(x), initial_w.strip('()').split())) 

                            for j in initial_w.strip('()').split(): 

                                fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, j), "BaseKB").delete() 

                        fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, str(attributes['weight'][0] + 

float(c_weight))), "BaseKB") 

                    except: 

                        print "CYC api error was raised, while updating weight for term {0}.".format(term) 

                    # map dependency words to CYC concepts 

                    # keep track of words part-of-speech tags to use them in "denotation" function 

                    for dep_attributes in attributes['deps']: 

                        # record only subject, predicate, object and modifier associations types 

                        if dep_attributes[0] in ['"nsubj"', '"obj"', '"subj-obj"', '"amod"', '"advmod"']: 

                            if dep_attributes[2] in ['"NOUN"', '"PROPN"']: 

                                head_string = "nounStrings" 

                                head_pos = 'Noun' 

                            elif dep_attributes[2] == '"VERB"': 

                                head_string = "verbStrings" 

                                head_pos = 'Verb' 

                            elif dep_attributes[2] == '"ADJ"': 

                                head_string = "adjStrings" 

                                head_pos = 'Adjective' 

                            elif dep_attributes[2] == '"ADV"': 

                                head_string = "adverbStrings" 

                                head_pos = 'Adverb' 

                            # construct query to map word from dependency to CYC concept through "denotation" 

function 
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                            head_denotation_terms = access.converse().converseObject("(query-variable '?HTERM 

'(#$and (#$denotation ?HWORD ?HPOS ?HNUM ?HTERM) (#$wordForms ?HWORD #${2} {0}) 

(#$genls ?HPOS #${1})) #$InferencePSC)".format(dep_attributes[1], head_pos, head_string)) 

                            # check if denotation head word is mapped to Cyc Concept 

                            if str(head_denotation_terms) != "NIL": 

                                # go through each item in result set derived from a query 

                                for head_term in set(head_denotation_terms): 

                                    assoc_weight = 0 

                                    try: 

                                        if '(' in str(term) and '(' in str(head_term): 

                                            assoc_init_w = str(access.converse().converseObject("(query-variable '?W 

'(#$conceptAssociation {0} {1} {2} ?W) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'), dep_attributes[0], str(head_term).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))))  

                                        elif '(' in str(term) and '(' not in str(head_term): 

                                            assoc_init_w = str(access.converse().converseObject("(query-variable '?W 

'(#$conceptAssociation {0} {1} #${2} ?W) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'), dep_attributes[0], head_term))) 

                                        elif '(' not in str(term) and '(' in str(head_term): 

                                            assoc_init_w = str(access.converse().converseObject("(query-variable '?W 

'(#$conceptAssociation #${0} {1} {2} ?W) #$InferencePSC)".format(term, dep_attributes[0], 

str(head_term).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))) 

                                        else: 

                                            assoc_init_w = str(access.converse().converseObject("(query-variable '?W 

'(#$conceptAssociation #${0} {1} #${2} ?W) #$InferencePSC)".format(term, dep_attributes[0], 

head_term))) 

                                    except: 

                                        assoc_init_w = "NIL" 

                                    if assoc_init_w != "NIL": 

                                        assoc_weight = sum(map(lambda x: float(x), assoc_init_w.strip('()').split())) 

                                        for i in assoc_init_w.strip('()').split(): 

                                            fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term, 

dep_attributes[0], head_term, i), "BaseKB").delete() 

                                    total_mapped_weight = (assoc_weight + dep_attributes[3]) 

                                    # use TERM as a parameter to assign dependencies to mapped CYC concept 

                                    try: 

                                        fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term, 

dep_attributes[0], head_term, str(total_mapped_weight)), "BaseKB") 

                                    except: 

                                        print "Association cannot be created in current microtheory." 

    return 

A.3  “Concepts propagation” function 

def propagation(): 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    query = JPackage("com.cyc.query") 

    client = JPackage("com.cyc.kb.client") 

    kb = JPackage("com.cyc.kb") 

    base = JPackage("com.cyc.base") 

    query_factory = query.QueryFactory 

    fact_impl = client.FactImpl 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

    # query for CYC concepts that have assigned weights 
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    q_weight = query_factory.getQuery("(conceptWeight ?TERM1 ?CWEIGHT)") 

    res_weight = q_weight.getResultSet() 

    while res_weight.next(): 

        # filter TERM and CWEIGHT variables from query results output 

        # TERM - CYC concept to be propagated 

        # CWEIGHT - weight of CYC concept to be propagated 

        term3 = str(res_weight.getKBObject("?TERM1", kb.KBIndividual)) 

        cweight = str(res_weight.getKBObject("?CWEIGHT", kb.KBIndividual)) 

        # generalization step 

        # use "min-genls" CYC command to find closest parent of CYC concept to be generalized 

        try: 

            # use formatting scheme in case CYC concept is composite 

            if '(' in term3: 

                min_genls = access.converse().converseCycObject("(min-genls '{0})".format(term3.replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'))) 

            else: 

                min_genls = access.converse().converseCycObject("(min-genls #${0})".format(term3)) 

        except: 

            print "CYC Api error - constant: {0} was not found".format(term3) 

        # check if CYC concept was successfully generalized 

        if len(min_genls) != 0: 

            for i in range(len(min_genls)): 

                # output generalized CYC concept 

                print "1st level generalized term: {0}".format(min_genls[i]) 

                d_count = 0 

                d_weight = 0 

                q_gen_weight = query_factory.getQuery('(conceptDescendants {0} ?WEIGHT 

?COUNT)'.format(min_genls[i])) 

                res_sum_q_gen = q_gen_weight.getResultSet() 

                while res_sum_q_gen.next(): 

                    try: 

                        d_weight = str(res_sum_q_gen.getKBObject("?WEIGHT", kb.KBIndividual)) 

                        d_count = str(res_sum_q_gen.getKBObject("?COUNT", kb.KBIndividual)) 

                        fact_impl.findOrCreate("(conceptDescendants {0} {1} {2})".format(min_genls[i], 

str(d_weight), str(d_count)), "BaseKB").delete() 

                    except: 

                        print "CYC Api error while propagating: {0}".format(min_genls[i]) 

                total_weight = (float(cweight) * 0.1 + float(d_weight)) 

                total_count = float(d_count) + 1 

                # assign accumulated weight of generalized CYC concept (initial weight + propagated weight) 

                fact_impl.findOrCreate("(conceptDescendants {0} {1} {2})".format(min_genls[i], 

str(total_weight), str(total_count)), "BaseKB") 

                # record ancestor-descendant relation 

                fact_impl.findOrCreate("(conceptAncestorOf {0} {1})".format(min_genls[i], term3'), "BaseKB") 

    return 

A.4 “Concepts’ weight and relationships accumulation” function 

def accumulate_descendants(): 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    query = JPackage("com.cyc.query") 

    client = JPackage("com.cyc.kb.client") 

    kb = JPackage("com.cyc.kb") 

    base = JPackage("com.cyc.base") 
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    query_factory = query.QueryFactory 

    fact_impl = client.FactImpl 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

    # query for CYC concepts that have descendants 

    concept_descendants_q = query_factory.getQuery("(conceptDescendants ?ANCTERM ?PROPWEIGHT 

?DCOUNT)") 

    concept_descendants = concept_descendants_q.getResultSet() 

    while concept_descendants.next(): 

        ancestor_concept = str(concept_descendants.getKBObject("?ANCTERM", kb.KBIndividual)) 

        desc_weight = str(concept_descendants.getKBObject("?PROPWEIGHT", kb.KBIndividual)) 

        # calculate "descendants percentage" measure = # of concept descendants with weight / total # of 

concept descendants 

        try: 

            if '(' in ancestor_concept: 

                ancestor_mapped_desc = access.converse().converseObject("(query-variable '?M 

'(#$conceptAncestorOf {0} ?M) #$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'))) 

                ancestor_total_desc = access.converse().converseObject("(query-variable '?T '(#$genls ?T {0}) 

#$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

            else: 

                ancestor_mapped_desc = access.converse().converseObject("(query-variable '?M 

'(#$conceptAncestorOf #${0} ?M) #$InferencePSC)".format(ancestor_concept)) 

                ancestor_total_desc = access.converse().converseObject("(query-variable '?T '(#$genls ?T #${0}) 

#$InferencePSC)".format(ancestor_concept)) 

            desc_percentage = float(len(ancestor_mapped_desc)) / float(len(ancestor_total_desc)) 

        except: 

            print "CYC Api error while retrieving descendants for concept: {0}\n".format(ancestor_concept) 

            ancestor_mapped_desc = 0 

            ancestor_total_desc = 0 

            desc_percentage = 0 

        # if "descendants percentage" is higher than a threshold then add propagated descendants weight to 

initial concept weight 

        if desc_percentage > 0.5: 

            # query for parent's initial concept weight 

            try: 

                if '(' in ancestor_concept: 

                    init_weight = str(access.converse().converseObject("(query-variable '?WEIGHT 

'(#$conceptWeight ({0}) ?WEIGHT) #$InferencePSC '(:max-number 

1))".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()') 

                else: 

                    init_weight = str(access.converse().converseObject("(query-variable '?WEIGHT 

'(#$conceptWeight #${0} ?WEIGHT) #$InferencePSC '(:max-number 

1))".format(ancestor_concept))).strip('()') 

            except: 

                print "CYC Api error while retrieving weight for concept: {0}\n".format(ancestor_concept) 

                init_weight = "NIL" 

            # if parent has concept weight then accumulate it with its descendant propagated weight 

            if init_weight != "NIL": 

                total_dweight = float(init_weight) + float(desc_weight) 

                fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(init_weight)), 

"BaseKB").delete() 

                fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, total_dweight), 

"BaseKB") 

            # if parent does not have concept weight then use its descendants propagated weight 

            else: 
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                total_dweight = desc_weight 

                fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(total_dweight)), 

"BaseKB") 

            # adding direct associations to propagated ancestors 

            q_accum = query_factory.getQuery('(and (conceptAncestorOf {0} ?DESC) (conceptAssociation 

?DESC ?ATYPE ?AHEAD ?DESW))'.format(ancestor_concept)) 

            res_q_accum = q_accum.getResultSet() 

            while res_q_accum.next(): 

                desc_concept = str(res_q_accum.getKBObject("?DESC", kb.KBIndividual)) 

                desc_level = str(res_q_accum.getKBObject("?LEVEL", kb.KBIndividual)) 

                a_type = str(res_q_accum.getKBObject("?ATYPE", kb.KBIndividual)) 

                a_head = str(res_q_accum.getKBObject("?AHEAD", kb.KBIndividual)) 

                desc_a_weight = str(res_q_accum.getKBObject("?DESW", kb.KBIndividual)) 

                association_w = 0 

                try: 

                    # handles multi-member concepts 

                    if '(' in ancestor_concept and '(' in a_head: 

                        anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW 

'(#$conceptAssociation {0} \"{1}\" {2} ?ANCW) #$InferencePSC)".format(ancestor_concept.replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'), a_type, a_head.replace(' (', '(').replace(' ', ' #$').replace('(', ' 

(#$')))).strip('()') 

                    elif '(' in ancestor_concept and '(' not in a_head: 

                        anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW 

'(#$conceptAssociation {0} \"{1}\" #${2} ?ANCW) #$InferencePSC)".format(ancestor_concept.replace(' 

(', '(').replace(' ', ' #$').replace('(', ' (#$'), a_type, a_head))).strip('()') 

                    elif '(' not in ancestor_concept and '(' in a_head: 

                        anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW 

'(#$conceptAssociation #${0} \"{1}\" {2} ?ANCW) #$InferencePSC)".format(ancestor_concept, a_type, 

a_head.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()') 

                    else: 

                        anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW 

'(#$conceptAssociation #${0} \"{1}\" #${2} ?ANCW) #$InferencePSC)".format(ancestor_concept, a_type, 

a_head))).strip('()') 

                    if anc_association_w != "NIL": 

                        association_w = anc_association_w 

                        fact_impl.findOrCreate('(conceptAssociation {0} "{1}" {2} {3})'.format(ancestor_concept, 

a_type, a_head, anc_association_w), "BaseKB").delete() 

                    # use 0.1 scaling for propagation 

                    p_prop_weight = float(association_w) + 0.1 * float(desc_a_weight) 

                    # assign propagated weight to parent association 

                    fact_impl.findOrCreate( 

                        '(conceptAssociation {0} "{1}" {2} {3})'.format(ancestor_concept, a_type, a_head, 

str(p_prop_weight)), "BaseKB") 

                except: 

                    print "CYC Api error while mapping concept: {0}".format(ancestor_concept) 

            # adding indirect associations to propagated ancestors 

            q_m_accum = query_factory.getQuery('(and (conceptAncestorOf {0} ?MDESC) 

(conceptAssociation ?MTERM ?MATYPE ?MDESC ?MDESW))'.format(ancestor_concept)) 

            res_q_m_accum = q_m_accum.getResultSet() 

            while res_q_m_accum.next(): 

                m_desc_concept = str(res_q_m_accum.getKBObject("?MDESC", kb.KBIndividual)) 

                m_desc_level = str(res_q_m_accum.getKBObject("?MLEVEL", kb.KBIndividual)) 

                m_a_type = str(res_q_m_accum.getKBObject("?MATYPE", kb.KBIndividual)) 

                m_a_term = str(res_q_m_accum.getKBObject("?MTERM", kb.KBIndividual)) 

                m_desc_a_weight = str(res_q_m_accum.getKBObject("?MDESW", kb.KBIndividual)) 

                m_association_w = 0 
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                try: 

                    # handles multi-member concepts 

                    if '(' in ancestor_concept and '(' in m_a_term: 

                        m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW 

'(#$conceptAssociation {2} \"{1}\" {0} ?MANCW) #$InferencePSC)".format(ancestor_concept.replace(' 

(', '(').replace(' ', ' #$').replace('(', ' (#$'), m_a_type, m_a_term.replace(' (', '(').replace(' ', ' #$').replace('(', ' 

(#$')))).strip('()') 

                    elif '(' in ancestor_concept and '(' not in m_a_term: 

                        m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW 

'(#$conceptAssociation #${2} \"{1}\" {0} ?MANCW) 

#$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'), m_a_type, 

m_a_term))).strip('()') 

                    elif '(' not in ancestor_concept and '(' in m_a_term: 

                        m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW 

'(#$conceptAssociation {2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept, 

m_a_type, m_a_term.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()') 

                    else: 

                        m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW 

'(#$conceptAssociation #${2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept, 

m_a_type, m_a_term))).strip('()') 

                    if m_anc_association_w != "NIL": 

                        m_association_w = m_anc_association_w 

                        fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})'.format(ancestor_concept, 

m_a_type, m_a_term, m_anc_association_w), "BaseKB").delete() 

                    # use 0.1 scaling for propagation 

                    m_p_prop_weight = float(m_association_w) + 0.1 * float(m_desc_a_weight) 

                    # assign propagated weight to parent association 

                    fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})'.format(ancestor_concept, 

m_a_type, m_a_term, str(m_p_prop_weight)), "BaseKB") 

                except: 

                    print "CYC Api error while mapping concept: {0}".format(m_a_term) 

    return 

A.5 “Main topics identification” function 

def top_mts(n): 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    base = JPackage("com.cyc.base") 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

    mts_list = [] 

    terms = access.converse().converseObject("(new-cyc-query '(#$and (#$conceptWeight ?T ?W) 

(#$definingMt ?T ?MT)) #$InferencePSC)") 

    for i in range(len(terms)): 

        mts_list.append(str(terms[i][2][1])) 

    mtc_dict = defaultdict(set) 

    for mt, mtc in Counter(mts_list).items(): 

        mtc_dict[mt] = mtc 

    mts_count = OrderedDict(sorted(mtc_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:n]) 

    return mts_count 

A.6 “Candidate subjects discovery” function 

def top_subjects(mts, s): 



92 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    base = JPackage("com.cyc.base") 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

    term_dict = {} 

    for mt in mts: 

        terms = access.converse().converseObject("(new-cyc-query '(#$and (#$definingMt ?T #${0}) 

(#$conceptWeight ?T ?W)) #$InferencePSC)".format(mt)) 

        for t in terms: 

            term = str(t[0][1]) 

            weight = str(t[1][1]) 

            if term not in term_dict.keys(): 

                if '(' in term: 

                    try: 

                        subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation 

{0} \"nsubj\" ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'))) 

                        tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation 

{0} ?ATYPE ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'))) 

                    except: 

      subj_associations = 0 

                        tot_associations = 0 

                else: 

                    try: 

                        subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation 

#${0} \"nsubj\" ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term)) 

                        tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation 

#${0} ?ATYPE ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term)) 

                    except: 

                        subj_associations = 0 

      tot_associations = 0 

                    subj_ratio = float(len(subj_associations)) / float(len(tot_associations)) 

                rank = (float(weight) * subj_ratio) 

                term_dict[term] = rank 

    subject_terms = OrderedDict(sorted(term_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:s]) 

    return subject_terms 

A.7 “New sentences generation” function 

def summarization(path, subjects): 

    from jpype import * 

    # packages, classes and method from Java CYC Api 

    query = JPackage("com.cyc.query") 

    kb = JPackage("com.cyc.kb") 

    base = JPackage("com.cyc.base") 

    query_factory = query.QueryFactory 

    cyc_access_mgr = base.CycAccessManager 

    access = cyc_access_mgr.getCurrentAccess() 

    # clear output file 

    open(path, 'w').close() 

    # empty dictionary to serve as a final summary 

    summary = {} 

    # SUBJECT 
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    # go through subject CYC concepts 

    for k, v in subjects.iteritems(): 

        # find subject CYC concept natural language phrase 

        try: 

            if '(' in k: 

                subj_nl = access.converse().converseString("(generate-phrase '{0})".format(k.replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'))) 

            else: 

                subj_nl = access.converse().converseString('(generate-phrase #${0})'.format(k)) 

        except: 

            print "CYC Api error when retrieving NL phrase for subject: {0}".format(k) 

            subj_nl = '' 

        # SUBJECT-ADJECTIVE 

  adj_count = {} 

  # find all adjective associated with subject/object CYC concepts 

  # query for CYC concepts with "amod" dependency type 

  if '(' in term: 

   # use formatting scheme in case CYC concept is composite 

   adj_term = query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" 

{0} ?ADJW)'.format(term.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

  else: 

   adj_term = query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" 

#${0} ?ADJW)'.format(term)) 

  try: 

   adj_term_res = adj_term.getResultSet() 

  except: 

   print 'CYC Api error when finding adjective for term: {0}'.format(term) 

  while adj_term_res.next(): 

   # filter TERM1 and W1 variables from query results output 

   # TERM1 - adjective CYC concept 

   # W1 - adjective dependency weight 

   adj = str(adj_term_res.getKBObject("?ADJTERM", kb.KBIndividual)) 

   adj_dep_w = str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual)) 

   # record adjective weight times its dependency weight 

   adj_count[adj] = float(adj_dep_w) 

  if len(adj_count) != 0: 

   top_adjective = dict(sorted(adj_count.iteritems(), key=operator.itemgetter(1), 

reverse=True)[:1]) 

   subj_adj_term = top_adjective.keys()[0] 

   subj_adj_weight = top_adjective.values()[0] 

   # derive natural language phrase of adjective CYC concept 

   try: 

    if '(' in subj_adj_term: 

     subj_adj_nl = access.converse().converseString("(generate-

phrase '{0})".format(subj_adj_term. replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

    else: 

     subj_adj_nl = access.converse().converseString('(generate-

phrase #${0})'.format(subj_adj_term)) 

   except: 

    print "CYC Api error when retrieving NL phrase for adjective: 

{0}".format(subj_adj_term) 

    subj_adj_nl = '' 

  else: 

   subj_adj_weight = 0 

   subj_adj_term = None 

   subj_adj_nl = '' 
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        # PREDICATE 

        # query for CYC concepts with "nsubj" dependency type 

        pred_count = {} 

        if '(' in k: 

            try: 

                # use formatting scheme in case CYC concept is composite 

                pred_term_query = query_factory.getQuery('(conceptAssociation {0} "nsubj" ?PTERM 

?PW)'.format(k.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

            except: 

                print "CYC Api error when finding term: {0}".format(k) 

                pred_term_query = 'NIL' 

        else: 

            pred_term_query = query_factory.getQuery('(conceptAssociation #${0} "nsubj" ?PTERM 

?PW)'.format(k)) 

        pred_term_res = pred_term_query.getResultSet() 

        while pred_term_res.next(): 

            # filter TERM1 and W1 variables from query results output 

            # TERM1 - predicate CYC concept 

            # W1 - predicate dependency weight 

            pred = str(pred_term_res.getKBObject("?PTERM", kb.KBIndividual)) 

            pred_dep_w = str(pred_term_res.getKBObject("?PW", kb.KBIndividual)) 

            # record predicate weight times its dependency weight 

            pred_count[pred] = float(pred_dep_w) 

        top_predicate = OrderedDict(sorted(pred_count.iteritems(), key=operator.itemgetter(1), 

reverse=True)[:5]) 

        for pred_keys, pred_values in top_predicate.iteritems(): 

            # generate natural language phrase for predicate with strongest (highest weight) relation 

            if '(' in pred_keys: 

                predicate_nl = access.converse().converseString("(generate-phrase 

'{0})".format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

            else: 

                predicate_nl = access.converse().converseString('(generate-phrase #${0})'.format(pred_keys)) 

            # PREDICATE-ADVERB 

            # find adverb CYC concepts assotiated with predicates concepts 

   if '(' in pred_keys: 

    adv_query = query_factory.getQuery('(conceptAssociation 

?ADVTERM "advmod" {0} ?ADVW)'.format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

   else: 

    adv_query = query_factory.getQuery('(conceptAssociation 

?ADVTERM "advmod" #${0} ?ADVW)'.format(pred_keys)) 

   adv_query_res = adv_query.getResultSet() 

   adv_count = {} 

   while adv_query_res.next(): 

    # filter TERM1 and W1 variables from query results output 

    # TERM1 - adverb CYC concept 

    # W1 - adverb dependency weight 

    adv = str(adv_query_res.getKBObject("?ADVTERM", 

kb.KBIndividual)) 

    adv_dep_w = str(adv_query_res.getKBObject("?ADVW", 

kb.KBIndividual)) 

    # record adverb weight times its dependency weight 

    adv_count[adv] = float(adv_dep_w) 

   if len(adv_count) != 0: 

    top_adverb = dict(sorted(adv_count.iteritems(), 

key=operator.itemgetter(1), reverse=True)[:1]) 

    pred_adv_term = top_adverb.keys()[0] 
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    pred_adv_weight = top_adverb.values()[0] 

    try: 

     if '(' in pred_adv_term: 

      pred_adv_nl = 

access.converse().converseString("(generate-phrase '{0})".format(pred_adv_term.replace(' (', '(').replace(' ', 

' #$').replace('(', ' (#$'))) 

     else: 

      pred_adv_nl = 

access.converse().converseString('(generate-phrase #${0})'.format(pred_adv_term)) 

    except: 

     print "Natural language word for adverb '{0}' cannot be 

derived.".format(pred_adv_term) 

     pred_adv_nl = '' 

   else: 

    print "No adverb was found." 

    pred_adv_weight = 0 

    pred_adv_term = None 

    pred_adv_nl = '' 

            # OBJECT 

            # check all possible object associations 

            obj_count = {} 

            # find objects concepts associated with predicates 

            if '(' in pred_keys: 

                try: 

                    # use formatting scheme in case CYC concept is composite 

                    q_obj = query_factory.getQuery('(conceptAssociation ?OTERM "obj" {0} 

?OW)'.format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

                except: 

                    print "CYC Api error when finding object for term: {0} via 'dobj'.".format(pred_keys) 

                    q_obj = 'NIL' 

            else: 

                q_obj = query_factory.getQuery('(conceptAssociation ?OTERM "obj" #${0} 

?OW)'.format(pred_keys)) 

            q_obj_res = q_obj.getResultSet() 

            # keep track of all objects associated with predicates 

            while q_obj_res.next(): 

                obj = str(q_obj_res.getKBObject("?OTERM", kb.KBIndividual)) 

                obj_dep_w = str(q_obj_res.getKBObject("?OW", kb.KBIndividual)) 

                # find subject-object relation weight 

                try: 

                    if '(' in k and '(' in obj: 

                        subj_obj_w = str(access.converse().converseObject("(query-variable 

'?SOW'(#$conceptAssociation {0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(str(k).replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'), str(obj).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip( '()') 

                    elif '(' in k and '(' not in obj: 

                        subj_obj_w = str(access.converse().converseObject("(query-variable 

'?SOW'(#$conceptAssociation {0} \"subj-obj\" #${1} ?SOW) #$InferencePSC)".format(str(k).replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'), obj))).strip('()') 

                    elif '(' not in k and '(' in obj: 

                        subj_obj_w = str(access.converse().converseObject("(query-variable 

'?SOW'(#$conceptAssociation #${0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(k, str(obj).replace(' 

(', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()') 

                    else: 

                        subj_obj_w = str(access.converse().converseObject("(query-variable 

'?SOW'(#$conceptAssociation #${0} \"subj-obj\" #${1} ?SOW) #$InferencePSC)".format(k, 

obj))).strip('()') 
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                except: 

                    subj_obj_w = 0 

                if subj_obj_w != "NIL": 

                    obj_rank = ((sum(map(lambda x: float(x), str(subj_obj_w).split()))) + float(obj_dep_w)) 

                else: 

                    obj_rank = float(obj_obj_rankdep_w) 

     obj_count[obj] = float(obj_rank) 

            if len(obj_count) != 0: 

                top_object = OrderedDict(sorted(obj_count.iteritems(), key=operator.itemgetter(1), 

reverse=True)[:5]) 

                for obj_keys, obj_values in top_object.iteritems(): 

                    try: 

                        if '(' in obj_keys: 

                            object_nl = access.converse().converseString("(generate-phrase 

'{0})".format(obj_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))) 

                        else: 

                            object_nl = access.converse().converseString('(generate-phrase #${0})'.format(obj_keys)) 

                    except: 

                        print "CYC Api error when retrieving NL phrase for object: {0}".format(obj_keys) 

                        object_nl = '' 

     # OBJECT-ADJECTIVE 

                    adj_count = {} 

     # find all adjective associated with subject/object CYC 

concepts 

     # query for CYC concepts with "amod" dependency type 

     if '(' in term: 

      # use formatting scheme in case CYC concept is 

composite 

      adj_term = 

query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" {0} ?ADJW)'.format(term.replace(' (', 

'(').replace(' ', ' #$').replace('(', ' (#$'))) 

     else: 

      adj_term = 

query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" #${0} ?ADJW)'.format(term)) 

     try: 

      adj_term_res = adj_term.getResultSet() 

     except: 

      print 'CYC Api error when finding adjective for term: 

{0}'.format(term) 

     while adj_term_res.next(): 

      # filter TERM1 and W1 variables from query results 

output 

      # TERM1 - adjective CYC concept 

      # W1 - adjective dependency weight 

      adj = str(adj_term_res.getKBObject("?ADJTERM", 

kb.KBIndividual)) 

      adj_dep_w = 

str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual)) 

      # record adjective weight times its dependency 

weight 

      adj_count[adj] = float(adj_dep_w) 

     if len(adj_count) != 0: 

      top_adjective = dict(sorted(adj_count.iteritems(), 

key=operator.itemgetter(1), reverse=True)[:1]) 

      obj_adj_term = top_adjective.keys()[0] 

      obj_adj_weight = top_adjective.values()[0] 



97 

      # derive natural language phrase of adjective CYC 

concept 

      try: 

       if '(' in obj_adj_term: 

        obj_adj_nl = 

access.converse().converseString("(generate-phrase '{0})".format(obj_adj_term. replace(' (', '(').replace(' ', ' 

#$').replace('(', ' (#$'))) 

       else: 

        obj_adj_nl = 

access.converse().converseString('(generate-phrase #${0})'.format(obj_adj_term)) 

      except: 

       print "CYC Api error when retrieving NL 

phrase for adjective: {0}".format(obj_adj_term) 

       obj_adj_nl = '' 

     else: 

      obj_adj_weight = 0 

      obj_adj_term = None 

      obj_adj_nl = '' 

                    # SUMMARY 

                    # record each Subject - Subject-Adjective - Predicate - Predicate-Adverb - Object - Object-

Adjective 

                    # into an output file as a newly created sentence 

                    with open(path, 'a') as f: 

                        f.write("{0} / {1} | {2} / {3} | {4} / {5} | {6} / {7} | {8} / {9} | {10} / {11}\n{12} | {13} | 

{14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v, pred_adv_term, 

pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys, obj_values, 

subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl)) 

            else: 

                obj_values = 0 

                obj_keys = None 

                object_nl = '' 

                obj_adj_term = None 

                obj_adj_weight = 0 

                obj_adj_nl = '' 

                with open(path, 'a') as f: 

     f.write("{0} / {1} | {2} / {3} | {4} / {5} | {6} / {7} | {8} / {9} | 

{10} / {11}\n{12} | {13} | {14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v, 

pred_adv_term, pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys, 

obj_values, subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl)) 

    return 
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DOCUMENTS USED FOR TESTING 
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B.1 “Dog” Wikipedia article. 

The article was accessed in March 2018. 

 

Figure B-1: Screenshot of the first page of “Dog” Wikipedia article. 
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B.2 “Computer” Wikipedia article.  

The article was accessed in March 2018. 

 

Figure B-2: Screenshot of the first page of “Computer” Wikipedia article. 
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B.3 “Hamburger” Wikipedia article.  

The article was accessed in March 2018. 

 

Figure B-3: Screenshot of the first page of “Hamburger” Wikipedia article. 
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B.4  “Grapefruit” Wikipedia article.  

The article was accessed in March 2018. 

 

Figure B-4: Screenshot of the first page of “Grapefruit” Wikipedia article. 
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B.5  “Grapefruit” Morton encyclopedia article.  

The article was accessed in March 2018. 

 

 

Figure B-5: Screenshot of the first page of “Grapefruit” Morton article. 
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B.6  “Grapefruit” New World Encyclopedia article.  

The article was accessed in March 2018. 

 

 

Figure B-6: Screenshot of the first page of “Grapefruit” New World Encyclopedia 

article. 
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B.7  “Cat” Wikipedia article.  

The article was accessed in March 2018. 

 

 

Figure B-7: Screenshot of the first page of “Cat” Wikipedia article. 
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B.8  “Tiger” Wikipedia article.  

The article was accessed in March 2018. 

 

 

Figure B-8: Screenshot of the first page of “Tiger” Wikipedia article. 
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B.9  “Cougar” Wikipedia article.  

The article was accessed in March 2018. 

 

 

Figure B-9: Screenshot of the first page of “Cougar” Wikipedia article. 
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B.10  “Jaguar” Wikipedia article.  

The article was accessed in March 2018. 

 

 

Figure B-10: Screenshot of the first page of “Jaguar” Wikipedia article. 
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B.11  “Lion” Wikipedia article.  

The article was accessed in March 2018. 

 
 

Figure B-11: Screenshot of the first page of “Lion” Wikipedia article. 



 

110 

 

REFERENCES 
 

[1]  IBM Marketing Cloud, "10 Key Marketing Trends for 2017," 2017. 

[2]  A. Lincoln, "FYI: TMI: Toward a holistic social theory of information overload," 

First Monday, vol. 16, no. 3, 2011.  

[3]  G. Chakraborty and M. K. Pagolu, "Analysis of unstructured data: Applications of 

text analytics and sentiment mining," SAS global forum, pp. 1288-2014, 

2014.  

[4]  J. Hirschberg and C. D. Manning, "Advances in natural language processing," vol. 

349, no. 6245, pp. 261-266, 2015.  

[5]  J.-g. Yao, X. Wan and J. Xiao, "Recent advances in document summarization," 

Knowledge and Information Systems, vol. 53, no. 2, pp. 297-336, 2017.  

[6]  J. C. K. Cheung and G. Penn, "Towards Robust Abstractive Multi-Document 

Summarization: A Caseframe Analysis of Centrality and Domain," in 

ACL, 2013.  

[7]  Cycorp, "Home," July 2017. [Online]. Available: http://www.cyc.com/. [Accessed 

July 2017]. 

[8]  A. Nenkova and K. McKeown, "A survey of text summarization techniques," in 

Mining Text data, Boston, Springer, 2012, pp. 43-76. 

[9]  H. P. Luhn, "The automatic creation of literature abstracts," IBM Journal of 

Research and Development, pp. 159-165, 1958.  

[10]  A. Nenkova and L. Vanderwende, "The impact of frequency on summarization," 

Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005, 

vol. 101, 2005.  

[11]  W.-t. Yih, J. Goodman, L. Vanderwende and H. Suzuki, "Multi-Document 

Summarization by Maximizing Informative Content-Words," in 

Proceedings of the Twentieth International Joint Conference on 

Artificial Intelligence, Hyderabad, India, 2007.  



111 

[12]  E. Hovy and C.-Y. Lin, "Automated text summarization and the SUMMARIST 

system," in Proceedings of a workshop on held at Baltimore, Maryland: 

October 13-15, Baltimore, Maryland, 1998.  

[13]  D. R. Radev, H. Jing, M. Styś and D. Tam, "Centroid-based summarization of 

multiple documents," Information Processing & Management, vol. 40, 

no. 6, pp. 919-938, 2004.  

[14]  E. Filatova and V. Hatzivassiloglou, "A formal model for information selection in 

multi-sentence text extraction," in Proceedings of the 20th international 

conference on Computational Linguistics, 2004.  

[15]  C.-Y. Lin and E. Hovy, "The automated acquisition of topic signatures for text 

summarization," in Proceedings of the 18th conference on 

Computational linguistics - Volume 1, Saarbrücken, Germany, 2000.  

[16]  J. M. Conroy, J. D. Schlesinger, J. Goldstein and D. P. O’leary, "Left-brain/right-

brain multi-document summarization," in In Proceedings of the 

Document Understanding Conference (DUC 2004), 2004.  

[17]  S. Gupta, A. Nenkova and D. Jurafsky, "Measuring importance and query relevance 

in topic-focused multi-document summarization," in Proceedings of the 

45th Annual Meeting of the ACL on Interactive Poster and 

Demonstration Sessions, 2007.  

[18]  R. Mihalcea and P. Tarau, "TextRank: Bringing Order into Text," in Proceedings of 

the 2004 Conference on Empirical Methods in Natural Language 

Processing, Barcelona, Spain, 2004.  

[19]  G. Erkan and D. Radev, "Lexrank: Graph-based lexical centrality as salience in text 

summarization," Journal of Artificial Intelligence Research, no. 22, pp. 

457-479, 2004.  

[20]  J. Leskovec, N. Milic-Frayling and M. Grobelnik, "Impact of Linguistic Analysis 

on the Semantic Graph Coverage and Learning of Document Extracts," 

in Proceedings of the AAAI, 2005.  

[21]  X. Wan and J. Yang, "Improved affinity graph based multi-document 

summarization," in Proceedings of the Human Language Technology 

Conference of the NAACL, Companion Volume: Short Papers, 2006.  

[22]  J. Kupiec, J. Pedersen and F. Chen, "A trainable document summarizer," in 

Proceedings of the 18th annual international ACM SIGIR conference on 

Research and development in information retrieval, 1995.  



112 

[23]  J. M. Conroy and D. P. O'Leary, "Text Summarization via Hidden Markov Models 

and Pivoted QR," in Proceedings of the 24th annual international ACM 

SIGIR conference on Research and development in information 

retrieval, 2001.  

[24]  D. Shen, J.-T. Sun, H. Li, Q. Yang and Z. Chen, "Document Summarization Using 

Conditional Random Fields," in Proceedings of International Joint 

Conference on Artificial Intelligence, Hyderabad, India, 2007.  

[25]  M. Fuentes, E. Alfonseca and H. Rod, "Support vector machines for query-focused 

summarization trained and evaluated on pyramid data," in Proceedings 

of the 45th Annual Meeting of the ACL on Interactive Poster and 

Demonstration Sessions, 2007.  

[26]  K.-F. Wong, M. Wu and W. Li, "Extractive summarization using supervised and 

semi-supervised learning," in Proceedings of the 22nd International 

Conference on Computational Linguistics-Volume 1, Manchester, 

United Kingdom, 2008.  

[27]  R. Barzilay and M. Elhadad, "Using Lexical Chains for Text Summarization," 

Advances in automatic text summarization, pp. 111-121, 1999.  

[28]  H. G. Silber and K. F. McCoy, "Efficiently computed lexical chains as an 

intermediate representation for automatic text summarization," 

Computational Linguistics, pp. 487-496, 2002.  

[29]  S. Ye, T.-S. Chua, M.-Y. Kan and L. Qui, "Document concept lattice for text 

understanding and summarization," Information Processing & 

Management, pp. 1643-1662, 2007.  

[30]  Y. Gong and X. Liu, "Generic text summarization using relevance measure and 

latent semantic analysis," in Proceedings of the 24th annual 

international ACM SIGIR conference on Research and development in 

information retrieval, 2001.  

[31]  M. G. Ozsoy, I. Cicekli and F. Nur Alpaslan, "Text summarization of turkish texts 

using latent semantic analysis," in Proceedings of the 23rd international 

conference on computational linguistics, 2010.  

[32]  K. Filippova, "Multi-sentence compression: Finding shortest paths in word graphs," 

in Proceedings of the 23rd International Conference on Computational 

Linguistics, 2010.  

[33]  E. Lloret and M. Palomar, "Analyzing the Use of Word Graphs for Abstractive Text 

Summarization," in Proceedings of the First International Conference 



113 

on Advances in Information Mining and Management, Barcelona, Spain, 

2011.  

[34]  I. F. Moawad and M. Aref, "Semantic Graph Reduction Approach for Abstractive 

Text Summarization," in Computer Engineering & Systems (ICCES), 

2012 Seventh International Conference on, 2012.  

[35]  L. Bing, P. Li, Y. Liao, W. Lam, W. Gu and R. J. Passonneau, "Abstractive multi-

document summarization," in Proceedings of the ACL-IJCNLP, 2015.  

[36]  S. Gerani, Y. Mehdad, G. Carenini, R. T. Ng and B. Nejat, "Abstractive 

Summarization of Product Reviews Using Discourse Structure," in 

EMNLP, 2014.  

[37]  F. Liu, J. Flanigan, S. Thomson, N. Sadeh and N. A. Smith, "Toward Abstractive 

Summarization Using Semantic Representations," in Proceedings of the 

North American Association, 2015.  

[38]  J. C. K. Cheung and G. Penn, "Unsupervised Sentence Enhancement for Automatic 

Summarization," in EMNLP, 2015.  

[39]  P. S. Sajja and R. Akerkar, "Knowledge-based systems for development," in 

Advanced Knowledge Based Systems: Model, Applications & Research, 

2010, pp. 1-11. 

[40]  R. G. Smith, Knowledge-based systems: Concepts, techniques, examples, 1985.  

[41]  G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. J. Miller, "Introduction to 

WordNet: An on-line lexical database," International journal of 

lexicography, pp. 235-244, 1990.  

[42]  R. Navigli and S. P. Ponzetto, "BabelNet: Building a very large multilingual 

semantic network," in Proceedings of the 48th annual meeting of the 

association for computational linguistics , 2010.  

[43]  H. Liu and P. Singh, "ConceptNet—a practical commonsense reasoning tool-kit," 

BT technology journal, pp. 211-226, 2004.  

[44]  Cycorp, "Cyc: Knowledge Base," 8 March 2018. [Online]. Available: 

http://www.cyc.com/kb/. [Accessed 8 March 2018]. 

[45]  E. Cambria and B. White, "Jumping NLP curves: A review of natural language 

processing research," IEEE Computational intelligence magazine, vol. 2, 

no. 9, pp. 48-57, 2014.  



114 

[46]  D. Jurafsky and J. H. Martin, Speech and language processing, vol. 3, London: 

Pearson, 2014.  

[47]  M. Honnibal and M. Johnson, "An Improved Non-monotonic Transition System for 

Dependency Parsing," in Proceedings of the 2015 Conference on 

Empirical Methods in Natural Language Processing, Lisbon, Portugal, 

2015.  

[48]  JPype, "JPype - Java to Python integration," 2017. [Online]. Available: 

http://jpype.sourceforge.net/. [Accessed July 2017]. 

[49]  B. Choi and X. Huang, "Creating New Sentences to Summarize Documents," in 

The 10th IASTED International Conference on Artificial Intelligence 

and Application (AIA 2010), Innsbruck, Austria, 2010.  

[50]  P. Baxendale, "Machine-made index for technical literature—an experiment," IBM 

Journal of Research and Development, pp. 354-361, 1958.  

[51]  H. Edmundson, "New methods in automatic extracting," Journal of the ACM, pp. 

264-285, 1969.  

 

 

 


	Automatic Document Summarization Using Knowledge Based System
	Recommended Citation

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 5-19-2018

	Automatic Document Summarization Using Knowledge Based System
	Andrey Timofeyev

	Louisiana Tech Dissertation Template - Word 2007-2010 Format

