
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 5-19-2018

Automatic Document Summarization Using Knowledge Based Automatic Document Summarization Using Knowledge Based

System System

Andrey Timofeyev
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Recommended Citation Recommended Citation
Timofeyev, Andrey, "" (2018). Dissertation. 28.
https://digitalcommons.latech.edu/dissertations/28

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital
Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana
Tech Digital Commons. For more information, please contact digitalcommons@latech.edu.

https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/28?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 5-19-2018

Automatic Document Summarization Using
Knowledge Based System
Andrey Timofeyev

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATIC DOCUMENT SUMMARIZATION

USING KNOWLEDGE BASED SYSTEM

by

 Andrey Timofeyev, B.S., M.S.

A Dissertation Presented in Partial Fulfillment

of the Requirements of the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE

LOUISIANA TECH UNIVERSITY

May 2018

iii

ABSTRACT

This dissertation describes a knowledge-based system to create abstractive

summaries of documents by generalizing new concepts, detecting main topics and

creating new sentences. The proposed system is built on the Cyc development platform

that consists of the world’s largest knowledge base and one of the most powerful

inference engines. The system is unsupervised and domain independent. Its domain

knowledge is provided by the comprehensive ontology of common sense knowledge

contained in the Cyc knowledge base. The system described in this dissertation generates

coherent and topically related new sentences as a summary for a given document. It uses

syntactic structure and semantic features of the given documents to fuse information. It

makes use of the knowledge base as a source of domain knowledge. Furthermore, it uses

the reasoning engine to generalize novel information.

The proposed system consists of three main parts: knowledge acquisition,

knowledge discovery, and knowledge representation. Knowledge acquisition derives

syntactic structure of each sentence in the document and maps words and their syntactic

relationships into Cyc knowledge base. Knowledge discovery abstracts novel concepts,

not explicitly mentioned in the document by exploring the ontology of mapped concepts

and derives main topics described in the document by clustering the concepts.

Knowledge representation creates new English sentences to summarize main concepts

and their relationships. The syntactic structure of the newly created sentences is extended

iv

beyond simple subject-predicate-object triplets by incorporating adjective and adverb

modifiers. This structure allows the system to create sentences that are more complex.

The proposed system was implemented and tested. Test results show that the system is

capable of creating new sentences that include abstracted concepts not mentioned in the

original document and is capable of combining information from different parts of the

document text to compose a summary.

 GS Form 14

 (8/10)

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University

the right to reproduce, by appropriate methods, upon request, any or all portions of this

Dissertation. It is understood that “proper request” consists of the agreement, on the part

of the requesting party, that said reproduction is for his personal use and that subsequent

reproduction will not occur without written approval of the author of this Dissertation.

Further, any portions of the Dissertation used in books, papers, and other works must be

appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the

literature, at any time, any or all portions of this Dissertation.

Author _____________________________

Date _____________________________

vi

DEDICATION

This dissertation is dedicated to my beloved wife and my family. Without their

love and unconditional support, this dissertation would not see the light.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

APPROVAL FOR SCHOLARLY DISSEMINATION ... v

DEDICATION ... vi

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

ACKNOWLEDGMENTS ... xiv

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND AND RELATED WORK .. 7

2.1 Automatic text summarization .. 7

2.1.1 Extractive approach methods for text summarization 8

2.1.1.1 Frequency-driven approaches .. 9

2.1.1.2 Graph models for sentence importance ... 10

2.1.1.3 Machine learning and statistical applications 12

2.1.1.4 Shallow semantic analysis methods .. 14

2.1.1.5 Conclusion ... 17

2.1.2 Abstractive approach methods for text summarization 17

2.1.2.1 Graph reduction based methods .. 18

2.1.2.2 Graph merging based methods .. 19

2.1.2.3 Conclusion ... 22

2.2 Knowledge based systems .. 23

2.2.1 WordNet lexical database ... 24

viii

2.2.2 BabelNet encyclopedic dictionary .. 25

2.2.3 ConceptNet semantic network .. 26

2.2.4 Cyc development platform .. 27

2.2.4.1 Cyc knowledge base .. 27

2.2.4.2 Cyc inference engine ... 29

2.2.5 Conclusion .. 30

2.3 Advanced natural language processing techniques .. 30

CHAPTER 3 ABSTRACTIVE TEXT SUMMARIZATION USING CYC

DEVELOPMENT PLATFORM ... 34

3.1 Knowledge acquisition ... 35

3.1.1 Syntactic structure extraction .. 35

3.1.2 Mapping words to Cyc concepts ... 37

3.2 Knowledge discovery ... 39

3.2.1 New concepts abstraction ... 40

3.2.2 Main topics identification ... 43

3.3 Knowledge representation .. 44

3.3.1 Candidate subjects discovery .. 45

3.3.2 New sentences generation ... 47

CHAPTER 4 IMPLEMENTATION OF THE ABSTRACTIVE TEXT

SUMMARIZATION SYSTEM .. 51

4.1 Cyc development platform integration ... 51

4.2 Summarization system’s design .. 53

4.2.1 “Syntactic structure extraction” module ... 54

4.2.2 “Mapping words to Cyc concepts” module .. 55

4.2.3 “Concepts propagation” module ... 56

4.2.4 “Concepts’ weight and relationships accumulation” module 57

ix

4.2.5 “Main topics identification” module ... 59

4.2.6 “Candidate subjects discovery” module ... 60

4.2.7 “New sentences generation” module .. 61

CHAPTER 5 EXPERIMENT AND RESULTS ... 64

5.1 Experiments conducted on artificially generated data 64

5.2 Experiments conducted on encyclopedia articles ... 71

5.3 System performance ... 76

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 78

 SOURCE CODE.. 83

A.1 “Syntactic structure extraction” function .. 84

A.2 “Mapping words to Cyc concepts” function ... 85

A.3 “Concepts propagation” function .. 87

A.4 “Concepts’ weight and relationships accumulation” function 88

A.5 “Main topics identification” function ... 91

A.6 “Candidate subjects discovery” function .. 91

A.7 “New sentences generation” function ... 92

 DOCUMENTS USED FOR TESTING .. 98

B.1 “Dog” Wikipedia article. .. 99

B.2 “Computer” Wikipedia article. ... 100

B.3 “Hamburger” Wikipedia article. ... 101

B.4 “Grapefruit” Wikipedia article. ... 102

B.5 “Grapefruit” Morton encyclopedia article. ... 103

B.6 “Grapefruit” New World Encyclopedia article. .. 104

B.7 “Cat” Wikipedia article. .. 105

B.8 “Tiger” Wikipedia article. ... 106

x

B.9 “Cougar” Wikipedia article. ... 107

B.10 “Jaguar” Wikipedia article. ... 108

B.11 “Lion” Wikipedia article. .. 109

REFERENCES ... 110

xi

LIST OF TABLES

Table 2-1: Parts of speech tags from Universal Dependencies treebank. 32

Table 2-2: Syntactic dependency relationships tags from Universal Depenencies

scheme... 33

Table 4-1: Description of Cyc commands used by “Mapping words to Cyc concepts”

module... 56

Table 4-2: Description of Cyc commands used by “Concepts propagation” module. 57

Table 4-3: Description of Cyc commands used by “Concepts weight and

relationships accumulation” module. .. 58

Table 4-4: Description of Cyc command used by “Main topic identification” module. . 60

Table 4-5: Description of Cyc commands used by “Candidate subjects identification”

module... 61

Table 4-6: Description of Cyc commands used by “New sentences generation”

module... 62

Table 5-1: Summarization results of applying system to the first set of artifical data. ... 65

Table 5-2: Summarization results of applying system to the second set of artifical

data. ... 70

Table 5-3: Concepts and main topics derived from Wikipedia articles describing

various topics. ... 72

Table 5-4: Concepts and main topics derived from Wikipedia articles describing

felines. ... 75

Table 5-5: System performance scores using encyclopedia articles. 77

xii

LIST OF FIGURES

Figure 1-1: KBS algorithm workflow diagram. ... 4

Figure 2-1: Graph representation of an arbitrary text. ... 10

Figure 2-2: Cyc knowledge organization. .. 28

Figure 3-1: Example of syntactic dependency relationships in a sentence...................... 36

Figure 3-2: Syntactic structure extraction sub-process workflow diagram. 37

Figure 3-3: Mapping words to Cyc concepts sub-process workflow diagram. 38

Figure 3-4: Upward concepts propagation in Cyc ontology. ... 39

Figure 3-5: Concepts propagation step workflow diagram. .. 41

Figure 3-6: Concepts’ weight and relationships accumulation step workflow diagram.. 43

Figure 3-7: Main topics identification sub-process workflow diagram. 44

Figure 3-8: Candidate subjects discovery sub-process workflow diagram. 46

Figure 3-9: Enhanced structure of newly created sentence. .. 47

Figure 3-10: New sentences generation sub-process workflow diagram. 50

Figure 4-1: Communication between summarization system and Cyc development

platform. .. 52

Figure 4-2: Modular design of the system. .. 54

Figure 5-1: Artificial sentences with simple structure used for testing. 65

Figure 5-2: “Dog” concept ancestor-descendant relationships in Cyc ontology. 66

Figure 5-3: “Meat” concept ancestor-descendant relationships in Cyc ontology. 67

Figure 5-4: “Bird” concept ancestor-descendant relationships in Cyc ontology. 68

Figure 5-5: “Colored” concept ancestor-descendant relationships in Cyc ontology. 69

xiii

Figure 5-6: Artificial sentences with complex structure used for testing. 70

Figure 5-7: New sentences created for Wikipedia articles describing various topics. 74

Figure 5-8: Test results of new sentences created for multiple articles about

grapefruit; (a) – single article, (b) – two articles, (c) – three articles. 75

Figure 5-9: New sentences created as a summary for multiple articles about felines. 76

Figure B-1: Screenshot of the first page of “Dog” Wikipedia article. 99

Figure B-2: Screenshot of the first page of “Computer” Wikipedia article. 100

Figure B-3: Screenshot of the first page of “Hamburger” Wikipedia article. 101

Figure B-4: Screenshot of the first page of “Grapefruit” Wikipedia article. 102

Figure B-5: Screenshot of the first page of “Grapefruit” Morton article. 103

Figure B-6: Screenshot of the first page of “Grapefruit” New World Encyclopedia

article... 104

Figure B-7: Screenshot of the first page of “Cat” Wikipedia article. 105

Figure B-8: Screenshot of the first page of “Tiger” Wikipedia article. 106

Figure B-9: Screenshot of the first page of “Cougar” Wikipedia article. 107

Figure B-10: Screenshot of the first page of “Jaguar” Wikipedia article. 108

Figure B-11: Screenshot of the first page of “Lion” Wikipedia article. 109

xiv

ACKNOWLEDGMENTS

I would like to thank my academic advisor Dr. Ben Choi and my committee

members Dr. Pradeep Chowriappa, Dr. Weizhong Dai, Dr. Sumeet Dua, and Dr. Galen

Turner. In addition, I would like to thank all of my Tech friends and colleagues for their

encouragement and helpful advice.

1

CHAPTER 1

INTRODUCTION

Problems with information overload have drawn attention because of the

exponential growth of information creation and distribution that has recently gained an

incredible pace. Ninety percent of the entire world’s recorded data has been generated in

the past few years with two and a half million terabytes of data being created daily [1].

Around eighty percent of the data is unstructured and represented in the form of

documents, web pages, images, and videos. This vast amount of data turns into a

distraction and has a negative impact on human productivity and decision-making [2]. It

is becoming harder for the public to navigate and comprehend information conveniently

[3]. The issue of information overload raises a number of important questions – how to

make this overwhelming amount of information accessible for users; how to find

necessary information and to filter out the useless ones; and how to absorb and employ

information effectively.

Information overload is very complex, and currently there is no known solution

that can solve it all together, yet a number of approaches exist that try to address some of

the issues. One of such approaches is text summarization. It aims to mitigate information

overload specifically in the domain of unstructured data. Summarization process

condenses text in a form of a summary while preserving the most important information,

which ensures its high relevance. This drastically reduces the amount of information

2

people would have to comprehend, thus decreasing the amount of time and effort spent

on finding relevant information. Automatic text summarization is part of a broader field

of natural language processing that combines advances in computer science, artificial

intelligence and computational linguistics [4].

Automatic text summarization can be divided into two main approaches –

extractive and abstractive. Extractive approach algorithms form a summary by choosing

the most significant words, phrases or sentences in the text. Summaries created by such

approach are highly relevant to the original text, but do not convey novel information.

Extractive text summarization is a well-studied topic that has reached its potential [5].

Abstractive approach algorithms, in contrast, aim to create new phrases or sentences by

analyzing the semantics of the text to form a summary. Such algorithms perform a

synthesis of source text to derive knowledge that is more general. This branch of

automatic text summarization is less studied and more complex. In order to create

abstractive summary of a text, the algorithm has to obtain novel knowledge form original

text and meaningfully combine information from different parts [6]. Summaries created

by abstractive approach algorithms are more favorable, but inherently harder to achieve.

The algorithm must use background knowledge of the subject matter to abstract new

information. It must perform deep syntactic analysis of the input text to be capable of

combining information from different parts appropriately. It must also use advances of

natural language generation process to represent newly created knowledge in a way that

is suitable for users to comprehend.

3

This dissertation provides the description of an abstractive text summarization

algorithm that:

 Derives deep syntactic structure of the text;

 Generalizes new concepts based on the information derived from the text;

 Automatically discovers general topics described in the text;

 Identifies most informative subjects based on discovered topics;

 Creates new sentences for identified subjects combining information from

different parts of the text to compose a summary.

Described algorithm uses Cyc development platform as a source of background

knowledge. Cyc development platform consists of the world’s largest ontology of

commonsense knowledge and a reasoning engine [7]. Cyc ontology serves as a backbone

for semantic analysis, knowledge generalization and natural language generation

functionality of the algorithm. Deep syntactic analysis is performed by using capabilities

of advanced natural language processing techniques. Combining both semantic

knowledge and syntactic structure allows the algorithm to have domain knowledge of the

subject matter and utilize relationships between words within given sentences. The

following is the Knowledge Based System (KBS) algorithm, the details of which will be

fleshed out in Chapters 3 and 4.

The KBS algorithm is composed of three main processes: knowledge acquisition,

knowledge discovery, and knowledge representation. Knowledge acquisition process

receives documents as an input and transforms them into syntactic representation. Then,

it maps each word in the text to an appropriate Cyc concept and assigns the word’s

4

weight and the word’s relationships to that concept. Knowledge discovery process finds

the ancestor for each mapped Cyc concept, records ancestor-descendant relationships,

and adds scaled descendant weight and descendant relationships to the ancestor concept.

This process allows the algorithm to abstract novel concepts that are not mentioned

directly in the original text. Then, the process identifies the main topics described in the

text by clustering the mapped Cyc concepts. The knowledge representation process

creates sentences in English for the most informative subjects identified in the main

topics. This process allows the summary sentences to be composed by using the

information from different parts of the text while preserving their coherence to the main

topics. The workflow diagram of the algorithm is outlined in Figure 1-1.

Figure 1-1: KBS algorithm workflow diagram.

Knowledge Based System

Input:

document(s)

Cyc KB

Output:

summary

KNOWLEDGE

DISCOVERY

Abstract new concepts.

Identify main topics.

KNOWLEDGE

ACQUISITION

Extract syntactic structure.

Map words to Cyc concepts.

KNOWLEDGE

REPRESENTATION

Abstract new concepts.

Identify main subjects.

Create new sentences.

5

An automated modular framework has been implemented to test the functionality

of the proposed algorithm. Two sets of test experiments were conducted: first using

synthetically created data and second using various documents and encyclopedia articles.

Test results demonstrate that the algorithm is capable of generalizing concepts that are

not mentioned explicitly in the original text, deriving general topics of the text and

creating new sentences that combined information from different parts of the text to form

an abstractive summary.

Main contributions of proposed algorithm are outlined as follows:

 We introduce a method to derive the main topics automatically and

identify the most significant subjects based on the concepts clustering and

syntactic structure of the text;

 We propose new sentence creation technique using semantic analysis and

natural language generation capabilities of Cyc development platform.

Proposed technique enhances the structure of newly created sentences by

adding adjective and adverb modifiers to subject-predicate-object triplets;

 We propose a mechanism of combining information from different parts

of the text to form a summary based on deep syntactic analysis of the text.

Proposed KBS algorithm falls into the intersection of text data mining, natural

language processing and artificial intelligence domains. It gathers and analyzes text data,

extracts deep syntactic structures of the text and generates new sentences as a summary.

It utilizes Cyc development platform – world’s longest-lived artificial intelligence

platform [7], as a backbone for the semantic reasoning.

6

The rest of the dissertation is organized as follows. Chapter 2 outlines previous

work in the field of automatic text summarization and gives background of knowledge-

based systems and advanced natural language processing techniques. The chapter

provides the description of extractive and abstractive approaches, highlighting recent

advances and gives an overview of Cyc development platform, its knowledge base and

inference engine. Chapter 3 thoroughly describes the methodology of the proposed KBS

algorithm. This chapter provides details of the knowledge acquisition, knowledge

discovery and knowledge representation processes. Chapter 4 presents details of the

implementation of the summarization system based on the proposed KBS algorithm.

Chapter 5 discusses the results obtained by applying the implemented system to

synthetically generated data and encyclopedia articles. Finally, Chapter 6 concludes the

dissertation and provides discussion of directions for the future work.

7

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we outline related work undertaken in the field of automatic text

summarization. In addition, we provide an overview of the knowledge-based systems

employed in the area, and give the background of the advanced natural language

processing techniques used.

2.1 Automatic text summarization

Computational community has been studying automatic text summarization

problem since the late 1950s. In literature, automatic text summarization is traditionally

divided into two main areas, namely extractive and abstractive. The approaches in these

two areas differ fundamentally by the way they compose the summary of the text.

Extractive methods create a summary by selecting the most informative phrases

or sentences from the original text and filtering out those that do not convey useful

information. Such methods generally vary by the different intermediate representations of

the candidate phrases or sentences and different sentence scoring schemes [8]. The

advantage of the extractive approach is that it does not require much semantic knowledge

or deep syntactic analysis of the text because it is solely based on the statistics of word or

phrase occurrences in the text. Summaries created by the extractive approach methods

8

exhibit higher statistical correlation with the original text, which makes their performance

easier to evaluate.

In contrast with the extractive approach, abstractive methods aim to create new

sentences that carry novel knowledge or abstraction, not mentioned in the original text.

Such methods involve generalization and aggregation of the information based on the

content of the given text. New sentences are composed using natural language generation

techniques by fusing the information that belongs to the same concept from different

parts of the text. Summaries created by the abstractive approach methods tend to be more

desirable because they have a higher correlation with the human expert created

summaries [6]. At the same time, such summaries are harder to evaluate quantitatively

since most of the metrics are based on the statistics that measure an overlap between the

summary sentences and the sentences from the original text. Utilization of such metrics to

evaluate the abstractive approach methods is impractical, since the main aim of the

abstractive summarization is to deduce new information that was not explicitly

mentioned in the original text.

2.1.1 Extractive approach methods for text summarization

In this subsection, we cover the most prominent methods used in extractive

summarization. We progress through different intermediate representations of the

features used by the methods, starting with a simple word frequency count based methods

and progressing to more sophisticated graph representation of the text and machine

learning applications.

9

2.1.1.1 Frequency-driven approaches

Methods based on the frequency counts are the simplest, oldest and most widely

used in the area of extractive text summarization. These methods select the most

representative sentences that contain significant words. The significance of the words is

evaluated by the various frequency measures.

The first paper in the field of text summarization that was published in the late

1950s described the method based on raw frequency as a measure. The author concluded,

however, that the raw frequency measure is not the best indicator, since some words

could be frequent in many documents [9]. To take into account the length of the text to be

summarized, word probability measure is introduced as an improvement on raw

frequency counts [10], [11]. Another major improvement in frequency-based approach

methods is the TF-IDF measure that is calculated by the product of term frequency (TF)

and inverse document frequency (IDF) measures.

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐷) Eq. 2-1

This measure was adopted from information retrieval domain. It favors the terms

that are very frequent among a small number of documents in the corpus. In Eq. 2-1, t

denotes the term, d denotes each document in the corpus, and D denotes the collection of

all documents in the corpus. Selecting the sentences that contain terms with high TF-IDF

score yields better extractive summaries [12], [13], [14]. A variation of TF-IDF score that

uses the log-likelihood ratio test is introduced to identify topic signatures. Topic signature

is the set of words that describes similar concept. The idea of this measure is similar to

the TF-IDF in terms that it gives a higher score to the words frequently used in the input

text and rare in the other texts, but it also provides a cutoff to include the words into topic

10

signatures [15]. In the methods that use topic signature measure, the sentences are

included in the summary by their significance that is computed by the number of topic

signature words contained in the sentence [16], [17].

2.1.1.2 Graph models for sentence importance

Graph representation of the text aided the automatic text summarization area in

many different ways. The main idea of such methods is to model a text as a graph, where

the nodes are words, phrases, sentences or paragraphs, and the edges are weights that

represent the similarity measure between text elements. Graph representation of an

arbitrary text is illustrated in Figure 2-1. Informative sentences for the summary are

selected based on the edges’ weights by using graph traversal algorithms, such as the

breadth-first search and the depth-first search.

Figure 2-1: Graph representation of an arbitrary text.

weight

weight

weight

weight

weight

weight

weight

weight

text_element1

text_element2 text_element3

text_element4

text_element

text_element6text_element7

text_element8

text_elementn

weight

weight

11

TextRank approach proposed by [18] models input text as a graph, where nodes

are represented as the words, phrases or sentences depending on the desired application.

Edges between the nodes are expressed as a similarity measure weight based on the

semantical or lexical relationships between the text elements or their contextual overlap.

Nodes with the highest similarity weight are picked to form the final summary of the

input text. The idea of graph ranking is exploited by [19] in the LexRank graph-based

summarization approach. Their proposed method represents a document cluster as a

graph where sentences are used as vertices, and the edges are defined as a degree of

similarity between sentences. Summary of the text is then composed by the sentences that

are chosen based on the number of links incident upon a node in the graph. Authors

define sentence centrality in terms of similarity to other sentences. The sentences that are

similar to many other sentences have higher centrality.

The idea of representing the document as a semantic graph is proposed by [20]. In

the semantic graph text representation, nodes are modeled as noun phrases or verb

phrases, and the edges connecting them are derived based on the syntactic relations

analysis of the text elements. The authors trained Support Vector Machines (SVM)

learning method on the described graph representation of the text using sets of various

attributes, such as linguistics attributes, graph and document structure, to identify

summary nodes and use them for extracting sentences that form a summary of the text.

An affinity graph representation of the text is introduced by [21]. Affinity graph

representation of the text expressed the semantic relations between sentences in terms of

their content similarity. Candidate sentences for a summary are evaluated by two factors

12

– information richness and information novelty. These properties are computed based on

the number of the informative neighbors the sentence is linked to.

2.1.1.3 Machine learning and statistical applications

Statistical methods and machine learning techniques showed great potential in

scoring the candidate’s sentences that are to be extracted to form a summary. The

extractive approach methods based on such techniques improve state-of-the-art

performance for the variety of tasks in the domain of text summarization. Majority of the

methods utilize the idea of training a model using various sentence features to find most

appropriate sentences for the extraction.

Sentence selection is approached as a simple classification problem in [22]. Their

model, based on the Naïve Bayes classifier, estimates the probability of a given sentence

to be included in the summary. The model is trained on the number of sentence features

such as thematic words, fixed phrases’ and proper names’ inclusiveness, sentence length

and sentence position in the paragraph. A similar set of features with a little variation is

used in [23]. The authors propose to use the Hidden Markov model classification instead

of the Naïve Bayes classifier, since some of the features used to train the model are

violating the assumption of independence. Furthermore, they introduce the assumption

that the probability of including the next sentence into the summary depends on the

inclusion of the current sentence.

Another proposed method for the task of choosing sentences for summarization is

to treat it as a sequence-labeling problem [24]. The objective of the summarization task is

to label sentences as those that will be included in the summary and those that will not.

The authors proposed the solution to this sequence-labeling problem by applying the

13

conditional random field (CRF) method, which was state-of-the-art in sequence labelling

at that time. Their approach also takes into consideration the sentence inclusion

dependency. When a new sentence is added to the summary, one or more already chosen

sentences might be deleted based on the calculated probability values. The sentence

feature space used in this method is extended by more complex features like similarity of

the sentence to its neighboring sentences, latent semantic analysis score and hyper-

induced topic scores.

SVM classification methods showed promising results when applied to the

sentence ranking problem for automatic text summarization. Methods based on the SVM

use different set of sentence features to extract the most informative sentences to form a

summary. Wide range of the semantic and the syntactic sentence features are used in a

method proposed by [25]. Authors trained Mapping-Convergence (MC) version of the

One-Class Support Vector Machine (OCSVM) classifier using following features: the

position of the sentence in the document; the total number of sentences in the document,

the total number of named entities found in the sentence; probabilities of the informative

words contained in the sentence, the existence of discourse markers and the existence of

particular words. Top ranked sentences extracted by a trained classifier are also checked

for redundancy before being included into the final summary. One of the drawbacks of

such supervised classification method is the need of large amount of labeled data for

training, which is usually not feasible to obtain in the domain of automatic text

summarization.

In order to address the lack of labeled data the semi-supervised SVM

classification approach is proposed by [26]. The authors co-train SVM classifier on both

14

labeled and unlabeled data combining various sentence features. Their semi-supervised

method shows compatible performance while saving the time cost on labeling the data.

The authors propose four different groups of sentence features: surface, content, event

and relevance. The surface features consist of sentence position in the text and the length

of the sentence. The content features measure the quantity of the indicative words, such

as centroid words, signature terms and high frequency words. The event features are

based on “person”, “location”, “organization” and “date” named entities contained in the

text. Finally, the relevance features measure sentence relationships to other sentences in

the text. The authors describe a co-training mechanism using the Probabilistic Support

Vector Machine (PSVM) method for supervised training and the Naïve Bayes

classification for semi-supervised training utilizing derived sentence features. The

summary is then composed of the sentences extracted by the described co-training

approach. The final order of the sentences is conditioned on the sentence length and its

position in the text.

2.1.1.4 Shallow semantic analysis methods

Since statistical analysis is not capable of discovering the meaning of the words,

and performing deep semantic analysis has high computational cost, the number of

methods were proposed that leveraged parts of both approaches. Such methods are

categorized as the shallow semantic analysis methods. Most prominent techniques used

the idea of the lexical chains – sequences of related words; the concept lattice – document

representation using concepts semantically linked to each other; and the Latent Semantic

Analysis (LSA) – the process of clustering related words and sentences based on their

semantics.

15

The idea of the lexical chains – representation of lexical cohesive structure of the

text expressed by the sequence of related words, was first applied to the problem of

automatic text summarization by [27]. The authors proposed the method for text

summarization that does not require computing the full semantic representation of the

text, but rather extracts significant sentences based on the strong lexical chains

constructed for the input text. The summarization process starts with composing a set of

candidate lexical chains. The construction process first selects a set of candidate words,

then finds an appropriate chain for each word based on the similarity measure derived

from the WordNet thesaurus and then updates the chain accordingly. After the set of

candidate lexical chains is constructed, the strongest among them are selected by the

ranking mechanism based on the scoring function. Finally, the significant sentences are

extracted based on the distribution of the strongest lexical chains.

The idea of using lexical chains for the summarization task was later exploited by

[28]. The authors propose improvements to the lexical chain construction process and a

method to evaluate lexical chains as an intermediate representation of the input text.

Their described approach uses scoring system based on the analysis of words

relationships to assess the contribution of a candidate element to the chain. To evaluate if

the lexical chains are a good representation of the text to use for the summarization task,

the authors analyzed manually created summaries for the exclusiveness of words from the

lexical chains. The results of the study shows great potential of the utilization of the

lexical chains as a form of shallow semantic representation of the text as opposed to the

single words and phrases frequencies.

16

Another type of shallow semantic representation of the text is a document concept

lattice that is introduced by [29]. The concept lattice models the information contained in

the text using the idea of linked concepts that cover the main facts and topics of the text.

Such concepts are represented by the words that describe concrete or abstract entities

together with their behavior. The process of concept lattice construction starts with the

analysis of the input sentences parse trees to identify repeated concepts. Then the

maximal common concepts are determined according to the concepts’ frequency. The

hierarchical representation of the concepts is then formed to serve as a structure for the

document concept lattice. Final summary of the text is then composed by extracting an

optimal set of the sentences by utilizing the derived document concept lattice

representation as a basis. The advantage of the concept lattice representation method is in

selecting the sentences that covered as many concepts as possible with the least amount

of words.

Latent semantic analysis (LSA) is another shallow semantic analysis technique

applied to the problem of identifying candidate sentences to be extracted from a given

text to form a summary. LSA performs the singular value decomposition of the term by

sentence matrix representation of the text to discover words or phrases that describe

similar topic. This approach is driven by the assumption that the words that describe the

same topics will generally appear in a similar context and will be mapped near to each

other in the decomposed matrix. Such a decomposition allows to semantically group

terms or sentences operating solely on the words or phrases frequencies. Text

summarization method based on the shallow semantic representation of the text derived

by LSA is described by [30] and [31]. In their proposed summarization methods, the

17

input text is first decomposed into a term by sentence matrix representation based on

various term frequency measures. Then the singular values decomposition technique is

applied on the matrix to discover vector representation of the salient topics contained in

the text. Finally, the sentences are extracted to form a summary based on the various

vector relations between the sentence vector representation and the topic vector

representation. Applying LSA method for text summarization allows extracting the

sentences that are semantically related to the main topics of the text without performing

the costly deep semantic analysis.

2.1.1.5 Conclusion

The described extractive text summarization methods suffer with the major

drawback of inability to synthesize new information, being limited to the words and

phrases comprised in the original text. The summaries produced by such methods tend to

have high statistical correlation with the input documents, but do not convey any novel

information.

2.1.2 Abstractive approach methods for text summarization

Abstractive text summarization methods are more desirable because they

resemble the summarization process that the human experts undergo when they create the

summaries, but such methods are inherently hard to develop and evaluate. Most of the

methods in the area involve transforming the text into a graph representation, where the

nodes denote text elements and the edges represent various relationships between these

text elements. The final summary of the text is constructed by applying the graph

transformation techniques, such as graph reduction, merging and compression.

18

2.1.2.1 Graph reduction based methods

The application of word graphs text representation for the purpose of the

abstractive text summarization was investigated by [32] and illustrated by their multi-

sentence compression algorithm. The algorithm is applied on a cluster of similar

sentences to compose a single sentence as a summary. The algorithm starts by creating a

word graph representation of a cluster using all words in the sentences. Such a graph is

constructed iteratively by adding one sentence at a time. The nodes in the graph represent

words, and the edges represent adjacency relation between words – carrying a weight,

which expresses the frequency of the syntactic relation of the words. After the word

graph representation of a cluster is built, the algorithm identifies the best path in the

graph to assure high compression and informativeness. The best path is evaluated based

on presence of the strong links and such a path has to follow through, what they refer to

as the salient nodes [32]. Both of these criteria are identified by experimenting with the

various weighting formulas. The path that has the lightest average edge weight is chosen

as the summary sentence for the cluster of the input sentences.

The application of words graphs was extended to cover the whole document

rather than a small cluster of sentences in [33]. The authors propose document-level

representation of the text using the word graphs. Their method employs Dijkstra’s

algorithm to find the shortest path in the graph to accommodate for the sentence

compression and to retain informative parts of the text. The algorithm that they describe

generates a number of the candidate summary sentences and the final summary of the

whole document is composed by choosing the most important ones, according to the

heuristic rules. Methods based on the word graphs representation are capable of

19

effectively combining information from different sentences, but lack the ability to

produce novel information, not explicitly mentioned in the text.

Abstractive text summarization by the semantic graph text reduction technique

was proposed by [34]. The authors introduce the idea of the rich semantic graph text

representation, and enhancing graph nodes with the associative attributes derived from

domain ontology. In the described graph, the nodes represent the verbs and nouns, and

the edges represent the semantic and topological relationships among words. Such a rich

semantic graph is constructed for the input document utilizing deep syntactic analysis.

Initially, the sub-graphs are created for each sentence in the document and then merged

together to derive a rich semantic graph of the whole document. On the next step, the

graph is reduced according to the set of the heuristic rules. During the process, the nodes

of the graph are combined, replaced or removed based on the additional semantic

relationships derived from the WordNet thesaurus. Finally, the summary of the document

is created from the reduced rich semantic graph using domain ontology. The method

proposed by the authors uses the WordNet system to create a set of sentences with the

synonyms of the words from the original document. The sentences to be included in the

final summary are picked based on the frequency of the used words and the sentence

discourse relations.

2.1.2.2 Graph merging based methods

Creating an abstractive summary of the text involves composing new sentences

that combine the information from different parts of the text. The new sentence creation

approach by the phrase selection and merging was proposed by [35]. The authors argue

that using more fine-grained syntactic units such as the noun and verb phrases improves

20

the process of the new sentence creation. Their described algorithm starts by extracting

noun and verb phrases from each sentence dependency tree, and forming a set of the

concepts and facts described in the input text. Then the salience score is calculated for

each extracted phrase. This score incorporates the concept-based weight and the position-

based frequency of the phrases. Next, new sentences are generated by identifying the

most informative phrases and merging them while maximizing the salience and satisfying

the predefined construction constraints. The structure of the composed sentences is based

on the heuristic rules and the relations derived from the dependency trees, and follows the

summarization requirements, such as the sentence length constrains, the avoidance of the

redundancy and the utilization of the pronoun phrases. Finally, some of the post-

processing steps are carried out to improve the order of the elements in the sentence and

enhance the sentence readability.

The analysis of the discourse structure of the input text shows promising results in

the area of abstractive summarization as reported by [36]. They propose an algorithm that

creates a summary by using the discourse tree structure as an intermediate representation

of a text. Such a representation illustrates how the text spans are connected and related to

each other. The discourse trees of each sentence in the text are used to compose a

directed graph that allows multiple connections between the two nodes. Such a graph is

called the aspect rhetorical relation graph (ARRG). The nodes of ARRG represent the

concepts derived from the text, and the edges represent specific relations between them,

together with an importance weight. Their proposed algorithm starts the summarization

process by extracting the sub-graphs containing the most informative concepts from the

ARRG using the weighted page rank algorithm. Then the extracted sub-graphs are

21

combined into the aspect hierarchical trees to be used by the abstract generation process

implemented by natural language generation techniques such as the microplanning and

the sentence realization.

Another type of graph text representation, namely Abstractive Meaning

Representation (AMR), was applied to the problem of summarization by [37]. The AMR

provides a semantic representation of each sentence in the text as the rooted, acyclic,

directed graph. Their proposed approach performs the graph transformation that

compresses the source graph into a summary graph and creates an abstractive summary

based on it. The summarization process starts by transforming each sentence into AMR

graph using the statistical semantic parser. Then the created graphs are merged and

transformed into a single AMR graph that represents the whole document. This process

involves pruning of the certain fragments of the graph and combining the parts of the

graph that has the same labels. While merging subgraphs represent different sentences,

every concept that is a root concept in the sentence graph is connected to new “ROOT”

node to assure the connectedness of the final graph. Finally, additional edges are added to

create a dense graph representation of the document. Such a representation is used to

select the subset to represent a summary graph that is concise, contains important

information and allows creating meaningful sentences. The final summary subgraph is

selected by the integer linear programming technique. Since there is no automatic process

to create natural language sentences from the AMR graphs, the authors propose a set of

the heuristic rules to create the text from the final graph.

The sentence enhancement technique applied to the graph representation of the

text to perform abstractive summarization was proposed by [38]. The novelty and

22

advantage of the described approach is in allowing the conjunction of the syntactic

dependency trees from any sentence of the input text. The event co-reference resolution

algorithm controls correctness of such trees combination by using the distributional

semantics approach. The summarization process is implemented in several steps.

Initially, the algorithm finds the clusters of compatible sentences, ranks the clusters

based on their salience, and picks the top ranked cluster to represent the core. Next, the

algorithm composes sentence graph by merging similar vertices based on their syntactic

features and the external information derived from the WordNet thesaurus. Then, the

sentence graph is extended by adding the dependency trees of the sentences that were not

the part of the core cluster, but still had been expressed by the similar features. Such an

expanded sentence graph is pruned according to the defined heuristics. Finally, the

summary dependency tree is extracted from the sentence graph by the integer linear

programming techniques with the constraints for the salience, importance, grammatical

correctness and length characteristics. The summary dependency tree is transformed into

a final sequence of words with the help of the linearization technique.

2.1.2.3 Conclusion

Abstractive text summarization methods described above attempt to derive the

latent semantic structure of the given text by transforming it into the graph representation

and preserving various relationships among the text elements. While such techniques

allow obtaining the shallow semantic features of the text and combining the information

from different sentences, they lack the ability to generalize novel information that has not

been mentioned in the input text, and only merge the information from the compatible

sentences.

23

2.2 Knowledge based systems

A knowledge-based system (KBS) is a computer system that utilizes a

combination of the data, information, and knowledge to allow solving complex problems

with domain expertise capabilities. Such systems use artificial intelligence techniques in

an attempt to understand the information related to the problem to provide a decision

supported by the underlying knowledge. Regular information systems operate on data,

but KBS exploit the knowledge contained in the information [39]. KBS generally consist

of three main parts: a knowledge base for information storage and organization; an

inference engine for the reasoning about the information stored in the knowledge base;

and the user interface to allow system-user communication. Knowledge base (KB)

resembles the idea of an intelligent database. Information is stored in the KB in an

ontological form that grants performing the reasoning and deduction. Inference engine

(IE) goes beyond simple search engine abilities by deducting new knowledge and

utilizing existing information for the effective problem solving. IE can reason with the

subjective fuzzy knowledge together with the explicit facts of established theories that

resemble the human experts approach for the problem solving [40]. User interface allows

users to communicate with KBS by providing access to the information contained in the

knowledge base and to the capabilities of the inference engine.

The ability to derive underlined semantics and to reason about the knowledge

comprised in the text are the crucial parts of the effective abstractive summarization

algorithm. These factors distinguish the abstractive approaches from the extractive

approaches in the area of text summarization. Achieving pure abstractive summary

requires the algorithm to combine text from different parts of the input document to

24

abstract and synthesize new knowledge based on the information contained in the

document, and to utilize the common sense knowledge to compose the new sentences that

represent the summary. Such a functionality is not feasible without taking the advantage

of capabilities provided by the knowledge-based systems. Researchers attempting to

tackle abstractive summarization problem used various knowledge based systems with

WordNet, BabelNet, ConceptNet, and Cyc among the most noticeable.

2.2.1 WordNet lexical database

WordNet is a thesaurus that was developed with an aim to organize the lexical

knowledge with regards of the word semantics, rather than the word forms. This is

achieved by introducing the mappings between the word meaning and the word character

representation. The vocabulary in WordNet is divided into four categories that

correspond with the English language parts of speech: nouns, verbs, adjectives and

adverbs. The nouns are organized as the topical hierarchies, the verbs represent various

relationships, and the adjectives and adverbs serve as the modifiers for the nouns and

verbs. The central idea of the semantic representation in WordNet is the grouping of

words into synonym sets, known as “synsets”. The semantic relations are then defined as

the pointers between different “synsets”.

There are four main categories of pointers between “synsets”: synonymy,

antonymy, hyponymy, and meronymy. Synonymy and antonymy pointers form lexical

relations between word forms, hyponymy and meronymy define semantic relations

between word meanings. The latter two represent relations of a form “is-a” and “has-a”

that are allowed to represent knowledge in a hierarchical form [41]. WordNet thesaurus

showed promising potential in the area of abstractive text summarization providing a

25

resource to enhance the algorithms with the semantic knowledge. However, the lack of

the commonsense knowledge and the ability to reason about it is a major drawback of

WordNet thesaurus to be widely applicable in the area of abstractive text summarization

problems.

2.2.2 BabelNet encyclopedic dictionary

BabelNet is an encyclopedic dictionary that was created as an attempt to enhance

WordNet thesaurus with the information from Wikipedia, a multilingual encyclopedic

knowledge repository. The project resulted in multilingual semantic network providing

the concepts and named entities connected by the numerous semantic relations. In

BabelNet, the knowledge is encoded as a graph where the vertices are the concepts

derived from Wikipedia and the edges are the semantic relations derived from WordNet.

Such a network is populated automatically by retrieving the semantic information, such

as the word senses and the semantic pointers from WordNet, and then merging it with the

encyclopedic entries from Wikipedia pages. The linkage between the content to be

merged is established by disambiguating the context in both Wikipedia pages and

WordNet senses, and computing the conditional probabilities of the candidate contexts.

The main advantage of BabelNet semantic network is adding more lexical structure to the

encyclopedic knowledge by linking the information repository with the organized

computation lexicon [42]. Although BabelNet enhanced WordNet with the world

knowledge, it still lacked the commonsense reasoning capabilities that are crucial in the

abstractive summarization domain.

26

2.2.3 ConceptNet semantic network

ConceptNet is a commonsense knowledgebase with the natural language

processing capabilities. Inspired by the structure of WordNet knowledgebase,

ConceptNet was developed with an aim to capture the content of a general world

knowledge in a way that is more suitable for the natural language processing purposes.

The main advantage of ConceptNet knowledgebase is in its emphasis on the contextual

reasoning. The knowledgebase stores the information as a graph focusing on the

semantically rich relationships represented as the edges and the complex concepts

represented as the vertices. Such a graph is generated automatically by connecting over a

million facts into a semantic network of three hundred thousand nodes.

The corpus of the English sentences from the Open Mind Common Sense project

is taken as a basis for the semantic knowledge. The idea of WordNet graph knowledge

representation is extended by the several enhancements. Vertices of ConceptNet semantic

knowledge graph consist of the compound concepts, such as verb phrases rather than the

atomic words. The edges in such a graph represent a wider variety of the semantic

relationships between the concepts, including causality, affect, event hierarchy and

location. Finally, the knowledge represented in ConceptNet is more casual, informal and

applicable [43]. Although the aforementioned enhancements allow ConceptNet

knowledgebase to be used for the applied reasoning over the raw text data, the amount of

the knowledge captured and the types of the relationships between the concepts appear to

be a major drawback when creating purely abstractive and domain independent

summarization algorithm.

27

2.2.4 Cyc development platform

Cyc project started in the mid-1980s with an ambitious goal of encoding the

commonsense knowledge of the whole world in the way that a computer can understand

and be able to reason. To this date, Cyc contains more than 600,000 concepts, around

40,000 relationships connecting these concepts, and more than 7,000,000 of assertions

about these concepts. The volume of the information captured in Cyc makes it the

world’s largest knowledge based system. The knowledge inside Cyc development

platform is organized in a form of an ontology, and the powerful inference engine is

provided to perform reasoning based on the knowledge. In order to formalize such an

enormous amount of knowledge and ensure the machine readability and inference, the

knowledge base is implemented in the CycL – flexible knowledge representation

language. CycL syntax is a combination of the features from the first-order predicate

calculus and Lisp high-level programming language. High expressiveness of CycL

language allows the inference engine to perform the effective reasoning about the

knowledge.

2.2.4.1 Cyc knowledge base

Cyc knowledge base arranges enormous volumes of common sense knowledge

about the world such as the facts, rules of thumbs, concepts, and their interconnections,

into a hierarchy that forms the knowledge ontology. The organization of the knowledge

in Cyc ontology is illustrated in Figure 2-2 [44]. The ontology can be viewed as a

pyramid, where each layer is arranged by the level of the knowledge generalization.

Elements of the ontology are connected by the generalization relationships of

28

specialization or instantiation. Therefore, the knowledge can be propagated bottom-up by

the specialization relation type or top-down by the instantiation relation type.

Figure 2-2: Cyc knowledge organization.

The peak of the pyramid constitutes the upper ontology that contains abstract

concepts such as an idea of the event, individual, collection, temporal thing. Upper

ontology also describes the relations between general concepts. At the very top of the

upper ontology resides the most fundamental representation called A “Thing”. Every

element in the knowledge base is an instance of the “Thing”. The next layer of the

ontology is composed by the core theories that describe the space, time and causality

relations. The rules described in the core theories build the fundament for the reasoning

ability of the inference engine. The next layer is devoted to the domain-specific theories

that cover the information about the broad number of diverse domains from banking and

29

finance to healthcare and chemistry. This knowledge gives an inference engine the ability

to perform the reasoning about the very specific domains of interest. The bottom layer of

the pyramid consists of the domain-specific facts and data. This layer describes the

specific ground level facts about the particular individuals or events and does not cover

any theories.

The knowledge, represented in the ontology, is divided into large number of

collections of assertions called the micro theories. The assertions are split into the micro

theories based on the shared topics, assumptions or sources. Some of the micro theories

characterize certain domain of knowledge when others contain information about the

certain period in history or describe certain geographical regions. Every assertion must

fall into at least one micro theory. The main function of the micro theories is to maintain

the local consistency of knowledge. Theories and facts may be contradictory across the

micro theories, but within a single micro theory, the assertions must be mutually

consistent. Such constraints allow the inference engine to perform the reasoning about the

knowledge more efficiently in narrowing down the scope of the facts and rules to a

particular micro theory of interest. Micro theories are also organized in a form of a

hierarchy linked by the generalization relations. The most general micro theory is called

“BaseKB” which holds the basic rules that describe the behavior of all micro theories.

2.2.4.2 Cyc inference engine

Cyc development platform allows performing the deductive reasoning about the

vast amount of knowledge it comprises with the help of the inference engine. In general,

the inference mechanism allows concluding new facts from existing facts and rules

defined in the ontology. For example, if ontology contains the fact that “A” is an ancestor

30

of “B” and “C”, then the fact that “B” and “C” are the relatives does not have to be

included in the knowledge base, but instead can be deducted by the inference engine.

Every deduction performed by Cyc inference engine is concluded in a context of the

particular micro theory with all corresponding inheritances to reduce the search domain.

Cyc inference engine functionality is based on the general logic deduction, such as the

universal and existential qualification, mathematical reasoning, quality and temporal

inference. Inference engine uses CycL language to perform the deduction effectively by

manipulating the knowledge inside the ontology.

Such a robust and powerful inference engine gives the Cyc development platform

an indisputable advantage over the other knowledge-based systems. It allows not only

reasoning about the existent knowledge and deducting novel information, but it is also

capable of performing the natural language generation tasks, such as deriving English

language equivalents of the concepts contained in the knowledge base.

2.2.5 Conclusion

Cyc knowledge based system is chosen as a backbone for KBS algorithm

described in this dissertation. Cyc surpasses WordNet, BabelNet and ConceptNet in a

number of characteristics, such as the breadth and depth of the knowledge represented in

the system, the variety of relations between concepts, and the capabilities of the inference

engine that allows robust knowledge reasoning.

2.3 Advanced natural language processing techniques

Natural language processing (NLP) is a field of study that combines the ideas

from the computer science, artificial intelligence and computational linguistics. NLP

allows developing computer algorithms that can automatically process, analyze and

31

represent human language [45]. NLP techniques range from simple word occurrence

counting to complex analysis of the sentiment of a text passage. These techniques play a

pivotal role during text the data preprocessing step, which is the process of transforming

input data from the raw text to the format suitable for further interpretation and analysis.

Following are the main advanced NLP techniques that are frequently used to

perform automatic text summarization:

 sentence segmentation;

 tokenization;

 lemmatization;

 part of speech tagging;

 dependency grammar analysis.

Sentence segmentation is a process of separating the text into individual

sentences. Punctuation marks, such as a period or a question mark, are used to define

sentence boundaries during the sentence segmentation process. Tokenization is a process

of breaking up sentences into the separate words based on the primitive white space

separator or more complex separator symbols. Tokenization is followed by the

lemmatization, the process of reducing the inflectional and derivationally related word

forms to a common form known as a lemma. Lemmatization performs the morphological

analysis of the words derived by the tokenization to derive their base forms.

For example, words “dark”, “darker” and “darkest” are all lemmatized to the base

form “dark”. Parts of speech tagging is a process of assigning a particular part of speech

tag to a word in a sentence. There are four major parts of speech tags, also known as the

open class tags: nouns, verbs, adjectives and adverbs. Sophisticated statistical methods

32

are used to derive appropriate part of speech tags for the words in the text. The proper

parts of speech tagging is crucial for the most of natural language processing techniques,

including the lemmatization and syntactic parsing. There is a number of conventions used

to denote parts of speech tags. In our research, we follow parts of speech tagging defined

by the Universal Dependencies (UD) framework treebank for English language. Parts of

speech tags with corresponding descriptions are provided in Table 2-1.

Table 2-1: Parts of speech tags from Universal Dependencies treebank.

Parts of speech tag Description

ADJ Adjective

ADP Adposition

AUX Adverb

CCONJ Coordination conjunction

DET Determiner

INTJ Interjection

NOUN Noun

NUM Numerical

PART Particle

PRON Pronoun

PROPN Proper noun

PUNCT Punctuation

SCONJ Subordinating conjunction

SYM Symbol

VERB Verb

X Other

Dependency grammar analysis derives the syntactic structure of the sentences

based on the words and the grammatical relations that link these words. During the

syntactic parsing, the sentence is being represented as a dependency tree. Such a tree

33

structure has a root that states the head of the sentence and the nodes, represented by the

words of the sentence. The nodes are connected by their syntactic relationships. For

example, in the sentence, “I study computer science”, the verb “study” is the root of the

dependency tree, the pronoun “I” is the subject of the verb “study”, the noun “science” is

the object of the verb “study”, and the noun “computer” is a compound modifier of the

noun “science” [46]. There is a number of conventions used to denote the dependency

relation tags. In our research, we use dependency tags defined by the Universal

Dependencies (UD) framework scheme for the English language. Descriptions of the

dependency tags are provided in Table 2-2.

Table 2-2: Syntactic dependency relationships tags from Universal Depenencies

scheme.

Dependency relation tag Description

ACOMP Adjectival complement

ADVMOD Adverbial modifier

AMOD Adjectival modifier

CSUBJ Clausal subject

CSUBJPASS Clausal subject (passive)

DOBJ Direct object

IOBJ Indirect object

NSUBJ Nominal subject

NSUBJPASS Nominal subject (passive)

OPRD Object predicate

OBJ Object

POBJ Object of preposition

34

CHAPTER 3

ABSTRACTIVE TEXT SUMMARIZATION USING CYC

DEVELOPMENT PLATFORM

This chapter provides a detailed description of the underlying methodology of the

proposed algorithm for abstractive text summarization.

The KBS algorithm described in pages 3 and 4 attempts to bring the machines

one-step closer to the comprehension of the knowledge comprised in the text. The

algorithm performs text summarization in three principal steps: the knowledge

acquisition, the knowledge discovery, and the knowledge representation. During the

knowledge acquisition step, the algorithm receives text documents as an input, performs

deep syntactic analysis, and maps the words with their syntactic relationships into the

Cyc knowledge base. During the knowledge discovery step, the KBS algorithm performs

a generalization of new concepts by propagating the concepts that were mapped into Cyc

knowledge base by the knowledge acquisition step. It also performs the task of the

identification of the main topics of the text based on the mapped and generalized

concepts. Finally, during the knowledge representation step, the KBS algorithm generates

new sentences using knowledge derived from the input text documents and the

capabilities of Cyc inference engine. The subsections of this chapter describe the

workflow of three steps of the KBS summarization algorithm.

35

3.1 Knowledge acquisition

The knowledge acquisition consists of two sub-processes. The first sub-process

extracts the syntactic structures from the given documents. This sub-process serves as a

data preprocessing and transformation step. It normalizes raw text data and transforms it

into syntactic representation. The second sub-process maps words from syntactic

representation of the text to Cyc concepts. Mapped Cyc concepts are utilized for

reasoning during subsequent steps of the algorithm.

3.1.1 Syntactic structure extraction

The syntactic structure extraction sub-process starts by separating input text into

individual sentences. Then it applies the process of tokenization to separate sentences

into individual words and uses lemmatization to normalize word forms. Next, it assigns

the appropriate parts of speech tag for each lemmatized word in the sentence. Parts of

speech tags are required during the mapping process and help to address the

disambiguation issue. Only open class parts of speech tags such as noun, verb, adjective,

and adverb are used for the analysis.

Next, the sub-process applies the syntactic dependency parses to discover the

relationships between the words in the sentences. Syntactic dependency relationships are

recorded in the following format: (“word” “relationship type” “head”), where “word” is

the dependent element in the relationship, “relationship type” is the type of the

relationship, and “head” is the leading element in the relationship. For example, applying

syntactic parser on sentence “Rottweiler rarely eats raw veal” produces the following

relationships: (“Rottweiler” “nsubj” “eats”), (“veal” “dobj” “eats”), (“rarely” “advmod”

“eats”), (“raw” “amod” “veal”). Syntactic dependency relationships of the example

36

sentence are illustrated in Figure 3-1. Syntactic dependency relationships are crucial

features for the new sentence generation sub-process of the knowledge representation

step of the summarization algorithm.

Figure 3-1: Example of syntactic dependency relationships in a sentence.

Finally, the sub-process counts and records frequencies of the word occurrences

and their relationships. These frequencies are used as weights for corresponding Cyc

concepts and their relationships during mapping sub-process of the knowledge

acquisition step.

The syntactic structure extraction sub-process produces syntactic representation of

the input text that consists of words, their frequencies, parts of speech tags, syntactic

dependency relationships and their frequencies. Workflow diagram of the sub-process is

outlined in Figure 3-2.

Rottweiler rarely eats raw veal.

 nsubj dobj

 advmod amod

37

Figure 3-2: Syntactic structure extraction sub-process workflow diagram.

3.1.2 Mapping words to Cyc concepts

The mapping words to Cyc concepts sub-process finds matching Cyc concept for

each word in the input document. Once algorithm finds correspondent Cyc concept it

assigns word’s weight, its syntactic dependency relationships and their weights to the

Cyc concept. Word’s weight is a frequency, the number of times it is mentioned in the

text. The dependency relationship is an association between two words in a sentence,

derived by the syntactic dependency parser. Each dependency relationship has a weight

associated with it that shows how frequently two words were used together in the text.

Input text

Separate text

into individual

sentences

Tokenize each

sentence

Lemmatize each

word

Assign part of

speech tag to

each word

Assign syntactic

dependency

relationships to

each word

Count

frequencies of

words and

relationships

Syntactic

representation

38

Higher weights represent stronger syntactic dependency relationships. Our algorithm

enhances Cyc semantic knowledge about the concepts with the syntactic structures

derived from the input text. The semantic knowledge and the syntactic structures are two

crucial parts that make abstractive summary cohesive and meaningful. The steps of the

mapping words to Cyc concepts sub-process are outlined as follows:

 For each word in the syntactic representation obtained by the syntactic

structure extraction sub-process:

 Map word to the corresponding Cyc concept;

 Assign the word’s weight to the corresponding Cyc concept;

 Map relationship head word to the corresponding Cyc concept;

 Assign the word’s relationship and relationship’s weight to the

corresponding Cyc concept.

Workflow diagram of the sub-process is illustrated in Figure 3-3.

Figure 3-3: Mapping words to Cyc concepts sub-process workflow diagram.

Map each

word to Cyc

concept

Assign word's

weight to Cyc

concept

Assign word's

relationship to

Cyc concept

Map word s

relationship

head to Cyc

concept

Syntactic

representaion

Mapped Cyc

concepts

39

3.2 Knowledge discovery

The knowledge discovery step performs two tasks: it abstracts new concepts and

identifies main topics described in the input text.

New concepts abstraction sub-process performs generalization of the information

derived from the text. It finds the ancestors of mapped Cyc concepts and assigns the

descendants’ propagated weight and syntactic dependency relationships to the ancestors.

It is an important part of abstractive summarization process as it allows deriving concepts

that are not explicitly mentioned in the input text. For example, concepts like “cat”,

“tiger”, “jaguar” and “lion” are generalized into more abstract “feline” concept. Another

example of concepts propagation is illustrated in Figure 3-4. The relationship between

descendant concepts “banana”, “orange”, “apple”, “pear” and ancestor concept “edible

fruit” in Cyc ontology is represented by the “#$isA” Cyc predicate.

Figure 3-4: Upward concepts propagation in Cyc ontology.

edible

fruit

is-a

is-a is-a

is-a

banana

orange apple

pear
descendant

concept

ancestor

concept

descendant

concept

descendant

concept

descendant

concept

40

The main topics identification sub-process detects topics described in the text

with an assumption that they are represented by the most frequently used micro theories.

Micro theories form the basis of knowledge organization in Cyc ontology being the

clusters of Cyc concepts and facts, typically representing one specific domain of

knowledge. For example, #$BiologyMt is a micro theory containing biological

knowledge, and #$MathMt is a micro theory containing concepts and facts describing the

field of mathematics. Each Cyc concept is defined within a micro theory.

3.2.1 New concepts abstraction

The new concepts abstraction sub-process consists of two steps: concepts

propagation step and concepts’ weight and relationships accumulation step. Concepts

propagation derives an ancestor concept for each mapped Cyc concept. Concepts’ weight

and relationships accumulation adds the descendant concepts’ accumulated weight and

relationships to ancestor concept based on the generalization parameter.

The concepts propagation starts by finding the ancestor concept for each concept

that was mapped to Cyc ontology during knowledge acquisition step. Then it records

ancestor-descendant relationship, updates the number of ancestor’s descendant concepts

and accumulated descendant’s weight. Accumulated descendant weight is scaled by the

generalization parameter α. This step of the new concepts abstraction sub-process is

described as follows:

 For each mapped Cyc concept:

 Find the concept’s ancestor;

 Record the ancestor-descendant relation;

 Update the ancestor’s number of descendants;

41

 Update the ancestor’s descendants accumulated weight;

 Scale the descendant’s weight by α.

Workflow diagram of the concepts propagation step is illustrated in Figure 3-6.

Figure 3-5: Concepts propagation step workflow diagram.

The concepts’ weight and relationships accumulation step starts by calculating the

descendant-ratio – the number of mapped descendants divided by the number of all

descendants of a concept.

𝑑𝑒𝑠𝑐_𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠

𝑜𝑓 𝑎𝑙𝑙 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠
 Eq. 3-1

Next, if the descendant-ratio is higher than the defined generalization parameter β,

then the descendants’ weight and descendants’ relationships are added to the ancestor

concept. Parameters α and β regulate the desired level of generalization. Higher α and

lower β yield greater level of generalization giving more emphasis to ancestor concepts.

Update number

of descendants

and accumulated

weight scaled by

α

Mapped Cyc

concepts

Ancestor Cyc

concepts

Find ancestor for

each mapped

concept

Record ancestor-

descendant

relationship

42

Concept’s weight and relationships accumulation step of the new concepts abstraction

sub-process is described as follows:

 For each ancestor Cyc concept:

 Find the number of concept’s mapped descendants;

 Find the number of all concept’s descendants;

 Calculate descendants’ ratio;

 If descendant-ratio is larger than the defined threshold β:

 Add descendants’ accumulated weight to the ancestor’s

weight;

 Add descendants’ relationships to the ancestor’s

relationships;

 Scale descendant’s relationship weight by α.

Workflow diagram of the concepts’ weight and relationships accumulation step is

illustrated in Figure 3-6.

43

Figure 3-6: Concepts’ weight and relationships accumulation step workflow diagram.

3.2.2 Main topics identification

The main topics of the input text are identified by the most frequent micro

theories derived from the updated mapped Cyc concepts. The sub-process starts by

finding defining micro theory for each mapped Cyc concept. Next, it counts frequencies

of discovered micro theories. Then, it picks the top-n micro theories with the highest

frequencies that will represent the main topics of the input text.

Add descendants

accumulated

weight and

relationships to

ancestor

Ancestor Cyc

concepts

Updated Cyc

concepts

Find number of

concept s

mapped

descendants

Find number of

all concept s

descendants

Calculate

descendants

ratio

44

The main topics identification sub-process is described as follows:

 For each mapped Cyc concept:

 Find defining micro theories.

 Count the frequencies of discovered micro theories;

 Pick the top-n micro theories with the highest frequencies.

Workflow diagram of the sub-process is illustrated in Figure 3-7.

Figure 3-7: Main topics identification sub-process workflow diagram.

3.3 Knowledge representation

The knowledge representation utilizes powerful capabilities of the Cyc inference

engine to generate new sentences based on the information discovered during knowledge

acquisition and knowledge discovery steps. This step uses mapped and generalized Cyc

concepts, their syntactic dependency relationships, and most frequent micro theories as

inputs. Knowledge representation step consists of two sub-processes – candidate subjects

discovery and new sentences generation. Candidate subjects discovery sub-process

Mapped Cyc

concepts

Top-n micro

theories

Find defining

micro theory for

each mapped

Cyc concept

Count

frequencies of

the discovered

micro theories

Pick top-n micro

theories with the

highest

frequencies

45

identifies significant subject concepts out of all the mapped and generalized Cyc

concepts. New sentences generation sub-process composes new sentences for each of the

identified candidate subject concept. Generated sentences serve as a final summary of the

input text.

3.3.1 Candidate subjects discovery

The candidate subjects discovery sub-process starts by finding all mapped Cyc

concepts in each main topic derived during knowledge discovery process. Then it

calculates the subjectivity ratio of each of the found Cyc concepts. Subjectivity ratio is

defined as the number of concept’s relationships labelled as subject relationship divided

by the total number of all concept’s relationships. This ratio allows identifying concepts

that have more subject relationships and helps distinguish concepts with a stronger

subject role in the input text.

𝑠𝑢𝑏𝑗_𝑟𝑎𝑡𝑖𝑜 =
𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠

𝑜𝑓 𝑎𝑙𝑙 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠
 Eq. 3-2

Next, it calculates subjectivity rank for each found subject concepts. Subjectivity

rank is defined as a product of concept weight and concept subjectivity ratio. Subjectivity

rank scales the weight of the concept by the subjectivity ratio, which allows choosing

subjects that are more semantically meaningful in the context of the given text.

𝑠𝑢𝑏𝑗_𝑟𝑎𝑛𝑘 = 𝑐𝑜𝑛𝑐𝑒𝑝𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑢𝑏𝑗_𝑟𝑎𝑡𝑖𝑜 Eq. 3-3

 Finally, concepts with the highest subjectivity rank are chosen as the candidate

subject concepts and new sentences are being created for each of them during new

sentence generation sub-process.

46

The candidate subjects discovery sub-process is described as follows:

 For each top-n micro theory:

 For each concept mapped from the text:

 Find the number of subject associations;

 Find the number of all associations;

 Calculate subjectivity ratio;

 Calculate subjectivity rank;

 Pick the top-n subjects with the highest subjectivity rank.

Workflow diagram of the sub-process is outlined in Figure 3-8.

Figure 3-8: Candidate subjects discovery sub-process workflow diagram.

Calculate

subjectivity ratio

Find number of all

relationships for

each Cyc concept

in each micro

theory

Find number of

subject

relationships for

each Cyc concept

in each micro

theory

Top-n micro

theories

Top-n subject

concepts

Pick top-n

subjects with the

highest

subjectivity rank

Calculate

subjectivity rank

47

3.3.2 New sentences generation

The new sentences generation sub-process uses subject concepts identified during

the candidate subjects discovery sub-process and their syntactic dependency relationships

discovered during the knowledge acquisition process. This sub-process creates new

English sentences for each candidate subject concept to generate a summary of the input

text based on the discovered knowledge. The basic structure of newly created sentences

follows the shallow triplet model, where each sentence has subject, predicate and object

elements. Such basic triplet structure is enhanced by the adjective modifiers for the

subject and object elements and by the adverb modifiers for the predicate elements when

available. Subject, predicate and object elements of the sentences are mandatory while

adjective and adverb modifiers are optional. Figure 3-9 illustrates the enhanced structure

of newly created sentences.

Figure 3-9: Enhanced structure of newly created sentence.

Described sentence structure enhancement allows creating new sentences with a

more complex structure that goes beyond simple subject-predicate-object model.

Sentence creation process starts by identification of the corresponding predicate and

object elements for each candidate subject based on the weights of the subject-predicate,

predicate-object and subject-object syntactic dependency relationships. Then it proceeds

subject
adjective
modifier

predicate
adverb

modifier
object

adjective
modifier

48

by deriving the appropriate adjective and adverb modifiers for subject, predicate and

object elements, based on the weights of subject-adjective, predicate-adverb and object-

adjective syntactic dependency relationships.

Subject, predicate, object, adverb, and adjective elements of new sentences are

derived from Cyc knowledge base as Cyc concepts that are expressed in a particular

format having a “#$” prefix. For example, dog is expressed as a “#$Dog” concept in Cyc

knowledge base. New sentence generation sub-process uses natural language generation

capabilities of Cyc inference engine to derive English language representations of Cyc

concepts. Cyc command “generate-phrase” allows retrieving natural language word or

phrase equivalent of a Cyc concept. As an example, applying “generate-phrase” Cyc

command to "#$EatingEvent" Cyc concept produces the string "eat" as an output and

applying it to "#$Coyote-Animal" produces the string "coyote". This powerful natural

language generation functionality of Cyc inference engine is another advantage of using

Cyc development platform as a backbone.

The new sentence generation sub-process is outlined as follows:

 For each candidate subject:

 Convert subject Cyc concept to natural language representation;

 Pick the adjective with the highest subject-adjective relationship

weight;

 Convert adjective Cyc concept to natural language representation;

 Pick the top-n predicates with the highest subject-predicate

relationship weights;

 For each predicate in the top-n predicates:

49

 Convert predicate Cyc concept to natural language

representation;

 Pick the adverb with the highest predicate-adverb

relationship weight;

 Convert adverb Cyc concept to natural language

representation;

 Pick the top-n objects with the highest product of subject-

object and predicate-object relationships weights;

 For each object in the top-n objects:

 Convert object Cyc concept to natural language

representation;

 Pick the adjective with highest object-adjective

relationship weight;

 Convert adjective Cyc concept to natural language

representation;

 Compose the new sentence using subject, subject-

adjective, predicate, predicate-adverb, object, and

object-adjective natural language representations.

Workflow diagram of the sub-process is outlined in Figure 3-10.

50

Figure 3-10: New sentences generation sub-process workflow diagram.

Convert each subject

Cyc concept to its

natural language

representation

Derive adjective

with highest subject-

adjective

relationship weight

for each subject

Summary sentences

Top-n subject

concepts

Convert each

adjective Cyc

concept to its natural

language

representation

Derive predicates

with highest subject-

predicate

relationship weights

for each subject

Convert each

predicate Cyc

concept to its natural

language

representation

Derive adverb with

highest predicate-

adverb relationship

weights for each

predicate

Convert each adverb

Cyc concept to its

natural language

representation

Derive objects with

highest product of

subject-object and

predicate-object

relationships weights

for each predicate

Convert each object

Cyc concept to its

natural language

representation

Derive adjective

with highest object-

adjective

relationship weight

for each object

Compose new

sentence using

subject, subject-

adjective, predicate,

predicate-adverb,

object, object-

adjective elements

Convert each

adjective Cyc

concept to its natural

language

representation

51

CHAPTER 4

IMPLEMENTATION OF THE ABSTRACTIVE TEXT

SUMMARIZATION SYSTEM

KBS algorithm was implemented as an abstractive text summarization system.

This chapter provides description of the system design and the technical details of the

system implementation.

The system was implemented using Python programming language. Python was a

natural choice because of the advanced Natural Language Processing tools and libraries

supplied by the language. Sentence segmentation, tokenization, lemmatization, parts of

speech tagging and dependency grammar analysis were implemented with the help of

SpaCy – Python library for advanced natural language processing. This library is the

fastest in the world with the accuracy within one percent of the current state of the art

systems for parts of speech tagging and dependency grammar analysis [47].

4.1 Cyc development platform integration

Our system uses Cyc knowledge base and its inference engine as a backbone for

the semantic analysis. Cyc development platform supports communications with the

knowledge base and utilization of the inference engine through the application

programming interfaces (APIs) implemented in Java. We utilize Java-Python wrapper

supported by JPype Python library to allow our system using Cyc Java API packages.

JPype library provides a code written in Python convenient access to Java class libraries.

52

It is essentially an interface at a basic level of virtual machines. Such wrapper allows

using Java API calls provided by Cyc development platform inside our system, which is

developed in Python. JPype library requires starting Java Virtual Machine before Java

packages or classes can be used within the Python code. Then any packages, methods or

classes are accessible given an appropriate path to their jar file implementation [48].

Communication between our system and Cyc development platform is illustrated in

Figure 4-1. To the best of our knowledge, our summarization system is the first Python-

based system that allows communication with Cyc development platform.

Figure 4-1: Communication between summarization system and Cyc development

platform.

Summarization
system

Cyc
development

platfrom

Python code

JPype library
Cyc Java APIs

53

4.2 Summarization system’s design

We designed our abstractive summarization system as a modular and pipelined

data-mining framework. Modularity provides the ability to conveniently maintain parts of

the system and to add new functionality as needed. Pipelined design of the system allows

comprehensible data flow between different modules.

The system consists of seven modules:

A. Syntactic structure extraction;

B. Mapping words to Cyc concepts;

C. Concepts propagation;

D. Concepts’ weight and relationships accumulation;

E. Main topics identification;

F. Candidate subjects discovery;

G. New sentences generation.

Modules A and B together constitute the knowledge acquisition step of the

summarization algorithm. Modules C, D and E together make up the knowledge

discovery step of the summarization algorithm. Modules F and G together form

knowledge representation step of the summarization algorithm. Each module is

implemented as a separate function with defined input parameters and generated outputs.

Modular system’s design is illustrated in Figure 4-2. The rest of the chapter provides the

description of system’s modules.

54

Figure 4-2: Modular design of the system.

4.2.1 “Syntactic structure extraction” module

The “Syntactic structure extraction” module is implemented using SpaCy –

Python library for advanced natural language processing. This module operates outside of

Knowledge acquisition

Input: Document(s).

Output: Dictionary of words.
Contains word, its parts of speech tag, weight,

syntactic dependency and its weight.

Syntactic structure

extraction

Input: Dictionary of words.

Output: Mapped Cyc concepts.
Cyc concepts with assigned weights and

associations.

Mapping words to

Cyc concepts

Knowledge discovery

Input: Updated Cyc concepts.
Cyc concepts with updated weights and

associations.

Output: Dictionary of top-n topics.
Contains top-n micro theories and their

weights.

Main topics

identification

Input: Ancestor Cyc concepts.
Cyc concepts with assigned ancestor-

descendant relations

Output: Updated Cyc concepts.
Cyc concepts with updated weights and

associations.

Concepts weights and

relationships

accumulation

Input: Mapped Cyc concepts.
Cyc concepts with assigned weights and

associations.

Output: Ancestor Cyc concepts.
Cyc concepts with assigned ancestor-

descendant relations

Concepts propagation

Knowledge representation

Inputs: Updated Cyc concepts &

Dictionary of top-n topics.

Output: Dictionary of top-n subjects.
Contains top-n Cyc subject concepts and their

weights.

Candidate subjects

discovery

Input: Dictionary of top-n subjects.
Contains top-n Cyc subject concepts and their

weights.

Output: Newly generated sentences.

Constitute summary of the input documents.

New sentences

generation

55

the Cyc development platform. The output of the module is a dictionary that contains

words, their part of speech tags, weights and syntactic dependencies. This dictionary

serves as an input for the “Mapping words to Cyc concepts” module. Source code of the

module implementation is provided in A.1

4.2.2 “Mapping words to Cyc concepts” module

The “Mapping words to Cyc concepts” module communicates with Cyc

development platform and updates weight and syntactic dependency relationships of Cyc

concepts. The output of the module are mapped Cyc concepts with assigned weights and

syntactic dependency relationships. The mapped Cyc concepts serve as an input for

“Concepts propagation” module. “Syntactic structure extraction” and “Mapping words to

Cyc concepts” modules together constitute the knowledge acquisition step of the

summarization process. Table 4-1 provides description of Cyc commands used to map

word to Cyc concept (a), assign the word’s weight (b), the word’s syntactic relationship

and syntactic relationship’s weight (c) to the Cyc concept. Source code of the module

implementation is provided in A.2.

56

Table 4-1: Description of Cyc commands used by “Mapping words to Cyc concepts”

module.

ID Cyc command Description

(a) (#$and

(#$denotation ?Word ?POS ?Num

?Concept) (#$word-Forms ?Word

?WordForm “word”)

(#$genls ?POS ?POSTag))

Command uses built-in “#$denotation”

Cyc predicate to relate a “word”, its

part of speech tag (?POS), and a sense

number (?Num) to concept (?Concept).

It also uses “#$wordForms” and

“#$genls” predicates to accommodate

for all variations of word’s lexical

forms.

(b) (#$conceptWeight ?Concept

?Weight)

Command uses user-defined

“#$conceptWeight” Cyc predicate that

assigns the weight (?Weight) to the

concept (?Concept).

(c) (#$conceptAssociation ?Concept

?Type ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

that assigns a specific type (?Type) of

a syntactic dependency association, the

leading element (?HeadConcept) and

the weight (?Weight) to the concept

(?Concept).

4.2.3 “Concepts propagation” module

The “Concepts propagation” module communicates with Cyc development

platform to derive all mapped Cyc concepts (a), find closest ancestor concepts (b) and

update ancestor concepts’ relations (c, d). The output of the module are ancestor Cyc

concepts with assigned descendant concepts’ weights and counts and ancestor-descendant

relations. The ancestor Cyc concepts are used by the “Concepts’ weight and relationships

57

accumulation” module. Cyc commands used by the “Concepts propagation” module are

described in Table 4-2. Source code of the module implementation is provided in A.3.

Table 4-2: Description of Cyc commands used by “Concepts propagation” module.

ID Cyc command Description

(a) (#$conceptWeight ?Concept

?Weight)

Command uses user-defined

“#$conceptWeight” Cyc predicate to

retrieve concepts (?Concept) that have

as-signed weights (?Weight).

(b) (#$min-genls ?Concept) Command uses built-in “min-genls”

Cyc predicate to retrieve the closest

ancestor concept for the given concept

(?Concept).

(c) (#$conceptDescendants ?Concept

?Weight ?Count)

Command uses user-defined

“#$conceptDescendants” Cyc

predicate to record the number of

descendants (?Count) and their weight

(?Weight) to the ancestor concept

(?Concept).

(d) (#$conceptAncestorOf ?Concept

?Descendant)

Command uses user-defined

“#$conceptAncestorOf” predicate to

assign ancestor-descendant relation

between the ancestor concept

(?Concept) and the descendant concept

(?Descendant).

4.2.4 “Concepts’ weight and relationships accumulation” module

The “Concepts’ weight and relationships accumulation” module communicates

with Cyc development platform to derive all ancestor Cyc concepts (a), find the number

of ancestor’s mapped descendants (b), find the number of all ancestor’s descendants (c)

58

and update ancestor’s weight and relations (d, e). The output of the module are the Cyc

concepts with updated weights and syntactic dependency relationships. Updated Cyc

concepts are used by the “Main topics identification” and the “Candidate subjects

discovery” modules. Cyc commands used by the “Concepts’ weight and relationships

accumulation” module are described in Table 4-3. Source code of the module

implementation is provided in A.4.

Table 4-3: Description of Cyc commands used by “Concepts weight and relationships

accumulation” module.

ID Cyc command Description

(a) (#$conceptDescendants ?Concept

?Weight ?Count)

Command uses user-defined

“#$conceptDescendants” Cyc

predicate to retrieve all concepts

(?Concept) that have descendants.

(b) (#$conceptAncestorOf ?AncConcept

?MappedDesc)

Command uses user-defined

“#$conceptAncestorOf” predicate to

retrieve mapped descendant concepts

(?MappedDesc) of the given ancestor

concept (?AncConcept).

(c) (#$genls ?AncConcept

?DescConcept)

Command uses built-in “#$genls” Cyc

predicate to retrieve all descendant

concepts (?DescConcept) of the given

ancestor concept (?AncConcept).

(d) (#$conceptWeight ?AncConcept

?DescWeight)

Command uses user-defined

“#$conceptWeight” Cyc predicate to

assigns the descendant concepts’

propagated weight (?DescWeight) to

the ancestor concept (?AncConcept).

59

(e) (and

(#$conceptAncestorOf ?AncConcept

?DescConcept)

(#$conceptAssociation ?DescConcept

?Type ?Head-Concept ?Weight))

Command uses user-defined

“#$conceptAncestorOf” and

“#$conceptAssociation” Cyc

predicates to assign descendant’s

association (?DescConcept) and its

propagated weight (?Weight) to the

ancestor concept (?AncConcept).

4.2.5 “Main topics identification” module

The “Main topics identification” module communicates with Cyc development

platform to derive defining micro theory for each mapped Cyc concept (a). Calculation of

the derived micro theories’ frequencies is handled outside of the Cyc development

platform. The output of the module is the micro theories dictionary that contains top-n

micro theories with the highest weights. This dictionary serves as an input for the

“Candidate subjects discovery” module. The “Concepts propagation”, the “Concepts’

weight and relationships accumulation” and the “Main topics identification” modules

together constitute knowledge discovery step of the summarization process. Table 4-4

provides the description of Cyc command used by the “Main topics identification”

module. Source code of the module implementation is provided in A.5.

60

Table 4-4: Description of Cyc command used by “Main topic identification” module.

ID Cyc command Description

(a) (#$and

(#$conceptWeight ?Concept

?Weight)

(#$definingMt ?Concept

?MicroTheory))

Command uses user-defined

“#$conceptWeight” Cyc predicate and

built-in “definingMt” Cyc predicate to

derive defining micro theory

(?MicroTheory) for each concept

(?Concept) that have assigned weight

(?Weight).

4.2.6 “Candidate subjects discovery” module

The “Candidate subjects discovery” module communicates with Cyc development

platform to derive mapped Cyc concepts for each defining micro theory in the input

dictionary (a) and to find the number of the concept’s syntactic dependency associations

labelled as “subject” relation (b) and the number of all syntactic dependency associations

of the concept (c). Calculations of the subjectivity ratio and the subjectivity rank are

handled outside of the Cyc development platform. The output of the module is the

dictionary that contains top-n subjects with the highest subjectivity rank. This dictionary

serves as an input for the “New sentences generation” module. Table 4-5 provides the

description of Cyc commands used by the “Candidate subjects discovery” module.

Source code of the module implementation is provided in A.6.

61

Table 4-5: Description of Cyc commands used by “Candidate subjects identification”

module.

ID Cyc command Description

(a) (#$and

(#$definingMt ?Concept

?MicroTheory)

(#$conceptWeight ?Concept

?Weight))

Command uses built-in

“#$definingMt” Cyc predicate and

user-defined “conceptWeight” Cyc

predicate to derive concepts

(?Concept) that have assigned weight

(?Weight) for each micro theory

(?MicroTheory) in micro theories

dictionary.

(b) (#$conceptAssociation ?Concept

"nsubj" ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “nsubj” parameter to derive the

concept’s (?Concept) syntactic

dependency associations labelled as

“subject” relations.

(c) (#$conceptAssociation ?Concept

?Type ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with no parameter specified (?Type) to

derive all concept’s (?Concept)

syntactic dependency associations.

4.2.7 “New sentences generation” module

The “New sentences generation” module communicates with Cyc development

platform to derive appropriate Cyc concepts for each sentence element based on the

weights of their syntactic dependency relationships (a, b, c, d, e) and to derive their

natural language representations (f). New sentences are composed outside of the Cyc

development platform and serve as an output for the module and the whole

62

summarization system. The “Candidate subjects identification” and the “New sentences

generation” modules together constitute the knowledge representation step of the

summarization process. Table 4-6 provides the description of Cyc commands used by the

“New sentences generation” module. Source code of the module implementation is

provided in A.7.

Table 4-6: Description of Cyc commands used by “New sentences generation” module.

ID Cyc command Description

(a) (#$conceptAssociation ?Concept

"amod" ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “amod” parameter to derive Cyc

concept (?Concept) associations

labelled as adjective modifier syntactic

dependency relation.

(b) (#$conceptAssociation ?Concept

"pred" ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “pred” parameter to derive Cyc

concept (?Concept) associations

labelled as predicate syntactic

dependency relation.

(c) (#$conceptAssociation ?Concept

"advmod" ?Head-Concept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “advmod” parameter to derive

Cyc concept (?Concept) associations

labelled as adverb modifier syntactic

dependency relation.

(d) (#$conceptAssociation ?Concept

"obj" ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “obj” parameter to derive Cyc

63

concept (?Concept) associations

labelled as object syntactic de-

pendency relation.

(e) (#$conceptAssociation ?Concept

"subj-obj" ?HeadConcept ?Weight)

Command uses user-defined

“#$conceptAssociation” Cyc predicate

with “subj-obj” parameter to derive

Cyc concept (?Concept) associations

labelled as subject-object syntactic

dependency relation.

(f) (#$generate-phrase ?Concept) Command uses built-in “#$generate-

phrase” Cyc predicate to retrieve

corresponding natural language

representation for a Cyc concept

(?Concept).

64

CHAPTER 5

EXPERIMENT AND RESULTS

Several experiments were conducted to highlight different capabilities of

proposed abstractive summarization system. The first experiment was performed using

artificially generated sentences to illustrate the process of concepts generalization. Other

experiments were conducted using real world data parsed from encyclopedia articles that

described concepts from various domains.

5.1 Experiments conducted on artificially generated data

Two sets of sentences were created to perform experiments with an artificial data.

The first set consisted of simple sentences, only containing subject, predicate and object

elements. The sentences are listed in Figure 5-1.

65

Figure 5-1: Artificial sentences with simple structure used for testing.

The results of applying summarization system to the set of described sentences

are illustrated in Table 5-1.

Table 5-1: Summarization results of applying system to the first set of artifical data.

Sentences expressed by Cyc concepts Natural language representation

#$Dog #$eatingEvent #$Meat Dog eating meat

#$Dog #$being #$coloredThing Dog being colored

#$Dog #$huntingEvent #$Bird Dog hunting bird

The results highlight the process of concepts generalization. Word “dog”

represented by Cyc concept “#$Dog” has not been mentioned in the input text implicitly

and has been generalized as an ancestor concept from “Rottweiler”, “Dachshund” and

66

“Poodle” descendant concepts, all being types of dog breeds. Figure 5-2 illustrates

described ancestor-descendant relationships.

Figure 5-2: “Dog” concept ancestor-descendant relationships in Cyc ontology.

Following this analogy, the word “meat” represented by Cyc concept “#$Meat”

was generalized from “veal”, “mutton” and “poultry” descendant concepts, all being

types of meats. Figure 5-3 illustrates described ancestor-descendant relationships.

dog

is-a

is-a

is-a

Rottweiler

Dachshund

Poodle

ancestor

concept

descendant

concept

descendant

concept

descendant

concept

67

Figure 5-3: “Meat” concept ancestor-descendant relationships in Cyc ontology.

The word “bird” represented by Cyc concept “#$Bird” was generalized from

“pheasant”, “sparrow”, “wren” and “finch” descendant concepts, all being types of birds.

Figure 5-4 illustrates described ancestor-descendant relationships.

meat

is-a

is-a

is-a

veal

mutton

poultry

ancestor

concept

descendant

concept

descendant

concept

descendant

concept

68

Figure 5-4: “Bird” concept ancestor-descendant relationships in Cyc ontology.

The word “colored” represented by Cyc concept “#$coloredThing” was

generalized from “grey”, “white”, “brown”, “blue” and “yellow” descendant concepts, all

being different colors. Figure 5-5 illustrates described ancestor-descendant relationships.

bird

is-a

is-a is-a

is-a

sparrow

wren pheasant

finch
descendant

concept

ancestor

concept

descendant

concept

descendant

concept

descendant

concept

69

Figure 5-5: “Colored” concept ancestor-descendant relationships in Cyc ontology.

The second set of artificial data consisted of more complex sentences that were

composed using adjective and adverb modifiers. Sentences are listed in Figure 5-6.

colored

is-a

is-a

is-a

is-a

grey

white

brown

yellow

descendant

concept

ancestor

concept

descendant

concept

descendant

concept

descendant

concept
blue

is-a

descendant

concept

70

Figure 5-6: Artificial sentences with complex structure used for testing.

The results of applying summarization system to the set of described sentences

are illustrated in Table 5-2.

Table 5-2: Summarization results of applying system to the second set of artifical data.

Sentences expressed by Cyc concepts Natural language representation

#$Dog #$rarity #$eatingEvent

#$rawThing #$Meat

“Dog rarely eating raw meat”

#$Dog #$normalThing #$being

#$darkness #$coloredThing

“Dog normally being dark colored”

#$Dog #$huntingEvent #$highRateEvent

#$Bird

“Dog hunting rapid bird”

In addition to exhibiting generalization capabilities (“dog”, “meat”, “bird” and

“colored” concepts), the presented results show that the system is able to create

71

sentences with the structure that extends beyond simple subject-predicate-object triplets

utilizing adjective and adverb modifiers (“rarely”, “raw”, “normally”, “dark” and

“rapid” concepts).

5.2 Experiments conducted on encyclopedia articles

Several experiments were conducted using real world text data parsed from

encyclopedia articles describing various topics.

First, the system was applied to Wikipedia articles representing information from

different domains and describing domestic dog, personal computer and hamburger.

Original articles are illustrated in Figure B-1, Figure B-2, and Figure B-3. Concepts and

main topics derived from analyzed articles are summarized in Table 5-3.

72

Table 5-3: Concepts and main topics derived from Wikipedia articles describing various

topics.

Article

name

Topics Concepts

Cyc micro

theory
Description Cyc concept

Natural

language

Dog #$BiologyMt Micro theory that

describes concepts

and relationships

related to the field

of Biology.

#$Dog Dog

#$CanisGenus Canine

#$Person Person

#$BiologicalSubsp

ecies

Subspecies

#$NaivePhys

icsMt

Micro theory that

describes concepts

and relationships

represented as

Naïve physics

beliefs and

practices.

#$Breeder Breeder

Hamburger #$HumanFo

odGMt

Micro theory that

describes concepts

and relationships

related to the topic

of food normally

consumed by

humans.

#$Food Food

#$Burger Burger

#$HamburgerSand

wich

Hamburger

#$GroundBeef Ground beef

#$Cheese Cheese

#$ProductG

Mt

Micro theory that

describes concepts

and relationships

related to the

broader field of

73

various

commodities.

Computer #$Informatio

nTerminolog

yMt

Micro theory that

describes concepts

and relationships

used to describe

terminology related

to the information

technology field.

#$Computer Computer

#$ComputerProgra

mmer

Programmer

#$outputs Outputs

#$ComputerHardw

areItem

Computer

hardware

#$ControlDevice Controller

#$HumanSoc

ialLifeMt

Micro theory that

describes concepts

and relationships

used to describe

various aspects of

human social life.

Some of the new sentences generated by the summarization process are presented

in Figure 5-7. The structure of each sentence consists of at least subject-predicate-object

elements. In addition, auxiliary adjective and adverb modifiers enhance the structure of

some sentences. Such enhancement is possible when subject, predicate or object sentence

elements have strong subject-adjective, object-adjective and predicate-adverb

relationships.

74

Figure 5-7: New sentences created for Wikipedia articles describing various topics.

Next, an experiment was conducted using multiple encyclopedia articles

describing grapefruit. The experiment consisted of three stages, where the number of

analyzed articles was increased during each stage. Original articles are illustrated in

Figure B-4, Figure B-5, and Figure B-6. Results of this experiment highlight the

system’s ability to improve summarization results by creating sentences that are more

complex when additional data is provided. New sentences created by the system are

demonstrated in Figure 5-8. The results exhibit the progression of newly created

sentences’ structure complexity which form simple subject-predicate-object triplet when

only a single article was provided as an input (part (a)) to more complex structure

extended by the adjective and adverb modifiers when more articles were processed by the

algorithm (part (b) and part (c)).

75

Figure 5-8: Test results of new sentences created for multiple articles about

grapefruit; (a) – single article, (b) – two articles, (c) – three articles.

Finally, the system was applied to multiple Wikipedia articles describing different

types of felines: cat, tiger, cougar, jaguar and lion. Original articles are illustrated in

Figure B-7, Figure B-8, Figure B-9, Figure B-10, and Figure B-11. Table 5-4 outlines

the main topics and concepts obtained from the analyzed articles.

Table 5-4: Concepts and main topics derived from Wikipedia articles describing felines.

Topics Concepts

Cyc MT Description Cyc term Natural language

#$BiologyMt Micro theory that

describes concepts

and relationships

related to the field of

Biology.

#$Cat Cat

#$DomesticCat Domestic cat

#$FelisGenus Felis

#$FelidaeFamily Feline

#$Animal Animal

#$HumanSocialLifeMt Micro theory that

describes concepts

and relationships

used to describe

various aspects of

human social life.

76

Figure 5-9 shows new sentences created by the system as a summary of the

analyzed articles. Concepts like “canis”, “mammal meat” and “felis” were generalized by

the abstraction process and were not mentioned in the original text. The results of the

final experiment illustrate the system’s capability to derive main topics and concepts

described in the text and to create new sentences that contain generalized concepts

combining information from various parts of the input text.

Figure 5-9: New sentences created as a summary for multiple articles about felines.

The algorithm proposed in this dissertation yields better results compared to the

results reported by [49]. New sentences created by the algorithm have more complex

syntactic structure and contain the information fused from different parts of the text.

These peculiar properties allow the summary of the text to be more abstractive,

informative, and meaningful.

5.3 System performance

The computational complexity of our proposed system is upper bounded by the

polynomial expression in the size of the vocabulary of the input documents and therefore,

77

the system is considered to be of the polynomial time complexity. Vocabulary of the

document is the number of the unique lemmas contained in the document.

 Table 5-5 illustrates the performance of the system when applied to the

encyclopedia articles. The experiments were conducted on a machine with 2.0 GHz Intel

Xeon E5-2620 CPU and 32 GB of RAM.

Table 5-5: System performance scores using encyclopedia articles.

of

articles
Article name(s) Source(s)

Vocabulary size

(Lemmas)

CPU Time

(Seconds)

1 “Dog” Wikipedia 2087 2751

1 “Computer” Wikipedia 1604 2245

1 “Hamburger” Wikipedia 1348 1887

3 “Grapefruit”

Wikipedia,

Morton,

New World

Encyclopedia

1988 2608

5

“Cat”

“Tiger”

“Cougar”

“Jaguar”

“Lion”

Wikipedia 5812 6974

78

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation describes a novel algorithm for creating an abstractive text

summary. The task of producing purely abstractive summary of a given text is still

considered challenging for people and therefore even more so for the machines. Human

experts use the generalization and synthesis of information together with the domain

competence to compose abstractive summary of a text. They rephrase the sentences and

reformulate the information based on the knowledge deducted from the text. Such a

summary becomes more informative and useful since it presents an aggregation and

analysis of a given text to distill and provide the knowledge that is more general or not

mentioned explicitly [6]. Described aggregation and generalization of the information is

not feasible without analyzing the semantics of the text and utilizing the domain

knowledge expertise. the analysis of the syntactic structure of the text also takes a

significant part in the process of abstractive summarization as it allows representing the

derived knowledge as grammatically correct sentences for the user convenience. KBS

algorithm described in this dissertation uses Cyc knowledge base and its reasoning engine

as a backbone to accommodate these capabilities. Employing the semantic features and

the syntactic structure of the text together with the world’s largest knowledge base

system shows great potential in creating abstractive summaries. The algorithm creates a

summary of a given text by composing new sentences that contain the information

79

aggregated from the various parts of the text. The structure of the summary sentences is

enhanced from simple subject-predicate-object triplets to a more complex structure by

adding the adjective and adverb modifiers. The appropriate modifiers are derived by the

analysis of the syntactic relationships of the subjects, predicates and objects in the

sentences of the original text.

The contributions of the described algorithm can be summarized as follows:

 Automatically derives main concepts and topics that describe the text;

 Generalizes and synthesizes information derived from the text;

 Creates new sentences using syntactic relations and aggregating

information from various parts of the text;

 Enhances the structure of newly created summary sentences to include

adjective and adverbs modifiers;

 Uses the world’s largest ontology of commonsense knowledge and

reasoning engine as a backbone for semantic analysis.

The proposed algorithm has been implemented as a modular pipelined system

developed in Python programming language for the testing purposes. The experimental

results showed that the algorithm is able to abstract new concepts not mentioned in the

text, automatically identify main topics described in the text, and create new sentences

that combine the information from different parts of the text. Information synthesis and

complex structure of newly created sentences allows the described algorithm to yield

better results than the algorithm presented by [49] that is the closest in terms of the

functionality.

80

The algorithm described in this dissertation showed promising results that open a

number of the future directions in the area of the knowledge based abstractive text

summarization. The first direction is to enhance the domain knowledge representation

since the semantic knowledge and reasoning are only limited to functionality and

performance of Cyc development platform. At this moment, the algorithm is as powerful

as the capabilities of the Cyc knowledge base, which is the largest ontology of

commonsense knowledge. For future improvement, the algorithm could use the

information derived from the whole World Wide Web as a domain knowledge. This

would possess challenging research questions such as information inconsistency and

sense disambiguation. In addition, a robust inference engine would be required to process

the information correctly and in a timely fashion.

The second future research direction could involve the improvement of the

syntactic structure of newly created sentences. Proposed algorithm uses subject-

predicate-object triplets enhanced by adjective and adverb modifiers. Although such

structure is more complex than the one used in previous research, it still does not

resemble the structure of the sentences created by people. Structure of newly created

sentences could be improved by using more sophisticated representation of syntactic

structure of the sentence. As an example, graph representation of the sentence could

capture and preserve more complex relations among words or phrases in a sentence.

Using the graph structure as a basis for new sentence creation could yield sentences that

have syntactic structures that are more complex.

The third direction for future research could be related to the problem of summary

sentences connectedness. At this moment, sentences created by the algorithm as a

81

summary of the text are not conceptually connected to each other. Therefore, the

summary overall does not look like a concise abstract of the text. Analyzing the relations

and interactions of the main concepts of the text on the document level could help in

preserving coherency of the sentences created as a summary. This problem could be

approached by representing the whole document as a graph of connected concepts with

various relationships among them and then creating new sentences based on these

relationships.

The fourth future research direction could be the investigating of the

parallelizability of the proposed summarization algorithm. Since algorithm operates on

the enormous amounts of data comprised in Cyc knowledge base, its performance could

benefit from allowing the algorithm to run on parallel and distributed computing

platforms.

Finally, the fifth future research direction could be in developing a universal merit

for the evaluation of purely abstractive text summarization algorithms. This improvement

is not related directly to the proposed algorithm, but rather to the problem of abstractive

text summarization in general. Currently, there is a number of merits that are used to

statistically evaluate the performance of extractive summarization algorithms.

Abstractive summarization algorithms in contrast are inherently more challenging to

evaluate, since they tend to generalize and aggregate information in a given text, thus

producing the summary that might not overlap much with the original text. Most of the

abstractive summarization approaches try to compare their results to human experts

created summaries, which are not always available or costly and time consuming to

produce. Thus, developing an automatic and universal merit to evaluate the results of

82

abstractive text summarization algorithms is an interesting and challenging area of future

research in the abstractive text summarization.

83

SOURCE CODE

84

A.1 “Syntactic structure extraction” function

def preprocessing(dir):

 import spacy

 nlp = spacy.load('en_core_web_md')

 nouns = []

 nouns_dep = []

 verbs = []

 verbs_dep = []

 adverbs = []

 adverbs_dep = []

 adjectives = []

 adjectives_dep = []

 for filename in os.listdir(dir):

 with open(filename) as file:

 doc = nlp(file.read())

 subj_obj = []

 # preprocess text, attach POS and dependency to each word

 for sent in doc.sents:

 subjects = []

 objects = []

 for word in nlp(sent.text):

 if word.dep_ == 'nsubj':

 subjects.append((word.lemma_, word.pos_))

 assoc = 'nsubj'

 elif word.dep_ in ['acomp', 'ccomp', 'xcomp', 'dobj', 'iobj',

'pobj', 'attr', 'oprd']:

 objects.append((word.lemma_, word.pos_))

 assoc = 'obj'

 else:

 assoc = word.dep_

 if word.pos_ in ['NOUN', 'PROPN']:

 nouns.append('"'+word.lemma_+'"')

 nouns_dep.append(('"'+word.lemma_+'"',

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"')))

 elif word.pos_ == 'VERB':

 verbs.append('"'+word.lemma_+'"')

 verbs_dep.append(('"'+word.lemma_+'"',

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"')))

 elif word.pos_ == 'ADV':

 adverbs.append('"'+word.lemma_+'"')

 adverbs_dep.append(('"'+word.lemma_+'"',

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"')))

 elif word.pos_ == 'ADJ':

 adjectives.append('"'+word.lemma_+'"')

 adjectives_dep.append(('"'+word.lemma_+'"',

('"'+assoc+'"', '"'+word.head.lemma_+'"', '"'+word.head.pos_+'"')))

 for sub in subjects:

 for obj in objects:

 if sub[1] in ['NOUN', 'PROPN']:

 subj_obj.append(('"'+sub[0]+'"', ('"subj-

obj"', '"'+obj[0]+'"', '"'+obj[1]+'"')))

 nouns_dep_tot = nouns_dep + subj_obj

 # create a dictionary for each POS counting word and dependency frequencies

 noun_dict = defaultdict(set)

85

 for word, deps in collections.Counter(nouns_dep_tot).items():

 noun_dict[word[0]].add(word[1]+(deps,))

 for k, v in collections.Counter(nouns).items():

 noun_dict[k].add(v)

 verb_dict = defaultdict(set)

 for word, deps in collections.Counter(verbs_dep).items():

 verb_dict[word[0]].add(word[1]+(deps,))

 for k, v in collections.Counter(verbs).items():

 verb_dict[k].add(v)

 adj_dict = defaultdict(set)

 for word, deps in collections.Counter(adjectives_dep).items():

 adj_dict[word[0]].add(word[1]+(deps,))

 for k, v in collections.Counter(adjectives).items():

 adj_dict[k].add(v)

 adv_dict = defaultdict(set)

 for word, deps in collections.Counter(adverbs_dep).items():

 adv_dict[word[0]].add(word[1]+(deps,))

 for k, v in collections.Counter(adverbs).items():

 adv_dict[k].add(v)

 # create a dictionary for the whole text, organizing the words by POS and record dependencies

 doc_dict = defaultdict(dict)

 for k, v in noun_dict.items():

 doc_dict['Noun'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i in

list(v) if type(i) == tuple]}})

 for k, v in verb_dict.items():

 doc_dict['Verb'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i in

list(v) if type(i) == tuple]}})

 for k, v in adj_dict.items():

 doc_dict['Adjective'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for

i in list(v) if type(i) == tuple]}})

 for k, v in adv_dict.items():

 doc_dict['Adverb'].update({k : {'weight': [i for i in list(v) if type(i) == int], 'deps': [i for i

in list(v) if type(i) == tuple]}})

 return doc_dict

A.2 “Mapping words to Cyc concepts” function

def mapping(inp_dict):

 from jpype import *

 # packages, classes and method from Java CYC Api

 client = JPackage("com.cyc.kb.client")

 base = JPackage("com.cyc.base")

 fact_impl = client.FactImpl

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 # for each key (word) and value (frequency count) in input dictionary:

 # use key in a query to map word to CYC concept

 # use value to assign weight to a concept

 for global_POS, global_values in inp_dict.iteritems():

 for word, attributes in global_values.iteritems():

 # keep track of words part-of-speech tags to use them in "denotation" function

 if global_POS == 'Noun':

 global_string = "nounStrings"

 elif global_POS == 'Verb':

 global_string = "verbStrings"

86

 elif global_POS == 'Adjective':

 global_string = "adjStrings"

 else:

 global_string = "adverbStrings"

 # construct query to map word to CYC concept through "denotation" function

 try:

 denotation_terms = access.converse().converseObject("(query-variable '?TERM '(#$and

(#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD #${2} {0}) (#$genls ?POS #${1}))

#$InferencePSC)".format(word, global_POS, global_string))

 except:

 print "CYC api error was raised, while mapping word: {0}".format(word)

 if str(denotation_terms) != "NIL":

 # go through each item in result set derived from a query

 for term in set(denotation_terms):

 # accumulate all weights of the mapped concept in case any words were mapped to it before

 c_weight = 0

 try:

 if '(' in str(term):

 initial_w = str(access.converse().converseObject("(query-variable '?IWEIGHT

'(#$conceptWeight {0} ?IWEIGHT) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$'))))

 else:

 initial_w = str((access.converse().converseObject("(query-variable '?IWEIGHT

'(#$conceptWeight #${0} ?IWEIGHT) #$InferencePSC)".format(term))))

 except:

 initial_w = "NIL"

 try:

 if initial_w != "NIL":

 c_weight = sum(map(lambda x: float(x), initial_w.strip('()').split()))

 for j in initial_w.strip('()').split():

 fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, j), "BaseKB").delete()

 fact_impl.findOrCreate("(conceptWeight {0} {1})".format(term, str(attributes['weight'][0] +

float(c_weight))), "BaseKB")

 except:

 print "CYC api error was raised, while updating weight for term {0}.".format(term)

 # map dependency words to CYC concepts

 # keep track of words part-of-speech tags to use them in "denotation" function

 for dep_attributes in attributes['deps']:

 # record only subject, predicate, object and modifier associations types

 if dep_attributes[0] in ['"nsubj"', '"obj"', '"subj-obj"', '"amod"', '"advmod"']:

 if dep_attributes[2] in ['"NOUN"', '"PROPN"']:

 head_string = "nounStrings"

 head_pos = 'Noun'

 elif dep_attributes[2] == '"VERB"':

 head_string = "verbStrings"

 head_pos = 'Verb'

 elif dep_attributes[2] == '"ADJ"':

 head_string = "adjStrings"

 head_pos = 'Adjective'

 elif dep_attributes[2] == '"ADV"':

 head_string = "adverbStrings"

 head_pos = 'Adverb'

 # construct query to map word from dependency to CYC concept through "denotation"

function

87

 head_denotation_terms = access.converse().converseObject("(query-variable '?HTERM

'(#$and (#$denotation ?HWORD ?HPOS ?HNUM ?HTERM) (#$wordForms ?HWORD #${2} {0})

(#$genls ?HPOS #${1})) #$InferencePSC)".format(dep_attributes[1], head_pos, head_string))

 # check if denotation head word is mapped to Cyc Concept

 if str(head_denotation_terms) != "NIL":

 # go through each item in result set derived from a query

 for head_term in set(head_denotation_terms):

 assoc_weight = 0

 try:

 if '(' in str(term) and '(' in str(head_term):

 assoc_init_w = str(access.converse().converseObject("(query-variable '?W

'(#$conceptAssociation {0} {1} {2} ?W) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$'), dep_attributes[0], str(head_term).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))))

 elif '(' in str(term) and '(' not in str(head_term):

 assoc_init_w = str(access.converse().converseObject("(query-variable '?W

'(#$conceptAssociation {0} {1} #${2} ?W) #$InferencePSC)".format(str(term).replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$'), dep_attributes[0], head_term)))

 elif '(' not in str(term) and '(' in str(head_term):

 assoc_init_w = str(access.converse().converseObject("(query-variable '?W

'(#$conceptAssociation #${0} {1} {2} ?W) #$InferencePSC)".format(term, dep_attributes[0],

str(head_term).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'))))

 else:

 assoc_init_w = str(access.converse().converseObject("(query-variable '?W

'(#$conceptAssociation #${0} {1} #${2} ?W) #$InferencePSC)".format(term, dep_attributes[0],

head_term)))

 except:

 assoc_init_w = "NIL"

 if assoc_init_w != "NIL":

 assoc_weight = sum(map(lambda x: float(x), assoc_init_w.strip('()').split()))

 for i in assoc_init_w.strip('()').split():

 fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term,

dep_attributes[0], head_term, i), "BaseKB").delete()

 total_mapped_weight = (assoc_weight + dep_attributes[3])

 # use TERM as a parameter to assign dependencies to mapped CYC concept

 try:

 fact_impl.findOrCreate("(conceptAssociation {0} {1} {2} {3})".format(term,

dep_attributes[0], head_term, str(total_mapped_weight)), "BaseKB")

 except:

 print "Association cannot be created in current microtheory."

 return

A.3 “Concepts propagation” function

def propagation():

 from jpype import *

 # packages, classes and method from Java CYC Api

 query = JPackage("com.cyc.query")

 client = JPackage("com.cyc.kb.client")

 kb = JPackage("com.cyc.kb")

 base = JPackage("com.cyc.base")

 query_factory = query.QueryFactory

 fact_impl = client.FactImpl

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 # query for CYC concepts that have assigned weights

88

 q_weight = query_factory.getQuery("(conceptWeight ?TERM1 ?CWEIGHT)")

 res_weight = q_weight.getResultSet()

 while res_weight.next():

 # filter TERM and CWEIGHT variables from query results output

 # TERM - CYC concept to be propagated

 # CWEIGHT - weight of CYC concept to be propagated

 term3 = str(res_weight.getKBObject("?TERM1", kb.KBIndividual))

 cweight = str(res_weight.getKBObject("?CWEIGHT", kb.KBIndividual))

 # generalization step

 # use "min-genls" CYC command to find closest parent of CYC concept to be generalized

 try:

 # use formatting scheme in case CYC concept is composite

 if '(' in term3:

 min_genls = access.converse().converseCycObject("(min-genls '{0})".format(term3.replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 min_genls = access.converse().converseCycObject("(min-genls #${0})".format(term3))

 except:

 print "CYC Api error - constant: {0} was not found".format(term3)

 # check if CYC concept was successfully generalized

 if len(min_genls) != 0:

 for i in range(len(min_genls)):

 # output generalized CYC concept

 print "1st level generalized term: {0}".format(min_genls[i])

 d_count = 0

 d_weight = 0

 q_gen_weight = query_factory.getQuery('(conceptDescendants {0} ?WEIGHT

?COUNT)'.format(min_genls[i]))

 res_sum_q_gen = q_gen_weight.getResultSet()

 while res_sum_q_gen.next():

 try:

 d_weight = str(res_sum_q_gen.getKBObject("?WEIGHT", kb.KBIndividual))

 d_count = str(res_sum_q_gen.getKBObject("?COUNT", kb.KBIndividual))

 fact_impl.findOrCreate("(conceptDescendants {0} {1} {2})".format(min_genls[i],

str(d_weight), str(d_count)), "BaseKB").delete()

 except:

 print "CYC Api error while propagating: {0}".format(min_genls[i])

 total_weight = (float(cweight) * 0.1 + float(d_weight))

 total_count = float(d_count) + 1

 # assign accumulated weight of generalized CYC concept (initial weight + propagated weight)

 fact_impl.findOrCreate("(conceptDescendants {0} {1} {2})".format(min_genls[i],

str(total_weight), str(total_count)), "BaseKB")

 # record ancestor-descendant relation

 fact_impl.findOrCreate("(conceptAncestorOf {0} {1})".format(min_genls[i], term3'), "BaseKB")

 return

A.4 “Concepts’ weight and relationships accumulation” function

def accumulate_descendants():

 from jpype import *

 # packages, classes and method from Java CYC Api

 query = JPackage("com.cyc.query")

 client = JPackage("com.cyc.kb.client")

 kb = JPackage("com.cyc.kb")

 base = JPackage("com.cyc.base")

89

 query_factory = query.QueryFactory

 fact_impl = client.FactImpl

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 # query for CYC concepts that have descendants

 concept_descendants_q = query_factory.getQuery("(conceptDescendants ?ANCTERM ?PROPWEIGHT

?DCOUNT)")

 concept_descendants = concept_descendants_q.getResultSet()

 while concept_descendants.next():

 ancestor_concept = str(concept_descendants.getKBObject("?ANCTERM", kb.KBIndividual))

 desc_weight = str(concept_descendants.getKBObject("?PROPWEIGHT", kb.KBIndividual))

 # calculate "descendants percentage" measure = # of concept descendants with weight / total # of

concept descendants

 try:

 if '(' in ancestor_concept:

 ancestor_mapped_desc = access.converse().converseObject("(query-variable '?M

'(#$conceptAncestorOf {0} ?M) #$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$')))

 ancestor_total_desc = access.converse().converseObject("(query-variable '?T '(#$genls ?T {0})

#$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 ancestor_mapped_desc = access.converse().converseObject("(query-variable '?M

'(#$conceptAncestorOf #${0} ?M) #$InferencePSC)".format(ancestor_concept))

 ancestor_total_desc = access.converse().converseObject("(query-variable '?T '(#$genls ?T #${0})

#$InferencePSC)".format(ancestor_concept))

 desc_percentage = float(len(ancestor_mapped_desc)) / float(len(ancestor_total_desc))

 except:

 print "CYC Api error while retrieving descendants for concept: {0}\n".format(ancestor_concept)

 ancestor_mapped_desc = 0

 ancestor_total_desc = 0

 desc_percentage = 0

 # if "descendants percentage" is higher than a threshold then add propagated descendants weight to

initial concept weight

 if desc_percentage > 0.5:

 # query for parent's initial concept weight

 try:

 if '(' in ancestor_concept:

 init_weight = str(access.converse().converseObject("(query-variable '?WEIGHT

'(#$conceptWeight ({0}) ?WEIGHT) #$InferencePSC '(:max-number

1))".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()')

 else:

 init_weight = str(access.converse().converseObject("(query-variable '?WEIGHT

'(#$conceptWeight #${0} ?WEIGHT) #$InferencePSC '(:max-number

1))".format(ancestor_concept))).strip('()')

 except:

 print "CYC Api error while retrieving weight for concept: {0}\n".format(ancestor_concept)

 init_weight = "NIL"

 # if parent has concept weight then accumulate it with its descendant propagated weight

 if init_weight != "NIL":

 total_dweight = float(init_weight) + float(desc_weight)

 fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(init_weight)),

"BaseKB").delete()

 fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, total_dweight),

"BaseKB")

 # if parent does not have concept weight then use its descendants propagated weight

 else:

90

 total_dweight = desc_weight

 fact_impl.findOrCreate("(conceptWeight {0} {1})".format(ancestor_concept, str(total_dweight)),

"BaseKB")

 # adding direct associations to propagated ancestors

 q_accum = query_factory.getQuery('(and (conceptAncestorOf {0} ?DESC) (conceptAssociation

?DESC ?ATYPE ?AHEAD ?DESW))'.format(ancestor_concept))

 res_q_accum = q_accum.getResultSet()

 while res_q_accum.next():

 desc_concept = str(res_q_accum.getKBObject("?DESC", kb.KBIndividual))

 desc_level = str(res_q_accum.getKBObject("?LEVEL", kb.KBIndividual))

 a_type = str(res_q_accum.getKBObject("?ATYPE", kb.KBIndividual))

 a_head = str(res_q_accum.getKBObject("?AHEAD", kb.KBIndividual))

 desc_a_weight = str(res_q_accum.getKBObject("?DESW", kb.KBIndividual))

 association_w = 0

 try:

 # handles multi-member concepts

 if '(' in ancestor_concept and '(' in a_head:

 anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW

'(#$conceptAssociation {0} \"{1}\" {2} ?ANCW) #$InferencePSC)".format(ancestor_concept.replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$'), a_type, a_head.replace(' (', '(').replace(' ', ' #$').replace('(', '

(#$')))).strip('()')

 elif '(' in ancestor_concept and '(' not in a_head:

 anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW

'(#$conceptAssociation {0} \"{1}\" #${2} ?ANCW) #$InferencePSC)".format(ancestor_concept.replace('

(', '(').replace(' ', ' #$').replace('(', ' (#$'), a_type, a_head))).strip('()')

 elif '(' not in ancestor_concept and '(' in a_head:

 anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW

'(#$conceptAssociation #${0} \"{1}\" {2} ?ANCW) #$InferencePSC)".format(ancestor_concept, a_type,

a_head.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()')

 else:

 anc_association_w = str(access.converse().converseObject("(query-variable '?ANCW

'(#$conceptAssociation #${0} \"{1}\" #${2} ?ANCW) #$InferencePSC)".format(ancestor_concept, a_type,

a_head))).strip('()')

 if anc_association_w != "NIL":

 association_w = anc_association_w

 fact_impl.findOrCreate('(conceptAssociation {0} "{1}" {2} {3})'.format(ancestor_concept,

a_type, a_head, anc_association_w), "BaseKB").delete()

 # use 0.1 scaling for propagation

 p_prop_weight = float(association_w) + 0.1 * float(desc_a_weight)

 # assign propagated weight to parent association

 fact_impl.findOrCreate(

 '(conceptAssociation {0} "{1}" {2} {3})'.format(ancestor_concept, a_type, a_head,

str(p_prop_weight)), "BaseKB")

 except:

 print "CYC Api error while mapping concept: {0}".format(ancestor_concept)

 # adding indirect associations to propagated ancestors

 q_m_accum = query_factory.getQuery('(and (conceptAncestorOf {0} ?MDESC)

(conceptAssociation ?MTERM ?MATYPE ?MDESC ?MDESW))'.format(ancestor_concept))

 res_q_m_accum = q_m_accum.getResultSet()

 while res_q_m_accum.next():

 m_desc_concept = str(res_q_m_accum.getKBObject("?MDESC", kb.KBIndividual))

 m_desc_level = str(res_q_m_accum.getKBObject("?MLEVEL", kb.KBIndividual))

 m_a_type = str(res_q_m_accum.getKBObject("?MATYPE", kb.KBIndividual))

 m_a_term = str(res_q_m_accum.getKBObject("?MTERM", kb.KBIndividual))

 m_desc_a_weight = str(res_q_m_accum.getKBObject("?MDESW", kb.KBIndividual))

 m_association_w = 0

91

 try:

 # handles multi-member concepts

 if '(' in ancestor_concept and '(' in m_a_term:

 m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW

'(#$conceptAssociation {2} \"{1}\" {0} ?MANCW) #$InferencePSC)".format(ancestor_concept.replace('

(', '(').replace(' ', ' #$').replace('(', ' (#$'), m_a_type, m_a_term.replace(' (', '(').replace(' ', ' #$').replace('(', '

(#$')))).strip('()')

 elif '(' in ancestor_concept and '(' not in m_a_term:

 m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW

'(#$conceptAssociation #${2} \"{1}\" {0} ?MANCW)

#$InferencePSC)".format(ancestor_concept.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$'), m_a_type,

m_a_term))).strip('()')

 elif '(' not in ancestor_concept and '(' in m_a_term:

 m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW

'(#$conceptAssociation {2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept,

m_a_type, m_a_term.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()')

 else:

 m_anc_association_w = str(access.converse().converseObject("(query-variable '?MANCW

'(#$conceptAssociation #${2} \"{1}\" #${0} ?MANCW) #$InferencePSC)".format(ancestor_concept,

m_a_type, m_a_term))).strip('()')

 if m_anc_association_w != "NIL":

 m_association_w = m_anc_association_w

 fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})'.format(ancestor_concept,

m_a_type, m_a_term, m_anc_association_w), "BaseKB").delete()

 # use 0.1 scaling for propagation

 m_p_prop_weight = float(m_association_w) + 0.1 * float(m_desc_a_weight)

 # assign propagated weight to parent association

 fact_impl.findOrCreate('(conceptAssociation {2} "{1}" {0} {3})'.format(ancestor_concept,

m_a_type, m_a_term, str(m_p_prop_weight)), "BaseKB")

 except:

 print "CYC Api error while mapping concept: {0}".format(m_a_term)

 return

A.5 “Main topics identification” function

def top_mts(n):

 from jpype import *

 # packages, classes and method from Java CYC Api

 base = JPackage("com.cyc.base")

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 mts_list = []

 terms = access.converse().converseObject("(new-cyc-query '(#$and (#$conceptWeight ?T ?W)

(#$definingMt ?T ?MT)) #$InferencePSC)")

 for i in range(len(terms)):

 mts_list.append(str(terms[i][2][1]))

 mtc_dict = defaultdict(set)

 for mt, mtc in Counter(mts_list).items():

 mtc_dict[mt] = mtc

 mts_count = OrderedDict(sorted(mtc_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:n])

 return mts_count

A.6 “Candidate subjects discovery” function

def top_subjects(mts, s):

92

 from jpype import *

 # packages, classes and method from Java CYC Api

 base = JPackage("com.cyc.base")

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 term_dict = {}

 for mt in mts:

 terms = access.converse().converseObject("(new-cyc-query '(#$and (#$definingMt ?T #${0})

(#$conceptWeight ?T ?W)) #$InferencePSC)".format(mt))

 for t in terms:

 term = str(t[0][1])

 weight = str(t[1][1])

 if term not in term_dict.keys():

 if '(' in term:

 try:

 subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation

{0} \"nsubj\" ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$')))

 tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation

{0} ?ATYPE ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term.replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$')))

 except:

 subj_associations = 0

 tot_associations = 0

 else:

 try:

 subj_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation

#${0} \"nsubj\" ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term))

 tot_associations = access.converse().converseObject("(cyc-query '(#$conceptAssociation

#${0} ?ATYPE ?SAHEAD ?SAWEIGHT) #$InferencePSC)".format(term))

 except:

 subj_associations = 0

 tot_associations = 0

 subj_ratio = float(len(subj_associations)) / float(len(tot_associations))

 rank = (float(weight) * subj_ratio)

 term_dict[term] = rank

 subject_terms = OrderedDict(sorted(term_dict.iteritems(), key=operator.itemgetter(1), reverse=True)[:s])

 return subject_terms

A.7 “New sentences generation” function

def summarization(path, subjects):

 from jpype import *

 # packages, classes and method from Java CYC Api

 query = JPackage("com.cyc.query")

 kb = JPackage("com.cyc.kb")

 base = JPackage("com.cyc.base")

 query_factory = query.QueryFactory

 cyc_access_mgr = base.CycAccessManager

 access = cyc_access_mgr.getCurrentAccess()

 # clear output file

 open(path, 'w').close()

 # empty dictionary to serve as a final summary

 summary = {}

 # SUBJECT

93

 # go through subject CYC concepts

 for k, v in subjects.iteritems():

 # find subject CYC concept natural language phrase

 try:

 if '(' in k:

 subj_nl = access.converse().converseString("(generate-phrase '{0})".format(k.replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 subj_nl = access.converse().converseString('(generate-phrase #${0})'.format(k))

 except:

 print "CYC Api error when retrieving NL phrase for subject: {0}".format(k)

 subj_nl = ''

 # SUBJECT-ADJECTIVE

 adj_count = {}

 # find all adjective associated with subject/object CYC concepts

 # query for CYC concepts with "amod" dependency type

 if '(' in term:

 # use formatting scheme in case CYC concept is composite

 adj_term = query_factory.getQuery('(conceptAssociation ?ADJTERM "amod"

{0} ?ADJW)'.format(term.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 adj_term = query_factory.getQuery('(conceptAssociation ?ADJTERM "amod"

#${0} ?ADJW)'.format(term))

 try:

 adj_term_res = adj_term.getResultSet()

 except:

 print 'CYC Api error when finding adjective for term: {0}'.format(term)

 while adj_term_res.next():

 # filter TERM1 and W1 variables from query results output

 # TERM1 - adjective CYC concept

 # W1 - adjective dependency weight

 adj = str(adj_term_res.getKBObject("?ADJTERM", kb.KBIndividual))

 adj_dep_w = str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual))

 # record adjective weight times its dependency weight

 adj_count[adj] = float(adj_dep_w)

 if len(adj_count) != 0:

 top_adjective = dict(sorted(adj_count.iteritems(), key=operator.itemgetter(1),

reverse=True)[:1])

 subj_adj_term = top_adjective.keys()[0]

 subj_adj_weight = top_adjective.values()[0]

 # derive natural language phrase of adjective CYC concept

 try:

 if '(' in subj_adj_term:

 subj_adj_nl = access.converse().converseString("(generate-

phrase '{0})".format(subj_adj_term. replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 subj_adj_nl = access.converse().converseString('(generate-

phrase #${0})'.format(subj_adj_term))

 except:

 print "CYC Api error when retrieving NL phrase for adjective:

{0}".format(subj_adj_term)

 subj_adj_nl = ''

 else:

 subj_adj_weight = 0

 subj_adj_term = None

 subj_adj_nl = ''

94

 # PREDICATE

 # query for CYC concepts with "nsubj" dependency type

 pred_count = {}

 if '(' in k:

 try:

 # use formatting scheme in case CYC concept is composite

 pred_term_query = query_factory.getQuery('(conceptAssociation {0} "nsubj" ?PTERM

?PW)'.format(k.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 except:

 print "CYC Api error when finding term: {0}".format(k)

 pred_term_query = 'NIL'

 else:

 pred_term_query = query_factory.getQuery('(conceptAssociation #${0} "nsubj" ?PTERM

?PW)'.format(k))

 pred_term_res = pred_term_query.getResultSet()

 while pred_term_res.next():

 # filter TERM1 and W1 variables from query results output

 # TERM1 - predicate CYC concept

 # W1 - predicate dependency weight

 pred = str(pred_term_res.getKBObject("?PTERM", kb.KBIndividual))

 pred_dep_w = str(pred_term_res.getKBObject("?PW", kb.KBIndividual))

 # record predicate weight times its dependency weight

 pred_count[pred] = float(pred_dep_w)

 top_predicate = OrderedDict(sorted(pred_count.iteritems(), key=operator.itemgetter(1),

reverse=True)[:5])

 for pred_keys, pred_values in top_predicate.iteritems():

 # generate natural language phrase for predicate with strongest (highest weight) relation

 if '(' in pred_keys:

 predicate_nl = access.converse().converseString("(generate-phrase

'{0})".format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 predicate_nl = access.converse().converseString('(generate-phrase #${0})'.format(pred_keys))

 # PREDICATE-ADVERB

 # find adverb CYC concepts assotiated with predicates concepts

 if '(' in pred_keys:

 adv_query = query_factory.getQuery('(conceptAssociation

?ADVTERM "advmod" {0} ?ADVW)'.format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 adv_query = query_factory.getQuery('(conceptAssociation

?ADVTERM "advmod" #${0} ?ADVW)'.format(pred_keys))

 adv_query_res = adv_query.getResultSet()

 adv_count = {}

 while adv_query_res.next():

 # filter TERM1 and W1 variables from query results output

 # TERM1 - adverb CYC concept

 # W1 - adverb dependency weight

 adv = str(adv_query_res.getKBObject("?ADVTERM",

kb.KBIndividual))

 adv_dep_w = str(adv_query_res.getKBObject("?ADVW",

kb.KBIndividual))

 # record adverb weight times its dependency weight

 adv_count[adv] = float(adv_dep_w)

 if len(adv_count) != 0:

 top_adverb = dict(sorted(adv_count.iteritems(),

key=operator.itemgetter(1), reverse=True)[:1])

 pred_adv_term = top_adverb.keys()[0]

95

 pred_adv_weight = top_adverb.values()[0]

 try:

 if '(' in pred_adv_term:

 pred_adv_nl =

access.converse().converseString("(generate-phrase '{0})".format(pred_adv_term.replace(' (', '(').replace(' ',

' #$').replace('(', ' (#$')))

 else:

 pred_adv_nl =

access.converse().converseString('(generate-phrase #${0})'.format(pred_adv_term))

 except:

 print "Natural language word for adverb '{0}' cannot be

derived.".format(pred_adv_term)

 pred_adv_nl = ''

 else:

 print "No adverb was found."

 pred_adv_weight = 0

 pred_adv_term = None

 pred_adv_nl = ''

 # OBJECT

 # check all possible object associations

 obj_count = {}

 # find objects concepts associated with predicates

 if '(' in pred_keys:

 try:

 # use formatting scheme in case CYC concept is composite

 q_obj = query_factory.getQuery('(conceptAssociation ?OTERM "obj" {0}

?OW)'.format(pred_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 except:

 print "CYC Api error when finding object for term: {0} via 'dobj'.".format(pred_keys)

 q_obj = 'NIL'

 else:

 q_obj = query_factory.getQuery('(conceptAssociation ?OTERM "obj" #${0}

?OW)'.format(pred_keys))

 q_obj_res = q_obj.getResultSet()

 # keep track of all objects associated with predicates

 while q_obj_res.next():

 obj = str(q_obj_res.getKBObject("?OTERM", kb.KBIndividual))

 obj_dep_w = str(q_obj_res.getKBObject("?OW", kb.KBIndividual))

 # find subject-object relation weight

 try:

 if '(' in k and '(' in obj:

 subj_obj_w = str(access.converse().converseObject("(query-variable

'?SOW'(#$conceptAssociation {0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(str(k).replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$'), str(obj).replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()')

 elif '(' in k and '(' not in obj:

 subj_obj_w = str(access.converse().converseObject("(query-variable

'?SOW'(#$conceptAssociation {0} \"subj-obj\" #${1} ?SOW) #$InferencePSC)".format(str(k).replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$'), obj))).strip('()')

 elif '(' not in k and '(' in obj:

 subj_obj_w = str(access.converse().converseObject("(query-variable

'?SOW'(#$conceptAssociation #${0} \"subj-obj\" {1} ?SOW) #$InferencePSC)".format(k, str(obj).replace('

(', '(').replace(' ', ' #$').replace('(', ' (#$')))).strip('()')

 else:

 subj_obj_w = str(access.converse().converseObject("(query-variable

'?SOW'(#$conceptAssociation #${0} \"subj-obj\" #${1} ?SOW) #$InferencePSC)".format(k,

obj))).strip('()')

96

 except:

 subj_obj_w = 0

 if subj_obj_w != "NIL":

 obj_rank = ((sum(map(lambda x: float(x), str(subj_obj_w).split()))) + float(obj_dep_w))

 else:

 obj_rank = float(obj_obj_rankdep_w)

 obj_count[obj] = float(obj_rank)

 if len(obj_count) != 0:

 top_object = OrderedDict(sorted(obj_count.iteritems(), key=operator.itemgetter(1),

reverse=True)[:5])

 for obj_keys, obj_values in top_object.iteritems():

 try:

 if '(' in obj_keys:

 object_nl = access.converse().converseString("(generate-phrase

'{0})".format(obj_keys.replace(' (', '(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 object_nl = access.converse().converseString('(generate-phrase #${0})'.format(obj_keys))

 except:

 print "CYC Api error when retrieving NL phrase for object: {0}".format(obj_keys)

 object_nl = ''

 # OBJECT-ADJECTIVE

 adj_count = {}

 # find all adjective associated with subject/object CYC

concepts

 # query for CYC concepts with "amod" dependency type

 if '(' in term:

 # use formatting scheme in case CYC concept is

composite

 adj_term =

query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" {0} ?ADJW)'.format(term.replace(' (',

'(').replace(' ', ' #$').replace('(', ' (#$')))

 else:

 adj_term =

query_factory.getQuery('(conceptAssociation ?ADJTERM "amod" #${0} ?ADJW)'.format(term))

 try:

 adj_term_res = adj_term.getResultSet()

 except:

 print 'CYC Api error when finding adjective for term:

{0}'.format(term)

 while adj_term_res.next():

 # filter TERM1 and W1 variables from query results

output

 # TERM1 - adjective CYC concept

 # W1 - adjective dependency weight

 adj = str(adj_term_res.getKBObject("?ADJTERM",

kb.KBIndividual))

 adj_dep_w =

str(adj_term_res.getKBObject("?ADJW", kb.KBIndividual))

 # record adjective weight times its dependency

weight

 adj_count[adj] = float(adj_dep_w)

 if len(adj_count) != 0:

 top_adjective = dict(sorted(adj_count.iteritems(),

key=operator.itemgetter(1), reverse=True)[:1])

 obj_adj_term = top_adjective.keys()[0]

 obj_adj_weight = top_adjective.values()[0]

97

 # derive natural language phrase of adjective CYC

concept

 try:

 if '(' in obj_adj_term:

 obj_adj_nl =

access.converse().converseString("(generate-phrase '{0})".format(obj_adj_term. replace(' (', '(').replace(' ', '

#$').replace('(', ' (#$')))

 else:

 obj_adj_nl =

access.converse().converseString('(generate-phrase #${0})'.format(obj_adj_term))

 except:

 print "CYC Api error when retrieving NL

phrase for adjective: {0}".format(obj_adj_term)

 obj_adj_nl = ''

 else:

 obj_adj_weight = 0

 obj_adj_term = None

 obj_adj_nl = ''

 # SUMMARY

 # record each Subject - Subject-Adjective - Predicate - Predicate-Adverb - Object - Object-

Adjective

 # into an output file as a newly created sentence

 with open(path, 'a') as f:

 f.write("{0} / {1} | {2} / {3} | {4} / {5} | {6} / {7} | {8} / {9} | {10} / {11}\n{12} | {13} |

{14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v, pred_adv_term,

pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys, obj_values,

subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl))

 else:

 obj_values = 0

 obj_keys = None

 object_nl = ''

 obj_adj_term = None

 obj_adj_weight = 0

 obj_adj_nl = ''

 with open(path, 'a') as f:

 f.write("{0} / {1} | {2} / {3} | {4} / {5} | {6} / {7} | {8} / {9} |

{10} / {11}\n{12} | {13} | {14} | {15} | {16} | {17}\n\n".format(subj_adj_term, subj_adj_weight, k, v,

pred_adv_term, pred_adv_weight, pred_keys, pred_values, obj_adj_term, obj_adj_weight, obj_keys,

obj_values, subj_adj_nl, subj_nl, pred_adv_nl, predicate_nl, obj_adj_nl, object_nl))

 return

98

DOCUMENTS USED FOR TESTING

99

B.1 “Dog” Wikipedia article.

The article was accessed in March 2018.

Figure B-1: Screenshot of the first page of “Dog” Wikipedia article.

100

B.2 “Computer” Wikipedia article.

The article was accessed in March 2018.

Figure B-2: Screenshot of the first page of “Computer” Wikipedia article.

101

B.3 “Hamburger” Wikipedia article.

The article was accessed in March 2018.

Figure B-3: Screenshot of the first page of “Hamburger” Wikipedia article.

102

B.4 “Grapefruit” Wikipedia article.

The article was accessed in March 2018.

Figure B-4: Screenshot of the first page of “Grapefruit” Wikipedia article.

103

B.5 “Grapefruit” Morton encyclopedia article.

The article was accessed in March 2018.

Figure B-5: Screenshot of the first page of “Grapefruit” Morton article.

104

B.6 “Grapefruit” New World Encyclopedia article.

The article was accessed in March 2018.

Figure B-6: Screenshot of the first page of “Grapefruit” New World Encyclopedia

article.

105

B.7 “Cat” Wikipedia article.

The article was accessed in March 2018.

Figure B-7: Screenshot of the first page of “Cat” Wikipedia article.

106

B.8 “Tiger” Wikipedia article.

The article was accessed in March 2018.

Figure B-8: Screenshot of the first page of “Tiger” Wikipedia article.

107

B.9 “Cougar” Wikipedia article.

The article was accessed in March 2018.

Figure B-9: Screenshot of the first page of “Cougar” Wikipedia article.

108

B.10 “Jaguar” Wikipedia article.

The article was accessed in March 2018.

Figure B-10: Screenshot of the first page of “Jaguar” Wikipedia article.

109

B.11 “Lion” Wikipedia article.

The article was accessed in March 2018.

Figure B-11: Screenshot of the first page of “Lion” Wikipedia article.

110

REFERENCES

[1] IBM Marketing Cloud, "10 Key Marketing Trends for 2017," 2017.

[2] A. Lincoln, "FYI: TMI: Toward a holistic social theory of information overload,"

First Monday, vol. 16, no. 3, 2011.

[3] G. Chakraborty and M. K. Pagolu, "Analysis of unstructured data: Applications of

text analytics and sentiment mining," SAS global forum, pp. 1288-2014,

2014.

[4] J. Hirschberg and C. D. Manning, "Advances in natural language processing," vol.

349, no. 6245, pp. 261-266, 2015.

[5] J.-g. Yao, X. Wan and J. Xiao, "Recent advances in document summarization,"

Knowledge and Information Systems, vol. 53, no. 2, pp. 297-336, 2017.

[6] J. C. K. Cheung and G. Penn, "Towards Robust Abstractive Multi-Document

Summarization: A Caseframe Analysis of Centrality and Domain," in

ACL, 2013.

[7] Cycorp, "Home," July 2017. [Online]. Available: http://www.cyc.com/. [Accessed

July 2017].

[8] A. Nenkova and K. McKeown, "A survey of text summarization techniques," in

Mining Text data, Boston, Springer, 2012, pp. 43-76.

[9] H. P. Luhn, "The automatic creation of literature abstracts," IBM Journal of

Research and Development, pp. 159-165, 1958.

[10] A. Nenkova and L. Vanderwende, "The impact of frequency on summarization,"

Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005,

vol. 101, 2005.

[11] W.-t. Yih, J. Goodman, L. Vanderwende and H. Suzuki, "Multi-Document

Summarization by Maximizing Informative Content-Words," in

Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence, Hyderabad, India, 2007.

111

[12] E. Hovy and C.-Y. Lin, "Automated text summarization and the SUMMARIST

system," in Proceedings of a workshop on held at Baltimore, Maryland:

October 13-15, Baltimore, Maryland, 1998.

[13] D. R. Radev, H. Jing, M. Styś and D. Tam, "Centroid-based summarization of

multiple documents," Information Processing & Management, vol. 40,

no. 6, pp. 919-938, 2004.

[14] E. Filatova and V. Hatzivassiloglou, "A formal model for information selection in

multi-sentence text extraction," in Proceedings of the 20th international

conference on Computational Linguistics, 2004.

[15] C.-Y. Lin and E. Hovy, "The automated acquisition of topic signatures for text

summarization," in Proceedings of the 18th conference on

Computational linguistics - Volume 1, Saarbrücken, Germany, 2000.

[16] J. M. Conroy, J. D. Schlesinger, J. Goldstein and D. P. O’leary, "Left-brain/right-

brain multi-document summarization," in In Proceedings of the

Document Understanding Conference (DUC 2004), 2004.

[17] S. Gupta, A. Nenkova and D. Jurafsky, "Measuring importance and query relevance

in topic-focused multi-document summarization," in Proceedings of the

45th Annual Meeting of the ACL on Interactive Poster and

Demonstration Sessions, 2007.

[18] R. Mihalcea and P. Tarau, "TextRank: Bringing Order into Text," in Proceedings of

the 2004 Conference on Empirical Methods in Natural Language

Processing, Barcelona, Spain, 2004.

[19] G. Erkan and D. Radev, "Lexrank: Graph-based lexical centrality as salience in text

summarization," Journal of Artificial Intelligence Research, no. 22, pp.

457-479, 2004.

[20] J. Leskovec, N. Milic-Frayling and M. Grobelnik, "Impact of Linguistic Analysis

on the Semantic Graph Coverage and Learning of Document Extracts,"

in Proceedings of the AAAI, 2005.

[21] X. Wan and J. Yang, "Improved affinity graph based multi-document

summarization," in Proceedings of the Human Language Technology

Conference of the NAACL, Companion Volume: Short Papers, 2006.

[22] J. Kupiec, J. Pedersen and F. Chen, "A trainable document summarizer," in

Proceedings of the 18th annual international ACM SIGIR conference on

Research and development in information retrieval, 1995.

112

[23] J. M. Conroy and D. P. O'Leary, "Text Summarization via Hidden Markov Models

and Pivoted QR," in Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information

retrieval, 2001.

[24] D. Shen, J.-T. Sun, H. Li, Q. Yang and Z. Chen, "Document Summarization Using

Conditional Random Fields," in Proceedings of International Joint

Conference on Artificial Intelligence, Hyderabad, India, 2007.

[25] M. Fuentes, E. Alfonseca and H. Rod, "Support vector machines for query-focused

summarization trained and evaluated on pyramid data," in Proceedings

of the 45th Annual Meeting of the ACL on Interactive Poster and

Demonstration Sessions, 2007.

[26] K.-F. Wong, M. Wu and W. Li, "Extractive summarization using supervised and

semi-supervised learning," in Proceedings of the 22nd International

Conference on Computational Linguistics-Volume 1, Manchester,

United Kingdom, 2008.

[27] R. Barzilay and M. Elhadad, "Using Lexical Chains for Text Summarization,"

Advances in automatic text summarization, pp. 111-121, 1999.

[28] H. G. Silber and K. F. McCoy, "Efficiently computed lexical chains as an

intermediate representation for automatic text summarization,"

Computational Linguistics, pp. 487-496, 2002.

[29] S. Ye, T.-S. Chua, M.-Y. Kan and L. Qui, "Document concept lattice for text

understanding and summarization," Information Processing &

Management, pp. 1643-1662, 2007.

[30] Y. Gong and X. Liu, "Generic text summarization using relevance measure and

latent semantic analysis," in Proceedings of the 24th annual

international ACM SIGIR conference on Research and development in

information retrieval, 2001.

[31] M. G. Ozsoy, I. Cicekli and F. Nur Alpaslan, "Text summarization of turkish texts

using latent semantic analysis," in Proceedings of the 23rd international

conference on computational linguistics, 2010.

[32] K. Filippova, "Multi-sentence compression: Finding shortest paths in word graphs,"

in Proceedings of the 23rd International Conference on Computational

Linguistics, 2010.

[33] E. Lloret and M. Palomar, "Analyzing the Use of Word Graphs for Abstractive Text

Summarization," in Proceedings of the First International Conference

113

on Advances in Information Mining and Management, Barcelona, Spain,

2011.

[34] I. F. Moawad and M. Aref, "Semantic Graph Reduction Approach for Abstractive

Text Summarization," in Computer Engineering & Systems (ICCES),

2012 Seventh International Conference on, 2012.

[35] L. Bing, P. Li, Y. Liao, W. Lam, W. Gu and R. J. Passonneau, "Abstractive multi-

document summarization," in Proceedings of the ACL-IJCNLP, 2015.

[36] S. Gerani, Y. Mehdad, G. Carenini, R. T. Ng and B. Nejat, "Abstractive

Summarization of Product Reviews Using Discourse Structure," in

EMNLP, 2014.

[37] F. Liu, J. Flanigan, S. Thomson, N. Sadeh and N. A. Smith, "Toward Abstractive

Summarization Using Semantic Representations," in Proceedings of the

North American Association, 2015.

[38] J. C. K. Cheung and G. Penn, "Unsupervised Sentence Enhancement for Automatic

Summarization," in EMNLP, 2015.

[39] P. S. Sajja and R. Akerkar, "Knowledge-based systems for development," in

Advanced Knowledge Based Systems: Model, Applications & Research,

2010, pp. 1-11.

[40] R. G. Smith, Knowledge-based systems: Concepts, techniques, examples, 1985.

[41] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. J. Miller, "Introduction to

WordNet: An on-line lexical database," International journal of

lexicography, pp. 235-244, 1990.

[42] R. Navigli and S. P. Ponzetto, "BabelNet: Building a very large multilingual

semantic network," in Proceedings of the 48th annual meeting of the

association for computational linguistics , 2010.

[43] H. Liu and P. Singh, "ConceptNet—a practical commonsense reasoning tool-kit,"

BT technology journal, pp. 211-226, 2004.

[44] Cycorp, "Cyc: Knowledge Base," 8 March 2018. [Online]. Available:

http://www.cyc.com/kb/. [Accessed 8 March 2018].

[45] E. Cambria and B. White, "Jumping NLP curves: A review of natural language

processing research," IEEE Computational intelligence magazine, vol. 2,

no. 9, pp. 48-57, 2014.

114

[46] D. Jurafsky and J. H. Martin, Speech and language processing, vol. 3, London:

Pearson, 2014.

[47] M. Honnibal and M. Johnson, "An Improved Non-monotonic Transition System for

Dependency Parsing," in Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, Lisbon, Portugal,

2015.

[48] JPype, "JPype - Java to Python integration," 2017. [Online]. Available:

http://jpype.sourceforge.net/. [Accessed July 2017].

[49] B. Choi and X. Huang, "Creating New Sentences to Summarize Documents," in

The 10th IASTED International Conference on Artificial Intelligence

and Application (AIA 2010), Innsbruck, Austria, 2010.

[50] P. Baxendale, "Machine-made index for technical literature—an experiment," IBM

Journal of Research and Development, pp. 354-361, 1958.

[51] H. Edmundson, "New methods in automatic extracting," Journal of the ACM, pp.

264-285, 1969.

	Automatic Document Summarization Using Knowledge Based System
	Recommended Citation

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 5-19-2018

	Automatic Document Summarization Using Knowledge Based System
	Andrey Timofeyev

	Louisiana Tech Dissertation Template - Word 2007-2010 Format

