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ABSTRACT 

Recent studies of heat-cured fly ash based green geopolymer concrete have shown 

its suitability for fabrication of structural members. Fabrication of these structural 

members requires continuous moderate heating (145°F) for 24 hrs, and an oven essential, 

for a large member can quickly turn into an energy guzzler, potentially eliminating the 

green credentials of the product. The proposed research involves the development of a 

frontal polymerization (FP) method that achieves rapid curing of geopolymer at ambient 

condition after short-term heat application. Initial work shows thermal FP in geopolymer 

is a possibility and might be a solution to the problem. The process includes blending of 

monomer, initiator, cross-linkers, and geopolymer slurry, which upon application of heat, 

polymerizes locally, and the reaction front moves forward to complete the procedure 

resulting in a solid finished product. Preliminary strength evaluation revealed the strength 

of FP cured geopolymer mortar specimens are compatible with traditional cement mortar 

samples. Therefore, frontally cured geopolymer has the potential to save significant time 

and energy required in the curing of geopolymer product and can create a new horizon in 

fly ash utilization, the waste often deserted in the environment as a landfill material. 

Therefore, the research has the potential in generating green credits and means for 

meeting federal requirements for reduced carbon footprints on federally-funded projects 

and save taxpayers’ money.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

The use of cementing materials to build structures is not a new concept. People 

have been using cementing materials to build houses and various other constructions. The 

discovery of cement has revolutionized the approach people have been using to construct 

buildings. Concrete is the mix prepared from cement, water, and aggregate along with 

filler material such as sand. With its high strength, durability and low maintenance 

feature, cement has been the dominant primary cementing material. 

Moreover, cement concrete can be cast to any chosen shape at the working site 

making it more desirable than any other material such as wood or steel that possesses 

abilities to be a building material. The use of concrete in construction has sky-rocketed so 

much these days that it is now second to water for the most utilized substance in the 

world. However, the production of cement imposes impacts on the environment. The 

heating of limestone (calcium carbonate) breaks down to lime (calcium oxide), a 

component of cement and releases carbon dioxide (CO2). This CO2 is responsible for 8% 

of total CO2 emissions (Eq.1). 

CaCO3(s)→CaO(s) +CO2(g) ………………………………………… Eq.1 

Besides emissions, cement production uses natural resources such as limestones, 

fuel fossil, and considerable energy. Attempts have been made to reduce this loss by 
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using alternative cementing materials such as blast furnace slag, silica fume and fly ash. 

This thesis/research focuses on the cementing material made up of fly ash.  

Fly ash is the by-product from a coal power plant and is often deserted with no or 

minimum use.  One of its green alternative applications is to make geopolymer concrete. 

Geopolymer concrete utilizes fly ash and slag along with alkaline activators which 

polymerize to form a hardened binder. The use of these concrete reduces the waste stocks 

and carbon emission from cement production. However, one of the challenges in using 

geopolymer is its requirement for high-temperature curing which is often fulfilled by an 

oven set to a certain temperature. This requirement not only imposes geopolymer to 

consume energy but also restricts its application to smaller structures that can fit into the 

oven. The work described in the following chapters will outline a possibility of a curing 

method that requires heat application in a small area for a short duration of time and has 

an ability to propagate throughout the body of the structure to offer a finished product. 

Implementation of this curing method into geopolymer eradicates its restriction of oven 

curing constraints and reduces carbon footprints to obtain green credentials. 

1.2 Objective 

The objective of this thesis is to provide a possible alternative curing method that can 

be used to eliminate the limitations possessed by a traditional geopolymer concrete. The 

next objective is to utilize industrial waste, fly ash, which is often abandoned into 

landfills. This not only reduces the waste stocks but also saves land areas required for 

desertion. The work shows a significant reduction in curing time needed to obtain a 

hardened product as well. This property opens up an application of geopolymer concrete 

that requires quick setting but an early full strength. Finally, this project discusses the 
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capabilities to cure using perpetual energy sources such as sunlight to make it greener and 

eventually eliminating environmental impacts and savings in energy. 

1.3 Thesis Organization 

In addition to this introductory chapter, the thesis has four more chapters: 

Literature review, Methods, Results, and Conclusions.  

Chapter 2 reviews the relevant literature on Cement Concrete (CC), Geopolymer 

Concrete (GPC) and FP technique. A review consisting of previous work and study 

performed by FP technique is presented along with an earlier application. 

Chapter 3 discusses the methods that were used to prepare the mix and create the 

specimen. Also, this chapter describes the procedure adopted to synthesize organic 

initiator Aliquat Persulfate (ALPS) through ionic exchange and a filtration process to 

remove the inhibitor from a monomer. In addition, multiple trials performed with various 

chemicals in different proportions are also tabulated alongside the outcome for each mix 

and are recorded in Appendix B. 

Chapter 4 discusses the results shown by the samples in terms of compressive 

strength. This chapter also compares the results for CC, GPC, and Frontally Polymerized 

Geopolymer Concrete (FPGPC) samples. It presents the Scanning Electron Microscopy 

(SEM) image protocol and analyzes the image produced for FPGPC samples. 

Chapter 5 presents the conclusion from the research presented herein and outlines 

the recommendations for future improvements and implementations of the research along 

with possible expansion of the study .
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Cement Concrete 

In the early days of Greek civilization, calcinated gypsum was used as a 

cementing material, whereas Romans used lime from limestone to build houses, which 

was the primary construction material that existed.  The development of early Portland 

cement started in the late 18
th

 Century in Britain. It consists mainly of Calcium Oxide 

(CaO), Silicon dioxide (SiO2), Aluminum Oxide (Al2O3), Ferric Oxide (Fe2O3), and 

Sulfur dioxide (SO2). 

 After its discovery, Ordinary Portland Cement (OPC) has been a significant 

construction material (concrete, mortar, and grouts) due to its high strength, workability, 

and ability to remain hardened from moisture. However, along with OPC’s versatility, its 

production procedure releases a considerable amount of CO2 in the atmosphere, 

contributing a significant role in the greenhouse effect. The developed countries are 

already concerned and some regulations regarding the limitation of CO2 are taken into 

consideration. The gas released while producing OPC is almost equal to 1.35 billion tons, 

which accounts for 7% of the total greenhouse gases [1]. Mehta recommended the use of 

less natural resources and energy will minimize the emission of CO2, thus producing 

environment-friendly concrete [2]. 
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 With various methods to reduce CO2, use of alternative energy sources, full or 

partial replacement of clinker with supplementary material and carbon capture and 

storage system are few of the most effective ones. Among the factors, the replacement of 

clinkers with inert filler materials such as limestone has proven to be the most practical 

approach [3]. 

 In addition to the release of CO2, the cement concrete requires 28-days curing 

time to gain its full strength. Hardening of cement is a hydration process which involves 

water, usually provided externally to cure the concrete mix. The optimum performance of 

OPC depends upon the curing time and temperature [3]. Compressive strength and 

sorptivity are two properties that can influence the durability of the structures [4]. Hazare 

et al. have mentioned curing time as a factor to determine sorptivity while Ozer et al. 

have investigated the sorptivity for different specimen having various air or water curing 

time and found that the curing time plays a significant role in sorptivity of OPC and 

requires a minimum curing of seven days to show any gain in strength [5], [6]. Studies 

have shown to have a reduction of 50% in compressive strength of the sample cured in 

water and air [7]. Furthermore, the sample cured over the water showed a progressive 

increase in compressive strength over a five year period, but the sample cured over air 

reached its peak at 28 days and remains constant [8]. 

2.2 Geopolymer Concrete 

GPC uses fly ash or slag in partial replacement with the OPC that acts as a binder 

in a concrete and has been introduced to subsidize the CO2 emission problem. It was first 

studied by the French researcher Davidovits with Kaolinite and the alkaline activator in 

1978 [9]. Several studies have indicated that the partial replacement (up to 30%) of 
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supplementary cementing materials such as microfine cement and stone dust with fly ash 

and slag can have a positive impact on the mechanical properties of the cement concrete 

[10], [11]. The replacement of this kind of microfine material on a high level into the 

specimen leads to having better workability. In addition to the workability, the specimens 

showed an increase in compressive strength for most of the samples as compared with the 

regular cement mix. Furthermore, the samples with the partial replacement of 15% 

microfine cement and 7.5% of stone dust were able to demonstrate higher split tensile 

strength, flexural strength, higher absorption of impact energy, higher pull out failure 

load, and higher modulus of elasticity [12]. However, the replacement of stone dust has 

to be limited, and with the proper amount it can help augment the mechanical properties 

through better hydration and improve the pore structure of the concrete [12], [13]. 

 Fly ash is the byproduct of the coal combustion plant and is abundantly used as 

landfill material. It is also known as coal ash or flue ash. Since 1998, fly ash production is 

more than 390 million tons per year and only less than 15% was used [14]. With the 

current development pace in countries like the US, China, and India, it can be easily 

predicted to hit at a high level. The ASTM C618 identifies two different types of fly ash 

(Class F and Class C) based on the presence of calcium oxide (CaO), silicon dioxide 

(SiO2), ferric oxide ( Fe2O3), and aluminum oxide (Al2O3). One major difference between 

the two types of fly ash is the amount of CaO present: Class F fly ash has less than 7% of 

CaO while Class C fly ash contains more than 20% of CaO in it [15]. This allows Class C 

fly ash to harden without having any activator while class F requires specific cementing 

material for hardening and gaining strength [16]. 
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  In addition, the former has a minimum of 70% of oxides by mass while the 

number is 50% for the latter. Besides the difference in contents, Class F fly ash is 

produced from the burning of mature anthracite or bituminous coal and is pozzolanic 

while Class C fly ash is produced from burning younger lignite or sub-bituminous coal 

and has cementitious properties along with pozzolanic properties [15].  

 Class F fly ash, when induced with Alkaline activators, forms an alumino-silica 

gel, which then binds with aggregates to form a hardened geopolymer concrete upon 

application of heat (140°F ~ 190°F) [17]. However, it has been studied that GPC can be 

cured in an ambient condition but requires longer curing time to reach the target strength. 

Most commonly utilized alkaline activators in GPC are Sodium Silicate (Na2SiO3) and 

Sodium Hydroxide (NaOH) or Potassium Hydroxide (KOH). For the best results, the 

solution should be mixed 24 hours before use, and the molarity of the NaOH used should 

be in the range of 8 M to 16 M. The proportions of the materials and their constituents 

can impact the workability and compressive strength of the geopolymer mix [18]. 

Furthermore, increasing the ratio of Na2SiO3 to NaOH from 0.5 to 2.5 increases viscosity 

and decreases the workability of the GPC. However, the ratio of Na2SiO3and NaOH is 

1:1.5 for the oven and 1:2 for ambient curing [19]. In another study by Chindaprasirt et 

al., the optimum ratio for the mix was found to be in the range of 0.67 to 1 [20]. 

 The calcium content present on the fly ash has a considerable influence in the 

bonding properties, setting time, workability, and strength of the concrete. With constant 

ratio for an alkaline solution to fly ash and Na2SiO3 to NaOH, the increment in water to 

fly ash ratio increases the workability and setting time with all ratios. Furthermore, the 

addition of water with precise ratios of alkaline solution to fly ash leads to higher 
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compressive strength, which is due to an increase in calcium silicate hydration from 

additional water [19]. Higher calcium content helps to form calcium silicate hydrate, 

aluminum modified calcium silicate and sodium aluminosilicate hydrate, which are 

responsible for the early age strength of the concrete, but it severely affects the 

workability and setting time of the concrete [20] - [22]. 

The presence of a high amount of calcium resulting in calcium silica hydration in 

a specimen allows it to harden and gain strength at ambient temperature [16]. However, 

Gomaa et al. conclude that the compressive strength of the oven cured samples were 

higher when compared with the samples cured at ambient temperature [19]. To increase 

the utilization of the fly ash in concrete, it must demonstrate the performance that is 

comparable to conventional Portland cement products. Studies recorded shows that high 

volume fly ash (HVFA) concrete replacing 60% of the OPC has outstanding mechanical 

properties and durability, even higher than the OPC Concrete [23]. Fly ash based GPC 

demonstrated other good vital properties like acid resistance, low creep, and low 

shrinkage [24]. 

The curing temperature, curing process, and the fineness of the fly ash content 

play a significant role in the development of compressive strength for the geopolymer. 

With proper curing temp (140°F ~ 190°F), the GPC can gain strength of 5690 ~ 7100 psi 

[25]. In another study conducted by Palomo et al., the compressive strength was not 

affected by the alkaline solution to fly ash ratio [26]. 

2.3 Frontal Polymerization 

 This is a process in which a monomer with the presence of an initiator cures into 

a polymer through propagating the reaction at the front due to thermal diffusion. It has a 
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wide range of application in rapid polymer synthesis and reduction in energy 

requirement. There are three different kinds of FPs: photo, isothermal, and thermal. 

The photo FP uses a photo-initiator, which has a high UV light absorbance and 

decomposes when exposed to the light forming free radical that carries the front forward 

[27]. Isothermal FP involves adding a seed of consequential polymer into a solution of 

monomer and initiator. The polymer should be soluble in the solution, which has a 

viscous region where the polymerization rate is higher due to the Norrish – Trommsdorff 

effect [28]. 

Chechilo et al. first studied thermal FP. This kind of FP generates heat, which 

carries the reaction forward making a chain of polymers. The reaction is divided into 

three different stages: Initiation, Propagation, and Termination. In the first stage, a radical 

heat is generated from the initiator with the application of external heat or energy source 

which attaches with the monomer to form a monomer radical, capable of growing into a 

chain of polymers by reacting with other nearby monomers (propagation). Finally, a 

stable bond is formed between two radicals leading the reaction to termination.  The 

study by Chechilo was conducted with methyl methacrylate (MMA) as a monomer and 

benzoyl peroxide as an initiator. Later, Pojman et al. revived the frontal polymerization 

and studied traveling of fronts in thermal free radical initiators over different kinds of 

monomers at ambient pressure [29]. 

The FP reaction can be varied over different temperature parameters and velocity 

of the front depending upon the type of monomer and its properties. The study conducted 

by Nason et al. on the multi-functional methacrylate induced by UV light finds 

Trimethylolpropane triacrylate (TMPTA) to have the shortest time to reach the peak 
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temperature and the highest velocity among the other monomers as well [30]. The front 

temperature and velocities increase by the addition of more initiators [31]. The unstable 

initiator decomposes faster with high temperatures. An experiment performed by 

Goldfeder et al. shows the effect of the initial temperature of the monomer in the reaction 

and initiator concentration in the maximum temperature of the front, final degree of 

conversion, and propagation velocity [32]. 

Peroxide when used as the initiator usually has a high temperature, and when a 

monomer with a low boiling point and an unstable initiator is used, the reaction produces 

a substantial amount of gas that forms bubble [33]. Application of pressure during the 

reaction is one of the techniques to eliminate bubble formation, but it was not found to be 

suitable for the study [33], [34]. Another approach is to use an initiator like Aliquat 

persulfate (APS) or some reactive monomer - initiator solution that can be used in high 

boiling solvent such as Dimethyl Sulfoxide (DMSO) or Di-methyl Formamide (DMF) to 

propagate the front in ambient pressure which produces few or no gas bubbles [35]. 

Acrylamide polymerization with ammonium, potassium, or sodium persulfate as an 

initiator propagates with no gas production [36], [37]. 
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CHAPTER 3 

 

METHODS 

3.1 Materials Used 

The chemicals that were used in the development of frontally polymerized 

geopolymer concrete were filtered MMA, TMPTA, DMSO, ALPS, and Na2SiO3. All the 

chemicals were obtained from Sigma Aldrich and used as it was received, except for 

ALPS and filtered MMA. ALPS was synthesized by ionic exchange from APS and 

Tricaprylmethylammonium Chloride (Aliquat 336®). The MMA received was filtered 

through with alumina column to remove Mequinol (MEHQ) inhibitor. In addition to the 

chemicals, Class F fly ash was used along with sand as a filler material. The sand passing 

through sieve 20 and retaining at sieve 50 was used to make the 2" × 4" cylindrical 

samples, which were used to evaluate for the compression strength. 

3.1.1 Synthesis of Aliquat Persulfate 

Materials required:  

 Tricaprylmethylammonium Chloride also known as Aliquat 336® 

 Ammonium Persulfate 228.2 g/mol 

 Diethyl ether 

 Water 

 Anhydrous Sodium carbonate 
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Procedure: 

 42.35 g APS was dissolved into 150 mL of DI water, then placed into an ice 

bath to cool. 

 50 g of Aliquat 336® was dissolved into 50 mL of diethyl ether. 

 The Aliquat-ether solution was placed in an ice bath on a magnetic stir plate. 

 The cold APS-water solution was slowly added as the Aliquat-ether solution 

was continuously stirred. The solution was covered and stirred in the ice bath 

for 30 minutes (Figure 3-1). 

 The solution was poured into a separatory funnel and allowed to stand until 

the organic and aqueous phases separated. The aqueous layer was removed, 

and the organic phase was placed back into the ice bath (Figure 3-2). 

 100 mL of cold DI water was added to the organic solution and stirred for 10 

minutes. The aqueous layer was removed with a separatory funnel. This 

procedure was repeated two times for a total of three items of washing. 

 After the third wash, the organic phase was decanted into an Erlenmeyer flask. 

Approximately, 2 grams of anhydrous sodium carbonate was added to remove 

any water in the organic phase.  

 The organic phase was placed into a 300 mL round bottom flask and roto-

vaped to remove ether from the solution (Figure 3-3). 
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Figure 3-1: Stirring of Aliquat-Ether Solution in an Ice Bath. 

   

Figure 3-2: Separation of Organic Phase Through a Separatory Funnel. 
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Figure 3-3: Rotovaping of the Mix to Remove Excess Ether Present. 

3.1.2 Filtration of MMA to Remove MEHQ Inhibitor  

A 50 ml burette is washed thoroughly with acetone to clean any residue of other 

chemicals before use. A small piece of cotton wool is added at the bottom of the alumina 

column to screen any alumina from passing into the filtered MMA. The setup is clamped 

with a funnel on top and MMA is poured and allowed to flow through the column (Figure 

3-4). The MMA dripping out of the alumina column is collected in a jar and stored before 

use.  

3.2 Chemical Properties and their Structures 

The description of various materials used along with their molecular formula is 

presented below. The chemical structure of the materials used can be found in Table 3-1. 

3.2.1 Geopolymer Mix 

3.2.1.1 Sodium Silicate (SS) 

SS is a general name for chemical compounds of silica and sodium with one of 

the following formulas: 
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 Na2xSiO2+x 

 (Na2O) x
.
 SiO2 

These compounds include sodium metasilicate, sodium orthosilicate, and sodium 

pyrosilicate. SS is generally a white or colorless powder that is soluble in water. When 

dissolved in water, it produces a basic or alkaline solution. It is used in a wide variety of 

industrial applications and is an important component of cement and silica materials. 

 

Figure 3-4: Setup to Remove MEHQ from MMA with Alumina Column. 

3.2.1.2 Fly Ash 

Fly ash is a product of coal combustion. Its chemical composition varies that 

contains SiO2, Al2O3, Fe2O3, and CaO. In addition to unburnt carbon, it may contain 

traces of metals such as arsenic, beryllium, boron, cadmium, chromium, cobalt, lead, 

manganese, mercury, molybdenum, selenium, strontium, thallium, and vanadium. Fly ash 

was previously a waste product of coal-fired power plants, but it is now used as a 

building material as a replacement for Portland cement. Fly ash is pozzolanic and can 
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form cement. Fly ash particles form in the air from exhaust gases and tend to be generally 

spherical, ranging from 0.5 to 300 μm (Figure 3-5). The XRF (X-ray fluorescence) results 

for Class F Fly ash has been listed in Figure 3-6. 

   

Figure 3-5: Class F Fly Ash. 

 

Figure 3-6: XRF Report of Fly Ash Used. 

3.2.1.3 Sand 

Sand is a naturally occurring quartz composed of SiO2. It may contain various 

other traces of minerals depending on source or location. The size of sand particles can 

vary widely, and it may also include other small fragments of mineral or biological 
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origins such as granite or mollusk shells. Sand is used as a precursor material in the 

production of glass, quartz, and silica.  

 

Figure 3-7: Sand Used as Filler Material. 

3.2.2 Monomer 

3.2.2.1 Methyl Methacrylate (MMA) 

MMA is an organic monomer with the chemical formula of CH2 = C (CH3) 

COOCH3 and a molecular weight of 100.12 g/mol. It is a methyl ester (CH3-O) of 

methacrylic acid, an industrially important component of many plastics. It is a clear 

liquid with a density of 0.94 g/cm and is miscible with water as well as most organic 

solvents. MMA is used for the synthesis of poly (methyl methacrylate) or PMMA. It is 

also used as a basis for other plastics and as a co-monomer for hybrid plastics such as 

styrene, vinyl, and hydrogels. 

 

Figure 3-8: Chemical Structure of MMA. 
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3.2.3 Crosslinker 

3.2.3.1 Trimethylolpropane Triacylate(TMPTA) 

TMPTA is a trifunctional monomer containing three acrylate functional groups. 

Its chemical formula is C15H10O6 and has a molecular weight of 236.32 g/mol. At a 

standard state (25°C, 1 atm), it is a clear liquid with a density of 1.06 g/cm. It is used as a 

crosslinking agent to interconnect polymer strands by covalent bonds. TMPTA can be 

blended with other monomers and subsequently copolymerized into a polymer matrix. 

The purpose of cross-linking polymers is to alter physical characteristics of a polymer 

such as strength, rigidity, swelling and melting point, or to combine attributes of different 

polymers. 

 

Figure 3-9: Chemical Structure of TMPTA. 

3.2.4 Solvent 

3.2.4.1 Dimethyl Sulfoxide (DMSO) 

DMSO is an organosulfur compound. Its chemical formula is (CH3)2SO with a 

molecular weight of 78.13 g/mol. It is a colorless liquid with a density of 1.1004 g/cm. It 

is a very commonly used polar aprotic solvent that can dissolve polar and nonpolar 

compounds and is miscible with most organic solvents and water. Aprotic polar solvents 

like DMSO have large dipole moments but do not have hydroxyl (-OH) or amine (-NH) 
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bonds and cannot hydrogen bond with themselves. DMSO is used as a solvent for 

chemical reactions involving salts and is relatively non-toxic, so it is widely used in 

biological applications. 

3.2.5 Initiator 

3.2.5.1 Aliquat Persulfate (ALPS) 

ALPS is synthesized from Aliquat 336® by substituting the negatively charged 

chlorine ion with a persulfate anion. The positively charged quaternary amine cation 

coordinates with the persulfate anion forming a new ionic liquid. The process is 

performed in a two-phase reaction scheme with an organic and an aqueous layer. The 

layers are agitated to allow transfer of the respective anions (Figure 3-11). After the 

reaction has completed, the layers are separated, and the organic layer is dried to remove 

water and rotovaped to remove the residual solvent. The resulting viscous liquid is 

translucent and pale yellow. The chemical formula is 2[C25H54N+].[S2O82-]. 

 

Figure 3-10: Chemical Structure of DMSO. 
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Figure 3-11: Schematic Drawing of the Ionic Exchange Reaction to Synthesize ALPS. 

3.2.5.2 Aliquat 336® 

Aliquat 336® is a quaternary ammonium salt. It has a chemical formula of 

C25H54N+Cl- and a molecular weight of 404.16 g/mol. It is a viscous liquid at 25°C 

with a density of 0.884 g/cm. It is an ionic liquid which is salt in a liquid state. It is 

widely used as a phase transfer catalyst. The chlorine anion can be substituted for many 

other negatively charged ions. The chemical structure of Aliquat 336® is shown in Figure 

3-12. 



21 

 

 

Figure 3-12: Chemical Structure of Aliquat 336®. 
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Table 3-1: List of Chemicals Used, their Chemical Formula and its Structure. 

Chemical Name 
Name 

Used 

Chemical 

Formula 
Chemical Structure 

Sodium Silicate SS Na2SiO3 

 

Methyl methacrylate MMA C5H8O2 

 

 

Trimethylolpropane 

Triacrylate 

TMPTA 
 

C15H20O6 
 

 

Dimethyl sulfoxide DMSO (CH3)2SO 

 

 

Aliquat persulfate 

 

ALPS 
2[C25H54N

+
]
.
 

[S2O8
2-

]. 

 

Tricaprylmethylammonium 

Chloride 

Aliquat 

336® 

C25H54N
+
Cl 

         

Acrylamide AAM C3H5NO 
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3.3 Preparation of Cylindrical Samples 

3.3.1 Frontally Polymerized Geopolymer Concrete Sample 

To evaluate the compressive strength for the frontally polymerized cylinders, 

seven samples of each were prepared in three batches to test for 28, seven and three days' 

strength. Filtered MMA and TMPTA in specific ratio were poured in a beaker and 

dissolved in DMSO to prepare the mix. The mixture was blended with the help of a shear 

mixer for about 10 minutes. Later, Na2SiO3 and ALPS was added into the beaker and 

stirred for another 10 minutes. The ratio was thoroughly mixed followed by adding fly 

ash and sand into the mixture to form a thick workable paste before pouring (Figure 

3-13).The mortar was prepared following the above steps and poured into a 2" × 4" 

cylinder mold and was tampered 50 times by a steel rod to ensure uniformity throughout 

the sample (Figure 3-14). The samples were then placed below the halogen lamp R7s 

(200 W, 120 V) for eight minutes. The heat produced from the lamp was used as a curing 

medium. It took almost 40 minutes for the whole sample to cure and harden (Figure 

3-16). The samples were stored for specified curing days before they can be tested for 

compressive strength.  

 

 



24 

 

    

Figure 3-13: Mixing of Chemicals with Sand and Fly Ash (Left), Cylindrical 

Molds to Prepare Samples (Right). 

`   

Figure 3-14: Tampering of the Mixture (Left), Mixture Poured into a Cylindrical 

Mold (Right). 
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Figure 3-15: Application of Heat through a Heat Lamp. 

 

Figure 3-16: Samples Obtained After Heat Application. 

3.3.2 Fly Ash Based Geopolymer Concrete 

Three batches of seven samples were prepared for 28, seven and three days' 

curing. GPC cylinders of 2" × 4" were prepared to test for compressive strength. The 

alkaline solution (i.e. Na2SiO3 and NaOH) was prepared with a ratio of two to one in a 

separate beaker by mixing it evenly for 5-10 minutes. The sand and fly ash of the same 

batch were used to prepare the samples to make the comparison more reasonable. The 

sand to fly ash ratio was three to one while the proportion of sand-fly ash to the alkaline 
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solution was 5.2:1. This ratio of 5.2 was concluded with multiple trials to make the mix 

workable and most suitable. This final mix was stirred well with the help of a mixture 

and poured in a cylinder mold and tampered 100 times to fill in any voids present (Figure 

3-18). After the mix was poured, the mold was wrapped in a plastic sheet to prevent 

evaporation and placed in a hot oven at 140o F for 24 hours before it could be tested for 

compression (Figure 3-20). 

  

Figure 3-17: Mixing of Sand, Fly Ash, and Alkaline Solution. 
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Figure 3-18: Pouring of the Mixture into Molds. 

  

Figure 3-19: Covering the Samples before Oven Curing. 

3.3.3 OPC Samples 

OPC Samples were prepared to have a relative study of compressive strength with 

the strength developed by the geopolymer and frontally polymerized cylinder. The 

samples were prepared with sand to cement ratio of three to one and a water content of 

0.48. The sand-cement and water were mixed with the help of a kitchen mixer and poured 

into the cylinder. The mix was tampered 100 times with a rod to ensure all the air voids 

are fulfilled (Figure 3-21). The samples were air dried for 24 hours and cured with tap 
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water for 28 days to gain the full strength. Three sets of seven cylinders are prepared for 

each batch to test the strength for 28, seven and three days (Figure 3-22). 

  

Figure 3-20: Placing of Samples in an Oven (Left), Prepared Samples 

(Right). 

  

Figure 3-21: Mixing of Cement, Sand, and Water. 
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Figure 3-22: Pouring of the Mixture in the Mold (Left) and Samples 

Obtained After Curing (Right). 

3.4 Selection and Optimization of the Mixer 

The experiment began with powdered Acrylamide (AAM) as a monomer and 

APS as an initiator because both the monomer and initiator were water soluble. One gram 

of Acrylamide powder was dissolved in an equal amount of water; 0.10 g of APS was 

added to the last and mixed for the next five minutes. Heat from the soldering iron rod 

was used to initiate the reaction. Polymerization was noticed along with the gas released 

due to decomposition of APS into ammonium ions. Also, the polymer produced was 

feeble and disintegrated quickly. Later, 0.10 g of MBAA was added as a cross-linker 

along with the acrylamide and dissolved into an equal amount of water.  The entire 

mixture was stirred for 15 minutes to ensure that all the components are dissolved 

completely. The solution was placed into the glass plate, and heat from the soldering iron 

rod was used to initiate the front. The reaction propagation was seen after a few seconds, 

and the final product looked robust than earlier. The problem with the mix was the front 

quenched without terminating the reaction.  
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The amount of MBAA and the initiator (APS) was increased further without 

changing the amount of water in the solution and mixed for 15 minutes. The mixer 

consisted of one gram of Acrylamide, MBAA, and APS with an equal amount of water. 

This produced a hazy thicker solution, which was poured into the glass plate and heat was 

applied at one end. Rapid frontal polymerization was noticed, but the reaction stopped 

upon removal of the heat source.  

After numerous attempts, the best amount that would carry the front and give the 

final robust product was one gram of acrylamide, MBAA, and 2.10 g of APS with one 

gram of water. The monomer was mixed 10 minutes using a shear mixture until 

completely dissolved. MBAA was added to the solution and mixed for another 10 

minutes without the initiator and an additional five minutes after the initiator was added. 

The much thicker paste was observed, and the mixture was placed on the glass plate. The 

tip of the iron rod acted as a heat source and was applied for a few seconds and removed 

after which the front carried forward on its own to give a brittle polymerized material.  

The final solution that functioned as a frontal polymerization was mixed with fly 

ash along with Na2SiO3 and NaOH. The ratio of fly ash to the alkaline was 0.35 while the 

ratio of Na2SiO3 to NaOH was two to one. The thick paste was formed while mixing all 

the chemicals (without NaOH) and fly ash. When introduced into the paste, NaOH would 

turn the paste into dry grains making it impossible to apply heat and see the 

polymerization. Hence, it was excluded from the fly ash mixture.  

For the next trial, 0.98 g of MBAA and Acrylamide was dissolved into an equal 

amount of water by stirring for about 10 minutes. Then, 1.30 g of Na2SiO3 was added to 

the mixture and stirred for an additional five minutes. After that, 2.06 g of APS was 



31 

 

added to the solution and mixed well. This thick solution was able to absorb 3.70 g of fly 

ash turning it into a workable paste that can be poured into a cubical mold. The heat was 

applied through the soldering rod for 10 to15 seconds, and polymerization was observed. 

Initial observation revealed a hard, smooth surfaced sample. Several similar specimens 

were prepared, and the results seemed identical (Figure 3-23). During multiple trials, it 

was found that the fly ash mortar had a very short pot life period of about five to 10 

minutes after the addition of the initiator. The specimens were then submerged into water 

to see if it remains intact with water contact. The samples slowly disintegrated and broke 

apart after a while.  

The monomer (AAM) was replaced with MMA rejected hereafter. Since MMA is 

an organic monomer, it was not able to dissolve APS into itself. Water was added to the 

solution to dissolve APS and MBAA. The ultimate combination contained MMA, 

MBAA, Water, SS, and APS. This mix was blended with fly ash, and heat was applied 

via soldering iron rod. The paste was thinner than before and polymerization was not 

observed and hence disregarded.  

MMA was found to have an inhibitor MEHQ into it, which might hinder the 

polymerization process. The MMA was made to pass through an alumina column to filter 

out the inhibitor and collected in a separate jar. ALPS was synthesized by ionic exchange 

and was used as the organic initiator because ammonium present in APS was substituted 

by aliquat which would reduce the formation of ammonium ions upon application of heat. 

TMPTA was identified as a suitable monomer and as a cross-linker for the 

polymerization process. 
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Early attempts included mixing of one gram of MMA and one gram of TMPTA 

for five minutes; 0.30 g of ALPS was added into the solution and mixed well for the next 

five minutes. The solution was poured in a capped test tube, and heat was applied at the 

bottom of the tube through a soldering iron rod. Polymerization was observed after 

multiple touches at a different location, and it took 47 seconds to complete the reaction. 

The same mixture was repeated with eight gram of fly ash and poured into a capped glass 

tube. Multiple touches from the rod tip were required and took almost five minutes to 

complete the reaction. The final product looked smooth and robust and remained intact 

when submerged into water. 

   

Figure 3-23: Specimen Prepared with Various Shapes. 

DMSO is an organic solvent introduced into the solution. One gram of DMSO 

was added at the beginning for the mixture without fly ash and poured into a capped test 

tube. The bottom of the tube was made in contact with the tip of the iron rod for a short 

period (almost eight seconds). The polymerization was observed and the whole reaction 

completed within 50 seconds.  The same mix was used for the next batch. The heat was 

provided via a heat lamp at the bottom side of the tube and the front traveled upwards 

after 20 seconds of heat applied and continued on its own to complete the reaction. 
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Sand was introduced into the mixture along with fly ash to prepare a thicker 

concrete paste. The sand was a sieve for uniformity. The sand was made to pass through 

no 20 sieves and retained at no 40 sieves after sieving it for 20 minutes. The percentage 

by weight was 8.98% for MMA, TMPTA, and ALPS, 4.49% of DMSO, 45.7% of Sand 

and 22.87% of fly ash. With each chemical added, it was mixed for five minutes using a 

kitchen mixer and was poured in the one inch cubical mold. Heat from the lamp was 

applied as a heat source for one and a half minutes and removed. The reaction took eight 

minutes to complete, and the final product was a solid cube. However, the solid cube had 

a rough surface and patchy at some locations (Figure 3-24). Thus, more fly ash was 

needed for a smoother surface. 

   

Figure 3-24: 2" × 2"× 2" Cube Sample with a Rough Surface. 

Na2SiO3 is one of the vital components in geopolymer in the mix. In the presence 

of heat, it binds with fly ash to form a solid geopolymer concrete. With its addition, the 

percentage of ratio was changed to 4.9% for MMA, TMPTA and ALPS, 2.1% of DMSO, 

39.1% of Sand, 42.6% fly ash, and 1.5% of sodium silicate. The mixer was added into 

two inch cubical mold and heat was applied from a heat lamp for eight minutes. The 
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reaction took about 45 minutes to complete and gave a smoother finish product, and thus 

was introduced into the mix (Figure 3-25). 

   

Figure 3-25: 2" × 2"× 2" Cube Sample with a Smoother Surface. 

The same ingredients percentage by weight was mixed and poured into a 2" × 4" 

cylinder mold. Heat from the lamp was operated for eight minutes, and the reaction took 

about 50 minutes to complete. The mold was torn apart, and a solid cylinder with a 

smooth surface was discovered. The ratio was found to be best working for frontal 

polymerization with sand and fly ash. Figure 3-26 shows some of the cylinder sample 

prepared with the ratio stated. Figure 3-29 to Figure 3-31 show various trials used to 

optimize the procedure. Table A- to Table A- have a summary of the combination of 

chemicals used in different ratios and the results observed.  

  

Figure 3-26: Frontally Polymerized 2" × 4" Cylinder. 
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3.5 Testing of Samples 

Testing of the samples was performed in accordance to ASTM C39. The samples 

were prepared with three different materials: cement, geopolymer, and frontally 

polymerized geopolymer cured for 28, seven, and three days were developed in different 

batches and stored separately. These samples, when they reached the number of curing 

days stated, were tested for their compressive strength. The compression test was 

conducted on an ADMET 300 Kips compression testing machine (Figure 3-1). The 

loading channel applied was 450 lb., and the home rate was 0.05 in/sec. The jog rate 

during the test was set to be 1.0 in/sec and the loading rate used was (35 ± 7) psi. 

  

Figure 3-27: Testing of Samples. 
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Figure 3-28: Samples After the Compressive Test. 

 

Figure 3-29: Polymerization Trials with Different Chemicals – I. 
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Figure 3-30: Polymerization Trials with Different Chemicals – II. 

 

Figure 3-31: Polymerization Trials with Different Chemicals – III. 
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CHAPTER 4 

 

RESULTS 

4.1 Compressive Strength 

Crushing the material in compression testing machine is the standardarized global 

method to test the material for compressive strength. It is one of the vital test performed 

for the material because it will determine the load the material can bear before failure. 

The samples prepared with different material for various curing periods were placed in 

between the plates of the compression testing machine and load was applied until the 

samples were crushed. The data for load, peak stress and modulus of elasticity were 

recorded for individual specimen. The data are tabulated below with the histogram for 

individual sample type. 

4.1.1 Frontally Polymerized Sample 

The compressive strength data for the samples after 28, seven and three days are 

listed in Table B- to Table B-. The average strength for the 28 days samples was 685 psi 

while the average strength for seven and three days was 876 psi and 910 psi, respectively. 

The strength of the samples seems to reduce by almost 33% from three days to 28 days 

period. The graph of the compressive strength for the individual sample is presented 

below for specific curing period. 
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Figure 4-1: 28 Days' Compressive Strength of FPGPC. 

         

Figure 4-2: Seven Days' Compressive Strength of FPGPC. 
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Figure 4-3: Three Days' Compressive Strength of FPGPC. 

4.1.2 Fly Ash Based Geopolymer Concrete 

Seven samples in three sets were prepared to test the compressive strength of the 

specimen for 28, seven and three days of curing period. From the test results, it was 

found that the average strength for the 28 days' samples was 2292 psi, while the average 

strength for seven and three days was found to be 3329 psi and 2817 psi. The strength of 

the samples seems to reduce by almost 45% from seven days to 28 days' curing period. 

However, the seven days' strength was higher by almost 18% when compared to three 

days' strength. The compressive strength data for the specimens is listed in Table B- to 

Table B- for 28, seven and three days of curing period, respectively. The histograms 

below show the peak stress for each curing period. 

 

 

 

750

800

850

900

950

1000

1050

1 2 3 4 5 6 7

P
ea

k
 S

tr
es

s 
(p

si
) 

Sample Number 

Compressive Strength of FPGPC at Three Days 



41 

 

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

P
ea

k
 S

tr
es

s 
(p

si
) 

Sample  Number 

Compressive Strength of GPC at 28 Days 

 

Figure 4-4: 28 Days' Compressive Strength of GPC. 

 

Figure 4-5: Seven Days' Compressive Strength of GPC. 
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Figure 4-6: Three Days' Compressive Strength of GPC. 

4.1.3 OPC Samples 

Seven Cement cylinders were prepared in three different batches to test for 28, 

seven and three days' strength. The results show that the average compressive strength of 

the samples cured for 28 days was 3150 psi, while the average strength for samples cured 

for seven days was found to be 2650 psi. Similarly, the strength cured by samples cured 

for three days was 1757 psi. The strength seemed to increase significantly in the early 

days but was stable after it reached close to 28 days. In addition to that, the strength was 

increased by about 45% from three days to 28 days curing period. The compressive 

strength data for the samples can be found in Table B- to Table B-. The graphs below 

show the peak stress for each curing period. 
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Figure 4-7: 28 Days' Compressive Strength of OPC. 

 

Figure 4-8: Seven Days' Compressive Strength of OPC. 

 

 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

P
ea

k
 S

tr
es

s 
(p

si
) 

Sample Number 

Compressive Strength of OPC at 28 Days 

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7

P
ea

k
 S

tr
es

s 
(p

si
) 

Sample Number 

Compressive Strength of OPC at Seven Days 



44 

 

 

Figure 4-9: Three Days' Compressive Strength for OPC. 

4.2 Comparison of Compressive Strength 

The compressive strength for three different sample types cured for 28 days is 

plotted in Figure 4-10. The graph shows 28 days' strength for OPC samples to be the 

highest among all followed by GPC and FPGPC samples.  

Figure 4-11 shows the average strength of the samples cured for seven days for 

the different samples. The strength for geopolymer and FPGPC samples were found to be 

increased compared to the 28 days' strength of the respective samples. 
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Figure 4-10: 28 Days' Average Compressive Strength for OPC, GPC, and 

FPGPC. 

 

Figure 4-11: Seven Days' Average Compressive Strength for OPC, GPC, and 

FPGPC. 

Similarly, Figure 4-12 shows an average compressive strength for samples cured 

for three days. The strength for cement concrete seems to decrease with a decrement in 

curing time. However, the geopolymer and FPGPC samples tend to increase the strength 

with lower curing time.  
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.  

Figure 4-12: Three Days' Average Compressive Strength Data for OPC, 

GPC, and FPGPC. 

4.3 SEM Images 

SEM produces images by exposing the surface of a sample to a focused beam of 

electrons. The electron beam interacts with the atoms of the sample and reflects electrons, 

emits secondary electrons, and produces electromagnetic radiation such as X-rays and 

cathodoluminescence. Each of these phenomena can be detected and analyzed by 

specialized techniques. In SEM, the signal is converted into digital images with a 

resolution between 1 nm to 20 nm. 

4.3.1 Description of SEM (Alfred Gunasekaran, Ph.D. IFM Resources) 

The AMRAY SEM (Model: 1830) is a low-resolution scanning electron 

microscope, currently fitted with a tungsten filament as the electron source. This SEM is 

generally operated at slightly higher electron beam energies (15–30 kV), and it has a 

resolution of ~ 5-10 nm under optimum conditions. The electron optical column is 

maintained at low pressures (< 10-6 Torr) by a turbo molecular pump and an ion pump. 

All the SEM controls are manual, and the alignment of the electron column can be easily 
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performed. The specimen chamber has a drawer-like design for loading specimens, and 

the working distance can be manually adjusted. This configuration allows for imaging 

both thick specimens and thin wafers in this SEM. The available X-Y motorized 

specimen stage facilitates locating the region of interest on the sample's surface. 

Capabilities: 

 Ordinary materials, such as metals, ceramics, polymers, and machined or 

stamped materials, concretes, and other solid materials can be imaged.  

 Elemental X-ray analysis can be performed, and the images can be captured in 

digital format.  

 Thick specimens with a height approximately 1.0 mm to 25 mm can be 

imaged. 

4.3.2 Sample Preparation Protocol 

The samples of frontally polymerized geopolymer concrete were organized by 

mounting strips of double adhesive sided conductive carbon tape upon a steel mounting 

stage. A granulated portion of the sample was dusted onto the adhesive surface. The stage 

mounted samples were then placed into the SEM and images were focused and balanced 

before recording. 

4.3.3 Sample Characterization 

The samples were found to contain spheres of various diameters and a granular 

aggregate (Figure 4-13). One of the components of the material was fly ash (Figure 4-15). 

Fly ash is a byproduct of coal burning in power plants. It forms in hot air from exhaust 

gases and aggregates into spherical structures. The granular aggregate is probably 
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composed of sand (silica) granules, small fly ash residue, and sodium silicate and organic 

polymers due to the frontal polymerization materials. 

 

Figure 4-13: SEM Image of the Sample at Showing Spheres of Various 

Diameter. 

Upon closer examination, it was found that the materials used in the preparation 

of the samples were not perfectly bonded but had smaller voids in between (Figure 4-14). 

These voids might be the cause for the samples to have low compressive strength in 

comparison to geopolymer or cement concrete. One of the reasons for the presence of 

voids might be due to the inability of the monomer or initiator to complete 

polymerization and form a solid polymer.  

Also, the fly ash spheres found in the samples seem to be isolated with the 

remaining cluster of polymerized samples (Figure 4-15). To overcome this limitation, 

bonding is required between fly ash spheres with a polymerized cluster which might be 

obtained through an additional chemical like trimethoxysilane that has shown capabilities 

to enhance internal bonding of fly ash spheres. 
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Figure 4-14: SEM Image Showing Voids Present in the Sample. 

 

Figure 4-15: SEM Image Showing an Isolated Polymerized Cluster and Fly Ash 

Sphere. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The early research and the experiment performed shows that the specimens cured 

by frontal polymerization technique can possess compressive strength comparable to 

geopolymer and cement concrete. From the study conducted, it was discovered that the 

strength of the specimen had an average compressive strength up to 910 psi, which is 

almost 50% of the strength developed by cement concrete when cured for three days. 

Also, the strength developed by the FPGPC for different curing period was relatively 

equal, which means it can gain early strength and does not depend upon the curing period 

to gain strength like CC.  Besides these advantages, the experiment has the following 

useful benefits: 

 The presented experiment reduces the curing time for a geopolymer concrete 

by a significant amount.  

 The mix prepared has good pot life and workability. 

 It can be blended with all sorts of different chemical such as magnesium 

hydroxide or sodium hydroxide to enhance its existing properties such as 

corrosion resistance, thermal resistance, or sulfate attack. 

 The sample had air pockets on the sides which may be one of the reasons for 

its low performance in compression (Figure 5-1). One of the reasons for this 
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might be the presence of residual ammonium in the synthesized ALPS. 

Repetitive washing of ALPS with distilled water should help to get rid of the 

residue. Also, MMA is a very volatile monomer which might have been 

another reason for the presence of voids in the sample. Choosing a different 

non-volatile monomer might help to have a better product  

 Any existing chemicals used in the experiments can be altered to create a 

product with better performance and finish. 

 Failure mode on the FPGPC samples were observed. Samples were spotted to 

have asymmetrical diagonal and vertical cracks along with complete crushing 

of samples from the bottom without a specific pattern of failure. One reason 

for this might be the friction along with the compressive force applied from 

the plates and the irregular voids present in the sample (Figure 5-2). 

 Bonding abilities can be tested with several monomers and crosslinkers such 

as Hexamethylene diacrylate, Polyethylene (glycol) diacrylate, 

Trimethylolpropane ethoxylate triacrylates, and Pentaerythritol tetraacrylate to 

get materials with different strengths (Table 5-1). 

5.2 Future Work and Implementation 

The samples created using FPGPC have shown possibilities to utilize the 

industrial wastes (fly ash) and form a solid material with strength capabilities. The study 

can be multi-dimensional with curing time, different proportion of monomer-initiator 

used, the volume of the cross-linker, and the type of filler material. However, this 

research only focuses on studying the possibilities with different monomer and initiator 

ratios with fly ash and sand as a filler material. 
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Figure 5-1: Gas Pockets Seen on the Prepared Samples. 

Table 5-1: Summary of Other Possible Monomers and Crosslinkers. 

No. Name of the Chemical Chemical Structure 

1 Hexamethylene Diacrylate 

 

2 Polyethylene (glycol) Diacrylate 

 

3 Trimethylolpropane Ethoxylate Triacrylates 

 

4 Pentaerythritol Tetraacrylate 

 
 

This study also emphasizes on curing the samples with a frontal polymerization 

technique, which has capabilities to propagate on its own after heat application for a short 

duration of time. This property integrated with the samples makes the process noble and 
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different. The study can be expanded with changes in the curing method such as UV Cure 

or Solar cure, where sunlight can be used as a heat source to start the chain reaction. 

Also, different monomer and initiator with reformed chemical properties can be added in 

the mix to obtain the desired results.  

 

Figure 5-2: Different Failure Pattern Observed in FPGPC Samples. 

Figure 5-3 below shows an early study performed with solar curing to prepare the 

sample. The process took almost 12 minutes to complete and was exposed to 

concentrated light passing through a hand lens for about six minutes to give a finished 

product. Curing the samples with solar energy and utilizing fly ash makes the process 

environment-friendly to produce Green Concrete. This process not only utilizes the waste 

products but also saves significant curing energy overcoming the limitation possessed by 

traditional geopolymer concrete. In addition, the method saves land area used for 

discarding fly ash and cuts off CO2 released during cement production to acquire the 

green credits. 
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Figure 5-3: Curing Possibilities of the Sample with Sunlight. 

Moreover, different chemicals can be integrated into the mix to obtain concrete 

with various properties. Some of the possibilities can be the addition of antibacterial 

chemicals to fight back against organics released in sewer lines, or chemicals that have 

abilities to sustain sulfate attack, prolonging the life of structures built, and overcoming 

some of the limitations of traditional concrete.  

Figure 5-4 shows a possibility of the research in developing modified geopolymer 

product that has superior durability, corrosion resistance properties and better finish along 

with faster curing time, which might prove to be a great alternative to the existing system 

for sewer and water mains or rapid pavement development.  



55 

 

  

Figure 5-4: Some Areas of Future Implementation. 

Other possibilities could be developing a 3D printing device integrated with a heat 

source that pour the modified concrete to the particular design and cure it simultaneously 

(Figure 5-5). The benefits of the study along with future possibilities can be summarized 

through Figure 5-6. 

   

Figure 5-5: Research Possibilities in 3D Printing.  
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Figure 5-6: Summary of Benefits and Future Potentials. 
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APPENDIX A  
 

SUMMARY OF OPTIMIZATION OF THE MIX 

Table A-1: Mix Trials. 

No. AAM AAM (aq) 𝐌𝐁𝐀𝐀 Water APS NaOH 

1* - 4.50 0.45 4.50 0.45 - 

2 - 2.25 0.45 - 0.45 - 

3 - 2.00 1.00 - 1.00 - 

4 - 3.50 0.45 - 0.45 - 

5 - 3.00 0.55 - 0.50 - 

6 - 3.50 0.47 - 0.45 - 

7 - 3.50 0.45 - 0.45 - 

8* - 4.50 0.45 - 0.45 - 

9* - 4.50 0.45 - 0.45 - 

10 4.50 - 0.45 4.50 0.45 - 

11 1.00 - 0.10 1.00 0.10 - 

12 1.00 - - 1.00 0.10 - 

13 1.00 - 1.00 0.10 0.10 1.00 

14 1.00 - - 1.00 0.10 1.00 

15 1.00 - 1.00 0.5 0.50 - 

16 1.00 - 1.00 1.00 1.00 - 

All units are in grams 

*Unsuccessful Trials  

              



58 

 

Table A-2: Mix Trials (Continued) 

No. AAM AAM (aq) 𝐌𝐁𝐀𝐀 Water APS FA 

17 1.00 - 1.50 1.00 0.50 - 

18 1.00 - 1.00 1.00 3.00 - 

19 1.00 - 1.00 1.00 2.25 - 

20 1.00 - 1.00 1.00 2.00 - 

21 1.00 - 1.00 1.00 2.15 - 

22 1.00 - 1.00 1.00 2.10 - 

23 1.00 - 1.00 1.00 2.10 - 

24 4.50 - 4.50 - 0.90 - 

25 1.00 - 1.00 - 1.00 - 

26 1.00 - 1.00 - 0.75 - 

27 1.00 - 1.00  0.60 - 

28 1.00 - 1.00 - 3.00 - 

29 1.96 - 1.96 1.96 4.12 - 

30* 1.00 - 1.00 - 2.10 20.00 

31 1.96 - 1.96 1.60 4.12 4.50 

32 1.96 - 1.96 1.50 4.00 - 

33 1.96 - 1.96 1.50 4.00 5.00 

34 1.96 - 1.96 1.50 3.80 - 

35 1.96 - 1.96 1.50 3.50 - 

All units are in grams             

*Unsuccessful Trials 
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Table A-3: Mix Trials (Continued) 

No. AAM 𝐌𝐁𝐀𝐀 Water APS FA SS DMSO MMA AA ALPS 

36 0.90 0.45 0.90 0.45 - - - - - - 

37 0.90 0.45 0.45 0.45 - 1.58 - - - - 

38 0.40 0.4 0.20 0.82 8.00 2.80 - - - - 

39 1.00 1.00 1.00 2.10 - 1.00 - - - - 

40 0.90 0.10 0.90 0.10 8.00 2.80 - - - - 

41 0.98 0.98 0.98 2.06 3.70 1.30 - - - - 

42 1.70 0.17 1.28 0.14 - - - - 0.80 - 

43 - 0.10 - 0.20 - - 1.00 1.00 - - 

44 0.50 0.05 - 0.10 22.00 7.64 0.50 - - - 

45 - 0.10 - 1.00 - - 1.00 - 1.00 - 

46 - 0.10 - 0.50 - - 1.00 - 1.00 - 

47 - 0.10 - 0.75 - - 1.00 - 1.00 - 

48 1.00 0.10 - 0.20 9.20 3.30 1.00 - - - 

49 1.00 0.10 - 0.20 7.50 - 1.00 - - - 

50 - 0.20 - - - - - 1.15 - 1.00 

51 - 0.50 - - - - - 1.22 - 1.00 

52 - 1.00 - - - - - 1.00 - 0.50 

53 - 0.70 - - - - - 1.00 - 0.50 

All units are in grams            

* Unsuccessful Trials 
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Table A-4: Mix Trials (Continued) 

No MBAA FA SS NaOH MMA ALPS 

54 0.50 - - - 1.00 0.50 

55 0.40 - - - 1.00 0.50 

56 0.40 - - - 1.00 0.40 

57* 0.40 8.60 2.00 1.00 1.00 0.50 

All units are in grams             

*Unsuccessful Trials 
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APPENDIX B  
 

COMPRESSIVE STRENGTH DATA 

Table B-1: 28 Days' Compressive Strength Data for FPGPC. 

Sample Weight (lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 433 2,820 897 27,518 

2 410 1,260 402 18,088 

3 434 1,520 484 43,057 

4 411 2,050 652 36,879 

5 430 2,620 835 23,898 

6 434 2,230 710 34,232 

7 413 2,570 818 39,579 

Average 424 2,153 685 31,893 
 

Table B-2: Seven Days' Compressive Strength Data for FPGPC. 

Sample Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 412 3,230 1,027 72,645 

2 410 3,420 1,087 69,210 

3 414 3,060 973 90,050 

4 415 2,110 672 39,795 

5 416 2,670 851 62,755 

6 415 2,400 764 59,790 

7 415 2,380 756 42,745 

Average 414 2,753 876 62,427 
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Table B-3: Three Days' Compressive Strength Data for FPGPC. 

Sample  Weight(lb.) Load (lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 407 2,730 869 57,865 

2 411 2,770 882 63,518 

3 416 2,700 859 62,420 

4 413 2,830 902 77,914 

5 404 2,990 953 79,163 

6 400 2,880 917 64,384 

7 408 3,100 988 66,042 

Average 408 2,857 910 67,329 
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Table B-4: 28 Days' Compressive Strength Data for GPC. 

Sample  Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 487 6,600 2,101 134,051 

2 477 6,550 2,083 161,723 

3 476 7,850 2,500 300,659 

4 478 6,700 2,132 177,865 

5 477 8,010 2,579 278,783 

6 456 7,930 2,524 130,435 

7 462 6,670 2,123 120,127 

Average 473 7,187 2,292 186,235 
 

Table B-5: Seven Days' Compressive Strength Data for GPC. 

Sample Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 431 8,660 3,381 128,729 

2 424 7,430 3,843 148,282 

3 419 10,030 3,716 158,972 

4 413 7,610 3,764 142,789 

5 422 9,420 1,205 124,708 

6 430 9,980 5,150 191,137 

7 422 8,820 2,241 84,021 

Average 423 8,850 3,329 139,805 
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Table B-6: Three Days' Compressive Strength Data for GPC. 

Sample  Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 430 8,543 2,755 118,278 

2 424 7,210 2,365 139,567 

3 419 9,980 3,192 144,812 

4 413 7,325 2,424 136,611 

5 422 8,975 2,998 114,254 

6 430 9,858 3,176 149,752 

7 422 8,627 2,807 110,560 

Average 423 8,645 2,817 130,548 
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Table B-7: 28 Days' Compressive Strength Data for OPC. 

Sample  Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 431 8,970 2,856 285,259 

2 439 9,240 2,942 224,654 

3 433 9,170 2,920 354,754 

4 429 9,330 2,969 203,145 

5 440 8,600 2,730 642,655 

6 437 12,080 3,846 816,781 

7 437 11,890 3,786 383,183 

Average 435 9,897 3,150 415,776 
 

Table B-8: Seven Days' Compressive Strength Data for OPC. 

Sample  Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 431 8,410 2,678 208,100 

2 439 9,790 3,115 222,462 

3 432 6,150 1,958 174,284 

4 439 6,420 2,043 181,227 

5 440 11,110 3,535 279,015 

6 444 8,910 2,836 195,106 

7 440 6,490 2,067 276,029 

Average 438 8,183 2,605 219,460 
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Table B-9: Three Days' Compressive Strength Data for OPC. 

Sample  Weight(lb.) Load(lb.) Peak Stress(psi) Modulus of Elasticity(psi) 

1 444 7,900 2,514 330,336 

2 442 5,800 1,872 460,130 

3 441 9,180 2,923 392,188 

4 439 6,080 1,936 308,378 

5 442 3,320 1,056 108,653 

6 443 2,540 810 491,406 

7 441 3,720 1,185 168,102 

Average 442 5,506 1,757 322,742 
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