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ABSTRACT 

This work presents a novel counter-flow design for thermal stabilization of 

microfluidic thermal reactors. In these reactors, precise control of temperature of the 

liquid sample is achieved by moving the liquid sample through the thermal zones 

established ideally through the conduction in the solid material of the device. The goal 

here is to establish a linear thermal distribution when there is no flow and to minimize the 

temperature change at flow condition. External convection as well as internal flow- 

induced effects influence the prescribed thermal distribution. The counter-flow thermal 

gradient device developed in this study is capable of both stabilizing the thermal 

disturbance caused by the flow as well as establishing a significantly linear distribution.  

A temperature ramp rate of up to 102 ºC/sec was achieved for a 30 ml/hr flow rate. This 

configuration removes the obstacles in the way of performing temperature sensitive 

biological processes such as PCR and DNA melt analysis at remarkably shorter time. 

Mathematical modeling including the analytical models as well as simulations 

was performed for a better understanding of the transport phenomena occurring in the 

designed microfluidic devices. External convection impact on the uniformity and 

linearity of the thermal distribution and the ways for minimizing it were investigated 

experimentally, analytically, and numerically. Also, the dissipation of a small thermal 

event generated from an exothermic mixing in a continuous flow thermal sensing system 



iv 

was investigated, and a novel numerical model was developed for suggesting the 

optimum location for sensing the heat using a thermoelectric sensor.  
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CHAPTER 1 

 

INTRODUCTION 
 

The focus of this study is on improving the thermal performance of a microflow 

thermal reactor. Such a class of reactors works under the following principle: fluids 

flowing through a microchannel experience heating and/or cooling by contact with the 

solid walls, which are maintained under a precisely controlled spatial temperature 

distribution. A complex medley of thermal effects contributes to this performance, such 

as conduction through the solid material in which the microchannel is embedded, ambient 

convection around the microdevice, and advection/convection/conduction inside the 

microchannels. The focus of this project contains two parts: #1) achieving a known and 

controllable linear temperature distribution across the microchannel region of the 

microdevice that is stable in time under no-flow conditions, and #2) predicting and 

minimizing any changes in this temperature distribution caused by microchannel flow.   

The emergence of microfluidics is a product of the miniaturization technologies 

developed originally for the semiconductor industry. Microfluidic processing methods 

and technologies have been embraced especially in the biological and chemical fields for 

operational advantages such as the reduced sample size and the superior control over the 

fluid handling. However the development was not limited only to improving these 

aspects, but also in the integration of microfluidics with other proportionally miniaturized 

components toward the direction of developing small systems and subsequently portable 
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devices capable of performing multiple tasks. Lab-on-a-chip devices are a representative 

of this class resembling a small laboratory for performing the biological or chemical 

processes and analyzing the outcome. Although the excellent control over the flow and 

transport of mass due to the small size and the laminar nature of the flow seem to be the 

most fascinating characteristic of microfluidics, precise control over the temperature of 

the fluid is a crucial part of many biomedical and chemical applications. Unfortunately, 

the impact of flow-induced effects has been largely ignored within the scientific 

community, although this can be quite severe depending on the thermal properties of the 

materials used in lab-on-a-chip devices. This prevailing ignorance is likely due to the 

difficulty of observing microscale thermal behavior, as well as the false assumption that 

fluid flow at the microscale does not influence the broad thermal state of the 

microsystem.  

1.1 Precision Microfluidic Temperature Control via Spatial Thermal Non-

uniformities 

Suppose that a plug of fluid with infinite thermal diffusivity and no internal heat 

generation is flowing through a channel (or pipe) with velocity    , and that the channel 

walls experience a steady-state temperature field         The temperature of the liquid is 

going to be the same as the temperature of the field. The temperature of the liquid and its 

temporal change are:  

                      
   

  
             

Eq. 1-1 

So, instead of heating the fluid and waiting for the equilibrium to be achieved, one can 

induce a rapid thermal change by either moving the fluid at a very high flow rate or 
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moving it at lower velocity but in a steeper thermal gradient. Thus, information about the 

local temperature of the field does not by itself provide the temperature of the fluids, but 

it defines the temporal temperature change when the velocity is known as well. This is 

the idea behind the spatial heating of a flowing liquid. Therefore, precise control over the 

temperature map along with the precise control over the velocity (both magnitude and 

direction) allows the precise control over the temperature of the fluid.  

1.2 Thermal Uncertainty Due to Gradient Non-linearity 

In practice, the temperature field will be comprised of either: 

 isothermal zones of dissimilar temperatures with gradients between them, or  

 one or more gradient zones, with no isothermal regions.  

The small size of the microfluidic chips allows rapid and customized thermal 

distribution in the solid, and also makes it challenging to characterize the local 

temperature distribution. For this reason, a complex thermal distribution in the solid 

makes it difficult to predict or measure the local temperature of the fluid. The simplest 

multi-temperature configuration is a single linear (in 1D) thermal gradient. This not only 

reduces the complexity of quantifying the temperature with precision at even the sub-

millimeter scale, but also implies simple and known boundary conditions to the fluid: 

constant temperature, when the fluid moves normally to the gradient and constant heat 

flux when the fluid moves parallel to the gradient.  

Theoretically, a steady-state linear thermal gradient can be established by 

attaching two heaters to the two ends of a solid block. However, the ideal linear gradient 

can be distorted when the material is exposed to the external convection. The extent of 

this distortion can be evaluated using the non-dimensional Biot number: 
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Eq. 1-2 

where, h is the convection coefficient, L is the characteristic length, and k is the thermal 

conductivity of the solid. For Bi<<1, the thermal distribution is predominantly governed 

by the conduction resulting in a linear thermal gradient. 

Additionally, the condition described in the previous section 1.1 is an ideal 

scenario considering the fluid as a 1-D entity; in reality, the thermal conductivity of most 

fluids is low (0.6 w/m
2·K for water) and therefore, the assumption of uniform distribution 

is not valid even at the low-velocity laminar flow. Furthermore, under flow conditions, 

the physical properties of the fluid, its velocity, thermal boundary condition and even the 

distance from the inlet of the channel all contribute to a 2-D or 3-D thermal distribution 

in the flow. The temperature of the fluid in contact with the channel wall is the same as 

the local temperature of the wall dictated by the thermal field. However, the temperature 

of the fluid within the channel but NOT in contact with the wall is different. This is due 

to both the velocity profile and the slow molecular diffusion in the cross section of the 

channel. The impactful parameters for the distribution of the fluid can be evaluated from 

the fully-developed solution of internal flow in a circular channel with constant Q 

boundary condition [1]: 

      
  

  

    
 

 
 
   

  
  

Eq. 1-3 

where    is the wall temperature (solid temperature),    and     are the mean velocity 

and mean temperature of the flow, and   is the fluid thermal diffusivity. This equation 

suggests that the temperature variation within a cross-section of the channel is small 

when the mean velocity is low, thermal diffusivity   is high, or the hydraulic diameter of 



5 

the channel is small. Thus, the miniaturization of the flow path through the 

implementation of microfluidic devices and technologies provides significant thermal 

control and stability. However, the degree to which miniaturization can be achieved 

remains limited by any manufacturing constraints as well as any interface issues with the 

other fluidic or detection elements of the system.  

 Despite all the imperfections, as long as the temperature field is stable and known, 

a sample fluid experiences a stable but non-linear spatial temperature as it travels in the 

microchannel.   

1.3 Thermal Uncertainty Due to Internal Advection Caused by Flow 

In all the analysis described in the section 1.2 and 1.3, the assumption was that the 

temperature of the microfluidic device (solid substrate) is not affected by the flow. This 

assumption is reasonable when the thermal mass of the fluid is very small (e.g. a plug of 

fluid in the channel) as long as the substrate has a high thermal conductivity. However, 

this is not typical among microfluidic devices and particularly in biomedical microfluidic 

applications. Therefore, it is important to consider the mutual influence of the fluid on the 

solid as well as the solid on the fluid. The importance of the fluid increases with the flow 

rate. The impact of the fluid on distortion of the solid thermal distribution was 

demonstrated both experimentally and numerically by Crews et al [2] .They also showed 

that counter-flow configuration can reduce this effect. Thomas et al  [3] conducted a 

parametric study to investigate the important operational parameters on a continuous flow 

thermal gradient with a serpentine microchannel of 500 x 500 µm cross section. They 

demonstrated that flow rate is the most significant factor that affects the thermal stability 

of the device.  
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1.4 Advantages of Linear Thermal Gradient 

Microfluidic thermal reactors are commonly designed with varied thermal zone 

configurations. The focus of this dissertation is on the configuration that consists of a 

single thermal zone characterized by a steady-state and linear 1-dimensional (1-D) 

temperature gradient. This is considered the most desirable for the following three 

reasons: 

1. Fluid flowing with a constant velocity with respect to the orientation of a linear 

thermal gradient will experience iso-flux heat transfer. Other than the 

conventional quasi-equilibrium case, which is either slow or inaccurate (never 

neither), iso-flux heat transfer is the only case that can be solved analytically.  

2. A linear thermal distribution is the most predictable spatial thermal map. Being 

linear, the temperature at any location within the microdevice can be interpolated 

with high precision from only two embedded temperature sensors that bind the 

region of interest. This is especially important when fluorescence imaging 

techniques are integrated with the thermal map of the device [4].  

3. A linear gradient is the widest thermal distribution that can be established through 

conduction (without internal heat generation). Such a distribution allows 

maximum usage of the microfluidic chip and is of particular importance when 

optical characterization techniques are involved. 

1.5 Applications of Thermal Gradient Microfluidic Temperature Control 

1.5.1 Continuous-Flow PCR 

The polymerase chain reaction (PCR) is the most universal laboratory process in 

the field of molecular biology. PCR is a biological reaction for amplifying the DNA. PCR 
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can be done within microscale thermal reactors at a dramatically shorter time due to 

intrinsic advantages of microfluidics. It can be performed on well-based or on  

continuous  flow  PCR  chips [5].  Continuous-flow PCR was first developed on a 

microfluidic chip by Kopp et al. [6].  Three heaters were used to maintain three iso-

thermal zones.  Other researchers modified  this  system  by  using  different  geometry  

[7]  or  chip  material [8].  Cross talk between different thermal zones is the major 

problem with this design, as it restricts further device miniaturization and also cannot 

abide high flow rates [2, 5]. In other words, isolating different temperature zones is 

challenging and not ideal. 

In contrast, Crews et al. [9] took advantage of the cross talk between the different 

zones by designing a single thermal zone controlled by two heaters, thereby dismissing 

the need for isolation and additional heater control. Moreover, customized thermal ramp 

rates consistent with the kinetic of each PCR step was achieved through the smart design 

of the microchannel (defining the relative velocity of the fluid with respect to the 

gradient).  

1.5.2 Continuous-Flow Melt Analysis 

The integration of analytical components and these microfluidic devices is a 

fundamental aspect of lab-on-a-chip system development. For example, Lagally et al. 

have integrated capillary electrophoresis to analyze the PCR product [10]; Nakayama et 

al. have used fluorescence imaging technique to characterize the amplification result of 

the PCR on chip [11]; For spatial PCR – which can occur an order of magnitude faster 

due to the gradient thermocycling – the analysis of the PCR product can be achieved only 

if the fluorescent and the thermal map of the microdevice are correlated. Crews et al .[4] 
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performed the simultaneous PCR and melt analysis during the DNA amplification by 

continuously observing the fluorescence and correlating the temperature/fluorescence at 

each cycle. This "spatial" melt analysis is the alternative of time-domain melt analysis 

[12] realized only by accurate spatial thermal heating of the fluid in the thermal gradient 

system. 

1.5.3 Iso-flux Calorimetry 

The concept of a stable linear thermal gradient is a key step toward the realization 

of a microfluidic calorimeter that has the ability of sensing a small thermal event taking 

place within a large thermal gradient. The distinct anisotropic design of a thin-film 

thermoelectric sensor proposed and applied by Crews et al. [13] has proven such a 

capability. Thin film thermopile sensors are MEMS sensors operating based on the 

Seebeck effect, and they convert the temperature difference between each pair of 

junctions to voltage.  The proposed sensor is blind to symmetrical thermal variations 

caused by either large thermal gradients which are generated intentionally, or any 

unwanted disturbance as long as it affects the reference and measuring junctions 

similarly. Such common-mode signal rejection is achieved simply by positioning the 

junction pairs parallel to the isothermal lines.  

1.6 Overview 

In Chapter 2, a microfluidic thermal gradient chip is treated as a solid block 

subject to a thermal gradient by two heaters attached from top and bottom without 

considering the microchannel resembling the actual device under no flow condition. After 

understanding the physics of the problem by presenting a powerful analytical solution 

along with the IR thermography of the actual chip, attempts will be performed to 
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minimize the external convection as the main source of disturbing the linear thermal 

gradient. Experimental, 3-D modeling, and analytical relationships will be used to 

evaluate the practical limits for reducing the convection and presenting the guidelines.  

In Chapter 3, a continuous flow microfluidic thermal sensor detecting the heat of 

mixing generated at the interface of two laminar side-by-side flows using the anisotropic 

thermoelectric sensor is studied experimentally and numerically. The impact of the 

operational parameters such as flow ratio between the two streams and flow rate in 

generating the thermal asymmetry is investigated. The entirety of chapter 3 has been 

accepted in International Journal of Heat and Mass Transfer with Varun Kopparthy and 

Niel Crews. Chapter 4 supplements Chapter 3 with deeper theoretical investigation of the 

transport phenomena occurring in the microchannel exploring the conditions for thermal 

symmetry (the equivalent of zero voltage in the thermal sensor). The argument made in 

this chapter is a justification of the final design of the "counter-flow thermal gradient 

microfluidic chip" which is the subject of Chapter 5 and Chapter 6. 

In Chapter 5, the concept of counter-flow microfluidic for minimizing the flow- 

induced disturbance in the thermal gradient is explained. Design and fabrication of hybrid 

counter-flow thermal gradient devices is explained. Performance of the counter-flow is 

compared with the non counter-flow design over a wide range of flow rates and for three 

materials representing three levels of thermal conductivity. 

The counter-flow designed for the thermal stability of the microfluidic devices is 

a novel design, and to the knowledge of the author, there is no other work dedicated to it 

to this date. The idea of counter-flow heat exchangers is mature in both science and 

technology; moreover, the miniaturized heat exchanger for the enhanced heat transfer 
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from a solid surface using a working fluid has been an active field of research from the 

emergence of the microfluidics. However, the usage of the microfluidic counter-flow and 

consequently the design proposed in this study differ fundamentally from what has been 

done in the literature. This is because prior methods have focused on temperature change 

rather than temperature stabilization. Here, the designed thermal map is a temperature 

gradient, and the counter-flow is used to eliminate thermal advection. Other novel 

features of this research include an intentional non-zero thermal resistance between the 

counter-flow channels (in order to maintain the axial gradient with low power) and also 

constraining the heat transfer between counter-flow channels to just a single dimension. 

Moreover, the 2.5 D geometry of the microfluidic device (which is probably the most 

common geometry in the microfluidic reactors) raises fundamental heat transfer questions 

that have not been answered before.  

In Chapter 6, the microfluidic devices of Chapter 5 are simulated, and the results 

are validated with the IR thermography data of the actual devices. The devices are then 

investigated under other operating conditions. Also, thermal distribution inside the chip 

including the flow channels is analyzed.  
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CHAPTER 2 

 

CONVECTION EFFECT ON PERFORMANCE OF THE THERMAL 

GRADIENT CHIP 
 

The objective of this chapter is to study the effect of pressure on convective heat 

transfer in mesoscale microfluidic systems. First, an analytical solution will be developed 

to demonstrate the adverse impact of convection coefficient on the temperature 

distribution in a mesoscale thermal gradient chip. Scale analysis was performed to deduct 

the role of pressure in reducing the convection coefficient. Comprehensive simulations 

were performed to achieve further understanding of the role of pressure. The proposed 

numerical model was validated by comparing simulated with experimental results for the 

classic natural convection problem of an isothermal vertical cylinder. Our results agree 

with those of other researchers who have used analytic, semi-analytic methods [1, 14]   

for a wide range of Rayleigh numbers. However, analytical solutions are based on some 

assumptions and simplifications that are invalid at low vacuum pressures. Therefore, they 

are not able to predict the accurate convection coefficient for low pressures. In contrast, 

the numerical model used here does not collapse in a high vacuum. A relationship 

between pressure and convection behavior was obtained for pressure levels down to 10 

Pascals, a pressure at which the thickness of the boundary layer is comparable with the 

characteristic length of the geometry. 
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Some practical findings of this work include the degree of instability of the air 

that can cause non-uniformity of the temperature variation. Enclosing the device in an 

insulating box helps it be more stable. However, natural convection currents due to 

heaters cause non-uniformities in the temperature distribution. In fact, convection on the 

edge of glass generates parabolic distribution isothermal lines, while the convection on 

the glass front and back faces causes a nonlinear temperature gradient between two 

heaters. 

These and other features of the system are discussed and generalized broadly for 

application in other mesoscale systems. 

2.1 Introduction 

Convection is a heat transfer mechanism occurring when a moving fluid 

experiences temperature variation from an external boundary [15]. Convection is often 

classified as either forced or natural/free convection. Forced convection occurs when the 

fluid in contact with the boundary (solid wall) is forced externally (e.g. using a fan or 

pump). Natural convection or free convection occurs when the fluid moves by itself as it 

experiences the temperature gradient at the boundary. These gradients produce a change 

in fluid density that gives rise to buoyancy forces. In many cases, both convection types 

exist, and the mixed convection term is used [1, 14].  

Although either forced or free convection can be exploited in heated devices as an 

efficient cooling mechanism (in a heat sink), there are instances where it is not favorable 

(e.g. precise thermal conductivity measurement of a sample). For most of the thermal 

systems in which convection is not favorable, the main goal is to transfer heat through the 

conduction. An example of usefulness of convection in a microfluidic device is a 
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buoyancy driven thermocycler for PCR developed by Krishnan et al. [16] where natural 

convection is the driving force replacing an external pump. An example of the adverse 

effect of convection is the thermal gradient PCR device developed by Crews et al [9]. 

The objective of this latter work was to create a microflow-based iso-flux condition 

through conduction; any convection was found to disrupt that iso-flux performance.  

The non-dimensional number Biot, Bi        compares the roles of convection 

and conduction in affecting the thermal behavior of a device. Convection can be 

neglected for very small Biot numbers. Since for the most common materials used in the 

fabrication of microfluidic devices such as glass and polymers, the conduction 

coefficients are small, even for a typical convection coefficient the Biot number is not 

small enough to render the convection effect negligible. 

In order to investigate how convection affects the performance of a thermal 

gradient device, IR images of the thermal gradient across the microfluidic chip surface 

were examined. An example of this non-contact thermal data is shown in Figure 2-1. For 

these experiments, two heaters (one on each long edge of the device) were set at120 ºC 

and 45 ºC. The schematic of the setup is shown in Figure 2-2. As can be observed, the 

temperature distribution along the heaters is parabolic rather than uniform, and the 

temperature distribution between the top and bottom of the glass is hyperbolic instead of 

linear.  
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Figure 2-1: Schematic of the thermal gradient set up consisting of heater 1 set at 120 

°C, a glass microfluidic chip, and heater 2 set at 45 °C. 

 

Figure 2-2: IR image of the set up under thermal gradient generated by two heaters 

set at 120 °C and 45 °C plotted for three ROIs denoted by lines 3,4, and 5. 

The ideal temperature distribution compared to a distribution in the presence of 

convection is demonstrated in Figure 2-3: 
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Figure 2-3: Temperature distribution due to pure conduction (top) compared to a 

distribution due to both conduction and convection (bottom). Simulation result was 

used. 

To quantify the impact of convection, an analytical solution was developed to 

study these thermal characteristics. This next section provides details on this effort.   

2.2 Analytical Solution  

Consider a rectangular prism with width, length, and thickness of W, R, and t 

respectively as shown in Figure 2-4:  
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Figure 2-4: Schematic of the geometry and the differential control volume defined 
for applying the conservation of energy on a rectangular prism  

If it is assumed that the thickness t is very small compared to other dimensions 

and conduction in the Z direction is neglected, this analysis represents the temperature 

averaged in Z direction. With these assumptions, an element of thickness (t) and cross 

section dimensions of dx and dy is defined as shown in the Figure 2-4. From Taylor 

expansion of conduction, heat rate in the X and Y directions are: 

            
    

  
   Eq. 2-1 

 
           

    

  
   Eq. 2-2 

and from Fourier's law: 

 
        

  

  
      

  

  
 Eq. 2-3 

         

  

  
      

  

  
 

Eq. 2-4 

where k is the thermal conductivity of the block. Also, for the surface of the element 

exposed to air, according to Newton's law of cooling: 

 
                                Eq. 2-5 

where h1 is the convection coefficient on the XY-plane (wide surface of the block). 

Conservation of energy for the defined differential element can be written as: 
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                             Eq. 2-6 

After simplifying, Eq. 2-6 reduces to:  

 

   

   
 
   

   
 
   

  
         Eq. 2-7 

If the parameters 
 TT ,  and kthm 1

2 2  are defined, then  Eq. 2-7  can be re-

written as: 

 

   

   
 
   

   
       Eq. 2-8 

boundary conditions for Eq. 2-8 are : 

              and                  Eq. 2-9 

  

  
         

  

 
          and      

  

  
          Eq. 2-10 

where h2 is the convection coefficient of the fluid on the YZ-plane (thin edge). Eq. 2-8 is 

a Partial Differential Equation (PDE) with non-homogeneous boundary condition due to 

the convection. To solve this equation, we can assume that  

                   Eq. 2-11 

such that      satisfies the boundary condition in x-direction. 

   

   
                , and          Eq. 2-12 

Eq. 2-12 is the governing equation of a 1-D fin of straight cross section. Solving Eq. 2-

12 with regards to its boundary conditions leads to:   

                Eq. 2-13 

where  

  
   

     

       
 and   

      
  

       
   

Eq. 2-14 

Inserting      into Eq. 2-11 simplifies it to:  
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       Eq. 2-15 

Given                , the equation is reduced to: 

 

   

 
 

   

 
      Eq. 2-16 

So, Eq. 2-15 can be solved using the method of separation of variables. Separating it by 

defining the parameters    and   : 

 
   

 
     and   

   

 
          Eq. 2-17 

and obtaining the boundary conditions by plugging Eq. 2-11into Eq. 2-10,  
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          Eq. 2-18 

Solution of  Eq. 2-15 is: 
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Eq. 2-20 

where  

    
        

 
 

Eq. 2-21 

and 

 
  

  
   

            

    
  
  

 
 
 

   

  

   
   

             

    
  
  

 
 
 

   

Eq. 2-22 

so, the temperature distribution is : 
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                      Eq. 2-23 

 

Although an elaborate 3-D solution of the problem provides the temperature 

distribution in the thickness of the chip additionally, this comparatively simple solution 

explains the role of key parameters such as convection coefficient, thermal conductivity, 

and dimensions in the behavior of a thermal gradient chip. The results are in very good 

agreement with an elaborate 3-D model solved in Fluent for a glass microfluidic chip 

with dimensions, W*R*t of 45, 22, and 4 mm and a thermal conductivity of 1.38 W/m K. 

Figure 2-5 compares the analytical and numerical temperature plotted along the line 

x=5mm. (directions are shown in Figure 2-3) 

 

Figure 2-5: Comparison between the results of analytical model and the 3-D model. 
Temperature was evaluated at x=5mm in y direction. 

One interesting characteristic of this solution is that two different convection 

coefficients are defined on the XY and XZ plane faces. This is useful in a sense that it 

differentiates the convection on the edges from the convection on the large front and back 



20 

faces of the chip. In fact, the way the convection affects the distribution is different on the 

edges. This is demonstrated in Figure 2-6 for four combinations of low and high 

convection coefficients. Lower values of convection coefficient can be achieved by local 

insulation on the edges or by putting the enclosure walls in proximity of the edges.  

 

Figure 2-6: Four categories of thermal gradient affected by external convection: a) 

h1=1, h2=1 W/m
2 K b) h1=20, h2=1 W/m

2 K c) h1=20, h2=20 W/m
2 K d) h1=1,  h2=20 

W/m
2 K 

In the cases (a) and (c), isothermal lines are equally spaced showing a linear distribution 

in y direction between the heaters, while the cases (b) and (d) show a parabolic 

distribution. In the cases (c) and (d), edge effects have made the isothermal lines bent 

near the edges (parabolic in x direction) while they are almost straight in the cases (a) and 

(b).  Similar outcome was obtained from Fluent simulations which is demonstrated in 

Figure 2-7. 
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Figure 2-7: Four categories of thermal gradient affected by external convection: a) 

h1=1, h2=1 W/m
2 K b) h1=20, h2=1 W/m

2 K c) h1=20, h2=20 W/m
2 K d) h1=1,  h2=20 

W/m
2 K 

If a uniform convection is assumed all around the chip, the impact of convection 

coefficient on the deviation from the linear temperature distribution along the chip can be 

evaluated using the analytical solution: 
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Figure 2-8: Temperature distribution along the centerline of the chip plotted for the 

convection coefficients of 0, 10, 25, and 50 W/m
2
·K. The abscissa here refers to the 

x-direction as indicated in x-axis here refers to Figure 2-3. 

The parabolic distribution of the temperature can affect the performance of the 

device. For example if the thermal gradient chip is set to generate a thermal gradient 

suitable for PCR, one heater would be set to 50   and the other at 120  ; this generates 

a zone ideal for PCR (annealing and denaturing reactions occur at temperatures around 

60   and 95  , respectively). If the region of the chip between these two temperatures is 

considered as "PCR window," the variation of convection coefficient not only shifts this 

window, but also affects the width of it. To demonstrate it, from the analytical solution 

the location of average T=60    and T=95   was shown in Figure 2-9, and the distance 

between these two regions was demonstrated by parameter L under no convection and 

parameter L' under the convection. The ratio L'/L demonstrates the impact of convection 

coefficient on the "PCR window." 
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Figure 2-9: Impact of convection coefficient on the size of PCR window and its 

location. The red and blue color corresponds to the location of average T=95 °C and 

T=60° C respectively. Distance between the location of these temperatures is defined 

by parameter L at no convection and parameter L', under the convection. Right axis 

denotes the ratio L'/L demonstrating the impact of h on PCR window. 

The size and location of the PCR window are of great importance when an optical 

system is integrated for capturing the florescence signal.  Since ideally any variation 

should be avoided, we have focused on minimizing and stabilizing the convection 

coefficient. By encompassing the chip in an air tight enclosure, the disturbance due to the 

variation of convection coefficient can be minimized along with the reduction of 

convection coefficient. IR images of the chip inside and outside the box show a 

significant difference between the two cases.  
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Figure 2-10: Actual IR images showing the PCR window for a chip inside and outside 
an enclosure  

Although the share of forced convection will be minimized in this way, due to 

high temperature difference between the heaters and the ambient air, natural convection 

currents will be generated inside the box. In the next section, this phenomena and ways to 

minimize it will be discussed. 

2.3 Natural convection 

To characterize the natural convection and to explore the ways to control it, 

theoretical, experimental, and numerical methods were applied to analyze it and to 

investigate the efficient and practical parameters for minimizing it.  

2.3.1 Theory 

As discussed in the introduction, unlike the forced convection where an external 

source is the reason for fluid movement, in the natural convection, fluid moves due to 

change in its density in the presence of a body force. In general, density change can be 

due to variation of temperature, pressure, or concentration depending on the equation of 

state of the fluid, leading to a complicated problem. However, based on the assumption 

that       , the change in the density can be expanded in terms of change in its 

properties: 
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Eq. 2-24 

Boussinesq approximation neglects the pressure term and assumes a linear 

relationship between the density change and variation in the temperature and 

concentration [17]. For a single fluid, the last term is zero, and Eq. 2-24 simplifies to: 

               Eq. 2-25 

where   is the volumetric coefficient of thermal expansion which is     (T is the 

absolute temperature) in the case of ideal gasses.  

Here, only the gravity is acting as the body force giving rise to the buoyancy 

forces. Consequently, the momentum equation can be written as: 

  

  
  

 

 
             

Eq. 2-26 

Performing a scale analysis introduces two important non-dimensional numbers 

playing a very important role for characterizing the natural convection flow [1, 14]: 

    
          

 

  
                   

Eq. 2-27 

where Grashof number,     is the ratio of buoyancy force to friction force and Rayleigh 

number,     plays the role of Reynolds number in determining the transition from 

laminar to turbulent flow. 

Also, further interesting conclusions can be deducted from scale analysis. Based 

on the condition that the buoyancy is balanced by inertia term or by friction term, Nusselt 

number,     can be proportional with        
   

 or      
   

 respectively [14]. At 

any rate, it can be simply concluded that the lower the     is, the lower the     and the 

lower the convection coefficient are.  
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For the thermal gradient problem, the dimension of the chip is restricted by the 

optical system, and therefore, reducing the characteristic length is not a practical way for 

reducing the      
   

. Temperature difference cannot be smaller than certain value as 

the thermal gradient should be fixed between two set temperatures (around 30 K for 

PCR). On the other hand, it can be concluded that         or        for the ideal 

gas. Therefore, reducing the pressure is the best option for decreasing the convection 

coefficient associated with natural convection. 

2.3.2 Experiment 

A simple experiment was conducted to observe and quantify the pressure effect 

on convection coefficient. The vertical cylinder geometry is a very appropriate choice as 

it is a common geometry in the natural convection studies and a semi- analytical solution 

based on Bussinesq approximation exists for it [14].  

A cylindrical aluminum block (D=19 mm, H=22.5 mm) was heated to 100 ºC on a 

hot plate. One thermocouple was attached to a hole inside the block, and another one was 

exposed to air to measure the ambient temperature. Both thermocouples were connected 

to a data logger (Omega HH147U, CT, US). The hot block was mounted on a plastic rod 

inside the cylindrical vacuum chamber. The vacuum chamber pumps the pressure down 

to a high vacuum level (lowest in this experiment was around 300 milliTorr). When the 

block was heated to few degrees over 80  , it was transferred to the vacuum chamber. 

Once the temperature would reach the 80  ,  the vacuum would be pulled and the data 

would be recorded. The experiment was done for vacuum pressures of 1000, 300 

milliTorr, and the atmospheric pressure. Figure 2-11 is the image of the set up. 
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Figure 2-11: Picture of set up used for measuring the natural convection coefficient 

under vacuum. The cylindrical aluminum block is mounted on a solid PDMS pad by 

a thin plastic rod (in order to reduce conduction). Two thermocouples are attached to 

the data logger: one measures the ambient temperature, and the other one measures 
the temperature of the block. 

As the     , the lumped heat transfer assumption is valid, and the surface and inside 

temperatures of the block are almost the same. Recorded temperature can be used to 

estimate the convection coefficient using lumped capacity method [1]: 

  
    

     
      

   

   
   

Eq. 2-28 

where T0 is the initial temperature of the block,    is the ambient temperature,    is the 

area of the device exposed to convection, and     is the heat capacity of the block. 

Therefore, the convection coefficient can be simply calculated from this equation: 

      
   

   
  

Eq. 2-29 

This experiment is very sensitive to the insulation of the sample. The best insulated 

sample showed about 25% reduction in the measured convection coefficient compared to 
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the primary experiments. An example of the non-dimensional temperature   over time is 

shown in Figure 2-12: 

 

Figure 2-12: dimensionless temperature of the block over time for normal pressure, 

a moderate vacuum (1000 milliTorr) and a higher vacuum level (300 milliTorr) 

Using equation Eq. 2-24, these values are calculated for the convection 

coefficients if the starting point of the temperature is 70   for about 1000 seconds. 

h (300 milliTorr) = 2.775   
  

    
  

h (1000milliTorr) = 3.375  
  

    
  

h (normal pressure)= 8.782   
  

    
  

However, for the data recorded in the same experiment and for same duration, if the 

starting point is considered to be at 50  , it leads to smaller values: 

h (300 milliTorr) = 2.625   
  

    
  

h (1000milliTorr) = 3.356  
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h (normal pressure)= 7.491   
  

    
  

The reason is that Eq. 2-28 calculates the mean convection coefficient. However, 

convection coefficient is depending on the temperature difference in the case of natural 

convection. So, when the starting point is a lower temperature, it takes longer time to be 

cooled due to less temperature difference between the block and air. This will be 

elaborately studied in the next section. 

2.3.3 Temperature dependency of natural convection coefficient 

As observed in the previous section, the convection coefficient is a function of 

temperature. This is verifying an important aspect of natural convection: for natural 

convection, there is no fundamental convection coefficient defined according to Newton's 

law of cooling to correlate the heat transfer with temperature. As discussed in section 

3.3.1, Nusselt number and consequently convection coefficient depend on      
   

 

which depends on temperature difference by itself unlike the forced convection case. As 

it is discussed by Tritton, [15]  this is due to the "dual role of temperature difference"; 

Tritton argues "The larger it is, the greater the rate of heat transfer by a particular flow 

rate; but also the larger it is, the greater is the flow rate." 

Thus, instead of a mean convection coefficient, instantaneous convection 

coefficient was evaluated: 

   
  

  
               

Eq. 2-30 

The data was noisy, so a Savitzky-Golay filter was used to smoothen it.  
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Along with the experimental data, the transient cooling of the cylinder at normal pressure 

was simulated in Fluent using the ideal gas model. The result shows a very good 

accordance as plotted in Figure 2-13. 

 

Figure 2-13: Experimental and numerical results for the gradual cooling of a 

cylindrical block oriented vertically due to natural convection.  

There are two analytical solutions for a vertical cylinder, depending on how 

thermal boundary layer thickness,   , is compared with the diameter of the cylinder, D. If 

    ,  then thick cylinder solution, which is the equivalent of external flow on a 

vertical wall solution, is valid, otherwise the curvature of the cylinder affects the 

boundary layer, and thin cylinder solution is valid. From scale analysis, thickness of 

thermal boundary layer is        
     , so the criterion for the validity of thick 

cylinder solution is [14]: 

 

 
    

     
Eq. 2-31 

 This inequality is valid for the geometry used in this experiment.  
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The results from both of the thin and thick cylinder analytical solutions, the experimental, 

and the simulation are plotted in Figure 2-14. The thin cylinder correlation (black color) 

is plotted here only for the comparison. 

 

Figure 2-14: Analytical, experimental, and simulation results for temperature 

dependency of convection coefficient around a heated vertical cylindrical block.  

As can be seen in Figure 2-14, the result of the thick cylinder solution is in a 

better agreement with both the experimental and numerical results. The higher convection 

coefficient calculated from the experiment is reasonable and is due to the heat loss 

through the conduction. Also, simulation predicts a smaller convection coefficient 

compared to the thick cylinder solution as the analytical thick cylinder solution calculates 

the convection coefficient indirectly based on the temperatures measured in the 

experiment.  

2.3.4 Pressure dependency of natural convection coefficient 

In the previous section, Fluent simulation using the ideal gas model was validated 

against experimental and analytical data for the gradual cooling of a cylindrical block at 
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normal pressure. Here, pressure dependency of natural convection around a vertical wall 

in an external flow was considered. The results from Fluent were compared with the 

vertical plate correlation [1]: 

   
    

 
      

          
   

                     
                  

Eq. 2-32 

showing a very good agreement for most of the pressure ranges with only deviation at 

very low pressures: 

 

Figure 2-15:  Convection coefficient on a vertical wall as a function of pressure 

evaluated by simulation and Equation 2-32  

This solution is valid when there is no limit for the growth of boundary layer. As 

mentioned in previous sections,        
     predicts a rapid growth of boundary layer 

with pressure decrease. This can be visually seen in the thermal contours around the 

vertical cylinder performed in Fluent at normal pressure and 300 milliTorr: 
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Figure 2-16:  Thermal contours around the heated cylinder at normal pressure and 

300 milliTorr  

This requires an enormous vacuum chamber. In an enclosure where the heated 

wall has a distance of H from the cool wall, when the thermal boundary layer reaches the 

cool wall, Nusselt number converges to     [14]. This means that the heat transfer is 

governed by the conduction of the air rather than convection. 

    
  

    
 

 

 
   

    

 
 

Eq. 2-33 

This suggests that the reduction of convection coefficient will reach a limit. The 

wider the vacuum chamber is, the smaller the convection coefficient will be. For a fixed 

distance H, further reduction of the convection coefficient is only possible by reducing 

the thermal conductivity of the air. Thermal conductivity of ideal gases is pressure 

invariant when the continuum condition is valid. So, there is no way to reduce the 

convection coefficient when it reaches to the conduction limit unless the continuum 
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collapses. This happens when mean free path of the gas is in the order of characteristic 

length H or smaller, or in other words, when the Knudsen number, Kn, is larger than 1. 

So, the corresponding pressure can be estimated  

  
   

      
 

Eq. 2-34 

where    is the Boltzmann constant, T is the absolute temperature, and d is the kinetic 

diameter of the gas molecules. From Eq. 2-34, it can be concluded that the smaller the 

vacuum chamber is, the higher vacuum level is required for reducing the thermal 

conductivity of the air. However, reaching to this level requires a very powerful vacuum 

pump as well as very special vacuum chamber equipment.  

2.4 Conclusion 

The role of convection in a glass meso-scale chip involving conduction cannot be 

neglected. Enclosing the system protects it from the disturbance due to the ambient air 

convection and improves the performance of the thermal gradient. However, it gives rise 

to the natural convection currents in the enclosure which cannot be overlooked. The most 

efficient way to minimize the natural convection is to operate the conduction under the 

vacuum. A numerical study and corresponding experiments were performed to study the 

pressure dependency of the convection coefficient. The results show that the vacuum is 

efficient until a certain level. As soon as the boundary layer reaches the physical walls 

enclosing the heating device, the heat transfer is governed by the conduction in the air 

rather than the convection. Therefore, further improvement is not achievable until the 

thermal conductivity of the air decreases with pressure. This requires a vacuum level in 

which the mean free path of air molecules is equal or more than the distance between the 
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device and the enclosure wall.  Reaching to such a level requires a special vacuum sealed 

design and a very powerful vacuum, which is out of the focus of this research. 
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CHAPTER 3 

 

DETECTING THERMAL ASYMMETRY IN MICROFLUIDICS FOR 

SENSOR APPLICATIONS: CRITICAL DESIGN CONSIDERATIONS 

AND OPTIMIZATION 
 

This article discusses the design and performance of continuous-flow microfluidic 

thermal sensors that operate on the principle of heat generation through lateral mixing. 

The platform under study is a Y-channel microfluidic device in which two laminar 

streams are brought into side-by-side contact under precise flow control. For this work, 

the two merging microchannels carry water and ethanol respectively; heat is generated as 

the liquids diffuse together. While much exists in the literature regarding the magnitude 

of this heat of mixing, this article examines the spatial distribution of this heat – in 

particular, the extent of lateral asymmetry in the resultant temperature map. This 

asymmetry is detected with milli-Kelvin sensitivity using a thin-film thermopile 

integrated on the exterior surface of the microdevice. Since this experimental 

configuration is implemented by numerous research groups in the design of biosensors 

and microfluidic calorimeters, a particular emphasis of this present study is on 

maximizing the detection sensitivity. The impact of the experimental parameters of 

volumetric flow rate and flow ratio on detection sensitivity was examined, and the 

optimum axial location for the thermopile sensor under a range of conditions was 

determined. Experimental and numerical methods were used in this study.  
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3.1 Introduction 

Calorimetric biosensors have been used for detecting various bioprocesses such as 

enzyme-substrate activity  [18, 19], protein binding activity [20, 21], DNA reactions [22, 

23] and cell metabolism [24, 25]. Microfluidic calorimeters have been developed in 

recent years for their advantages in sample handling, speed of detection and sensitivity. 

Several types of temperature sensors have been incorporated in these systems, including 

thermistors [26, 27], thermopiles [28-30] and RTD’s [31, 32]. In each instance, the sensor 

transduces the heat produced from a biochemical reaction into a measurable electrical 

output. Of these, thermopiles have the distinct feature of common-mode background 

rejection, which enables the measurement of subtle thermal events – even when they are 

orders of magnitude smaller than the ubiquitous variations in ambient temperature [13]. 

Owing to this feature, thermopiles are superior sensors for the detection of asymmetry 

within two-dimensional temperature distributions. Thermopiles have been used for 

biological reagent detection as well as chemical analysis. For example, Baier et al. 

demonstrated the development of a microcalorimeter with bismuth (Bi)-antimony (Sb) 

thin film thermopiles to detect the exothermic reaction of oxidation of ascorbic acid by 

ascorbate oxidase [33]. Lerchner and colleagues were able to apply the same method for 

the measurement of oxidation of glucose by glucose oxidase/catalase [34], metabolic 

dynamics of biofilms in real-time [35] and hybridization of single stranded DNA strands 

[36]. More recently, Guilbeau et al developed thermopile-based sensors for the detection 

of glucose [37], L-glutamate [38], and for DNA sequencing [39].  

Two “species” of device designs have developed: one involves separate reaction 

chambers [40] or flow channels [29], with one serving as the “measuring” location, and 
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the other as the “reference”; the other design style relies on a non-homogeneity within a 

single flow channel [41, 42]  or sample chamber [19]. This non-homogeneity is evaluated 

by comparing the temperature difference between a measuring region and a reference 

region within the same physical space. The designs having distinct and separate channels 

(sensing under flow) or chambers (sensing under a no-flow condition) for the reference 

and measuring zones are superior than single-channel/chamber devices at thermally 

isolating the two regimes from each other. However, such embodiments also sacrifice 

some of the common-mode rejection potential that is the marked advantage of thermopile 

sensors. Ambient temperature gradients will distort measuring and reference temperatures 

to the degree that they are spaced apart from each other. In addition, other unavoidable 

experimental inconsistencies - such as variations in pressure drop or flow control within 

the two regions - can create further artifacts in measured signals. These effects are 

minimized when the measuring and reference regions are within the same flow channel 

or sample chamber. In such systems there are two approaches that can be used to direct 

heat signal to the measuring junctions and isolate it from the reference junctions: 

1. Controlled symmetry or asymmetry of heat generation by using localized surface 

preparation. For example, Nestorova and colleagues have used such a method for 

microfluidic ELISA [18].   

2. Heat generation occurs at the interface of two fluid streams, in a way similar to 

that used by Conway [43], Sen [44] and colleagues with their powerful nanohole 

sensing technique. In such a configuration, the location of the fluidic interface is 

used to direct the heat flow.  

In both instances, the asymmetry of the heat and the resultant sensitivity of the 
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thermopile measurements are heavily determined by such factors as flow rate and the 

geometric positioning of the heat generation regions within the microchannel. This article 

examines these critical performance characteristics. Specifically, this article treats this 

latter single-channel device design; however, the findings from this study are applicable 

to many different styles and categories of microfluidic thermal sensing devices. 

In this article, the effect of design and operational parameters will be examined on 

a representative Y-junction microfluidic device. For both the experimental and numerical 

analysis, the interfacial mixing of water and ethanol streams will be used as the heat 

source. Water/alcohol mixing is often used as a standard for calibrating the calorimeters 

and other thermal measurement systems [45-48]. Fundamentally, the mixing of water 

and ethanol involves the breaking of hydrogen bonds between identical molecules and the 

formation of new hydrogen bond network between dissimilar molecules [49, 50] through 

the intermolecular interaction between water and ethanol as well as hydrophobic 

hydration interactions. 

3.2 Experimental Methods 

The experimental setup used for this study contains a microfluidic device with an 

embedded channel where two liquids streams join at a Y-junction. A thermopile is 

affixed to the exterior of the microdevice, one centimeter downstream from the Y-

junction, and oriented symmetrically along the centerline of the microchannel. Precision 

syringe pumps and valves control the water and ethanol flows into the device; a 

nanovoltmeter records any electrical potential transduced in the thermopile caused by 

asymmetry in the temperature distribution caused by the water/ethanol mixing. The 
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microdevice itself is located within a thermally-insulated Faraday cage to reduce system 

noise.  

3.2.1 Microfluidic Device Fabrication 

The microfluidic device was fabricated using a rapid-prototyping method 

previously detailed [51]. The embedded microchannel has a rectangular cross-section 

(100 µm x 3.5 mm). As shown in Figure 3-1a, these devices are formed by sandwiching 

a patterned adhesive tape between a blank glass coverslip (75 mm x 25 mm x 0.13 mm) 

and a microscope slide (75 mm x 25 mm x 1.0 mm) pre-drilled with inlet and outlet 

holes. The channel pattern is cut from the double-sided polyimide tape (PPTDE-1, 

KaptonTape.com) using a cutting plotter (CE 5000-40-CRP, Graphtec America Inc., 

USA). Ports for the fluidic tubing interfaces are manually cut from a 6mm-thick sheet of 

PDMS and then cored with a 1.1mm diameter punch (33-31A, Miltex, PA, USA). These 

ports are permanently bonded over the drilled holes in the microscope slide by activating 

the mating surfaces with an air plasma (Harrick Plasma, NY, USA) and then gently 

pressing them together for 30 seconds.   
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Figure 3-1: (a) Diagram of the microfluidic device fabrication. The microchannel is 

formed by sandwiching a patterned polymer tape between two glass blanks. PDMS 

ports are added where tubing will connect to the inlets/outlet of the microchannel. 

The thermopile is placed on the exterior of the device, opposite the flow channel (b) 

Photo of a Sb/Bi thermopile used for these experiments. (c) Photo of an assembled 

device. 

3.2.2 Thermopile Sensor Fabrication 

To detect any thermal asymmetry within the microchannel, a bismuth 

(Bi)/antimony (Sb) thin film thermopile is attached to the outer surface of the glass 

coverslip, directly opposite the microchannel, with the junctions symmetric about channel 

centerline. Although the thermopile design is unique to this present work, the fabrication 

process itself is elaborated in detail by Guilbeau et al [7]. Briefly, the thin film thermopile 

is fabricated on a 50 μm-thick polyimide film. Deposition of first the bismuth (0.8μm 

thick) and then the antimony (1.2 μm thick) is performed by thermal evaporation through 
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two complementary shadow masks. Figure 3-1b shows a photograph of a fabricated 

thermopile having 50 junction pairs. The alternating vertical traces (“vertical” in 

reference to the orientation shown in the figure) of Bi and Sb occupy a 3 mm x 10 mm 

surface area. This configuration has a theoretical Seebeck coefficient of 5.95 μV(mK)
-1

. 

The thin film thermopile fabricated onto the polyimide support was attached to the 

underside of the glass coverslip that forms the base of the microfluidic device using a 

low-viscosity cyanoacrylate adhesive (Super Glue, Ontario, CA). Thin copper sheet 

(VHB Tape, 3M, USA) and conductive paint (Silver Print, GC Electronics, USA) was 

used to make electrical contact with the thermopile bond pads. The completed device is 

shown in Figure 3-1c.  

3.2.3 Experimental Setup 

The 50 Bi/Sb junctions along the bottom of Figure 3-1b are denoted as the 

reference junctions and the 50 near the top of Figure 3-1b as the measuring junctions. 

Care was taken to mount the junction pairs symmetrically about the centerline of 

microchannel. In this way, a temperature distribution symmetric about that centerline 

would transduce no voltage in the sensor, regardless of its magnitude [13]. Asymmetry 

with higher temperatures toward the water inlet side of the device (labeled in Figure 1c, is 

the same as “up” in Figure 3-1b) would result in a positive voltage being transduced. For 

the experiments performed, this voltage was collected with a nanovoltmeter (34420A, 

Agilent, USA) and recorded onto a computer using LabView SignalExpress (National 

Instruments, USA). The microdevice and nanovoltmeter were placed in a thermally-

insulated Faraday cage to reduce the thermal perturbations caused by the irregular air 

currents in the room and to reduce the electrical noise within the recording system. Two 
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syringe pumps (Pump11 Elite, Harvard Apparatus, USA) were used to flow deionized 

water and ethanol (Ethyl Alcohol Pure 200 Proof, EMD Chemicals Inc., USA) through 

the microfluidic device. For experiments where bolus volumes of ethanol were used, a 

precision injection valve (Rheodyne® 9725 Injector, Chrom Tech, Inc., USA) was placed 

inline with the syringe connected to the ethanol inlet of the microdevice.  

3.2.4 Experimental Procedure 

Two categories of experiments were performed: bolus mixing and continuous 

mixing of water and ethanol. Bolus mixing is particularly relevant to the many 

applications in which low volumes of individual samples are to be analyzed. For the 

bolus experiments, DI water was continuously pumped through both inlets of the 

microchannel, and a 5 μl volume of ethanol was injected into the ethanol line at a specific 

timepoint. The relative volumetric flow rates of the two streams were adjusted so that the 

lateral interface of the ethanol and the water stream would occur at different lateral 

locations within the microchannel. In this way, the mixing interface where heat is 

generated was shifted to one side or the other of the channel centerline. Several 

volumetric flow rates and ratios were used to study the response of the thermopile.  

While the bolus tests were conducted to demonstrate the sensitivity of the 

experimental system, the continuous mixing of ethanol and water streams was tested to 

evaluate the parametric-dependent performance of the system, and to validate the 

numerical model. For these steady-state experiments, syringes were filled with water and 

ethanol, respectively, and the syringe pumps were programmed to periodically change the 

ratio of flow rates in the two Y-channel inlets. In this way, the location of the mixing 

interface would shift in relation to the microchannel centerline such that a detectable and 
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quantifiable thermal asymmetry would occur under a range of conditions. Volumetric 

flow rates up to 400 µl/min were examined. 

3.3 Numerical Simulation 

A 3-D numerical model corresponding to the steady-state response of the sensor 

was created using the commercial CFD software Fluent (ANSYS, Canonsburg, PA). In 

this model, conservation equations of mass, momentum, species and energy are solved 

for the exothermic mixing of two incompressible laminar fluid streams brought together 

in a side-by-side configuration (see Figure 3-2). To minimize the false diffusion error, a 

power-law discretization scheme was applied for the convection-diffusion equation in the 

pressure-based solver [52]. The SIMPLEC algorithm defined in the software was used for 

the coupling of pressure and velocity. For the rest of the parameters, second-order 

upwind discretization schemes were used. 

3.3.1 Model Geometry 

A Y-shaped channel microfluidic chip similar to the experimental device was 

simulated in Fluent. The height of the channel is 100 μm and the width is 3.5 mm. In the 

computational domain, only the length of the chip containing the channel is modeled. The 

top surface of the channel is in contact with a glass coverslip of 130 μm thickness and the 

bottom surface is in contact with glass of 1 mm thickness. The sides of the channel are in 

contact with the polyimide.  
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Figure 3-2:  The dimensions and materials of the conjugate heat transfer model 

developed in Fluent. This orientation is inverted from the orientation shown in Fig 3-

1a and 3-1c. 

3.3.2 Governing Equations 

The species model is used for modeling the mixing of water and ethanol. The 

multi-component (or Fickian) diffusion model is used for incorporating the mass 

diffusion coefficients. A User-Defined-Function (UDF) is written for applying the energy 

released when water and ethanol are mixed. A separate UDF was also used to model the 

concentration-dependent density and viscosity of the mixture. This is important because 

the viscosity of water and ethanol as they mix is highly non-linear with respect to 

concentration. In fact, the viscosity of the mixture can be almost three-fold (2.9 Pa∙s, at 

an ethanol mass fraction of 0.4) than that of the unmixed water (1 Pa∙s) and ethanol (1.2 

Pa∙s) at room temperature [53]. In addition, the viscosities are also dependent on 

temperature. However, the temperature changes produced by this exothermic reaction are 

on the order of only a few degrees. Since the resulting viscosity change would be less 
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than 2%, this numerical model does not include this effect – as suggested by Orsi et 

al.[53].  Since the viscosity defines the local fluid velocities at the mixing interface, 

which in turn affects the heat generation rate, this unique behavior is significant. 

Therefore, the Fluent UDFs proposed by Mauri were included here. 

The maximum Knudsen number is 2.5x10
-6

, which support the continuum model 

assumption. The maximum Reynolds number of 320 supports the laminar model for the 

flow rates used in the simulation.   

Continuity equation         Eq. 3-1 

Momentum equation 
          

 

 
            

  

 
  

Eq. 3-2 

The influence of gravity can cause a slight bending of the interface of the two 

streams, thereby increasing the laminar diffusion surface when the densities of the two 

mixing streams are different. Therefore, this numerical model includes gravitational 

effects. The density differences that cause these are also affected by the temperature 

change induced within the reaction itself. However, these are insignificant. Consider that 

the total change in density (  ) is a function of the change due to species/concentration 

(   ) and the change due to temperature (   ): 

            Eq. 3-3 

These two terms are defined by Bejan [14] as: 

                      Eq. 3-4 

               Eq. 3-5 

where 
is,  is the solutal expansion coefficient, )( ,refii   represents the density change 

of the dissolved component (ethanol),  and T is the thermal expansion coefficient. To 
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compare the impact of each term in the buoyancy force using non-dimensional analysis, 

the ratio of the thermal Rayleigh number and solutal Rayleigh number are evaluated: 

 
   

   
 

        
    

               
    

 Eq. 3-6 

where   is the dynamic viscosity of mixture,   is thermal conductivity, L is a 

characteristic length, and D is the mutual diffusion coefficient. 

This ratio reduces to: 

 
   

   
 

       

              
 Eq. 3-7 

The values of T  for ethanol and water are 0.0011 K
-1

 and 0.00021 K
-1

, 

respectively, at room temperature. From the first thermodynamic law analysis, the 

maximum    will be less than 2 K. The diffusion coefficient is approximately 1x10
-9

. If 

we assume the concentration dependency of the solution to be linear (according to 

Boussinesq approximation), then,                will be approximately 0.22 at room 

temperature. Using the ethanol thermal conductivity of 0.17 W/m·K, Eq. 3-7 is evaluated 

to be approximately 5x10
-11

. This confirms that temperature has a negligible effect on the 

gravitational effects in this system. Therefore, this model excludes the thermal 

component of the buoyancy term.  

Species equation                   Eq. 3-8 

Fick's law               Eq. 3-9 

where      and    are mass diffusion coefficient and mass fraction of species i in the 

mixture, respectively. 
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Energy equation in fluid                            
 

     Eq. 3-10 

where    is the volumetric heat source term. This source term was defined in order to 

apply the heat of mixing. The enthalpy of mixing of water and ethanol was 

experimentally measured by Boyne et al.[54]. As was suggested by Peeters [50], a sixth-

order polynomial (Eq. 11) was fit to this data in order to predict the enthalpy of mixing 

for different alcohols:   

           
                     

  Eq. 3-11 

where XW and XA are mole fraction of water and alcohol respectively. For ethanol, C6/1, 

C1/1, and C1/2 are -10.6, -1.2, and 0.1 (KJ/mol of alcohol), respectively. 

In the binary system of water and alcohol, XW=1-XA. Furthermore, eH can be 

defined in terms of alcohol mole fraction. In this way the volumetric heat source term 

(    ) is defined as: 

    
     

  
 

     

   

   

   

   

  
  

     

   
          Eq. 3-12 

A UDF was written to apply this equation in the Fluent model used in this study. 

Energy equation in solid        Eq. 3-13 

3.3.3 Boundary Conditions 

Boundary conditions of the flow field applied to the inlets are: 

                             Eq. 3-14 

where     and     are ethanol and water mass flow rates. Outflow boundary condition 

was applied at the outlet of the channel and no-slip boundary condition was applied on 

the microchannel walls. 

Boundary conditions of the species applied to the inlets are: 
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                             Eq. 3-15 

On the microchannel walls, zero-flux of both species was applied: 

     

  
 
    

   Eq. 3-16 

For thermal field, all the exterior surfaces of the chip were exposed to convection 

boundary condition: 

   
   

  
          Eq. 3-17 

A convection coefficient of 20 W/m
2
·K was applied to the thin glass surface, and 

a convection coefficient of 10 W/m
2
·K was applied to all other surfaces. T∞ for all 

convection surfaces was the room temperature set at 300K. Additionally, the inlet 

temperatures were set at room temperature. 

3.3.4 Analysis of Numerical Results 

This model was evaluated using a combination of tetrahedral and hexagonal 

meshing. Nodal temperature information was exported from Fluent to MATLAB 

(MathWorks, MA, USA) for visualization and further analysis. In addition to developing 

temperature maps of the device, predicted thermopile voltages for many scenarios were 

also calculated. This was achieved by extracting the simulated temperatures at the 

location of each of the 50 junction pairs and applying the following conventional 

thermopile voltage equation:   

 

      

 

   

                         

                    

 

   

 

Eq. 3-18 
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where T2,i is the temperature at the i'th measuring junction and T1,i is the temperature at 

i'th reference junction of the thermopile in the actual device, SA and SB are the Seebeck 

coefficients of Sb (47 μV/K) and Bi (-72 μV/K), respectively, and n is the number of 

junction pairs.  

3.4 Results and Discussion 

3.4.1 Shifting the Mixing Location by Adjusting the Flow Ratios 

The purpose of adjusting the flow ratios between the two streams was to control 

the position of the water/ethanol mixing interface. This was demonstrated experimentally, 

as shown in Figure 3-3. As was expected, the profile of the interface was found to be a 

function of flow ratio only - essentially independent of the total volumetric flows of the 

two streams.   
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Figure 3-3:  Photographs of three images of different flow configurations within the 

microchannel. Coloring dye and image enhancing was used to better visualize the 

flow streams. The images on the left are photos of a microfluidic device without the 

thermopile; those on the right are of a device with a thermopile positioned as in 

Figure 3-1c. These latter photos are high-zoom to show the thermopile detail with 
respect to the liquid flows. 

3.4.2 Bolus Mixing 

Thermopile output for injections of a 5 μl ethanol sample was collected at 

different volumetric flow rates through the microchannel. A representative data set is 

shown in Figure 3-4 for total volumetric flow rates of 100, 200, and 400 μl/min in the 

microfluidic device (which corresponds to fluid velocities on the order of 5, 10, and 20 

mm/s). The peak height of each signal corresponds to the maximum change in the 

average temperature detected by the thermopile, and the area under the curve corresponds 

to the total thermal impact of the bolus injection.  
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For each, the constant volumetric flow rate for the Y-channel inlet that 

experienced the bolus injection was ¼ that of the inlet with the steady water stream 

(W4:E1). Thus, the water/ethanol mixing interface would be close to the reference 

junctions. This will also stretch each of the ethanol plugs to approximately 35mm in 

length (ignoring Taylor dispersion). At the three shown flow rates, the transit times 

between when the front of the ethanol plug enters the Y-junction and when the trailing 

end of the plug moves beyond the downstream end of the thermopile junctions are on the 

order of 12, 6, and 3 seconds, respectively. The corresponding thermopile signal
1
 exhibits 

an expected lag, which is caused by the transit time for the heat to travel through the 

coverslip and polyimide film into the thermopile sensor.  

 

Figure 3-4:  Thermopile output for a bolus injection of ethanol. 

3.4.3 Continuous Mixing for a Steady State Response 

To characterize the effect of the operating parameters, a series of continuous-flow 

experiments were performed as detailed above in the Experimental Procedures section. 

As is shown in Figure 3-5, the thermopile voltage responded sharply to changes in the 

                                                   
1
 “The signal-to-noise ratio (SNR) for ethanol detection was approximately 50:1 for low 

ethanol concentration (10% V/V). The maximum noise in the signal was on the order of 

50 nV.  For the bolus ethanol measurements, the standard deviation was on the order of 5 

μV.” 
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reaction zone location.  

 

Figure 3-5:  For the continuous-mixing experiments, the two inlet syringe pumps 

were programmed to change the flow ratios of the two liquid streams and regular 

intervals. For this thermopile output data shown here, the total volumetric flow rate 
for both streams combined was 200 μl/min. 

3.4.4 Validation of the Numerical Model 

In order to expand the parametric study beyond what mixing and thermal data 

could be obtained experimentally, a Fluent model was developed as detailed above in the 

Numerical Simulation section. Representative plots of the concentration and the 

temperature profiles are shown in Figure 3-6. 

 



54 

 

Figure 3-6:  Representative results from the numerical simulations of the 

water/ethanol mixing. (a) shows the concentration distribution, and (b) shows the 

temperature distribution for the specific case of W4:E1 @ 400 μl/min total 
volumetric flow. 

The distinct similarities in the interface profiles observed in the experimental and 

the numerical results are shown qualitatively in Figure 3-7. 

 

Figure 3-7:  A comparison between the Y-junction flow interfaces for a W4:E1 flow 

ratio for the numerical (detail from Figure 3-6a) and the experimental (detail from 
Figure 3-3) results reveals strong qualitative correlation. 

To validate the numerical model from a thermal performance perspective, the 

thermopile junction temperatures were extracted from multiple simulations and converted 

into a voltage using Eq. 3-13 as described above. The actual (transient, but stabilized) 

and the simulated (steady-state) voltages are compared in Figure 3-8. This excellent 
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agreement across a range of flow conditions suggests that the numerical model can be 

trusted to precisely describe the real-world response of the physical system. With this 

model validated, it has been used to further explore the parametric dependencies of 

device performance. 

 

Figure 3-8:  A comparison between the numerical and experimental results for four 

flow ratios at each of three flow rates (12 total combinations). Each graph 

corresponds to a specific total volumetric flow rate (W+E); each curve within each 

graph corresponds to a different flow ratio. The discreet points indicate the 

experimental data; the dotted/dashed lines indicate the corresponding numerical data. 

To filter out the effect of baseline drift in the experimental data (observable in 

Figure 3-5), the y-axes for these graphs define 0mV to be the W1:E1 condition (for 

both the experimental and numerical results). To compare the rise times for all 

conditions, the x-axes for these graphs define 0s as the last moment of stabilized 

W1:E1 voltage before changing to its new stabilized voltage at a different flow ratio 
(e.g. 196, 436, 675, and 915 seconds in Figure 3-5).   

3.4.5 The Relationship between Flow Rate and Optimum Thermopile Location 

Intuitively, the rate of water/ethanol mixing will be highest at the point where the 

two pure flow streams make first contact with each other; it is here that the diffusion 

distance between the two species is essentially zero. Figure 3-6b confirms that the 

greatest heat generation does occur at the beginning of the water/ethanol interface. 
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Because of the common-mode thermal rejection characteristic of the thermopile – which 

enables it to measure such miniscule temperature perturbations – only the asymmetry in 

the temperature profile will be detected. There are a number of factors, that determine the 

magnitude and location of that heat generation, as well as its advection and conduction 

through the liquid and the device materials before the heat arrives at the thermopile.    

Rightly assuming that a highly-asymmetric flow will result in the largest 

thermopile voltages, the simulated thermopile voltage was examined as a function of its 

hypothetical location along the microchannel length for a range of flow rates. Figure 3-9 

shows a sampling of these numerical results.  

 

Figure 3-9:  The predicted thermopile voltage for two highly asymmetric flows 

(W1:E4 and W4:E1) as a function of thermopile position along the microchannel. 

The x-axis denotes the distance between the center of the thermopile (which is 10 

mm in length) and the base of the Y-junction channel where the two streams first 
meet. 

Three trends are revealed through this examination: 

1) Max/min voltage: As the flow rate increases, the maximum thermal 

asymmetry increases. At low flow rates, this increase in maximum voltage is rapid; the 

maximum voltage increase with increasing flow gradually diminishes until it reaches an 
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approximate maximum. The early increase is attributed to the increased heat generation 

caused by the growing rate at which ethanol and water molecules come in contact.  

2) Peak location: As the flow rate increases, the thermopile location that would 

yield the maximum voltage shifts gradually downstream. This is attributed to thermal 

advection; the high flow carries more heat downstream. 

3) Split peaks: The W4:E1 voltage curve remains a single peak; however, at high 

flow rates the W1:E4 curve splits into two peaks – one of which stays at a fixed location, 

and the other which moves downstream with ever increasing flow. This is attributed in 

part to the difference in the thermal properties of the water and ethanol. The thermal 

diffusivity of ethanol is about half that of water; thus, heat will travel laterally through the 

water faster than through the ethanol. This will amplify the asymmetry of the initial 

temperature distribution when it occurs nearer to the water inlet, and will counter-act the 

asymmetry when the heat generation is nearer the ethanol inlet.   

These results suggest that A) there is an optimum thermopile position for each 

flow rate, and B) this optimum position is also influenced by the flow ratio – since the 

flow ratio controls the degree of asymmetry but not the magnitude or advection of the 

generated heat. These influences have been carefully examined. Figure 3-10 gives an 

example of how both of these effects can be observed simultaneously. In this set of 

graphs, the maximum possible voltage for a given flow rate and flow ratio are shown – 

overlaid with the location along the channel where that maximum voltage would be 

measured. 
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Figure 3-10:  For each of these six representative flow ratios, the left-hand vertical 

axis indicates the maximum voltage as a function of flow rate; the right-hand vertical 

axis indicates where within the channel the thermopile must be to measure this 

maximum voltage.    

These results reveal the following:  

1) Optimum flow rate: For all ratios, increasing the flow rate to boost the 

thermopile voltage is helpful at low flow rates, but has quickly diminishing returns. Large 

flow rates are not practical if reagent or sample consumption has a significant cost.     

2) Asymmetry: Greater thermal asymmetry results in a greater maximum voltage.      

3) Location: For all ratios, the thermopile should be near the beginning of the 

microchannel for low flow rates. More importantly, the optimum location does not begin 

to change until some flow rate threshold is surpased. This threshold – and the way in 

which the location changes with increasing flow rate – is specific to each flow ratio. 

4) Thermal properties: Across the ratios, voltages are consistently higher when 

the water/ethanol interface is shifted to the water side of the microchannel. This is due to 

the difference in thermal properties.  

These results suggest that lower flow rates are preferred over higher flow rates, 

since: A) the same thermopile location will yield the maximum sensitivity over a range of 
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flow rates, and B) increases in flow rate do increase the voltage signal, but by less and 

less. 

Using data sets similar to those represented in Figure 3-10, a root mean square 

(RMS) algorithm was implemented in MATLAB to calculate the optimum thermopile 

location for several subsets flow rates. A significant result of that analysis is that the 

distinctly optimum location for all flow rates below 600 μl/min is having the thermopile 

centered 1.5 mm downstream of the initial Y-junction interface. Figure 3-11 compares 

thermopile performance at this location with performance when the thermopile is 

centered 15 mm from the Y-junction. Clearly, the thermopile essentially straddling the Y-

junction will be much more sensitive at low flow rates. At high flow rates, though, the 

two locations are predicted to yield a comparable sensitivity.   
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Figure 3-11:  Comparison between the predicted thermopile voltage as a function of 

flow rate for two thermopile locations. The optimum configuration for low flow rates 

(<600µl/min) has the center of the thermopile located only 1.5 mm downstream from 

the Y-junction. The inset reveals the linear relationship between the signal and flow 
rate at low flows. The flow ratio for this simulation is W1:E4. 

A key result from this data is that – with the thermopile at this optimum low-flow 

location – the flow rate and the thermopile voltage are essentially proportional below 

about 500 µl/min. This suggests that the increased contact rate of the mixing species is 

the dominant factor in determining thermopile voltage at low flow rates. 

3.4.6 Effect of Flow Ratio 

Since the thermopile geometry used for these experiments is designed to measure 

asymmetry, certainly the more extreme flow ratios will provide a greater sensitivity to 
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temperature change. The effect of flow ratio, though, is not linear – nor is it reciprocal 

(e.g. VW1:E2 = -VW2:E1). Figure 3-12 shows this for a wide range of flow rates. The 

nonlinearity underscores the relationship between the flow ratio and the resulting thermal 

asymmetry within the device, as well as the effect of the different thermal properties of 

the water and the ethanol.  

 

Figure 3-12:  Thermopile voltage as a function of flow ratio, for several flow rates 

(W+E). When the mixing interface is shifted toward the water inlet, the voltage will 

be more positive; toward the ethanol inlet, more negative. 

These results are of particular interest when considering which flow direction to 

move the mixing interface for best detection sensitivity. At moderate flow asymmetry up 

to about +/- 20% (i.e. 0.5 +/- 0.2), the thermopile will detect greater thermal asymmetry if 

the interface is shifted toward the ethanol inlet. With more extreme flow asymmetry 

(more than +/- 20%), shifting the mixing interface toward the water inlet will yield higher 

signals. As stated previously, this is due to the different thermal and flow properties of 

the two fluids. Since these particular constituents (water and ethanol) are representative 

of a great variety of liquid pairings of interest, further exploration of the impact of each 
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of the specific properties (viscosity, thermal conductivity, heat capacity, etc.) seems 

beyond the scope of this present study.  

3.5 Conclusion 

The scope of this work has been to explore the design and operational parameters 

that will maximize the sensitivity of microfluidic thermal sensors. This work has relied 

upon both experimental and numerical methods, using as a representative system the 

sensing of the water/ethanol heat of mixing in a Y-junction microchannel. The findings of 

this study can be summarized as follows:  

1. There is an upper limit on the flow rate. Increasing the flow does increase the 

magnitude of the thermal signal, but primarily only at low flow rates. For the 

device specifically studied here, this upper limit is about 500 µl/min. If the sensor 

can detect an acceptable signal at 200 µl/min or below – even better.  

2. The thermopile should be placed in very close proximity to the source of heat; 

the lower the flow rate, the more important this is. Thermal advection does occur, 

but at flow rates below 500 µl/min this is unimportant with respect to thermopile 

placement. 

3. Asymmetry in the heat generation vs. concentration relationship can be 

leveraged to maximize the temperature difference between the two 

thermopile junction sets. 

4. Greater sensitivity is obtained when the co-flow interface is shifted away from 

the fluid that is more resistant to heat transfer, such as with a higher viscosity 

and/or lower thermal diffusivity.  
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It is hoped that an understanding of the findings of this research and the process 

by which the conclusions were made will support others within the research community 

in the continuing advancement and development of many types of microfluidic thermal 

detection systems.  
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CHAPTER 4 

 

3-D NUMERICAL SOLUTION OF EXOTHERMIC MIXING OF 

WATER/ETHANOL IN Y-SHAPED MICROCHANNELS 
 

This chapter is the supplementary part of chapter 3 for the further explanation and 

justification of the model used in the previous chapter.  Here, the focus is more on the 

flow and thermal field in the micromixer domain rather than the thermal field of exterior 

face of the device and the location of the sensor. Due to the complicated nature of the 

process, which involves the coupled transport of mass, momentum, heat, and species, it is 

worthy to dedicate a short chapter for some elaboration. 

One interesting observation from the thermopile experiment was the non-zero 

signal for the equal volume flow rate of water and ethanol demonstrated in Figure 3-5. In 

this chapter, the reason for such an asymmetry and its root in the properties of 

water/ethanol mixture will be explained. 

4.1 Introduction 

Microfluidics has attracted researchers in the fields of chemistry, biology, and 

medical engineering due to low reagent consumption, small size, compatibility with 

micro total analysis systems (       and excellent control over the process. High 

surface-to-volume ratio due to miniaturization in the microfluidics highlights the role of 

surface-dependent phenomena such as mass and energy diffusion flux, over the volume- 

dependent processes including volume flow rate and bulk reaction. Mixing of two or 
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more fluids is a generic process in microfluidics. Micromixers usually perform at laminar 

flow regime due to small characteristic length and operation at low volume flow rates. In 

the absence of "chaotic advection forces" at low Reynolds numbers, mixing happens 

mostly through diffusion and advection [55, 56]. Although considerable efforts have been 

dedicated to increase the mixing efficiency in micromixers by enhancing the mixing 

surface, (e.g. increasing the Reynolds number to reach vortex flow and engulfment flow 

[53, 55], modifying the geometry [57, 58]), in certain applications, slow diffusion 

facilitates the monitoring of the process in the micromixer and enables the supreme 

control over the process. 

 T- or Y-shaped micromixers consist of a simple microchannel design which 

guides two fluid streams into a side-by-side contact in a relatively high aspect ratio 

channel making it an ideal platform for investigating and monitoring the mixing behavior 

and concentration distribution. Kamholz et al. introduced this analytical device for 

investigating the molecular interactions, determining the molecular diffusion coefficients 

of the species, and quantifying the viscosity of the liquids. They used the collected 

fluorescence intensity data in conjunction with analytical models in order to extract the 

unknown properties of the fluids, such as diffusion coefficient and viscosity [59]. 

Micromixers with inlets located at different levels [18] of the channel or with more than 

two inlets create extra interfaces which can be used for additional simultaneous analysis 

in a single device.  

  These micromixers have been widely used as microreactor for performing 

reactions and chemical synthesis, extracting reaction rate constants [60], nanoparticle 

synthesis [61], detection [28, 62], calorimetry [44], and monitoring a process using a 
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variety of optical techniques [63, 64]. Recent advances in paper-based microfluidics have 

been integrated in Y-shaped micromixer to present a low-cost, pumpless microreactor 

operating by capillary force, and thus dismissing the large pumps often attached to the 

small microfluidic systems [65].  

In T-micromixres, intense diffusion occurs at the interface of the streams where 

usually sharp variation of fluid properties such as species concentration, density and 

viscosity exist. As a result, a localized reaction zone makes it easier to target the reaction 

and mass distribution using optical techniques. 

 Majority of the studies are focused on the mass transfer and mixing performance 

including experimental, analytical [66], and numerical techniques [53, 55, 67]. Although 

the ultimate goal in microreactors is performing a process by controlled mass transfer, in 

many cases, heat transfer plays an unavoidable role. Temperature-dependent reaction 

constants and fluid properties involved in biological reactions, such as PCR and DNA 

melt, are just a few examples for the importance of heat transfer in microreactors. 

However, fewer studies have been focused on the heat transfer in these devices. As 

explained by Kowalski et al. [44], in a simple microreactor, there are much more flux 

surfaces and heating domains as compared to mass transfer domain. Xu et al. investigated 

the thermal mixing of two streams of water with different temperatures in a T-shaped 

micromixer [68]. They divided the domain into T-junction and mixing channel and 

developed a 2-D analytical model for the mixing channel. Pradre et al. conducted an 

experimental study of an exothermic acid-base reaction in a Y-shaped microreactor and 

extracted the thermal field of the chip from infrared thermography data [69].  Kowalski et 

al. simulated a 3-D model of a similar configuration with two streams containing diluted 
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solution of an acid and a base. They obtained the concentration and thermal field for 

determining the optimum location of Nanohole array (NHA) sensor used for calorimetry 

[44].  

In addition to the examples of the heat generated by a reaction or mixing of two 

streams of different temperatures, the source of heat in the micromixers can be from an 

endothermic or exothermic mixing process.  Unlike the chemical reactions, the absorbed 

or released heat comes from the rearrangement of intermolecular forces rather than the 

rearrangement of atoms. These mixtures are classified as non-ideal mixtures including the 

solution of a variety of organic and inorganic compounds in water. A well-known and 

ubiquitous class of non-ideal mixtures is water/alcohol mixture, which entails the 

breaking of hydrogen bonds between identical molecules and the formation of new 

hydrogen bond networks between dissimilar molecules. The binary mixture of 

ethanol/water shows abnormal behavior in terms of excess enthalpy, capacity, diffusivity, 

density, and viscosity [46, 49, 50, 70, 71]. Exothermic mixing of water and alcohol has 

been recently studied experimentally for calorimetric application in a thermopile-based 

nanocalorimeter by Padovani [47] and in a Y-channel micromixer by Kowalski et al. 

[48]. Also, simultaneous near-infrared imaging of a micromixer filled with diluted 

ethanol and water was recently conducted by Kakuta et al. [64]. Computational Fluid 

Dynamics (CFD) can be a powerful tool for expanding knowledge about the heat and 

mass transfer occurring in the micromixers for a complicated process such as exotherimic 

or endothermic mixing of fluids.  

In this study, we apply a new 3-D numerical model of heat generation for the 

exothermic mixing of water and ethanol. Commercial software, Fluent (ANSYS, 
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Canonsburg, PA) was used to solve the conservation equations of mass, heat, momentum, 

and species in a Y-shaped micromixer. To incorporate the non-ideal properties of the 

mixture, a User Defined Function (UDF) was written for applying the concentration-

dependent heat of mixing based on experimental data and a fitted equation introduced by 

Peeters [50]. Another UDF was written to apply the abnormal viscosity and density of the 

mixture according to what was proposed by Mauri [53], who was one of the few 

researchers taking these non-ideal properties into account. The results of model will be 

compared against experimental data obtained from a similar geometry using thermopile 

sensors. Finally, an analytical solution will be suggested for describing the two-

dimensional velocity in the fully-developed pressure-driven channel filled with two 

immiscible fluids emphasizing on the important role of the viscosity in determining the 

location of the interface and intensifying the asymmetrical thermal map when the flow 

rates are equal.  

4.2 Methods 

4.2.1 Heat of Mixing 

In the water/ethanol mixing process, the interactions between solute-solute, 

solute-solvent, and solvent-solvent are involved [72]. The transition between the 

dominance of these interactions at different mole fractions causes irregular behavior in 

the mixture properties, including the enthalpy, density, and viscosity at different mole 

fractions of the solvent. Conventional calorimetric methods were used to obtain the heat 

of mixing in terms of mole fraction of solvents at room temperature [54] and 

investigating it at different temperatures [73]. Since then, numerous efforts have been 

dedicated to explaining these irregular behaviors using various experimental techniques 
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[49, 71, 72, 74]. However, there is no simple model for describing all the nuances of 

water/alcohol mixture, and it is yet an active area of research. Therefore, experimental 

data and the correlation introduced by Peeters were selected as the base for describing the 

heat of mixing. 

In this dissertation, water/ethanol mixture was selected as a representative source 

to generate a local heat in a micromixer and to study the propagation of the heat. The 

modeling was performed using a continuum level numerical technique (Finite Volume 

Method), and any molecular level model is out of the scope of this study.  

 

Figure 4-1:  a) The schematic of the transition in the structure of water/ethanol 

mixture (schematics were reproduced from [49] b) enthalpy of mixing based on the 
sixth order fitted equation of Peeters.  

Two approaches were taken in order to apply the mole fraction dependent heat of mixing:  

A) Modifying the enthalpy of each computational cell by adding the enthalpy term 

based on Eq. 3-11 

B) Adding the enthalpy as a heat source explained in Eq. 3-12 
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Fluent does not have any specific model for including the heat of mixing. Instead, 

it allows the user to customize the model by functions written in C language and 

dynamically executed in Fluent. In this way, the users are able to access the solver data 

using predefined macros and functions provided by Fluent and apply it for their special 

need [52]. Applying Eq. 3-11 requires a simpler code compared to Eq. 3-12. The result 

of both methods for the flow rate of 100 µl/min is plotted in Figure 4-2 for different flow 

ratios along the length of the channel. The results are very close between all the flow 

ratios except for W1E1 as can be seen in the figure.  

 

Figure 4-2:  Temperature difference between two lines overlaying the thermopile 

location calculated using enthalpy modification (dashed lines) and source term 

(dotted lines with markers) for different ratios of water and ethanol. The temperature 
difference was plotted all along the channel (as indicated in Figure 3-2). 
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Figure 4-3:  Enthalpy of mixing plotted at different sections of the channel. 

Despite the similarity of the results, the source term method better describes the 

physics of the problem. Water and ethanol mix as long as they are in contact; however, 

when they are mixed and the energy is released in the first contact, it is expected that they 

release less energy. When the enthalpy of mixing and the source term were plotted at 

different cross sections of the channel, the decreasing trend was observed for the source 

term, while for the enthalpy of mixing, it was almost the same at different sections: 
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Figure 4-4:  Source term corresponding to the heat of mixing, plotted at different 
sections of the channel. 

Therefore, the source term method was chosen for the analysis.  

4.2.2 Viscosity and Density 

As explained in the previous chapter, abnormal viscosity of the water/ethanol 

mixture has a considerable influence on the result. The concentration-dependent viscosity 

based on the experimental data is shown in Figure 4-5. To emphasize the abnormality of 

the viscosity, conventional linear relationship, which is typical for ideal mixtures, is 

plotted as well. As it can be seen, the deviation from the regular mixture relationship is 

more evident in the viscosity, compared to the density. However, both relationships were 

applied as a customized UDF in the software.  
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Figure 4-5:  Viscosity and density of the mixture as a function of ethanol mass 

fraction (figure reproduced from Mauri). 

4.3 Discussion 

4.3.1 Sources of Asymmetry 

In the experimental data, it was observed that for the equal ratio of water and 

ethanol (W1E1), a detectable signal was observed despite the fact that the sensor was 

placed symmetrically on the channel region, while the expectation was a very negligible 

signal. Simulations were performed to investigate the source of asymmetry. Despite the 

similarity, there are mismatches in the physical properties of water and ethanol. However, 

the share of each property in giving rise to the asymmetry is not the same. In order to 

understand the role of each parameter, the properties of the water and ethanol were 

reversed individually or jointly. Important properties of water and ethanol playing a role 

in the behavior of the system are provided in Table 4-1.  



74 

Table 4-1: Material properties of water and ethanol 

Properties Water Ethanol 

Density (       998 790 

Viscosity        0.001003 0.0012 

Thermal Conductivity          0.6 0.182 

Specific Heat          4182 2470 

 

 

First of all, the heat of mixing curve as it was shown in Figure 4-1 is not 

symmetric and has a peak at mole fraction of 15%. In this way, the highest enthalpy of 

mixing occurs at the water-rich region. Therefore, the mole fraction of water and ethanol 

was reversed in Eq. 3-11.  

Another subtle factor is the difference between the viscosity of water and ethanol. 

The fluid with lower viscosity moves faster due to its lower friction. Subsequently, for a 

heat source containing a velocity term (Eq. 4-12) or an additional enthalpy multiplied by 

a velocity term (left side of Eq. 4-10), it results in higher released heat. This relationship 

between the mean velocity and viscosity was observed for W1E1: 

                 Eq. 4-1 

This relationship is a very good approximation of the behavior of side-by-side flows 

when the aspect ratio of the channel is high. Considering the continuity, Eq. 4-1 results in 

an important relationship between the width, flow rate, and viscosity:  

   
   

   
   

   

   
 

   

   

  

  
 

  

  

 Eq. 4-2 
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where    and     are the volumetric flow rates of each fluid,    and    are the width of 

each stream, and t is the depth of the channel. This implies that for the same flow rate    , 

the interface of water and ethanol shifts to the lower viscosity stream which is the water 

side in this case:  

 
   

 
  
  

  
        

Eq. 4-3 

So, width of the channel occupied by water will be        instead of     . Therefore, 

for a sensor located symmetrically over the width of the channel, the heat source is closer 

to the water side. The combination of the enthalpy curve and viscosity mismatch is 

responsible for most of the asymmetry behavior.  

 

Figure 4-6:  Impact of reversing the factors accounting for the asymmetry in the 

temperature of the co-flow. Again, temperature difference between two lines 
overlaying the thermopile location was plotted over the length of the channel 
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As can be seen in the Figure 4-6, the temperature difference coming from the 

combination effect of viscosity and enthalpy equation is less than the difference caused 

by adding each of them separately. In other words, the superposition principle is not 

valid. This is logical given that the change in the viscosity influences the velocity, which 

directly affects the rate of enthalpy.  

The phenomena can be better explained using the non-dimensional group 

parameters defining the dynamical similarity of the two streams. In order to expect that 

the two flows behave the same under the forced convection, dynamical similarity should 

exist between them. The complete dynamical similarity implies that both Reynolds 

number,         , and Péclet number,         , are equal for them. An 

equivalent of this condition is the equality of     and Prandtl number,       . Prandtl 

number is the ratio of diffusivity of momentum to diffusivity of heat and is a property of 

the fluid [15].  The Pr is 7 and 16 for water and ethanol, respectively. Therefore, even for 

the same Reynolds number and under the same thermal condition, the thermal behavior 

of the two fluids is never identical. However, the non-dimensional numbers are good 

measures for predicting which stream gets hotter. 

 Hydraulic diameter of the two streams is almost the same: 

 
    

    
 

    
      

    
      

      Eq. 4-4 

The ratio of Reynolds numbers can be approximated using Eq. 4-1: 

 
   

   
 

           

           

  

  
 

         

         

  

  
 

  

  
 
  

  
 
 

 Eq. 4-5 
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According to Eq. 4-5, the two fluids in a co-flow occupy the same width of the channel 

and obtain the equal Re when their density ratio equals the square of their viscosity ratio. 

Inserting the densities and viscosities,           . Subsequently, considering the Pr 

of each fluid,             is valid. This explains why even with source term with a 

pick occurring at the ethanol side, the water side is still slightly hotter (Figure 4-7). In the 

flow with smaller Pe, conduction (molecular transport process) is more important than 

convection. Therefore, heat conducts more from a source term located at the interface of 

the two streams to the stream with smaller Pe.   

 

Figure 4-7:  Thermal contour of the microchannel chip when the source term is 

defined in a way that its pick is toward the ethanol side (water and ethanol sides are 
as demonstrated in Figure 3-2).  

4.4 Conclusion 

The discussion made for the justification of the non-zero thermopile signal at the 

ratio W1E1 is very important, especially for the design of a thermoelectric sensor. 
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Establishing the same flow and heat convection between the two streams in the co-flow is 

somehow crucial for benefiting the common mode rejection in the thermopile sensor. 
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CHAPTER 5 

 

COUNTER-FLOW THERMAL GRADIENT MICROFLUIDIC 

DEVICE FOR THERMAL STABILIZATION 
 

5.1 Introduction 

Counter-flow microfluidic chips and their application in stabilizing the thermal 

microsystems are the subject of this chapter. Microfabrication and rapid prototyping 

methods will be used to fabricate counter-flow microfluidic chips. The fabrication 

process of a high precision counter-flow chip will be explained in elaborate detail. 

Infrared thermography will be used to investigate the thermal behavior of the fabricated 

devices under thermal gradient at a wide range of volumetric flow rates. Influence of the 

interlayer material in the performance of the counter-flow will be investigated by 

fabricating the composite counter-flow chips with interface materials of different thermal 

conductivity levels. The performance of the devices will be compared with non counter-

flow, or as it is termed here, the direct-flow chips.  

5.1.1 Flow-induced Effects 

In chapter 3, the unwanted impact of convection in thermal behavior of a thermal 

gradient microfluidic chip was discussed. In this chapter, the adverse impact of the flow 

in distorting the thermal distribution will be discussed, and counter-flow configuration as 

a way of dealing with this problem will be investigated.  
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In a thermal microfluidic device, rapid alteration of the sample fluid is possible 

through passing it from different thermal zones. This idea has been the principle of a 

wide variety of biological processes, among which continuous-flow PCR (CF-PCR) and 

spatial DNA melt are two well-known examples. CF-PCR systems can be classified into 

two categories. The first category is multiple zones CF-PCR, including three separate iso-

thermal zones primarily introduced by Kopp et al. [6]. In such devices, thermal "cross 

talk" between the iso-thermal zones affects the performance of the device and limits the 

miniaturization [2, 75]. Contrary to the first category, Crews et al. used a single-zone 

temperature gradient design where fluid experiences the temperature change by passing 

across the isothermal lines. The sophisticated design of the channel geometry with 

respect to thermal gradient enforces the precise control over the residence time at distinct 

temperatures [9, 76]. The thermal gradient provides the ability of mapping the 

temperature of the fluid, which was successfully integrated into spatial DNA melt 

analysis [4, 77]. For such a system, the ideal temperature map is the one dictated under 

no flow condition, which is a linear thermal gradient. However, the flow passing 

isothermal zones causes variation in the temperature of the chip causing error in the 

analysis. The flow-induced effect can reach a level that limits the efficiency [3] and even 

the process time of both categories of devices.  

Flow-induced effects in the thermal gradient microfluidic was extensively studied 

by Crews et al. [2] using both experimental and numerical methods. They demonstrated 

how the flow can affect the temperature by designing a serpentine channel with right 

angle bends along or vertical to isothermal lines (under no flow condition). Schematics of 

the pattern they used can be seen in Figure 5-1. 
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Figure 5-1:  Geometry of the microchannel from the model depicting the pattern and 

its location with respect to the two heaters. a) side view b) front view [2] 

They tested the thermal performance of the actual micorfabricated glass 

microfluidic chip under the flow and with no flow conditions by analyzing the 

temperature difference between line B and line C,     , as a measure of distortion caused 

by the flow. CFD models were validated with IR themography of the chip surface. In this 

study, impact of important parameters such as volumetric flow rate, distance between the 

parallel channels, and the material properties of the substrate were investigated. 

According to Figure 5-1, the flow along lines B and C has opposite direction making a 

counter-flow. They demonstrated that the heat transfer between the two opposite streams 

can reduce the flow-induced distortion of the temperature distribution. The magnitude of 

this heat transfer depends on the resistance between the two channels, which is defined 

by the distance and material thermal conductivity of the substrate. This important 

outcome is the basis for designing the counter-flow microfluidic chip in order to deal 

with the adverse flow-induced effects. It suggests that a sophisticated design for 
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minimizing the resistance between the opposite streams is a promising approach for 

addressing the distortion due to flow. 

 Thomas et al. [75] expanded the parametric study of channel spacing to a series 

of bends creating a serpentine microchannel designed for 25 thermocycles similar to the 

microchannel fabricated by Crews et al [78]. They demonstrated the important role of 

channel spacing in the design of such devices. In another study by the same researchers, 

impact of operational parameters such as environment temperature, convection 

coefficient, and flow rate of the channel was investigated [3]. Their results show that flow 

rate is the most limiting parameter for efficiency or even possibility of PCR in these 

designs. The limit for the flow rate in their design was 1 ml/hr. 

Distance between the centerline of the serpentine counter flow channels is 

restricted by width of the channels, which is limited by resolution of the fabrication 

process. In fact, in most of the 2.5-D microchannels, miniaturization is mostly done in the 

depth (simply by reducing the etch time or by laminating a very thin interlayer material in 

xurography). Additionally, the resolution of optical and IR systems limits the ability of 

characterization of very minute channels located very close to each other. However, if the 

two opposite streams of the channels are separated in the normal plane, the two counter-

flows can be separated by a very thin layer, dismissing the need for very small channels. 

This design also allows for the design of a hybrid microfluidic in which the high thermal 

conductive material is used wherever it is required, while the lower conductive material 

(typical in transparent microfluidic chips) is used in the regions where thermal isolation is 

favorable.  
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5.2 Analytical Approach 

It is very innate to regard a counter-flow microfluidic performing under the 

thermal gradient as a miniaturized heat exchanger. The concept of the heat exchanger has 

been discussed very thoroughly in heat transfer textbooks [1, 14]. Although treating the 

problem as a 1-D heat exchanger model has undeniable benefits in terms of explaining 

the phenomena and clarifying the key parameters in the design of a counter-flow 

microfluidic chip, it cannot describe the nuances of the complicated heat transfer 

mechanism occurring in all dimensions. The 1-D model of the textbooks usually neglects 

the conduction heat transfer through the interlayer and solid walls and simplifies the 

multidimensional convection heat transfer in the fluid to a 1-D term. This approach can 

be more general when the heat conduction in the interlayer is considered. Applying this 

approach, Aminuddin et al. [79] developed an analytical solution for a counter-flow heat 

exchanger subject to a uniform external heat flux and considering a 1-D axial conduction 

in the interlayer. Similar approach is utilized here to deal with the problem when the 1-D 

conduction heat transfer is considered in the two solid walls surrounding the two counter-

flow channels in addition to the interlayer wall. 

5.2.1 1-D Analytical Model  

Consider two parallel channels of dimensions R and t, representing the length and 

depth of the channels, respectively. The top and bottom walls have identical thickness of 

tw and thickness of the interlayer material is denoted by tint.  

The axial conduction in the two walls and the interface is considered while it is 

neglected in the flow. Suppose that the external walls are subject to uniform air 

convection with the coefficient h∞. Additionally, the flow has reached a fully developed 
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condition in both directions. A linear thermal gradient along the length of the chip 

generates a constant heat flux boundary condition to the channel wall. For this condition 

and depending on the aspect ratio of the channel, Nu can be estimated. Therefore, heat 

transfer coefficient between the fluid and wall is: 

    
     

  
 Eq. 5-1 

where kf  is the fluid thermal conductivity and Dh is the hydraulic diameter of the channel: 

    
  

 
 

    

    
 Eq. 5-2 

 Also, in accordance with the microfluidic chip designed and fabricated in this study, in 

the counter-flow it is assumed that instead of two independent inlets and outlets, the 

outlet of one stream is the inlet of the next stream, as it is shown in Figure 5-2. As a 

result, it is fair to assume that the temperature of the first flow at its end equals the inlet 

temperature of the second one.  

Schematic of the configuration for the 1-D model is drawn in Figure 5-2: 

 

Figure 5-2:  Schematic of the 1-D model 

The governing equations and the corresponding boundary conditions are: 
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Eq. 5-4 

       

   
 

    

        
            

    

        
            

Eq. 5-5 

      

  
 

    

          
                 

Eq. 5-6 

      

   
 

    

      

           
  

      

         
Eq. 5-7 

where                ,     , and     are temperature of the first wall, fluid in the first 

channel, interlayer, fluid in the second channel, and second wall, respectively. Parameter 

k represents the thermal conductivity of layers and channels,     and     are the mean 

velocities in the first and second channels,    and   are the specific heat capacity of the 

working fluid and its density, respectively. Convection coefficients of the fluid in the first 

and second channel,      and     , are calculated using Eq. 6-1. The ambient air 

temperature and convection coefficient are denoted by T∞ and h∞, respectively. For the 

purpose of clarifying the effect of counter-flow, it is useful to consider the direct-flow 

case as well. The governing system of ODE's for the direct-flow is: 
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Eq. 5-9 

      

   
 

   

      
          

  

      
         

Eq. 5-10 
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The material properties used in the direct-flow case are the same as the counter-flow. 

Since the second channel is removed from the calculations, the interface and second wall 

can be merged into one wall with the thermal properties of the second wall used in the 

counter-flow case and an equivalent thickness which is calculated in this way: 

 
        

    

    
 

   

   
  

Eq. 5-11 

5.2.1.1 Boundary conditions 

Thermal gradient along the chip can be applied by either constant T or constant Q 

to the top and bottom of the chip.  

For the constant T boundary condition, based on how the heaters are attached to 

the chip, different conditions can be considered. If the heaters generate a uniform 

temperature at the two ends: 

                                     Eq. 5-12 

                                    Eq. 5-13 

                         Eq. 5-14 

                          Eq. 5-15 

In case the heaters are attached to one side of the chip (which was the main configuration 

used in this research), it can be assumed that conduction through the depth of the chip 

defines the temperature of the layers at each end of the chip:  

                                                           Eq. 5-16 

                                                        Eq. 5-17 

By knowing the heater temperatures at one side and using a 1-D heat conduction model 

in the depth of the chip, the remaining temperatures can be calculated. Schematic of the 

boundary condition applied by conduction is shown in Figure 5-3: 
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Figure 5-3: Temperature of each layer is dictated by the 1-D conduction when the 

heater is attached to one end 

For the constant Q case, the boundary condition applied to the heating end will be: 

 
   

  
  

   

  
                Eq. 5-18 

where     is the surface heat flux from the heater attached to the chip. Similar to the 

constant T boundary condition, different conditions can be applied based on where the 

heaters are attached.  

This system of boundary value ODE can be solved analytically; however,  reaching a 

closed form solution for it is tedious. Instead, the system of ODE was solved numerically 

using MATLAB boundary value ODE solver, BVP4ODE. The code is included in 

Appendix A. 

5.2.1.2 Results and discussions 

It was noticed that the analytical solution is very sensitive to Nu. Therefore, for a 

better comparison, Nu≈5 was calculated from the 2-D simulation of an almost identical 

geometry.  

                                             Eq. 5-19 
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Eq. 5-20 

where     is 6.5, 12, and 55 kw/m
2
 for glass/glass, glass/quartz, and glass/silicon chips, 

respectively. Ambient air convection coefficient was considered to be 20 W/m
2·K. 

Thermal conductivity of 1.38, 10, and 150 W/m·K was considered for the interface 

material representing the glass, quartz, and silicon.  

 The results from analytical method and CFD model are in very good agreement 

when the thermal conductivity of the interface material is high (quartz and silicon), while 

they are different when the interface material is glass. The difference increases noticeably 

for the glass/glass chip at high flow rates. As an example, the results of the analytical 

solution and the CFD model were plotted in Figure 5-4. Since the linear thermal 

distribution between the two ends of the chip is a very intuitive outcome, for the inlet of 

the channel, temperature was selected to be different from the temperature of the solids at 

x=0.  As a result, a sharp change in the temperature of the fluid is observed in the results 

of the models (Figures 5-4, 5-5, and 5-6) 
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Figure 5-4: Thermal distribution in the glass/silicon counter-flow model at 10ml/hr 

from analytical and simulation plotted for different layers (wall 1, channel 1, 

interface, channel 2, wall 2). The right picture is magnified.  

The reason can be explained by the assumptions on which the analytical solution 

was based. In the governing equations, axial conduction was considered while the 

conduction in y-direction was neglected due to the 1-D nature of the solution. This can be 

a reasonable simplification for high thermal conductivity materials as the thermal 

resistance in the thin width of the material is very small and therefore, uniform 

temperature in y-direction can be expected. For glass though, the uniform distribution in 

y-direction is not acceptable due to its poor thermal conductivity. The same justification 

is valid for the difference between the results of the two models at high flow rates. When 

the mean velocity is high, the parabolic temperature (solution of Poiseuille flow) in the 

channel width deviates from the uniform temperature assumed in the analytical solution. 
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Despite the comparative simplicity of the analytical solution, it explains a lot 

about how the counter-flow configuration assists in neutralizing the adverse convection 

effect of the ambient and consequently linearizing the gradient. 

 

Figure 5-5: Thermal distribution of the layers along a glass/quartz counter-flow 

under no flow, flow of 10 ml/hr, and 20 ml/hr  

As can be seen, the hyperbolic thermal distribution of the chip gets more linear as 

the flow increases. This is visible especially in the glass/quartz chip since the moderate 

thermal conductivity of the materials dictates the parabolic thermal distribution caused by 

the ambient convection. For the glass/silicon chip, due to the very high thermal 

conductivity, even at no flow condition, the thermal distribution is almost linear, as can 

be seen in Figure 5-6. 
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Figure 5-6: Thermal distribution of the layers along a glass/silicon counter-flow 

under no flow, flow at 10ml/hr and, 20ml/hr  

The temperature change due to flow for the glass/silicon chip is less than the 

glass/quartz chip. This observation can be explained in this way: due to the constant Q 

boundary condition, fixed amount of heat is responsible for establishing a thermal 

gradient of interest at the end of the chip when there is no flow. The flow introduces a 

thermal mass which drags energy, and therefore, the temperature of the chip decreases 

under the flow. However, the heat flux Q required for establishing the same thermal 

gradient in the glass/silicon case is much more than that of glass/quartz chip (about 4.5 

times more), and therefore, for the same flow rate, it is more resistant to the flow 

condition. 

5.3 Design and Fabrication of a Counter-flow Chip 

The concept of a counter-flow chip for thermal stabilizing was covered in the 

previous chapters. In this chapter, microfabrication procedure of a hybrid silicon/glass 

counter-flow microfluidic chip including the design of  the chip, design of the 

photomask, formation of the hard mask using photolithography, wet etching, device 
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packaging, and assembling the set up will be described. Fabrication using xurography for 

hybrid glass/glass and glass/quartz chips will be discussed briefly because details of this 

fabrication technique can be found in the reference [77]. 

5.3.1 Design 

5.3.1.1 Chip Design 

Analytical solution of chapter 3 for a chip under the thermal gradient was used for 

minimizing the impact of the parabolic temperature distribution, which can be a source of 

temperature difference when the two sensing and reference junctions of the 

thermoelectric are not placed symmetrically. To analyze it, for a fixed height and 

thickness of a glass chip, temperature difference at 1 mm and 2 mm off the centerline was 

calculated for different widths. Convection coefficient of the air is assumed to be the 

typical value of 20 W/m
2
K. When there is no convection, this value is ideally zero for all 

the widths, so for chips fabricated with a higher conductive material in which the 

conduction dominates the convection, this error is much smaller. 
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Figure 5-7: Impact of the width on the temperature difference between two fixed 

points 

5.3.1.2 Microchannel Design 

The microchannel design is based on the thermopile application in a way that one 

set of junctions aligns with one stream without any internal heat event (e.g. a buffer 

solution) called reference junction and the other set of junctions aligns with the stream 

containing the heat event of interest (e.g. melt of DNA) called the measuring junctions.  

The counter-flow chip is designed for the minimum number of inlets and outlets 

for the simplicity of the set up. At the same time, the aim of the device dictates the 

minimum of two inlets. The schematic of two preliminary designs for this application is 

plotted in Figure 5-8: 
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Figure 5-8:  Schematic of two microfluidic designs for the thermoelectric sensing a) 

merging b) parallel 

The merging pattern or the Y-channel is the design used in the thermoelectric 

microfluidic sensor explained in chapter 3. Such a configuration has been widely used in 

the microfluidics, taking advantage of the side-by-side laminar flow.  Fully developed 

flow can be achieved in both sides if the interface thickness is negligible. This condition 

occurs when the mass Péclet number is large. For a certain thermopile sensor (e.g. 

thermopile introduced in chapter 3), minimum width of the channel needs to be equal or 

larger than the distance between the junctions. The parallel channel pattern in contrast,   

avoids the mixing of the two streams and allows much smaller channel widths as long as 

their width is larger than the thermopile junctions. The distance between the channels is 

limited by the width of the thermopile. In both designs, a minimum of two inlets and 

outlets are required. Also, in both designs the common mode rejection characteristic of 

the thermoelectric sensor helps reduce the artifacts. In comparison, the parallel pattern 

avoids any potential unwanted artifacts due to the mixing of the two streams especially at 

low mass Péclet numbers when the interface width expands to the channel walls. 

Furthermore, the discussion made in the chapter 4 showed how establishing a full 
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similarity between the two side-by-side flows can be cumbersome or even impossible 

when there is a mismatch between the Prandtl number of the two fluids. Although most 

of the biological samples (e.g. DNA solution) are water based and probably have similar 

thermal properties, their viscosity can be significantly different. 

  To take advantage of both designs, the final design is the combination: 

  

Figure 5-9:  a) Front side of the chip b) Back side of the chip 

Front and back will be connected through a hole drilled at the end of the channel. 

For demonstrating the performance of the counter-flow chip, a direct-flow chip will be 

fabricated without drilling the hole between the front and back channel.  

Beside the distance of the two parallel channels and the location of the inlets and 

outlets which are constrained and customized for the existing thermal sensor and the chip 

holder, there is still room for alteration and modification for the remaining dimensions. 

For example, the 1 mm channel width was selected to make the microfabricated device 

comparable with the xurography fabricated devices. Since xurography required more 

manual labor and involved the scoring of adhesive films, thinner channels increase the 

uncertainty, especially for the alignment of the features cut in tape on the back and front 

side of the chip while for the microfabrication technique, it is not the case. The obvious 

advantage of the thinner channel design is the higher thermal ramp rate. Also, the low 
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aspect ratio of the channel enhances the mixing of the two streams at the junctions. The 

noticeably long distance between the merging point of the two channels and the end of 

the channel located on top of the chip may give rise to the asymmetry of the design, 

which is not favorable. However, this design increases the mixing length of the two 

streams.     

5.3.1.3 Photomask 

According to Figure 5-9, the chip has two different patterns on back and front 

sides making a two-layer device. In photolithography, usually each layer with a different 

pattern requires a separate photomask. Fabrication of a precise and high quality 

photomask requires time, and it is often costly. As a result, reducing the number of the 

masks helps reduce the complexity, the expenses, and the time of the process. Here, 

instead of two photomasks, a single photomask containing both patterns was designed. 

Accordingly, alignment mark sets were designed in a complementary way. In the 

succeeding fabrication steps, when the pattern is transferred from the photomask to the 

photoresist-coated front side of the chip using the standard photolithography steps, 

photomask was rotated 180º to transfer the complementary pattern to the photoresist-

coated back side of the wafer.   
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Figure 5-10:  Photomask layout including the final pattern (plotted in green color) 

and the guidelines 

The photomask was designed for a 4" wafer containing two devices. Guidelines 

used for locating the inlets, outlets, and the potential location of a 3 by 1 mm thermopile 

are drawn in the Figure 5-10. The array of inlets shows the location of holes in an 

aluminum chip holder (Dolomite Microfluidics, Royston, UK) which will be used in the 

device assembly.  

Two sets of alignment marks were designed on the left and right edge of the wafer 

in order to minimize the error in x, y, and θ. 
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Figure 5-11:  Alignment marks designed in a large and a small set 

The photomask was designed in AutoCad and the DXF file format was converted 

to GDSII format suitable for the laser mask writer using the LinkCad software. The high 

resolution chrome/quartz mask was fabricated in the laser mask writer. 

5.3.2 Hard Mask Fabrication  

The standard photolithography process was used to create the hard mask suitable 

for the following wet etching step. Prime <100> p-type silicon wafers (Resistivity 1-20 

Ohm.cm) of 100 mm diameter and thickness of 500 µm were used as the substrate for the 

chip. Since potassium hydroxide (KOH) was selected as the etchant solution in the wet 

etching process, an appropriate hard mask was required to protect the remainder of the 

wafer from being etched. Common hard masks used in the KOH etching of silicon are 

silicon dioxide (SiO2), silicon nitride (Si3N4), and alkali resistant metals such as 

chromium. Most of other metal masks are not suitable in KOH wet etching since the poor 

adhesion to the wafer allows the etchant to creep between the metal film and the wafer, 

causing it to peel off. On the other hand, most of the photoresists cannot withstand the 

KOH. The ratio between the etch rate of silicon to the hard mask, or the "selectivity" of 

oxide, is around 100. This value is around 1000 for the nitride. Considering the depth of 

the channel (less than 100 µm) and the availability of the equipment, silicon dioxide was 

chosen as the hard mask. Silicon dioxide can be formed using dry or wet oxidation or it 
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can be deposited using chemical vapor deposition (CVD). Growing silicon dioxide using 

wet oxidation is significantly faster compared to dry oxidation as the water vapor diffuses 

much faster into the formed silicon dioxide. However, the slow dry oxidation process 

leads to a denser oxide layer of higher quality [80]. About 800 nm of oxide were 

thermally grown on both sides of the wafers in a quartz tubular furnace at 1200 ºC.  

5.3.3 Photolithography 

Unlike the dry etching (the etch process is directional), the wet etch process 

enables the simultaneous etching on both sides of the wafer. As a result, the standard 

photolithography steps are done on both sides of the wafer before creating any etched 

feature in the silicon or silicon dioxide. The steps for transferring the pattern to both sides 

are: 

1. Wafer cleaning using IPA and acetone  

2. Drying the wafer on the hot plate, 2 minutes at 110º C 

3. Applying the positive S1813 photoresist and spin coating 

4. Soft baking for 1-1.5 minutes at 95º C on hot plate 

5. Mounting the wafer in MA/BA6 Mask Aligner (Suss MicroTec, Germany), 

aligning the wafer edges with the four square windows of the photomask 

6. Exposure (14 to 25 seconds) 

7. Developing in MF 319 and rinsing in DI water, (no need to agitate it since it 

enlarges the etched feature, also no need to rinse it with a strong water flow) 

8. Hard baking at 125º C for 5 minutes on hot plate 

9. Gently centering the wafer on the spin coater and spin coating on the back of the 

wafer 
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10. Soft baking in an oven or on a hot plate, five minutes at 110º C (or on the hotplate 

at 95º C for 1-1.5 minutes) 

11. Putting the wafer in MA/BA6  

12. Rotating the mask by 180º to flip the top and down and putting it in the MA/BA6 

mask holder 

13. Aligning with respect to the alignment marks, and UV exposure 

14. Developing in the MF 319, rinsing in DI water 

15. Hard baking for 5 minutes on hot plate at 95º 

Longer hard baking at the end is especially important when the photoresist is used 

in harsh chemicals such as hydrofluoric acid (HF) or buffered oxide etch (BOE) for a 

comparatively long time, which is required for removing the thick silicon dioxide layer. 

The through hole connecting the front and back side channels can be drilled after defining 

the features by photolithography, after generating the features in the hard mask, or after 

the wet etching. If the precise dimension of the hole is important, it should be noted that 

the hole expands during the wet etching. Here, drilling the hole was done successfully 

either before or after the wet etching. However, drilling the hole after the wet etching 

makes the process much simpler and maintains the original dimension of the hole. For 

thin wafers or for very deep etched channels, chances are that making the holes using 

mechanical techniques such as drilling with diamond beads causes extra stress and breaks 

the wafer. In such conditions, it is better to drill the hole before or to use other techniques 

such as laser drilling [81], or etch-through-hole techniques such as DRIE [82, 83]. Hard 

mask fabrication step is usually finalized by wet etching of the unprotected SiO2 in BOE 

or in HF. BOE 7:1 was used to etch the oxide at room temperature. Observing the change 
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in the color of the wafer from bluish to gray is a visual way for stopping the etch. 

Considering the typical etch rate of 700 Aº/min, the 800 nm oxides were etched in about 

12 minutes. A better way for assuring the removal of all oxide is to rinse it in DI water. If 

a layer of oxide still remains on the surface, the water wets it, while if it is removed 

completely, only water droplets remain on the surface due to the silicon hydrophobic 

property. Native oxide always forms on the wafer, therefore performing the wet etch right 

after this process is very beneficial for achieving a uniform surface. Once the oxide was 

removed, the photoresist was also rinsed off with acetone. An image of the wafer and 

hard mask is shown in Figure 5-12: 

 

Figure 5-12:  Wafer with the patterned oxide as the hard mask. The bluish color 
shows the oxide and the gray color represents the silicon  

5.3.4 KOH Wet Etching 

Carving a microchannel in a silicon wafer performed through the selective 

removing of a significant amount of a silicon wafer is an example of bulk 
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micromachining. Wet etching and dry etching are two main techniques in the bulk 

micromachining. Wet etching usually tends to be isotropic whereas highly anisotropic 

features can be etched through dry plasma etching [84]. However, based on the chemistry 

of the etchant, isotropic features from dry etching as well as highly anisotropic features 

by wet etching are feasible. In any etch method, the key parameters are the selectivity and 

the etch rate. In crystalline materials, such as silicon and quartz, certain crystal lattice 

orientations are etched much slower. For silicon, the etch rate of <100> and <110> planes 

are remarkably more than <111> crystal planes in the alkaline solutions such as KOH, 

TMAH, and EDP. This characteristic has been used for the manufacturing of V-grooves 

formed by the intersection of <111> planes in the <100> silicon wafers and for creating 

the vertical walls in the <110> silicon [80, 82]. Although <110> silicon is an ideal choice 

for creating the microchannels, <100> silicon has been widely used for microchannels 

due to its availability and lower price. Very smooth 57º sidewalls can be achieved simply 

by anisotropic wet etching.  Despite the CMOS incompatibility and the relatively poor 

selectivity to SiO2 hard mask, KOH has the best etch rate and the highest crystalline 

plane selectivity, making it an ideal etchant for MEMS applications, such as 

microchannel fabrication [82]. Etch rate and surface roughness of silicon is a strong 

function of KOH concentration, temperature, and agitation [85]. Adding IPA or special 

surfactants can be an effective way to reduce the roughness of the etched surfaces  [86]. 

Adding IPA also helps keep the composition of the solution as IPA stays on top due to its 

lower specific gravity. In better words, IPA acts as a sacrificial liquid layer for 

water/KOH solution.  



103 

5.3.4.1 Wet etching set-up 

The set up used for wet etching consists of a 5 liter Pyrex beaker, a condensation 

lid, hot plate with magnetic stirrer, stirrer bar, and HDPA wafer cassette. About 3.5 liters 

of 32 to 35% KOH solution was prepared by diluting the aqueous 45% (w/w) KOH 

(700000776-VWR –PA-USA) with DI water. 0.3 to 0.5 liters of IPA was added to the 

solution after heating the beaker to the approximate temperature of 75 ºC. <100> silicon 

wafers (100 mm diameter, Boron doped, 10-20 Ohm.cm, 500 µm thick) were selected for 

the microchannel substrate. 

Due to the large thermal mass of the solution, it takes a really long time to reach 

the set temperature of 70 ºC. Therefore, a 500 watt immersion heater was used along with 

the insulator foams covering the outside surface of the beaker when the mixture was 

heating up on the hot plate. Once the temperature reached the set temperature, the 

immersion heater was taken off, the wafer cassette containing the wafers was transferred 

to the beaker, and the condensation lid was put on the beaker. Wafers were placed 

vertically to facilitate the discharge of the byproducts such as hydrogen bubbles, which 

are known to cause pseudo-masking [85].  Figure 5-13 shows the picture of the set up.  
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Figure 5-13:  KOH wet etching set up 

Two sets of wafers were etched under different conditions. In the first set, a half 

liter of IPA was added to the 35% KOH solution without agitation. In the second set, 0.3 

liters of IPA was added to the 32% KOH, and a magnetic stirrer bar was used for 

agitation at 250 to 300 rpm.  

5.3.4.2 Outcome 

 Surface roughness and depth of the channels were analyzed in the 3-D 

microscope (Keyence VK-X150) and Dektak 150 Surface Profiler. In the first set of 
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wafers, the etched surface had non-uniformities in terms of depth and roughness. Etch 

depth of 55 to 70 µm was observed in a single wafer. The overall smoothness was good, 

but regions with high roughness existed. 

 

Figure 5-14: A 3-D microscope image of the etched channel on front the side of the 

wafer. Top picture shows the top view of the etched channel (maximum height 

demonstrated by red color, minimum by dark blue). The bottom picture shows the 

profile of the etched channel probed along line 1 shown in the top picture. The 

difference between the highest and the lowest depth is about 68 µm. 
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Figure 5-15:  3-D microscope image of the etched channel on the back side of the 

wafer. The two parallel thick black lines in the top picture show the anisotropic walls 

of the etched channel. The roughness of the etched surface of the channel can be seen 

in the top view. The profile of the probed line 1 is shown in the bottom picture. The 

etch depth is about 55 µm. 

The etched surface of the second set was rougher, but the uniformity of the etch 

depth was significantly better possibly due to agitation. For the counter-flow application, 

the uniformity in the depth of the channel, especially on both sides of the wafer, is a 

critical characteristic for the performance of the device since it influences the local 

velocity of the fluid. As a result, wet etching with the second set of parameters is 

recommended despite the higher roughness of the outcome. Of course, reducing the 

surface roughness is a very important practive in microchannel fabrication especially in 

the heat sink application for the purpose of reducing pressure loss [87]. For the 

biomedical application of this device, the high surface roughness may have a detrimental 
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effect, such as trapping large biomolecules like DNA; however, optimizing the surface 

quality of the microchannel is a time consuming process and is beyond the focus of this 

study. 

5.3.4.3 Residual hard mask removal 

The original thermally grown SiO2 layer in the dry oxidation furnace was not 

uniform. As a result, when the etch process was stopped, there were regions with oxide 

residue (hydrophobic/hydrophilic surface was checked by DI water to check the 

remaining oxide). The remaining oxide measured in Filmetrics was between 80 to 200 

nm. For the following device bonding step, it is important to have a clean and uniform 

surface. Therefore, the wafers were underwent an additional BOE etch to remove the 

residual oxide. 

5.3.5 Chip Assembly  

Chip assembly or chip packaging is the process of closing the open microchannel 

and attaching the inlet and outlet ports. Once the features are generated in the wafer, the 

device should be capped. For a biomedical application, capping the channels using a 

transparent material is extremely useful as it allows the optical monitoring techniques 

such as Fluorescence spectroscopy or direct optical monitoring of the process when a dye 

is used. Glass, quartz, PDMS, polycarbonate, SU-8, and PMMA are the popular 

candidates. In the choice of capping material, in addition to the optical transparency, 

mechanical and thermal properties as well as the biocompatibility characteristics are of 

great importance. The low thermal conductivity of the capping material allows producing 

a large thermal gradient at a lower power. In this sense, polymers are a better choice. On 

the other hand, using a hard material with similar mechanical properties is advantageous 
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over the soft and elastic polymers. In addition to the cost and availability, the feasibility 

of bonding techniques is probably the most important parameter in selecting the capping 

material. As far as the simplicity of the bonding, the direct plasma bonding of the PDMS 

to the native oxide on the silicon makes it an interesting option. However, its low 

stiffness is not favorable for integration with silicon. Moreover, in the thermal 

characterization using IR thermography, the big gap between the thermal conductivity of 

PDMS and silicon makes a significant difference between the actual temperature of the 

channel and the IR camera read outs from the PDMS surface. The huge difference 

between the coefficient of thermal expansion (CTE) of silicon and PDMS (several orders 

of magnitude [88]) can apply a significant thermal stress to the silicon chip when it is 

used under a large thermal gradient. Therefore, the sandwiching material should have low 

thermal conductivity compared to silicon but be compatible in other thermal and 

mechanical properties. This suggests the selection of glass or quartz for this application.  

Material properties of some common materials for fabrication of microfluidics are 

summarized in Table 5-1: 
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Table 5-1: Material properties of common candidates for microfluidic fabrication 

Material name Thermal 

conductivity 

(W/m
2
K) 

CTE 

(10
-6
/K) 

Young 

modulus 

(GPa) 

Refractive 

index 

Silicon 148 2.5 140-180 Opaque 

Glass (Pyrex) 1.1 4 67 1.473 

ST-cut quartz 7-10 7.1-13.2 76.5-97.2 1.54 

PDMS .15 960  less than .001 1.43 

SU-8 .2 52  2 1.59 

Polyimide(Kapton®) .46 20  2.5 1.7 

 

 

5.3.5.1 Bonding techniques 

Wafer bonding techniques are usually classified into "direct" and "indirect" 

methods. In the direct method, two materials are bonded without any intermediate 

material. Fusion bonding and anodic bonding are probably the most well-known direct 

bonding techniques. Direct bonding requires a very clean wafer with special attention to 

the particulates. Fusion bonding of the glass to glass at 650º C and plasma activated 

bonding of glass to glass are two examples of direct bonding of glass [83].  

 Anodic bonding is probably the best bonding method for fabricating hybrid 

glass/silicon devices. Only glasses containing the alkaline impurities and with a CTE 

close to the CTE of silicon such as Corning 7740 (Pyrex), Borofloat glass, Schott 8329, 

and Corning 7070 are anodic bondable [83, 89]. Glass and silicon heated to 300-450º C 

bond together in an electrochemical process when the mobile alkali ions of glass under an 

electrical potential move towards the cathode and leave an oxygen rich "depleted region", 

causing the oxidation of the silicon at the interface of the two wafers [89].  
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Anodic bonding of triple stack of glass/silicon/glass structures, which is 

applicable for the fabrication of counter-flow device, is also possible. In comparison to 

glass/silicon bonding, it is less straightforward and requires creative steps which have 

been developed by different researchers [90, 91].  Both fusion and anodic bonding are 

usually performed under the vacuum condition and require specific equipment. 

  In indirect bonding, the two wafers bond together using an "intermediate" layer 

in between [92]. Unlike the direct bonding technique, indirect bonding is usually less 

expensive, requires lower applied temperature, does not require an extensive cleaning 

procedure, is less sensitive to the surface defects and scratches, and can be performed 

without expensive or special equipment. A wide variety of intermediate layer materials 

such as metals, solder, glass frit, and polymers were reviewed and compared in the 

reference [92]. Uniform spreading of the adhesive on the bonding surfaces is the crucial 

part of the indirect wafer bonding. Photoresist polymers exist in a variety of viscosities 

and can be dispensed uniformly using spin coaters and be patterned using cleanroom 

equipment. 

SU-8, the negative epoxy-based photoresist is one of the most ubiquitous 

polymers used in microfluidics. Its excellent mechanical strength, along with its good 

thermal and chemical stability, have expanded the usage of this polymer from a regular 

photoresist to a material for direct fabrication of high aspect ratio structures in 

microfluidics, and as a mold in soft lithography. Since SU-8 bonds easily to itself, it can 

be used for creating microstructures that can be simply packaged by the same material 

[93]. Moreover, its optical transparency makes it a material of choice when it is used for 

bonding glass to glass.  
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5.3.5.2 Wafer dicing 

When direct bonding techniques such as fusion and anodic bonding are used, 

depending on the equipment, it is often necessary to bond the wafer before the dicing 

step. In contrast, for the indirect bonding using adhesives, dicing the wafer into chips 

before the bonding process has advantages, such as less consumption of adhesives, which 

are often expensive (e.g. SU-8), and easier handling. Therefore, the wafer dicing is 

performed before the bonding. 

Silicon wafers were diced with a wafer dicing saw (MicroAutomation, CA, USA) 

using a nickel blade. The guidelines showing the border of each chip in the photomask 

(Figure 5-10) were very helpful for simplifying a precise dicing. Subsequently, Pyrex 

glass wafers of 760 mm thickness and 10 mm diameter (University wafers, MA, USA) 

were diced to obtain two 40×45 mm rectangles in the same dicing saw using a diamond-

and- epoxy resin blade. Needless to say, compared to silicon wafer, glass wafer dicing 

demands a significantly longer time because it is done by score cutting. For the 

xurography chips, ST-cut quarts were diced. 

5.3.5.3 Chip bonding using SU-8 

Despite the numerous examples of using SU-8 for bonding, the procedure is still 

very tricky and mostly depends on skill and experience. The worst problem associated 

with the SU-8 chip bonding for the microchannel is the channel clogging. SU-8 bonding 

should be done around the glass transition temperature of the SU-8 when it is less 

viscous. Consequently, any non-uniformity in the temperature and applied force may 

guide the low viscous resist to the etched channel. The sloped 57º sidewall of the 

microchannel caused by wet etching also aggravates this problem. 
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  For wafer bonding, it is recommended to use a low viscous SU-8, such as SU8-5 

[94, 95]. SU8-5 is suitable for thicknesses of 5 to 15 µm, depending on the spin speed. 

For avoiding a significant introduction of the SU-8 into the channel as well as 

maintaining the designated microchannel depth, a lower thickness is preferable. 

Moreover, SU-8 has a comparatively high CTE compared to silicon [93], so, having a 

thinner layer applies less thermal stress to the device.  

In the first attempts, the protocol suggested by Yu et al. [95] was followed to 

imprint the SU8-5 (Microchem corp, MA, USA) only on the non-channel surface of the 

etched silicon. For the features with  a high ratio of etched surface such as a pressure 

sensor cavity, direct imprinting of the SU-8 from a dummy wafer to the etched surface is 

a promising procedure. When the ratio of etched surfaces to the chip surface is low (as it 

is in the pattern used in this dissertation) the separation of the two wafers using a razor 

blade may break the brittle wafers. On the other hand, separating the wafers by sliding 

introduces SU-8 to the etched area. For such a condition, Lu et al used a Teflon roller for 

transferring the SU-8 from the dummy wafer to the etched wafer surface. 
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Figure 5-16:  Schematic of the two contact imprinting methods for transferring SU-8 

to an etched surface [95]  

Unfortunately, transferring the SU-8 using the Teflon roller was not successful 

because the thin SU-8 layer wouldn't stick to the roller while the thick layer would lead to 

an uneven distribution of the resist on the surface of the roller. Consequently, SU-8 was 

spin-coated on the diced glass slides and brought in contact to the diced silicon chip. The 

recipe used here for the pre-treatment and bonding is based on what Lima et al [94] 

suggested. The steps are given below: 

1. Wafer cleaning using NanoStrip® at 65 ºC for 10 minutes followed by rinsing and 

drying 

2. Dehydration on the hot plate at 120 ºC for 30 minutes. Following these steps, not 

only are the contamination and particles minimized, but also the surface energy of 

the glass and silicon wafer will be reduced, which in turn improves the adhesion 

of SU-8.  
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3. Spin coating the SU-8 on a 45×40 cm glass slide: 5 seconds ramp of 500 rpm/sec, 

30 seconds at 3000 rpm to form about 5 µm layer. Care should be done to center 

the slide as much as possible. For glass slides with holes, due to high viscosity of 

the SU-8, the holes stay intact.  

4. Leaving the coated slide to "age" at room temperature for 10 minutes [93] while 

setting one hot plate to 65 ºC and another one to 95 ºC. 

5. Soft baking at 65 ºC for a minute. This step decreases the thermal stress, 

evaporates some solvent, and promotes the adhesion. The silicon wafer is also 

heated to the same temperature. 

6. Very gently approaching the two parts together and aligning the holes in the glass 

to the inlet of channels in the silicon. No force should be applied in this step as it 

introduces a large quantity of photoresist into the channel. 

7. Transferring the two slides over the 95 ºC hot plate. The hot plate should be 

perfectly leveled. Any tilting may introduce SU-8 into the channel. SU-8 at 95 ºC 

has much less viscosity, helping the bond spread. However, it is very probable 

that some parts will not bonded completely. Applying a uniform or local weight 

(less than 200 g) helps the bond spread. The whole soft baking at 95 ºC takes 5 to 

10 minutes. 

8. Once the two slides are taken off the hot plate and cooled down to the room 

temperature (it makes the SU-8 very viscous and minimizes any sliding) the 

assembled chip should be exposed from the glass side. A dose of 600 mJ cm
-

2 
recommended by Lima was used. The exposure was done in the MA/BA6 mask 

aligner. The exposure time can be calculated by dividing this dose by the mask 



115 

aligner power. By experience, at least two minutes of exposure is necessary to 

cure the SU-8. After the exposure, the crosslinked SU-8 turns gray.  

9. Post exposure bake at 95 ºC for a minute. The duration can be extended to up to 

five minutes to ensure a complete crosslinking.  

The other side of the chip should be bonded similarly. However, the glass/silicon 

bonded slides cannot be immersed in the NanoStrip as it penetrates into the channel, 

reacts with the SU-8, and clogs the channel. Thus, surface cleaning was done using 

acetone and IPA.  

It is possible to use a negative mask to selectively keep the SU-8 coated parts of 

the glass slides unexposed. Then, by flowing the SU-8 developer, one can remove the 

uncrosslinked photoresist on the channel wall. However, chances are the developer 

removes some of the uncrosslinked resist of the sidewalls. To avoid this, an interesting 

lift off process is suggested by Lima et al. for creating a negative aluminum mask that 

covers the sidewalls of the channel [94]. However, this step needs to be done at the end 

of the wet etching process and before removing the hard mask residue removal. Bonded 

chips were all tested later by flowing up to 30 ml/hr flow. The overall thermal resistance 

applied by the very thin photoresist layer is small despite the low thermal conductivity of 

the SU-8 due to its thickness.  

5.3.5.4 Attachment of inlets and outlets 

The location of the inlets and outlets was designed based on the CAD of an 

aluminum chip holder (Dolomite Microfluidics, Royston, UK). As long as the inlet holes 

in the chip are aligned and in contact with the holes in the chip holder holes, the device is 

leak free due to the gasket of the chip holder. However, as the holder was originally 
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designed for 4 mm thick microfluidic chips, there is a gap, which should be filled to make 

the device leak free. In the first set of experiments, this configuration was tested 

successfully. However, for thinner hybrid chips fabricated by xerography, tightening the 

gap caused cracks at the inlets. Therefore, PDMS ports replaced the inlet part of the chip 

holder in all of the proceeding experiments.  

PDMS ports were bonded to the glass inlet and outlets using the oxygen plasma 

cleaner (Harrick Plasma, NY, USA). Tubings were inserted in the holes punched by 1.5 

mm punch and plumber. Inlet tubings were connected to 10 ml plastic syringes fitted into 

the injection syringe pumps. 

5.4 Thermal Gradient Experiment 

Six sets of microfluidic chips were fabricated and used to analyze the impact of 

counter-flow and the interface material on the behavior of the thermal gradient chip. 

Hybrid glass/quartz and glass/glass counter-flow and direct-flow chips were fabricated 

using the xurography technique by cutting 100 µm polyimide tapes (PPTDE 1 112, 

Kaptontape.com, CA, USA). Pyrex glass wafers 500 µm thick and ST-cut quartz wafers 

(University Wafers, MA, USA) of 375 µm were diced in the wafer dicing saw to make 

two 40×45 mm slides. The alignment of the back and front channels cut by a vinyl cutter 

(CE 5000-40-CRP, Graphtec, Yokohama, Japan) was done by hand. Table 5-2 outlines 

the microfluidic chips used in this study in terms of interlayer material and thickness, 

channel depth, and fabrication technique: 
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Table 5-2: Summary of the three type of microfluidic chip fabricated and used in this 

study 

Abbreviation* Interlayer 

material 

Interlayer 

thickness (µm) 

Channel depth 

(µm) 

Fabrication 

technique 

GS <100> Silicon ** 65 Microfabrication 

GQ Crystal Quartz 350 100 Xurography 

GG Pyrex Glass 500 100 Xurography 

* Each chip is fabricated in direct-flow and counter-flow version generating a total of 

six chips abbreviated as GSCF, GSDF, GQCF, GQDF, GGCF, and GGDF.  

** The thickness of the interlayer silicon is not uniform: 500 µm where it was not 

etched and 370 µm between the counter-flow channels 

 

5.4.1 Experimental Set Up and Procedure 

Thermal gradient was generated by attaching resistive heaters (HK5571, Minco, 

MN, USA) directly to the top of the chip. The heater was connected to a DC power 

source supplying a constant heat flux for generating a thermal gradient of about 40º C per 

chip height under no flow condition. The bottom of the chip was in contact with the 

aluminum chip holder, which was mounted on an aluminum heat sink. The set up 

exposed to the room temperature. During the experiments, temperature of the front 

surface of the chip was monitored and recorded by an IR camera (A320, FLIR, OR, 

USA) which was connected to a PC. The emissivity of 0.95 was considered by default for 

all the experiment sets. The sensitivity of the IR camera is about 0.1 °C at 25 °C. In 

predicting the temperature based on the IR signal, the FLIR software assumes that only 

the surface is emitting IR, and none is transmitting from the interior of the material. This 

assumption is correct, since the bolometer used in this model only collects IR in the 

wavelengths between 7.5 and 15 μm, while the optical transmission of glass is essentially 
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zero for wavelengths above 5 μm. For the constant temperature mode, it is required to use 

a controller and a thermopile.  

Two syringe pumps (KDS100, KD Scientific, MA, USA), (7801001, Fisher 

Scientific, NH, USA) were used to inject the 10 ml plastic syringes at constant flow rates. 

All the experimental set up components were mounted on an optical table (Newport, CA, 

USA) to avoid the possible alteration in the relative location of the chip with respect to 

the camera. A picture of the setup is shown in Figure 5-17:  

  

Figure 5-17:  Picture of the setup used for GS experiment. The heat sink in ice/water 

was used to sink the heat and generate a gradient of 40 ºC/chip.  

Generating a wide thermal gradient for a glass/silicon chip demands high power 

consumption as for a fixed gradient,   , the volumetric heat is proportional to the 

thermal conductivity       . Moreover, a more efficient heat dissipation technique is 

necessary. Therefore, in the case of glass/silicon chips, the heat sink was immersed in an 

ice/water container to maintain a constant temperature. 

The mean power applied by the DC power to generate the gradient for the 

glass/glass chip was about 1.87 W, for glass/quartz about 2.09 W, and for silicon was 

between 7 and 8.1 W.  
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The IR images were being recorded as a movie during the whole experiment 

using the ExaminIR™, the camera's thermographic software platform for monitoring the 

process. The temporal plots on several regions of interest (ROIs) in the software were the 

criteria for deciding about the steady state condition of the system. Volumetric flow rates 

from 2 to 26 ml/hr (even values) were injected during each experiment set. Figure 5-18 

shows an example of the temporal plot of a representing ROI that connects the top and 

bottom of a glass/quartz direct-flow chip for flow rates of up to 20 ml/hr. After each flow, 

a non-flow condition was performed and recorded to minimize the errors associated with 

the change in the power of the heater, air convection alteration, and any relative 

displacement of the image frame with respect to the camera.  

 

Figure 5-18:  Temporal plot of an ROI in the GQDF experiment. Flow rates of 1, 2, 

4… 20 ml/hr were used in each syringe pumps. The system is approximately in 
steady-state when the curve plateaus.  

Three images were selected from the supposedly steady state part of any thermal 

event in order to reducing the role of artifacts and exported as .mat files for further 

analysis in MATLAB. To select the images, temporal plots of multiple horizontal and 
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vertical ROI lines located at different regions were used simultaneously so that the 

images did not represent any local abnormal thermal event. Since each injection time was 

at least 4 minutes, using large syringes is highly recommended to avoid the syringe 

refilling process, which in turn causes the inevitable frame change.  

Another source of artifact in the behavior of the device and consequently the 

recorded thermal image is from the air bubbles that stick to the microchannel walls. At 

low flow rates, the inertia force of the fluid cannot overcome the adhesion force between 

the air bubble and microchannel wall. As a result, a big chunk of air bubble piles up and 

probably expands under the applied heat. The bubble narrows the channel locally, cause 

an enormous change in the temperature that shows itself as a discernible asymmetry in 

the iso-thermal lines at the channel location. There are many possibilities for the source 

of air bubbles: PDMS ports, trapped air bubbles between the tape and substrate layers, the 

connections between the syringe and tubing, and of course the air dissolved in the water. 

Although degassing the working fluid reduces the dissolved air bubbles in the water (a 

significant amount of air is dissolved in the tap water), the problem was still unsolved. 

The amount of air bubbles was significantly higher in the xerography chips when heated. 

This could be due to the expansion of the air bubbles between the layers or creeping of 

the air into the channel region close to the heater.  

  Interestingly, it was observed that the air bubbles in the direct flow chips were 

less stationary even at low flow rates. A similar observation can easily be made by 

comparing the temporal plot of the counter-flow with the smooth temporal plot of direct-

flow xerography chips. When the flow rate is higher bubbles start to move. The 

movement of the air bubbles makes the temporal plot of counter-flow chips noisier, 



121 

especially at ROI's close to the channel area. It was observed that air bubbles start to 

move at lower flow rates when the working fluid is IPA or ethanol. Hence, about 10% 

IPA was added to syringes used in the GGCF and GQCF experiments. To observe the 

noisy behavior of the CF chips, the temporal plot of Figure 5-18 can be compared to the 

temporal plot of the GQCF chip tested over flow rates ranging between 2 to 20 ml/hr 

shown in Figure 5-19. A similar observation was made by comparing the GG chips and 

GS chips. It was observed that the noise amplitude at flow rates below 4 ml/hr is in the 

order of temperature variation that resulted from the flow-induced effect. This means that 

in the presence of major noise sources such as DC power variation and bubbles, it is very 

difficult to detect the flow-induced effects from the flow rates below the 4 ml/hr.  

 

Figure 5-19:  Temporal plot of an ROI in the GQCF experiment. Flow rates of 2, 4, 

6 … , 20 ml/hr were used in each syringe pumps. 
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5.5 Experimental Results 

5.5.1 Ramp Rate 

Ramp rate is one of the most important characteristics of a microfluidic heating 

component. A rough estimation of the ramp rate G [ºC/sec] assuming a uniform gradient 

and neglecting the temperature difference between the fluid and solid wall is: 

   
 

 

  

 
 Eq. 5-21 

where L is the length of the channel, Q is the volumetric flow rate, A is the channel cross 

section, and    is the temperature change from inlet to the outlet. For a GS chip, G is 

estimated to be 4.28Q [ºC/sec] while for xurography chips the average ramp rate is 2.88Q 

[ºC/sec] because of a larger cross section, where Q is expressed in [ml/hr]. The highest G 

was achieved for a GSCF with the flow rate of 30 ml/hr, but a smaller thermal gradient of 

0.8 ºC/mm made a ramp rate of about 103 ºC/sec. 

 For a thermal distribution which is not linear or when the direction of the flow 

and gradient are not the same, local G(x,y) can be defined as: 

               Eq. 5-22 

which can be integrated over the flow path: 

       

 

 Eq. 5-23 

5.5.2 IR Thermal Data Analysis 

The IR data captured from the ExaminIR™ software was saved as .mat files for 

further analysis in MATLAB. Despite the struggle to capture the IR images in a similar 

frame by fixing the distance and angle of the camera with respect to the chip, there was 

an undeniable inconsistency due to syringe refilling, chip replacement, and arbitrary 
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movements of the chip (especially for GS experiments conducted in the ice/water 

container). Therefore, a MATLAB code was written to tackle this issue by trimming the 

thermal map of the chip from the surrounding.  

In order to reduce the errors due to artifacts such as unwanted movements, 

uncontrolled changes in the temperature of the heaters due to fluctuations in the power 

source, and variation of the room temperature, three frames were selected from the quasi- 

steady-state section of the IR data and were averaged. Moreover, the experiments were 

repeated multiple times especially for the counter flow chips. All the analyses performed 

are based on the averaged data. Additionally, the temperature change due to each flow 

rate was compared individually and independently with the no flow condition right before 

the corresponding flow condition (Figure 5-18). This minimizes both the artifacts due to 

inconsistent heating and temperature hysteresis.  

5.5.3 Linearity of the Distributions 

Linearity of the thermal distribution was specifically investigated at the two 

parallel channel areas of the chip designed for the placement of the sensor. 

The measure defined here for quantification of the linearity degree in the 

distributions compares the area between the actual thermal curve (blue area) and the area 

of the triangle made by the linear distribution (blue added by red) as demonstrated in 

Figure 5-20: 
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Figure 5-20: Schematic of the areas defined for the linearity measure. The 20 mm 

"parallel flow region" is where the results are evaluated in this chapter.    

Using this measure, the impact of flow on linearization of each case is 

demonstrated in Figures 5-21, 5-22, and 5-23. 

  

Figure 5-21:  Linearity measure for GGCF and GGDF at different flow rates 

evaluated at the centerline of the parallel region (Figure 5-20) 
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Figure 5-22:  Linearity measure for GQCF and GQDF at different flow rates 

  

Figure 5-23:  Linearity measure for GGCF and GGDF at different flow rates 

The reason that cases were plotted separately is that they were not exactly at the 

same thermal condition (set temperature, heater attachment). However, CF and DF cases 

were at very close thermal conditions.  

As can be seen, the flow helps the linearization in the CF cases while it 

deteriorates the linear distribution in DF cases. Also, the variation in the linearity caused 

by flow in the GS chips is small. The GSCF case has a very stable linearity performance 
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due to flow and there is not a very clear trend except for the high flow rates while in the 

GSDF, the flow causes a visible reduction in the linearity measure. 

5.5.4 Regional Temperature Variation due to Flow  

In order to demonstrate the flow induced effect at different regions, the IR data of 

the flow was subtracted by the corresponding no-flow data captured right before the flow 

condition. Introducing such a parameter reduces the abnormalities caused by the heater 

non-uniformity and the convection given that these factors were the same at flow and no 

flow conditions. The temperature difference between flow and no flow conditions, ΔTf,NF 

was plotted for GGCF and GGDF at the flow rate of 10 ml/hr as shown in Figure 5-24. 

 

Figure 5-24: Temperature difference map between the 10 ml/hr flow rate and no 

plotted for GGDF and GGCF chips from the IR data. The maximum decrease of each 
chip is shown by arrows pointing to the color bar.      

The highest temperature reduction due to the flow occurs at the channel bends 

where the two parallel channels merge. For the DF, the reduction of temperature at that 

region is almost twice that of the CF case. In both cases, the outlet is hotter under the 
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flow condition as the flow drags the heat when it passes through the heater region. For 

comparison, ΔTf,NF  was plotted for all the six chips in Figure 5-25.  

 

Figure 5-25: Temperature difference between the flow condition of 20 ml/hr and the 

no flow condition plotted from the IR data of the six configurations. The same 
colormap was used for all the chips for better comparison.    

The DF chips are all colder than the CF chips. If a temperature change of ±3 K is 

considered acceptable, then the purple range shows the region of the chips not 

experiencing a significant thermal change between the flow and no flow conditions. 

Figure 5-25 shows that the temperature of the GSCF is almost invariant (an average of -1 

K at the parallel channel region). Both GQCF and GGCF experience an increase in the 

temperature in the middle of the parallel channel region and a sharp decrease right before 

the junction.  
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 Between the DF chips, the GSDF shows a comparatively uniform temperature 

change of -15 K. This value clarifies that it has no acceptable area under the 20 ml/hr 

flow condition. The acceptable area for GGCF is larger than the GGDF. In fact, the 

higher thermal conductivity chips show a more uniform ΔTf,NF; however, they obtain a 

smaller acceptable area (purple range) at high flow rates. In other words, a low thermal 

conductivity chip such as GGDF experiences a more intense reduction in the temperature 

(33 K at 20 ml/hr) compared to GSDF (about 17.3 K); however, due to its low thermal 

conductivity, the reduction is somehow isolated while in the GSDF it spreads to all 

regions. 

To quantify the flow induced effects, the average ΔTf,NF  variation of a rectangular 

area (representing the thermal sensor) located  at the bottom, middle, and top of the 

parallel channel region was calculated over flow rates.   
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Figure 5-26: Temperature change due to flow evaluated at different regions. ΔT was 

evaluated at a 4 mm square located on bottom, middle, and top marked by ◊ bottom, 

* middle, and ○ top respectively as demonstrated on top figure 

Results show that the smallest variation in all parts of the parallel flow region was 

achieved in GSCF. In both GGCF and GQCF chips, the temperature rises until a certain 

flow rate and then starts to cool down. The increase in the temperature in the middle of 

these two chips helps the linearization as the no-flow temperature distribution is saggy 

intrinsically. Despite the outstanding stabilization in the middle, both of these chips show 

a visible cooling at the top region, which is a drawback as the thermal stability at high 

temperature is both challenging and desirable.  
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5.6 Conclusion 

The concept of counter-flow for thermal stability of the continuous flow thermal 

gradient chip was explained. A hybrid glass/silicon counter-flow chip consisting of two 

parallel channels designed for thermoelectric sensing was introduced, and the 

microfabrication procedure was explained. Hybrid glass/glass and glass/quartz counter 

flow chips were fabricated by low cost technique termed as xurography for comparison 

with the glass/silicon. For each chip, a similar direct flow chip was fabricated. All the six 

chips were tested over a wide range of flow rates and under a thermal gradient of about 

40 ºC along the chip length. The GS chips benefit from an excellent linearity of 

temperature due to high thermal conductivity. It was observed that the counter flow 

improves the linearity of the gradient while the direct flow makes it hyperbolic. The 

significant linearity improvement occurs for GGCF chips. As far as thermal stabilization 

goes, the GGCF chip shows an excellent performance at high flow rates. 
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CHAPTER 6 

 

COUNTER-FLOW 3-D SIMULATION 
 

6.1 Introduction 

The IR thermography used for the measurement and characterization of the 

thermal-gradient microfluidic chips in the previous chapter only reveals the thermal map 

of the exterior surfaces facing the camera. The flow is where all important events take 

place. Mathematical modeling is a useful and powerful tool for obtaining additional 

information about the interior thermal field where applying the experimental methods 

have limitations or require complex configurations whose establishment is expensive and 

time consuming. 

In the previous chapter, an analytical method was developed for explaining the 

mechanism of thermal stabilization using the counter-flow configuration. 

Although the discussed 1-D analytical model considers the role of advection in 

changing the temperature of all solid layers, this model regards an equivalent dimension 

for the flow and solid domains because it neglects the third dimension normal to the page. 

This description is a reasonable simplification in the proximity of the channels, but in 

general, it exaggerates the role of advection in comparison with the conduction in the 

solid chip. This simplification is valid especially in the analysis of heat exchangers where 

the fluid and solid domains are comparable. However, in the thermal gradient 



132 

configuration proposed in this dissertation, the aim is to apply a known temperature to the 

fluid (for example, to start a temperature dependent reaction in a biological reactor) using 

the conduction in the solid rather than using the fluid to imply a specific thermal 

distribution. Of course, there are examples in which the thermal gradient is applied by 

either the fluid streams [96] or controlled by the flow [97], but those configurations are 

not the subject of this study. In other words, we are talking about a microfluidic chip in 

which the channel volume is much smaller than the solid of the chip. On the other hand, 

if it is assumed that the solid temperature is completely unaffected by the flow, then the 

problem can be expressed as standard internal forced convection configuration with walls 

subject to either constant heat flux, Q, wherever the flow is normal to the isothermal lines 

or subject to constant temperature, T, wherever the flow is horizontal to them. The 

solution to these problems quantifies the difference between the mean flow temperature 

and the channel wall temperature. Such an analysis was performed by Crews et al. 

explaining the impactful parameters on the difference between the bulk and wall 

temperature of the channel in a thermal gradient.  

However, as discussed and demonstrated in the same article the flow is in fact 

able to distort the thermal distribution of the solid. The importance of such a distortion 

was demonstrated in a practical case such as PCR where the practical thermal gradient 

vanishes after a certain flow rate [3]. 

In summary, the goal of the design is to apply a known temperature to the fluid 

through the conduction mechanism. Thus, the space dedicated to the fluid domain is 

much smaller than the solid. However, the assumption that the temperature of the solid is 
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unaffected by the fluid is not precise, and gets violated rapidly by increasing the flow 

rate.  

As a matter of a fact, coupled heat transfer occurring between the flow and the 

chip governs the overall thermal behavior of these microfluidic devices. A better term for 

this mechanism is "conjugate heat transfer" used for describing the "mutual thermal effect 

of the solid body and fluid flow on the heat exchanging between them" [98]. This is a 

common case in microchannel heat sinks in which heat is conducted from a hot surface to 

the channels and transferred by advection caused by flow of the working fluid. The 

coupled mechanism of heat transfer makes it a complicated problem and consequently, 

presenting a closed form analytical solution for these types of problems has been yet the 

subject of the interest for many researchers.   

Various modeling approaches for the heat transfer in the microchannel heat sinks 

depending on their complexity are summarized by Liu [99]. Despite the accuracy of these 

models for design phase of such devices, they are all 2-D models and based on a 

simplified geometry.  

For the problem in hand, obtaining a more comprehensive analytical solution 

demands the consideration of heat transfer in all directions. Solving the complete form of 

the equations in all three dimensions converts the ODE's into PDE's and the multi 

materials used increases the number of coupled PDE's resulting in a very complex 

problem. Therefore, developing an analytical solution will be significantly more tedious. 

As a result, 3-D simulation can be a practical way to tackle this problem. 
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6.2 Governing Equations 

The conjugate nature of the heat transfer in this problem implies the simultaneous 

solution of the energy equation in the solid and fluid. The governing equations based on 

the conservation of mass, linear momentum, and energy are: 

Continuity equation         Eq. 6-1 

Momentum equation           
 

 
           

Eq. 6-2 

Fluid energy equation                  
    Eq. 6-3 

Solid energy equation        Eq. 6-4 

The assumptions leading to this format of governing equations are: Steady state, 

incompressible flow (low Mach number), negligible buoyancy force 

(0.0003<βw<0.0006), laminar flow (maximum Re ≈127), and no-slip condition on the 

solid walls (mean free path of water is in the order of few Angstroms while the smallest 

dimension of the channel is 65 microns resulting in Kn ≈10
-6

). 

In the microfluidic mixers, the increased mixing occurs when the engulfment 

regime is present. In this case, vorticities occur at the cross section of the channel and 

significantly increase the mixing. Due to the addition of these vorticities, complete 

modeling requires very fine grids [53]. However, according to the findings of different 

research works including those conducted by Bothe's, Mauri's, and Salvetti's groups, this 

regime usually occurs when the aspect ratio of the channel is small while in the devices   

fabricated or modeled in this work, the aspect ratio of the channel is high (larger than 10), 

which delays the critical Reynolds number corresponding to the engulfment regime. 
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Therefore, the regular laminar flow model without grid resolution and significantly fine 

computational cells can be used.     

  Since the two inlets were injected by DI water, buoyancy term due to density 

mismatch of the two streams is neglected in Eq. 6-2, unlike the water/ethanol mixing 

case of Chapter 3.    

6.3 Model Geometry 

The AutoCad file of the photomask was used as the base geometry for generating 

the CAD of the model. Location and shape of inlets and outlets, and the hole connecting 

the front and back channels were modified in order to make the mesh generation process 

easier. Location of the inlets and outlet was transferred to the edge of the chip and instead 

of the hole connecting the front and back, a bypass channel was designed at the side edge 

of the chip. Additionally, the trapezoidal cross section resulted from the anisotropic etch 

of the silicon was replaced by a rectangular cross section resembling an anisotropic dry 

etch process. The thin bonding SU-8 layer and the PDMS ports attached to the 

inlets/outlet were neglected in the CAD. However, for xurography chips, the polyimide 

tape layers were considered in the model. Therefore, the CAD models of the 

microfabricated devices consist of three solid layers, while the CAD models of 

xurography devices include five solid layers.  

In the primary models, the top edge of the chip was assigned as the heating 

surface. However, it was observed that the dimension of the heater and its connection 

from one side of the chip were influential in the thermal distribution of the chip; 

therefore, in the final models a block with the similar dimensions of the actual heater was 



136 

designed at the back side of the chip. CAD picture of the chip with a strip representing 

the heater is shown in Figure 6-1: 

 

Figure 6-1:  CAD of the microfluidic chip with heater attached on back, plotted in 

the SpaceClaim (Ansys, PA, USA). The orange strip on top is the heater. Bottom 

figure shows the cross section of the chip at the channels proximity.  

The high aspect ratio features in the CAD along with the mismatch between the 

patterns of front and back makes the mesh generation process very challenging. To 

address it, the geometry was broken into a series of "sweepable" bodies which were 

significantly easier to be meshed. As a result, the whole domain was meshed by 
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hexahedra structured grids. There are two incentives for spending such a significant time 

for generating a structured hexahedral mesh instead of the automatic unstructured 

tetrahedral mesh: first the structured hexahedral mesh allows very large aspect ratios 

while the same aspect ratio in the tetrahedral mesh is equivalent to a very large skewness 

for the computational cells, which in turn degrades the accuracy and convergence of the 

simulation; second, a domain meshed by hexahedral mesh occupies noticeably fewer 

number of cells compared to the tetrahedral meshes which simply means the reduced 

memory usage [52]. 

 

Figure 6-2:  Meshed geometry in the Gambit (Fluent®, PA, USA)  

6.4 Boundary Conditions 

The boundary conditions specified for the heat transfer in the solid were similar to 

those applied for the thermal gradient chip explained in chapter 3. The most impacting 
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difference is the method of generating the thermal gradient. Similar to the discussion 

made in the 1-D analytical solution, depending on the configuration of the heating 

system, either constant Q or constant T boundary conditions are possible. Applying a 

stable constant T requires a temperature control system and a special design for the 

heating platform in order to distribute the temperature uniformly. In contrast, applying a 

constant Q generates a more stable temperature distribution and is very straightforward. 

In the experiments, only constant Q boundary condition was applied. 

 In the simulations and analytical models, thermal behavior of the chips under 

these two boundary conditions and the thermal performance under the flow condition will 

be studied. A heat flux proportional to the actual heater was used in the simulations. 

However, since the heater is not the subject of interest here, the flux was adjusted in a 

trial and error process for the no flow condition, so that the generated thermal gradient 

was similar to the experimental data. 

All the surfaces exposed to the ambient air were subject to constant convection 

coefficient: 

   
   

  
          Eq. 6-5 

As demonstrated in chapter 3, the convection coefficient is remarkably important 

in the thermal gradient systems. However, as the focus of this chapter is on the impact of 

the internal flow on the thermal gradient, the typical value of 20 W/m
2·K was considered 

for the simulations.  

The bottom surface of the chip was in contact with the chip holder attached to the 

heat sink and consequently was not exposed to the ambient air. Estimating the thermal 

resistance of a complex configuration consisting of the chip holder and heat sink is not 
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straightforward. Therefore, the temperature of the cold side was extracted from the IR 

data. In a set of simulations, the convection boundary condition was applied to the bottom 

surface, while in another set, constant room temperature was applied. It was observed that 

the constant room temperature boundary condition resulted in better similarity with the 

IR data. 

In the GS experiments with the ice/water mixture, the constant temperature 

boundary condition was achieved by keeping the heat sink in contact with a large heat 

capacity medium at a fixed temperature. Therefore, constant T boundary condition at the 

cold side was applied without hesitation.   

For the two inlets, constant volumetric flow rates were assigned and for the outlet, 

outflow boundary condition was considered. The two inlet temperatures were set at 

ambient temperature. 

6.5 Validation 

6.5.1 Validation Procedure 

IR data of the experiments is used against the 3-D simulation for validation of the 

model. As a visual demonstration, temperature contour of both simulation and 

experimental results were plotted using MATLAB. As explained previously, in the 

simulation with no flow, the heat flux applied at the surface representing the heating 

surface of the heater was adjusted in a trial and error procedure so that a similar 

temperature range (at the centerline of the chip) was generated, and then, the same flux 

was maintained under the flow condition to imitate the actual experiment. This procedure 

was repeated for all six chips independently, even for counter-flow and direct-flow 

versions of the chips due to the fact that the experimental condition was not identical. 
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Inconsistent attachment of the resistive heaters, angle and distance between the IR 

camera and the chip, and even the size of the PDMS ports are among the major sources of 

the difference between the experimental conditions. 

6.5.2 Thermal Contours 

Here, a visual demonstration is used to display the similarities between the 

simulation and experimental results. For each set of GG, GQ, and GS chips, thermal 

contours of no flow and flow condition (10ml/hr) was shown for direct-flow and counter-

flow.   

  

Figure 6-3:  Thermal gradient of the exterior surface of the GGCF chip (top surface 

of Figure 6-1)  when there is no flow (left) Simulation (right) Experimental  

  

Figure 6-4:  Thermal gradient of the exterior surface of the GGCF chip when there 
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is no flow (left) Simulation (right) Experimental 

  

Figure 6-5:  Thermal gradient of exterior surface of the GGDF chip affected by flow 

at 10 ml/hr (left) Simulation (right) Experimental 

A Similar set of plots are plotted for the GQ and GS chips. The results of the GQ 

chips are similar to the GG chip. However, the wider gradient at no flow condition 

(Figure 6-3 compared with Figure 6-6), which demonstrates the more linear gradient 

resulted from the higher thermal conductivity of quartz. For GS chips though, the thermal 

distribution is significantly different, due to the distinguishable high thermal conductivity 

(Figure 6-9). 

  

Figure 6-6:  Thermal gradient of  exterior surface of the GQCF chip when there is no 

flow (left) Simulation (right) Experimental 
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The difference between the performance of the GG and GQ chips are more visible 

under the flow condition. 

  

Figure 6-7:  Thermal gradient of exterior surface of the GQCF chip affected by flow 

at 10 ml/hr (left) Simulation (right) Experimental 

  

Figure 6-8:  Thermal gradient of exterior surface of the GQDF chip affected by flow 

at 10 ml/hr (left) Simulation (right) Experimental 

  

Figure 6-9:  Thermal gradient of exterior surface of the GSCF chip when there is no 
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flow (left) Simulation (right) Experimental 

  

Figure 6-10:  Thermal gradient of exterior surface of the GSCF chip affected by flow 
at 10 ml/hr (left) Simulation (right) Experimental 

  

Figure 6-11:  Thermal gradient of exterior surface of the GSDF chip affected by flow 

at 10 ml/hr (left) Simulation (right) Experimental 

6.5.3 Centerline Temperature 

For a better comparison of the simulation and experimental data, temperature is 

plotted at the centerline of the chip. The results are in an excellent agreement. The 

noticeable difference in the temperature at the bottom of the chip is mainly due to the 

large PDMS inlets ports (4 to 7 mm thick) attached to the cold side. 
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Figure 6-12:  Temperature along the centerline of GGCF chips from the simulation 

and experimental plotted for (left) No flow (right) 10 ml/hr plotted along the centerline 

of the exterior surface in the y-direction indicated in Figure 6-1. 

  

Figure 6-13:  Temperature along the centerline of GGDF chips from the simulation 

and experimental plotted for (left) No flow (right) 10 ml/hr plotted along the centerline 
of the exterior surface in y-direction as indicated in Figure 6-1. 

6.6 Results and discussion 

6.6.1 Constant T Instead of Constant Q 

After validating the simulations using the experimental data, the trustworthy 

model can be used for predicting the performance of the device at other configurations. In 
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this part, thermal performance of the device under the constant T instead of constant Q is 

evaluated. Similar to the procedure for applying the constant Q boundary condition, in a 

trial and error process, temperature of the heating surface was adjusted to reproduce a 

thermal distribution on the front face similar to that of constant Q case at no flow 

condition and then, thermal distribution was examined under the flow.  

Centerline temperature of the GGCF and GGDF chips were plotted under the 10 

ml/hr flow rate in Figure 6-14: 

 

Figure 6-14:  Comparison between the constant temperature and constant heat flux 

condition under the flow of 10ml/hr (left) GGDF and (right) GGCF. The temperature 

profile was plotted along the centerline of the exterior surface of the chip (y-
direction) as indicated in Figure 6-1 

Evidently, the constant Q boundary condition results in a wider gradient for both 

CF and DF chips. However, as can be seen, the temperature difference between the 

constant T and constant Q conditions is much more for the DF chip, especially at the hot 

side of the chip.  

In general, the goal is to establish a fixed thermal gradient and this observation 

shows how constant T condition better suits this goal. However, if constant Q condition is 

used instead of constant T (the total heat power required in the constant T is considerably 
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more than constant Q condition under the flow condition), this will lead to more variation 

in the DF chip compared to CF chip under the flow condition. In other words, counter-

flow chip recycles the dissipated heat (similar to heat regeneration cycle). 

6.6.2 Temperature in the Layers of the Chip 

One interesting observation which is the outcome of the mathematical modeling is 

the thermal distribution in the chip layers including the flow channel. It was originally 

observed in the 1-D analytical solution of chapter 5 that the thermal distribution between 

the layers of the chip deviates from each other when the flow rate increases (Figures 5-5 

and 5-6). This suggests that the advection term behaves like a variable thermal resistance 

term unlike the thermal resistance terms due to the material of the chip and the contact 

resistance. Regarding the application of the device, it can be deduced that it is an adverse 

behavior undermining the straightforward relationship between the sensing surface 

(exterior) and the channel temperature where the thermal event occurs. Therefore, 

knowing the relationship between the temperature of the surface and the temperature of 

the flow is important especially for spatial temperature monitoring and device calibration 

when a sensor is integrated. Simulation is a practical tool for finding this relationship. 

To investigate this effect, temperature at the middle of each layer was plotted 

along the centerline of the GG and GS chips. As it can be seen in Figure 6-15, the 

temperature difference between the layers expands almost uniformly with flow rate.  
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Figure 6-15: Thermal distribution of the GGCF layers plotted along the centerline of 

the layers of the chip (in y-direction) passing the middle of each layer (as indicated in 

Figure 6-1)  for flow rates of (left)10ml/hr (right) 20ml/hr  

For the GS chip, temperatures of the layers are almost the same at parallel flow 

region (10 to 30 cm) (Figure 6-16). This is a very good characteristic of the GS chip.  

 

Figure 6-16: Thermal distribution of the GSCF layers plotted along the centerline of 

the layers of the chip (in y-direction) passing the middle of each layer (as indicated 
in Figure 6-1)  for flow rates of (left)10ml/hr (right) 20ml/hr  
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It should be noted that the centerline of the chip does not pass through the 

channels. If instead of the centerline, a line passing one of the channels is plotted, the 

temperature distribution will be very different. 

 

Figure 6-17: Thermal distribution of the GGCF layers plotted along the channel line 

(indicated and showed in Figure 6-1) instead of the centerline in y-direction, for 
flow rates of 10ml/hr (left) and 20ml/hr (right)  

Interestingly, the temperature difference between the layers is not equally spaced; 

Temperature of the channel and walls are close while the temperature difference between 

the interface and channels is large. This is totally in agreement with the analytical model 

(Figure 5-5 and Figure 5-6), and once again, confirms the fact that the analytical model 

describes the physics of the device at the channel proximity. 

Even for the GS chip, if the temperature of the layers is evaluated at the channel 

instead of the chip centerline, a visible variation will be observed as shown on Figure 6-

18: 
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Figure 6-18: Thermal distribution of the GSCF layers plotted along the channel line 

(indicated and showed in Figure 6-1) instead of the centerline in y-direction, for 
flow rates of 10ml/hr (left) and 20ml/hr (right) 

6.6.3 Thermal Distribution in the Depth 

The plots of the previous chapter demonstrated how the thermal distribution at the 

proximity of the channel differs with the centerline of the chip.  Here, the temperature in 

the depth of the chip is investigated at a line passing through the depth of the device (z-

direction) at a line crossing a channel in the middle of the chip (y=20). The temperature 

was plotted for GGCF and GSCF chips over different flow rates.  
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Figure 6-19: Thermal distribution of the GSCF in the depth of the chip (z direction 

in Figure 6-1) plotted over different flow rates  

 

Figure 6-20: Thermal distribution of the GGCF in the depth of the chip (z direction 

in Figure 6-1) plotted over different flow rates 
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Although the total temperature change in the depth for the GS chip is much 

smaller compared to GG chip, the variation in the channel, which is dominantly governed 

by convection in both GS and GG chips, is in the same order. If the parameter      is 

defined as the maximum temperature variation in the channel depth, at low flow rates, it 

is almost equal for both chips, and at higher flow rates, it is more for GS chip. The values 

of      of both GG and GS chips are summarized in Table 6-2. 

Table 6-1: ΔTch evaluated for GG and GS chips at different flow rates. 

Flow rate (ml/hr)                               

4 0.3 0.3 

8 0.5 0.5 

12 0.7 0.8 

16 0.7 1.1 

20 0.7 1.3 

  

 

In this sense, the GS chip does not outperform. According to the discussion of the 

Reference [2], in the fully developed region, when the internal flow is governed by 

constant Q boundary condition, the difference between fluid bulk temperature and the 

wall temperature linearly depends on the volumetric flow rate: 

        
  

 

   

  
 Eq. 6-6 

where    and    are bulk (mean) temperature of the fluid and wall temperatures, 

constant C depends on the cross section geometry.  

When the iso-flux term (      ) is constant, and for a constant thermal 

diffusivity  , the temperature difference depends linearly on flow rate. For GS chip, the 
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iso-flux term is almost constant over all the flow rates used here (consider the slope of the 

channel temperature in Figure 6-17) while in the GG chip, this term decreases with flow 

rate (consider Figure 6-18). Therefore, at low flow rates, the       is almost the same 

for the two chips, while at flow rates over 12 ml/hr the simultaneous increase of flow rate 

and the subsequent decrease of iso-flux term in the GG chip results in almost a 

constant     . 

6.6.4 The Optimum Flow Rate for the Highest Signal 

The counter-flow thermal gradient microfluidic developed in this dissertation is 

mainly designed for the iso-flux calorimetry explained in the introduction. One prominent 

application of iso-flux calorimetry is finding the melt temperature of DNA. However, a 

reversible exo/endothermic process such as DNA melt can potentially set a limit on the 

maximum operational flow rate of the device for the highest signal detection. The 

condition leading to this scenario is explained here:  

Imagine one inlet contains DNA and the other is buffer solution. In the front side 

of the chip, the two streams get heated up individually and equally when moving from the 

cold side to the hot side of the chip. The stream containing the DNA experiences an 

endothermic reaction as it reaches the DNA melt temperature while the other does not. In 

the back of the chip, the process is reversed with the difference that the DNA extension is 

an exothermic process and can possibly neutralize the heat released from the endothermic 

process occurring in front. In the front, the two streams are separate until they mix in the 

junction. Therefore, if the two streams are mixed completely, the anisotropic sensor does 

not sense the exothermic event occurring in back due to common mode rejection.  

However, if the mixing does not occur completely, unfavorable thermal asymmetry 
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reduces the signal generated on the front side. The problem is that in microfluidic, the 

mixing occurs through the molecular process rather than the convective process. 

Therefore, in the microchannel, the length required for the complete mixing is often very 

long. The length required for complete mixing can be easily estimated in this way: 

The complete mixing through the diffusion can be seen as a particle in one stream 

diffuses the distance from the interface to the opposite channel wall. For equal flow rate 

and viscosity, the time scale    for it to happen is: 

    
  

  
 Eq. 6-7 

where w is the channel width and   is the diffusion coefficient. For the mean velocity   , 

and channel thickness t, the length of the channel   allowing the complete mixing can be 

estimated as: 

   
    

  
 

  

 

 

  
 Eq. 6-8 

The diffusion coefficient of fluids in water is in  (10
-9

). So, for the dimension of 

the microchannel used here, when the flow rate is 1ml/hr, the length needed for the full 

mixing is about 70 cm, and for 10ml/hr, it needs to be 700 cm. So, it can be concluded 

that the two streams only mix completely at flow rates below 1 ml/hr. On the other hand, 

the higher the flow rate is, the higher rate of heat released due to DNA melt process.  

Therefore, there should be an optimum flow rate for the highest signal depending 

strongly on the channel geometry and diffusion coefficient.  Finding such a flow rate for 

reversible reactions as a function of impacting parameters can be another example for the 

usefulness of the simulation.  
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6.7 Conclusion 

The thermal behavior of the chips fabricated and tested in Chapter 5 was 

examined using the 3-D simulations. The simulations show very good agreement with the 

experimental results in both the features and values. It was noticed that the constant T 

boundary condition results in a wider and more linear thermal distribution under flow 

condition compared to constant T for both DF and CF chips. However, if instead of 

constant T, constant Q is applied, the thermal distribution of the CF chip deviates 

significantly less from the constant T, compared to DF chip. Temperature distribution of 

the different layers of the chip was also evaluated, and it was observed if the temperature 

of the layers is evaluated at the channel proximity, even for the GS chip, there is a 

detectible difference between the temperature of the channel and solid. The temperature 

difference between the channel and the channel wall is almost the same for GG and GS 

chips under the flow rates of up to 12 ml/hr. For higher flow rates, this difference is 

almost constant for GG chip while for GS it continues to increase linearly with flow rate.   
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 
 

7.1 Conclusion 

Thermal linearization and stabilization of a continuous-flow thermal gradient 

microreactor was accomplished. This was achieved by careful material selection and flow 

path design. The counter-flow GS chip shows excellent stability in the thermal gradient at 

very high flow rates. This enables very rapid and stable ramp rates (up to 100 ºC/sec). 

Moreover, the counter-flow design neutralizes the non-linearity imposed by the external 

convection even for GG chips.  

The proposed design has further application in all the continuous-flow 

microfluidic devices involving the precise thermal control of the fluid for stabilization. 

In this dissertation, a balanced cooperation between the idea, theory, and practice 

demonstrated the best outcome.  

7.1.1 Achievements 

A practical fabrication process was developed for a hybrid glass/silicon counter-

flow chip including the design, photolithography steps, etching, and packaging. A 3-D 

numerical model for applying the heat of mixing (water/ethanol) was developed. After 

validation with the experimental data, the model was used for finding the optimum 

location of an anisotropic thermal sensor for detecting the highest signal. An analytical 

model for the thermal gradient chip, a time-dependent 3-D numerical model for the 
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natural convection around a cylinder predicting the result at a wide range of pressures, an 

analytical model for describing the performance of the counter-flow chip considering the 

axial conduction in the walls and the interface of the chip, and a 3-D model of the 

counter-flow and direct-flow thermal gradient chips were developed for deeper 

understanding of the governing physics and impactful parameters.  

7.2 Future Work 

This dissertation accomplished one essential step for the realization of an iso-flux 

calorimeter. Assembling the anisotropic thermopile sensor to the exterior of the chip with 

reference junctions aligned with the buffer stream and measuring junctions aligned with 

the stream containing the sample is the next step. Since the temperature sensor detects the 

temperature of the exterior surface, it is important to reduce the thermal resistance 

between the sensor and the thermal event. In the thermal sensor modeled in Chapter 3, 

130 µm coverslip glass was used to address this issue. However, using a very thin glass 

to reduce the thermal resistance restricts the physical robustness of the device and 

therefore places a limit on the maximum allowable flow rate. To avoid it, thicker 

crystalline quartz of higher thermal conductivity can be used as the capping material on 

the front side of the silicon.  

The indirect bonding using SU-8 showed acceptable performance and was a good 

technique as it does not need special instruments. However, the mismatch between the 

CTE of SU-8 and Si/SiO2 applies stress to device. This is the probable reason for the 

delamination of some chips when they were used at a large thermal gradient and under 

high flow rates. Therefore, anodic bonding is recommended for attaching glass to silicon, 
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and fusion or other direct bonding techniques [100] are recommended for bonding quartz 

to silicon.  

Despite the outstanding linearity in the GS chips, performing the experiments 

inside the box is still recommended for increased thermal stability. It is expected that the 

improvement due to enclosure be more significant for the chips with lower overall 

thermal conductivity.  

The bottom surface of the channel etched by KOH anisotropic etch was 

noticeably rough. This may influence the biological samples containing large molecules 

such as DNA or proteins. Numerous works have been done by researchers for optimizing 

the recipe of KOH solution to minimize the roughness [86, 101]. DRIE of silicon using 

Bosch process and a successive isotropic wet etching for smoothing surface roughness is 

also a more expensive (but low throughput) alternative for achieving a smoother channel 

with vertical side walls. 

A heating platform plays a central role in the thermal gradient microfluidic chip. 

From the simulation results, it was demonstrated that the difference between thermal 

gradient at no-flow and flow condition is less when a constant T condition is applied 

compared to the constant Q. Therefore, a heating system for establishing a stable and 

uniform temperature is really beneficial. 

During the experiments, it was observed that the bubbles are one of the main 

sources of thermal irregularities, especially for the CF chips. Addressing this issue is very 

critical for an accurate temperature measurement. Significant improvement is expected 

from applying wafer bonding techniques with no adhesive, thereby sealing the 

microchannel from the diffusion of the outside air. However, besides the degassing of the 
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sample liquids, seeking bio-compatible surfactants that facilitate the movement of the 

bubbles is highly suggested.  
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APPENDIX A  
 

MATLAB CODE FOR 1-D COUNTER-FLOW MODEL 
 

function bvp4CFwidth 

R = .04; % microchannel length [m] 

x1 = 0; x2 = R; 

solinit = bvpinit(linspace(x1,x2,1000),320*ones(1,8)); 

%initialization 

sol = bvp4c(@bvp4ode,@bvp4bc,solinit); 

xint = linspace(x1,x2,1000); 

T = deval(sol,xint); 

figure(1) 

% subplot(1,3,1)  

hold on 

for i=[1,3,4,6,7]  

plot(xint,T(i,:),'LineWidth',2); 

end 

legend ('Tw1','Tc1','Tint','Tc2','Tw2') 

box on 

grid on 

xlabel('y [mm]') 

ylim auto 

  ylabel('Temperature [K]') 

%---------------------------------------------------------------% 

function dydx = bvp4ode( x,y ) 

%% parameters 

w = .001; % channel width [m] 

th = .0001; % direct channel thickness [m]  

Dhh = 2*(w*th)/(w+th); % hydraulic diameter of the hot channel 

Nu = 5; % estimated Nusselt number from the Simulation  

kw = 0.6; % thermal conductivity of the working fluid (water) 

[W/m.K] 

hh = Nu*kw/Dhh; % convection coefficient of the flow 

kg1 = 1.38; % glass1 thermal conductivity 

tg1 = .0005; % glass1 thickness 

hinf = 20; % convection coefficient of air 

Tinf = 300; % ambient air temperature [K] 

rho = 998.2; % density of water [kg/m^3] 

m_in = 20*2.78e-7; % mass flow rate channel 1 [kg/sec]; 2.78e-

7[kg/sec] equals 1ml/Hr in a 1*.1 mm channel section 

Vbar1 = m_in/(rho*th*w); % Inlet mean velocity [m/s] 

Cp = 4182; % specific heat capacity of water [J/kg.K] 
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tint = .0005; % inteface material thickness [m] 

kint = 10; % interface material thermal conductivity 

hc = hh;  % convection coefficient of water for constant flux BC 

[W/m^2.K] 

Vbar2 = Vbar1;  

tc = .0001; % counter channel thickness 

tg2 = tg1; 

kg2 = kg1; 

%--------------------------------------------------------------% 

%% System of differential equation for a Boundary Value Problem%%  

% y(1)=Tg1 & y(2)=dTg1/dx ; y(3)=Th ; y(4)=Tint; 

% y(5)=dTint/dx; y(6)=Tc; y(7)=Tg2; y(8)=dTg2/dx 

dydx(1) = y(2); 

dydx(2) = hh/(kg1*tg1)*(y(1)-y(3))+hinf/(kg1*tg1)*(y(1)-Tinf); 

dydx(3) = hh/(rho*Vbar1*th*Cp)*(y(1)+y(4)-2*y(3)); 

dydx(4) = y(5); 

dydx(5) = hh/(kint*tint)*(y(4)-y(3))+hc/(kint*tint)*(y(4)-y(6)); 

dydx(6) = hc/(rho*Vbar2*tc*Cp)*(2*y(6)-y(7)-y(4)); 

dydx(7) = y(8); 

dydx(8) = hc/(kg2*tg2)*(y(7)-y(6))+hinf/(kg2*tg2)*(y(7)-Tinf); 

%--------------------------------------------------------------% 

end 

  

function res = bvp4bc(ya,yb) 

% Applying the boundary conditions 

Tcold1=303; % Temperature of the glass1 at x=0 

Tcold2=305 ; % Temperature of the glass1 at x=0 

Thot1=340 ; % Temperature of the glass1 at x=R 

Thot2=345; % Temperature of the glass2 at x=R 

Tin = 300; % Temperature of fluid at inlet 

Q = 12e3;  % Wall flux Q'' applied at X=R  Q value for 

establishing a thermal gradient of about- 

%- 40 degree at no flow is different for each material. For 

GS=55e3,GQ=12e3, GG: 6.5e3 w/m^2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

res(1) = ya(1)-Tcold1; % Tg1(0) = Tcold1 

res(2) = yb(2)-Q/kg1; %-kg1*dTg1/dx(R)=Q 

% res(2) = yb(1)-Thot1 %For constant T Boundary Condition  

res(3) = ya(3)-Tin; % Th(0) = Tin 

res(4) = ya(4)-(Tcold1+Tcold2)/2; % Tint(0) = (Tcold1+Tcold2)/2 

res(5) = yb(5)-Q/kint; %-kint*dTint/dx(R)=Q 

% res(5) = yb(4)-(Thot1+Thot2)/2 %For constant T Boundary 

Condition  

res(6) = yb(6)-yb(3); % Th(R)=Tc(R) 

res(7) = ya(7)-Tcold2; % Tg2(0) = Tcold2 

res(8) = yb(8)-Q/kg2; %-kg2*dTg2/dx(R)=Q 

% res(8) = yb(7)-Thot2; %For constant T Boundary Condition 

end 

end 
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