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ABSTRACT 

Recently, there has been a growing interest in flexible electronic devices as they 

are light, highly flexible, robust, and use less expensive substrate materials. Such devices 

are affected by thermal management issues that can reduce the device’s performance and 

reliability.  Therefore, this work is focused on the study of the thermal properties of 

nanomaterials and the methods to address such issues. The goal is to enhance the effective 

thermal conductivity by adding nanomaterials to the polymer matrix or by structural 

modification of nanomaterials. The thermal conductivity of copper 

nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were 

measured and showed more than threefold enhancement compared to the thermal 

conductivity values of the neat polymers. Furthermore, identical heat sources were used on 

the neat polymer as well as the composite samples, and the resulting thermal images were 

taken, which showed that the resulting hot spot was significantly less severe for the 

composite sample, demonstrating the potential of copper nanowire/polymer composite as 

a substrate for flexible electronics with better heat spreading capability. 

In addition, the thermal properties of cellulose nanocrystals-poly (vinyl alcohol) 

composite films with different structural configurations of cellulose nanocrystals (such as 

isotropic and anisotropic configurations) were investigated as an alternative to commonly 

used petroleum-based materials for potential application in the thermal management of 

flexible electronic devices. Also, the in-plane thermal conductivity of the anisotropic 
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composite film was as high as ~ 3.45 W m-1 K-1 in the chain direction. Moreover, the 

composite films showed ~ 4-14 fold higher in-plane thermal conductivity than most 

polymeric materials used as substrates for flexible electronics. A high degree of cellulose 

nanocrystal orientation and the inclusion of poly (vinyl alcohol) were the reasons for such 

improvements. In addition, thermal images showed that the cellulose nanocrystals-poly 

(vinyl alcohol) composite films had better heat dissipation capability compared to the neat 

poly (vinyl alcohol) films, indicating its potential application for flexible electronic 

devices.  

In another study, thermal properties of nanodiamond films obtained through a 

solution-based directed covalent assembly were studied as a low-cost and greener 

alternative to the nanodiamond films grown via chemical vapor deposition method for 

thermal management of electronics. The results obtained showed cross-plane thermal 

conductivity as high as 3.50 +/- 0.54 W m-1 K-1 for nanodiamond film of 139.1 +/- 19.5 nm 

thick. Such a low cross-plane thermal conductivity value can be attributed to higher 

porosity and poor interface quality compared to that of the nanodiamond films grown via 

chemical vapor deposition method. Hence, there is still more room for improvement for 

such nanodiamond films.  

The above chapters were focused on the study of the thermal properties of various 

types of nanomaterials for thermal management of electronic devices. In the next chapter, 

a technique for the fabrication of a device, that is capable of performing characterization 

nanomaterials was presented. In this work, suspended beam microdevices for 

electrothermal characterization of nanomaterials were fabricated through a standard 

photolithography technique that is less time-consuming, less expensive and much simpler 
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than the methods used by other research groups in the past. The agreement of the measured 

in-plane thermal conductivity of the suspended central silicon nitride bare bridge with the 

literature validated the microdevice, setup, and the experimental procedure. Furthermore, 

these microdevices can be used to measure other important thermoelectric properties of 

nanomaterials such as the Seebeck coefficient, electrical conductivity, and thermoelectric 

figure of merit.  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Background and Motivation 

Historically, the vast majority of electronic components have been fabricated on 

rigid substrates such as glass or silicon (Si); hence, they can be rigid and brittle. The 

fabrication of Si requires significant energy, high processing temperatures (order of ~ 1000 

°C), and hazardous chemicals [1]. In addition, traditional electronics need many fabrication 

steps, thereby increasing complexity and cost. Recently, there has been an increase in 

interest towards flexible electronics, especially to fulfill the needs for the applications that 

need more flexibility and stretchability. Flexible electronics refer to the technology that 

incorporates electronic devices on flexible substrates. Compared to traditional electronics, 

flexible electronics are light and highly flexible, robust (not brittle), use less expensive 

substrate materials, and can incur low manufacturing costs with industrial-scale production 

capabilities (ink-jet printing, roll-to-roll processing) [2]. Due to their unique and 

outstanding performances, more attention has been growing in both industry as well as 

academia where research works have been focused on flexible solar cells, light-emitting 

diodes (LEDs), sensors, electronic paper [3], [4], displays [5], [6], wearable electronics [7], 

[8], energy harvesting, and electronic skins [9].  
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Figure 1-1 shows a brief timeline of the development of flexible electronics based 

on organic semiconductor materials and stretchable and flexible inorganic devices. There 

have been efforts to replace Si with organic semiconductors for flexible electronics since 

they are compatible with flexible substrates and conducting polymers [10].  The organic 

semiconductor material [11], organic field effect transistor (OFET) [12], and organic 

LED(OLED) [13] were first presented in 1977, 1986, and 1987, respectively. Furthermore, 

p-type and n-type conducting organic materials [14], [15] were synthesized for use in large-

scale integrated circuits (ICs). With the rapid increase in the development of organic 

semiconductors, more studies have been carried out for developing integrated systems 

consisting of OFETs [16]–[19] in the last few years. Flexible electronics were also 

developed by using inorganic electronic components which was first reported by Rogers et 

al. in 2006 [20]. Recently, more interest has also been growing towards flexible inorganic 

electronics due to better structural configuration designs [21]–[25] and transfer printing 

strategies [26]–[32] leading to the development of large-scale processing.  
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Figure 1-1: A brief timeline of the development of flexible electronics based on organic 

semiconductor materials and stretchable and flexible inorganic devices (CMOS: 

Complementary metal-oxide-semiconductor). Original data from Cai et al. [10]. 

 Flexible electronics consist of active elements and substrates. Many studies are 

focused only on active elements that are based on nanomaterials such as nanotubes, 2D 

materials, and nanowires (NWs).  Much less attention has been paid to developing 

advanced substrate materials with enhanced thermal conductivity () for flexible 

electronics. Thus, there is still room for improvement [33]. The miniaturization of the 

components of electronic devices and an increase in their density has greatly enhanced the 

processing capability but at the cost of a high thermal load [34]–[36]. Even though such 

devices generate less heat individually compared to the traditional electronic devices, 

thermal management issues are still of great concern due to their large numbers and density 

[37].  

Therefore, there is great need to resolve such thermal management issues in order 

to ensure the reliability and performance of the electronic devices [38]. Common materials 

used as substrates for flexible electronics include polyethylene terephthalate (PET), 

polyimide (PI). However, they have low   , high thermal expansion, and low 
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glass transition temperature [37]. The thermal management techniques that have been used 

for traditional electronics such as heat sinks, and heat pipes would not be suitable for 

flexible electronics. The complexity, as well as the power consumption of such devices, 

will further increase [41], [42], so there is need to understand the thermal transport of 

substrate materials to maintain the device’s operation and reliability [37].  

Materials that are light in weight with superior  and processability are needed for 

miniaturized electronic devices for transferring the heat generated from various 

components. Polymer nanocomposites fulfill such requirements, hence, there has been a 

growing interest in the application of nanomaterial-laden polymer nanocomposites as 

substrates for thermal management of flexible electronics. In this case, the effective 

thermal energy is transported across the interface or away from the heat source by 

increasing the thermal conduction properties of the polymer [43]. Neat polymers have very 

low  of ~ 0.15-0.3 W m-1 K-1 [38], [44]–[46] at ambient conditions compared to traditional 

semiconductor substrates such as Si with  ~140 W m-1 K-1 [47], [48]. Use of polymer 

substrates with such low  can impact the device’s performance due to overheating. This 

has motivated researchers to use polymer-based nanocomposites as an alternative to 

flexible electronic substrates. Thermally conductive nanomaterials can be used as fillers 

with polymers to improve the effective  of resulting nanocomposites. High aspect ratio 

(AR) filler materials would be suitable for this purpose to achieve a high enhancement in 

 while maintaining the flexibility. Carbon nanotubes (CNTs) and graphene can be 

promising materials, but large tube-tube resistances and radiation losses [49] have limited 

their use as substrates for flexible electronics. Another option would be metallic NWs with 

high ARs since they have low percolation threshold, and enhancement in  can be easily 
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achieved. Therefore, there is the need for further investigation to study the ability of the 

metallic NWs as fillers for improving the effective  within the polymer matrix for flexible 

electronics.  

Commonly flexible electronics use petroleum-based substrates (such as PET, PI) 

that are non-renewable, non-biodegradable, and sometimes toxic (for example, gallium 

arsenide (GaAs)) materials [50]. Such electronic devices are commonly upgraded 

frequently, or if discarded they cause serious environmental issues. Therefore, there is the 

need for substrate materials made of renewable and biodegradable materials [51]. Research 

works focusing on the use of biodegradable materials such as paper, silk, and synthetic 

polymers as substrates have been reported. These materials are flexible as well as 

degradable, but their performance does not meet the requirements of state-of-art electronics 

[50], [52], [53]. Cellulose-based materials such as cellulose nanofibrils (CNFs) and 

cellulose nanocrystals (CNCs) derived from woods [54], [55] are suitable candidates for 

eco-friendly flexible electronic substrates as they are biodegradable, highly transparent, 

flexible, and have desirable electrical properties [56]–[58]. Polymers such as Poly (vinyl 

alcohol) (PVA) can be added to CNCs in order to improve the properties (thermal, 

electrical, mechanical, optical) of the resulting polymer nanocomposites [59]–[61]. Further 

study is needed for modifying the structural configurations of crystalline domains of CNCs 

for enhancing the   to resolve the thermal management issues of flexible electronic 

devices as greener and low-cost alternative to Si-based materials. 

Thermal management is an issue for microelectromechanical system 

(MEMS)/electronic devices as well. Therefore, a portion of this work is focused on the 

study of the solution-based covalently assembled nanodiamond (ND) films for potential 
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use in the thermal management of MEMS/electronic devices. The need for faster and 

cheaper computing capabilities has motivated the researchers towards miniaturization of 

devices. It is evidenced by the reduction in the characteristic dimensions of electronic 

devices from microscale to nanoscale in only two decades. The critical dimensions of many 

electronic devices are on the orders of just tens of nanometers [36], [62]. Furthermore, the 

increase in the number of interconnects and decrease in transistor feature size results in the 

increase in thermal resistance of the ICs and difficulties in heat removal [63]. In modern 

chip architecture, the power dissipation is highly non-uniform, and hence, the power dense 

regions called ‘hot spots’ are formed with local temperatures significantly higher than the 

average die temperature [64] [65]–[67]. As a result, hot spots can help in determining the 

solutions for thermal management issues including the type of materials, heat sink, and 

heat spreader.  

However, lack of a proper cooling system to take the heat away from the electronic 

devices can cause the degradation of performance to reduce the power. Therefore, there is 

a need for efficient heat spreading materials in the electronic devices to control the 

increasing power density and minimize the negative impacts of hotspots [43]. For this 

purpose, it is essential to investigate the thermal properties of the materials at the nanoscale 

for applications as heat spreaders in the MEMS/electronic devices. One better solution is 

to incorporate materials with high  to take the undesired heat away from sensitive devices 

since  of a heat spreader material indicates the ease of thermal transport. Most research 

works have been focused on the use of CVD-grown diamond thin films as heat spreaders. 

However, these films have issues of higher cost and integration on the substrates of interest. 

Therefore, there is need of diamond films that can be used as an alternative to the CVD-
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grown diamond films.  Thermal properties of the ND films obtained through a solution-

based directed covalent assembly is studied in this work. The results from the study may 

create opportunities for a new class of low-cost diamond films that are compatible with a 

wide variety of substrates commonly used for electronics, optics, biosensors, and MEMS 

applications including Si, flexible polyimide, polyether ether ketone (PEEK), and 

transparent conductive polyester film where application of CVD diamond films have been 

limited. 

Several nanoscale thermal transport measurement methods have been developed to 

study the size-dependent thermal and thermoelectric properties in nanomaterials. Such 

measurements include issues as large uncertainties are introduced in the  measurements 

due to a radiation loss, heat loss to the thermometers, and the contact thermal resistances 

[68]; hence, careful design, fabrication, and analysis are needed. Different types of 

microfabricated devices have been used depending on the nature of the samples (nanotubes, 

NWs). Tighe et al. [69] used a microfabricated device for the measurement of thermal 

conductance (G)  patterned, suspended GaAs nanobeams. The fabrication of such devices 

included multiple electron beam lithography (EBL) steps. Similarly, Shi et al. [70] 

fabricated suspended microdevices with two adjacent symmetric silicon nitride (SiNx) 

membranes, each supported by five SiNx beams for studying the thermoelectric properties 

of single-walled CNT bundles bridging the two membranes. A platinum resistance 

thermometer (PRT) coil was patterned on each membrane using EBL. Kim et al. [71] also 

used a similar microfabricated suspended device to perform thermal transport 

measurements of individual multi-walled CNTs in the temperature. The mentioned 

microfabricated devices have been successfully used for different studies, but the 
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fabrication steps involve steps such as EBL, LPCVD that are time complicated and time-

consuming. To study the essential thermoelectric properties of nanomaterials, there is a 

need for similar microdevice fabrication technique that is simple and less time-consuming.  

1.2 Dissertation Outline 

This dissertation is divided into six chapters. In Chapter 2, high AR Copper (Cu) 

NWs (Cu NWs)/polymer composites are investigated for potential application in the 

thermal management of flexible electronic devices. First, the synthesis of high AR Cu NWs 

through a simple solution-based method is described. Then, the morphology of the Cu NWs 

is examined via field-emission scanning electron microscopy (FE-SEM) and the chemical 

composition is confirmed by electron dispersive spectroscopy (EDS). Preparation and 

measurements of the  of Cu NW/polymer composites are also explained. Furthermore, 

the results obtained from the experiments are combined with the modeling results to study 

the effect of hydrogen annealing on the  of Cu NW/polymer composites and ITR.   

Chapter 3 presents the study of the thermal properties of the CNC-PVA composite 

films for potential application in the thermal management of flexible electronics as an eco-

friendly alternative to the plastic-based substrate materials. The samples of CNC-PVA 

composite thin films with isotropic and anisotropic configurations are studied. 

Measurement of the in-plane  (in-plane) of CNC-PVA composite thin films is discussed. 

The results are analyzed and compared with that of the commonly used materials as 

substrates for flexible electronic devices. Furthermore, the application of the CNC-PVA 

composite thin film as a substrate for a flexible electronic device is demonstrated.  

Chapter 4 describes the thermal characterization of ND films synthesized through 

the directed covalent assembly approach for potential thermal management applications in 
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MEMS/electronic devices. Microfabricated devices are used to perform the cross-plane 

 (cross-plane) measurement of ND films of different thicknesses via the 3 method for 

temperatures between 125 K and 425 K. Furthermore, the results are presented to study the 

dependence of the thermal properties on the film thickness and ambient temperature.  

In Chapter 5, details of the fabrication and testing of a suspended beam microdevice 

as an alternative to existing designs that use complex and time-consuming fabrication steps.  

The capability of the device to measure in-plane of a thin film material is demonstrated 

through a steady-state DC Joule heating approach for a temperature range of 85 K- 460 K.  

Finally, Chapter 6 provides the major findings of this work as well as future 

recommendations. 
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CHAPTER 2 

 

ENHANCED THERMAL CONDUCTION AND INFLUENCE OF 

INTERFACIAL RESISTANCE WITHIN FLEXIBLE HIGH ASPECT 

RATIO COPPER NANOWIRE/POLYMER COMPOSITES 
 

2.1 Introduction and Motivation 

This work has already been published [72]. Different types of materials are 

available for engineering applications. However, polymeric materials are considered to be 

better in terms of weight, cost, and ease of manufacturing compared to metal and ceramics. 

The performance of the polymers can be improved by modifying their physical properties. 

Different kinds of nanomaterials can be used as fillers within the polymers in order to make 

composites that have better physical properties (enhanced strength, better electrical or 

thermal conductivity) compared to the neat polymers. Therefore, polymers can also be used 

for applications other than their traditional uses and this has led to increased research in 

the field of polymer nanocomposites. 

 As mentioned in the introduction, thermal management of electronics is a pressing 

technological challenge. One means of addressing these challenges has been through 

polymeric composites. Polymeric composites have been commonly used as thermal 

interface materials (TIMs) by the electronics industry, but there can be a bottleneck on the 

overall thermal management of certain electronics packages due to the presence of 

interfacial thermal resistances. Hence, there is still more researches conducted for advanced 

TIMs materials based on nanomaterials [33]. Another application area of the thermally 
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conductive polymer nanocomposites is flexible electronics. Common materials used as 

substrates for flexible electronics include PET, polyimide (PI), polydimethylsiloxane 

(PDMS) and polyurethane (PU). The substrates of flexible electronics should be 

chemically stable, mechanically strong and easy to fabricate (devices can be printed 

directly in large amount through a roll-to-roll printing method). The above-mentioned 

materials meet those criteria but their neat forms have low  of ~0.15-0.3 W m-1 K-1 [38], 

[44]–[46] at ambient conditions compared to traditional semiconductor substrates such as 

Si with  ~140 W m-1 K-1 [47], [48]. The polymer substrate with low  can be detrimental 

to the device, and it can even damage the device due to overheating [73]. Such issues have 

motivated researchers towards polymer matrix nanocomposites as an alternative for 

flexible electronic substrates since they have better  and hence excellent thermal 

management capabilities.   

As mentioned above, different types of candidate nanomaterials are available for 

enhancement of . Traditional fillers such as alumina and zinc oxide need higher volume 

fraction of about 10-15 vol. % in order to achieve the desired enhancement of   [74]. They 

have spherical geometries; therefore, they need higher loading to achieve the percolation 

threshold and also suffer from multiple thermal resistances at interparticle boundaries [75]. 

Adding such a large amount of filler to the polymer can make the resulting composite more 

rigid [76]. Therefore, fillers that can achieve the percolation threshold at the lowest possible 

filler loadings are desirable so that the polymer composite can still be flexible while 

proving very high enhancement of . Filler materials with high AR are suitable for this 

purpose. Carbon nanotubes (CNTs) and graphene are promising materials to achieve such 

thermal performance and hence they have been widely studied as filler materials on the 
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basis of their higher intrinsic  [77].  

However, the higher thermal conductivities have been not been realized for 

nanotube assemblies because of the resistances at tube-tube interconnections and very high 

radiative thermal losses [78]. However, high aspect ratio metallic NWs are considered to 

be most promising because of their lower percolation threshold compared to spherical, 

plate, or rod-like fillers [73]. Although there are varieties of metallic NWs, much research 

has been focused on the high AR NWs of gold (Au) or silver (Ag) for use in flexible 

conductive electrodes due to their outstanding conduction properties and ability to resist 

surface oxidation. Regarding thermal transport, Balachander et al. [38] prepared Au NWs 

using a solution-based method with NWs having 4-7 nm diameters and lengths on the order 

of 1 micron for an AR range of ~150-250. They introduced those NWs to PDMS for 

developing nanocomposites. At low volume fraction of Au NWs (slightly more than 3 vol. 

% of Au NWs), the resulting composite had  of 5 W m-1 K-1 that is a factor of 30 

improvements in  over the neat PDMS. Furthermore, this result was also a factor of four 

higher than the  obtained at 4 vol. % of Au NWs with diameter ~20 nm and lower AR of 

only ~2.5. The authors concluded that the smaller NW diameters and higher AR were the 

factors responsible for higher . The higher ARs of the Au NWs actually enable more inter-

nanowire contacts within the composite, thus forming low resistance pathways for 

transport than the one in which individual NWs are scattered and isolated within the matrix 

and the interface thermal resistance can dominate. However, the cost can be a limiting 

factor for the polymer composites based on Au NWs or Ag NWs outside of the lab 

environments. Alternatively, copper (Cu) is cheaper, abundant in nature,  and has 

conductivity comparable to Au and Ag; hence, many studies have been focused on the high 
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AR copper (Cu) NW-based composites for conductive electrodes [79]–[86] and TIMs 

applications [77], [87]. Wang et al. [77] used single-crystalline Cu NWs with high (AR 

~100-1000) and polyacrylate to create composites for TIMs application and measured the 

 of the composites by the laser flash method. They reported their best sample as having 

 of 2.46 W m-1 K-1 at very ultra-low volume fraction (~0.9% of Cu NWs) which was a 

~1350 % enhancement over the plain matrix and also higher than that of the composites 

filled with commercial Ag NWs at 1.1 vol. %. The  of the Cu NW-polyacrylate 

composites increased rapidly at just ~0.9% of Cu NWs which was said to be indicative of 

having achieved a percolation threshold. The results mentioned above appear very 

promising, but more research is still required to study the ability of the high AR Cu NWs 

as filler material for improving the effective  within polymer matrix including their 

application for flexible electronics and TIMs. In addition, more investigation is also needed 

to figure out the factors that are limiting further enhancement of  in such materials. 

2.2 Research Objectives 

In this work, we investigated the use of high AR Cu NWs prepared by a solution-

based method, as -enhancing fillers for flexible polymer composites. To accomplish this 

goal, the following specific objectives were to be achieved through this research: 

• Synthesis of high AR Cu NWs using a simple solution-based method. 

• Examine the morphological and chemical characteristics of the high AR Cu NWs. 

• Use those high AR Cu NWs to create Cu NW/PDMS and Cu NW/PU flexible 

composites at various loading levels. 

• Determine the  of the Cu NW/PDMS and Cu NW/PU flexible composites using 

a steady-state measurement technique. 
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• Investigate the effects of hydrogen annealing on composite  and interfacial 

thermal resistance Rk. 

The high AR Cu NWs were synthesized in large quantity using a simple solution-

based method. Field-emission scanning electron microscopy (FE-SEM) was used to 

examine the morphology of the Cu NWs. Also, the chemical composition was examined 

by electron dispersive spectroscopy (EDS). Multiple Cu NW/PDMS and Cu NW/PU 

flexible composite samples were prepared with varying Cu NW volume fraction (f) from 

0.1% to 4.1% and the  of each sample were measured using steady-state measurement 

technique. A combination of experimentation and modeling was used to study the effects 

of hydrogen annealing on the  of the composites and interfacial thermal resistance which 

is explained in detail in later sections.        

2.3 Experimental Materials and Methods 

2.3.1 Cu NW Synthesis 

Glucose, copper chloride dihydrate (CuCl2.2H2O), oleic acid (OA, technical grade, 

90%), and oleylamine (OM, technical grade, 70%) were purchased from Sigma-Aldrich. 

Ethanol was obtained from Fischer Scientific and PDMS along with the cross-linker 

(Sylgard 184) were purchased from Dow Corning. To prepare polyurethane (PU) 

composites, Clear Flex® 95 was purchased from Smooth-On USA LLC. The method 

described by Li et al. [88] was modified and used for the synthesis of Cu NWs. First, 6.8 

g of CuCl2·2H2O and 7.92 g of glucose were added to 800 mL of deionized (DI) water 

under magnetic stirring. In a separate beaker, 0.8 mL of OA and 90 mL OM were added to 

140 mL of ethanol under magnetic stirring. OA and OM play the role of dual capping 

agents and glucose acts as a reducing reagent. After mixing these two solutions in a 5 L 
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glass jar, the resulting solution was diluted up to 4 L by adding DI water and finally left 

for 12 hours on a hot plate at 50 °C under magnetic stirring. As shown in Figure 2-1, the 

color of the final solution changed from blue to caesious after heating/stirring. 

Subsequently, the solution was transferred to a commercial electric pressure cooker and 

held at a gauge pressure of 80 kPa and a temperature of 118 °C for 10 hours. As a result of 

the reaction inside the electric pressure cooker, reddish brown Cu NW solution was 

obtained. From this solution, a small amount (20 mL) was centrifuged for 4 min at 5000 

rpm to separate solid Cu NWs from the bulk solution. Then the solid Cu NWs were 

centrifuged twice in DI water to remove excess chemicals that might be present in the 

solution.  

After this cleansing process, DI water was added to the Cu NWs and the solution 

was left in a freezer at -79 °C for approximately 12 hours or until completely frozen, 

followed by vacuum drying for 24 hours to remove DI water and isolate Cu NWs. Figure 

2-1(c) shows the final product of this process. The use of freeze-drying to isolate the Cu 

NW mass and the resulting product are similar to those reported in previous works on Cu 

NW aerogel monoliths [89], [90]. The Cu NWs obtained by this method can be easily 

mixed with different types of polymers without an intermediary solution phase which could 

alter the chemistry of the polymer itself. In terms of yield, 150 mL of crude Cu NW solution 

provided approximately 300 milligrams of isolated Cu NWs.  
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Figure 2-1: The precursor solution a) before and b) after heating on a hot plate at 50 °C 

with magnetic stirring for 12 hours. The final Cu NW product after freeze-drying is shown 

in c) with a millimeter scale for reference. Reproduced with permission from Ref. [72]. 

2.3.2 Cu NW Characterization 

The morphologies of the Cu NWs were characterized by field-emission scanning 

electron microscopy (FE-SEM, Hitachi S-4800). Figure 2-2 shows the FE-SEM images of 

Cu NWs within a polymer matrix at different magnifications. This measurement showed 

an average length of the Cu NWs to be 20 μm with an average diameter of 55 nm, resulting 

in AR of ~364.   
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Figure 2-2: FE-SEM images of the obtained Cu NWs within the polymer matrix. 

Reproduced with permission from Ref. [72]. 

The solid obtained after freeze-drying was spread onto a Si chip to determine the 

chemical composition by using Electron dispersive spectroscopy (EDS, Ametek EDAX). 

The result is shown in Figure 2-3.  The EDS analysis shows the sample consists of a good 

amount of Cu, with a very small amount of Cl that was introduced from CuCl2 during the 

synthesis process. In addition, Si and carbon can also be observed, which is due to the Si 

substrate and carbon tape used for supporting and mounting the sample.  
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Figure 2-3: EDS analysis of the Cu NW material supported on a Si chip and carbon tape. 

Reproduced with permission from Ref. [72]. 

2.3.3 Cu NW/polymer composite samples preparation 

Cu NW/PDMS composite samples were prepared by mixing the liquid PDMS with 

its affiliated cross-linker in a 1:10 volume ratio followed by an addition of varying amounts 

of freeze-dried Cu NWs. The resulting composites were poured onto a pre-cleaned glass 

plate that is bordered by aluminum foil. After degassing in a vacuum oven for 20 minutes, 

the samples were cured at 85 °C for 2 hours. We also prepared a neat PDMS sample for 

baseline  measurement by degassing followed by curing under similar conditions as 

mentioned above. Finally, the cured samples were peeled off the glass plate and cut into 

25 mm x 25 mm square samples.  

To prepare Cu NW/PU composite samples, Clear Flex® 95 was used that came in 

two parts referred to as Part A and Part B. First, Part A and Part B were mixed at a weight 

ratio of 1:1.5 as mentioned by the vendor. Afterwards, varying amounts of freeze-dried Cu 

NWs were added and well mixed followed by degassing under vacuum for 20 minutes. The 
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uncured Cu NW/PU composite samples formed by the similar molding process as 

explained above for Cu NW/PDMS composite samples were cured at room temperature 

for 24 hours. For baseline  measurement, neat PU sample was also prepared without any 

Cu NWs by curing at room temperature for 24 hours. Afterwards, the cured samples were 

peeled off the glass plate and cut into mm x 25 mm square samples. We chose PU to study 

the effect of the addition of Cu NWs on the  of the technologically relevant polymer 

system. In addition, PU based samples can be air cured so they do not need higher 

temperatures as required by the PDMS samples to keep the curing times less than 24 hours. 

Various samples of Cu NW/PDMS and Cu NW/PU composites were prepared by varying 

the volume fraction (f) of Cu NWs from 0.1% to 4.1%. Cu NW volume fraction (f) was 

calculated by weighing the Cu NWs and neat polymer before mixing and using their 

respective densities. Figure 2-4 shows the resulting Cu NW/polymer composite samples.  

 

 

Figure 2-4:  a) Cu NW/PDMS sample at 1.5 vol.% loading. b) Cu NW/PU composite 

sample at 2.7 vol.% loading. c) Bending of a flexible Cu NW/PDMS composite sample. 

Reproduced with permission from Ref. [72]. 

The most critical issue of Cu NWs is that Cu easily reacts with oxygen and forms 

surface oxides that are non-conductive in nature.  This degrades the performance of the 
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NWs by limiting the electrical and/or thermal conduction [79], [80], [91]. Post-processing 

hydrogen annealing treatment was performed for selected samples in order to remove the 

native surface oxides and any organic compounds. The purpose of such treatment was to 

enhance the NW-NW and NW-polymer matrix thermal interfaces so that the effective  of 

the composite would not be limited by interfacial thermal resistances. A similar approach 

was used by Cui et al. [92] as well to study the Cu NW-based transparent electrodes. For 

such treatment, Cu NWs were first annealed under flowing hydrogen at 360 sccm and 190 

°C within a quartz tube furnace for 30 minutes and subsequently immediately mixed with 

PDMS or PU.  

2.3.4 Experimental Setup 

Figure 2-5 shows the experimental setup used to measure the  of the neat polymers as 

well as the Cu NW/PDMS and Cu NW/PU composite samples containing different volume 

fraction of Cu NWs and annealing conditions. An assembly comprising of two thin Kapton 

heaters sandwiched between 2 mm thick aluminum plates was used as a central heating 

source as well as the hot side temperature measurement points. All components have the 

same 25 mm x 25 mm square cross section as the samples tested. The aluminum plates 

were custom machined to have grooves for providing access to thermocouples. The 

samples studied were placed on either side of this assembly.  
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Figure 2-5:  a) Annotated illustration of the steady-state thermal conductivity measurement 

setup in a symmetric configuration. Not to scale. b) Photograph of the actual assembled 

setup with topmost layers of insulation removed for visualization. The heat exchangers 

used in conjunction with the liquid cooled heat sinks are external to the enclosure on the 

left and right (not shown). Not to scale. Reproduced with permission from Ref. [72]. 

To measure the  of neat polymer (PDMS or PU), 3 mm thick identical samples 

made of neat polymer were placed on either side in order to acquire a symmetric condition. 

In the case of  measurement of Cu NW/polymer composite samples, the composite 

sample experimented was placed on one side of the assembly while the other side had 

corresponding neat polymer, thus forming an asymmetric condition. The custom machined 

aluminum plates with thermocouple access grooves like those used in heater assembly were 

placed on either end of the sample region. These aluminum plates serve as cold sides and 

the corresponding temperatures were measured by thermocouples that were fed through 

the grooves.  The outer sides of the assembly consist of liquid cooled 75 mm x 75 mm 

aluminum blocks to maintain the cold side temperatures at ambient condition by means of 

a pair of external air-cooled heat exchangers.    
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To improve the thermal contacts, Arctic Silver® 5 thermal interface compound was 

applied at the interfaces. In addition, a set of four threaded rods were used to hold the entire 

assembly together by applying moderate pressure to the setup without deforming the 

samples. This entire setup was surrounded by several inches of low  (~ 0.05 W m-1 K-1 at 

200 °C) alumina silica insulation on all sides and housed within a cubicle enclosure with 

access ports allowing for thermocouples, heater leads, and liquid cooling tubing to enter 

and leave.  

2.3.5 Measurement 

During an experiment, Agilent U8001A DC power supply with an output voltage 

of 0-30 V and a current of 0-3 A was used to supply a fixed electrical power to the heaters. 

Digital multimeters were used to measure the current (I) and the voltage drop (V) across 

the heaters. For the neat polymer samples, due to the symmetric condition, half of the total 

dissipated power 𝑄 = 𝐼𝑉/2  flows through each sample towards its respective heat sink. 

The thermocouples (Type J, Omega) placed between the heater and the sample and 

between the sample and the aluminum plate (cold side) were used to measure the 

temperature drop across the samples. The measured temperatures were recorded by a 

computer-controlled data acquisition system. The thermocouple readings were monitored 

until a steady-state was reached, then the temperature gradient 
𝑑𝑇

𝑑𝑥
 for the applied DC power 

was determined from the thermocouple readings and thickness of the sample assuming a 

linear distribution of the temperature. Temperature gradients for five different power 

values were obtained and the slope obtained from these data was used to calculate the 

thermal resistance of the sample under observation. Using this data, the slope of a linear fit 
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of measured heat flow through the sample 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 versus 
𝑑𝑇

𝑑𝑥
 was obtained and used to 

calculate the thermal  given by Fourier’s equation: 

  =
𝑄𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑑𝑇
𝑑𝑥

) 𝐴
 Eq.  2-1 

 

where 𝐴 is the cross-sectional area of the sample and the value of the ratio 
𝑄𝑠𝑎𝑚𝑝𝑙𝑒

𝑑𝑇

𝑑𝑥

  is taken 

from the slope of the obtained data points as shown in Figure 2-6. 

 

For neat polymers under symmetric conditions, we used 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝑄

2
 to calculate 

the  with the known values of the heat flux, temperature gradient across the sample and 

their geometries. Also, the symmetry was verified by comparing the temperatures 

 

Figure 2-6: Representative heat flow vs temperature gradient data obtained at varying DC 

heating levels as described in the text, with the resulting slopes being used for calculating 

 of the samples. a) Neat PDMS data taken in a symmetric configuration. b) As synthesized 

4.1 vol. % Cu NW/PDMS composite sample data along with the values measured 

simultaneously for its associated neat PDMS reference sample in an asymmetric 

configuration. Error bars are included but are obscured by the data point symbols. The 

errors were +/- 2 mW for Q and +/- 510 K/m for  
𝑑𝑇

𝑑𝑥
. Reproduced with permission from 

Ref. [72]. 



24 

 

 

 

measured on each of the two sides of the setup. The experimentally measured  values of 

the neat PDMS and PU were compared with the literature values and presented in the 

Results section below. In the case of Cu NW/polymer composite samples of unknown  , 

an asymmetric setup was used following the same experimental procedure. However, 

instead of using 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝑄

2
 as in the case of symmetric setup, first the heat flow through 

the neat polymer reference sample (Qref) was calculated from its known  value, 

temperature gradient and geometry using Fourier’s law. Then the heat flux through the 

composite sample of unknown  value was obtained as the difference 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑄 −

𝑄𝑟𝑒𝑓. This information was used along with the temperature gradients measured across the 

composite sample for multiple heating values in order to get the slope of 𝑄𝑠𝑎𝑚𝑝𝑙𝑒  vs. 
𝑑𝑇

𝑑𝑥
 

and calculate the  of the composite sample. Representative data obtained from a Cu 

NW/PDMS composite sample in an asymmetric setup along with its associated neat PDMS 

reference sample are given in Figure 2-6 (b).  

The standard error propagation analysis that was performed based on the modeling 

of steady-state heat loss through the thermocouple and the power leads, the accuracy of the 

thermocouples as specified by the vendors, and the digital calipers resolution, showed that 

the maximum uncertainties associated with this approach were +/- 2 mW for Q and +/- 510 

K/m for  
𝑑𝑇

𝑑𝑥
. Based on these uncertainties, an accuracy of +/- 0.05 W m-1 K-1 can be expected 

for the  of the samples obtained from this experimental approach. These respective 

intervals were used as the basis for the uncertainty bars in the data plots that follow.  

For composites filled with filler materials, the interfacial thermal resistance (ITR) 

(ITR) between the filler and the matrix - also known as Kapitza resistance Rk - can influence 

the overall thermal property of the composite [93]. The value of Rk strongly depends on the 
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surrounding matrix environment, as well as the processing and surface treatment of the 

filler material [94]–[96]. Since ITR degrades the performance of the composite, this work 

was also focused on minimizing the effect of such resistance by incorporating hydrogen 

annealing to the high AR Cu NWs. Two analytical models were implemented to 

quantitatively estimate Rk. These analytical models vary according to their fundamental 

assumptions.  The values of Rk were extracted from the experimental data using the 

effective medium approach (EMA) as described by Nan et al. [93] and another model 

developed by Xue et al. [97]. These models were developed to study the effect of ITR on 

the thermal property of CNT composites. The model by Nan et al. is suitable for low 

loading levels as it assumes that the NWs are randomly distributed and isolated from each 

other. At high loading levels, NWs can touch each other forming whole or partial networks 

within the composite. Such condition is explained by the model by Xue et al. that has a 

broader range of applicability.  The Rk values obtained by using these two models for 

various samples were then compared to determine the agreement or deviation from one 

another. 

 According to the model described by Nan et al. the effective  of the composite is 

given by [93]: 

 


𝑚
=

3 + 𝑓(𝛽𝑥 + 𝛽𝑧)

3 − 𝑓𝛽𝑥
 

Eq.  2-2 

where 𝑚  is the thermal conductivity of the matrix alone and 𝑓 is the volume fraction. The 

terms 𝛽𝑥 and 𝛽𝑧 are given by [93]: 

 𝛽𝑥 = 2
11

𝑐 − 𝑚

11
𝑐 + 𝑚

 
Eq.  2-3 
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 𝛽𝑧 =
33

𝑐

𝑚
− 1 

Eq.  2-4 

where 11
𝑐

 and 33
𝑐

  are the transverse and longitudinal equivalent thermal conductivities of 

a nanocomposite unit cell [93]. These values can be calculated by: 

 
11

𝑐 =
𝑐

1 +
2𝑎𝑘𝑐

𝑑𝑚

 

Eq.  2-5 

 
33

𝑐 =
𝑐

1 +
2𝑎𝑘𝑐

𝐿𝑚

 

Eq.  2-6 

where 𝑑, 𝐿, and 𝑐  are the diameter, length, and  of the filler NWs, respectively, and the 

term 𝑎𝑘  represents a Kapitza radius defined by 𝑎𝑘 = 𝑅𝑘𝑚.  

Based on the FE-SEM images, the average diameter of the Cu NWs used in this 

calculation was 55 nm and the average length was 20 μm. The value of c was carefully 

chosen by considering the various factors. The electrical conductivity () of Cu NWs in 

sub-100 nm diameters at room temperature is smaller than the bulk values because of the 

surface scattering and grain-boundary scattering [98], [99]. Similar size effects would also 

change the  of Cu NWs from the bulk values since the electrons can affect electrical and 

thermal conductivity. Previously, Stojanovic et al. developed models based on the 

Boltzmann Transport Equation (BTE) to study the effect of the size of metallic NWs on 

their electronic thermal conductivity e and phonon thermal conductivity ph at room 

temperature [66]. By using this study as a reference, we obtained c of 139 W m-1 K-1 by 

combining the values for e and ph for 55 nm Cu NW diameter and used this value for all 

the models in this work.  

The approach presented by Xue et al. determines the effective  of the composites 

by incorporating the interface thermal resistance with an average polarization theory. In 
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addition, the dependence of the effective  of the composite on the filler length, the 

diameter and the concentration has been taken care of simultaneously. Therefore, this 

model is valid for describing the thermal or electrical properties of composite for any 

loading values of the filler including those in which the fillers may touch. According to 

this approach, the effective  of the composite is given by [97]: 

 
9(1 − 𝑓)( − 𝑚)

2 + 𝑚
+ 𝑓 [

 − 33
𝑐

 + 0.14
𝑑(33

𝑐 −  )
𝐿

+ 4
 − 11

𝑐

2 + 0.5(11
𝑐 −  )

] = 0 
  Eq.  2-7 

where the symbols and their respective meanings follow those described above for the 

model by Nan et al.  

In   Eq.  2-7, besides the dimensions determined via the FE-SEM images, 

experimentally measured value for  at various f, and the value for c from the existing 

solution to the BTE, the only unknown variable for either model is Rk. The detail about the 

extraction of Rk is presented in the following section. 

2.4 Results and Discussion 

In order to validate the setup and procedure, neat PDMS samples were placed on 

either side of the heater.   The  of each neat PDMS sample was 0.17 W m-1 K-1, which 

was in good agreement with the values mentioned in the literature [38], [46], [100]. A 

similar procedure was followed for neat PU samples from which we obtained  of 0.19 W 

m-1 K-1 for each PU sample. This value was also in excellent agreement with the values 

reported in the literature [100], [101]. After this validation, we measured the  of the Cu 

NW composite samples with different volume fractions of Cu NWs and annealing 

conditions as explained above.  
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Figure 2-7 shows the  of the Cu NW composite samples at different volume 

fractions. This shows that there is a gradual increase in the value of  with an increase in 

the volume fraction of the Cu NWs. The values of  for the as-synthesized samples and the 

annealed Cu NW/PU sample were 0.51 W m-1 K-1 and 0.62 W m-1 K-1, respectively, at the 

highest volume fraction of 4.1%. These indicate that there is more than a three-fold increase 

in  of composites over the neat polymers.  

 

 

Figure 2-7: Plot of thermal conductivity of the Cu NW/PDMS composite and Cu NW/PU 

composite as a function of the volume fraction of Cu NWs. Reproduced with permission 

from Ref. [72].  

Though there is a significant improvement in the composites compared to the neat 

polymers, the increase in the values of  and the levels of enhancement achieved for the 

Cu NW/PDMS composites and the Cu NW/PU composites are still lower than several of 

those reported in the literature for various polymer composites. Consider, for example, at 

1 vol. % the value of  was 0.34 W m-1 K-1 for our Cu NW/PDMS composites. However, 

Balachander et al. [38] reported the value of  for Au NW/PDMS composite to be 0.8 W 
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m-1 K-1 even at 0.5 vol. %. On the other hand, the value of  obtained by Munari et al. 

[102] for the Ag NW/PDMS composite was only 0.15 W m-1 K-1 at a volume loading of 

1%, which is lower than the  of our Cu NW/PDMS composite. Also, the  of the 

composite depends on NW loading. When the NW loading was relatively small (𝑓 < 1.5 

%), our Cu NW composites showed enhancement in  comparable to that of the polymer 

nanocomposites such as epoxies and PDMS filled with CNTs [103], graphene [104] and 

gold nanorods [38] as shown in Figure 2-8. 

 

 

Figure 2-8: Thermal conductivity enhancement for the Cu NW/PDMS composite and Cu 

NW/PU composite as a function of the volume percent loading of Cu NWs relative to their 

respective neat polymers. Also plotted are reported thermal conductivity enhancement 

values for composites filled with carbon nanotubes [103], graphene [104], gold nanorods 

[38] and silver NWs [66]. Reproduced with permission from Ref. [72]. 

At higher loading levels, a deviation in the trend can be observed between the Cu 

NW composite samples in this work and other composite found in the literature. For Cu 

NW/PDMS and Cu NW/PU composites, there is a linear relationship for the loading levels 
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up to 4.1 vol %. However, there is a non-linear increase in  with increasing 𝑓 for many 

other nanocomposites that show larger  enhancement. This behavior can be accounted to 

the formation of the percolative network within the material. For our Cu NW composite 

samples, the trend is linear, even at the highest 𝑓 values. This might be due to the fact that 

the percolative thermal network has not yet formed.  

Based on the high AR of synthesized Cu NWs and the microscopy analysis of the 

composite samples with high values of 𝑓, the reason for not having a percolative network 

is not likely related to having few NWs or having too low ARs to form at least partial 

percolative network. In such sub-percolation threshold condition, the overall resistance to 

the thermal transport through the composite is highly dominated by the bulk polymer 

matrix. The presence of ITR at the NW-NW and NW-polymer interfaces are assumed to 

be the main cause for the lack of percolative thermal network. The root cause for the 

presence of ITR may be attributed to the native oxide barrier layer formed on the surface 

of the Cu NWs. Hydrogen annealing was performed on some selected samples to remove 

the native oxide layer from the as-synthesized Cu NWs. This can ultimately help to 

improve the effective  of the Cu NW composite samples by improving the interfacial 

contact between the Cu NWs. A simple electrical test was performed on the Cu NWs before 

and just after hydrogen annealing, to make sure that the hydrogen annealing removes the 

native oxide layers from the NWs and thus improves the NW-NW contacts. The electrical 

resistances of the Cu NWs before hydrogen annealing were very high, indicating their non-

conducting nature. After annealing, the Cu NWs exhibited electrical resistances on the 

orders of a few kiloohms, in agreement with other works in which hydrogen annealing has 

proven effective for removing native oxide layers and hence improving the conduction 

within Cu NW networks [92].  
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As explained above, the Cu NWs were mixed with the polymers immediately after 

the hydrogen annealing with the intention of minimizing re-oxidation via air exposure. 

Even though the hydrogen annealing prior to mixing was effective in removing the native 

oxide layer, results in Figure 2-7 show that for the same 𝑓 level, the difference in  for the 

composites containing annealed vs. as-processed Cu NWs fell within the measurement 

uncertainty. This indicates that the residual oxygen present within the polymer may play 

an important role for re-oxidation of the Cu NW surfaces even after mixing and degassing. 

In addition, similar results were obtained for the PDMS (cured at elevated temperature) 

and PU (cured at room temperature) composites indicating that the moderate temperatures 

do not strongly affect the re-oxidation process. 

The effective ITR (symbolized here as Rk) values were computed for the composites 

containing as-processed as well as hydrogen annealed Cu NWs using the models described 

by Nan et al. and Xue which are shown in Figure 2-9.  

 

 

Figure 2-9: Thermal conductivity values of CuNW/PDMS and CuNW/PU composite 

samples plotted along with the theoretical values of Rk and thermal conductivity values 

predicted by the model developed in different literature a ) Xue Model b ) Nan Model. 

Reproduced with permission from Ref. [72]. 
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The values extracted from both models fell within the range Rk ~1.7 – 3.0 x 10-7 m2 

K W-1. Therefore, both models can conceivably be used to describe the thermal transport 

behavior of the Cu NW composites. The upper bound of 3.0 x 10-7 m2 K W-1 was obtained 

from the annealed Cu NW/PDMS sample set analyzed using the Xue model, whereas the 

lower bound of 1.7 x 10-7 m2 K W-1 corresponds to the annealed Cu NW/PU sample set 

analyzed via the Nan et al. model. For the Rk values determined in this manner, the 

maximum relative uncertainty of ~23 % was obtained by incorporating the uncertainty of 

each data point and its impact on the slope by which Rk was obtained.  Contrarily, 

Balachander et al. [38] reported that the  of their Au NW/PDMS composites were more 

than the predicted  of a non-percolated model assuming Rk ~ 10-8-10-9 m2 K W-1. This 

implies that their composite material exceeded the percolation threshold. The better 

performance of the Au NW composites compared to our Cu NW composites may be 

attributed to the natural oxidation resistance of Au. To improve the performance of the Cu 

NW composite, special handlings such as composite preparation under vacuum or 

protective inert atmosphere until fully cured is necessary. In this case, the initial cost might 

be high for buying the vacuum system. In the long run, the overall cost of synthesizing a 

large amount of Cu NWs will be small compared to the Au NWs as Au is more expensive 

than Cu, so this initial high cost will be repetitive if more Au NWs are needed.  

Furthermore, the price of Au often fluctuates so this will also make use of Au NWs 

more expensive. Another option would be the alignment of NWs in the composites along 

the preferred heat flow direction as reported by Barako et al. [87]. Dense arrays of 

vertically aligned Cu NWs were directly synthesized onto the substrates via templated 

electrodeposition technique and a sacrificial over plating layer was also used to achieve 

improved uniformity. The value of  of the Cu NW composites was as high as 70 W m-1 
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K-1 by aligning the Cu NWs parallel to the heat flow. However, such composites might not 

be acceptable for some applications due to highly anisotropic nature. For example, if the 

in-plane is very high compared to the cross-plane , most of the heat will flow towards the 

neighboring electronic components which will ultimately produce more heat on such 

components. The values of Rk mentioned above were calculated using a nanowire thermal 

conductivity c of 139 W m-1 K-1 based on the existing solution to BTE with diffuse 

scattering at the same diameter as those used in this work [66]. Models described by Nan 

et al. and Xue can be used to find the lower bound on c with Rk approaching zero and 

figuring out what lower values of c may be able to provide the results matching with the 

experimentally determined results of the composites. By following this approach, c values 

in the range of 26-38 W m-1 K-1 would result in the effective   values equal to those 

obtained in this work. The value of c can be lower than the optimal 130 W m-1 K-1 because 

of the grain boundaries, point defects, or other internal imperfections within the NWs; 

however, a 5X reduction in nanowire  coupled with a thermally perfect Cu NW/polymer 

interface represents an unlikely scenario. Therefore, it is more likely that the c lies within 

the range of 26 – 139 W m-1 K-1 and the upper limit to Rk is 3.0 x 10-7 m2 K W-1, with the 

true combination of c and Rk falling somewhere within these respective bounds. 

Although there is still more room for enhancing the effective  of the Cu NW-based 

flexible polymer composites, the Cu NW/PDMS and Cu NW/PU composites developed in 

this work still show great potential for dissipating heat from the electronics-like 

concentrated heat source. This is demonstrated in Figure 2-10 that shows the thermal 

images taken from neat PU sample and a Cu NW/PU composite sample containing 4.1 

vol% of Cu NWs, each consisting of identical serpentine Au heaters shadow-evaporated 
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onto their surfaces. Each sample was heated with the same amount of Joule heating and the 

thermal images were taken using almost identical temperature scales. From the thermal 

images, the maximum temperatures of the resulting hot spots were compared, which was 

considerably lower (~10 °C) for the Cu NW/PU composite sample than that of the neat PU 

sample. The DC heating voltages were applied to the top right and bottom left contact pads 

for both samples; hence, a slight asymmetry can be noticed in the images.   

 

 

Figure 2-10: a) A neat PU sample with shadow-evaporated Au serpentine heater and its 

associated temperature map at steady-state after applying a fixed Joule heating power. b) 

The annealed Cu NW/PU sample with 4.1% volume loading and its associated steady-state 

temperature map after applying the same Joule heating power as was used for the neat PU 

sample. Reproduced with permission from Ref. [72]. 

2.5 Conclusion 

In this work, high AR Cu NWs, synthesized through a simple solution-based 

method, were used to create flexible, thermally conductive Cu NW/PDMS and Cu NW/PU 
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nanocomposites. The effective  of the composites containing varying amounts of Cu NWs 

were measured using a steady-state measurement method. An intermediate hydrogen 

annealing treatment was performed for selected samples with the intention of removing 

native surface oxides. The value of  increased linearly with an increase in volume fraction 

of Cu NWs and achieved a threefold increase in  over neat polymers at a highest loading 

fraction of 4.1 vol %. The factors limiting the increase in effective  of the composites may 

be the surface oxides and interfacial thermal resistance as indicated by the linear 

relationship including the comparable results between as-processed and annealed samples. 

In spite of these limitations, the Cu NW composites showed superior heat spreading 

capability from a localized hot spot as would be experienced by a flexible electronics 

element than the neat polymers. 
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CHAPTER 3 

 

  SUPERIOR, PROCESSING-DEPENDENT THERMAL 

CONDUCTIVITY OF CELLULOSE NANOCRYSTAL-POLY (VINYL 

ALCOHOL) COMPOSITE FILMS 
 

3.1 Introduction and Motivation 

In electronic devices, the substrate is also one of the main components, and the 

properties of the substrate include flexibility, surface roughness, mechanical strength, 

optical transmittance, and maximum processing temperature. Electrically insulating 

polymers are widely used in traditional electronics as printed circuit boards (PCBs), device 

holders, or TIMs because of the ease of processability, low cost, and low density compared 

to other materials. However, the neat forms of such polymers have very low  because of 

defects, voids, impurities, random polymer chains, or entanglements [105], [106]. There is 

a growing trend towards flexible electronics and away from Si-based rigid electronics. 

Popular materials that have been extensively used as substrates for flexible electronics 

include PET, PI, and polyethylene naphthalate (PEN). These are the petroleum-based 

materials that take a very long time for degradation.  

Hence, they are expensive from a life cycles point of view. Furthermore, they are 

not biodegradable and hence environmentally less attractive [50]. So there is increasing 

interest in green flexible electronics with high-performance substrates that are naturally 

available, thermally stable and conductive with [107] high flexibility, transparency, and 
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better strength [108]. This is possible by using the materials from natural resources and 

hence make the technology more sustainable [107], [109]. Renewable materials such as 

cellulose, lignin, chitosan, gelatine, starch, polylactic acid (PLA), polyglycolic acid are 

abundant in nature and biodegradable, and therefore play a very important role in carbon 

capture and sequestration and ultimately help in the reduction of global warming. Also, 

they are flexible, non-petroleum based, renewable, sustainable, and have low 

environmental, animal/human health and safety risk [110]. 

Substrate materials synthesized from renewable materials, such as cellulose, can be 

a suitable candidate for the sustainable flexible electronics in the future. Cellulose can be 

obtained from various natural resources such as wood, plants, algae, tunicate, bacteria 

[110]. Plants are the most common sources of cellulose, with cellulose being the main 

skeletal component of plants. In addition to hemicelluloses and lignin, plant cell walls 

consist of 40-50 wt% cellulose. Cellulose represents about 1.5 trillion tons of total annual 

biomass production, and thus represent an almost inexhaustible resource so they are almost 

polymeric raw materials for fulfilling the increasing demand of eco-friendly and 

biodegradable products [111]. The promising properties of cellulose nanoparticles (CNs) 

include high AR, low density [110], flexibility, high mechanical strength, relative thermo 

stabilization, piezoelectricity [109], hydrophilicity, chirality, large specific surface area, 

biocompatibility, nontoxicity, and low cost [112]. Moreover, some cellulose nanomaterial 

composites have tensile strengths greater than cast iron and very low CTE. Such 

remarkable properties make cellulose-based materials suitable for use in emerging 

technologies that include but are not limited to flexible displays, templates for electronic 

components, supercapacitors, batteries, barrier films, antimicrobial films, transparent 
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films, reinforcing fillers for polymers, biomedical implants, pharmaceuticals, drug 

delivery, fibers and textiles, separation membranes,  and many others [110].  

The cell walls of plants are made of macrofibers. These macrofibers are composed 

of microfibrils, which in turn are comprised of nanofibrils of cellulose. The nanofibrils of 

cellulose have highly ordered cellulose chains (crystalline) as well as regions with 

disordered cellulose chains (amorphous-like) in a row [110], [113]. The crystalline part is 

very strong due to the strong hydrogen bond of hydroxyl groups in cellulose, but the 

amorphous part can be broken by strong mechanical force or special solvents.  There are 

four polymorphs of crystalline cellulose: cellulose I, II, III and IV.  

Cellulose I is the natural cellulose that is produced by several organisms (plants, 

algae, bacteria) and they are thermodynamically metastable. Cellulose II and III can be 

obtained by modifying cellulose I. Cellulose II has a more stable crystalline structure than 

cellulose I [114]. Nanocellulose (NC) can be extracted from the natural resources in the 

form of CNCs and cellulose CNFs. They can be extracted from cellulose microfibrils using 

various methods that include pre-treatments, disintegration or deconstruction processes: 

chemical pulping and bleaching, mechanical grinding, high-pressure homogenization, acid 

hydrolysis, enzyme treatment, and solvent treatment. CNFs have fiber-like structures with 

lengths on the order microns and widths of 4-20 nm. They have crystalline as well as 

amorphous parts [110]. They can be produced from cellulose fibrils using a variety of 

mechanical treatments such as homogenization, microfluidization, refining, grinding, and 

ball milling. They can be used as reinforcing agents in composites due to their high 

mechanical strengths, low cost and availability [112], [115].  
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CNCs, also known as cellulose whiskers or nanocrystalline cellulose, are rod-like 

or whisker-shaped particles obtained after acid hydrolysis of cellulose-rich natural 

resources. Acid hydrolysis dissolves the amorphous region, thus leaving only the 

crystalline regions. CNCs have a high AR with length ~50-500 nm and width ~5-20 nm.  

They are ~100% cellulose and highly crystalline (54-88%) [110], [116]. Other excellent 

properties of CNCs include: high tensile strength (~ 7.5 GPa), high axial stiffness (~ 150 

GPa), low coefficient of thermal expansion (~ 1 ppm K-1), thermal stability up to ~ 300 °C, 

low density (1.6 gm cm-3), high , and optical transparency [60], [61], [108], [117]. 

Research studies have shown that the addition of CNCs to a wide variety of natural and 

synthetic polymers can improve the properties (mechanical, optical, thermal barrier) of the 

resulting composites [117]–[120]. Furthermore, they have been used as transparent media 

in organic electronics [121], barriers in packaging applications [122], and anti-

counterfeiting in security applications [123].  CNCs can also be used as coating [124], film 

[125], or aerogel [126].  More importantly, there is increasing interest in CNCs because 

they are inherently renewable and sustainable, have very low environmental, health and 

safety risks, and they have the potential to be processed in industrial scale at a very low 

cost [127].  Due to all these reasons, there has been a great deal of interest towards NC 

both in academic and industrial sectors. 

Generally, fillers are added to the polymers for improving the properties (thermal, 

mechanical, optical) of the resulting composites. Enhancements are possible only by using 

a large amount of such fillers, which can ultimately affect the final weight and optical 

properties of the final composites. The use of filler materials that have at least one 

nanoscale dimension can be useful to resolve such issues. Moreover, popular materials 
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used for this purpose are petroleum-based polymeric materials [128]. Cellulosic 

nanomaterials can be a suitable candidate as filler materials since they can be obtained from 

natural resources so they are eco-friendly, renewable and sustainable [128]–[131]. To 

resolve the issue of thermal management of electronic devices, polymer nanocomposites 

containing CNCs can be used as substrates to improve the thermal properties and take the 

heat away from the electronic devices. A composite qualifies as fully renewable and 

biodegradable if the matrix and filler are produced from renewable resources [129]–[131]. 

CNCs are compatible only with few polymer matrices and PVA is one of them [128]. PVA 

is flexible, biodegradable, non-toxic [132], [133] and one of the most widely produced 

synthetically derived water-soluble polymers [134]. Being environment-friendly, PVA can 

be a good alternative to commonly used petroleum-based polymers such as polyethylene 

[135]. The exceptional properties of PVA include good thermal stability, optical properties, 

and oxygen barrier properties [136]. PVA has been incorporated with nanocellulose for a 

variety of applications such as polymeric membranes [137], films [138], and fibers [139]. 

Moreover, PVA does not adsorb on cellulose in water and it has lots of hydroxyl groups 

that form strong hydrogen bonds with those of cellulose in the dry state [140] while filling 

the “holes” in CNCs leading to low interfacial resistances and very efficient thermal 

transport across the interfaces. Thus, polymer nanocomposite containing CNC and PVA 

can be very useful for thermal management of flexible electronics [130], [131], [133].  

Only a few studies have been done in the past regarding the thermal properties of 

cellulose-based materials for their applications as substrates for flexible electronic devices. 

It has previously been shown that the thermal properties of composites can be improved by 

the inclusion of NC. Shimazaki et al. [141] created a cellulose nanofiber (CNF)/epoxy resin 
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nanocomposite that was transparent with low CTE values and highly thermally conductive 

with   value of ~1.1 W m-1 K-1, which was nearly seven times higher than that of the neat 

epoxy matrix. The crystalline nature of the CNFs was attributed for such improvement 

since it provides excellent phonon pathways through the nanocomposite [141].  

Bahar et al. [142] also reported an increase in the  value of the polymer matrices 

by mixing with cellulose nanowhiskers which indicate that NCs have the potential for the 

 enhancement. Uetani et al. [143] reported the   of tunicate nanowhiskers (TNWs) to be 

as high as ~ 2.5 W m-1 K-1in the in-plane direction, which was about eight times greater 

than in the thickness direction. The fiber orientation was attributed for the anisotropy of . 

Also, the in-plane of the flexible NC skeleton was as high as 2.5 W m-1 K-1, which was ~ 

234% thermal conductivity enhancement from the matrix acrylic resin. This value is higher 

than those of the plastic films currently used for flexible electronics substrates [144]. 

 These findings suggest that NCs can be used as the substrates for thermal 

management of flexible electronics. In another study, Uetani et al. [145] investigated the 

bacterial cellulose (BC) nanopaper with highly oriented NCs formed by stretching the BC 

pellicles and reported  of 2.1 W m-1 K-1 in the drawing direction and  of 0.94 W m-1 K-1 

in the transverse direction. The  anisotropy of 220% suggests that heat guiding substrate 

materials can be produced by assembling the drawn BC pieces without the addition of any 

thermally conductive fillers, thus indicating substrate materials that can efficiently cool the 

next generation of flexible electronic devices.  

Focusing on thermal transport, NCs obtained from natural resources have many 

advantages over the petroleum-based polymers. First, the extended-chain crystals of NCs 

form structures with relatively low defect density; hence, heat can propagate effectively 
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through lattice vibration with minimum phonon scattering [143]. On the other hand, most 

of the polymers have amorphous regions, voids, and chain ends that act as defects or 

interfaces, thus impeding the thermal conduction [146]. Second, the higher tensile modulus 

of polymeric superfibers can be positively correlated with the   –. For example, 

tensile moduli of the tunicate NCs are very high (~ 150 GPa) [150]. Third, crystalline 

structures are deformed when ultra-drawn plastic fibers are used to form two-dimensional 

thin films for  enhancement. However, a simple filtration of NC suspensions can form a 

“nanopaper” with strong hydrogen bonding between the NC surfaces [151]. Due to these 

advantages and unique processing-structure-property dynamic, it is very important to study 

the thermal properties of cellulose-based materials. 

The structural configuration of a crystalline domain can also greatly influence the 

thermal, mechanical and optical properties of CNC materials [108], [116], [125], [152], 

[153] according to the crystal domain organization. The organization of crystalline domain 

can be changed by using external forces such as shearing or electromagnetic fields to align 

the CNCs in specific directions. Using the materials with anisotropic configuration, 

properties can be enhanced directionally in the orientation direction. For gas barrier 

applications, Kalia et al. [154] used anisotropic CNC nanocomposites to improve Young’s 

elastic modulus, yield stress, and ultimate tensile strength with better transparency. 

Shrestha et al. [155] reported very low hygroscopic strain in the axial direction for an 

anisotropic film that is very important for electronic packaging [61]. Diaz et al. [156] found 

highly anisotropic in-plane thermal expansion with the highest CTE of ~ 9 ppm K-1 in the 

direction parallel to CNC alignment while maintaining film transparency, but the films 

without CNC orientation exhibited an isotropic CTE of ~ 25 ppm K-1. The thermal 
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expansions of CNC films were attributed to single crystal expansion and CNC-CNC 

interfacial motion. CNC films that are transparent with smaller CTE values are suitable for 

organic electronic devices, especially LEDs [141], [157]. Diaz et al. [108] further reported 

a four-fold increase in  in the aligned direction compared to the isotropic configuration. 

In order to efficiently alleviate local heating from flexible electronic devices, the 

development of a substrate with high in-plane is a great challenge. It is therefore desirable 

to study the relationship between  and structural organization of CNCs which can further 

enable the control of heat flow through the nanomaterials and ultimately resolve the issue 

of thermal management of flexible electronic devices.  

3.2 Research Objectives 

The main objective of this chapter is to investigate thermal properties of CNC-PVA 

composite thin films for potential application in the thermal management of flexible 

electronics. To achieve this goal, the following specific objectives were to be achieved 

through this research: 

• Determine the in-plane of the CNC-PVA composite thin films containing different 

amounts of CNC and PVA with different molecular weights of PVA, using a 

modified steady-state measurement technique. 

• Investigate the parameters affecting the in-plane of each sample. 

• Demonstrate the application of CNC-PVA composite thin films for flexible 

electronics.  

The CNC-PVA composite films of varying internal structure were examined to 

understand how the processing affects the CNC ordering and, hence, the films’ in-plane 

magnitude and directional dependence. The in-plane of each sample was measured using a 
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modified steady-state measurement technique. Structural organization of CNCs can greatly 

influence the thermal property. The anisotropic aligned samples were prepared with 

different order parameters (S). Therefore, the dependence of in-plane on S was also analyzed 

in detail. Furthermore, the effect of the addition of PVA on the effective in-plane of the 

CNC-based films and the ITR was studied through a combination of experimentation and 

modeling. 

3.3  Experimental Materials and Methods 

3.3.1 Sample Preparation 

The CNC film samples were prepared by Reaz A. Chowdhury from Prof. Jeffrey 

P. Youngblood’s group at Purdue University. 

3.3.2 Experimental Setup and Measurement 

The CNC film samples were fragile; hence, applying high pressure to maintain 

good thermal contacts at the interfaces can break the samples. Therefore, the setup 

mentioned in CHAPTER 2 could not be used. Therefore, a modified steady-state bridge 

method similar to the one employed by Benford et al. [158] was used to measure the in-

plane of the free-standing tape/thin films where a highly conductive silver paint is used to 

maintain good contact at the interfaces. An annotated 3D illustration of the measurement 

stage used in this work is given in Figure 3-1.  The stage used for the measurement consists 

of two identical platforms, each with a 25 mm X 7 mm X 1 mm Cu plate, backside 

serpentine Nichrome wire heater, PFA-insulated 0.127 mm diameter Type J thermocouple, 

and a 20 mm long 2 mm diameter threaded Nylon support. An adjustable stainless-steel 

base with a thermal mass much larger than that of the platforms was used to support the 

Nylon platforms. During measurements, electrical power was supplied to one of the 
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platforms via 15 cm long, 0.255 mm diameter insulated lead wires (2 per platform) that 

attach to the Nichrome heater at the copper plate for localizing Joule heating while also 

minimizing parasitic heat conduction along the leads. Both platforms were made identical 

for the sake of the thermal circuit analysis used to determine in-plane. 

 

 

Figure 3-1: Annotated 3D drawing of the measurement stage. Silver paint for affixing the 

sample not shown. 

The CNC film under the study was cut into rectangular sections 3-5 mm in width 

and up to 25 mm in length for mounting. For anisotropic films, this was done either in 

perpendicular or parallel to the direction of crystal alignment. In some cases, multiple 

samples were stacked together for increasing the signal strength relative to the background. 

Vacuum-compatible high conductivity silver paint (SPI Supplies) was used to affix the 

samples on either end to the Cu plates, which left a part of a clean film sample of known 



46 

 

 

 

length, width, and total thickness suspended between the two Cu plates. The whole stage 

setup was loaded into a chamber where a vacuum of ~10-6 Torr (this was the best vacuum 

that could be achieved) was created via mechanically-backed turbo pump for minimizing 

the convective heat transfer. The leads for electrical power and thermocouples were 

extended across the chamber walls through a vacuum-compatible feedthrough.  

Once the vacuum was stabilized, Joule heating induced to one of the Nichrome 

heaters via a precision DC power supply raised the temperature of the corresponding Cu 

platform. This caused the heat to be conducted along the suspended length of the sample 

and ultimately to the Cu platform on another side and hence raised its temperature as well. 

After measuring the Joule heating in the Nichrome heater and the temperature of each Cu 

platform, the in-plane of the film sample was determined via conduction analysis of the 

setup’s thermal circuit as mentioned by Diaz et al. [108]. The steady-state temperature 

differences were measured at multiple Joule heating powers for each sample to minimize 

the measurement uncertainty. The plot of the temperature difference versus heat conducted 

through the sample was used to determine the sample’s thermal resistance.  

First, the measurement was performed without a sample present to determine the 

“background” G which accounts for the heat conduction through the residual air within the 

chamber. This was subtracted from the G value obtained with a sample present that was at 

least 2X of the background G for all samples. The main source of experimental error was 

associated with the inherent accuracy of two thermocouples (+/- 1.1oC). Standard error 

propagation was used to obtain an upper limit (+/- 19.2%) of measurement uncertainty 

which is associated with the results presented in this work. 
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3.4 Results and Discussion 

3.4.1 Effect of (CNC: PVA) composition with isotropic configuration: 

For any polymer system, the in-plane depends on nanofiller’s percentage, AR, 

orientation as well as the matrix-filler interaction which also determine the free volume (as 

an active defect site) of polymer segments; in short, how the effect of the structure on the 

phonon propagation and scattering within the material [106]. Figure 3-2 and Figure 3-3 

show the measured in-plane of CNC-PVA composite films of different CNC to PVA ratios 

having PVA of molecular weight of 124-186 k and 89-98 k, respectively. It can be observed 

that the in-plane increased with an increase in the CNC percentage compared to the neat 

PVA (0% CNC). The obtained values were within the expected range.  
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Figure 3-2: Thermal conductivity of un-sheared CNC: PVA films versus CNC content of 

the final film. Data shown is for 1, 5, and 10.7 initial CNC and PVA weight percent used 

during fabrication. The PVA molecular weight was 124-186 k. 
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Figure 3-3: Thermal conductivity of un-sheared CNC: PVA films versus CNC content 

of the final film. Data showed is for 1, 5, and 10.7 initial CNC and PVA weight percent 

used during fabrication. The PVA molecular weight was 89-98 k.  

The lower in-plane of the long-chain PVA may be due to the presence of 

entanglements with globular structures that provide more free volume, hence, more phonon 

scattering. Variable in-plane were obtained for the bulk CNC films (100% CNC), and better 

results were observed for initial concentrations above 1%. Never-dried CNC suspension is 

believed to have a chiral nematic configuration that is strongly concentration-dependent 

[159], [160]. The dilute CNC suspensions may have an organized chiral nematic structure 

compared to the suspensions with higher CNC concentration that may not have well 

organized chiral nematic structure because of frustrated ordering; therefore, they can 
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instead be highly random. However, a low in-plane was observed for a chiral nematic 

structure in this work likely due to more free volume. Also, CNCs were randomly 

distributed in the transverse and longitudinal direction because of the generally isotropic 

configuration; therefore, the results shown in Figure 3-2and Figure 3-3 are associated with 

isotropic orientation.  

The in-plane of CNC-PVA composites were very different than expected. The in-

plane of pure CNC film was much higher (at least 2 to 6 folds) than the neat PVA film and 

was depended on the concentration. However, this binary composite system did not follow 

the general rule of mixtures.  The CNC-PVA composite films with higher molecular weight 

PVA (124-186k) showed enhanced in-plane for PVA solid loading between 10-25 wt%. 

However, the results were more complex for the lower molecular weight PVA (89-98 k) 

which showed an increase in the in-plane with PVA solid loading between 25-50 wt% that 

was also depended on the initial solution concentration.   

The experimental results suggested that more enhancement of in-plane can be 

achieved at the higher CNC loading region where PVA molecules can act as a binder or 

interstitial filler between the CNCs, thus reducing the effective ITR for this binary 

composite system compared to the pristine CNC materials as shown in Figure 3-4. The 

hydroxyl groups of PVA molecules can form strong hydrogen bonds with the CNCs 

resulting in low ITR. Moreover, the PVA fills the voids between the CNCs, which would 

otherwise be air, and form a continuous thermal network. As in percolation theory, the 

PVA solid loading should reach an optimum percentage to form a homogeneous network 

structure to provide improved in-plane [161]. The data indicated that the PVA loading was 

dependent on its molecular weight and the CNC organization.  
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3.4.2 Effect of anisotropy for different CNC: PVA composition: 

Each CNC transmits the thermal energy differently in each (longitudinal and 

transverse) direction relative to its primary axis due to the anisotropy of the crystalline 

directions. This suggests that the in-plane of the bulk CNC film should depend on the CNC 

crystalline organization and hence be anisotropic in films with anisotropic 

organization/orientation. As expected, there was a significant improvement in in-plane for 

an anisotropic configuration (CNC loading higher than 50 wt%) as shown in Figure 3-5. 

Along the directions of alignment, higher in-plane was observed for the CNC-PVA 

composite films with anisotropic configurations compared to the corresponding isotropic 

configurations and was highly dependent on the degree of ordering (the order parameter 

S). Sample with an anisotropic configuration of CNC: PVA (75:25) composition 

demonstrated ~ 2.5 times improvement in in-plane along the shear direction compared to 

films with an isotropic configuration with the same composition. An exceptionally high 

 

Figure 3-4: Effect of PVA for reducing the interfacial resistance between CNC 

domains. Here, point A is showed for the interfacial contact position where phonon 

can diffuse from one crystal to another crystal.   (red arrow sign is denoted for the sum 

of every phonon vector projection in the chain direction of the individual crystalline 

domain). 
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in-plane of ~ 3.45 +/- 0.66 W m-1 K-1 was observed for this sample due to maximum 

orientation. 

 

 

Figure 3-5: Measured in-plane in the direction of shear of CNC-PVA composites with 

various degrees of orientation. S is Hermann’s order parameter for CNC-PVA composite 

system. 

Figure 3-6 shows the CNC-PVA composite sample with individual CNCs aligned 

uniaxially (along the shear direction) which allows phonon propagation down the highest 

in-plane direction of the CNC. In addition, such aligning allows more interfacial contact 



53 

 

 

 

between the CNCs leading to higher phonons transport across the interface. Like the case 

of the isotropic sample, the use of PVA reduces the ITR between the two CNCs by filling 

the void space and forming strong hydrogen bonds with CNCs. As mentioned above, the 

PVA percentage should have an optimum percentage with CNC (based on percolation 

theory) that can act as the binder for CNC domains.  

 

 

Figure 3-6: Effect of PVA for reducing the interfacial resistance between CNCs for 

anisotropic composites. Here, point A is shown for the interfacial contact position where 

phonons can diffuse from one crystal to another crystal.  (red arrow sign is denoted for the 

sum of every phonon vector projection in the chain direction of the individual crystalline 

domain). 

The values of  reported in this work was much higher than the traditionally used 

electrically insulating polymers and associated nanocomposite systems. A comparative 

data with different polymer systems have been shown in Table 3-1. 
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Table 3-1: Thermal conductivity for different polymer/polymer nanocomposite systems. 

 

PPS = Polyphenylene sulfide; HDPE = High-density polyethylene; PMMA= Poly (methyl 

methacrylate); COP = Cyclo-olefin polymer; PA = Polyamide; PES = Polyethesulfone 

 

3.4.3 Effective Medium Theory – Choy & Young (EMT-CY) Model applied to 

CNC-PVA composite thin films: 

For any polymer nanocomposite system, the overall thermal transport depends on 

the ITR between the fillers and between the filler and matrix. In addition, anisotropy plays 

a significant role for structured materials as is the case in this work. A variety of models 

Sample Matrix 

(wt%) 

Filler 

(wt%) 

S in-plane  References 

PPS-BN PPS-(70) BN-(30) -----------

- 

0.62 [162] 

Epoxy-

graphite 

Epoxy- 

(76) 

Graphite- 

(24) 

-----------

- 

1.8 [163] 

Epoxy-CNF Epoxy CNF -----------

- 

0.35 [163] 

HDPE-Al HDPE- 

(80) 

Al- (20) -----------

- 

0.7-1.25 [106] 

Common 

engineering 

thermoplastic 

Polymer 

as matrix 

No filler -----------

- 

0.11-0.53 [106] 

PMMA-CNT PMMA- 

(96) 

CNT- (4) ----------- 3.4 [164] 

Acrylic resin-

NC 

Acrylic 

resin 

NC ----------- 2.5 [144] 

TNW TNW -------- ----------- 2.5 [143] 

PI PI -------- ----------- 0.91 [143] 

PET PET -------- ----------- 0.87 [143] 

COP COP -------- ----------- 0.70 [143] 

PPS PPS -------- ----------- 0.63 [143] 

PA PA -------- ----------- 0.25 [143] 

PES PES -------- ----------- 0.25 [143] 

CNC-PVA CNC PVA 0  1.4 (maximum) This work 

CNC-PVA PVA CNC 0 0.7 (maximum) This work 

CNC-PVA CNC PVA 0.85-0.65 3.5 (maximum) This work 
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are available to describe complex nanostructured materials [165], polycrystalline structures 

[166], and composites [167] where the interfaces and the organization of the materials are 

factors that dominate the thermal properties. Choy and Young [168] developed a model 

with an adaptation of Maxwell’s effective medium theory (EMT) [169] (denoted EMT-CY 

here), which has been previously applied to study the change in the   of oriented semi-

crystalline polymers [170]–[172] both along and normal to the orientation direction as a 

function of the orientation direction crystallinity. 

The expressions derived from the EMT-CY model for the CNC-PVA 

nanocomposites are [168]: 

 
𝑐 − 𝑚

𝑐 + 2𝑚
= 𝑥 [

2

3
(

𝜆⊥ − 1

𝜆⊥ + 2
) +

1

3
(

𝜆∥ − 1

𝜆∥ + 2
)] 

Eq.  3-1 
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) (
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2
) + (

𝜆∥ − 1
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2
] Eq.  3-2 

 

 ∥ − 𝑚

∥ + 2𝑚
= 𝑥 [(

𝜆⊥ − 1

𝜆⊥ + 2
) 〈𝑠𝑖𝑛2𝛾〉 + (

𝜆∥ − 1

𝜆∥ + 2
) 〈𝑐𝑜𝑠2𝛾〉] Eq.  3-3 
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Eq.  3-4 
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Eq.  3-5 
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2
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where 𝑥 is the weight fraction of the CNC, which was approximately 0.75 for the samples 

under study [108], and c is the  of an isotropic film which was approximated as 1.22 W 

m-1 K-1 from the measurement results presented previously in this work. The effective 

matrix thermal conductivity m is obtained by solving Eq.  3-1, Eq.  3-4 and Eq.  3-5, 

simultaneously. Eq.  3-2 and Eq.  3-3 are used to calculate the macroscopic   of the CNC-

PVA composite films in the directions parallel (∥) and perpendicular (⊥) to the shear 

direction. The orientation angle of the crystals with respect to the shear direction is 

represented by , while 𝑐∥ and 𝑐⊥ represent the thermal conductivities of a single CNC 

in the axial and the transverse crystalline directions respectively and their corresponding 

values were predicted to be ~5.7 W m-1 K-1    and ~0.72 W m-1 K-1   by Diaz et al. [108].   

The experimentally obtained values of in-plane of the anisotropic CNC-PVA 

composite films are shown in Figure 3-7 along with those predicted by the EMT-CY model 

in the directions parallel (∥) and perpendicular (⊥) to the shear direction. The in-plane of 

an isotropic film predicted by this model was ~ 1.27 W m-1 K-1   that was close to that of 

the experimental value (~ 1.22 W m-1 K-1). Further, the upper bound and lower bound 

values of m predicted by the model were ~ 1.23 W m-1 K-1   and ~ 0.46 W m-1 K-1, 

respectively. The lower end of this range was comparable to the upper end of the 

experimentally obtained   value of neat PVA, specifically ~ 0.08 W m-1 K-1   to ~ 0.41 W 

m-1 K-1   for initial PVA weight % of 1% to 10.7% indicating that other contributions to 

ITR such as CNC-CNC or CNC-matrix interfaces were relatively small in comparison. 

Compared to the effective m value of 0.022 m-1 K-1 obtained in the previous work on CNC-

only films [108], the values of m obtained in this work were significantly larger. These 

results suggested that the use of PVA interstitial secondary material can have a significant 
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positive influence on the effective   of CNC-based films by removing the highly resistive 

free volume and nanoscopic voids. 

 

 

Figure 3-7: Experimental   of anisotropic CNC-PVA composite films shown along with 

results from the EMT-CY model as a function of S. The weight % of CNC is not in 

particular order. The stars represent the extrapolated values of   obtained from the EMT-

CY model at S ≈1. 

As shown in Table 3-1, the in-plane of the best performing CNC-PVA composite 

film developed in this work was ~ 4-14 times higher than that of other plastic films that are 

currently used for transparent, flexible devices indicating the potential of the CNC-PVA 

composite films an application for thermal management of flexible electronic devices. 

Compared to other Cellulose-based materials, the results obtained here were ~ 1.4 fold 

higher than that of the TNW sheet developed by Uetani et al. [143]. However, the work 
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presented in this chapter was significantly different than that of Uetani et al. In their work, 

TNWs showed the best results that were significantly longer (microns) than the wood-

based CNCs studied here (100 nm) [173]. As Diaz et al. observed, the long axis has a much 

higher in-plane than either orthogonal direction; therefore, the isotropic TNW materials 

should show much higher in-plane than the isotropic wood-based CNCs here, which is 

shown by the results of this work. Compared to the work by Diaz et al., the TNW materials 

showed high effective ITR and low sound velocity which was at least partially due to small 

pores in the structure as stated by Uetani et al.  Therefore, the increase in in-plane with a 

decrease in ITR would be expected because of the filling of the free volume/small pores 

with a strongly bonded solid material.   

A strong correlation with nanocrystal width was also observed by Uetani et al., with 

TNW showing the highest in-plane, as it was the widest material. The isotropic random 

configuration of CNC or TNW would be expected to have a large percentage of crossed 

crystal contact-points. All the heat transport takes place through the contact-points and 

contact-points have less contact area than the axial contact along the width. Therefore, the 

effective ITR for the isotropic configurations would be expected to be higher than 

anisotropic axial configurations because of the higher amount of cross-points relative to 

parallel axial contacts and, hence, there would be less overall contact area to transport heat 

in the isotropic configuration. We obtained a high in-plane for anisotropic CNC-PVA 

composite films, and even a higher value would be obtained for aligned composite 

structures of longer materials like TNWs.  

To demonstrate the potential of the CNC-PVA composite films developed through 

this work for dissipating a significant amount of heat from electronics-like concentrate heat 
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sources, thermal images were taken from a 100% PVA sample and a CNC-PVA (90:10) 

sample as shown in Figure 3-8. Same Joule heating powers (175 mW) were induced via 

DC power supply to the identical serpentine Au heaters that were shadow-evaporated on 

the surface of each of these samples. The thermal images taken with almost identical 

temperature scales showed significantly lower (~ 7 °C) maximum temperature of the 

resulting hot spot for the CNC: PVA composite sample than that of the neat PVA sample. 

The slight asymmetries seen in the images were due to the DC power being applied across 

the top left and bottom right contact pads of both samples. 

 

 

Figure 3-8: Thermal images of CNC-PVA composites a) 100% PVA sample with low 

, and b) 90:10 CNC: PVA sample with high  during Joule heating of a serpentine 

metallic heater simulating flexible electronics elements. c) Line scans along the 

centerline of a) and b) quantify the temperature reduction associated with the high 

 sample at the same Joule heating power (175 mW). Inset: Photograph of 90:10 CNC: 

PVA sample with a shadow-evaporated metallic heater. 
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3.5 Conclusion 

In this work, thermal properties of the CNC-PVA composite films with isotropic 

and anisotropic configurations were investigated. The isotropic CNC-PVA composite films 

with PVA solid loading of 10-50 wt% showed significant improvement on in-plane than that 

of the one component system. Furthermore, the anisotropic CNC-PVA composite films 

showed in-plane as high as ~ 3.45 W m-1 K-1 in the shear direction which was a ~ 2.5 fold 

improvement over the CNC-PVA composite films with the isotropic configuration. The 

reason for such improvements was due to the role of PVA as an excellent void filling agent 

leading to the formation of conductive paths for phonon transport with reduced interfacial 

resistance and the orientation of CNCs towards heat flow direction in anisotropic films. 

More importantly, our CNC-PVA composite films showed ~ 4-14 fold higher in-plane than 

that of the commonly used plastic films for flexible electronic devices and also 

demonstrated better heat spreading capability from a localized hot spot as would be 

experienced by a flexible electronics element. The results obtained through this work 

suggest that the CNC-PVA composite films can be a good candidate for substrates for 

potential application in the thermal management of flexible electronics and can also be an 

eco-friendly and sustainable alternative to the petroleum-based polymeric materials. 
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CHAPTER 4 

 

THERMAL CHARACTERIZATION OF 

ULTRANANOCRYSTALLINE NANODIAMOND FILMS 
 

4.1 Introduction and Motivation 

There is a need for efficient heat spreading materials in electronic devices to control 

the increasing power density and minimize the negative impacts of hot spots as mentioned 

in CHAPTER 1 of this dissertation. One better solution is to incorporate materials with 

high  to take the undesired heat away from sensitive devices since  of a heat spreader 

material indicates the ease of thermal transport. One of the approaches would be the use of 

thin films. For thin films, the  changes according to their thickness that can vary between 

fractions of a nanometer to several micrometers. The  of thin films play an essential role 

in determining the performance, reliability and overall design of microelectronic devices, 

micromachined transistors, photonic devices, and thermoelectric devices; therefore, there 

has been growing interest in the study of this parameter [174], [175]. There are different 

kinds of thin films including metallic, insulating and semiconducting. Metal thin films are 

commonly used in microelectronic and photonic devices.  Thermal transport by electrons 

is dominant in metal thin films. Also, size effects on  can be observed due to the resistance 

on the electron transport introduced by the scattering of electrons at the thin film 

boundaries [176], [177]. For non-metallic films, free electrons are not available in enough 

numbers to contribute significantly to thermal transport; hence, phonons are typically the 
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dominant contributor to thermal conduction in diamond and other electrically 

insulating/semiconducting materials. Dielectric thin films are used as electrical insulators, 

optical coatings, and thermal barriers for applications such as microelectronic and optical 

devices. In the case of semiconductors, the contribution of electrons for thermal transport 

is very small depending on the doping concentration. Si thin films exist in the forms of 

single crystalline, polycrystalline, and amorphous states with potential applications in 

silicon-on-insulator (SOI), ICs sensors, and actuators [174], [175].  

A wide variety of carbon-based materials such as diamond, polycrystalline 

diamond (PCD), diamond-like carbon (DLC), CNTs, and single-layer graphene, have 

attracted great attention for potential applications in electronic devices [178]–[180]. They 

have a wide range of  that vary from as low as 0.1 W m-1 K-1  in DLC [181] to as high as  

5000 W m-1 K-1 in single-layer graphene [182], [183]. Thermal transport is governed by 

lattice vibrations in such materials, and it depends on the structural disorder, sp2 or sp3
 

content of the material, and thickness grain size of the films [184]. High-quality bulk 

diamond has a very high room temperature  that exceeds the  of other materials used for 

interconnects such as aluminum, copper, and silver [185].  

Other unique properties include low coefficient of thermal expansion (CTE) (1x10-

6 K-1) [186], low density, extreme hardness, chemical inertness, high mobility of charge 

carriers, high electrical resistance, wide optical transparency, and biocompatibility [178], 

[187], [180].  Due to such exceptional properties, they have been used for wear-resistive 

coatings, optical windows, surface acoustic-wave devices, and field-emission flat panel 

displays [178], [179], [188], [189]. Despite such excellent properties, natural single-crystal 

diamonds are not feasible for many applications. In order to use diamonds for a variety of 
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applications, they are synthesized as polycrystalline ND films [190]. Most of the existing 

thermal conduction studies are focused on polycrystalline films instead of single-crystal 

diamonds due to several reasons.  

First, they have higher carrier mobility. It is also very difficult to dope the single-

crystal diamonds with impurities to make them semiconducting [191]. Furthermore, they 

can only be efficiently deposited on polished diamond substrates, whereas polycrystalline 

diamond films can be deposited on non-diamond substrates such as Si, thus creating 

opportunities for integrated Si-diamond technology for electronic devices [192]. There are 

different methods of synthesis of diamond films such as chemical vapor deposition (CVD), 

high-pressure high-temperature (HPHT), the detonation of explosives, laser ablation, and 

graphite etching. Among the diamond films obtained through various techniques, the 

polycrystalline diamond films synthesized through CVD route show superior properties in 

terms of , CTE, mechanical strength, and electrical resistivity. They are even better than 

other traditional electronics packaging materials [193], [194].  

Moreover, such films can still inherit the exceptional properties of single-crystal 

diamonds such as the resistance to wear, chemical inertness, and biocompatibility. 

However, CVD growth methods can be costly, may not integrate well with all 

microfabrication processes, and still show serious performance degradation compared to 

single crystalline diamond in terms of thermal transport. Alternatively, thin films 

comprised of diamond nanoparticle aggregates may be able to achieve comparable 

performance to CVD films but at a fraction of the cost. 

According to the size of the crystal domains, polycrystalline ND films can be 

categorized as ultrananocrystalline diamond (UNCD) (grain size d < 10 nm), 
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nanocrystalline diamond (NCD) (d ~ 10-1000 nm), microcrystalline diamond (MCD) (d > 

1 m). It is easier to manipulate the properties of the ND films due to their smaller size, 

larger surface area, and reproducible synthesis. UNCD films on Si substrate are much 

smoother and pinhole-free compared to faceted MCD film; hence, they are considered to 

be suitable for thermal management of MEMS,  nanoelectromechanical system (NEMS), 

and microelectronics [63], [195].  

The heat conduction properties of synthetic polycrystalline films are not as 

advantageous as those of single-crystal diamonds. The  of single crystalline and 

polycrystalline thin films are significantly lower than their bulk counterparts because of 

the phonon and electron scatterings at the grain boundaries and interfaces [196]–[198]. The 

 of high-quality single-crystal diamond is ~ 2200 W m-1 K-1 [185] at 300 K. However, the 

thermal properties of ND films depend on various factors such as d, film thickness, lattice 

imperfection and impurities, and interface quality [199], [200]. Therefore, the room-

temperature  of MCD ~ 550 W m-1 K-1 [63] while that of UNCD films prepared by CVD 

method is ~ 8.6-16.6  W m-1 K-1 , much smaller than that of Si (~ 140 W m-1 K-1) [63]. For 

UNCD and MCD, the essential parameters such as d and grain boundaries can be controlled 

by varying the processing conditions to make them more thermally conductive. This 

indicates that they can be very important in the thermal engineering of electronics devices 

[199], [200]. Goyal et al. [201] demonstrated the application of composites of Si-synthetic 

diamond (Si-Di) substrates as an alternative to conventional Si for thermal management of 

complementary metal-oxide semiconductor (CMOS) technology. For the Si-Di composite 

formed by UNCD or MCD films synthesized on Si substrate, the thermal resistance is 

greatly reduced at temperatures close to the operating temperature (~ 380 K) of the 
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electronic chips [202]. This is significantly lower than the hot spot temperatures in current 

advanced chips, indicating improved thermal management relative to conventional 

practices [201]. 

Due to exceptional electronic, optical, mechanical, chemical, and thermal 

properties, polycrystalline ND films have many potential applications in electronics [192], 

optoelectronics [203], [204], MEMS [205], [206], and wear resistant coatings [207]. They 

are considered to be very suitable for heat spreader application because of a unique 

combination of a very high room temperature , a low CTE, and a low density [190]. 

However, in most applications, the ND films are directly grown on the substrates and 

further patterning steps are performed on it. This greatly prohibits its use in many 

applications since the common growth methods mentioned above use high temperatures (> 

400 °C),   vacuum or low pressures, and other specific conditions [208], [209]. This 

indicates that it would also be very difficult to deposit ND films on plastic substrates that 

cannot handle such higher temperatures, thus limiting the application of ND films for 

flexible electronics.  

To demonstrate the solution of such issues, Kim et al. [210] transferred 

microstructures of thin films of UNCD (referred as s-UNCD)  synthesized by hot-filament 

CVD method to various target substrates including glass, GaAs, Si, PDMS and PET using 

a printing technique. The UNCD films on PDMS and PET were mechanically bendable 

and even stretchable, indicating potential applications for flexible devices. Therefore, they 

also demonstrated the application of s-UNCD as heat spreaders for thermal management 

of flexible electronics. For this purpose, thin film microheaters (in serpentine patterns) of 

Ti/Au were formed on PET substrates and the same amount of electrical power was 
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applied. Then the behaviors of three different structures were compared: one with 

microheaters exposed to air, one with a uniform coating of a thin layer of 

poly(methylmethaacrylate) (PMMA), and the third one with a printed platelet of s-

UNCD. The PET and PMMA layers were damaged by the generated heat, but the s-

UNCD sample exhibited very robust behavior, thus indicating its capability as a heat 

spreader.  

Given the integration and cost challenges faced by CVD-grown diamond thin films, 

there is a significant opportunity for ND-based films to represent a more viable option for 

widescale adoption if their thermal transport performance can be shown to be competitive. 

Therefore, the thermal properties of ND films deposited on Si substrates through a solution-

based directed covalent assembly of NDs are presented in this work. Such films can be a 

less expensive and greener alternative to CVD diamond films. Therefore, this may create 

opportunities for a new class of low-cost diamond films that are compatible with a wide 

variety of substrates commonly used for electronics, optics, biosensors, and MEMS where 

the applications of CVD diamond films have been limited.  

More study needs to be done in the integration capabilities of the covalently 

assembled ND films, in terms of thermal properties and thickness range for MEMS 

applications. It is expected that the properties of ND films including porosity, , and 

mechanical robustness will greatly depend on the synthesis method. Since there has not 

been any previous work on the synthesis and thermal characterization of the ND films 

obtained through directed covalent assembly approach, it is essential to study the 

mechanisms and physics related to thermal transport of such films. 
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4.2 Research Objectives 

In this work, the thermal transport characterization of ND films synthesized through 

the directed covalent assembly approach was experimentally investigated for potential 

thermal management applications in MEMS/electronic devices. To achieve this goal, the 

following specific objectives were to be achieved through this research: 

• Study the thickness and temperature dependence of the cross-plane of the covalently 

assembled ND films.  

• Correlate the observed  values with film micro/nanostructure. 

Microfabricated devices were used to measure the cross-plane  of the covalently 

assembled ND films. The cross-plane  (cross-plane)  was determined by the well-known 

3 method [211]. To study the effect of the film thickness on  , ND films of different 

thicknesses were used.  For each film sample, the measurements were performed between 

125 K and 425 K to study the temperature-dependence of the thermal properties which is 

very important for understanding the dominant scattering mechanisms limiting  in ND 

films.  

4.3 Experimental Materials and Methods 

4.3.1 ND film Samples 

Multiple samples of covalently assembled ND films were supplied by Dr. Adarsh 

Radadia’s group at Louisiana Tech University. To study the effect of the ND film thickness 

on the cross-plane, the samples had approximately the same particle size (d ~ 5-10 nm form 

larger aggregates of ~ 50 nm) but different thicknesses, with each sample film being 

synthesized via a differing number of repeated deposition cycles performed by the Radadia 

group.  
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4.3.2 3 Method 

The experimental method used for the measurement of cross-plane is described in this 

section. The  measurement methods used in the previous chapters are suitable for the 

thicker samples (thickness on the orders greater than microns). However, the ND films 

studied in this work had smaller thicknesses (on the order of hundreds of nanometers).  

There are different techniques for the measurement of the  of thin films. Each technique 

has its own advantages and limitations; therefore, the choice of a measurement technique 

depends on the nature of the thin film. The well-established 3 method is one of the 

popular methods for the measurement of the cross-plane of thin films. This method is based 

on AC heating approach; hence, the time required to reach equilibrium state is much lower 

(few minutes) than that of the conventional techniques that take a longer time (can take 

many hours).  This method was initially developed by Cahill and coworkers to measure the 

 of the bulk samples in 1989 [211], [212]. Later, Cahill et al. [213] extended this technique 

for the measurement of the cross-plane of thin films as small as a few nanometers.  

A typical implementation of 3 method for a bulk sample is shown in Figure 4-1. 
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Figure 4-1: Schematic diagram of a bulk sample with a 3 metal line patterned on the top 

of it. Adapted from Ref. [214]. Not to scale. 

In this method, a narrow metal line is deposited onto the surface of the sample using 

standard photolithography techniques. This line is used both as an electrical resistance 

heater as well as a temperature sensor. For an electrically conductive sample, the current 

leakage will affect the measurement. For such cases, a thin insulating layer should be 

deposited on the surface of the sample before depositing the metal in order to prevent any 

current leakage through the sample. A driving current I with angular frequency  applied 

to the metal line causes Joule heating I2R, where R is the resistance of the metal line, at 2. 

This heating results in the temperature oscillation of the metal line at 2. For pure metals, 

the resistance increases with increasing temperature so the resistance of the metal line also 

oscillates at 2 and creates a small voltage oscillation at 3 when multiplied by the driving 

current at  as given by [215]: 
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 𝑉3𝜔 =
1

2
𝐼𝑜𝑅𝑜𝛥𝑇 (

1

𝑅

𝑑𝑅

𝑑𝑇
) 

Eq. 4-1 

 
𝛥𝑇 = 2𝑅

𝑉3𝜔

𝑉𝑜
(

𝑑𝑇

𝑑𝑅
) Eq. 4-2 

where 𝑉3𝜔 is the 3 component of the voltage, 𝐼𝑜 and 𝑅𝑜 are the dc components of the 

current and resistance, respectively, 𝑉𝑜 = 𝐼𝑜𝑅𝑜 is the first harmonic voltage drop across the 

line, 𝛥𝑇 is the temperature rise of the metal line, and  
𝑑𝑅

𝑑𝑇
 is the change in resistance of the 

metal line with the temperature.  

The exact solution for the amplitude of the temperature oscillations at a distance 

“r” from a line source of heat is given by [216]: 

 𝛥𝑇 =
𝑃

𝜋𝑙
𝐾𝑜(𝑞𝑟) 

Eq. 4-3 

where 𝑃 is the amplitude of the power dissipated by the line at a frequency , l is the length 

of the line, and 𝐾𝑜 is the zeroth-order modified Bessel function and 𝑞 is the root of 

𝐾𝑜(𝑞𝑟) = 0. The expression in Eq. 4-2 is valid for an infinitely narrow line source of heat 

on the surface of a semi-infinite sample. If the width of the line is small compared to the 

thermal penetration depth (TPD), the line can be considered to be infinitely narrow. Also, 

the sample can be approximated as semi-infinite if the TPD is significantly smaller than 

the size of the sample. The TPD is the distance heat diffuses during one cycle of heating. 

It can be defined as the magnitude of the complex quantity 
1

𝑞
 [212]: 

 
1

𝑞
= (



𝑖2𝜔
)

1
2
 Eq. 4-4 

where  is the thermal diffusivity of the sample.  

In the limit |qr | ≪ 1, Eq. 4-3 can be approximated as [211]: 
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𝑃

𝜋𝑙
(

1

2
ln



𝑟2
+ ln 2 − 0.5772 −

1

2
ln(2𝜔) −

i𝜋

4
) 

Eq. 4-5 

The expression in Eq. 4-5 has been presented in such way to show the contributions of the 

frequency dependent and imaginary components to the solution. If the frequency dependent 

component of the temperature rise of Eq. 4-5 is used for two different heating frequencies, 

the  of the sample can be determined by [211]: 

  =
𝑉𝑜

3 ln
𝜔2

𝜔1

4𝜋𝑙𝑅2(𝑉3𝜔,1 − 𝑉3𝜔,2)
(

𝑑𝑇

𝑑𝑅
) Eq. 4-6 

where 𝑅 is the average resistance of the metal line, 𝑉3𝜔,1 and 𝑉3𝜔,2 are the third harmonics 

in-phase voltage drops across the line at frequencies of 𝜔1 and 𝜔2, respectively. The term 

(
(𝑉3𝜔,1−𝑉3𝜔,2)

ln
𝜔2
𝜔1

) represents the slope of the line connecting two points in the semi-log plot. 

To get a more reliable result, data is typically taken over a range of frequencies and the 

slope of the best-fit line is used.  

There is an important condition for the 3 method explained above which is related 

to the TPD. The thickness of the sample must be larger than the TPD. The TPD depends 

on frequency as expressed in Eq. 4-4. However, there is a finite upper limit on the 

frequency of the metal line where the capacitance of the metal line cannot be neglected 

[214]. Due to this limitation, it is very difficult to accurately measure the  of the films 

thinner than approximately 10-20 m (depending on their  values) using the traditional 

3 method explained above. In order to overcome this limitation, Cahill et al. [213] 

extended the 3 method to allow for cross-plane measurements on films as thin as tens of 

nanometers. The experimental setup for this modified technique is shown in Figure 4-2. 



72 

 

 

 

 

Figure 4-2: Schematic diagram of a thin film sample on the top of a substrate with a 3 

metal line patterned on the top of it. Adapted from the Ref. [214]. Not to scale. 

The width of the metal line should be larger than the thickness of the film so that 

the heat flow through the film can be modeled as one dimensional with negligible error. 

Since the film present on the surface of the substrate is very thin (film thickness is much 

less than the TPD), it adds a frequency independent temperature rise (𝛥𝑇𝑓𝑖𝑙𝑚) to the 

temperature rise of the substrate (𝛥𝑇𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒). The measured temperature rise of the metal 

line 𝛥𝑇𝑡𝑜𝑡𝑎𝑙 is the sum of the temperature rise of the film and the temperature rise of the 

substrate. Hence, the temperature rise of the film can be determined by [214]: 

 𝛥𝑇𝑓𝑖𝑙𝑚 = 𝛥𝑇𝑡𝑜𝑡𝑎𝑙 − 𝛥𝑇𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 
Eq. 4-7 
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For an electrically insulating substrate, the value of 𝛥𝑇𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 can be directly obtained 

for a separate bare substrate by using standard 3 method and Eq. 4-5. However, in the 

case of an electrically conducting substrate, it can be calculated using [217]: 

 𝛥𝑇𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 =
𝑃

𝜋𝑙𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
(

1

2
ln (

𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 (
𝑤
2)

2) + 0.923 −
1

2
ln(2𝜔)) 

Eq. 4-8 

where 𝐶𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the specific heat per unit volume of the substrate, 𝑤 is the width of the metal 

line and 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒is the thermal conductivity of the substrate. After measuring the total 

temperature rise as well as determining the temperature rise of the substrate, the  of the film can 

be determined by using [214]: 

 𝑓𝑖𝑙𝑚 =
𝑃𝑡

𝛥𝑇𝑓𝑖𝑙𝑚𝑤𝑙
 

Eq. 4-9 

where 𝑡 is the thickness of the film.  

The   obtained from this method includes the thermal boundary resistance between 

the substrate and the film as well as the thermal boundary resistance between the film and 

the metal line. Therefore, 𝑓𝑖𝑙𝑚 is also referred to as an “apparent” or “effective” . 

However, for many common semiconductor material combinations (Au-SiO2, Pt-SiO2, 

etc.), data exists on thermal boundary resistance which can be used to compensate. Thus, 

the thermal boundary resistance between the film and the substrate can be determined by 

measuring the sample films of varying thickness and extrapolating to the case of zero 

thickness. If both methods are available, a more accurate value of 𝑓𝑖𝑙𝑚 may be obtained. 
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4.3.3 Microdevice Fabrication 

A photomask was first designed using the LayoutEditor software package for the 

microdevice fabrication. The microdevice design itself consists of gold (Au) lines of 

different widths and lengths on a single device for the measurements of both cross-plane and 

in-plane of the thin film sample. Although these microdevices are capable of measuring in-

plane, this is not a focal point of this work and will be investigated in follow-up efforts. The 

microdevices were fabricated using a standard photolithography process at Louisiana Tech 

University’s Institute for Micromanufacturing.  

First, an array of microdevices was fabricated on a 100 mm diameter SiO2-on-Si 

(200 nm of SiO2 on 500 m of Si substrate) wafer for determining the  of the SiO2 film 

and Si substrate to validate our experimental setup. Then, similar steps were performed on 

1 cm by 1 cm Si wafer (thickness of 500 m) pieces containing ND films of varying 

thickness. To begin the fabrication process, the lift-off resist LOR 5B was spin-coated on 

the wafer. The use of LOR 5B supports a cleaner metal lift-off. Then, a layer of Shipley 

1813 photoresist was spun on the top of the wafer followed by UV exposure through a 

patterned photomask and a subsequent development step in the MF-319 developer. After 

confirming all the desired features by observing under an optical microscope, a 10 nm-

thick chromium (Cr) adhesion layer and a 200 nm-thick Au layer were sequentially 

deposited using DC magnetron sputtering. After this, metal lift-off was performed by 

soaking the wafer in Remover PG at 80 °C.  

Figure 4-3 shows a final microdevice with the first three Au resistance 

thermometer (GRT) lines for the measurement of the in-plane and the fourth thermometer/ 

heater line (GRT/H) for the measurement of the cross-plane.  
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After dicing of the wafer/chip to isolate a viable individual microdevice, the 

individual microdevice was adhered to a commercially available 16-pin ceramic chip 

carrier package using silver epoxy and electrical connections to the metal lines were made 

through a wire-bonding technique. Figure 4-4 shows a packaged sample before being 

loaded into the cryostat.  

 

Figure 4-3: a) Light microscope image of a single microdevice showing the Au lines used 

for the measurement of cross-plane along with the lines used for the measurement of in-plane 

outlined in blue b) Details of the blue boxed region showing all the GRT lines. The Au 

lines were deposited on the top of ND films. Large square features around the periphery 

are the contact pads that were used for forming electrical connections to the Au lines and 

the legs of the chip carrier.  
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Figure 4-4: a) A microdevice inserted in a commercially available 16-pin ceramic chip 

carrier package. b) Packaged microdevice loaded into the cryostat. 

4.3.4 Experimental Setup 

The ceramic chip carrier package was loaded into a cryostat (Janis Research) with a 

high precision Si diode temperature sensor and closed-loop temperature control. The cryostat 

was maintained at a high vacuum (10-5
 torr) via a turbomolecular pump (Leybold) in 

conjunction with a mechanical pump (Edwards). For minimizing the errors due to radiative 

heat loss from the sample, the sample space within the cryostat was radiation shielded. A 

LakeShore 335 temperature controller (Lake Shore Cryotronics, Inc.) was used to ensure 

temperature stability to within 0.01 K. The entire data collection process was executed using a 

computer with LabVIEW software to control the frequency of the AC signal and to record the 

voltage drops, the function generator (Stanford Research Systems DS360), the temperature 

controller, and the lock-in amplifier (Stanford Research Systems SR830). Figure 4-4 (b) 
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shows a packaged microdevice after being loaded into a cryostat. The image of the entire 

experimental setup used for the cross-plane of measurements is shown in Figure 4-5. 

 

 

Figure 4-5:  Image of the 3 experimental setup. 

4.3.5 Measurement 

The cross-plane was measured for the ambient temperatures between 125 K and 425 

K. Liquid nitrogen was used to set the temperature below 300 K. The following parameters 

were measured at each temperature to determine the cross-plane of each thin film sample: the 

resistance of the thermometer/heater line, and the 1 and the 3 voltage on the metal line 

as a function of frequency. Figure 4-6 shows the schematic diagram of the experimental 

setup used for the measurement of the cross-plane. 
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Figure 4-6:  Schematic diagram of the experimental setup used for the 3 method. Adapted 

from  Ref. [214]. 

First, the four-probe electrical resistance of 3 the metal line was measured using 

a small AC sensing signal 𝑖𝑎𝑐 = 50 μA monitored via the lock-in amplifier. This resistance 

value was also used to find the change in resistance of the metal line with temperature, 

dR/dT. Then, using the ultra-low distortion function generator, a small AC current was 

passed through a ten-turn potentiometer which is in series with the metal line, such that the 

Joule heating was negligible within the metal line. The same signal was also connected to 

the reference input of the SR830 lock-in amplifier (Stanford Research Systems). The 

voltages across the metal line and the potentiometer were measured by unity gain 

differential amplifiers and ultimately via the inputs “A” and “B” of the SR830 lock-in 
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amplifier. The lock-in amplifier was connected via a GPIB (general-purpose interface bus) 

interface to a computer that automates the measurement process.  

For measuring the 1 voltages across the metal line, the frequency of the signal 

from the DS360 ultra-low distortion function generator was varied and the corresponding 

voltage drops were recorded via a combination of a lock-in amplifier, computer-controlled 

data acquisition system, and a LabVIEW program. The final parameter required for the 

measurement was the 3 voltage as a function of frequency at the same frequencies used 

for the 1. Since the 1 voltage had a magnitude on the order of 1000 times larger than 

the 3 voltage, it needed to be subtracted before the 3 voltage could be measured by the 

lock-in amplifier. In order to do so, the voltages across the metal line and potentiometer 

were measured by a Keithley 2000 digital multimeter and the voltage drop across the 

potentiometer was adjusted until they both were equal. Then, using the differential input 

(A-B) of the lock-in amplifier, the large 1 voltages across the metal line and the 

potentiometer were removed, and hence, the 3 voltages were obtained. This removes any 

unwanted oscillations in the line signal, leaving only the oscillations due to the temperature 

fluctuations on the surface of the sample [218]. The 3 voltage at each frequency was 

measured by the lock-in amplifier as shown in  Figure 4-7 and recorded by the LabVIEW 

program.  
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Figure 4-7: Measured 3 voltage as a function of frequency for the 20 cycles UNCD 

sample at 350 K.  

4.4 Results and Discussion 

To validate our experimental setup and procedure, the cross-plane of the SiO2 film 

and Si substrate were first measured.  Results for both were in agreement with the values 

reported in the literature [47], [219] , especially at higher temperatures where the defects 

and doping are relatively unimportant as shown in Figure 4-8. As expected for the 

semiconductor crystals near room temperature, the cross-plane of the Si substrate varies as ~ 

1/T. A difference in the cross-plane of the Si substrate can be observed below 200 K due to 

differences in sample doping since defect scattering becomes prominent for Si at such 
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temperatures [220]. At 200 K, the difference in the value of cross-plane  with respect to the 

literature value was ~ 36% and at room temperature, it was ~ 23%. The cross-plane of a 200 

nm thick SiO2 film is shown in Figure 4-8 (b) along with the data from Cahill et al. [219]. 

The measured data follow the trend of the literature data with an uncertainty of +/- 9%.  

The uncertainty was calculated by using Eq. A-1 and the main sources of uncertainties 

were associated with the accuracy in the measurement of the width and the length of the 

3 line, the dR/dT data of the 3 line, and the measured 3 voltage data.  

 

 

Figure 4-8:  Measured cross-plane of a) Si compared with the data from [221]. b) SiO2 

compared with the data from [219]. 

Figure 4-9 shows the measured cross-plane of the three UNCD samples as a function 

of temperature. The total thickness of the UNCD films were 104.3 +/- 56.2 nm, 127.9 +/- 

14.6 nm, and 139.1 +/- 19.5 nm for the samples obtained after 10, 15, and 20 cycles of the 

coating of the UNCD film on the Si substrates. 
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Figure 4-9: Measured cross-plane of the UNCD samples as a function of temperature.  

The cross-plane of the UNCD samples increased slowly with an increase in 

temperature to a certain limit and then started to decrease. The cross-plane of the sample with 

20 cycles UNCD increased slightly with the temperature with values of 3.13 +/- 0.48 W m-

1 K-1 to 3.29 +/- 0.51 W m-1 K-1 from 125 K to 350 K, and then decreased rapidly with 

increasing temperatures. Similarly, for the sample with 15 cycles UNCD, the value of cross-

plane changed from 1.49 +/- 0.19 W m-1 K-1 to 1.44 +/- 0.19 W m-1 K-1 between 325 K to 

375 K and started to decrease significantly after that. Lower cross-plane values below ~ 300 

K may be due to the scattering of phonons from point defects, extended defects, 

dislocations, and grain boundaries [222] while the dominant phonon-phonon scattering can 
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be attributed for the region where the values of the cross-plane started decreasing (at 

temperatures above 350 K) [185], [223], [224]. Compared to other samples, the 20 cycles 

UNCD sample showed higher cross-plane that was as high as 3.50 +/- 0.54 W m-1 K-1, which 

was even higher (~ 1.5 W m-1 K-1) than the thicker (~ 900 nm) CVD grown UNCD film 

reported by Angadi et al. [195]. It may be due to a decrease in the porosity of the film and 

the improved interface between the film and the Si substrate with increased deposition 

cycles.  The values of the cross-plane for the 10 cycles UNCD sample had uncertainties as 

high as +/- 50% which can be due to high uncertainty in the film thickness since it was the 

thinnest sample and potentially very high porosity.  

In contrast, Figure 4-10 shows the measured thermal resistance of the three 

samples, that includes inter-particle thermal resistances as well as the thermal boundary 

resistance (TBR) at the interface between UNCD film and the Si substrate, as a function of 

temperature. It can be observed that the uncertainty associated with the 10 cycles UNCD 

sample is approximately +/- 6.3%. That is very small compared to that associated with its 

cross-plane values. Similarly, the uncertainties of the 15 cycles and 20 cycles UNCD samples 

associated with the thermal resistances were only +/- 6.2% which were very small 

compared to +/- 13% and +/- 15.4% that were related to their cross-plane values. Thus, the 

uncertainty in film thickness is a major contributor to the overall uncertainty in the film’s 

. It can be observed that 20 cycles UNCD sample had the lowest thermal resistance values 

between 125 K to 350 K which may be due to increased film quality and reduced porosity 

as mentioned in the study by Shamsa et al. [200] for DLC film in which they reported an 

increase in  of DLC film with an increase in the density of the film. 



84 

 

 

 

 

Figure 4-10: Measured thermal resistance as a function of temperature.  

In the past, most of the studies had been performed on the CVD grown UNCD films 

thicker (thickness at least 900 nm) [225]–[227] than that of our samples, hence much higher 

cross-plane values due to change in the interface structure from porous to nonporous [195].   

Therefore, the UNCD films grown by the CVD method provided better quality films with 

high particle density, low porosity and better interface with the substrate. However, our 

very thin samples that were prepared by a solution-based method resulted in high porosity 

with a lot of voids between the particles that trapped air. Even if the individual ND particles 

were thermally conductive, the presence of a high number of voids between the particles 

make the inter-particle resistances high and hence decrease the cross-plane values. Another 
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reason might be the presence of large voids at the interface between the UNCD film and 

the Si substrate [195]. As a result, TBR increases and makes the cross-plane even lower. The 

TBR at the solid-solid interface becomes important for the thermal stability of the 

electronic circuits, superconducting devices, and the whole package itself [227]. 

4.5 Conclusion 

In this chapter, the thermal characterization of the covalently assembled ND films 

on Si substrates was performed by using the microfabricated device that was able to 

measure the cross-plane as well as the in-plane. Only the cross-plane was measured in this work 

through the well-established 3 method for the UNCD samples of different thicknesses. 

The cross-plane did not show significant change with temperature where the inter-particle 

scattering was dominant and started decreasing rapidly at higher temperatures due to 

phonon scattering. The sample with the largest thickness (20 cycles UNCD sample) had 

the cross-plane as high as 3.50 +/- 0.54 W m-1 K-1. The cross-plane values obtained in this work 

represented the lower bounds and were much lower than that of the CVD grown UNCD 

films which may be due to higher porosity and poor interface quality (higher thermal 

resistance). Also, the higher uncertainty in film thickness was the major contributor to the 

larger error bars in the measured cross-plane values. The results obtained in this work 

suggests that there is still more room for improvement through which solution-based 

technique can be used as an alternative to the CVD grown UNCD films for thermal 

management applications in MEMS/electronic devices.  
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CHAPTER 5 

 

SUSPENDED BEAM MICRODEVICE FABRICATION THROUGH 

STANDARD PHOTOLITHOGRAPHY FOR THERMOELECTRIC 

CHARACTERIZATION OF NANOMATERIALS 
 

5.1 Introduction and Motivation 

 Recent achievements in the field of nanotechnology have shown great potential for 

developing novel technologies. However, there is a need for accurate manipulation of 

matter as well as a precise calculation of energy transport at the micro- and nanoscales for 

the realization of this potential. Proper instruments and measurement techniques are 

essential for achieving these research goals. For example, the study of energy transport at 

micro or nanoscale requires devices that can measure the related parameters with minimum 

error and ultimately help to realize the potential of nanotechnology [165].  In the past few 

decades, there has been rapid growth in the study of nanoscale thermal transport. The 

phenomenon of thermal transport is different at nanoscale compared to its bulk counterpart, 

especially for the materials with characteristics length comparable to or smaller than the 

mean free path of the energy carriers (phonon/electron). A better understanding of such 

phenomena leads towards the development of devices for resolving thermal management 

issues [70], [228].  In some cases, Fourier’s law of heat conduction or Stefan-Boltzmann 

law of radiative heat transfer are not sufficient to explain the thermal transport at a 

nanoscale range; hence, such studies require calorimeter devices with very high resolution.  
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The characterization of the thermal transport properties of nanomaterials is more 

challenging because the issues such as radiation loss, heat loss to the thermometers, and 

contact thermal resistances can cause large uncertainties in the  measurements. In the past 

few decades, a number of measurement methods have been developed for experimental 

investigation of phonon transport such as the microdevices with RTs patterned on 

suspended beams, micro-Raman spectroscopy, time-domain thermoreflectance (TDTR), 

the 3 method, the scanning thermal microscope, sources of coherent phonons, and bi-

material cantilever thermal sensors [70], [229]. Tighe et al. [69] developed one of the first 

devices for direct measurement of the G of patterned, suspended GaAs nanobeams in the 

temperature range of 1.5 K - 6 K. Fabrication of these devices included two separate EBL 

steps, first, to develop the patterns of heavily doped GaAs electrical conductors (serpentine 

heaters and electrodes) and, second for the central thermal reservoir (~ 3 μm2) and four 

GaAs nanobeams (cross section ~ 200 nm X 300 nm). Then a subsequent anisotropic, 

vertical, chemically assisted ion beam etching (CAIBE) step was performed to remove the 

layer of heavily doped GaAs from unwanted regions.  

In order to measure the G, one of the serpentine heaters on the central membrane 

was heated by supplying a DC current and the temperature rise on the central membrane 

was monitored via a small modulated sensing current on the other serpentine RT [69]. 

Schwab et al. [230] successfully performed high-resolution calorimetric measurements to 

experimentally demonstrate the quantization of G at cryogenic temperatures. They 

fabricated a microdevice consisting of a ~ 60 nm thick SiNx suspended central membrane 

with four supporting SiNx beams. Serpentine heater and sensor were patterned with Au 

film (thickness ~ 25 nm) on the central membrane and four niobium (Nb) leads (thickness 
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~ 25 nm) were patterned to provide electrical connection between the central membrane 

and the contact pads [230].   

Shi et al. [70] fabricated suspended microdevices with two adjacent symmetric 

SiNx membranes, each suspended by five SiNx beams (~ 420 μm X 2 μm X 5 μm). A PRT 

coil (~ 30 nm thick and ~ 300 nm wide) was fabricated on each membrane using EBL. It 

was connected to the bonding pads on the substrate via Pt leads on the long SiNx beams. 

Joule heating created on one membrane causes heat flow through the sample to another 

membrane that helps for measuring the G, , and Seebeck coefficient (S) of single-walled 

CNT bundles bridging the two membranes in the temperature range of 4 K - 400 K.  In 

addition to EBL, the fabrication of this microdevice also involved low-pressure CVD 

(LPCVD) for depositing SiNx and SiO2 films and reactive ion etching (RIE) for transferring 

a pattern to the SiNx film [70].  

Kim et al. [71] also performed mesoscopic thermal transport measurements of 

individual multi-walled CNTs in the temperature range of 8 K-370 K by using a similar 

microfabricated suspended device. Similar microdevice designs were used by different 

research groups [231]–[235] for measuring the thermoelectric properties of a variety of the 

nanostructures. Furthermore, the design of the device was modified by adding two more 

electrodes on each membrane to measure the thermoelectric properties (Seebeck 

coefficient, four-probe electrical conductivity, and ) of indium arsenide (InAs) nanofilms 

[236], individual chromium disilicide NWs [237], individual bismuth (Bi) NWs [238]. 

 Raman spectroscopy has also been used to study the relation between the basal 

plane  and the thickness of the few-layer graphene (FLG) [184]. Single-layer graphene 

(SLG) has been studied using Raman measurements [235], [239], [240], but the optical 
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absorbance and the  values were lower than the initial work [182]. The Raman 

thermometry method has some issues such as large uncertainties in the optical absorbance 

and the limited temperature sensitivity that have prevented the experimental verification of 

the lateral size dependence of the  of suspended graphene [240]. The measurement 

approaches described above consist of sample materials suspended between the isolated 

membranes.  

Thermal transport properties of embedded or freely suspended nanomaterials are 

different than when they are supported on other materials due to the leakage of scattering 

phonons across the nanomaterial-support interface. Moreover, the phonon-interface 

interactions also depend on the nanomaterial sample preparation method such as thermal 

decomposition, CVD. Boukai et al. [241] performed thermoelectric measurements of Si 

NW arrays by using microdevice with a central suspended membrane of SiO2 (~ 150 nm 

thick) which supports Si NW arrays. In addition, electrodes and serpentine heaters of Pt/Ti 

were also fabricated on the SiO2 membrane using EBL and e-beam evaporation. Finally, 

the electrodes were connected to the large Au contact pads that were defined by 

photolithography. SLG is usually supported on a dielectric substrate for device application  

[242]. Chen et al. [243] observed about 10 times the suppression of the charge mobility in 

SLG supported on SiO2 compared to the suspended SLG due to the scattering by substrate 

phonons and impurities. Microdevices with different designs have been used to study 

thermal transport in FLG and SLG. Seol et al. [242] used a microfabricated suspended 

device to perform thermal transport measurements on SLG supported on a ~ 300 nm thick 

central SiO2 beam that was suspended by using Tetramethylammonium hydroxide 

(TMAH) and the Au/Cr RT lines were patterned with EBL and a metal lift-off technique.  
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Although the microdevices mentioned above have been successfully used by 

different research groups for studying the thermoelectric properties of nanomaterials, it is 

worth mentioning that the fabrication of such devices includes various steps that are 

complicated and time-consuming such as EBL, LPCVD, and such kinds of instruments 

might not be available with all research institutes. Therefore, there is a need for techniques 

for fabrication of similar microdevices using standard photolithography steps that are 

straightforward, simple, less time-consuming, and less expensive. 

5.2 Research Objectives 

The goal of this work was to develop a simple and less time-consuming technique 

for batch fabrication of suspended beam microdevices for thermoelectric characterization 

of nanomaterials. To achieve this goal, the following specific objectives were to be 

achieved through this research: 

• Use standard photolithography technique for the batch fabrication of suspended 

beam microdevices. 

• Perform thermal characterization of the central suspended SiNx bridge. 

The suspended beam microdevices were fabricated through a combination of 

standard photolithography and wet etching. The in-plane of the central suspended SiNx 

(thickness ~ 500 nm) bridge was obtained through DC Joule heating approach for a 

temperature range of 85 K- 460 K. In subsequent works, a nanomaterial sample of interest 

can be placed on the central SiNx bridge to determine its thermoelectric properties.  
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5.3 Experimental Materials and Methods 

5.3.1 Microdevice Design and Fabrication 

The microdevice design consists of two adjacent suspended SiNx beams each 

having a length of 832 m and width of 15 m connected to each other via a central SiNx 

bridge (10 m long and 5 m wide central nitride bridge). Furthermore, each suspended 

beam consists of a series of three Pt/Ti (titanium) lines of 2 μm wide and 40 nm thick (Pt/Ti 

with a thickness of 30 nm/10 nm). The outer PRTs were used for the measurement of the  in-

plane and the inner four Pt/Ti lines were used as electrodes during the measurement of the σ 

and the S of the sample (when present). The Pt/Ti lines were ultimately connected to the 

larger contact pads (400 m X 400 m), and finally, electrical connections were made 

through a wire-bonding technique. Pt was chosen due to the relatively high and extremely 

linear dR/dT and better adhesion with Ti.  

An illustration of a single microdevice created via the SolidWorks software is 

shown in Figure 5-1. 
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Figure 5-1: Illustration of a suspended beam microdevice. A single device showing the 

contact pads along with the suspended SiNx beams (top). Detail of the suspended SiNx 

beams showing all the Pt lines and the central bridge(bottom). Not to scale. 

Multiple photomasks were designed via the LayoutEditor software package after 

finalizing the design as shown in Figure 5-2 and were used for microdevice fabrication 

using the standard photolithography process at Louisiana Tech University’s Institute for 

Micromanufacturing.  
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Figure 5-2: A combined photomask design created via LayoutEditor showing a single 

microdevice with a centralized region outlined in blue (left). Detail of the blue boxed region 

showing all the metal lines on the suspended beam (right). Not to scale. 

To begin the fabrication of an array of suspended beam microdevices, first, a layer 

of LOR 5B was spin coated on a 100 mm diameter SiNx-on-Si wafer (500 nm thick SiNx on 

500 μm thick Si wafer). Then, a layer of Shipley 1813 photoresist was spun on the soft 

baked layer of LOR 5B followed by UV exposure through the first mask file and a 

subsequent development step in the MF-319 developer for developing the patterns with 

smaller contact pads, the Pt/Ti lines on the central suspended beams, and the alignment 

marks. The width of each Pt/Ti line, as well as the minimum gap between them, are 2 

microns. The metal lift-off process becomes very difficult for such smaller features. The 

dissolution rate of LOR 5B is faster than that of the Shipley 1813 photoresist in the MF-

319 developer. Therefore, LOR 5B can create nice undercuts and enhance the metal lift-

off process as shown in Figure 5-3. After confirming all the desired features under a light 

microscope, a 10 nm-thick Ti adhesion layer and a 30 nm-thick Pt layer were sequentially 

deposited using DC magnetron sputtering and a metal lift-off process was performed by 

soaking the wafer in Remover PG at 80 °C.  
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Figure 5-3: Light microscope images with the undercuts obtained by using LOR 5B. 

After confirming the desired the features under a light microscope, similar steps 

were again repeated starting with spin-coating of LOR 5B, then Shipley 1813 photoresist 

on the wafer from the previous step, followed by the alignment with the alignment marks 

with that obtained from the first mask file, and UV exposure through the second mask file 

using a mask aligner. A subsequent development step in the MF-319 developer followed 

by sputtering of Pt/Ti (30 nm/10 nm) and metal lift-off process resulted in larger contact 

pads. Then, a layer of Shipley 1813 photoresist was spun, and another UV exposure was 

performed through the third mask file for exposing the windows in SiNx. The exposed 

portion of the SiNx was subsequently removed by using RIE with sulfur hexafluoride (SF6) 

gas that exposed the underlying layer of Si followed by device dicing into the individual 

microdevice. Individual microdevice was placed in a solution containing 5% TMAH in DI 

water at 110oC until the SiNx beams had been sufficiently suspended as indicated by a pink 

color as shown in Figure 5-4. It took nearly 12 hours to obtain the two adjacent-suspended 
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beams. The microdevice was subsequently rinsed in DI water and then in isopropyl alcohol 

(IPA) as the final rinse to get rid of the DI water and dried.  

 

 

Figure 5-4: Light microscope images of a) a microdevice with central nitride beam being 

suspended after treatment with TMAH solution as indicated by the pink colored region. b) 

Details of the red boxed region showing the suspended beam along with the Pt lines. 

The sample of interest (NWs, NTs or thin films) can be deposited in the rectangular 

region with a dimension of 4 m X 33 m along the central bridge. This pattern can be 

developed by a standard photolithography step using the fourth mask file as indicated by 

the green color in Figure 5-2. Following dicing of the wafer/chip, the individual 

microdevice was adhered to a commercially available 16-pin ceramic chip carrier package 

using silver epoxy and a wire-bonding technique was used for electrical connections to the 

Pt lines. 

5.3.2 Experimental Setup 

The experimental setup was similar to the one mentioned in CHAPTER 4. The 

ceramic chip carrier package was loaded into a cryostat (Janis Research). A turbomolecular 

pump (Leybold) in conjunction with a mechanical pump (Edwards) was used to maintain a 

high vacuum (10-5
 torr) inside the cryostat. Also, the temperature stability was maintained 
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within 0.01 K via a LakeShore 335 temperature controller (Lake Shore Cryotronics, Inc.).  A 

fixed DC voltage was supplied via a DAQ module for inducing Joule heating. The entire data 

collection process was executed using a computer with LabVIEW software, the temperature 

controller, the lock-in amplifiers (Stanford Research Systems SR830), and a DAQ module.  

5.3.3 Measurement 

During the experiment, the temperature of the sample stage (Tstage) within the 

cryostat was maintained between 85 K to 460 K to study the effect of the ambient 

temperature on the . The ambient temperature was maintained below room temperature 

by using liquid nitrogen. The G of the central suspended SiNx bridge was measured with 

and without the sample. Then the difference will be treated as the G of the sample alone, 

and that will be used to determine the  in-plane of the sample.  

In this work, we measured only the  in-plane of the bare central suspended SiNx 

bridge which is described here. Different kinds of nanomaterial samples can be placed on 

the central suspended bridge region for studying thermoelectric properties. As mentioned 

above, only the outer PRTs (PRT1 and PRT2) as shown in Figure 5-4 (b) were used for 

the measurement of  in-plane. The measurement technique is based on the four-probe 

thermoelectric measurement as mentioned in the Ref. [70], [233], [244]. Once the Tstage 

was stabilized to within 0.01 K, Joule heating was induced on PRT1 (heater side) by a DC 

current (IDC) that was ramped from 0 A to – 50 A, - 50 A to + 50 A, and + 50 A to 

0 A with 203 steps per ramping cycles. The beams are suspended, hence, the temperature 

of the PRTs quickly reached the steady-state that would take a longer time for a supported 

structure. Due to the Joule heating on the PRT1, a certain amount of heat flows through the 
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bridge towards the PRT2 (sensor side) that causes an increase in the electrical resistance of 

the PRT2 as well.  

The electrical resistance of the PRT1 can be obtained from the I-V curve as Rh = 

V/IDC. However, the Rh value becomes noisier when the value of IDC approaches zero. To 

overcome this issue, a small sinusoidal AC current was coupled to the large DC heating 

current IDC on the heater side. The four-probe electrical resistances of PRT1 and PRT2 were 

measured with a small sinusoidal current (iac = 500 nA) and the lock-in amplifier. The 

measured electrical resistance of each PRT showed a quadratic dependence on the heating 

current IDC as shown in Figure 5-5. For each PRT, the value of the electrical resistance 

during the IDC ramping up cycles was the same as that measured during the IDC ramping 

down cycles. This verified that the delay time that was set for each measurement was 

enough compared to the thermal time constant of the device.  
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Figure 5-5: Measured electrical resistance increase of the PRT1 and PRT2 as a function 

of the heating current (IDC) when Tstage = 360 K. 

Figure 5-6 shows that the electrical resistances of the PRTs vary linearly with Tstage 

for IDC = 0. The slope of this curve is the change in electrical resistance with temperature 

dR/dT and the values were 6.91435  K-1 and 3.78447  K-1 for PRT1 and PRT2, 

respectively. These values were used to determine the average temperature rise (∆𝑇̅̅̅̅ ) of the 

PRTs. The average temperature rise measured on the heater (∆𝑇ℎ
̅̅ ̅̅ ̅) and the sensor (∆𝑇𝑠

̅̅ ̅̅̅) 

lines can be related to the corresponding midpoint temperature rises 𝑇ℎand 𝑇𝑠  as 

mentioned by Seol et al. [244]:  
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𝑇𝑠 = 2∆𝑇𝑠
̅̅ ̅̅̅ 

Eq.  5-1 

 

𝑇ℎ =
3

2
∆𝑇ℎ
̅̅ ̅̅ ̅ −

1

2
∆𝑇𝑠
̅̅ ̅̅̅ 

Eq.  5-2 

 

 

 

 

Figure 5-6: Measured four-probe electrical resistance values for PRT1 and PRT2 at 

various temperatures. The lines are the linear fits to the corresponding measurement 

data whose slopes give dR/dT values.  

The thermal conductance of each beam (Gb) and the thermal conductance of the 

sample region (Gs) (central suspended SiNx bridge for this case) were calculated as [70]: 



100 

 

 

 

𝐺𝑏 =
𝑄𝑡𝑜𝑡𝑎𝑙

𝑇ℎ + 𝑇𝑠
 

Eq.  5-3 

 

𝐺𝑠 = 𝐺𝑏

𝑇𝑠

𝑇ℎ − 𝑇𝑠
 

Eq.  5-4 

 

where 𝑄𝑡𝑜𝑡𝑎𝑙 is the total Joule heat dissipated in the PRT1 on the heating membrane,  𝑇ℎ 

and 𝑇𝑠 are the temperature rise on the PRT1 and PRT2, respectively. The value of 𝐺𝑏 was 

determined from the slope of the least-square linear curve fit of  𝑄𝑡𝑜𝑡𝑎𝑙 as a function of 

(𝑇ℎ + 𝑇𝑠) as mentioned in Eq.  5-3 which is also shown in Figure 5-8.  Furthermore, 

the ratio 𝐺𝑠/𝐺𝑏 was determined as the linear curve fit of 𝑇𝑠 as a function of (𝑇ℎ − 𝑇𝑠) 

as mentioned in Eq.  5-4 that is also shown in Figure 5-9. Finally, the  in-plane of the central 

suspended SiNx bridge was calculated as:  

 𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = 𝐺𝑠

𝐿𝑠

𝑊. 𝑡
 

Eq.  5-5 

 

where 𝑊 and 𝑡 are the width and thickness of the bridge. 𝐿𝑠 is the length of the bridge (the 

region of the central suspended bridge covered by the sample), and its value was estimated 

from the ANSYS finite element analysis as shown in Figure 5-7. 
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Figure 5-7: ANSYS finite element analysis of the suspended beams with the 

temperature contours.  

 

 

Figure 5-8: Measured total power Qtotal plotted as a function of (Th+Ts). 
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Figure 5-9: Measured Ts plotted as a function of (Th - Ts). 

Moreover, another important parameter of nanomaterials, S can be measured with 

this microdevice. For this measurement, only the four inner Pt electrodes are used. After 

patterning the Pt electrode on the sample deposited along the central suspended bridge, the 

supplied heat will flow through the sample from the heating membrane towards sensing or 

colder membrane. This temperature difference generates a thermoelectric voltage at two 

ends of the sample (VTE), which is measured between one Pt electrode on the heater side 

and another on the sensor side. Using the equation, VTE = S (Th -Ts.), the value of S can be 

determined once the temperatures of the Pt electrodes on the heater side (Th) and sensor 

side (Ts) are measured. In addition, this device can also be used to measure the  based on 

the four-probe electrical resistances of the Pt electrodes. After determining the parameters 
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such as , S, and  another parameter known as the thermoelectric figure of merit (ZT) can 

also be obtained by: 

 𝑍𝑇 = 𝑆2
𝜎𝑇

𝜅
 

Eq.  5-6 

where T is the absolute temperature. Higher ZT is desirable for a higher coefficient of 

performance (COP) of thermoelectric materials.  

5.4 Results and Discussion 

After successfully fabricating the suspended beam microdevices, measurement was 

performed on a bare microdevice to validate our device, setup, and procedure. The 

suspended bridge is made of SiNx having a thickness of 500 nm, and its in-plane was 

measured for a range of temperatures from 85 K to 460 K. The result obtained was in good 

agreement with the values mentioned in the literature [245], which is shown in Figure 

5-10. The room temperature value of the n-plane obtained in this work was ~ 3.4 W m-1 K-

1, which is within the range of 2.5 W m-1 K-1 to 4.5 W m-1 K-1 as mentioned in most of the 

cases [217], [246]–[248]. Jain et al. [247] observed the value of the n-plane of a 1.5 m 

thick SiN to be ~ 5 W m-1 K-1. For a SiNx of 500 nm, Sultan et al. [248] observed the 

variation of  the n-plane values between 3 W m-1 K-1 to 4 W m-1 K-1 for a temperature range 

of 77 K to 325 K. Zink et al. [245] also measured the n-plane ranging from 0.07 W m-1 K-

1 to 4 W m-1 K-1 from 3 K to 300 K.   

Although our data follows the trend as the temperature drops below room 

temperature, a deviation can be observed which may be due to the difference in the SiNx 

film growth method (LPCVD or plasma-enhanced CVD) and the difference in the 

thickness of SiNx film. The major sources of uncertainties were associated with the 
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accuracy in the measurement of the width and the length of the suspended bridge. An 

uncertainty of +/- 0.102 W m-1 K-1 was obtained by using Eq. A-1. 

 

 

Figure 5-10: Measured  of a 500 nm thick SiNx suspended bridge for a range of 

temperatures along with the values mentioned in the literature [245].  

5.5 Conclusion 

In this work, a technique was developed for the batch fabrication of the suspended 

beam microdevices through a standard photolithography process that is very simple, less 

time-consuming and less expensive than the method used by other research groups in the 

past that involved complicated and time-consuming steps like EBL. A DC Joule heating 

approach was used for determining the in-plane of the central suspended SiNx (thickness ~ 

500 nm) bridge for a temperature range of 85 K- 460 K. The agreement of the temperature 
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dependent in-plane values of the suspended bare SiNx bridge with the values mentioned in 

the literature validated the setup and the procedure. In addition to the in-plane, other 

important thermoelectric properties of nanomaterials such as S,    can also be 

measured concurrently from a single microdevice. This shows the multifunctional 

capability of the suspended beam microdevice fabricated in this work as an effective tool 

that can ultimately save time that would need individual microdevice otherwise.   
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

This dissertation presented the characterization of nanomaterials as well as 

techniques for addressing the main objective of thermal management of electronic devices. 

High power dissipation can affect the device’s performance leading to permanent damage 

which is a case for flexible electronic devices as well. Such issues can be minimized by 

improving the  of the substrate materials or the heat spreaders. Depending on the 

applications, the  in-plane can be enhanced either by adding high AR NWs to different kinds 

of polymers or by arranging the fillers in anisotropic configurations in order to control the 

flow of heat in a specific direction. Furthermore, thin films with higher  cross-plane can be 

used as heat spreaders to take the heat away. 

 One solution is to enhance the  of the substrate for spreading the heat efficiently 

from a localized hot spot. Varying amounts of high aspect ratio Cu NWs synthesized by a 

solution-based method were mixed with PDMS and PU polymers to form flexible 

thermally conductive nanocomposites. Intermediate hydrogen annealing treatments were 

performed on Cu NWs for some selected samples with the intention of removing native 

surface oxides. The obtained results showed linearly increasing effective  with loading 

fraction and a threefold increase in effective  of the composite was observed at the highest 
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loading fraction of 4.1 vol. % compared to the neat polymer. Native surface oxides and 

interfacial thermal resistance were believed to be the factors for limiting the increase in the 

effective  of the composites.  Even with these limitations, the thermal images of a 

simulated localized hot spot, as would be experienced by a flexible electronic device, 

showed that the Cu NW/polymer composites had better heat spreading capability than that 

of the neat polymers. This suggests that the Cu NW/polymer composites have the potential 

for use as the substrate for flexible electronics with efficient thermal management 

capability.  

In another work, CNC-PVA composite films with varying internal structures were 

created and the effect of such variations on the CNC ordering and, hence, on the magnitude 

and directional dependence of  of the films were investigated. The composite film with 

anisotropic configuration showed a ~ 2.5X enhancement in  in comparison to the isotropic 

configuration. For such enhancements, CNCs orientation in the heat flow direction in the 

anisotropic composite films and the role of PVA in filling the voids for forming conductive 

paths for phonon transport can be major contributors. The  of our CNC-PVA composite 

films were ~ 4-14 fold higher than that of the plastic films that are commonly used as 

substrates for flexible electronic devices. Furthermore, the composite films also showed 

better heat spreading from a localized hot spot as would be experienced by a flexible 

electronics element. These results suggest that the CNC-PVA composite films can be an 

eco-friendly alternative to the petroleum-based polymeric materials with thermal 

management capability in flexible electronic devices. 

Next, thermal characterization of the solution-based covalently assembled ND film 

was performed as a low-cost and greener alternative to the CVD grown ND films for 
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potential application as heat spreaders in electronic devices. Microfabricated devices were 

used to measure the cross-plane of ND film samples of different thicknesses via 3 method. 

The sample with the largest thickness showed the cross-plane as high as 3.50 +/- 0.54 W m-1 

K-1. The cross-plane values obtained in this work were lower than that of the CVD grown ND 

films which may be due to lower thickness, higher porosity, and poor interface quality 

(higher thermal resistance) indicating more room for further improvement.  

In the final work, a technique based on standard photolithography process was 

presented as a simple, low-cost, less time-consuming method for fabricating suspended 

beam microdevices which could be an alternative to the methods that involved complicated 

and time-consuming steps like EBL. A DC Joule heating approach was employed to 

measure the  in-plane of the central suspended bare SiNx (thickness ~ 500 nm) bridge for a 

temperature range of 85 K- 460 K. The temperature dependent in-plane of the SiNx was in 

good agreement with the values mentioned in the literature, thus validating the device, 

setup, and the experimental procedure. In addition to the in-plane, other important 

thermoelectric properties of nanomaterials such as S,    can also be measured 

concurrently from a single microdevice which indicates the multifunctional capability of 

the fabricated device.  

6.2 Future Work 

Through this work, characterization of nanomaterials, as well as techniques, were 

presented to address the issue of thermal management in electronic devices. The results 

obtained from this work showed that there is still room for the improvement. Hence, the 

following recommendations are suggested for future work: 
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• A technique is needed to align the Cu NWs in heat flow direction for improving 

the effective  of the Cu NW/polymer composites. 

• Improvement in the UNCD film coating method is needed so that the porosity 

decreases with increasing density of the ND particles, thus providing the film 

with uniform thickness and better .  

• The sample with a thicker UNCD film is needed since it can provide more reliable 

data due to low porosity. 

• For 3 measurements, further exploration of the use of substrate materials with 

lower  is needed so that the overall voltage signal will be stronger and easier to 

differentiate from the 1 signal. 

• Perform the in-plane measurement based on the DC Joule heating approach using 

the GRTs shown in Figure 4-3 for ND films to determine the degree of 

anisotropy.  

• A suitable method is required to deposit the nanomaterial samples on the central 

suspended bridge of the suspended microdevice to study the thermoelectric 

properties of such samples. 
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The total relative uncertainty in each case was calculated as: 

 Total Relative Uncertainty =  √∑ (
∆𝑃

𝑃
)

𝑖

2𝑛

𝑖=1

 Eq. A-1 

where 𝑃 is the measured value, ∆𝑃 is the uncertainty in the measurement of 𝑃 and 𝑖 

represents the number of sources of uncertainties.  
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