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ABSTRACT

This study investigated the possibility of reducing the time required for accurate 

epileptic seizure detection through a retroactive analysis. Epilepsy is a neurological 

disorder affecting over 50 million individuals globally and is defined as a disorder which 

results in two seizures unprovoked by fever or medication. Diagnosis of epilepsy 

typically involves a monitored stay at an Epilepsy Monitoring Unit (EMU). The 

monitoring and diagnosis process ranges on average from $35,000 to $40,000 for a single 

stay, and the patient results from EMU are not instantly available to the patient. The 

collected electroencephalogram (EEG) must be analyzed by a trained EMU technician 

before the physician analyzes the data.

The retroactive seizure detection algorithm utilizes Teager-Kaiser energy (TE). 

TE increases as either a signal’s frequency or amplitude increases and is only dependent 

on three consecutive samples from the time-domain. The detection algorithm was trained 

and tested on 37,718 hours of data from 70 male Sprague Dawley rats with a total of 843 

recorded seizures. The algorithm resulted in an average sensitivity of 98.1% and an 

average false positive rate (FPR) of 0.2660 per hour. Current algorithms involve a 

training stage and perform with a sensitivity between 80% and 98.8% and a FPR between 

0.054 and 1 per hour. The study supports TE as a useful measure for seizure detection, 

and although this algorithm focuses on retroactive seizure detection, the quick response 

time of TE makes it well suited for real-time seizure detection. 
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CHAPTER 1 
 

 

INTRODUCTION

1.1 Epilepsy – History, Statistics, and Definition 

Epilepsy is an ailment which the ancient Babylonians described nearly 3,000 

years ago. The Greeks gave it its name meaning “received from the gods”, but 

Hippocrates rejected the idea that epilepsy was divine and realized that it was an ailment 

of the brain and the heart [1]. Even though this ailment has been known for centuries, it 

still remains prevalent and difficult to treat in the modern world. The ailment affects 

roughly 50 million individuals across the globe and 3 million Americans [2–4]. Modern 

medicine specifically defines epilepsy if at least two unprovoked seizures have occurred; 

therefore, seizures stemming from a fever or an improper diet are not classified as 

epileptic seizures [2], [4–6]. Epilepsy can result from sicknesses, improper cerebral 

development, or traumatic brain injuries. Cerebral damage from a stroke can also lead to 

the development of epilepsy; such forms of epilepsy are typically referred to as secondary 

or symptomatic epilepsy [2], [5], [7]. 

1.1.1 Epilepsy – Focal/Non-Focal 

Epilepsy is classified into two main categories: focal (a.k.a. partial) or generalized 

epilepsy. Focal epilepsy refers to seizures that begin in one area of the brain, whereas 

generalized epilepsy to seizures that begin in both the left and right hemispheres of the 

brain and affects all brain regions at the same time. Sometimes a third category of 
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classification, multifocal epilepsy, is used. As the name implies, multifocal epilepsy 

begins in multiple discrete brain locations. All types of epilepsy involve groups of, rather 

than individual, neurons which, together with the “unpredictable” nature of seizure 

occurrences, magnifies the complexity of the ailment and presents many challenges for 

effective treatment [2], [4], [5]. 

1.1.2 Epilepsy – Sub-Classifications of Seizures 

Many different types of seizures exist under the three main classifications of 

epilepsy, and each type of seizure tends to manifest in unique ways [8]. The number of 

existing seizure subtypes depends on which source is consulted [4], [5], [8]. The seizure 

subtypes as defined by Centers for Disease Control and Prevention will be discussed in 

the following sentences. Generalized epilepsy includes absence seizures (petit mal) and 

tonic-clonic seizures (grand mal). In absence seizures the patient may blink rapidly or 

stare blankly into the surroundings. Tonic-clonic seizures involve abnormal muscle 

activation and can result in loss of consciousness. Focal epilepsy presents three distinct 

seizure subtypes: a) simple focal seizures resulting mild muscle contractions or false 

sensations; b) complex focal seizures where consciousness is impaired and interpersonal 

interaction is inhibited; and c) secondary generalized seizures where seizures begin 

locally but eventually spread to other lateral or contralateral sides of the brain [8]. 

1.1.3 Epilepsy – Dangers 

The impact of epilepsy on the patient’s health depends on which groups of 

neurons in the brain are impaired. Since epilepsy affects the control center of the entire 

body, it can also result in abnormal psychological conditions such as peculiar sensations, 

emotions, and behaviors, yet physical effects, for example convulsions, muscle spasms, 
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and loss of consciousness, are also prevalent [2], [5], [7], [8]. The multifaceted nature of 

epilepsy results in a complex disorder that does not always trigger all these abnormal 

effects, but, typically, the consequences of an epileptic seizure pose a great risk to the 

individual in many different ways. Loss of consciousness or motor control are common 

sources of considerable injury. Finally, epilepsy does increase the risk of the life-

threatening condition of status epilepticus (SE) or the condition of sudden unexpected 

death in epilepsy (SUDEP) [5], [9–11].  

1.1.4 Epilepsy – SE & SUDEP 

SE is defined as the condition with continuous seizures without a full conscious 

recovery between seizures. The high neuronal activity during SE places the individual at 

a much higher risk of excitotoxicity, a condition where neurons are destroyed as a result 

of an increased amount of glutamate [5]. Longer durations of SE are associated with 

more significant neuronal loss, and a history of SE is linked to an increased risk of 

SUDEP [9]. The cause of SUDEP is currently unknown; however, in addition to SE other 

risk factors for SUDEP, such as frequent tonic-clonic seizures and a lack of nocturnal 

supervision, have been identified. Timely administration of anti-epileptic drugs (AEDs) 

can avoid excitotoxicity and is thought to aid with SUDEP as well [5], [10], [11]. 

1.1.5 Epilepsy – Treatment Modalities 

Brain scans can typically assist the diagnosis of epilepsy. Positron emission 

tomography (PET), magnetic resonance imaging (MRI), functional MRI (fMRI), and 

magnetoencephalography (MEG) scans are common clinical tools for diagnosis. Long-

term EEG monitoring at EMU is usually the most revealing and useful tool for diagnosis 

and localization of the epileptogenic focus [6]. Once diagnosis has been accomplished, it 
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is highly advised to begin treatment right away because uncontrolled seizures could lead 

to further brain damage or loss of life. Currently, no cure exists for epilepsy, but 

pharmacological interventions have been successful in treating epileptic seizures. Some 

individuals can quit taking their medication after a few years, and their likelihood of 

going into remission remains low. Unfortunately, these cases usually resolve because of a 

spontaneous recovery from epilepsy rather than a cure brought about by medication  

[5–7]. Neuroregulatory devices implanted in the brain can be used to control epileptic 

seizures through a process known as neuromodulation, and pediatric epilepsy is even 

treated through a modified diet [6], [7]. Occasionally, a physician may recommend that 

the pathologically firing neuron be resected; however, resection is also a method of 

seizure control. It is not a cure for epilepsy [7]. 

1.1.6 Epilepsy – Diagnosis 

Most diagnostic tests for epilepsy involve a monitored stay at a physician’s office 

or a hospital. Typically, patients are monitored at specialized hospital units called EMUs. 

The stay at an EMU lasts longer than 24 hours on average, with some lasting up to six 

days. A single stay can be costly and result to a fee of $35,000-$40,000 [12]. Patients are 

typically tapered off the AEDs to manifest seizures while their multi-channel EEG and 

video are continuously recorded. Before the physician analyzes the recorded EEG and 

video, an EMU technician, trained to identify seizure activity, reviews the data and marks 

the times during which the patient exhibits physical signs of seizure activity. The current 

focus for reducing a patient’s length of stay at the EMU is on the speed of seizure 

occurrence and recording [13].  
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1.2 Thesis Contribution 

An accurate, automated method for seizure detection from the recorded EEG at 

EMUs could help alert caregivers of epileptic episodes, shorten the time of EEG analysis 

and diagnosis, and allow for seizure intervention through timely administration of AEDs 

or other timely neural or chemical interventions. Automated detection could also allow a 

physician to be notified faster of seizure activity and overall seizure trends. Automated 

seizure detection could also help with the treatment of SE and warn of upcoming 

SUDEP. Automated seizure detection could also reduce the amount of time a patient 

spends in an EMU. We developed a new seizure detection scheme with two consecutive 

stages that involve a) improvement of signal quality and b) detection of seizures from 

qualified EEG channels only. 

1.2.1 Channel Signal Quality 

A novel, multivariate multi-channel quality algorithm was implemented. The 

channel quality algorithm employs four different measures in both time and frequency 

domains from individual intracranial EEG (iEEG) channels. Channels are marked either 

with acceptable or non-acceptable signal quality. 

1.2.2 Seizure Detection 

Channels with acceptable signal quality were further analyzed for seizure events 

using a time series measure, the Teager-Kaiser energy (TE), estimated over running 

windows per channel. TE and three adaptive thresholds were used for seizure detection. 

Based on the performance of the seizure detection algorithm on training iEEG datasets, 

receiver operator characteristic (ROC) curves were created for each window duration to 
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determine to the optimal of the three thresholds as well as to, thereafter, select the best of 

the thresholds in terms of sensitivity and specificity of the achieved seizure detection.
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CHAPTER 2 
 

 

BACKGROUND

2.1 Channel Signal Quality – Current Techniques 

Channel signal quality in EEG recordings has become a great concern over the 

years. The American Clinical Neurophysiology Society has even released guidelines for 

EEG recordings which directly address concerns of low quality data collection. These 

guidelines take into account electrode placement and materials [14]. Occasionally, 

avoiding a low quality signal is not possible. A damaged component which cannot be 

easily replaced can result in a low quality signal being present in an EEG recording. In 

this case, post-processing is required to identify channels with low signal quality. Some 

of the current channel signal quality algorithms are limited because they must be trained 

before accurate analysis of the subject’s EEG can be performed [15]. The other methods 

of signal quality analysis detect low quality channels by comparing a single channel to all 

of the other channels in an EEG montage through correlation or through standard 

deviations from the mean of a statistical feature [16–18]. Assessing signal quality in this 

manner is reasonable, considering the number of electrodes used in human studies. 

Figure 2-1 displays the electrode placement for two human EEG montages. 
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Figure 2-1: A human EEG electrode placements for a 128 channel montage (left) [19] 

and a 256 channel montage (right) [20]. 

In a montage with a high number of recording channels, comparing one channel 

to the others is an appropriate method for signal quality analysis; however, montages with 

a low number of recording channels, such as those in rodent studies, do not benefit from 

this approach using these methods. A few low quality channels can have a dramatic effect 

on the statistical comparison between one channel and the rest, which makes low signal 

quality channel classification difficult if not impossible. 

2.2 Epilepsy – Seizure Detection Statistics 

New methods for seizure detection are constantly being evaluated. The most 

important features of any such method are sensitivity, FPR, and, for real-time seizure 

detection, time delay. Sensitivity is defined as the ratio of correctly identified seizures to 

the total number of seizures; otherwise known as, the ratio of true positives (TP) to the 

sum of TP and false negatives (FN). FPR is defined as the ratio of the total number of 

incorrectly identified seizures, false positives (FP), to the total seizure free time, typically 

expressed as the number of FP per hour. FPR is used in place of 1-specificity, where 
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specificity is the ratio of true negatives (TN) to the sum of TNs and FPs, because the high 

number of TN, since seizures are relatively rare events, compared to the lower number of 

FPs produces potentially misleading results for specificity. It is possible for an algorithm 

to produce high sensitivity values while also having an alarmingly high FPR. Time delays 

are the time elapsed from a seizure to the time it was detected by the algorithm, typically 

in the order of seconds. 

The current sensitivity for seizure detection algorithms from intracranial 

electroencephalography (iEEG) recordings is between 80% and 98.8%. The algorithms 

with the higher sensitivity are trained on data from the same patient they monitor. These 

algorithms cannot be used on other patients without first being trained on data for this 

patient. The FPRs vary greatly from 0.054 to 1 every hour. The time delay these 

algorithms have for seizure detection range from 20 seconds to 5 minutes [21–24]. A 

reduction in the time delay of a seizure detection algorithm translates to an individual 

receiving attention sooner from their caretaker, a lower risk for injuries, and a reduced 

possibility for evolution to SE or SUDEP [5], [11]. 

2.3 Epilepsy – Stages of iEEG Seizure Data 

Seizure events typically have four stages: preictal, ictal, interictal, and postictal. 

Preictal stage refers to the immediate period prior to a seizure onset. The onset of the 

preictal period is not well-defined in the literature, either clinically, electrophysically, or 

mathematically. The ictal stage consists of the period from the beginning to the end of a 

seizure. Ictal periods usually start with a high frequency and low amplitude EEG, evolve 

a steady increase in the amplitude of an EEG signal, and end with a nearly instantaneous 

decrease in amplitude. The interictal stage is the period between seizures, in particular, 
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from the end of the ictal period of the preceding seizure to the beginning of the preictal 

period of the next seizure. The postictal stage is, like the preictal stage, not very well 

defined. Typically, the postictal stage immediately follows the end of a seizure and lasts 

until the subject has recovered. The beginning of this period is characterized by EEG 

suppression where the amplitude of the EEG signal is not only lower than the ictal stage 

but may be also lower than the one in the preictal stage. These stages can be seen in 

Figure 2-2.  

 

Figure 2-2: Seizure types (1) preictal, (2) ictal, (3) postictal, and (4) interictal from the 

iEEG data of one channel from one of our subjects. 

In Figure 2-2, the portion of the data highlighted in section 1 is the preictal period; 

the portion highlighted in section 2 is the ictal period; the portion highlighted in section 3 

is the postictal period; and the portion highlighted in section 4 is the beginning of an 

interictal period. 

Because of these characteristic features of each stage of a seizure, an EEG 

technician can review several hours of EEG data in a matter of minutes. A seizure 

detection algorithm should be able to review several hours of EEG data in a matter of 

seconds if a reliable measure for amplitude and frequency is presented to it. 

1 2 3 4 
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2.4 Epilepsy – Frequency Bands 

To discuss the differences between EEG seizure trends and interictal EEG trends, 

the various commonly occurring EEG frequency bands must be discussed. Five main 

frequency bands exist. These bands are the delta, theta, alpha, beta, and gamma bands, 

and they range from less than 3 Hz, 4 to 7 Hz, 8 to 12 Hz, 13 to 30 Hz, and greater than 

30 Hz, respectively. Frequencies around and between 5 and 15 Hz show the greatest 

separation between the power densities of ictal and non-ictal stages EEG data [25], [26].
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CHAPTER 3 
 

 

METHODS 

3.1 Data 

Louisiana Tech University’s (LaTech) iEEG rodent studies involving male 

Sprague Dawley rats were employed for both channel signal quality analysis and seizure 

detection. 

3.1.1 Recording of iEEG – Rodent Studies 

Six cohorts of animals were recorded, with a seventh currently being recorded as 

of the creation of this report. Each cohort contained eight subjects. Some of the subjects 

of Cohort #6 did not survive and were replaced with other participants. Nine iEEG 

channels were used to record the cerebral activity of the subjects. The position of the 

recording sites in the brain of a rodent is depicted in Figure 3-1 below. 

 

Figure 3-1: Schematic diagram of the iEEG electrode placements for the rodent 

studies. 

9 

1 

2 

3 
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The posterior portion of the skull in Figure 3-1 is towards the left, and the anterior 

portion of the skull is towards the right. The midsagittal suture is shown as the dashed 

horizontal line. Posterior to the midsagittal suture is the lambdoid suture, and the coronal 

suture is anterior of the midsagittal suture. As seen in Figure 3-1, eight electrodes were 

surgically inserted in each hemisphere within the pre-frontal cortex (1 & 2), the thalamus 

(3 & 4), the parietal cortex (5 & 6), and the hippocampus (7 & 8). Channel nine makes 

use of a bone screw which was implanted roughly 1 mm above the intersection of the 

midsagittal and coronal sutures; this channel is used as a reference channel. A tenth 

channel was used for ground without being attached to the subject.  

The electrodes and the screw were held in place by a dental acrylic which bonded 

well with the skull while simultaneously providing a hardened cover to protect the 

cerebral cortex from trauma and infection. The electrodes extended up from the dental 

acrylic to a commutator which allowed the subjects to freely move about their housing by 

relieving the torsional forces on the wiring or the ends of the electrodes. 

Once the electrodes had been implanted and secured, the subjects were injected 

with lithium to produce neuronal hyperexcitability and, within 24 hours, the subjects 

were injected with pilocarpine to inhibit neuronal pathways which utilize γ-aminobutyric 

acid (GABA). GABA is a prevalent neurotransmitter in the central nervous system that is 

responsible for neuronal inhibition. The GABA inhibits neuronal activity by decreasing 

the amount of neurotransmitters, such as chloride or calcium, that enter a neuron and 

preventing neurotransmitters from being released by the axon of the presynaptic neuron. 

If the release of GABA is hindered, the concentration of neurotransmitters will increase 

[27], [28]. Thus, the injection of pilocarpine caused the subjects to experience SE, which 



14 

 

 

 

typically leads to the development of epilepsy. Each cohort was recorded for an average 

of three months, and this led to over 800 seizures being collected, which were confirmed 

through visual inspection of the raw iEEG data by trained EEG technicians. The files 

containing the recorded iEEG data were initially collected with a recording duration of 24 

hours for all data recorded before October 5th, 2017; these experiment groups include 

Cohort #1 and Cohort #2 as well as the beginning of Cohort #3. All recordings after this 

date were collected in 4 hour increments. The change in recording duration was 

implemented to reduce the impact of lower data quality which will be discussed in the 

following section. 

3.1.2 TDT System Overview 

The recorded data were collected using the System 3 with PZ5 NeuroDigitizer by 

Tucker Davis Technologies (TDT). The PZ5 allowed for 28 bits of resolution over an 

adjustable range that allows roughly 268 million unique data points to be recorded within 

a particular range. These unique values are always evenly distributed, but since the 

recorded values will rarely be exactly equal to one of the unique values, the recorded 

iEEG data is rounded to the nearest unique value. The high level of resolution caused 

these rounding errors to rarely be an issue. The TDT system sampled the iEEG data at 

roughly 2034.5 Hz, and the sampled data needed to then be converted into European Data 

Format (EDF) to be analyzed using MATLAB. This conversion process compresses the 

data into 16 bits of resolution, and when high amplitude artifacts were present, the 

compression to 16 bits along with the large dynamic range caused quantization errors in a 

few of the recordings.  
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Quantization errors were the first of two challenges regarding data quality. During 

compression, 15 bits were reserved for the resolution of the data while one bit was 

reserved for the sign. The compression allowed for 32,767 positive unique values to be 

stored and 32,768 negative unique values. The positive values had fewer placeholders 

because zero was included as one of the positive placeholders. These placeholders always 

represented uniformly distributed values from zero to the absolute value of the largest 

deviation from zero. The iEEG data were rounded to the nearest discrete value; therefore, 

if a high amplitude outlier was present in the data, the nearest discrete values became 

further spaced from each other [29]. The spacing produced iEEG signals with sharp 

transitions between plateaued sets of data points. In some cases, the quantization was 

negligible, but at other times the iEEG data were degraded to the point where analysis 

would produce meaningless results. 

Quantization affects the entire recording period, and this effect was the major 

contributing factor to the decision of reducing the recording segment durations from 24 

hours to every 4 hours. The decrease in recording times causes a smaller section of data 

to be lost if quantization occurs. Steps were also taken to identify the sources of these 

high amplitude artifacts. One contributing factor was the battery replacement in the 

system over 8 hours while the recording was active. Once the cause of this artifact was 

identified, the maintenance protocols were altered to pause the recordings during battery 

changes. Altering the protocol removed a considerable amount of these artifacts; 

however, the chance of a high amplitude artifact was not entirely removed.  

Another challenge to data quality involved a channel or several channels which 

only recorded noise. There were several reasons for this error including dislocation of 
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iEEG electrodes through scratching or gnawing by the subjects and degradation of the 

physical components over time. The wiring was arranged in order to avoid being 

accidentally scratched by the subjects; however, since the wires had to connect to the 

subject’s head, the wires could still be struck or caught and gnawed. The physical 

components which degraded tended to be the commutators. The constant movement of 

the subjects during the night would cause the metal contacts to wear away or have an 

intermittent connection in some cases. A few wires needed to be replaced throughout the 

course of the study.  

Figure 3-2 shows examples of the power spectrum for what was classified as a 

good channel, and the power spectrum of a bad channel with noisy recording. These data 

quality issues necessitated the creation of a channel signal quality algorithm to evaluate 

the quality of the recording per channel. The algorithm operates on the following four 

metrics: a low to high frequency ratio, entropy, kurtosis, and a ratio of unique values to 

the total number of signal samples.  
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Figure 3-2: The PSD of an acceptable channel (top) and a noisy channel (bottom). 

The PSD of the acceptable channel shown on top in Figure 3-2 has peaks at 

harmonics of 60 Hz line noise. The 60 Hz peak is not shown because it was filtered out 

by the TDT system. The amplitudes at frequencies less than 0.5 Hz are at such a high 

amplitude that displaying them would mask the power at other higher frequencies. 

Therefore, for clarity, the PSDs begin at 0.5 Hz and continues to the Nyquist frequency of 

~1017.25 Hz. 

3.1.3 Teager-Kaiser Energy 

Time domain analysis increases the speed of a seizure detection algorithm since 

there is no need to transform the data into a different domain. A second advantage is the 

independence of the analysis from a particular frequency component of the signal 

especially when such a component is not the same across seizures and subjects. Both of 
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these aspects make a time domain analysis more robust when compared to a frequency 

domain analysis such as the use of Fourier transform. 

Teager-Kaiser energy (TE) is a fast time domain measure of a signal’s energy 

since it can be performed with only three sampled points as shown in Eq. 3-1. TE takes in 

consideration both the frequency and the amplitude of a signal. As the frequency or 

amplitude of a signal increases so does the value of TE. Eq. 3-1 shows how TE is 

calculated from a discrete signal, 𝑥, at a sample point, 𝑖. 

𝑇𝐸 = 𝑥𝑖
2 − 𝑥𝑖−1 𝑥𝑖+1 Eq. 3-1 

When calculating TE from a discrete signal with 𝑛 points, the first and last TE 

values, 𝑖 = 1 and 𝑖 = 𝑛 respectively, are omitted because the raw data values for 𝑥0 and 

𝑥𝑛+1 do not exist. When applied to a cosine signal, 𝐴 cos(Ω𝑖 + 𝜙), where variables 𝐴, Ω, 

and 𝜙 are the amplitude, the digital frequency (Ω = 2𝜋𝑓/𝐹𝑠, 𝑓 = analog frequency, 𝐹𝑠 = 

sampling frequency), and the phase respectively, TE is:  

 

𝑇𝐸 = 𝐴2 sin2(Ω) Eq. 3-2 

As long as Ω is less than a fourth of the sampling frequency, TE is closely 

approximated, with a maximum of 11% error, as:  

 

𝑇𝐸 = 𝐴2Ω2 Eq. 3-3 

This equation is instructive for TE’s relation to the amplitude and angular 

frequency of a signal [30], [31]. Since the iEEG data were sampled at roughly 2034.5 Hz 

and the highest frequencies analyzed were 15 Hz, the approximation that leads to Eq. 3-3 

can be used. For the parameters used in this study, the approximation is appropriate for 

frequencies up to roughly 508.6 Hz. 
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3.2 Data Pre-Processing 

Both the channel signal quality algorithm and the seizure detection algorithm 

preprocessed raw iEEG data from our rodents. Both algorithms used Butterworth 

bandpass filters with different cutoff frequencies and the filter orders. These filters were 

applied in both the forward and reverse directions to construct zero phase filters. Whereas 

the bidirectional filtering allows for zero phase distortion, the filter order becomes 

doubled due to the bi-directional nature of the filtering. 

3.2.1 Channel Signal Quality 

The channel signal quality algorithm analyzed frequencies only between 1 Hz and 

220 Hz; therefore, a third order, Butterworth bandpass filter with cutoff frequencies at 

these respective values was applied to the data. (Because of the filtering method, this 

bandpass filter was effectively a sixth order filter.) 

3.2.2 Seizure Detection 

Since the greatest separation of power between ictal and non-ictal periods is 

typically manifested between 5 Hz and 15 Hz, a fourth order Butterworth bandpass filter 

was applied to the iEEG data, with cutoffs at these respective frequencies. (As with the 

previous filter, the employed technique results in an eighth order filter.) 

3.2.3 Battery Artifact Removal  

A separate data quality algorithm had to be created to compensate for the battery 

replacement artifact. Figure 3-3 shows an example of the effect of a battery replacement 

on the raw EEG data.  
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Figure 3-3: A 2 min recorded EEG with a battery replacement artifact. 

The vertical axis in Figure 3-3 is divided into increments of 0.2 mV. Changing the 

battery produced a huge high amplitude artifact that resulted to flat-lined iEEG data. The 

high amplitude artifact was regularly outside of the amplifier’s ±0.5 V range, nearly 

three to four orders of magnitude larger than the iEEG signal. This event can also be 

caused by a loose or damaged physical connection in the electrodes themselves or the 

cables that connect the subject to the TDT system. Fortunately, this type of event was not 

difficult to detect and remove. An algorithm was designed to search for flat-lined data. 

The algorithm searched for consecutive points with identical values. The simple method 

of detection was effective since EEG data varies dramatically from sample point to 

sample point during high signal quality. All the detected points were removed from 

analysis and a buffer of six data points was removed from each side of the flat-lined data 

to fully remove the artifacts. 
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3.3 Channel Signal Quality 

Each of the four metrics of signal quality was calculated over 15 minute non-

overlapping running windows on every channel. A median value for each metric was 

subsequently determined over these running windows, and these median values were 

used in the optimization process. The frequency ratio and entropy metrics were used in 

combination to detect noisy data, and the kurtosis and unique ratio metrics were used to 

detect quantization errors.  

3.3.1 Noisy Data – Frequency Ratio 

Detection of a noisy recording was first tested by using the measure of a ratio of 

low to high frequencies. The range of low frequencies considered was 1 and 110 Hz, and 

the range of high frequencies was between 110 and 220 Hz. The discrete Fourier 

transform (Eq. 3-4) via fast Fourier transform as implemented in MATLAB’s function, 

fft, was used to estimate the powers at these frequencies. 

𝑋̂(𝑘) = ∑ 𝑥(𝑛 𝑇𝑠) 𝑒
−𝑗(

2𝜋
𝑁 𝑇𝑠

𝑘)𝑛 𝑇𝑠

𝑁
2

𝑛=−
𝑁
2

= ∑ 𝑥(𝑛) 𝑒−𝑗
2𝜋𝑘

𝑁
𝑛

𝑁
2

𝑛=−
𝑁
2

    Eq. 3-4 

In this equation, 𝑛 is a particular time value with a window of length 𝑁 ∙ 𝑇𝑠 of 𝑥, 

the iEEG signal. 𝑋̂ is the power spectrum density (PSD) that corresponds to the power at 

the angular frequencies in radians per second, 𝑘 ∙
2𝑛

𝑁∙𝑇𝑠
, where 𝑇𝑠 =

1

𝑓𝑠
 and 𝑓𝑠 is the 

sampling frequency in Hz [32]. The power densities at the low frequencies were summed 

and divided by the sum of the powers at the high frequencies to estimate the metric of the 

frequency ratio. 
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In this metric, a value close to 0 is indicative of noise in the data because lower 

frequencies lack the high power that is characteristic of iEEG. Consequently, a high 

valued ratio would imply a channel containing high signal quality iEEG data. 

3.3.2 Noisy Data – Entropy 

A second test for noise in the data used time series entropy values. Entropy was 

calculated using Eq. 3-5.  

𝑆(𝑋) = − ∑ 𝑝(𝑥𝑖) ln(𝑝(𝑥𝑖))

𝑁

𝑖=1

 Eq. 3-5 

In this formula, 𝑥𝑖 are the iEEG values in a data segment, 𝑋 is a particular range 

of 𝑥𝑖 values, 𝑝(𝑥𝑖) is the probability of appearance of value 𝑥𝑖 in the data segment. The 

hypothesis was that noise produces high entropy values because then the spectrum is 

flatter, indicative of the signal being at a state more similar to white noise (maximum 

entropy). 

3.3.3 Quantization Error – Kurtosis 

The first test for detecting quantization errors was based on kurtosis 

measurements (Eq. 3-6). 

𝑘 =
𝐸(𝑥 − 𝜇)4

𝜎4
 Eq. 3-6 

Where 𝑥 are iEEG values, 𝜇 is the mean of 𝑥, 𝜎 is the standard deviation of x, and 

𝐸(𝑡) is the expected value of 𝑋. Quantization shifts 𝑥 values towards the center of the 

generated histogram from the 𝑥 data. The shifted values narrow the histogram while 

simultaneously increase its height. The edges of the histogram had fewer values (ie. less 

probability density) in their bins thus producing a kurtosis value higher than 3. Taking in 
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consideration that normal distribution has a kurtosis value of 3, a higher kurtosis value 

than 3 indicated possible quantization errors. 

3.3.4 Quantization Error – Unique Ratio 

The second test we used for quantization error detection was the ratio of unique 

values to the total number of sample points. Quantization has an effect similar to 

rounding, that is, a blocky signal is created with values most closely match, the signal’s 

original values. Quantization therefore reduces the number of unique values in a given 

signal. After quantization, by counting the number of unique values via MATLAB’s 

unique function (unique) and dividing by the total number of sample points in a given 

period, we formed a ratio that was inversely related to the potential presence of 

quantization errors. 

3.3.5 Optimization – Training Data 

Each of the above metrics was optimized from training data consisting of 704 

iEEG channel segments with each segment having an average duration of 3.41 hours and 

a standard deviation of 1.15 hours. These segments were chosen from 88 randomly 

selected files from Cohort #1 to Cohort #5. All segments were visually inspected for 

clearly occurring quantized and noisy data. The segments were appropriately labeled as 

low quality channels. The number of segments with high signal quality totaled to 399 

segments. The number of noisy and quantized segments were 137 and 168, respectively.  

Then, a unique set of 100,000 thresholds was created for each of the four metrics 

to evaluate the previously accessed signal quality segments. These thresholds determined 

if a segment would be classified as having high signal quality rendering a value of 0 or 

low signal quality rendering a value of 1. If the entropy, frequency ratio, or unique ratio 
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metric values were above their respective thresholds or if the kurtosis value was below its 

assigned threshold, the segment was marked with 0. All other segments were marked 

with 1. This process produced a two-dimensional binary matrix with dimensions equal to 

the number of thresholds by the number of segments. 

These matrices were then paired to address the two challenges of signal quality. In 

particular, the binary matrix for entropy was paired with the binary matrix for the 

frequency ratio, and the binary matrix for kurtosis was paired with the binary matrix for 

the unique values ratio. The matrices in a pair were combined by taking the sum of a 

threshold row from the first matrix with the sum of a threshold row from the second 

matrix. The process of combining the matrices was repeated until all threshold rows from 

one matrix in a pair had been summed with all of the threshold rows from the second 

matrix. The resulting combined matrix was three dimensional of size equal to the length 

of the thresholds from the first matrix by the length of the thresholds from the second 

matrix by the length of the segments for both matrices. The three dimensional matrices 

were formed through summation as opposed to multiplication to increase the likelihood 

of TPs. The drawback of this method was the likelihood of generating higher numbers of 

FPs. 

The TP, FP, TN, and FN values were calculated for every combination of 

thresholds. Thus, we could estimate sensitivity and specificity values for every 

combination of thresholds. The sensitivity and specificity values enabled the construction 

of an ROC analysis. The upper left corner in an ROC plot represents 100% sensitivity 

and 100% specificity; therefore, a shorter distance from this point to any point on the 
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ROC curve represents a more ideal combination of thresholds. Eq. 3-7 was used to 

calculate this distance. 

 

Distance = √(Sensitivity − 𝑦𝑑)2 + ((1 − Specificity) − 𝑥𝑑)
2
 Eq. 3-7 

The distance to the upper left corner was calculated for every ROC value from 

every threshold combination. The desired Cartesian coordinates for the x-axis and y-axis 

were defined as 𝑥𝑑 = 0 and 𝑦𝑑 = 1 respectively. The shortest distance for each quality 

issue was estimated, as was the threshold combination associated with this distance.  

3.3.6 Optimization – Testing Data 

Once the algorithm had been optimized for the training data, it was applied to 

testing data composed of 1,216 randomly selected iEEG channel segments with a mean 

duration of 3.91 hours and a standard deviation of 2.76 hours. These segments were 

selected from 152 files from Cohort #1 to Cohort #5. It was taken care that these 

segments did not overlap with any of the previous 704 segments from the training data to 

avoid within sample bias. Of the testing segments, 591 had high signal quality, 257 were 

categorized as noisy, and 368 were categorized as quantized. 

Similar to the training data, the testing data were first visually inspected for 

quantization and noise free quality. The segments with low signal quality were sorted into 

the respective quality category, and all other segments were labeled as good quality 

segments. Using the visual analysis results and the results from the algorithm, the TP, FP, 

TN, and FN values were calculated for the testing data. Channels with good quality 

segments were then subjected to the next processing stage for seizure detection.  
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3.4 Seizure Detection 

The seizure detection algorithm first estimated TE from non-overlapping 30 

second windows in channels of good quality as determined by the channel signal quality 

algorithm. The median TE value over all channels was then calculated at each time point. 

The median values were assembled into one signal to further analyze using three separate 

algorithms with their own dynamic threshold for seizure detection. 

3.4.1 Optimization – Training Data 

To train the seizure detection algorithm, four days of data were randomly selected 

from every subject in every cohort. The selected files rate contained 103 visually 

discerned seizures out of a total of 4,981.8 hours of data. Three adaptive thresholds were 

tested to detect significantly high TE values when seizure activity was present. Each 

threshold was estimated from a series of overlapping windows ranging from 90 to 1,500 

seconds, corresponding to 3 to 50 median TE points. 

The threshold value from each of the overlapping windows was calculated using 

equal parts past and future data. Real-time analysis does not allow thresholds to be 

constructed in this manner since the future values cannot be used, but retroactive analysis 

allows for the use of future points. A threshold created using past and future points 

reduces the number of false positives when non-seizure amplitude shifts occur as seen in 

Figure 3-4.  
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Figure 3-4: Effects of past and future values on threshold creation for event detection. 

The threshold in Figure 3-4 is created by a moving average with a window size of 

0.5 seconds and a scaling factor of 2. The only desired detection occurs at 1.2 sec, and all 

other detections are FPs. If past values are exclusively used to create an adaptive 

threshold, as in the lower graph of Figure 3-4, the threshold is delayed which results in 

the FP at 0.6 seconds as a consequence of the undesired amplitude shift. A threshold 

composed of equal parts of past and future points, the upper graph of Figure 3-4, lacks a 

delay and is resistant to undesired amplitude shifts. For these reasons, both past and 

future points were used in the creation of all three adaptive thresholds. 

The first threshold involved the interquartile range (IQR) and was created by 

modifying a common outlier detection method, the 1.5 IQR Rule. In a normal 
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distribution, the probability of a value occurring outside of this acceptable range is 0.7%. 

Since a higher TE value is assumed to be a seizure, we used a single tailed approach, and 

this probability of not detecting a seizure was reduced to 0.35%. The equation for this 

threshold is: 

Theshold = 𝑄3 + 𝐼𝑄𝑅 ∙ 𝑠𝑓 Eq. 3-8 

Where 𝑄3 denotes the third quartile of the distribution of the median TE values. 

The 𝐼𝑄𝑅 is defined as the difference between 𝑄3 and the first quartile (𝑄1). The 𝐼𝑄𝑅 and 

𝑄3 were determined for each window, and then, the 𝐼𝑄𝑅 scaling factor (𝑠𝑓), typically 

1.5, was varied between 1 and 158.5 or 0 and 2.2 on the logarithmic scale to reach the 

corners of the ROC plots.  

The second threshold we tested was created using a scaled median value. Scaling 

just the median TE themselves was attempted after visual inspection indicated that TE 

values around seizure events tended to be much higher than at other time points. The 

median TEs were scaled by a factor that varied between 1 and 158.5 or 0 and 2.2 on the 

logarithmic scale. 

The third threshold we tested was based on a median and scaled standard 

deviation. This threshold was inspired by the X̅ and S̅-Charts used in Six-Sigma 

applications where the upper control limit is defined as the mean plus the scaled standard 

deviation. Since the median is less sensitive than the mean to noises, the median of TE 

was implemented in place of the mean in the formulation of this threshold. A median 

value as well as the standard deviation were calculated for every window from the TE 

time series. Once these values were determined, the standard deviations were scaled by a 

factor which varied between 1 and 158.5 or 0 and 2.2 on a logarithmic scale, and the 
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scaled standard deviations were then added to the medians. These added values then 

became the third threshold we tested for seizure detection. 

Each of the three thresholds were used to acquire sensitivity and FPR results for 

the ranges of window length and scaling factor. These sensitivity results and FPRs were 

then used to construct the respective ROC sensitivity verses FPR curves of seizure 

detection. These curves were then analyzed to find the optimal window length and 

scaling factor, that is, the ones that rendered close to 100% sensitivity and zero FPR in 

seizure detection. We used the same approach to optimization as in the signal quality 

methodology. The above scheme was applied to raw iEEG data from: a) good channels 

only where both quantized and noisy ones were excluded, b) good channels where only 

noisy ones were excluded, and c) all available channels, high and low quality, were 

included. 

The sensitivity and FPRs were calculated for each subject first. Once the 

sensitivity and FPR matrices were calculated, a mean was taken across all subjects. The 

next step involved testing all combinations of sensitivity and FPRs to determine which 

point on the ROC plots had the shortest distance to the upper left corner. When this point 

was determined, the window size and the threshold offset associated with the point were 

determined and stored. 

3.4.2 Optimization – Testing Data 

The testing data consisted of 32,736.8 hours of continuous multi-channel iEEG 

data from 70 rats containing a total of 740 seizures that was compiled from the remainder 

of the cohort data that were not included in the training data set for seizure detection. The 

optional window size and scaling factor determined from the training data were used on 
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the testing data. The sensitivity and FPR that corresponded to these optional parameters 

were then calculated for three cases: a) no quantized and noisy channels, b) no noisy 

channels, and c) all available channels. The three cases were run on the testing data to test 

their consistency with the training results. The flowchart with all different stages of the 

training of the seizure detection algorithm is shown in Figure 3-5. 
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Figure 3-5: Flowchart with the stages of training of the seizure detection scheme. 

The final flowchart of the seizure detection algorithm that run on the testing data 

is shown in Figure 3-6, where the median classification scheme was found to be most 

optimal for seizure detection. 
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Figure 3-6: Flowchart of the optimized seizure detection scheme 

This flowchart represents the final form of the algorithm; however, in the final 

form of the algorithm, the block for evaluating the performance is not used. The 

algorithm, instead, ends at the block for detection of seizures occurrence. 
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CHAPTER 4 
 

 

RESULTS

4.1 Channel Signal Quality 

 

The sensitivity and specificity values from the channel signal quality algorithm 

optimized on the training dataset are given in Table 4-1. Noisy data would negatively 

impact the seizure detection algorithm; however, our uncertainty on the effects that 

quantized data would have on the seizure detection algorithm lead us to find the optimal 

values for two sections of signal quality, only excluding noisy data and excluding noisy 

and quantized data. 

Table 4-1: Performance of the section of signal quality channels from the training 

datasets. 

 Sensitivity (%) Specificity (%) 

Noisy and Quantized Data 

Excluded 
81.0 94.0 

Noisy Data Excluded 81.0 95.2 

 

As Table 4-1 shows, the algorithm was very specific (>90%) and acceptably 

(>80%) sensitivity to detection of noise and quantized channels following optimization of 

its parameters from the training datasets. The thresholds listed in Table 4-2 were selected 

for the channel signal quality algorithm through optimization of the training data. 
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Unacceptable channel signal quality had an entropy value above 0.983, a frequency ratio 

below 2.42, a kurtosis value greater than 743, or a unique value ratio less than 0.000105 

Table 4-2: Optimized threshold values for each of the channel signal quality metrics. 

Entropy Frequency Ratio Kurtosis Unique Ratio 

0.983 2.42 743 0.000105 

 

The respective sensitivity and specificity values from running the channel signal 

quality algorithm on the testing datasets are seen in Table 4-3. 

Table 4-3: Performance of the channel signal quality algorithm from the testing datasets. 

 Sensitivity (%) Specificity (%) 

Noisy and Quantized Data 

Excluded 
80.5 92.9 

Noisy Data Excluded 73.2 95.3 

 

From Table 4-3 we see that the sensitivity and specificity of the channel signal 

quality algorithm were 80.5% and 92.9% respectively on the testing data with the optimal 

thresholds identified in Table 4-2 after removing channels with noise or quantization data 

quality issues. The algorithm performed on testing datasets comparable to the training 

datasets with a sensitivity of 73.2% and a specificity of 95.3% when only the noisy 

channels were removed from the testing data, that is, the algorithm’s sensitivity decreased 

by 7.3%, its specificity increased by 2.4%. 

4.2 Seizure Detection 

Figure 4-1 displays 2 minutes of raw iEEG data that contains a detected seizure.  
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Figure 4-1: Raw iEEG data of a seizure event from the LaTech rodent study.  

The channels of the iEEG are in descending order with channel 1 at the top and 

channel 8 at the bottom. This seizure begins at 6:26:08 AM and ends at 6:26:48 AM. 

Non-seizure artifacts can be seen on each side of the highlighted seizure, but these are not 

picked up as FPs as shown in Figure 4-2. 
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Figure 4-2: An example of a detected seizure event using the adaptive median 

threshold and TE. 

The adaptive threshold correctly adjusted with changes in the data and the seizure 

event was detected. The adaptive threshold prevents FP from being detected in this data, 

and the median threshold used in this figure is not harshly affected by the high amplitude 

spike in TE due to seizure activity. The seizure event is marked with a circle at 6:26:36 

AM to demonstrate that it has been detected as a TP. 

The three thresholds definitions for seizure detection were assessed on the testing 

datasets and yielded the seizure detection results shown in Table 4-5. 
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Table 4-4: Threshold type results on classification of channels from the training datasets 

with their optimal window sizes (Wind) and scaling factors. 

Channel Filtering Thresh 
Sensi 

(%) 

FPR 

(FP/hr) 

Wind 

(s) 

Scaling 

Factor 

Top 

Left 

Distance 

Noisy Channels 

Excluded 

IQR 82.5 0.127 690 8.35 17.5 

Median 87.3 0.136 240 5.23 12.7 

Median

+STD 
78.8 0.103 1410 4.77 21.2 

Quantized and 

Noisy Channels 

Excluded 

IQR 82.5 0.073 690 8.35 17.5 

Median 90.3 0.087 240 4.63 9.70 

Median

+STD 
82.8 0.129 1080 4.27 17.2 

No Channels 

Excluded 

IQR 83.9 0.155 690 8.26 16.1 

Median 80.0 0.185 300 8.60 20.0 

Median

+STD 
77.9 0.081 1440 5.02 22.1 

 

The median threshold had the lowest top left distance of the three threshold 

definitions in two of the three cases of channels for the training data. The sensitivity 

(Sensi) for the median threshold remained quite high at >80% and nearing or exceeding 

90% for two of the three cases of channels. None of the other thresholds were able to 

produce a sensitivity greater than 84%; however, the median threshold had a higher FPR 

than the other thresholds. These higher FPRs did not have as great of an impact on the top 

left distance since the median threshold had significantly higher sensitivities on average. 

The optimal parameters from the training data were applied to the testing data with the 

same three cases of channels in Table 4-5. 
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Table 4-5: Threshold type results on classification of channels from the testing datasets 

with their optimal window sizes (Wind) and scaling factors. 

Channel Filtering Thresh 
Sensi 

(%) 

FPR 

(FP/hr) 

Wind 

(s) 

Scaling 

Factor 

Top 

Left 

Distance 

Noisy Channels 

Excluded 

IQR 63.2 0.125 690 8.35 36.8 

Median 67.7 0.600 240 5.23 32.3 

Median

+STD 
52.9 0.162 1410 4.77 47.1 

Quantized and 

Noisy Channels 

Excluded 

IQR 62.6 0.095 690 8.35 37.4 

Median 81.5 0.593 240 4.63 18.5 

Median

+STD 
56.8 0.268 1080 4.27 43.2 

No Channels 

Excluded 

IQR 65.2 0.156 690 8.26 34.8 

Median 59.5 0.221 300 8.60 40.5 

Median

+STD 
53.3 0.133 1440 5.02 46.7 

 

The results from Table 4-5 are similar to those in Table 4-4. The median threshold 

has the lowest top left distance of the three threshold definitions in two of the three cases 

of channels. However, the sensitivities have dropped and the FPR have increased. The 

median threshold is the optimal threshold with a sensitivity of 81.5% and a FPR of 0.593 

when both the noisy and quantized channels are excluded.  

The optimization for the seizure detection algorithm was run for three cases of 

channels. The first case when time both the quantized and the noisy channels were 

removed. The second case when only the noisy channels were removed, and the last time 

no channels were removed. Results from all three of these rounds of optimization are 

summarized in Table 4-6. 

The threshold that used the offset median consistently produced the highest 

sensitivities across all 3 cases of included channels. This threshold did not always have 
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the lowest FPR, but because the other thresholds exhibited much lower sensitivities, the 

“distance to the upper left corner of the ROC curve” was much shorter for the offset 

median threshold than for the other two thresholds and hence it was declared the most 

optimal of the three thresholds to use for seizure detection. 

Table 4-6: Average performance statistics of the seizure detection algorithm across 

subjects from the training dataset. 

 
Average 

Sensitivity (%) 

Average 

FPR 

Window 

(s) 

Scaling 

Factor 

Quantized and Noisy 

Channels Excluded 
87.3 0.136 240 5.23 

Noisy Channels Excluded 90.3 0.087 240 4.63 

No Channels Excluded 80.0 0.185 300 8.60 

 

Table 4-6 lists the performance results in first case of channels inclusion with the 

adaptive threshold from the training data sets. In this case, the seizure detection algorithm 

exhibited a sensitivity of 87.3% and a FPR of 0.136 with a window size of 240 seconds 

and a threshold scaling factor of 5.23. In the second case of channel inclusion sensitivity 

of 90.3% and FPR of 0.087 from a window size of 240 seconds and a threshold scaling 

factor of 4.63 were observed. In the third case of channel inclusion, sensitivity of 80.0% 

and FPR of 8.60 per hour with a window size of 300 seconds and a threshold scaling 

factor of 8.60 were observed. While all sensitivities were at or above 80%, the lowest 

FPR for seizure detection was achieved when both noisy and quantized channels were 

excluded. All of FPRs were higher than the average seizure rate (SZR) of 0.021 per hour. 

A breakdown of the results on the training datasets for each subject can be found in the 

Appendix. 
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The average performance results over all rats of the seizure detection algorithm 

that was run on the testing datasets with all optimized parameters per rat are shown in 

Table 4-7. 

Table 4-7: Average performance statistics of the seizure detection algorithm across 

subjects from the testing dataset 

 
Average 

Sensitivity (%) 

Average 

FPR 

Window 

(s) 

Scaling 

Factor 

Quantized and Noisy 

Channels Excluded 
67.7 0.600 240 5.23 

Noisy Channels 

Excluded 
81.5 0.593 240 4.63 

No Channels Excluded 59.5 0.221 300 8.60 

 

The average sensitivities for the three cases of channel inclusion were 67.7%, 

81.5%, and 59.5%, and the FPRs were 0.600, 0.593, and 0.221 per hour, respectively. 

The average SZR for the testing data was 0.040 seizures per hour, that is, about five times 

less than the lowest manifested FPRs of the seizure detection algorithm which leaves 

room for improvement of the algorithm. The highest sensitivity was calculated when 

noisy channels were excluded, and the lowest FPR was achieved when no channels were 

excluded. 
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CHAPTER 5 
 

 

CONCLUSION

 

We built a seizure detection algorithm for seizures recorded from multi-channel 

long-term (years) iEEG in the lithium-pilocarpine animal model of epilepsy. The 

algorithm uses a two-stage process for analysis of the data. In the first stage, channels 

with high quality recorded iEEG are selected with a channel signal quality algorithm 

developed in-house where thresholds were optimized on the basis of entropy, frequency 

ratio, kurtosis, and unique ratio measures. In the second stages the measure of Teager-

Kaiser energy was utilized to develop a metric for detection of seizure events, the 

algorithm was optimized on 4,981.8 hours of training datasets and then ran on 32,736.8 

hours of testing datasets from 57 epileptic rats and 13 control rats. Its best ROC 

performance on the testing datasets across rats was 81.5% sensitively-wise with an 

average false positive rate of 0.593 false detections per hour or else 1 false detection per 

1.69 hours that in one data is translated to false detection per seizure occurrence. Their 

performance is on par with the best algorithms in the literature and highlights the need for 

improvement of specificity of seizure detection algorithms. 

Several insights were generated through this research study. The sensitivity and 

specificity of the channel signal quality algorithm were lower from the testing than the 

training datasets as expected. In every case that the signal quality algorithm excluded 
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channels, the FPR fell. The specificity was higher when noisy data were excluded. As it 

is shown in Table 4-5, the best adaptive threshold for the channel signal quality selection 

was the median offset. The usefulness of the channel signal quality algorithm is shown by 

the training and testing results of the seizure detection algorithm. 

Both quantized and noisy channels should be excluded for the seizure detection 

algorithm to decrease its FPR. Although the sensitivity did decrease in the testing data 

when the signal quality algorithm excluded channels verses not excluding any channels 

for further analysis by the seizure detection algorithms, the decrease was not significant 

(from 90.3% to 81.5%). However, the decrease of the FPR was more significant when 

low-quality channels were excluded (from 0.087 per hour to 0.593 per hour). The 

decrease in sensitivity is even less significant when considering how many more hours 

were analyzed in the testing data (32,736.8 hours) when compared to the training data 

(4,981.8 hours). 

If the epileptic focus is known prior to a seizure detection analysis then the 

analysis could be restricted to the electrodes that record the EEG from the patient’s focal 

area. Restricting the number of electrodes would decrease the analysis time, and it would 

allow for greater sensitivity and specificity.  

The results from this study indicate that the current algorithm has a high 

sensitivity even without being trained to a specific subject. The exhibited high sensitivity 

implies that TE is a critical feature for seizure detection. 

Future improvements of the algorithm include: 1) the FPR could be lowered 

further by training and optimizing all parameters of the algorithm to each subject running 

it to detect seizures from the testing dataset of the same subject. 2) The IQR threshold 
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may perform better if the median TE value is calculated over overlapping 30 second 

windows since the IQR Rule is based on the assumption that the data follows a normal 

distribution, and by thus having more TE values to analyze we would increase the 

probability that the TE data would conform to a normal distribution. 3) The signal quality 

algorithm could be improved by classifying epochs of a channel as opposed to classifying 

the entire channel. By operating on shorter than 15 min windows, we could thus keep the 

most amount of acceptable data. Changing the window size would also affect the optimal 

values of the thresholds that could improve the performance of the channel signal quality 

algorithm and the subsequent performance of the seizure detection algorithm. 
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Table A-1 contains the sensitivities from the training data for the cases of the 

channels for each subject. Subjects without seizures are not included since sensitivity 

cannot be calculated in this situation. 

Table A-1: Training sensitivity results for each subject. 

Subjects 
Sensitivity (%)  

Noisy Excluded 

Sensitivity (%) 

QD & Noisy 

Excluded 

Sensitivity (%) 

None Excluded 

Cohort 2    

EP11 100 100 100 

EP66 100 100 100 

EP77 100 100 100 

EP88 100 100 100 

Cohort 3    

EP33 100 100 100 

EP44 37.5 37.5 25.0 

EP66 100 100 100 

Cohort 4    

Rat1 100 100 100 

Rat2 100 100 100 

Rat5 100 100 100 

Rat8 67.7 74.2 45.2 

Cohort 5    

Rat5 33.3 66.7 33.3 

Cohort 6    

Rat1 50 50 50 

Rat5 100 100 100 

Rat7 52.2 56.5 30.4 
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Table A-2 contains the FPRs and the seizure rate (SZ Rate) from the training data 

for the cases of the channels for each subject. For Subjects with no recorded seizures, 

“No SZ” will be placed in the SZ Rate column. 

Table A-2: Training FPR and SZ Rate for each subject. 

Subjects 

FPR 

Noisy 

Excluded 

FPR 

QD & Noisy 

Excluded 

FPR 

None 

Excluded 

SZ Rate 

Cohort 1     

Rat1 0.000 0.000 0.000 No SZ 

Rat2 0.073 0.396 0.000 No SZ 

Rat5 0.479 0.521 2.157 No SZ 

Rat7 0.021 0.021 0.042 No SZ 

Rat8 0.292 0.552 0.000 No SZ 

Rat4 0.010 0.021 0.010 No SZ 

Rat6 0.156 0.177 0.063 No SZ 

Cohort 2     

EP11 0.427 0.657 0.063 No SZ 

EP33 0.115 0.146 0.000 0.010 

EP44 0.229 0.386 0.010 No SZ 

EP55 0.125 0.271 0.063 No SZ 

EP66 0.803 0.782 0.094 No SZ 

EP77 0.887 1.220 0.136 0.031 

EP88 0.125 0.365 0.000 0.021 

EP22 0.167 0.313 0.000 0.042 

Cohort 3     

EP11 1.606 2.065 0.010 No SZ 

EP33 0.038 0.051 0.019 No SZ 

EP44 0.082 0.148 0.082 0.019 

EP66 0.397 0.632 0.029 0.131 

Sha5 0.037 0.037 0.242 0.037 

Sha2 0.315 0.325 0.178 No SZ 

Sha7 0.332 0.675 0.021 No SZ 

Sha8 0.472 0.609 0.535 No SZ 
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Table A-2 Continued: Continuation of Table A-2 from Cohort 4 through Cohort 6. 

Subjects 

FPR 

Noisy 

Excluded 

FPR 

QD & Noisy 

Excluded 

FPR 

None 

Excluded 

SZ Rate 

Cohort 4     

Rat1 0.042 0.105 0.011 No SZ 

Rat2 0.136 0.052 0.450 0.031 

Rat5 0.335 0.073 0.356 0.021 

Rat7 1.531 1.321 0.587 0.010 

Rat8 0.482 0.597 0.000 No SZ 

Rat3 0.513 1.224 0.282 0.322 

Rat4 1.165 1.386 0.252 No SZ 

Rat6 0.136 0.188 0.544 No SZ 

Cohort 5     

Rat1 1.538 2.092 0.115 No SZ 

Rat2 2.029 2.280 1.778 No SZ 

Rat5 0.011 0.011 0.000 No SZ 

Rat7 0.690 0.544 0.011 0.031 

Rat8 0.753 0.607 0.000 No SZ 

Rat4 0.303 0.481 0.052 No SZ 

Rat6 0.847 1.088 0.021 No SZ 

Cohort 6     

Rat1 0.179 0.483 0.000 No SZ 

Rat5 0.205 0.267 0.010 0.021 

Rat7 0.839 0.808 0.787 0.041 

Rat8 0.914 0.977 0.353 0.240 

Rat4 1.421 0.911 0.250 No SZ 

RAT2a 0.072 0.114 0.021 No SZ 

RAT3a 0.600 0.560 0.020 No SZ 

RAT6a 1.044 0.743 0.056 No SZ 

RAT3b 3.265 0.990 1.812 No SZ 

RAT2b 0.053 0.032 0.000 No SZ 

RAT6b 0.157 0.262 0.000 No SZ 
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Table A-3 contains the sensitivities from the testing data for the cases of the 

channels for each subject. Subjects without seizures are not included since sensitivity 

cannot be calculated in this situation. 

Table A-3: Testing data sensitivity results for seizure detection 

Subjects 

Sensitivity 

(%)  

Noisy 

Removed 

Sensitivity 

(%) 

QD & Noisy 

Removed 

Sensitivity 

(%) 

None 

Removed 

Cohort 2    

EP11 75.0 75.0 62.5 

EP55 83.3 83.3 83.3 

EP66 63.1 64.8 50.7 

EP77 100 100 93.3 

EP88 100 100 100 

Cohort 3    

EP11 100 100 100 

EP33 100 100 100 

EP44 66.7 66.7 44.4 

EP66 100 100 100 

Cohort 4    

Rat1 66.7 66.7 66.7 

Rat2 80.0 80.0 60.0 

Rat8 61.6 66.5 45.2 

Cohort 5    

Rat5 90.9 90.5 90.9 

Rat7 100 100 100 

Rat8 100 100 100 

Cohort 6    

Rat1 93.8 93.8 93.8 

Rat5 62.5 62.5 62.5 

Rat7 66.1 67.1 51.9 

Rat4 26.3 31.3 42.5 
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Table A-4 contains the FPRs from the testing data for the cases of the channels 

for each subject. For Subjects with no recorded seizures, “No SZ” will be placed in the 

SZ Rate column. 

Table A-4: Testing data FPR and SZ Rate results for seizure detection. 

Subjects 

FPR 

Noisy 

Removed 

FPR 

QD & Noisy 

Removed 

FPR 

None 

Removed 

SZ Rate 

Cohort 1     

Rat1 0.007 0.034 0.000 No SZ 

Rat2 0.138 0.381 0.000 No SZ 

Rat5 1.744 0.099 2.222 No SZ 

Rat7 0.484 0.637 0.289 No SZ 

Rat8 0.138 0.242 0.000 No SZ 

Rat3 0.109 0.015 1.976 No SZ 

Rat4 0.009 0.040 0.068 No SZ 

Rat6 0.110 0.173 0.062 No SZ 

Cohort 2     

EP11 1.548 2.062 0.237 0.003 

EP33 0.015 0.030 0.007 0 

EP44 0.432 0.698 0.074 0 

EP55 0.185 0.300 0.086 0.014 

EP66 0.717 0.939 0.193 0.074 

EP77 1.064 1.342 0.356 0.007 

EP88 0.410 0.752 0.012 0.025 

EP22 0.302 0.526 0.007 0 

Cohort 3     

EP11 0.861 1.096 0.044 0.010 

EP33 0.042 0.050 0.010 0.013 

EP44 0.355 0.503 0.248 0.076 

EP66 0.531 0.726 0.094 0.008 

Sha5 0.102 0.014 0.175 No SZ 

Sha2 0.385 0.581 0.128 No SZ 

Sha7 0.175 0.289 0.004 No SZ 

Sha8 0.307 0.550 0.310 No SZ 
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Table A-4 Continued: Continuation of Table A-4 from Cohort 4 through Cohort 6.  

Subjects 

FPR 

Noisy 

Removed 

FPR 

QD & Noisy 

Removed 

FPR 

None 

Removed 

SZ Rate 

Cohort 4     

Rat1 0.776 0.987 0.369 0.032 

Rat2 0.311 0.248 0.331 0.016 

Rat5 0.088 0.211 0.059 0 

Rat7 1.858 0.671 1.703 No SZ 

Rat8 0.333 0.502 0.062 0.109 

Rat3 0.496 0.864 0.025 No SZ 

Rat4 1.230 1.477 0.184 No SZ 

Rat6 0.500 0.337 0.449 No SZ 

Cohort 5     

Rat1 0.694 0.953 0.056 No SZ 

Rat2 0.751 0.779 0.550 No SZ 

Rat5 0.024 0.029 0.011 0.051 

Rat7 0.554 0.425 0.006 No SZ 

Rat8 0.703 0.703 0.033 0.254 

Rat3 1.584 1.556 0.074 No SZ 

Rat4 0.168 0.220 0.073 0 

Rat6 0.751 0.880 0.034 0 

Cohort 6     

Rat1 0.473 0.798 0.009 0.065 

Rat5 0.630 0.725 0.046 0.017 

Rat7 0.916 0.816 0.626 0.329 

Rat8 0.847 1.217 0.168 No SZ 

Rat4 1.069 0.776 0.132 0.206 

RAT2a 0.005 0.012 0.007 No SZ 

RAT3a 0.588 0.622 0.016 No SZ 

RAT6a 1.070 0.860 0.120 0 

RAT3b 3.120 1.050 1.185 No SZ 

RAT2b 0.031 0.069 0.003 No SZ 

RAT6b 0.476 0.780 0.003 No SZ 

RAT3c 0.321 0.187 1.456 No SZ 
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