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ABSTRACT 

Outlier detection is one of the crucial tasks in data mining which can lead to the 

finding of valuable and meaningful information within the data. An outlier is a data point 

that is notably dissimilar from other data points in the data set. As such, the methods for 

outlier detection play an important role in identifying and removing the outliers, thereby 

increasing the performance and accuracy of the prediction systems. Outlier detection is 

used in many areas like financial fraud detection, disease prediction, and network 

intrusion detection. 

Traditional outlier detection methods are founded on the use of different distance 

measures to estimate the similarity between the points and are confined to data sets that 

are purely continuous or categorical. These methods, though effective, lack in elucidating 

the relationship between outliers and known clusters/classes in the data set. We refer to 

this relationship as the context for any reported outlier. Alternate outlier detection 

methods establish the context of a reported outlier using underlying contextual beliefs of 

the data. Contextual beliefs are the established relationships between the attributes of the 

data set. Various studies have been recently conducted where they explore the contextual 

beliefs to determine outlier behavior. However, these methods do not scale in the 

situations where the data points and their respective contexts are sparse. Thus, the outliers 

reported by these methods tend to lose meaning. Another limitation of these methods is 

that they assume all features are equally important and do not consider nor determine 
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subspaces among the features for identifying the outliers. Furthermore, determining 

subspaces is computationally exacerbated, as the number of possible subspaces increases 

with increasing dimensionality. This makes searching through all the possible subspaces 

impractical. 

In this thesis, we propose a Hybrid Bayesian Network approach to capture the 

underlying contextual beliefs to detect meaningful outliers in mixed attribute data sets. 

Hybrid Bayesian Networks utilize their probability distributions to encode the 

information of the data and outliers are those points which violate this information. To 

deal with the sparse contexts, we use an angle-based similarity method which is then 

combined with the joint probability distributions of the Hybrid Bayesian Network in a 

robust manner. With regards to the subspace selection, we employ a feature engineering 

method that consists of two-stage feature selection using Maximal Information 

Coefficient and Markov blankets of Hybrid Bayesian Networks to select highly 

correlated feature subspaces. 

This proposed method was tested on a real world medical record data set. The 

results indicate that the algorithm was able to identify meaningful outliers successfully. 

Moreover, we compare the performance of our algorithm with the existing baseline 

outlier detection algorithms. We also present a detailed analysis of the reported outliers 

using our method and demonstrate its efficiency when handling data points with sparse 

contexts. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Data Mining 

Data mining is defined as the “extraction of non-trivial, implicit, previously 

unknown and potentially useful information from the data” [1]. It depends upon the 

different fields like machine learning, pattern recognition, artificial intelligence, statistics, 

database systems. Data mining is used as a tool by businesses to make improved 

decisions for solving a problem by providing important information. 

The idea of a testable hypothesis drives data mining techniques. They can extract 

implicit patterns of the data. Several techniques both supervised and unsupervised have 

been used so far for analyzing data to better understand the underlying patterns which 

will help make informed decisions.  

Largely, data mining models are divided into two types; i.e. predictive models and 

descriptive models as shown in Figure 1-1. Predictive models deal with the prediction or 

forecast of the explicit value of a particular attribute and are classified into two types, 

namely classification models and regression models. Classification models predict 

according to the class labels. However, a regression model analyzes the dependencies 

among the attributes and class labels. Descriptive models analyze the hidden patterns in 

the data and categorizes them into relevant subgroups. These are classified into two 



2 

types, namely clustering models and association models. Cluster models group together 

similar things, events, or people to reduce data complexity. However, association models 

determine the frequency of relevant associations and provide interesting insights [1]. 

 

Figure 1-1: Taxonomy of Data Mining models. 

Applications of data mining include marketing analysis, predicting subsets of 

customers likely to respond to a given promotion based on income levels or the amount 

of previous purchases. Banks and insurance companies use data mining to analyze claim 

patterns and to predict credit fraud. Other applications include stock market analysis, 

modelling proteins, and genes in DNA sequences. Moreover, the fact that data mining has 

become so successful is due to faster and cheaper computer hardware which have led to 

the development of specialized algorithms to analyze large volumes of data efficiently. 

Although data mining is mostly used for discovering relationships or hidden 

patterns in the data, an often overlooked but important task is the ability to detect outliers 

or anomalies in the data. Certainly, the patterns may be well established for some 

applications such as health insurance and credit card fraud, but it is often the exceptions 

to those patterns that require special attention. Outliers or anomalies may be the result of 
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recording or measurement errors, but they may also be genuine data which may point out 

surprising, suspicious, and fraudulent activities. 

1.2 Outliers 

An outlier or anomaly is an observation in the data that is significantly different 

from other observations in the data. These are also stated to as exceptions, irregularities, 

deviations, or aberrations. Hawkins [2] defined an outlier as “an instance that is 

remarkably different from other instances in the sample”. The two-dimensional 

scatterplot in Figure 1-2 shows an example of an outlier. In the left side of Figure 1-2, 

the lower left observation is an outlier that is far away from the dense cluster of points. In 

the right side of Figure 1-2, the observation which is noticeably separated from the dense 

cluster of points is an outlier. 

 

Figure 1-2: Scatterplots showing outliers in 2-D. 

The outlier phenomenon is often mysterious to data analysts. Occasionally, 

outliers may appear in the data sets of poor quality where no relative evidence is 

displayed by the outlier. Outliers of this kind can be removed from the dataset. However, 
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in some cases, outliers display interesting and truthful information. These types of 

outliers should not necessarily be removed from the underlying dataset as they may 

probably provide new evidence. Thus, to improve the quality and mine new evidence 

from the data, outlier identification is important. Examples include credit card activity 

monitoring to identify fraudulent transactions and predict misuse [3]. Likewise, sensor 

monitoring of instruments and devices in industries help to identify system defects [4]. 

Furthermore, outlier detection methods help to detect new disease outbreaks in public 

health monitoring systems [5] and are also useful in detecting network intrusions [6]. 

The task of anomaly or outlier detection is very challenging due to several factors. 

First is declaring an observation as an outlier when it does not fall in a region 

representing normal behavior. However, defining a normal behavior for each and every 

data point is a challenging task. The second factor is the limited availability of labeled 

data for classifying outliers. Thus, unsupervised techniques are best suited in these cases, 

where only the normal behavior is modeled to determine the outliers. The third factor is 

that we cannot apply outlier detection algorithm designed for one application to another 

application due to the specific nature of the outliers. Finally, the quality of the outliers 

identified by outlier detection techniques is difficult to examine. 

1.3 Problem Definition 

Previous research on outlier detection has mainly focused on developing 

algorithms to categorize outliers in the data sets using either distance/similarity-based or 

density-based approaches. These techniques will calculate the pair-wise distance among 

all the points in the data set and will declare a point far away from its nearest neighbors 

as an outlier. Naturally, these approaches suggest that the point, which is isolated, will 
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not have enough support from its neighborhood to classify it as normal. Also, the existing 

algorithms are only applicable to the data sets having a specific attribute type which is 

either categorical or continuous. The algorithms designed for continuous data sets cannot 

be directly applied to categorical data sets and vice-versa. Moreover, most of the current 

approaches do not consider the quality of reported outliers; i.e. they ignore valuable 

information available in the data and fail to tell us why a particular point has been 

labelled exceptional. 

For example, assume a data set belongs to a particular region of a country 

representing health characteristics of people such as cholesterol levels and blood pressure 

as shown in Figure 1-3. The cholesterol levels are plotted on the X-axis, while the blood 

pressure is plotted on the Y-axis. The data points in the data set are clustered into four 

clusters denoted by 𝐶1, 𝐶2, 𝐶3, and 𝐶4 respectively. The cluster 𝐶1, which is dense, 

represents a region in which people with high cholesterol have high blood pressure and 

vice versa.  Unlike 𝐶1, cluster 𝐶2 contains a small percentage of people with high 

cholesterol levels and high blood pressure. Finally, cluster 𝐶3and 𝐶4 specify a situation 

where blood pressure is more than cholesterol. If the goal is to detect outliers from this 

data, using distance [7] and density [8] based approaches, then most probably the clusters 

𝐶2, 𝐶3 and 𝐶4 will be flagged as outliers, because they are far-off from their neighbors. 

However, if we investigate the data points in cluster 𝐶2, we find that it contains 

information about the people who have high cholesterol with high blood pressure, and as 

such, these points should not be treated as outliers. Furthermore, the data points in 

clusters 𝐶3 and 𝐶4 appear interesting as they represent a situation where the blood 

pressure of a person is more than the cholesterol level. Therefore, identifying these types 
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of outliers which represent valuable information help the stakeholders to improve the 

understanding of the data and make the appropriate decisions. 

 

Figure 1-3: A hypothetical example of health characteristics of a person. 

The main task in identifying the above-mentioned points in clusters 𝐶3 and 𝐶4 is 

that they require contextual beliefs of the data. Basically, the meaning of the context 

decides the interesting aspects of the points. For example, a data point may behave 

differently in one context, but it appears normal in others. However, in high dimensional 

space, the data points become sparse; i.e. all the points appear the same and can be 

regarded as outliers. Consequently, the contexts associated with the points in high 

dimensions will also be the same leading to a difficulty in defining proper contexts. To 

explain this, consider the same example shown in Figure 1-3. Using state-of-the-art 
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contextual outlier detection algorithms [9, 10], there might be a chance that cluster 𝐶2 

will be flagged as an outlier instead of 𝐶3 and 𝐶4 as the cluster 𝐶2 is sparse and lack 

support from the reference groups. The points in 𝐶2 are not outliers as they follow the 

normal pattern between the two attributes. Hence, the outliers detected in this case have 

no meaning. Therefore, a more robust approach is needed to distinguish clusters 𝐶3 and 

𝐶4 with cluster 𝐶2 in high dimensions and identify data points from 𝐶3 and 𝐶4 as true 

outliers. Moreover, due to high dimensionality, the model will be computationally 

expensive to learn. 

Another drawback of the traditional outlier detection techniques is that they detect 

outliers on full attribute space but do not consider the interrelationships among subspaces 

of relevant attributes to detect the outliers. A data analyst may find vital information 

about the underlying processes that lead to the outliers by analyzing the subspaces. For 

instance, a person suffering from a cardiac disease is typically different from a normal 

person in features associated with heart such as heart rate, angina, arterial plague, and 

atrial fibrillation. Other features like skin and hair type may be irrelevant for identifying 

this type of person. Therefore, having such knowledge about the attributes leads to the 

effective identification of the outliers. Also, the number of subspaces increase 

exponentially when the dimensionality increases leading to complexity issues [11]. 

Therefore, the key challenge here is to select relevant or meaningful subspaces to detect 

the outliers while avoiding a complete search over all possible subspaces. 

In this thesis, we propose a new outlier detection approach for data sets that 

contain both categorical and continuous attributes. This approach uses an effective 

subspace sampling method that picks relevant subspaces in preference over full attribute 
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subspace and uses the contextual information of the data as well as a similarity measure 

to identify the outliers. We base this heuristic on the hypothesis that true and meaningful 

outliers are likely to be identified in highly correlated feature subspaces by considering 

both contextual information and similarity of the data points. This hypothesis is based on 

the challenges with sparse contexts in high dimensional data, wherein the contexts are not 

informative enough in high dimensional space and are not very useful for outlier 

detection. 

1.4 Contributions 

We make the following contributions: 

1. The primary contribution of this thesis is to present a framework for identifying 

true and meaningful outliers in mixed data sets consisting of categorical and 

continuous attributes. As mentioned earlier, to detect meaningful outliers we 

require contextual belief of the domain; thus, we propose to use Bayesian 

networks to define contexts in the data sets. Bayesian networks capture causal 

relationships among attributes that exist in the data sets, thereby allowing us to 

explore these relationships to mine interesting outliers. Specifically, in this thesis, 

we use a special type of Bayesian network called Hybrid Bayesian Network, 

which provides an ideal representation for capturing contextual knowledge 

consisting of both categorical and continuous attributes. Additionally, we also 

describe why a reported point is an outlier. 

2. To overcome the difficulty of sparse contexts in high dimensional data, we use a 

unique characteristic of the data called similarity; i.e. points which are closer to 

each other have similar properties than the points which are far from each other. 
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In this thesis, we propose to use angle-based similarity measure to compare the 

data points since the distance or nearest neighbor concepts become less 

meaningful due to sparseness in high dimensions. The angle-based similarity 

measures the degree of outlierness of each point on the evaluation of the 

broadness of its angle spectrum. The smaller the angle spectrum of a point to 

other pairs of points, the more likely it is an outlier. Therefore, this approach does 

not significantly worsen in high-dimensional data because angles are more stable 

than distances in high dimensions. 

3. For subspace selection, we propose a two-stage process to select relevant 

attributes for forming a subspace. In the first stage, we apply Maximal 

Information Coefficient to select a subset of attributes that are highly correlated 

with class labels. In the second stage, the selected attributes are used to learn a 

Hybrid Bayesian Network and then extract the Markov blankets of each attribute 

from the learned Hybrid Bayesian Network to form a highly correlated subspace. 

Then for each subspace, we learn a local Hybrid Bayesian Network. Finally, we 

derive an outlier score for each point by considering both the joint probability 

distributions and angle-based similarity measure to identify outliers which violate 

both the underlying contextual beliefs and neighborhood criteria. The data points 

with the lowest scores are reported as outliers. 

1.5 Organization 

This thesis is organized as follows. Chapter 2 describes the literature review of the 

current outlier detection techniques along with their main strengths and weaknesses. The 

fundamental concepts of Bayesian networks such as conditional independence, joint 
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probability distributions, Markov blankets and Bayesian structural learning are discussed 

in Chapter 3. In Chapter 4, we present a methodology to identify meaningful outliers in 

subspaces using probability distributions of Hybrid Bayesian Network and angle-based 

similarity measure. In Chapter 5, we show experimental evaluations of our proposed 

approach with real-world data sets. Chapter 6 concludes the thesis with a summary and 

directions for future work.
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CHAPTER 2 

 

BACKGROUND 
 

In this chapter, we present the literature review of existing outlier detection 

techniques under four main categories, namely density based, distance based, contextual-

based, and Bayesian network-based approaches. Distance and density-based techniques 

are the oldest and widely used technique for outlier detection. These approaches use a 

similarity or distance measure to compute the distances between the points, and points far 

away from their neighborhoods are flagged as outliers. In contrast to distance and 

density-based techniques, contextual outlier detection techniques use background 

knowledge or contextual information of the domain to find outlier patterns. Similarly, 

Bayesian network-based techniques consider the underlying probability distributions of 

the data set to identify outliers. Outliers are those observations which have low 

probability. 

In addition to this categorization, we explore subspace-based techniques. These 

approaches mine outliers from the subset of relevant attributes selected from the high 

dimensional dataset. Also, there are several alternate techniques which focus on 

discovering outliers using information and spectral theory. Dutta 𝑒𝑡 𝑎𝑙. [12] and Wenke 

𝑒𝑡 𝑎𝑙. [13] proposed spectral anomaly detection and information theoretic techniques to 

mine anomalies in astronomical data and network data, respectively. 
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2.1 Density Based Methods 

Density-based methods consider the underlying distribution of the input data and 

divide the data into high-density and low-density regions. The points which are lying in 

regions of low density are identified as outliers while the points that lie in the dense 

neighborhood are normal. These techniques estimate the density of the neighborhood of 

each point in the data. 

The popular and widely used density-based outlier detection algorithm is the 

Local Outlier Factor (LOF) introduced by Breunig 𝑒𝑡 𝑎𝑙. [8]. The main idea of LOF is 

based on the estimation of local density of the points. The local density of a point is 

computed using the reachability distance method. The reachability distance between two 

points 𝑥 and 𝑦 is interpreted as the maximum 𝑘-nearest neighbor distance from 𝑦 to its 

outermost point in 𝑦’s region and the distance from 𝑦 to 𝑥. The computed local density of 

the point is compared with the local densities of its neighbors. The data points which 

have lower local density than their neighbors are considered to be outliers. 

The local reachability density of 𝑥 is defined as 

 𝑙𝑟𝑑(𝑥) =  1 (
∑ 𝑟𝑒𝑎𝑐ℎ𝑑𝑖𝑠𝑡𝑘(𝑥, 𝑦)𝑦𝑁𝑘(𝑥)

|𝑁𝑘(𝑥)|
)⁄    Eq. 2-1 

where |𝑁𝑘(𝑥)| is the number of data points in 𝑥’s 𝑘-nearest neighbor regions and the Local 

outlier factor of 𝑥 is defined as 

 
𝐿𝑂𝐹𝑘(𝑥) =  

∑
𝑙𝑟𝑑(𝑦)

𝑙𝑟𝑑(𝑥)
𝑦𝑁𝑘(𝑥)

|𝑁𝑘(𝑥)|
 

  Eq. 2-2 

The data point which has a LOF score greater than 1 will be treated as an outlier. 
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Another widely used density-based algorithm is DBSCAN initially developed to 

cluster spatial systems with unrestricted cluster shapes [14]. DBSCAN algorithm takes 

into consideration the minimum number of points and a distance measurement to group 

together points that are close to each other. Usually, Euclidean distance is used as the 

distance measure. This algorithm requires two user specified parameters called 𝑒𝑝𝑠 and 

𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠. If the distance between two points is less than or equal to the 𝑒𝑝𝑠 value, then 

these points are added to the neighborhood. 𝑀𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 define the number of points to 

form a dense region. As this method depends on user specified parameters, it suffers from 

accuracy problems. For example, if 𝑒𝑝𝑠 value is too small, even the normal points are 

flagged as outliers, and if the 𝑒𝑝𝑠 value is too large, the outliers will be considered as 

normal points. On the other hand, choosing 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 also play important role in 

improving accuracy of the model. 

Additionally, many density-based techniques were developed as an extension to the 

LOF algorithm such as GridLOF algorithm [15], and Connectivity-based Outlier Factor 

(COF) [16]. 

2.1.1 Benefits and drawbacks of Density Based Methods 

The following are the benefits of density based [17] methods: 

1. Density-based methods are unsupervised in nature and can be readily used 

in a wide variety of applications. 

2. Specifically, the data sets which carry varying densities of data points are 

benefitted from identifying local outliers. 

The following are the drawbacks of density based [17] methods: 
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1. Determining the quality of reported outliers is a problem because these 

techniques do not consider the background knowledge of the domain.  

2. Additionally, these methods have high computational complexity, since 

these methods estimate the density of each point in their neighborhood. 

2.2 Distance Based Methods 

The distance-based methods are the oldest and most widely used methods for 

anomaly detection. In these techniques, each data point is analyzed with respect to its 

nearest neighbor. These techniques assume that outliers are the points with fewer than 

𝑘 nearest neighbors in the data, where a neighbor is an object that is within a distance. A 

distance or a similarity measure is required by these techniques to measure the distance 

between two data points and can be computed in different ways. Euclidean distance is a 

general choice for continuous variables, but other measures such as Manhattan distance, 

Mahalanobis distance, Minkowski distance and Cosine similarity can be used as 

suggested by Tan 𝑒𝑡 𝑎𝑙. [18]. For categorical attributes, simple matching coefficient is 

used as described in Boriah 𝑒𝑡 𝑎𝑙. [19]. 

Knorr 𝑒𝑡 𝑎𝑙. [20] firstly introduced the concept of distance-based outlier. 

According to the authors, a data point 𝑝 is an outlier if at least a fraction of the data 

points in the data set lie greater than some distance 𝑑 from 𝑝. This definition was later 

extended to include a predefined number of points in a neighborhood and measure the 

distance of a point to its 𝑘𝑡ℎ nearest neighbor, called as the 𝑘-nearest neighbor method. 

Dang 𝑒𝑡 𝑎𝑙. [21] presented a 𝑘-nearest neighbor approach to detect outliers in large scale 

traffic data collected from some cities. They considered for any data point 𝑝 which 

satisfies the condition 𝐷𝐾  (𝑝)  >  𝑡, where 𝑡 is some threshold as an outlier. The authors 
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use Euclidean distance to compute the distance between the points. Shirazi 𝑒𝑡 𝑎𝑙. [22] 

proposed a combination of two outlier detection techniques called SF-KNN and SUS-

KNN based on the best selected features and 𝑘-nearest neighbor algorithm to detect 

network intrusions like U2R and R2L. 

Furthermore, the performance of distance-based methods highly depends on the 

distance or similarity measure adopted. 

2.2.1 Benefits and drawbacks of Distance Based Methods 

The following are the benefits of distance-based methods [17]: 

1. As in the case with density-based methods, the distance-based methods are 

unsupervised in nature, purely data driven and do not make any 

background assumptions of the data. 

2. By employing an appropriate distance metric, these techniques can be 

applied on data sets containing mixed attribute types. 

The following are the drawbacks of distance-based methods [17]: 

1. Like the density-based methods, determining the quality of reported 

outliers is challenging. 

2. These techniques will fail in detecting outliers if there is not enough 

similar data. 

3. Defining a distance metric for complex data sets containing unstructured, 

semi-structured and structured data could be challenging. 

2.3 Contextual Based Methods 

Contextual outliers also known as conditional outliers are outliers in a specific 

context but not otherwise [23]. The context is defined by the domain knowledge or by the 
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structure in the data set and must be specified before applying. Two different attributes; 

i.e. contextual attributes and behavioral attributes, are used for defining a data point. To 

define a context for a particular data point, the contextual attributes are used. The best 

examples are the latitude and longitude of a location in spatial data and time in temporal 

data. The non-contextual characteristics of a data point are defined by the behavioral 

attributes. For example, drinking water conditions at any location is a behavioral attribute 

in spatial data. 

The behavioral attributes are used within a specific context to detect any outlier 

behavior. In a specific context, a point may be a contextual outlier, but if we consider 

behavioral attributes, the same point might be normal in a different context. This property 

is key in classifying contextual and behavioral attributes for finding contextual outliers. 

One such example of a contextual outlier is the different temperatures recorded in 

summer and winter seasons at a specific place. A temperature of 30°𝐹 in the summer 

would be an outlier at that place, but the same temperature would be normal in winter. 

Here, contextual attributes are winter, and place and the behavioral attribute is 

temperature. 

Contextual outliers are usually explored in streaming data [24], spatial data [25] 

and image recognition [26]. Wei 𝑒𝑡 𝑎𝑙. [27] identified contextual outliers using a 

hypergraph based on the frequent item sets in the data. They grouped together objects 

containing frequent item sets denoted by hyperedge and designed a deviation score to 

compute the outlier aspect of the data in a particular attribute with respect to hyperedge. 

A data point is an outlier if the deviation score of that point is below some threshold 𝜃. 
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The other contextual outlier detection studies include the one proposed by Valko 

𝑒𝑡 𝑎𝑙. [28]. They used soft harmonic solutions to detect contextual mislabeled anomalies. 

Regularization methods were used to avoid detection of isolated and distribution 

boundary instances. Wang 𝑒𝑡 𝑎𝑙. [29] introduced a method using random walks without a 

priori contextual information to mine the context and outliers automatically. 

The significance of the contextual outliers in the target application domain 

determines the choice of applying these techniques. 

2.3.1 Benefits and drawbacks of Contextual Based Methods 

The following are the benefits of contextual based methods [17]: 

1. Contextual based approaches are applicable to real-world problems where 

the data tends to be similar within a context. 

The following are the drawbacks of contextual based methods [17]: 

1. These techniques depend on the contextual attributes, and it may be 

challenging to define the context for every application area. 

2. In high dimensional spaces, the contexts become sparse. 

2.4 Bayesian Network Based Methods 

Bayesian networks are frequently used in multi-class outlier detection problems. 

Bayesian networks are directed acyclic graphical model for depicting probabilistic 

relationships among a set of variables and come under classification-based methods. For 

a given data point, the Bayesian networks estimate the probability of observing a class 

label from a set of normal class labels and the outlier class label. The data point with the 

largest posterior probability is chosen as the predicted class. Due to its graphical 
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representation of the relationships and strong inference mechanism, Bayesian networks 

attract a great number of researchers for various applications. 

Babbar 𝑒𝑡 𝑎𝑙. [30] proposed an anomaly detection method using two probabilistic 

association rules derived from Bayesian networks. They based these rules on two 

different situations occurring in joint probability distribution; i.e. low prior - high 

posterior probability and high prior - low posterior probability. Nicholas 𝑒𝑡 𝑎𝑙. [31] 

presented a two-stage Bayesian model to detect outliers in social networks. Conjugated 

Bayesian models are used in the first stage to judge normality of behavior by tracking the 

pairwise links of all the nodes in the graph. Standard network inference tools are applied 

in the second stage on a reduced subset of potentially outlier nodes. Rashidi 𝑒𝑡 𝑎𝑙. [32] 

presented a technique to identify outliers in categorical data sets using Bayesian networks 

and attribute value combinations. An AD Tree structure was used to store attribute value 

combinations. 

Wong 𝑒𝑡 𝑎𝑙. [5] developed a method for detecting disease outbreaks using 

Bayesian networks. In this approach, the authors form a probabilistic relation between 

attributes of environmental set which consists of disease trends to attributes in the 

indicator set which contain all other attributes. The outlier patterns which cause disease 

outbreaks are identified by comparing the test data against the already established disease 

patterns. Masood 𝑒𝑡 𝑎𝑙. [33] and Malhas 𝑒𝑡 𝑎𝑙. [34] proposed an iterative model to use 

multiple probabilistic interesting aspect measures to mine anomalous patterns from 

Bayesian networks. Specifically, they used contingency tables to calculate probabilities. 

2.4.1 Benefits and drawbacks of Bayesian Network Based Methods 

The following are the benefits of Bayesian network-based methods: 
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1. Mining genuine outliers are possible because Bayesian networks 

encapsulate the background knowledge of the domain. 

2. The testing phase is fast and is a powerful tool to differentiate between 

instances of different classes. 

3. The conditional independence properties and joint probability distributions 

provide an easy explanation of why an identified data instance is an 

outlier.  

The following are the drawbacks of Bayesian network-based methods: 

1. The joint probabilities between data points will become increasingly 

similar as the dimensionality increases, which could lead to high false 

positive rates. 

2.5 Subspace Based Methods 

New challenges have been introduced due to ever increasing volume and 

dimensionality of the data sets. Due to the curse of dimensionality as described by 

Aggarwal 𝑒𝑡 𝑎𝑙. [35], the existing outlier detection methods fail to perform well when 

directly applied to the full attribute space in high dimensional data. Thus, identifying the 

outliers in selected features in low dimensions can be used as an alternate approach to 

solve high dimensionality problems. The subspace outlier detection techniques aim to 

discover outliers deviating from the majority in some selected attribute feature space. 

The subspace selection and outlying measurement design are two major 

components in subspace outlier detection. Based on the challenges encountered in high 

dimensional data, many researchers proposed subspace selection methods to select 

meaningful subspaces. Aggarwal 𝑒𝑡 𝑎𝑙. [35] discovered that all the points to be 



20 

equidistant in high dimensional data with no distinction among them proposed a method 

to search lower dimensional subspaces for outliers. Knorr 𝑒𝑡 𝑎𝑙. [36] introduced the 

concept of determining strong and weak outliers in minimal subspaces and also explain 

why an identified point is an outlier. 

Additionally, the number of subspaces available is directly proportional to the 

number of attributes in the data set; i.e. as the number of attributes increases, the number 

of subspaces also increases. Therefore, to solve this problem, several methods have been 

proposed. Keller 𝑒𝑡 𝑎𝑙. [37] proposed to select subspaces with high contrast using 

statistical approaches. Lazarevic 𝑒𝑡 𝑎𝑙. [38] proposed the idea to mine outliers by 

randomly sampling the feature set to obtain subspaces of varying sizes. Furthermore, 

Aggarwal 𝑒𝑡 𝑎𝑙. [35] developed a method to determine the outliers in subspaces by 

identifying the exact number of attributes required to form a subspace. Another example 

is that Kriegel 𝑒𝑡 𝑎𝑙. [39] designed a method to select subspaces according to the nearest 

neighbors to mine the outliers. Cherbrolu 𝑒𝑡 𝑎𝑙. [40] and Wang 𝑒𝑡 𝑎𝑙. [41] built an 

intrusion detection system by selecting important features using Markov blanket model 

and decision trees. Bayesian networks and regression trees are used to create an intrusion 

detection model. Duan 𝑒𝑡 𝑎𝑙.  [42] introduced a method to find high contrast subspaces to 

mine meaningful outliers. Joshi 𝑒𝑡 𝑎𝑙. [43] developed a method to determine a set of 

contiguous subspaces to search for similar outliers. 

2.5.1 Benefits and drawbacks of Subspace Based Methods 

The following are the benefits of subspace-based methods: 

1. Subspace-based techniques automatically reduce high dimensional space 

to low dimensional space by selecting a subset of relevant features. 
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2. These techniques can be used in both supervised and unsupervised 

models. 

The following are the drawbacks of subspace-based methods: 

1. Subspace-based techniques typically have high computational complexity. 

2.6 Summary 

This chapter highlighted the existing research in outlier detection domain that is 

related to this thesis. Following the introduction, this chapter discussed the four main 

outlier detection techniques that are available in the literature: density-based, distance-

based, contextual-based and Bayesian network-based. Additionally, we also discuss a 

special outlier detection technique known as subspace outlier detection. This was 

followed by describing the strengths and weaknesses of each technique and their 

applications in the literature.
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CHAPTER 3 

 

BAYESIAN NETWORK MODELS 
 

Bayesian networks are directed acyclic graphs which provide a graphical 

schematic to represent the underlying probabilities that define the associations between 

attributes of some data. Bayesian networks are a universal tool for modeling and 

reasoning under uncertainty in machine learning research. Since the domain information 

is not always available in many real-world problems leading to uncertain and 

inappropriate conclusions, Bayesian networks use their inference scheme in such cases to 

find solutions which are possible. Additionally, Bayesian networks support structural and 

parameter learning as well as incorporate new evidences into the model. 

The rest of the Chapter is organized as follows. Section 3.1 briefly describes the 

concept of Bayesian networks and Bayes theorem along with an example. Key concepts 

such as dependency, independency and conditional independence in Bayesian networks 

are discussed in Section 3.2. Section 3.3 deals with joint probability distributions in 

Bayesian networks while Section 3.4 is focused on Markov blankets. Section 3.5 

describes Bayesian structure learning and scoring. Finally, Section 3.6 highlights the 

concept of hybrid Bayesian networks. 
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3.1 Bayesian Networks 

Bayesian networks are characterized by their use of probability distributions for 

handling the interdependencies between attributes. They have a directed acyclic graph 

consisting of nodes and arcs, with nodes representing the attributes and arcs representing 

the relation between the attributes. Two attributes connected using an arc are said to 

influence each other. The direction of the arc characterizes the parent and child nodes, 

which are interpreted as two attributes being dependent on each other. The two important 

components of a Bayesian network are structural representation of the model, and its 

underlying probability distribution. Probability allows to deal with uncertainty in real 

world problems, whereas structural models help in representing the real-world situations 

in a diagrammatic form making it simpler for the user to understand [44]. 

Figure 3-1 illustrates a simple Bayesian network. The nodes 𝐴 and 𝐶 are not 

connected to each other, indicating that they are mutually independent. Nodes 𝐶 and  𝐷 

are connected to each other with an arc directed from 𝐶 to 𝐷. This denotes that the node 

𝐶 is the parent and 𝐷 is the child. Similarly, 𝐸 is the child node of 𝐷. Additionally, 𝐷 is 

the child node with two parent nodes 𝐴 and 𝐶. 

 

Figure 3-1: Illustration of a simple Bayesian network. 
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The most important components of the Bayesian networks are the prior, posterior 

and the likelihood. Let us assume 𝐴 represents known attribute values while 𝑌 represents 

the class labels. The basic formula of the Bayes theorem is given as 

 𝑃(𝐴|𝑌) =
𝑃(𝑌|𝐴)𝑃(𝐴)

𝑃(𝑌)
  Eq. 3-1 

where, 𝑃(𝐴) and 𝑃(𝑌) are the probabilities of 𝐴 and 𝑌 irrespective of each other, 𝑃(𝑌|𝐴) 

is the probability of event 𝑌 given 𝐴 is true and 𝑃(𝐴|𝑌) is the vice versa. In terms of the 

cause and the effect, it can be restated as 

 𝑃(𝐶𝑎𝑢𝑠𝑒|𝐸𝑓𝑓𝑒𝑐𝑡) =
𝑃(𝐸𝑓𝑓𝑒𝑐𝑡|𝐶𝑎𝑢𝑠𝑒)𝑃(𝐶𝑎𝑢𝑠𝑒)

𝑃(𝐸𝑓𝑓𝑒𝑐𝑡)
 Eq. 3-2 

Here, 𝑃(𝐶𝑎𝑢𝑠𝑒) is the prior probability, 𝑃(𝐶𝑎𝑢𝑠𝑒|𝐸𝑓𝑓𝑒𝑐𝑡) is the posterior 

probability, and  
𝑃(𝐸𝑓𝑓𝑒𝑐𝑡|𝐶𝑎𝑢𝑠𝑒)

𝑃(𝐸𝑓𝑓𝑒𝑐𝑡)
 is the likelihood. Therefore,  

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑖𝑙𝑖𝑡𝑦 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑃𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 Eq. 3-3 

For concrete understanding of Bayesian networks, consider the following medical 

Bayesian network on cancer disease as shown in Figure 3-2. This Bayesian network has 

five binary attributes denoted by five circles with their respective names. The relational 

dependency between the attributes is represented by the directed arrows or arcs.  

According to this Bayesian network, the events of brain tumor and serum calcium, 

denoted by the nodes 𝐵 and 𝑆 respectively are caused by metastatic cancer, which is 

denoted by the node 𝑀. Here, 𝑀 is the parent node and 𝐵, 𝑆 are child nodes. Similarly, 

brain tumor causes severe headache and coma represented by the nodes 𝑆ℎ and 𝐶, 

respectively. Moreover, the event serum calcium also affects the event coma. Each node 

is associated with the unconditional (prior) and conditional probability (posterior) table. 

Each node represented in the network can take up two states, namely present, which is 
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denoted by 𝑝, and absent, which is denoted by 𝑎 except the node serum calcium which 

takes values increased denoted by 𝑖, and not increased denoted by 𝑛𝑖. The table for node 

𝑀 contains unconditional probability distributions because it does not have any parent 

nodes. For example, probability of metastatic cancer is 80% and absence of metastatic 

cancer is 20%. Since node 𝐵 is dependent on node 𝑀, it contains conditional probabilities 

indicating the probability of a brain tumor in the presence or absence of metastatic 

cancer. For example, the presence of metastatic cancer in the body causes a brain tumor 

with 5% chance. Likewise, the tables of other attributes 𝑆, 𝑆ℎ and 𝐶 contain similar 

information. 

 

Figure 3-2: Bayesian network representation of the cancer disease. 
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3.2 Bayesian Networks Independencies 

Key concepts such as dependency, independency and conditional independence 

among variables can be observed in Bayesian networks. Dependency is said to exist 

between two variables if one variable provides the predictive value for another variable. 

This is represented by an arc joining two nodes in the Bayesian network. For example, in 

Figure 3-2, we can predict the probability of brain tumor by knowing the state of 

metastatic cancer because a brain tumor is dependent on metastatic cancer. These are 

called dependent nodes. However, there are situations in the graph where the information 

does not flow directly between two nodes as they are not connected to each other. For 

example, the node age provides no information about the state of metastatic cancer in a 

person. This property is called independence [44], which is defined below. 

Definition 1- Independence: An attribute 𝑋 is said to be independent of another 

attribute 𝑌 corresponding to a probability distribution 𝑃 if and only if 

 𝑃(𝑋|𝑌) = 𝑃(𝑋) 𝑜𝑟 𝑖𝑓 𝑃(𝑌) = 0 Eq. 3-4 

 

 

Figure 3-3: Relational dependency between attributes metastatic cancer 𝑀 and brain 

tumor 𝐵. 

Apart from dependent and independent events, there exist situations in the graph 

where predictive information flows between two unconnected nodes through a third node. 
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These are called conditionally independent nodes [44]. For example, the knowledge of 

metastatic cancer determines the predictive value of a coma through a node brain tumor. 

Therefore, the two attributes metastatic cancer and coma are conditionally independent of 

each other given the knowledge of the brain tumor. The formal definition of conditional 

independency is given below. 

Definition 2-Conditional Independence: An attribute 𝑋 is said to be 

conditionally independent of attribute 𝑌 given another attribute 𝑍 corresponding to a 

probability distribution 𝑃 if and only if 

 𝑃(𝑋, 𝑌|𝑍)  = 𝑃(𝑋|𝑍)  ×  𝑃(𝑌|𝑍) Eq. 3-5 

 

 

Figure 3-4: Conditional independency between attributes metastatic cancer and coma 

given the brain tumor. 

3.3 Joint Probabilities in Bayesian Network 

Bayesian networks are the concise and compact graphical representations of joint 

probability distributions. If there are 𝑑 nodes in a Bayesian network denoted by 𝑋1 to 𝑋𝑑, 

then the joint probability distribution is given as 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑). 

Since a node in the Bayesian network is conditioned only on its parent node, the joint 
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probability distributions can be broken down using chain rule of probability in the 

following way [44]: 

 

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑)

=  𝑃(𝑋1 = 𝑥1) × 𝑃(𝑋2 = 𝑥2| 𝑋1 = 𝑥1) ×  …

× 𝑃(𝑋𝑑 = 𝑥𝑑| 𝑋1 = 𝑥1, … , 𝑋𝑑−1 = 𝑥𝑑−1) 

 

 

Eq. 3-6 

 

 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑) = ∏𝑃(𝑋𝑘 = 𝑥𝑘| 𝑃𝑎(𝑋𝑘))

𝑑

𝑘=1

 Eq. 3-7 

where 𝑃𝑎(𝑋𝑘) is the parent of 𝑋𝑘. 

For example, by using Eq. 3-7, we can compute the joint probability distribution 

of a situation 𝑃(𝑀 = 𝑝, 𝑆 = 𝑛𝑖, 𝐵 = 𝑎, 𝑆ℎ = 𝑝, 𝐶 = 𝑝) in Figure 3-2 as shown in Eq. 

3-8. This computation results in 22% probability of occurrence: 

 

𝑃(𝑀 = 𝑝, 𝑆 = 𝑛𝑖, 𝐵 = 𝑎, 𝑆ℎ = 𝑝, 𝐶 = 𝑝)

= 𝑃(𝑆 = 𝑖|𝑀 = 𝑝) × 𝑃(𝐵 =  𝑎|𝑀 = 𝑝)

× 𝑃(𝐶 = 𝑝|𝐵 = 𝑎, 𝑆 = 𝑛𝑖) × 𝑃(𝑆ℎ = 𝑝|𝐵 = 𝑎)

× 𝑃(𝑀 =  𝑝) = 22% 

 

 

 

Eq. 3-8 

3.4 Markov Blanket of Bayesian Networks 

Pearl [45] first introduced the concept of Markov blankets. In a Bayesian network, 

the Markov Blanket for node 𝑋𝑖 which we denote by 𝑀𝐵(𝑋𝑖) is a set of nodes composed 

of 𝑋𝑖’s parents, its children and its children’s other parents (spouses) as shown in Figure 

3-5 [46]. Formally, the definition of Markov blanket in a Bayesian network, or more 

general in a graph, is as follows: 
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𝑀𝐵(𝑋𝑖) = 𝑃𝑎(𝑋𝑖)⋃𝐶ℎ(𝑋𝑖) ⋃ 𝑃𝑎(𝑌)

𝑌 𝐶ℎ(𝑋𝑖)

 

 

 

Eq. 3-9 

where 𝑃𝑎(𝑋𝑖) is the parent node of 𝑋𝑖, 𝐶ℎ(𝑋𝑖) is the child node of 𝑋𝑖 and 𝑃𝑎(𝑌) denotes 

the other parents (spouses) of 𝑋𝑖’s child node. 

From Eq. 3-9, we can observe that the Markov blanket of attribute 𝑋𝑖 consists of 

just its parents, children and spouses and is independent of all the other attributes in the 

Bayesian network. Thus, these attributes are highly correlated and are sufficient to 

provide information about the attribute 𝑋𝑖. The other attributes in the network are 

unrelated to 𝑋𝑖. Thus, this property of the Markov blanket is helpful for causal discovery; 

i.e. to reduce the number of variables, an experimentalist must consider in order to 

discover the direct causes of 𝑋𝑖. 

 

Figure 3-5: Example of a markov blanket for node 𝑋𝑖 with 𝑌𝑖 as its parent nodes, child 

nodes and spouses. 
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3.5 Bayesian Network Structural Learning 

For learning the structure of the Bayesian network, two main approaches are used: 

constraint-based methods and score-based methods. 

Constraint-based algorithms first try to estimate whether certain conditional 

independencies between data hold true and then try to discover the network structure that 

best fit these constraints [47]. The estimations are performed using statistical or 

information theory measures. Moreover, in these approaches, the independence properties 

are separated from structural findings resulting in a single graphical output with clear 

semantics. However, it is difficult to optimize the network structure and find reliable 

conditional independence properties. The Incremental Association Markov Blanket 

(IAMB) algorithm is one of the examples of the constraint-based algorithms. It uses a 

forward selection scheme to discover the Markov blanket of the class label followed by 

an attempt to remove false positives [48], where the Markov blanket of a node is defined 

as the knowledge needed to predict the behavior of that node. 

Score-based approaches uses a scoring function to find the best value for the 

graph structure by searching through the space all possible structures [47]. Examples of 

score-based algorithms include Hill Climbing (HC) and Tabu search. Furthermore, the 

score-based approaches require a scoring function which gives a good score when the 

graph best fits the data. Several scoring functions have been developed to fit a wide 

variety of data such as Bayesian Dirichlet (BD) criterion, Bayesian information criterion 

(BIC), Akaike information criterion (AIC), K2 and Loglik scoring function. 

Bayesian Dirchlet (BDe) scoring function: Heckerman 𝑒𝑡 𝑎𝑙. [49] proposed this 

scoring function. Given a directed acyclic graph 𝐺, it makes four assumptions on 
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parameter independence, parameter modularity, uniformity of prior distributions, and 

lack of missing values. The equation below represents the BD score function, where 𝐷 

denotes the data, 𝜏 denotes a gamma function, 𝑃(𝐺) the prior probability of the network, 

and 𝑁𝑖𝑗
′  denote the hyperparameters of the network. 

 𝐵𝐷(𝐺, 𝐷) = log(𝑃(𝐺)) + ∑∑(log (
𝜏(𝑁𝑖𝑗

′ )

𝜏(𝑁𝑖𝑗 + 𝑁𝑖𝑗
′ )

) + ∑ log (
𝜏(𝑁𝑖𝑗𝑘 + 𝑁𝑖𝑗𝑘

′ )

𝜏(𝑁𝑖𝑗𝑘
′ )

)

𝑟𝑖

𝑘=1

)

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 Eq. 3-10 

Since the 𝑁𝑖𝑗
′  are quite difficult to compute, an additional assumption of 

likelihood equivalence is considered resulting in the BDe scoring function given by  

 𝑃(𝐺, 𝐷) = log(𝑃(𝐺)) × ∏∏(
𝜏(𝑁𝑖𝑗

′ )

𝜏(𝑁𝑖𝑗 + 𝑁𝑖𝑗
′ )

× ∏
𝜏(𝑁𝑖𝑗𝑘 + 𝑁𝑖𝑗𝑘

′ )

𝜏(𝑁𝑖𝑗𝑘
′ )

𝑟𝑖

𝑘=1

)

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 Eq. 3-11 

where 𝑁𝑖𝑗𝑘
′ = 𝑁′ × 𝑃(𝑋𝑖 = 𝑥𝑖𝑘, ∏ =𝑋𝑖

𝑤𝑖𝑗|𝐺) [49].  

K2 scoring function: This is one of the first Bayesian scoring functions proposed 

by Cooper and Herskovits [50]. It is a particular case of Bayesian Dirichlet with the 

uninformative assignment 𝑁𝑖𝑗𝑘
′ = 1 which corresponds to the zero pseudo-counts. Since 

𝜏(𝑐) = (𝑐 − 1)! with 𝑐 being an integer, and 𝜏 denotes a gamma function. The K2 score 

can be expressed as follows: 

 𝐾2(𝐺, 𝐷) = log(𝑃(𝐺)) + ∑∑(log (
(𝑟𝑖 − 1)!

(𝑁𝑖𝑗 + 𝑟𝑖 − 1)!
) + ∑ log(𝑁𝑖𝑗𝑘!)

𝑟𝑖

𝑘=1

)

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 Eq. 3-12 

Loglik scoring function: This score is the logarithm of the likelihood of data 

𝐷 given the network 𝐺. It is obtained by log(𝑃(𝐺(𝐷))) = −𝐿(𝐷|𝐺). 

The Loglik score is computed using the following equation: 
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 𝐿𝐿(𝐷|𝐺) = ∑∑∑ 𝑁𝑖𝑗𝑘 log (
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗
)

𝑟𝑖

𝑘=1

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 Eq. 3-13 

From the above equation, we can see that maximizing Loglik function of the 

network minimizes the information content of the data. 

3.6 Hybrid Bayesian Networks 

In general, a Bayesian network learns from the data which is either fully discrete 

(categorical) or fully continuous. However, a Hybrid Bayesian Network can learn a 

network on both discrete and continuous variables [51]. Compared to standard Bayesian 

networks, Hybrid Bayesian networks are useful in wider applications consisting of 

attributes of different types and they can model the true distribution of the data without 

discretization.  

Consider a directed acyclic graph 𝐺 and its probability distribution 𝑃𝑘 =

 𝑃(𝑠𝑘|𝑝𝑎𝑘), where 𝑝𝑎𝑘 is the set of parent nodes of 𝑠𝑘. Assume 𝐶 is the set of attributes 

partitioned into discrete attributes denoted by ◆ and continuous attributes denoted by . 

Therefore, a Hybrid Bayesian Network 𝐻 = (𝐶, 𝑃) is defined over this graph 𝐺 by the 

conditional distribution of continuous attributes from the Gaussian model which is 

represented as 

 𝑃(𝑠𝑘|𝐾 = 𝑘, 𝐿 = 𝑙) = 𝑁(𝛼(𝑘)  +  𝛽(𝑘) ×  𝑧, 𝛾(𝑘)) 𝑠𝑘 ∈   Eq. 3-14 

where 𝐾 and 𝐿 are the set of discrete and continuous parents of 𝑠𝑘, respectively, and 𝑁 

represents multi-variate normal distribution with mean µ and standard deviation 𝜎. 

An example of Hybrid Bayesian Network is shown in Figure 3-6. The attributes 

Account Balance and Creditability are discrete or categorical attributes represented by 

round boxes, whereas Credit Amount and Duration of Credit are continuous attributes 
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represented by square boxes. The attribute Account Balance contains prior probabilities of 

two states, namely low, and high, whereas attribute Creditability contains conditional 

probabilities in its states, good and bad conditioned on its parent attribute Account Balance. 

Conversely, for the continuous attribute Credit Duration, the information is denoted with 

mean µ and standard deviation 𝜎. For attribute Credit Amount, the probability density 

function is given by Eq. 3-14. 

 

 

 

Figure 3-6: Example of Hybrid Bayesian Network. 
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CHAPTER 4 

 

METHODOLOGY 
 

This chapter describes the procedure to determine the meaningful outliers in the 

set of subspaces. We analyze such a set of subspaces to provide hints about why the 

outliers might be occurring. Our methodology uses Maximal Information Coefficient and 

Markov blankets of Hybrid Bayesian Networks (HBN) to determine subspaces. Hybrid 

Bayesian Network allows us to define contextual information using joint probabilities. 

We then combine these joint probability distributions and angle-based similarity measure 

to determine and explain the outliers in the data set containing both categorical and 

continuous attributes. We base this approach on the hypothesis that true and meaningful 

outliers are likely to be identified in highly correlated feature subspaces by considering 

both contextual information and similarity of the data points. 

This chapter provides a detailed overview of the proposed methodology, and the 

specific aims of this work. Beginning with a discussion of the concepts relating to 

Markov blankets and angle-based similarity measure, we then provide a detailed 

explanation of the developed algorithm followed by a description of the data set used. 

4.1 Specific Aims 

The specific aims of this thesis are as follows: 
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1. Determining a set of highly correlated subspaces from full attribute space to 

analyze the outliers. 

2. Derive an outlier score to identify the data points that violate both the contextual 

beliefs and neighborhood criteria. 

3. Summarize the collected information for each detected outlier and identify the 

corresponding subspaces for those outliers. 

4. Lastly, examine the subspaces computed in the previous steps and provide 

insights on why a given point is labeled an outlier. 

4.2 Feature Selection using Maximal Information Coefficient 

Maximal Information Coefficient (MIC) is a feature selection method which is 

used to determine the correlation between two attributes in the data set [52]. It is capable 

of measuring both linear and non-linear relationships between the attributes. The basic 

idea behind MIC is that it depends on the mutual information between two attributes to 

measure the degree of their relationship. MIC reveals the dependency between attributes 

and evaluate their statistical importance and rank them according to the strength of the 

relationship by representing the mutual information scores in the range of 0 and 1. 

Additionally, MIC searches for an ideal number of bins in such a way that mutual 

information between attributes is maximized, thereby avoiding user-specified bins. Also, 

the values of MIC are not influenced by presence of outliers in the data set. 

The Maximal Information Coefficient between two attributes 𝐹 and 𝐿 denoted by 

𝑀𝐼𝐶(F, L) in a data set 𝐷 is determined by computing the mutual 

information 𝐼(𝐹, 𝐿) normalized by the minimum entropy of F and L. This is represented 

as 
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𝑀𝐼𝐶(𝐹, 𝐿) =

𝐼(𝐹, 𝐿)

𝑚𝑖𝑛{H(F), H(L)}
 

 

Eq. 4-1 

The above Eq. 4-1 can be further simplified into the following: 

 𝑀𝐼𝐶(𝐹, 𝐿) =
𝐻(𝐹) − 𝐻(𝐹|𝐿)

min{H(F), H(L)}
=

𝐻(𝐿) − 𝐻(𝐿|𝐹)

min{H(F), H(L)}
 Eq. 4-2 

where 𝐻(F|L) is the conditional entropy. 

Conditional entropy describes the amount of evidence required to estimate the 

outcome of F given the value of L. If 𝑀𝐼𝐶(𝐹, 𝐿) = 0, then 𝐹 and 𝐿 are statistically 

independent, and if 𝑀𝐼𝐶(𝐹, 𝐿) = 1, then 𝐹 and 𝐿 are statistically dependent. 

4.3 Subspace Discovery using Markov Blankets 

As described in Chapter 3, Markov blankets were initially presented by Pearl [45]. 

In this section, we provide an explanation for Markov blankets and its characteristics, 

followed by the reasoning for choosing Markov blankets for subspace selection. 

Assume a training data set that contains 𝑛 samples and 𝐷 attributes. Let 𝐺 be a 

directed acyclic graph through which joint probability distributions 𝑃 are learned. Then, a 

Bayesian network 𝐵 satisfies the Markov condition if every attribute in the Bayesian 

network is conditionally independent of its non-descendant attributes conditioned on its 

parents [45]. Therefore, if 𝑃𝑎(𝐷𝑖) is the set of parents of 𝐷𝑖 in 𝐵, then the joint 

probability 𝑃 is represented as 

 𝑃(𝐷) = ∏𝑃(𝐷𝑖| 𝑃𝑎(𝐷𝑖))

𝑑

𝑖=1

 

 

Eq. 4-3 
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Definition 1-Bayesian Faithfulness: A Bayesian network 𝐵 is said to be faithful 

to its probability distribution 𝑃 if and only if every conditional independency present in 𝑃 

is also present in 𝐵. 

Definition 2-Markov Blanket (Graphical view point): From the faithfulness 

definition, the Markov blanket of an attribute 𝐷 in the Bayesian network 𝐵 is the set of 

𝐷’s parents, children, and its children’s other parents (spouses). 

 𝑀𝐵(𝐷) = 𝑃𝑎(𝐷)⋃𝐶ℎ(𝐷)⋃𝑆𝑝(𝐷) 

 

Eq. 4-4 

Definition 3-Markov Blanket (Probability view point): From the faithfulness 

definition, the Markov blanket of an attribute 𝐷 in the Bayesian network 𝐵 is a minimal 

set of attributes conditioned on 𝐷 that make 𝐷 statistically independent from all the 

remaining attributes. 

 𝑃(𝐷|𝑀𝐵(𝐷))  =  𝑃(𝐷|𝑃𝑎(𝐷)) ∏ 𝑃(𝑍𝑗|𝑃𝑎(𝑍𝑗))

𝑍𝑗𝐶ℎ(𝐷)

 

 

Eq. 4-5 

From the above discussion, we conclude that the Markov blanket of each attribute 

will be unique when a Bayesian network satisfies the faithfulness condition and is thus 

suitable for forming a subspace. 

Definition 4-Markov Blanket Subspace: A subspace that consists of an attribute 

and its parents, children, and spouses.  

Figure 4-1 shows an example of Bayesian network consisting of nine attributes of 

a person having diabetes [9]. If Diastolic blood pressure is the attribute of interest, then 

one might wish to determine the value of this attribute given some assignment of values 

to the other attribute in the domain. However, using the Markov blanket concepts, we can 

eliminate all irrelevant attributes and consider attributes that are highly correlated with 
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Diastolic blood pressure. The parent of Diastolic blood pressure is {Diabetes} and the set 

of children is {Plasma Glucose Concentration, Serum Insulin}. The spouse of the 

children is {Diabetes}. Therefore, the Markov blanket of the attribute Diastolic blood 

pressure is the set {Diabetes, Plasma Glucose Concentration, Serum Insulin}. This 

blanket is depicted in Figure 4-1. For the attribute Diastolic blood pressure, knowledge 

about other attributes become irrelevant if we know {Diabetes, Plasma Glucose 

Concentration, Serum Insulin} because the blanket shields Diastolic blood pressure from 

the effects of those attributes outside it. 

 

Figure 4-1: A Bayesian network for diabetes. The darker nodes indicate the Markov 

blanket of attribute Diastolic blood pressure. 

In general, the number of subspaces increases exponentially with an increase in 

dimensionality; i.e. given 𝑑 attributes, there are 2𝑑 − 1 subspaces. Since a Markov 

blanket provides meaningful information for any attribute, we can directly form a highly 

correlated subspace using the Markov blanket instead of searching through 2𝑑 − 1 

possible subspaces. 
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4.4 Angle Based Similarity Measure 

One of the problem we try to address in this thesis is the problem of sparse 

contexts in high dimensional data. For this purpose, we use the angle-based similarity 

measure to compare the data points in high dimensional space because standard distance 

metrics such as Euclidean distance and Manhattan distance become meaningless with 

increasing high-dimensional space causing the methods to lose their accuracy. Therefore, 

in high dimensions, the angles are more stable than the distances. 

In this section, we present the general idea of the angle-based similarity measure 

[53] to score data points. Consider a point 𝐴 in the data set for which we must determine 

the similarity measure. For that given point 𝐴, examine the cosine angle between the 

vectors AX⃗⃗⃗⃗  ⃗ and AY⃗⃗⃗⃗⃗⃗  for every pair of points 𝑋, 𝑌 in the data. Then, this cosine angle is 

inversely weighted by the distance between the points to obtain a spectrum of angles. 

Then the variance in the spectrum of this angle is measured by varying the data points 𝑋 

and 𝑌, while keeping the value of 𝐴 fixed. The data points with the smaller variance of 

angles are considered as outliers. 

 𝐴𝐵𝑆𝑀(𝐴)  =  𝑉𝐴𝑅𝑋,𝑌𝐷 (
(𝐴𝑋̅̅ ̅̅ ,    𝐴𝑌̅̅ ̅̅ )

‖𝐴𝑋̅̅ ̅̅ ‖2.   ‖𝐴𝑌̅̅ ̅̅ ‖2 
) 

 

Eq. 4-6 

4.5 Mining Outliers in Markov Blanket Subspaces of Hybrid Bayesian Networks 

Figure 4-2 shows an outline of the proposed methodology for mining outliers 

with the following steps: 

1. Perform feature selection using Maximal Information Coefficient. 

2. Construct a Hybrid Bayesian Network on the complete attribute space of the 

selected features. 
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3. Now for each attribute in the Hybrid Bayesian network, identify its Markov 

blanket subspaces. 

4. Build a Hybrid Bayesian network for each Markov blanket subspace. 

5. For pure categorical case in each Markov blanket subspace, compute the score 

using joint probability distributions for each instance. 

6. For pure continuous case in each Markov blanket subspace, compute the outlier 

score for each instance using angle-based similarity measure. 

7. Compute the final score of a data point by adding the scores obtained from joint 

probability distributions and angle-based similarity measure. 

8. Identify the data points with the lowest scores and report them as outliers. 
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Figure 4-2: Outline of the proposed methodology for outlier detection. 

4.5.1 Hybrid Bayesian Networks Learning 

This section presents the approaches to learn Hybrid Bayesian Networks for a 

Markov blanket subspace. From the discussion in Section 4.3, we know that the Markov 

blanket of an attribute consists of its parents, children, and its children’s other parents 

(spouses). Therefore, we use this definition to construct local Hybrid Bayesian networks 



42 

in a Markov blanket subspace. First, we learn a Hybrid Bayesian network on full attribute 

space and then from that structure, we identify subspaces using Markov blankets and 

build a Hybrid Bayesian Network for that subspace. 

4.5.1.1 Structural Learning 

In order to learn the Hybrid Bayesian Network, we use the Deal package in R 

[54]. Deal can learn the graph from a data set containing both categorical and continuous 

attributes. To learn the network, we apply greedy search with random restarts. 

Greedy search works as follows:  

1. The search is started by selecting an initial DAG 𝐺0. 

2. The Bayes factors are calculated between 𝐺0 and all the likely networks by 

varying one arrow at a time, that is  

a. One arrow is added to 𝐺0. 

b. One arrow is deleted in 𝐺0. 

c. One arrow is reversed in 𝐺0. 

3. The network with the highest Bayes factor among all networks is selected. 

4. The search is stopped when the Bayes factor does not increase. Otherwise, 

the network 𝐺0 is chosen and the procedure is repeated from Step 2. 

We use the ratio of posterior odds for comparing the network scores of two 

different DAG’s, 𝐺0 and 𝑔 given data D, where 𝑃(𝐺0)/𝑃(𝑔) is the prior odds and 

𝑃(𝑔|𝐷)/𝑃(𝐺0|𝐷) is the Bayes factor. 

 
𝑃(𝐷|𝐺0)

𝑃(𝐷|𝑔)
=

𝑃(𝐺0)

𝑃(𝑔)
×

𝑃(𝑔|𝐷)

𝑃(𝐺0|𝐷)
 Eq. 4-7 

Restarts can also be used with the search algorithm by disturbing the initial 

network according to the parameters and then starting the search with the disturbed 
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network. This procedure can be restarted multiple times given the restart option. Finally, 

after searching, a group of all the visited networks is returned. In this way, we obtain a 

Bayesian Network with the highest network score for the mixed data types. 

4.5.1.2 Parameter Learning 

In our work, we use maximum likelihood estimation for parameter learning in 

Hybrid Bayesian Networks [43]. For a data set 𝐷 and a Bayesian network 𝐵, the goal of 

maximum likelihood estimation is to select parameters 𝜃 that satisfy the following 

equation: 

 𝐿(𝜃∗ ∶ 𝐷|𝐵) = 𝑚𝑎𝑥𝜃𝛩𝐿(𝜃: 𝐷|𝐵) 

 

Eq. 4-8 

The parameter 𝛩 is in the range of 0 and 1. Through the Markov condition of 

Bayesian networks, the likelihood 𝐿(𝛩:𝐷) can be stated as follows: 

 𝐿(𝜃: 𝐷|𝐵)  =  ∏𝐿𝑖(𝜃𝑂𝑖|𝑃𝑎𝑂𝑖
: 𝐷|𝐵)

𝑖

 

 

Eq. 4-9 

where 𝑂𝑖 is the local likelihood function which is given as 

 𝐿(𝜃𝑂𝑖|𝑃𝑎𝑂𝑖
: 𝐷) = ∏𝑃(𝑂𝑖

𝑗
|𝑃𝑎𝑂𝑖

𝑗
: 𝜃𝑂𝑖|𝑃𝑎𝑂𝑖

)

𝑗

 

 

Eq. 4-10 

From the data set 𝐷 and Bayesian network structure 𝐵, 𝐿(𝜃: 𝐷|𝐺) is reduced to 

approximating 𝜃𝑖𝑗𝑘 = 𝑃(𝑂𝑖 = 𝑗|𝑃𝑎(𝑂𝑖) = 𝑘), that is, the maximum likelihood estimates 

are simply the observed frequency estimates 𝜃𝑖𝑗𝑘 = 𝑛𝑖𝑗𝑘/𝑛𝑖𝑗 ,where 𝑛𝑖𝑗𝑘 is the number of 

occurrences in the training set of the 𝑘𝑡ℎ state of 𝑂𝑖 with the 𝑗𝑡ℎ state of its parents, and 

𝑛𝑖𝑗 is the sum of 𝑛𝑖𝑗𝑘 over all 𝑘. 

4.5.1.3 Learning Local Hybrid Bayesian Networks in MB Subspaces 

Assume a directed acyclic graph 𝐷𝐴𝐺(𝐺) is derived from the Markov blanket 

subspace of attribute 𝐺. Similarly, 𝐷𝐴𝐺(𝑌) is derived from the Markov blanket subspace 
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of attribute 𝑌. If 𝑌 ∈ 𝑃𝐶(𝐺), 𝐺 ∈ 𝑃𝐶(𝑌), and an arc 𝑌 → 𝐺 is in 𝐷𝐴𝐺(𝐺), then the arc 

𝑌 → 𝐺 must be in 𝐷𝐴𝐺(𝑌). 

Therefore, by using this strategy, the direction of the arcs between the attributes 

will be consistent in each local Bayesian network. This leads to a consistent joint 

probability distribution for each attribute. 

For understanding, consider the example in Figure 4-1. We could generate two 

different Bayesian networks for attributes Diastolic Blood Pressure and Triceps Skinfold 

Thickness as shown in Figure 4-3. The direction of the arcs between Diastolic Blood 

Pressure and Skinfold Thickness should be constant in both the Bayesian networks. 

 

Figure 4-3: Bayesian networks in the Markov blanket subspaces. 

4.5.2 Mining Outliers 

In this section, a measure to discover the outliers in the Markov blanket subspaces 

of a Hybrid Bayesian Network is presented. Since the Hybrid Bayesian Network captures 

the contextual beliefs of the data in a probabilistic manner, it is natural to use joint 

probability distributions as a measure to detect the outliers. Furthermore, to overcome the 

problem of sparse contexts, we employ an angle-based similarity measure. Therefore, the 
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overall score for a data point is formed by combining its joint probabilities and angle-

based similarity measure. 

As the method utilizes a Hybrid Bayesian Network to capture causal relations in a 

mixed attribute data set, there exist three types of relationships among the attributes 

which are described below. 

Pure categorical case: A subspace where categorical parent nodes are 

conditioned on categorical child nodes. The symbol 𝐶𝑆◆ is used to represent a set of 

causal subspaces involving pure categorical case. The notation |𝐶𝑆◆| represents the 

overall number of categorical subspace. 

Pure continuous case: A subspace where continuous parent nodes are 

conditioned on continuous child nodes. The symbol 𝐶𝑆𝜏 is used to represent a set of 

causal subspaces involving pure continuous case. The notation |𝐶𝑆𝜏| represents the 

overall number of continuous subspaces. 

Mix of categorical and continuous case: A subspace where categorical and 

continuous parents are conditioned on a continuous child node. The symbol 𝐶𝑆𝜆 is used to 

represent a set of causal subspaces involving a mixed case. The notation |𝐶𝑆𝜆| represents 

the overall number of mixed attribute subspaces. 

In a Hybrid Bayesian Network, for each Markov blanket subspace with pure 

categorical case 𝐶𝑆𝑖 ∈ 𝐶𝑆◆, the score of 𝐶𝑆𝑖 is formed using Eq. 4-11. This score is 

calculated by multiplying posterior probability with the prior probability: 

 𝑆𝑐𝑜𝑟𝑒◆ (𝐶𝑆𝑖)(𝑖∈𝐶𝑆
◆

) = 𝑃(𝐶|𝑃𝑎(𝐶)) × 𝑃(𝑃𝑎(𝐶)) Eq. 4-11 

Therefore, the final score of each point 𝑛 in all the categorical subspaces is 

calculated by the following Eq. 4-12. 
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 𝑆𝑐𝑜𝑟𝑒◆(𝑛𝐶𝑆
◆
) = ∑ 𝑆𝑐𝑜𝑟𝑒◆(𝐶𝑆𝑖)

|𝐶𝑆
◆

|

𝑖=1

 

 

Eq. 4-12 

For causal subspace with pure continuous case 𝐶𝑆𝑗 ∈ 𝐶𝑆𝜏, the concept of angle-

based similarity is used which is represented by Eq. 4-13. This method works by taking 

each observation and computing cosine similarities between all pairs of points. 

Observations with the smallest variance of these similarities are the outliers. 

 𝑆𝑐𝑜𝑟𝑒𝜏(𝐶𝑆𝑗)(𝑗∈𝐶𝑆𝜏) = 𝑉𝐴𝑅𝑥,𝑦 𝐷 (
(𝑛𝑗𝑥̅̅ ̅̅ ,   𝑛𝑗𝑦̅̅ ̅̅ )

‖𝑛𝑗𝑥̅̅ ̅̅ ‖
2
 ‖𝑛𝑗𝑦̅̅ ̅̅ ‖

2
 
) Eq. 4-13 

Therefore, the final score of each point 𝑛 in all the continuous subspaces is 

calculated by the following Eq. 4-14: 

 𝑆𝑐𝑜𝑟𝑒𝜏(𝑛𝐶𝑆𝜏
) = ∑ 𝑆𝑐𝑜𝑟𝑒𝜏(𝐶𝑆𝑗)

|𝐶𝑆𝜏|

𝑗=1

  Eq. 4-14 

For causal subspaces with mixed attribute case, 𝐶𝑆𝑘 ∈ 𝐶𝑆𝜆, we proceed to use the 

angle-based similarity measure to compute the score for each data point. For this purpose, 

the categorical attributes are converted to binary values using one-hot encoding and the 

continuous attributes are normalized in the range of 0 and 1. The score of mixed attribute 

case is represented in Eq. 4-15: 

 𝑆𝑐𝑜𝑟𝑒𝜆(𝑛𝐶𝑆𝜆
) = ∑ 𝑆𝑐𝑜𝑟𝑒𝜆(𝐶𝑆𝑘)

|𝐶𝑆𝜆|

𝑘=1

  Eq. 4-15 

Therefore, the complete score of a point 𝑛 in a data set is calculated by adding 

scores from Eq. 4-12, Eq. 4-12 and Eq. 4-15 as represented by Eq. 4-16. 
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 𝑆𝑐𝑜𝑟𝑒(𝑛) = 𝑆𝑐𝑜𝑟𝑒◆(𝑛𝐶𝑆
◆
) + 𝑆𝑐𝑜𝑟𝑒𝜏(𝑛𝐶𝑆𝜏

) + 𝑆𝑐𝑜𝑟𝑒𝜆(𝑛𝐶𝑆𝜆
) Eq. 4-16 

With 𝑆𝑐𝑜𝑟𝑒(𝑛), we sort the top-k data points with the lowest scores as possible 

outliers. 

4.5.2.1 Algorithm 

Input: A data set D 

Output: Top-n low scoring data points 

1. Feature selection using Maximal Information Coefficient 

2. Learn a Hybrid Bayesian Network on full attribute space of selected features 

3. // Identify Markov blanket (MB) subspaces from the full HBN 

4. for i = 1 to h do 

a. MB(i)  =  MB(Di) 

5. // Build a Hybrid Bayesian Network in each Markov blanket subspace 

6. for i = 1 to h do 

a. Learn the structure of HBNi on MB(i) using the greedy search 

strategy 

b. Learn parameters for HBNi 

7. end for 

8. end for 

9.  // Outlier detection over various Hybrid Bayesian Networks 

10.  // Assume n data points 

11. for i = 1 to n do 

12.       for q = 1 to h do 

13.              if (𝐶𝑆𝑖 ∈ 𝐶𝑆
◆
 𝑖𝑛 𝐻𝐵𝑁𝑞) then 

14.                    Compute 𝑆𝑐𝑜𝑟𝑒◆(𝑛𝐶𝑆
◆
) using Eq. 4-12 
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15.               else 

16.                    if (𝐶𝑆𝑖 ∈ 𝐶𝑆𝜏 𝑖𝑛 𝐻𝐵𝑁𝑞) then 

17.                        Compute 𝑆𝑐𝑜𝑟𝑒𝜏(𝑛𝐶𝑆𝜏
) using Eq. 4-15 

18.                    else 

19.                        if (𝐶𝑆𝑖 ∈ 𝐶𝑆𝜆 𝑖𝑛 𝐻𝐵𝑁𝑞) then 

20.                            Compute 𝑆𝑐𝑜𝑟𝑒𝜆(𝑛𝐶𝑆𝜆
) using Eq. 4-16 

21.                        end if 

22.                    end if 

23.              end if 

24.       end for 

25.       Compute 𝑆𝑐𝑜𝑟𝑒(𝑛) using Eq. 4-16 

26. end for 

27. Report the data points with the lowest scores as the outliers 

4.6 Complexity Analysis 

The computational complexity of the algorithm is dependent on four aspects, i.e. 

size of the dataset, subspace feature selection, inference in Hybrid Bayesian Network, 

and angle-based similarity score. The exact inference in Bayesian Network requires 

exponential time in the worst case since it is an NP-hard problem. In the case of subspace 

selection, the average time complexity is  (𝑑 × 𝑛2), where 𝑑 is the number of 

subspaces and 𝑛 is number of data points. This is due to traversing each subspace and 

calculating the outlier scores for 𝑛 points. The time complexity for probabilistic inferring 

using maximum likelihood estimation in 𝑑 subspaces is  (𝑐 × 𝑑 × 𝑛) where 𝑐 is the 

number of classes. The time complexity for angle-based similarity measure is  (𝑛2). 
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Since we repeat this calculation for 𝑑 subspaces, the time complexity is  (𝑑 × 𝑛2). 

Therefore, the overall time complexity is  (𝑐 × 𝑑 × 𝑛 + 𝑑 × 𝑛2)  ≅   (𝑛2). 

4.7 Data set 

To evaluate our algorithm, we use real world mixed data set with continuous and 

categorical attributes. For this purpose, we chose KSL data set which is described below. 

4.7.1 KSL Danish Elderly Data Set 

The KSL data set, taken from Deal package [54], is from a study measuring health 

and social characteristics of representative samples of Danish 70-year old people, taken 

in 1967 and 1984. The data has 300 observations, and each observation has 9 attributes. 

Description of the variables of the data set has been provided in Table A-1. The variables 

FEV, Kol and BMI are continuous attributes and the rest are categorical attributes. The 

attribute hypertension is the class label with two possible outcomes--yes or no. The 

number of people without hypertension are 136 while people with hypertension are 164. 

This data set is called KSL data for the rest of our work. 

Table 4-1: Description of dimensions of the data sets used. 

Data Set Name Number of observations  Number of attributes  

KSL Data set 300 9 
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CHAPTER 5 

 

RESULTS & DISCUSSION 
 

In this chapter, we describe the experimental environment used to evaluate our 

algorithm and the results obtained. 

We use a baseline subspace outlier mining algorithm called Subspace Outlier 

Detection (SOD) [55] and a full attribute space density-based algorithm called Local 

Outlier Factor (LOF) [8] to compare the performance of our algorithm. SOD uses the 

shared nearest neighbors to evaluate the similarity among observations and a subspace set 

is selected based on similarity measures. LOF determines the outlier score by calculating 

the ratio between the density of a point to the density of its 𝑘 nearest neighbors. 

5.1 Evaluation Metrics Used 

The following performance evaluation metrics are used to compare the 

performance of the proposed algorithm. These metrics are precision or positive predicted 

values, recall or sensitivity, F-measure, and ROC curves, and are defined below. 

5.1.1 Precision 

Precision is defined as the fraction of true positives to the sum of true positives 

and false positives [56]. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq. 5-1 
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True positive (TP) denotes the subjects with positive class label correctly 

identified as positive.  

True negative (TN) denotes the subjects with negative class label correctly 

identified as negative. 

False Positive (FP) denotes the subjects with a negative class label falsely 

identified as positive. 

False Negative (FN) denotes the subjects with a positive class label falsely 

identified as negative. 

5.1.2 Recall 

It is also called as the true positive rate or the sensitivity. It denotes the proportion 

of positive class labels identified as positive: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq. 5-2 

5.1.3 F-Measure 

F-measure is defined as the weighted average of precision and recall. Therefore, 

this score takes both the precision and recall into significance. 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 Eq. 5-3 

5.1.4 ROC Curves 

The area under the ROC curve helps us to evaluate the discriminative power of a 

test. It is the representation of the graph between sensitivity and specificity. The model 

will have better accuracy if the area under the curve is larger. The range of AUC lie 

between 0 and 1 and represents the quality of the test. Consequently, the higher AUC 

value indicates the better accuracy of the model. 
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5.2 Experimental Results  

This section presents the results obtained by applying our algorithm on the KSL 

data set obtained from the Deal package. 

The KSL data has three continuous attributes and six categorical attributes. The 

continuous attributes follow normal distribution and any missing records are removed 

from the data set. Furthermore, we do not discretize continuous data due to loss of 

information. 

5.2.1 Feature Selection using Maximal Information Coefficient 

We apply the Maximal Information Coefficient on full attribute space in the KSL 

data set. Figure 5-1 shows the comparison of total MIC scores between the target 

attribute and other attributes in the data set. We can see that the attributes BMI, Kol, and 

FEV are highly correlated with target attribute Hyp. Therefore, these attributes are 

selected for outlier detection. The other attributes Work, Smok, Sex and Alc are slightly 

less correlated with Hyp, but we consider them as they may provide additional 

knowledge on the outlier behavior. The attribute Year is least correlated with Hyp, and is 

thus not considered for outlier detection. 
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Figure 5-1: Maximal Information Coefficient of KSL data set 

5.2.2 Hybrid Bayesian Network on Full Attribute Space 

In Figure 5-2, we show Hybrid Bayesian Network learned over the KSL data set 

by taking all the attributes. The names of the attributes represented in the Hybrid 

Bayesian Networks are the same as the ones given in the data set. In Table A-1, we 

present the description of these attributes. 
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Figure 5-2: Hybrid Bayesian Network on full attribute space of KSL data set 

5.2.3 Hybrid Bayesian Networks in Markov Blanket Subspaces 

Figure 5-3 to Figure 5-10 represents the Hybrid Bayesian Networks learned for 

each of the Markov blanket subspaces obtained from the KSL data set.  

 

Figure 5-3: Hybrid Bayesian Network on Markov blanket subspace of FEV. 
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Figure 5-4: Hybrid Bayesian Network on Markov blanket subspace of Kol. 

 

 

Figure 5-5: Hybrid Bayesian Network on Markov blanket subspace of BMI. 
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Figure 5-6: Hybrid Bayesian Network on Markov blanket subspace of Smok. 

 

 

Figure 5-7: Hybrid Bayesian Network on Markov blanket subspace of Alc. 
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Figure 5-8: Hybrid Bayesian Network on Markov blanket subspace of Work. 

 

 

Figure 5-9: Hybrid Bayesian Network on Markov blanket subspace of Sex. 
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Figure 5-10: Hybrid Bayesian Network on Markov blanket subspace of Hyp. 

5.2.4 Analysis of the Results 

In this section, we investigate the results gained for the KSL data set. Considering 

the full attribute space, only top-10 data points with lowest outlier scores are identified as 

possible outliers using the proposed method. However, we discover 44 outlier points 

including the ones discovered in full attribute space after searching through different 

Markov blanket subspaces. The Table 5-1 shows some of the discovered outliers in full 

attribute space and Markov blanket subspaces. 
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Table 5-1: Outliers discovered in the KSL dataset. 

Data Point Is Outlier in Full Attribute 

Space 

Outlier in Markov Blanket 

Subspace 

7 Yes FEV, BMI, Smok, Sex 

11 No Alc, Work, Sex  

20 Yes Alc, Work, Sex 

39 No FEV 

96 Yes FEV, Sex 

97 Yes Kol, BMI, Sex 

242 Yes FEV, Hyp, BMI, Smok 

 

 

Furthermore, we observe interesting patterns such as data point 11 is reported as 

outlier in the Markov blanket subspaces of Alc, Work and Sex. Interestingly, the 

subspaces FEV, Kol, BMI and Smok do not report the data point 11 as an outlier. This 

shows a uniqueness in these subspaces because the same data point is reported as outliers 

in only some subspaces. Note also that this data point is not identified as an outlier in the 

full attribute space. It only shows outlying behavior within specific subspaces. 

Moreover, the following Table 5-2 represents the relevance and quality of the 

results by discussing an outlier instance discovered by this approach. For discovered 

outlier 7, the person has high FEV, high cholesterol levels, normal BMI and is a non-

smoker, non-alcoholic, not-working, but has hypertension. For discovered outlier 11, the 

person has high FEV, high cholesterol levels, low BMI and is a smoker, alcoholic, 

working, but has no hypertension. Similarly, for discovered outlier 20, the person has 
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high FEV, normal BMI and is a non-smoker, non-alcoholic, but has hypertension and 

high cholesterol levels. 

Table 5-2: Outlier analysis on the KSL dataset using proposed method. 

Data Point Outlier Characterization Outlier Score 

7 FEV = 314, Kol = 755, BMI = 21.91, Smok = no, Alc 

= no, Work = no, Hyp = yes 

2.49 

11 FEV = 311, Kol = 719, BMI = 17.9, Smok = yes, Alc 

= yes, Work = yes, Hyp = no 

2.64 

20 FEV = 213, Kol = 797, BMI = 18.27, Smok = no, Alc 

= no, Work = yes, Hyp = yes 

2.91 

39 FEV = 295, Kol = 891, BMI = 23.6, Smok = no, Alc = 

yes, Work = no, Hyp = yes 

3.12 

96 FEV = 304, Kol = 810, BMI = 30.12, Smok = yes, Alc 

= no, Work = no, Hyp = no 

3.16 

97 FEV = 227, Kol = 799, BMI = 46.87, Smok = no, Alc 

= no, Work = no, Hyp = yes 

3.31 

242 FEV = 38, Kol = 385, BMI = 30, Smok = no, Alc = no, 

Work = no, Hyp = yes 

3.55 

 

We compared the results of our method with results of Local Outlier Factor and 

Subspace Outlier Detection methods. The following Table 5-3 shows the analysis of the 

results for LOF and Table 5-4 shows the results for SOD. We can observe that the 

detected points are not interesting as they represent the already known knowledge. This is 

due to the fact that LOF uses densities to compute outliers in the nearest neighbors, 

whereas SOD uses the shared nearest neighbor approach. 
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Table 5-3: Outlier analysis on the KSL dataset using LOF. 

Data Point Outlier Characterization 

17 FEV = 155, Kol = 656, BMI = 21.83, Smok = no, Alc = no, 

Work = no, Hyp = no 

124 FEV = 201, Kol = 539, BMI = 22.72, Smok = no, Alc = no, 

Work = no, Hyp = no 

141 FEV = 133, Kol = 759, BMI = 33.67, Smok = no, Alc = yes, 

Work = yes, Hyp = yes 

142 FEV = 163, Kol = 717, BMI = 22.15, Smok = yes, Alc = yes, 

Work = yes, Hyp = yes 

162 FEV = 252, Kol = 675, BMI = 23.66, Smok = yes, Alc = yes, 

Work = no, Hyp = no 

227 FEV = 176, Kol = 643, BMI = 26.86, Smok = yes, Alc = yes, 

Work = no, Hyp = yes 

291 FEV = 136, Kol = 850, BMI = 24.24, Smok = yes, Alc = yes, 

Work = yes, Hyp = yes 
 

Table 5-4: Outlier analysis on the KSL dataset using SOD. 

Data Point Outlier Characterization 

30 FEV = 220, Kol = 348, BMI = 23.71, Smok = no, Alc = no, 

Work = no, Hyp = no 

27 FEV = 250, Kol = 141, BMI = 23.71, Smok = yes, Alc = no, 

Work = no, Hyp = no 

49 FEV = 109, Kol = 896, BMI = 27.48, Smok = yes, Alc = no, 

Work = no, Hyp = yes 

82 FEV = 287, Kol = 347, BMI = 24.38, Smok = yes, Alc = no, 

Work = no, Hyp = no 

171 FEV = 75, Kol = 840, BMI = 29.78, Smok = yes, Alc = no, 

Work = yes, Hyp = yes 

235 FEV = 140, Kol = 697, BMI = 27.89, Smok = yes, Alc = yes, 

Work = no, Hyp = yes 

287 FEV = 225, Kol = 413, BMI = 19.63, Smok = yes, Alc = no, 

Work = yes, Hyp = no 
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5.2.5 Evaluation of the Proposed Model 

Furthermore, we remove the outliers which were discovered using our model, 

LOF and SOD, and evaluate the classification accuracy. We use Logistic Regression as 

the classifier. The data set is divided into train and test sets with 70% for training and 

30% for testing the model. 

Figure 5-11 and demonstrates the results obtained for the KSL dataset. The 

definition of outlier aspect chosen to search for outliers in the Local Outlier Factor (LOF) 

[8]. The number of nearest neighbors chosen for LOF and SOD is 5. To get even results, 

we performed LOF with the above chosen Markov blanket subspaces. As is evident from 

the figure, the ROC curve is the higher our model, with AUC value 0.731, whereas the 

AUC for LOF method is 0.612. The precision and recall obtained for our model is 0.727 

and 0.711, respectively, compared to 0.576 and 0.483 obtained for LOF. Furthermore, the 

proposed approach performs well compared to Subspace Outlier Detection method as is 

evident from Figure 5-12. 
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Figure 5-11: ROC curve of proposed algorithm against LOF. 

 

Figure 5-12: ROC curve of proposed algorithm against SOD. 
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Table 5-5: Summary of the results obtained for the KSL dataset. 

Evaluation Metric Proposed Approach  LOF   SOD 

Precision 0.727 0.576 0.586 

Recall 0.711 0.483 0.531 

F-Measure 0.718 0.526 0.557 

AUC 0.731 0.612 0.652 
 

 

5.2.6 Visualization of the Reported Outliers 

In Figure 5-13 and Figure 5-14, we present two-dimensional visualization of data 

points in the causal subspace of FEV, Kol and BMI for the KSL data set. For the 

subspace of FEV and Kol, the already established contextual belief is, when the values of 

FEV are high the cholesterol levels must be low and vice-versa. For the subspace of Kol 

and BMI, the already established contextual belief is, when the values of Kol are high the 

BMI levels must be high and vice-versa. Therefore, from the scatter plots, we can see 

that, our method identifies true outliers which violate the above contextual beliefs and are 

also sparse; i.e. they are far away from their neighbors. Contrary to our method, the SOD 

technique and LOF approaches failed to discover these data points even though most of 

them are away from their nearest neighbors. 



65 

 

Figure 5-13: 2D visualization of causal subspace of FEV and Kol in the KSL data set. 
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Figure 5-14: 2D visualization of causal subspace of Kol and BMI in the KSL data set. 



 

67 

 

CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

In this thesis, we hypothesize that true and meaningful outliers are likely to be 

identified in highly correlated feature subspaces by considering both contextual beliefs 

and similarity of the data points. In this regard, we propose a comprehensive approach to 

exploit the underlying contextual beliefs for detecting outliers, particularly dealing with 

the existing issue caused by the sparsity of contexts in high dimensional data. 

Specifically, we introduce Hybrid Bayesian Networks to capture the contextual beliefs 

and angle-based similarity measure to tackle sparse contexts and describe an algorithm to 

fuse them. Experimental results show that our approach detects outliers more accurately 

and efficiently than previous methods. 

6.2 Future Work 

The approaches used in this thesis are designed for static mixed attribute data sets. 

However, we can extend this methodology to detect outliers in streaming data. Due to 

transient nature of the streaming data, the complexity of both inference and 

representation grow multi-fold. This aspect of handling time series data for multiple data 

types has not been addressed in this research work and left as an area of further research.
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APPENDIX A  

A.1 KSL data set description 

Table A-1: Description of attribtes in the KSL data set. 

Variable Name Description Type 

FEV Forced ejection volume of person’s lung Continuous 

Kol Cholesterol level Continuous 

BMI Body Mass Index Continuous 

Smok Smoking  

1 = no, 2 = yes 

Categorical 

Alc Alcohol consumption  

1 = no, 2 = yes 

Categorical 

Work Working 

1 = yes, 2 = no 

Categorical 

Sex Gender  

1 = male, 2 = female 

Categorical 

Year Survey Year 

1 = 1967, 2 = 1984 

Categorical 

Hyp Hypertension 

0 = no, 1 = yes 

Categorical 
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A.2 Summary of notations 

Table A-2: Notations. 

Notation Description 

n 
A data point 

C 
Child node 

Pa(C) 
Parent of the child node 

PC(X) 
Parent-Child of node X 

CS 
Causal Subspaces in Hybrid Bayesian Network 

|CS| 
Total number of causal subspaces in Hybrid Bayesian Network 

CS◆ 
Subspaces involving only categorical attributes 

   CSτ 
Subspaces involving only continuous attributes 

CSλ 
Subspaces involving mixed attributes 

MB 
Markov Blanket 

HBN 
Hybrid Bayesian Network 
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