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ABSTRACT 

Louisiana coastal saltmarshes are disappearing at an exponential rate. Even 

though several researches indicate that vegetation on coastal marshes protect the coast 

from erosion by providing soil reinforcement, wave buffering, sediment trapping and 

overall hydrologic regime control, the complex nature of coastal erosion process makes it 

too difficult to quantify the erosion resistance provided by vegetation. This research is 

focused on the study of soil binding ability provided by smooth cord grass, Spartina 

alterniflora, flourishing in dredged soil of Sabine Refuge Marsh Creation Project (CS-28) 

in Louisiana.  

Field vane shear test was conducted to obtain the in-situ un-drained shear strength 

of soil vegetated by Spartina alterniflora. Direct shear tests on the rooted soil samples 

collected from the site were performed to investigate the overall effect of the roots on the 

shear strength of the soil.  

Laboratory tensile strength tests of individual roots of different diameters were 

done to study the mechanical reinforcement provided by the roots. Two different root 

reinforcement models were used to study the correlation between the root-induced 

cohesion and the root tensile strength. The first model is a perpendicular root 

reinforcement model by Wu et al. (1979), which considers simultaneous mobilization of 

tensile strength of all roots crossing the shear plane. The second model is the Rip Root 

Model by Pollen and Simon (2005), which assumes progressive failure of bundled roots. 
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Results from the vane shear test and the direct shear test demonstrated that the roots of 

Spartina alterniflora significantly increase the shear strength of the soil. The increased 

shear strength for a location varied depending upon the root area ratio (RAR), depth of 

the soil sample, and tensile strength of the roots. The laboratory test results were 

compared with the outcomes from root reinforcement models to verify if the models can 

be effectively used to calculate net root reinforcement. Analysis using both the root 

reinforcement models shows overestimation of root induced cohesion and a new 

correlation was proposed. The discrepancies were because these models do not account 

for all the factors involved in the root-soil matrix. 

Results obtained from a validated “Delft3D Wave-FLOW” coupled model 

encompassing the hydrodynamics of Lake Calcasieu estuarine system, with Hurricane Ike 

wave forcing condition was analyzed. Four different grid conditions were considered in 

the WAVE-FLOW coupled model and time-period of peak storm surge was selected to 

study the extreme bed stress conditions. Maximum bed shear stress and water velocity 

during the peak period of the hurricane was obtained at those locations from where the 

undisturbed soil samples were collected during the field visit. The study was done by 

comparing the ratio of shear strength of the soil to shear stress developed for these 

locations. For the different grid conditions, the ratio of shear strength to shear stress was 

found to be relatively higher in those grids with the presence of vegetation. This trend 

suggests that the significant amount of wave energy is dissipated by the presence of 

shoots of the vegetation.  

Results from experimental tests, analytical tests and numerical analysis show the 

importance of Spartina alterniflora in enhancement of the shear strength of the soil and 
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in reduction of the erosive power of the waves.  Thus, the study justifies the use of this 

marsh vegetation as a vital asset in marsh creation projects. 
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INTRODUCTION 
 

1.1 Problem Statement and Research Need 

Louisiana coastal wetlands play an important role in protecting the coastal 

community from storm surges and flood by directly absorbing wave energy, reducing the 

area of open water for wind formation  and by trapping sediments and acting as a natural 

sponge, thus maintaining shallow water depths (Costanza et al. 2006; Day et al. 2007; 

Moeller et al. 1996; Wayne 1976). It is estimated that one hectare of wetland area in 

Louisiana can provide net annual benefits of about $1,749 (equal to about $450K per sq. 

miles) because of storm surge reduction (Costanza et al. 2008).  

Study shows that coastal Louisiana is suffering a severe land loss over the years 

due to erosion, subsidence, sea level rise and construction of levees on the Mississippi 

River. Louisiana coast is losing land at an alarming rate of 16.57 ±3.26 mi2 per year, 

which is analogous to losing an area the size of one football field per hour (Couvillion et 

al. 2011).  This has made the coast more vulnerable to storms, submergence and further 

land loss. The aftermath of 2005 and 2008 hurricanes further demonstrated the 

importance of the coastal Louisiana in the protection of civil and energy infrastructure, 

shipping and fisheries industries and safety of coastal communities.  However, a recent 

study on change in Louisiana wetlands from 1932 to 2016, by Couvillion et al. (2017), 
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which was based on historical surveys, aerial and satellite imagery, showed a decrease in 

rate of wetland loss. This slower rate was equivalent to losing an American field of 

coastal wetland in every 100 minutes (Couvillion et al. 2017). The study also claims that 

these gains are just short term and is affected by lack of major storms in the recent 8 

years, recovery of land loss from 2005 hurricanes, reduction of petroleum exploration, 

and restoration activities (Couvillion et al. 2017). 

In this scenario, there is a strong need to act on the protection of the coastal 

wetlands. Several projects are being implemented by both federal and state organizations 

to help reverse land loss and restore the degraded coastal ecosystem. The 2017 Coastal 

Master Plan formulated by Coastal Protection and Restoration Authority (CPRA 2017) 

encompasses projects like sediment diversion, marsh creation, shoreline protection, 

structural protection, barrier island/headland restoration, ridge restoration, etc. 

Approximately $17.1 billion out of a total of $50 billion is allocated for marsh creation 

projects using dredged sediments in the 2017 Coastal Master Plan. It is estimated that 

these marsh creation projects along with other sediment diversion projects will help to 

maintain or create approximately 800 square miles of land in 50 years’ time (CPRA 

2017). 

Marsh creation project includes the dredging and transportation of sediments to 

the designated fill areas where the sediments are poured and let to settle and stabilize 

over time. The complexity and requirement to handle millions of cubic feet of sediments 

makes these projects one of the most expensive projects in the current master plan. These 

projects require long term monitoring which directly affects large coastal area and human 

population. This makes it difficult to monitor and quantify the impact of these projects. 
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As most of the marsh creation projects have been around less than 10 years, there is a 

lack of proper benchmark to measure the extent of success of such projects (Streever 

2000). 

The importance of vegetation on slope stability and erosion control has been 

widely studied and discussed (Coppin & Richards 1990; Gray & Sotir 1996; Greenway 

1987; Waldron 1977; Wu et al. 1979). The strength of the created marsh depends upon 

the innate shear strength of dredged soil mass and the reinforcement added by the marsh 

vegetation flourishing on them. Recent studies of the likes of Day et al. (2000); Howes et 

al. (2010); Turner (2011) have shown the interdependence of soil strength and marsh 

vegetation.  

 Hence, for the sustainable and resilient constructed marsh land, the strength 

provided by the soil mass and vegetation should be properly understood. As such, the 

study of erosion resistance capability of native vegetation “Spartina alterniflora” on the 

established dredged marsh land in the Louisiana coast is deemed timely and necessary. 

 

1.2 Objective 

The overall goal of this task is to study the soil binding ability provided by 

Spartina alterniflora in dredged lands in coastal Louisiana. The research objectives can 

be summarized by following: 

1. To perform in-situ tests and direct shear tests on rooted soil samples to estimate 

the soil reinforcement provided by roots of Spartina alterniflora. 

2. To conduct tensile strength tests of the roots of Spartina alterniflora. 
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3. To use different root reinforcement analytical models to quantify the net soil 

reinforcement provided by roots of Spartina alterniflora. 

4. To do analysis of Delft3D WAVE-FLOW coupled model with wave forcing 

conditions of Hurricane Ike to evaluate the erosion resistance added by vegetation 

on coastal soils. 

5. To use the finite element analysis method to study vegetation reinforcement by 

considering the wave propagation along the marshland bed. 

 

1.3 Thesis Outline 

This first chapter presents the problem statement, introduction and the research 

objectives.  

Chapter 2 mainly provides relevant literature review on general background on 

coastal land loss, soil shear strength, reinforcement provided by vegetation and about the 

analytical root reinforcement models used in this thesis. It also provides general 

information about Delft3D model. 

Chapter 3 describes site characteristics, soil type, methods and materials used 

during the field visits. It presents methods and materials used to conduct vane shear test, 

direct shear test and tensile strength test. It also discusses the Delft3D hydrodynamic 

model and different wave forcing condition of hurricane Ike used in the model.  

Chapter 4 presents the results and analysis obtained from vane shear test, direct 

shear test and tensile strength test. Furthermore, the chapter discusses the analytical 

analysis of the results obtained from Delft3D. 
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LITERATURE REVIEW 

 

2.1 Background 

Coastal Louisiana is disappearing. The State of Louisiana that consists of forty 

percent of total coastal wetland within the lower forty-eight states is suffering from 

eighty percent of the total U.S. wetland losses (Boesch et al. 1994; Day et al., 2000). 

The study done by Barras (2009) has calculated an annual loss of 29.9 sq. mi of 

coastal land during the years from 1978 to 2000. Recent research shows that Louisiana 

had lost 1883 sq. mi of its coastal wetlands from 1932 to 2010 which is equivalent to a 

decrease of about 25 percent of the total land area in year 1932 (Couvillion et al. 2011).  

The trend analysis shows that this loss is equal to a land loss rate of 16.57 ±3.26 sq. mi 

per year which is analogous to losing an area of 360 ft x 160 ft (size of one football field) 

per hour (Couvillion et al. 2011).  

It is predicted that the state will lose additional 513 sq. mi of wetland between the 

years of 2000 to 2050 (Barras et al. 2003). Figure 2.1 shows the projected land change in 

coastal Louisiana from 1932 to 2050. 
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Figure 2.1: Projected land change in coastal Louisiana from 1932 to 2050 (source: 

http://coastal.louisiana.gov).   

 

  

2.2 Causes of Land Losses  

Sediments and nutrients carried by the Mississippi River are the building blocks 

for Louisiana wetlands. The Mississippi River replenished these wetlands with fresh 

water, sediments, and nutrients by either overflowing its banks or by changing its course. 

In response to the great flood of 1927 of the Mississippi River, flood protection system 

was implemented by the United States Army Corps of Engineers (USACE) that 

constructed levees and floodways on Mississippi River, thereby directing the river in a 

fixed course (Barry 1997). This had substantially decreased the amount and pattern of 

sediments, nutrients and freshwater reaching these deltas. In the absence of these 

sediments, nutrients and freshwater, these wetlands are disappearing at a staggering rate 

(Barry 1997; Boesch et al. 1994). These sediments are now discharged into the Gulf of 
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Mexico where the continental shelf is too deep to form the new wetlands (Boesch et al. 

1994; Day et al. 2000; Mitsch et al. 2001). 

 State and federal agencies have dredged over hundreds of miles of channels 

through the Mississippi River Delta for navigation, drainage, logging and oil and gas 

development (Boesch et al. 1994). Other activities like land reclamation projects, coastal 

dredging for oil and gas exploration, rapid urbanization, etc., have severely altered 

wetland hydrology, changed water and sediment flow pattern and caused saltwater 

intrusion into the freshwater inner marshes (Houck 1983; Turner et al. 1984).  These 

processes are adverse to a functional coastal ecosystem causing acres of wetlands to 

either change to open water or uplands (Reed & Wilson 2004). 

Subsidence is the other major factor of land loss in Louisiana, which is caused by 

shallow processes (compaction of surface sediments, fluid withdrawal for oil and gas 

activity (Morton et al. 2002), intermediate process (compaction of sediments) and deep-

seated process of tectonic origin (faulting and cyclonic down warping of crust due to 

regional loading) (Dixon et al. 2006; Shinkle & Dokka 2004). Louisiana is subsiding on 

average of 1.5 mm/yr., as high as 8 mm/yr. in New Orleans and as high as 25 mm/yr. in 

some places in the Mississippi River delta region and in Chenier plain of southwest 

Louisiana (Dixon et al. 2006; Shinkle & Dokka 2004). Subsidence is further exacerbated 

by rapid a sea level rise of a rate about 2-3 mm/yr. which has increased by three-fold than 

during the time of delta-plain formation (Kemp et al. 2011). 

Other major factors for Louisiana coastal land loss include hurricanes, tropical 

storms and oil spill. Hurricanes Katrina and Rita alone eroded about 100 km2 of land 

(Day et al. 2007) . Likewise, coastal Louisiana is further damaged by oil spill disasters 
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like the Deep Water Horizon oil spill which had spilled about 5 million barrels of oil 

adversely affecting Louisiana’s coastal land (Crone & Tolstoy 2010; McNutt et al. 2012; 

Owens et al. 2011). 

2.3 Soil Erosion and Ecological Engineering  

Erosion of soil is defined as gradual degradation of top material from soil mass 

due to natural agents like wind or water. Soil erosion at the coast is believed to occur 

whenever the soil’s ability to resist erosive failure (i.e., the resistance of a soil to shear 

failure) is exceeded by the energy of flowing water (i.e. the driving force exerting flow 

shear stress to soil surface). Ecological engineering is defined as “the design of 

sustainable ecosystems that integrate human society with its natural environment for the 

benefit of both” (Mitsch & Jørgensen 2004). Importance of vegetation on slope stability 

and erosion control has been widely studied and discussed (Coppin & Richards 1990; 

Gray & Sotir 1996; Greenway 1987; Waldron 1977; Wu et al. 1979). Gedan et al. (2011) 

have categorized resistance of marshes against erosion in direct and indirect mechanism. 

The direct strength of below ground biomass of plants is contributed directly by 

plant roots which by enhancing cohesion and tensile strength of soil increases the overall 

shear strength of soil (Gabet 1998; Micheli & Kirchner 2002; Waldron 1977; Wu et al. 

1979). Roots of plants can also act as a physical barrier between soil and water thus 

stabilizing tidal creeks (Mazda et al. 2007). The aboveground stem of Spartina 

alterniflora reduces water velocity, turbulence and bed shear stress and thus helps in 

settling and trapping of the sediments carried by flowing water (Christiansen et al. 2000; 

Redfield 1972). Indirectly, decaying plant parts by building peats increase the vertical 

accretion rate of the wetland (Le Hir et al. 2000). Decaying plants in a long term helps to 
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build the substrate by providing organic matter essential to the soil (Mudd et al. 2010; 

Redfield 1972). The increasing vertical accretion forms shallow water depth which has 

higher bed friction that reduces wave heights and attenuates the wave energy (Gedan et 

al. 2011; Le Hir et al. 2000). 

2.4 Spartina alterniflora (Salt Marsh Cordgrass or Smooth Cordgrass) 

Spartina alterniflora, commonly known as smooth cord grass or saltmarsh cord 

grass, is a dominant emergent grass species which is native to the Atlantic and Gulf 

coasts. Found commonly in low marsh areas of intertidal wetlands which are frequently 

flooded, these plants grow taller at the outer edge of marshes and shorter inwards in the 

marshes. It has hollow stems, flat tapered long leaves and dense rhizomatous root 

networks. Figure 2.2 shows a marsh of Spartina alterniflora growing in the CS-28 

project site. 

 

 

 

 

Figure 2.2: (left) Spartina alterniflora growing in inner marsh; (right) Spartina 

alterniflora growing in clumps at the outer edge of the marsh.  
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Spartina alterniflora is a robust plant which can tolerate high salinity and can 

reproduce easily from seeds or from its rhizoidal roots. The plant also has aerial roots 

which oxygenates the plants and helps the plant to survive easily in places with high 

hypoxia (Anderson 1974). These qualities have made Spartina alterniflora an excellent 

choice in vegetation for use in soil stabilization and marsh restoration projects (Broome 

et al. 1988; Craft et al. 1999, 2003; Zedler 2000). In this research, the role of Spartina 

alterniflora, one of the dominant salt marsh grasses of Louisiana coastal marshes, in 

increasing the resistance of marsh against erosion is studied.   

2.5 Root Reinforcement Models 

Waldron (1977) used the Mohr-Coulomb equation to calculate the shear strength 

of soil. This root reinforcement model defines the shear strength of soil based on the 

cohesive and frictional resistances as shown by Eq. 2-1:  

𝜏′ = 𝑐 + 𝜎𝑁′ 𝑡𝑎𝑛 𝜙 Eq. 2-1 

where 𝜏′  is the effective soil shearing resistance or soil shear strength, c is the soil 

cohesion,  𝜎′𝑁 is the effective normal compressive stress on the shear plane equal to 

difference of the normal load (σN) and pore water pressure (u), and 𝜙 is the friction angle 

(in degrees) of the soil. These parameters can be represented by Figure 2.3 showing 

Mohr’s circle and the failure plane with corresponding stresses. 
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Figure 2.3: Mohr’s failure envelope showing the failure envelope line with the failure 

zone represented by the shaded portion.  

 

 

 

In Figure 2.3, 𝜏𝑓 is the shear strength at failure, c is the soil cohesion, 𝜎𝑛′ is the 

effective normal stress and 𝜇′ is the coefficient of friction which is equal to tan 𝜙. 

Waldron (1977) assumed root reinforcement as an additive factor to soil shear strength 

and extended the relation as presented by Eq. 2-2: 

𝜏 ′ = 𝑐 + 𝑐𝑅 + 𝜎𝑁
′ 𝑡𝑎𝑛 𝜙 Eq. 2-2 

where 𝑐𝑅 is the additional shear strength increase due to presence of plant roots.  

Waldron (1977) considered the roots to be cylindrical, flexible and oriented 

perpendicularly to the slip plane. Waldron (1977) also assumed that when the soil root 

matrix starts to shear, the tensile strength of all roots is mobilized. The tensile strength 

was then translated into the tangential component that counterbalances the shear force 

and the normal component which increases the confining pressure on the plane. 𝑐𝑅 can be 

represented as: 

𝑐𝑅 = 𝑡𝑅(𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙)
𝐴𝑟

𝐴
 

Eq. 2-3 
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where 𝑡𝑅 is the tensile strength of all roots per unit area of soil, AR/A is the root area ratio, 

and 𝜃 is the angle of shear distortion in the shear zone.  

 Wu et al. (1979) have shown that the term in brackets of Eq. 2-3 ranges between 

1.0 and 1.3 with normal variations in 𝜃 and 𝜙 (40° - 90° and 25° - 40° respectively). Wu 

et al. (1979) used a value of 1.2 to replace the bracketed term, and Eq.2-3 was simplified 

as: 

𝑐𝑅 = 1.2 ∑ 𝑇𝑟𝑖(
𝐴𝑟𝑖

𝐴
)

𝑛

𝑖=1

 

Eq. 2-4 

where Tri is the tensile strength of individual root (i), (Ari/A) is the fraction of soil cross-

section occupied by a single root (i) and n is the number of roots in the considered soil 

cross-section. Eq. 2-4 is used in this research to quantify the root reinforcement of 

Spartina alterniflora. 𝑇𝑟 can be correlated with the diameter of root (d) by power law 

equation as shown in Eq. 2-5 (Gray & Sotir 1996). 

𝑇𝑟(𝑑) = 𝛼𝑑−𝛽 Eq. 2-5 

where β and α are empirical constants varying with different plant species. 

The studies done by Coppin & Richards (1990) have shown that the root 

reinforcement model assumes only the tensile failure of roots and it doesn’t take in 

account the failure due to roots slipping. This results in significant overestimation of root 

reinforcement. Studies done by Pollen and Simon (2005) have shown that the full tensile 

strength of all the roots is only mobilized at a higher displacement and thus it is not fully 

mobilized when the soil shears. So, the assumption of failure of all the roots at the same 

time in Wu et al. (1979) model leads to overestimation of the true value of root 

reinforcement (Pollen and Simon 2005). To remove the limitations in Wu et al. model, 
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Pollen and Simon (2005) proposed a new root reinforcement model named the Rip Root 

Model. The Rip Root Model is based on the traditional Fiber Bundle Model (FBM) 

which assumes that the applied load is apportioned equally in all the roots in a bundle and 

as roots have different maximum tensile strength values, they break at different times. 

When the distributed load exceeds the strength of the single root strength, the root with 

minimum strength fails first and the load is distributed to the remaining intact roots 

(Pollen & Simon 2005). Failure will occur once all the roots in the bundle are broken by 

the acting force. Figure 2.4 shows the steps of using the FBM method to evaluate the 

root reinforcement coefficient. 

 

 

 

 

Figure 2.4: A flow-chart showing the method to use the Fiber Bundle model to estimate 

root reinforcement coefficient (source: Pollen & Simon 2005). 
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   Using the limit equilibrium method, the stability of the slope can be evaluated 

using factor of safety (F.S.) as the ratio of the shear strength of the soil-root matrix to the 

acting shear forces (𝑆𝑚) at the base of the slice as shown by Eq. 2-6 and Eq. 2-7 below: 

𝐹. 𝑆. =
𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑜𝑖𝑙𝑟𝑜𝑜𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑆)

𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑆ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 (𝑆𝑚)
 

Eq. 2-6 

𝐹. 𝑆. =
𝑐𝑅 + (𝑐 + 𝜎𝑁′𝑡𝑎𝑛𝜙)

𝑆𝑚
=

𝑆𝑟𝑜𝑜𝑡 + 𝑆𝑠𝑜𝑖𝑙

𝑆𝑚
 

Eq. 2-7 

   From Eq. 2-7, a critical equilibrium is reached at the shear zone, when the 

combined shear strength of soil (𝑆𝑠𝑜𝑖𝑙 ) and shear strength contribution due to roots 

(𝑆𝑟𝑜𝑜𝑡 ) is equal to mobilized shear force at the base of the slice (Sm). 

Different methods can be used to study the soil binding ability provided by 

vegetation. Shahriar et al. (2016) evaluated the soil binding ability of Johnson grass in 

terms of factor of safety using the Anchor Reinforcement Method (ARM) and the 

Smeared Method (SM).  

The ARM considered the roots as an independent reinforcing anchors between the 

soil layers. Cohesion (c) and friction angle (𝜙) values of plain soil sample were used for 

the entire soil model and the additional reinforcement provided by roots (𝑐𝑅) was used as 

the bonding force between the soil and roots. Predetermined slip surfaces were used to 

calculate the factor of safety for those layers (Shahriar et al. 2016). 

The SM considered roots as part of the soil matrix and used the overall rooted soil 

strength. The soil was divided into two layers with the rooted soil layer on top and the 

plain soil layer at the bottom. The soil layer at the top used overall cohesion (c) and 

friction angle (𝜙) of rooted soil and soil layer at the bottom used cohesion (c) and friction 
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angle (𝜙) values of the plain soil sample. Predetermined slip surfaces were again used to 

calculate the factor of safety for the soil layers.  

Cohesion (c) and friction angles (𝜙) for both rooted and plain soil layer were 

obtained from direct shear tests, and numerical modeling was done using commercial 

software package Slope/W 2007 (Shahriar et al. 2016). For the pre-determined slip 

surfaces, comparison was made on the factor of safety for the plain soil slope and for the 

rooted soil slope using the SM and the ARM method, respectively. It was found that 

factor of safety values was much higher in case of rooted soil slope than that of plain soil 

slopes. 

2.6 The Delft3D Model 

The Delft3D is an open source modeling software package to solve the problems 

in sediment transport, morphology, hydrodynamics, and water quality for coastal and 

estuarine conditions. It consists of several open source sub-modules that can interact with 

each other. Among them, the hydrodynamic module “Delft3D-FLOW” allows the 

simulation of hydrodynamic phenomena, by solving the Reynolds-Averaged Navier-

Stokes equations under the Boussinesq assumptions and shallow water assumptions. The 

Delft3D-WAVE module is responsible for short wave generation and propagation in 

nearshore areas. The WAVE and FLOW module can perform both coupled simulations 

(online interactions) and uncoupled simulations (offline interactions). In the coupled 

simulations hydrodynamic data from the Delft3D-FLOW is used by the Delft3D-WAVE 

module to recalculate the wave conditions. 

In this study, analysis was done on the previously established Delft3D online 

model by Shariar (2017). The model encompassed the hydrodynamics of Lake Calcasieu 
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estuarine system of Louisiana. In the model, a Cartesian grid was set up along with the 

grid enclosure using grid generator program RGFGRID (Deltares 2011). The 

hydrodynamic grid of the model had nine vertical sigma layers.  Bathymetry was then 

provided for the entire grid section. The FLOW grid covered the bathymetry of Calcasieu 

Lake and its flood plain. Delft3D WAVE grid was extended to an additional 8000m 

towards the Gulf of Mexico as shown in Figure 2.5.  

 

        

Figure 2.5: (left) Delft3D study area shown in Google Earth enclosed by the outer black 

rectangle and the CS-28 Project enclosed by the inner white rectangle, (right) the WAVE 

Grid and the FLOW Grid (source: Shahriar 2017).  

 

 

To run Delft3D FLOW model coupled with WAVE model, a communication file 

was written and a Master Definition Wave (MDW) file was created separately, which 

should be executed before running the Master Definition FLOW (MDF) file. Initial 
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conditions include water levels, currents, water level gradients and Neumann discharge 

and/or Riemann boundaries. Wind and sediments processes were provided. Processes 

include salinity temperature, secondary flow, and constituents, etc.  

The model was a coupled Delft3D-FLOW module with Delft3D-WAVE module 

which had the wave conditions representing that of Hurricane Ike. The model used 

NOAA stations and several other stations of Office of Coastal Protection and Restoration 

(OCPR) to obtain the tide/water level data for calibration and validation. WAVE model 

boundary conditions include significant wave height, mean wave period, wind velocity 

and directions representing the wave conditions of Hurricane Ike. The start time and stop 

times of the simulations were provided at the end of the model set up. In the coupled 

(online) process, for every communication file created, a WAVE simulation was 

performed. Delft3D-FLOW simulation was then resumed using the latest WAVE results.  

Four different grid scenarios were studied depending upon the dry or submerged 

condition and vegetated or un-vegetated condition. For each sampling station, maximum 

bed shear stresses and velocities values during the peak surge were obtained. Results 

obtained were analyzed using the QUICKPLOT module, a post-processing submodule of 

the Delft3D. 

2.7 The Erosional Behavior of Soil 

Erosion process on the coast depends upon complex interaction of hydrodynamic 

forces, sediment bed structure and bed material properties. Erosional strength of the soil 

is described by Zreik et al. (1998) as the resistance offered by sediment bed against 

erosive forces. Erosion can be divided in various modes depending upon the intensity of 
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applied shear stress: entrainment erosion, floc erosion, surface erosion and mass erosion 

(Mehta 1991; Winterwerp &Van Kesteren 2004) as shown in Figure 2.6. 

  

 

 

Figure 2.6: (a) Entrainment erosion of mud layer (b) Floc erosion (c) Surface erosion 

(drained failure) (d) Mass erosion (undrained failure) (source: Winterwerp & Van 

Kesteren 2004). 

 

 

 

Entrainment erosion occurs in nature when the sediment bed is fluidized, and 

sediment behaves like a viscous fluid. In this type of erosion, sediment-water interface is 

destabilized, and fluid mud is entrained from the sediment bed. In floc erosion, bed shear 

stress due to fluid flow exceeds the adhesion of flocs to bed and thus removes the flocs 

from the sediment bed. Surface erosion is a drained failure process which occurs when 
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flocs attached to the sediment bed by inter-particle electro-chemical bonds break due to 

hydrodynamic drag and lift. On the other hand, mass erosion is the detachment of lumps 

of soil which occurs at considerably high shear stress greater than undrained shear 

strength (Millar & Quick 1998). We can take cliff erosion as an example of the mass 

erosion. 

2.8 Analytical Erosion Model (Erodibility Index Method) 

Several methods are developed to measure the erodibility of soil both analytically 

and numerically. These models make it easier and convenient to analyze the soil erosion 

resistance by accounting for soil strength. Annadale (1995) developed a semi-empirical 

erodibility index method to quantify the capability of soil and/or “engineered earth 

materials” in resisting the erosive capacity of water. Annadale (1995) gave a correlation 

between stream power (P) and parameter, K, which is defined as an erodibility index. The 

erosion threshold is defined by Eq. 2-8 as:  

𝑃 = 𝑓(𝐾) Eq. 2-8 

Critical stream power (Pc) is defined as the power of the stream at when the erosion 

process just starts to occur. It is the threshold power which results in the incipient motion 

of the soil. 

For K ≤ 0.1, 

𝑃𝑐 = 0.48 𝐾0.44 Eq. 2-9 

For K > 0.1,  

𝑃𝑐 = 𝐾0.75 Eq. 2-10 

Erodibility is the resistance of the earth material to resist erosion. Earth material 

will erode if Pc > f(K) i.e., when the critical stream power exceeds the erodibility index 
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(K). These conditions are illustrated in Figure 2.7 which shows the threshold line 

separating the scour and “no scour” conditions. Erodibility index, (K), is defined by 

Annadale (1995) as presented in Eq. 2-11.  

𝐾 = 𝑀𝑆. 𝐾𝐵. 𝐾𝐷 . 𝐽𝑆 Eq. 2-11 

where MS is the mass strength number, KB is the block size number, KD is the discontinuity 

bond strength number, and JS is the relative ground structure number. The description for 

these numbers are provided in the later pages. 

 

 

Figure 2.7: Graph of Stream Power vs Erodibility Index showing the erosion threshold 

line represented by inclined dotted lines (source: Annandale 2006).  

 

 

 

2.8.1 Mass Strength Number (Ms)   

Mass strength number accounts for the strength of the soil block. Annandale 

(2006) has given the mass strength number (Ms) for cohesive soil with different types of 
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hardness as presented in Table 2.1. Value of Ms for the cohesive soil is related to vane 

shear strength of the soil.  

 

Table 2.1:  Mass strength number (Ms) for cohesive soil with different types of hardness 

(Annadale, 2006). 

 

 

 

 

2.8.2  Block Size Number (KB) 

Block size number accounts for the particle size of the soil or rock specimen. For 

a rock specimen, it is the function of the rock joint spacing and the number of joints. For 

cohesionless soil, it is a function of the size of the particle and for cohesive soils, it is 

assumed to be equal to one. 
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2.8.3 Discontinuity Strength Number (KD)  

It accounts for the relative resistance offered by the discontinuities in rock. In case 

of granular earth materials, it accounts for the interparticle bond shear strength. For 

cohesive soils, discontinuity strength number is calculated as given by Eq. 2-12: 

𝐾𝐷 = 𝑡𝑎𝑛 𝜙 Eq. 2-12 

where 𝜙 is the friction angle of the soil. 

 

2.8.4 Relative Ground Structure Number (JS) 

This parameter is the function of dip value and dip direction of the least favorable 

discontinuity respect to the direction of the flow and the shape of the material. When 

using this parameter for intact materials like massive rock or clay, the value of JS is taken 

equal to 1.0. With the above equations and values, erodibility index value for a cohesive 

soil can be obtained by using Eq. 2-11.   

In this research, result analysis of coupled Delft3D-FLOW module with Delft3D-

WAVE module was done. The WAVE module had the wave conditions representing that 

of Hurricane Ike. The coupled model encompassed the hydrodynamics of Lake Calcasieu 

estuarine system. Maximum bed shear stress and velocity of the waves on the soil bed 

developed during Hurricane Ike were obtained for specific locations. The erodibility 

index of the soil at the coast is calculated using the values given by Annadale (1995) for 

the cohesive soils.  
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METHODOLOGY 
 

This chapter gives the outlines of the methods employed to do various in-situ 

tests, lab tests, and fine element analysis. The chapter starts with site description which is 

followed by the procedures for field tests and sampling. Method for different laboratory 

tests is provided next, which includes soil characterization, direct shear tests of 

undisturbed soil samples and tensile strength tests of root samples. The last part of this 

section provides the description of methods used to analyze the results from a validated 

Delft3D model.  

3.1 Site Description 

  Sabine Refuge Marsh creation project (CS-28) is located at the north-east of the 

Sabine National Wildlife Refuge, south of Black Lake and west of LA Highway 27 in 

Cameron Parish, Louisiana. This parish, which lies at the southwest is the largest parish 

in Louisiana by land area. The project involves the design of five different Cycles for the 

whole marsh creation project of which Cycle 1 and Cycle 3 were selected in this study. 

Construction of Cycle 1 was completed on February 2002 which created 214 

acres of marsh by dredging sediments from Calcasieu River Ship Channel into the 

shallow open water area within the retention dikes (Miller 2014). Cycle 3 was completed 

on March 2007 by again dredging sediments from Calcasieu River Ship Channel creating 

232 acres of marsh (Miller 2014). For both projects, Spartina alterniflora was planted 
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along the perimeters. The project objective was to block saltwater intrusion inside the 

marshes, to construct new marsh ecosystem and to protect the marshes from erosion. 

Figure 3.1 shows the Sabine Marsh creation project (CS-28) in Google Maps (denoted by 

the red rectangle), Sabine National Refuge Wildlife (denoted by red circle) and Gulf of 

Mexico. 

 

 

Figure 3.1: Sabine Marsh creation project (CS-28 project) in Google Maps (denoted by 

the rectangle in the figure), Sabine National Refuge Wildlife (denoted by the circle in the 

figure) and the Gulf of Mexico.  
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3.2 Site Visit 

Site visit was done in March 2017, which was supervised by Mr. Mike Miller 

from CPRA Lafayette field office. An airboat was used to reach different testing 

locations in the marsh with in-situ test equipment and sampling equipment. Study site 

(CS-28) and its enlarged view showing the airboat route is presented in Figure 3.2. Three 

sampling locations were selected in Cycle 1 and Cycle 3, respectively. For each of the 

locations, in-situ soil test was done and followed by obtaining undisturbed soil samples 

using PVC cores. Locations were so determined so that they could well represent the 

overall project area. Figure 3.3 and Figure 3.4 show the latitudes and longitudes of all 

the sampling locations in Cycle 1 and Cycle 3 of the CS-28 project, respectively. 

 

 

Figure 3.2: Enlarged view of the CS-28 project showing its five different Cycles, soil 

core sampling stations, and airboat route taken during soil sampling. 
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Figure 3.3  Latitudes and longitudes of soil testing and sampling points at Cycle 1. 

 

 

 

Figure 3.4:  Latitudes and longitudes of soil testing and sampling points at Cycle 3. 
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3.3 Field Tests and Soil Sampling 

For each of the testing site, the vane shear test was done to measure the undrained 

shear strength of the soil. Undrained shear strength is the strength of the soil when rapid 

loading condition is applied to saturated soil in such a way that there is less time for the 

soil to drain. Vane Tester VT12 by Pagani Geotechnical Equipment was used to measure 

the undrained cohesive strength of the soil as shown in Figure 3.5. The vane size with a 

diameter of 30 mm x 60 mm was selected for the test. The vane shear testing equipment 

consisting of torque wrench and different sized vanes is shown in Figure 3.5. 

 

 
 

Figure 3.5: (left) Vane shear testing equipment box with a torque wrench and three 

different sized vanes; (right) Vane shear test machine being used in the field. 

 

 

 

The vanes were connected through rods to the torque wrench, which measured the 

amount of torque applied to the soil in the ground at different depths. Tests were done on 

three different locations of each of the Cycle 1 and Cycle 3 of the CS-28 project. ASTM 

D2573  standard was used to determine the peak undrained shear strength of the soil. 
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Tests were done to a depth of 40 cm, assuming that to be the maximum depth the roots of 

Spartina alterniflora can reach. Vertical profiles of vane shear strength were made at 10-

cm increments at each of the testing locations. The soil was considered undrained and it 

was assumed that no consolidation took place while inserting the vane or during the test. 

Isotropic strength conditions were assumed to exist in the soil mass. The remolded zone 

around the vane was assumed to be very small.  

The un-drained shear strength of soil (Su) was calculated using Eq. 3-1:  

𝑆𝑢 =
𝑇

𝜋 (
𝑑2ℎ

2 +
𝑑3

6 )
=

6𝑇

7𝜋𝑑3
 (𝑓𝑜𝑟 ℎ = 2𝑑) 

Eq. 3-1 

where T is the maximum torque reading, which is noted on the torque wrench, h is the 

height of the vane and d is the diameter of the vane. The equation also shows that for a 

vane with a height-to-diameter ratio of two, shear resistance on a vertical plane produces 

a torque of magnitude six times than that on the horizontal planes. 

Undrained shear strength calculated from the field vane test should be corrected to 

account for factors like anisotropy, strain effects, and disturbance. Based on computed 

factors of safety (FS) with known field vane shear strength, Bjerrum (1972) calculated 

the correction factor (μ) which is defined by Eq. 3-2 as: 

𝜇 =
1

𝐹𝑆
= 1.7 − 0.54 𝑙𝑜𝑔(𝑃𝐼) 

Eq. 3-2 

where PI is the plasticity index of the soil. Eq. 3-2 is used in this study to calculate the 

corrected vane shear strength. It is plotted in Figure 3.6. 
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Figure 3.6: Bjerrum’s (1972) recommended curve to calculate the correction factor for 

calculated undrained shear strength by Vane Shear Test. 

 

 

After the vane shear test, undisturbed soil samples were collected using Shelby 

tubes and PVC core samplers. The collected soil samples were stored in airlock bags to 

preserve the moisture and they were brought to the soil testing lab for further testing. 

Although the cone penetration test was tried at all the sampling locations, no results were 

obtained from the digital penetrometer used. It was because the soil was very soft to 

provide any resistance to the tip of the penetrometer. In addition to the un-disturbed 

samples, disturbed samples were also obtained from each in-situ location for soil 

characterization and for the measurement of water content. Disturbed soil samples were 

also stored in airlock bags. Figure 3.7 shows the different process of in-situ tests and soil 

sample extraction. 
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Figure 3.7: (left) Using extruding rod with hammer to get soil samples from Shelby tube 

from inside the quadrant as seen in picture; (mid) Trimming soil samples at different 

depths obtained from PVC core sampler; (right) Penetrometer test being conducted on the 

site. 

 

 

3.4 Lab Tests 

This section provides the description of the instruments used and methodology to 

conduct laboratory tests of soil specimen and root samples collected from the site. 

 

3.4.1 Atterberg’s Limit Test 

Liquid limit is defined as the water content when the soil changes from plastic 

stage to liquid stage. ASTM D4318 was followed to measure the liquid limit of the soil 

obtained from the site. Figure 3.8 shows the arrangement of the liquid limit test in the 

lab.  



31 

 

 

    

Figure 3.8: (left) Equipment required to conduct the liquid limit test including the 

Casagrande’s apparatus; (right) Groove cut at center of brass cup using a grooving tool. 

 

    

 

Plastic limit is defined as the moisture content when the soil changes from plastic 

state to semi-solid state. It is the moisture content when the soil just begins to crumble 

when rolled into a thread of 1/8 inches. ASTM D4318 was followed to measure the liquid 

limit of the soil obtained from the site. Figure 3.9 shows the arrangement of the plastic 

limit test in the lab. 

 

 

Figure 3.9: (left) Soil rolled till they crumbled in threads of size 1/8” on glass plate; (top 

right) Weight measurement of crumbled soil masses with the precision of three decimal 

places; (bottom right) Oven drying the cans to obtain moisture content. 
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3.4.2 Direct Shear Test 

Undisturbed soil samples collected from sites using the Shelby tubes were first 

extruded by a hydraulic extruder. Sufficient care was followed to ensure undisturbed 

condition while extruding and preparing the soil samples. A minimum of four soil 

specimens was obtained from each of the Shelby tubes. Using the soil cutter, uniform soil 

specimens were prepared with diameter of 63.5 mm and height of 20 mm. Soil samples 

were then labeled according to their depths and locations. After taking the initial 

measurements, these specimens were then transferred to shear box where they were 

sandwiched between wet porous stones. Soil specimen were classified in three layers 

depending upon the depth of the specimen from the ground surface. The three layers were 

designated as Layer 1 (0 - 8 cm), Layer 2 (8 cm – 16 cm) and Layer 3 (16 cm - 24 cm). 

Soil samples below the depth of 24 cm hardly had any live roots. So, the soil samples 

collected below these depths were assumed to be plain soil not having any roots of 

Spartina alterniflora.  

A total of twenty-four soil specimens were prepared for direct shear tests, twelve 

from each of Cycle 1 and Cycle 3 at the CS-28 project site. For each layer at least three 

soil specimens were tested to help obtain strength parameters of the soil; i.e., cohesion (c) 

and friction angle (𝜙).  

Direct shear tests were performed in Louisiana Tech’s Geotechnical Engineering 

Laboratory using the ELE International Direct shear test machine as shown in Figure 

3.10. ASTM D3080 was followed for the direct shear tests. Consolidated drained direct 

shear test was performed on rooted and non-rooted soil samples collected from the site. 

The testing was controlled using “Data-System 7 (DS7)” software developed by ELE 
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International. The software provides automatic data acquisition, real-time data display, 

and information regarding details and procedure of the test. It can also be used to control 

several tests at the same time and to generate test reports at the end of a test. 

  

 

Figure 3.10: The ELE international Direct Shear Machine. 

 

 

 

ELE international direct shear test machine consists primarily of a direct shear 

box, which can be split into two halves and holds the specimen; a load cell to measure the 

force acting on the specimen, horizontal and vertical transducers to measure the 

deformation in respective directions; and a lever-hanger system which multiplies the 

vertical load applied on the specimen by a ratio of 10:1. A controlled horizontal load was 

applied using a motor and gear arrangement system. In this research, strain-controlled 

tests were used. To maintain a drained condition and make the pore water pressure (u) 

zero, a very small rate of strain equaling 0.1 mm/min was applied on the upper half of the 

shear box during the shearing stage of the test. The detailed process of a direct shear test 
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is illustrated in Figure 3.11 (Process for direct shear test starts from step “a” and ends at 

step “g”).  

 

 
 

Figure 3.11: (a) Undisturbed soil samples being extruded from Shelby tubes, (b) Rooted 

soil samples cut according to depths, (c) Rooted soil sample trimmed by cutter, (d) 

trimmed soil samples pushed inside the shear box, (e) Shear box transferred to Direct 

Shear Machine, (f) Direct Shear Machine during shearing phase, (g) Failed soil sample 

after the test showing distinct failure planes. 
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3.4.2.1 Consolidation Stage: 

After mounting the shear box consisting of soil specimen onto the direct shear 

machine, the consolidation stage was started. Desired normal load to be applied on the 

specimen was obtained by hanging dead weight to a vertical load yoke and using the 

lever-hanger system which multiplies the vertical load applied to the specimen by a ratio 

of 10:1. Using the known area of the shear box, DS7 software computes the total normal 

stress acting on the specimen. Three different normal loads 5 kPa, 11 kPa and 19 kPa 

were selected. Once the desired normal stress was obtained, the screw which holds the 

weight on the yoke was released.  

The normal load applied to the soil specimen causes a certain amount of 

compaction and dewatering, which results in gradual vertical settlement of the specimen. 

In an ideal situation, three distinct stages of consolidation are observed: an initial pre-

compression period with a shallow slope, a primary consolidation period where the slope 

of the curve approaches a vertical line on the plot and a secondary consolidation period 

with a shallow slope (Braja 2008). DS-7 plots the graph as the test proceeds. Tests were 

stopped once a secondary shallow slope was established. Figure 3.12 shows a typical 

consolidation curve (deformation vs square root minute) as plotted by DS-7 during this 

research. 
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Figure 3.12: A typical consolidation curve obtained from DS-7 software during the 

consolidation stage of direct shear test. 

 

 

3.4.2.2 Shearing Stage: 

After the consolidation stage, vertical alignment screws that lock the two halves 

of the shear box were removed. A horizontal load was applied on the top half of the shear 

box using the gear and motor assembly. To ensure full drainage conditions and prevent 

pore pressure buildup, a slow rate of shearing equal to 0.1 mm/min was used. This rate 

was entered manually on the keypad of the direct shear machine and was kept constant in 

all the tests. As the test proceeded, a graph was plotted between shear stress acting on the 

soil sample and relative lateral displacement. The test was either stopped automatically or 

manually when a constant slope was obtained.  

A typical shear displacement curve consisted of the increase in shear stress from 

zero to a maximum showing a high modulus of elasticity (E) in that period. Then for the 

same rate of the strain, the stress increase in a specimen is almost zero. After some 
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deformation, the shear stress will increase again but will have a relatively flatter slope. 

This process will either repeat or terminate in a straight-line graph with the shear stress 

becoming constant for any relative increase in displacement. This constant value was 

noted as the maximum shear stress acting on the specimen during failure. Figure 3.13 

shows the typical stress-displacement curve plotted by the DS-7 software. 

 

 

Figure 3.13: A typical shear vs. displacement curve obtained from DS-7 software during 

the shearing stage of direct shear test. 

 

 

 

However, for the rootless soils, we could observe a sharp peak on the curve 

followed by a gradual decrease to a lower shear stress value that remains constant until 

the end of the test. This sharp peak was noted as the maximum shear strength of rootless 

soils. 
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Using the peak value of the shear stress and corresponding normal stress, a graph 

of shear strength versus normal stress (τ vs. σ) was plotted for all the tests which is 

illustrated in Figure 4.6 and Figure 4.10 of Chapter 4. For each soil layer, a minimum of 

three valid tests were done by varying the normal load. Value of cohesion (c) and angle 

of friction (ϕ) was obtained for each layer using these graphs. Line intercept of the graph 

gives the value of c and the slope of the line gives the value of ϕ. 

 

3.4.3 Tensile Test 

Tensile strength tests for the roots of Spartina alterniflora were conducted using 

the ADMET expert 2600 universal tensile testing machine at Louisiana Tech University. 

A low capacity load cell (667N) was used.  

The root system of Spartina alterniflora was found adventitious in nature, which 

was composed of thicker underground stems or rhizomes and thinner fibrous roots. 

Rhizomes were found in shallow depths and their diameters decrease as they go deeper. 

Shoots and adventitious roots emerged from rhizome’s nodes. Since shoots emerged from 

rhizomes, it was seen that, although plants appear to be distinctly individuals, in the 

ground they remain connected by rhizomes. Adventitious roots were found to grow 

almost perpendicular from rhizomes and were connected forming dense mesh at shallow 

depths. Unlike rhizomes, these roots have fine root hairs and can penetrate deeper into the 

soil.  

The root system was classified into three major types depending upon their 

diameter sizes. The three root types are designated as: R1 (0.16 inches - 0.22 inches), R2 
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(0.06 inches - 0.15 inches) and R3 (0.01 inches - 0.06 inches). Figure 3.14 shows the 

three designated root types of Spartina alterniflora. 

 

 

Figure 3.14: Three different root types of Spartina alterniflora showing their ends being 

prepared for the tensile test. 

 

 

 

The diameters of all root specimen were measured at the middle and end of each 

piece using electronic slide calipers of 0.01 mm resolution. Root Area Ratio (RAR) is the 

ratio of the cross-sectional area of the soil covered by the roots per unit area (Gray & 

Leiser 1982). RAR values of Spartina alterniflora were found to decrease with the depth 

of the soil layer. To measure RAR representative soil samples from each layer were air 

dried in three separate cores of diameter 2.5 inches. Once the soil was air-dried, the soil 

samples were taken out from the core and were broken at the middle. Roots were then 

counted for each of the root types. Using the average diameter of each root type, RAR 
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was calculated as the fraction of the total root area by the total cross-sectional area of the 

soil core. 

The main problem during the tensile test was found while clamping the ends of 

the root specimen. During each test, the root sample could easily slip out or break at the 

clamping points. This resulted in erroneous data and wastage of several valuable root 

specimen. After trying several methods, two different arrangement were finalized: Grip 

Arrangement (GA) and Hook Arrangement (HA).  Figure 3.15 shows the experimental 

set up for the GA and HA methods, respectively. 

 

 

Figure 3.15: (left) Hook arrangement for tensile test showing hooks, root samples and 

parts consisting of hot glue to hold the root sample; (right) Pneumatic grip arrangement 

showing upper and lower grips and root sample. 
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Pneumatic grips were used in the GA method to hold and pull the roots at both 

ends. Root ends were covered with hot glue which prevented the slipping of roots and 

protected it from crushing from pressure of pneumatic grips. In the HA method, hooks 

were used to hold the root specimens using hot glue and double round eye swivel. For 

both arrangements, the tests were considered invalid if the failure occurred at the 

clamping ends. A total of thirteen valid test results was obtained at the end of several root 

tensile tests. GA was used to test root type R1 with bigger diameters and HA was used to 

test root types R2 and R3 of relatively smaller diameters.  

Root diameter was measured using digital electronic slide calipers of 0.01 mm 

resolution as shown in Figure 3.16. The test was conducted with a constant loading rate 

and the test specimens were cut to an equal length of 2 inches to maintain uniformity. 

 

 
 

Figure 3.16: Electronic slide caliper used to measure the root diameters of Spartina 

alterniflora. 
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A uniform distance of one inch was established between the two pneumatic grips 

or hooks. Figure 3.17 illustrates the initial set up for the HA test and Figure 3.18 shows 

the failed root sample after the root tensile test, which indicates that the test failed. 

 

 

Figure 3.17: Tensile test set up using Hook arrangement before pouring hot glue at the 

ends of double round eye swivel (wrapped by blue tape at the bottom). 

 

 

 

 

Figure 3.18: Failed root sample after the test showing the stretched inner vascular 

membranes. 
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3.4.4 Below Ground Biomass Measurement 

Two methods were used to measure the belowground biomass. For the first 

method, the soil sample after the direct shear test was air-dried to obtain the total dry 

weight. Then the dried soil sample was washed (i.e. wet sieving) through two sieves with 

a mesh size of 0.6 mm (sieve no. 30) and 0.25 mm (sieve no. 60), respectively, to 

separate roots from the soil as shown in Figure 3.19.  After the wet-sieving, the roots 

were air-dried to obtain the weight of dry roots. A minimum of two samples from each 

layer were wet sieved and roots were air dried as shown in Figure 3.20. The weight of 

the roots was measured using a sensitive balance to 3 decimal places. Finally, the root 

content was calculated using Eq. 3-3. 

Root content =  
Weight of the dry roots

Weight of the dried soil sample
  Eq. 3-3 

 

 

 

 

Figure 3.19: (left) Wet washing the roots in sieve nos. #30 and #60 to separate roots from 

the soil; (right) Representative soil samples used to measure the underground biomass 

(two samples for each layer).  
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Figure 3.20: Air-drying the root samples (two from each soil layer) collected from wet 

sieving.  

 

 

 

As for the second method, a representative soil sample for the given layer was left 

to air dry. Later, the soil sample was broken from the middle and the number of roots 

present in the cross-section was counted as shown by Figure 3.21. The number of roots 

were counted for each of the root types. For each root type, an average diameter was 

used, and the total root area was counted. With the known cross-sectional area of the soil 

sample, the root area ratio (RAR) was calculated using the formula: 

𝑅𝐴𝑅 =
∑ 𝐴𝑟𝑖

𝑛
𝑖=1

𝐴
 Eq. 3-4 

where “i” represents the ith single root, Ari is the area of the ith root, A is the total cross-

section area of the soil sample, and n is the total root number.  
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Figure 3.21: (left) Soil cores of each layer with roots of Spartina alterniflora let to air 

dry in the lab; (right) Broken soil core showing the roots of the plant.  

 

 

 

3.5 Delft3D 

QUICKPLOT, a post-processing tool of Delft3D was used to extract the results 

from a validated WAVE-FLOW coupled model with Hurricane Ike forcing condition to 

investigate the mass erosion that happened at the marsh creation project site CS-28. 

Results analysis were done for four scenarios with different grid conditions (Shariar 

2017). They are: 

1. Submerged grid condition without vegetation 

2. Dry grid condition without vegetation 

3. Submerged grid condition with vegetation 

4. Dry grid condition with vegetation 

Sampling location where in-situ tests was done were located by matching the M-

value from Delft3D GRID with the known longitudes of the sampling station and by 

matching N- value from Delft3D GRID with the known latitudes of the sampling station. 

First, for the known value of latitude of a sampling station, the corresponding 

value of N was located from Delft3D GRID as shown in Figure 3.22.  



46 

 

 

 

Figure 3.22: A screenshot of Delft3D GRID showing the N value for the corresponding 

latitude of a sampling location. 

 

 

 

Out of the two extreme periods during the Hurricane Ike, Land Fall on September 

12 at 18:00 hours and Peak Surge on September 13 at 2:00 hours (Shariar 2017), analysis 

was done for Peak Surge period. It was because the value of bed shear stress and water 

velocity was found higher during this time period. Figure 3.23 shows a screenshot of 

Delft3D QUICKPLOT showing the selected time of peak surge and the corresponding N 

value of a sampling station to plot the maximum bed shear stress for that location. 
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Figure 3.23: A screenshot of the QUICKPLOT, showing the selected time of the peak 

surge and N value equal to 293 for a sampling location. 

 

 

 

With the selected value of time and the N value, QUICKPLOT was used to plot 

the graph of the required parameter. Figure 3.24 and Figure 3.25 show the plot of the 

maximum bed shear stresses and the magnitude of wave velocity respectively, for the 

selected value of N. 
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Figure 3.24: A graph of the maximum bed shear stress obtained from post processing 

tool, QUICKPLOT, for the entire range of M (longitude) and a specific value of N.  

 

 

 

 

Figure 3.25: A graph of magnitude of wave velocity obtained from post processing tool, 

QUICKPLOT, for the entire range of M (longitude) and a specific value of N. 
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After plotting these graphs, the required value of the maximum bed shear stress 

and the maximum wave velocity was obtained for the specific location. The same process 

was followed to obtain the value of the maximum bed shear stress and the maximum 

wave velocity for all the sampling stations. This method was followed for each of the 

four different grid conditions. 
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RESULTS AND DISCUSSIONS 
 

This chapter presents the overview of the results of all tests done in the soil 

sample of Cycle 1 and Cycle 3 of CS-28 project in Sabine Refuge M Marsh creation 

project in Louisiana. It includes the results of in-situ tests, lab tests, analytical model tests 

and finite element analysis study.  

4.1 Vane Shear Tests 

The correction factor (μ) was calculated using the Bjerrrum's formula given by 

Equation 8. It was found to be equal to 0.9 for the soil with plasticity index of 32.4%. The 

resulting corrected undrained shear strength profile of the soil at different locations of 

Cycle 1 and Cycle 3 of the CS-28 project is shown in Figure 4.1. Undrained shear 

strength (Su) of the soil was highest at the ground level, and it decreased with the depth. 

Overall, “Station 2” of Cycle 1 had the highest value of Su and “Station 1” of Cycle 3 had 

the lowest value of Su. At the ground level, undrained shear strength was found to be 

higher with a range of 6.82 kPa to 10.45 kPa. It is because of the presence of a large 

number of rhizomes and adventitious roots present in the top soil layer which contributed 

to large amount of reinforcement to the soil. Su decreased highly to the range of 5.5 kPa 

to 7.5 kPa at the depth of 10 cm from ground. The decrease in undrained shear strength 

was because of the decrease in the number of roots with increasing depth. Value of Su 

was comparable at depths of 30 cm and 40 cm. It is because there is very little presence 
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of roots at those depths. At a depth of 40 cm, value of Su was the lowest where it ranged 

from 3.18 kPa to 4.54 kPa. 

 

 
 

Figure 4.1: Corrected undrained shear strength profile obtained from Vane Shear Test 

for six different locations at the CS-28 project. 

 

 

  

4.2 Tensile Strength Test of Roots 

Root type "R1" with mean diameter of 4.572 mm (0.18 inches) had the highest 

peak load value at failure which ranged from 28.168 N to 42.675 N. Root type "R3" with 

the mean diameter of 0.762 mm (0.03 inches) had the lowest peak load value which 

ranged from 5.429 N to 8.7665 N. However, when this load was proportioned depending 
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upon the root diameter, it can easily be seen that lateral roots "R3" can support a relatively 

higher peak load than R1. Since the root area ratio (RAR) was calculated using the 

average diameter of each root type, the tensile strength was also calculated for average 

root diameter for each of the root type. The average diameter for root type R1, R2 and R3 

were 0.18 inches, 0.1 inches, and 0.03 inches, respectively. Average tensile strength was 

2.24 MPa, 2.55 MPa, and 15.72 MPa for root types R1, R2 and R3 respectively as shown 

in Table 4.1.  

 

Table 4.1: Peak load, average root diameter, tensile strength and averaged tensile strength 

of roots of Spartina alterniflora. 

 

Root 

Type 

Root 

Sample 

Peak 

Load(N) 

Avg. Dia. 

(mm) 

Tensile 

Strength (kPa) 

Avg. Tensile 

Strength (kPa) 

R1 

R11 42.658 4.572 2598.381 

2244.34 R12 39.722 4.572 2419.556 

R13 28.157 4.572 1715.094 

R2 

R21 16.592 2.54 3274.45 

2553.13 

R22 9.519 2.54 1878.64 

R23 8.496 2.54 1676.73 

R24 15.747 2.54 3107.65 

R25 14.679 2.54 2896.96 

R26 12.588 2.54 2484.37 

R3 

R31 8.185 0.762 17947.53 

15720.34 

R32 7.918 0.762 17362.28 

R33 7.073 0.762 15509 

R34 5.649 0.762 12387.69 

R35 5.427 0.762 11899.99 

R36 8.763 0.762 19215.56 

 

 

 

Figures 4.2, 4.3 and 4.4 show the load-deformation curve for different root 

samples. Figure 4.5 shows the exponential increase in root tensile strength as the root 

diameter decreased. Figure 4.5 also shows the higher variability of tensile strength of 
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small roots when compared to large roots. The value of α and β, calculated using Figure 

4.5 and Eq. 2-5 (Gray & Sotir 1996), was equal to 10.153 and 1.23 respectively. These 

values can be used for preliminary estimation of tensile strength of Spartina alterniflora 

for the known value of root diameter. 

 

 

 

Figure 4.2: Graph of load vs. deformation for different root samples of root type "R1". 

 

 

 

 

Figure 4.3: Graph of load vs. percentage lateral deformation for different root samples of 

root type "R2". 
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Figure 4.4: Graph of load vs. percentage lateral deformation for different root samples of 

root type "R3". 

  

 

 

 
 

Figure 4.5: Graph of root tensile strength (MPa) vs. root diameter (mm) showing the 

power law regression. 
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4.3 Direct Shear Tests 

For Cycle 1 of CS-28 project site, highest and lowest value of cohesion (c) was 

found equal to 5.51 kPa for Layer 1 and 2.48 kPa for “Plain Soil Layer” respectively as 

shown in Table 4.2. It was found that peak shear strengths were increased for all the 

rooted soil samples. The value of peak shear strength was found to be decreasing with 

depth increments. Reinforcement provided by the roots increased cohesion of soil by 

approximately 130% for Layer 1, 70% for Layer 2 and 12.5 % for Layer 3. The result 

shows that there is a high influence of root reinforcement till the depth of 24 cm after 

which there is negligible increase in root cohesion. Unlike the study shown by Wu et al. 

(1979) which suggested that there is no contribution of roots in soil friction angle, it was 

found that the presence of roots significantly increases the friction angle of a soil layer.  

 

Table 4.2: Calculation of values of cohesion (c) and friction angle (𝜙) for different soil 

layers of Cycle 1. 

 

 

Normal Stress 

(kPa) 

Peak Shear Strength (kPa) for Cycle 1 

Layer 1 

(0-8cm) 

Layer 2 

(8-16 cm) 

Layer 3 

(17-24 cm) 

Plain Soil 

(no roots) 

5 9.02 7.24 5.43 3.62 

11 14.54 9.04 6.03 5.43 

19 19.80 14.54 10.9 7.15 

Cohesion (c) (kPa) 5.51 4.08 2.75 2.48 

Friction Angle (𝜙) 37.40° 27.80° 21.93° 14.04° 
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Figure 4.6 shows the Mohr’s failure envelope of soil at different depths in Cycle 1 

of the CS-28 project. Figures 4.7, 4.8 and 4.9 show the stress-strain curve of soil layers in 

Cycle 1 for different normal load value of 5 kPa, 11 kPa, and 19 kPa, respectively. 

 

 

Figure 4.6: Graph of normal stress vs. shear strength for soil samples from Cycle 1 of 

CS-28 project. 

 

 

 

 

Figure 4.7: Stress-Strain curve for soil samples from Cycle 1 for a normal stress of 5 kN. 
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Figure 4.8: Stress-Strain curve for soil samples from Cycle 1 for a normal stress of 11 

kN. 

 

 

 

 

Figure 4.9: Stress-Strain curve for soil samples from Cycle 1 for a normal stress of 19 

kN. 
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For Cycle 3, the highest value of cohesion was found equal to 4.94 kPa for Layer 

1 and the minimum value of 2.14 kPa was found for “Plain Soil Layer” as shown in 

Table 4.3. One thing to note over here is that the cohesion value of "Plain Soil" was 

comparable with that of Cycle 1. Peak shear strength was again obtained higher for all the 

rooted soil samples. The failure envelope area decreased from Layer 1 to “Plain Soil 

Layer” gradually. The cohesion of soil increased by approximately 127% for Layer 1, 

124% for Layer 2 and almost no increase in cohesion for Layer 3. The result indicates 

there is a high influence of root reinforcement till the depth of 16 cm after which there is 

negligible increase in root cohesion. This is different from the result obtained from Cycle 

1 where the influence in cohesion was found till the Layer 3. This indicates that roots 

reinforcement goes deeper in Cycle 1 than in Cycle 3.  

 

Table 4.3: Calculation of values of cohesion (c) and friction angle (𝜙) for Cycle 3. 

 

 

Normal Stress 

(kPa) 

Peak Shear Strength (kPa) for Cycle 3 

Layer 1 

(0-8cm) 

Layer 2 

(8-16 cm) 

Layer 3 

(17-24 cm) 

Plain Soil 

(no roots) 

5 9.04 6.35 3.55 3.20 

11 12 10.85 7.01 5.43 

19 19 12.7 9 6.90 

Cohesion (c) (kPa) 4.94 4.81 2.07 2.14 

Friction Angle (𝜙) 35.76° 23.83° 20.89° 14.56° 

 

 

 

Figure 4.10 shows the Mohr’s failure envelope of soil at different depths in Cycle 

3 of the CS-28 project. Figures 4.11, 4.12 and 4.13 shows the stress-strain curve of the 
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soil layers in Cycle 3 for different normal load value of 5 kPa, 11 kPa, and 19 kPa 

respectively. 

 

 

Figure 4.10: Graph of normal stress vs. shear strength for soil samples from Cycle 3 of 

CS-28. 

 

 

 

 

Figure 4.11: Stress-Strain curve, soil samples from Cycle 3 for the normal stress of 5 kN. 
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Figure 4.12: Stress-Strain curve for soil samples from Cycle 3 for the normal stress of 11 

kN. 

 

 

 

 

Figure 4.13: Stress-Strain curve for soil samples from Cycle 3 for the normal stress of 19 

kN. 
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4.4 Calculation of 𝒄𝑹 and Comparison with Wu et al. Model and FBM Model 

Root area ratio (RAR) values for Spartina alterniflora decreased with depth in all 

sampling locations as seen in previous studies by the authors (Greenway 1987; Schmid & 

Kazda 2001). Similarly, both the mean root diameters and the number of roots were 

found to be decreasing with increasing depth for all the sampling locations. For Cycle 1, 

RAR value of Spartina alterniflora ranged between 0.01443 at Layer 1 (0-8 cm) to 

0.00363 at Layer 3 (16-24 cm). Cycle 3 had relatively lower RAR value which ranged 

between 0.01085 (1.08 %) at Layer 1 (0-8 cm) to 0.00203 (0.2%) at Layer 3 (16-24 cm) 

as shown in Table 4.4. Root-induced cohesion (cR) for each layer was calculated by 

subtracting the total shear strength of that respective layer with the shear strength of 

"Plain-Soil Layer" obtained from the direct shear test. Root cohesion was also calculated 

for each layer by first using the Wu et al. (1979) model given from Eq. 2-4 and from the 

FBM model by using the flowchart presented by Pollen and Simon (2005). Root-induced 

cohesion (cR) was found to be decreasing from Layer 1 to Layer 3 of all the soil layers. 

For Cycle 1, root reinforcement from Wu et al. model (𝑐𝑊𝑈) ranged between 54.03 kPa 

to 17.95 kPa and the root reinforcement from the FBM model (𝑐𝐹𝐵𝑀) ranged between 

49.65 kPa to 13.58 kPa. Likewise, for Cycle 3, root reinforcement from Wu et al. model 

(𝑐𝑊𝑈) ranged between 44.96 kPa to 13.05 kPa and the root reinforcement from the FBM 

model (𝑐𝐹𝐵𝑀) ranged from 27.16 kPa to 10.87 kPa. When these root reinforcement values 

were compared with those obtained from direct shear tests, it was found that even though 

FBM model results were relatively more accurate over the Wu et al. model, both the 

model still highly overestimated the root reinforcement. The ratio of root reinforcement 
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calculated from FBM model to Wu et al. model varied between 0.92 to 0.55 which is also 

shown in Table 4.4. 

 

 

Table 4.4: Comparison of root cohesion from the direct shear test with root cohesion from 

Wu et al. (1979) perpendicular model and FBM model. 
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CYCLE 1                       

Layer 1 3166.92 R1 4.57 2 32.83 0.0104 2244.30 54.03 49.65 3.10 0.92 

0-8 cm 3166.92 R2 2.54 2 10.13 0.0032 2553.00     
 

3166.92 R3 0.76 6 2.74 0.0009 15720.00     

Layer 2     3166.92 R1 4.57 1 16.42 0.0052 2244.30 34.63 19.02 1.70 0.52 

8-16cm 3166.92 R2 2.54 2 10.13 0.0032 2553.00     
 

3166.92 R3 0.76 4 1.82 0.0006 15720.00     

Layer 3  3166.92 R1 4.57 0 0 0 2244.30 17.96 13.58 0.3 0.76 

16-24 cm 3166.92 R2 2.54 2 10.13 0.0032 2553.00     
 

3166.92 R3 0.76 3 1.36 0.0004 15720.00     

CYCLE 3 
           

Layer 1 3166.92 R1 4.57 1 16.42 0.0052 2244.30 44.96 27.16 2.76 0.61 

0-8 cm 3166.92 R2 2.54 3 15.20 0.0048 2553.00     
 

3166.92 R3 0.76 6 2.74 0.0009 15720.00     

Layer 2 3166.92 R1 4.57 0 0 0 2244.30 31.00 24.45 2.66 0.79 

8-16 cm 3166.92 R2 2.54 3 15.20 0.0048 2553.00     
 

3166.92 R3 0.76 6 2.74 0.0009 15720.00     

Layer 3 3166.92 R1 4.57 0 0 0 2244.30 13.05 10.87 0 0.83 

16-24 cm 3166.92 R2 2.54 1 5.08 0.0016 2553.00     
 

3166.92 R3 0.76 3 1.37 0.0004 15720.00     
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Several factors contribute to the inaccuracy of these models. Both models put root 

tensile strength and its diameter as contributing factors to soil reinforcement. However, 

they do not account for the slipping effects where roots tensile strength is not fully 

mobilized. Likewise, it is hard to account for the orientation of roots with failure plane 

and the distortion angle of sheared roots which are vital parameters in these analytical 

models. Smaller roots increase the uncertainty to measure the diameter of the roots, 

thereby increasing errors in the estimation of root area ratio (RAR). Moreover, this 

inaccuracy highly adds up while measuring the tensile strength of these small roots from 

the measured peak load values. Also, these models only consider the roots tensile 

strength treating the roots as a stretched cable without considering the bending and 

compression strength of the roots (Mao et al. 2014). 

   The ratio of actual root cohesion obtained from direct shear test and root 

cohesion obtained from Wu et al. model (without accounting for the orientation factor of 

roots i.e. 1.2, which is shown in Eq. 2-4) was calculated for each of the rooted soil layer. 

The averaged value of ratio for all the layers of each sampling stations was calculated 

which was equal to 0.065. This value can be used to modify the root reinforcement 

coefficient proposed by Wu et al. model for Spartina alterniflora in dredged soils as 

shown by Eq. 4-1. However, the results from these analytical models, should either be 

used after proper analysis or should be used only for preliminary estimation: 

𝑐𝑅 = 0.065 ∑ 𝑇𝑟𝑖(
𝐴𝑟𝑖

𝐴
)

𝑛

𝑖=1

 Eq. 4-1 
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4.5 Delft3D Analysis  

Shear stress developed on the soil during Hurricane Ike was calculated from the 

parameters obtained from Delft3D results. Based on the table of values given by 

Annadale as discussed in Chapter 2, the calculated value for mass strength number (MS), 

block size number (KB), discontinuity bond strength number (KD), relative ground 

structure number or orientation number (JS) was equal to 0.02, 1, 0.25 and 1 respectively. 

Erodibility index (K) can be calculated using Eq. 2-11 as shown in Eq. 4-2: 

𝐾 = 0.02 ∗ 1 ∗  0.25 ∗ 1 = 0.05 Eq. 4-2 

For K ≤ 0.1, critical stream power (Pc) can be calculated using Eq. 2-9 as shown in Eq. 

4-3: 

𝑃𝑐 = 0.48 ∗ 𝐾0.44  = 0.48 ∗ 0.0050.04 = 0.388
kW

m2
 Eq. 4-3 

This value of stream power was assumed to be constant for all over the grid. Two 

methods as discussed in Chapter 3 were used to calculate the ratio of shear strength to 

shear stress. 

For the first method, maximum bed shear stress and velocity of water for the 

specific location was obtained using QUICKPLOT. Results were extracted for peak surge 

condition as discussed in Chapter 3. Analysis was done for all the four grid conditions: 

Dry grid without vegetation, dry grid with vegetation, submerged grid without vegetation, 

and submerged grid with vegetation. Maximum bed shear stress obtained from Delft3D 

was compared with the shear strength of the soil obtained from the laboratory tests. This 

ratio of shear strength to shear stress was used as a representative factor to define the 

stability of soil at a location. The soil is safe from erosion if the value is greater than 1; 
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the higher the value, the more stable the soil will be. Table 4.5 and bar graph in Figure 

4.14 shows the calculation and illustration of the ratio of shear stress strength to shear 

stress for each of the sampling stations, respectively.   

 

Table 4.5: Calculation of shear strength to shear stress ratio for six sampling locations for 

four different grid conditions. 
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Cycle 1, st. 1 5.4 25 0.45 216 20 0.4 270 

Cycle 1, st. 2 5.4 20 0.4 270 15 0.3 360 

Cycle 1, st. 3 5 15 0.3 333 12.5 0.2 400 

Cycle 3, st. 1 3.6 11 0.35 327 7 0.4 514 

Cycle 3, st. 2 4.1 7 0.35 586 5 0.3 820 

Cycle 3, st. 3 3.6 12 0.3 300 4 0.35 900 

   
Submerged grid 

 without vegetation 

Submerged grid with 

vegetation 

Cycle 1, st. 1 5.4 4.5 0.6 1200 1.5 0.25 3600 

Cycle 1, st. 2 5.4 5 0.5 1080 1.5 0.2 3600 

Cycle 1, st. 3 5 4 0.55 1250 1 0.2 5000 

Cycle 3, st. 1 3.6 2 0.4 1800 3 0.35 1200 

Cycle 3, st. 2 4.1 3.5 0.35 1171 1.5 0.35 2733 

Cycle 3, st. 3 3.6 3.5 0.3 1029 3.5 0.3 1029 
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Figure 4.14: Ratio of shear strength to shear stress for six sampling locations for four 

different grid conditions using Delft3D analysis. 

 

The calculated values of shear strength to shear stress ratio for all the sampling 

locations was found greater than 1. It shows that all sampling stations were safe from 

mass erosion during storm conditions of Hurricane Ike.  

For the second method, Annadale’s Method was used to obtain the ratio of shear 

strength to shear stress for four different scenarios. The value of critical stream power 

was calculated from Eq. 4-2 which is equal to 388 W/m2. This was assumed constant all 

over the grid. The analysis was again done for all the four grid conditions. Table 4.6 and 

Figure 4.15 shows the calculation and illustration of the ratio of shear stress strength to 

shear stress for each of the sampling stations respectively.  
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Table 4.6: Calculation of shear strength to shear stress ratio for six sampling locations for 

four different grid conditions using Annadale’s Method. 
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Cycle 1, st. 1 388 25 0.45 11.25 34 20 0.4 8 49 

Cycle 1, st. 2 388 20 0.4 8 49 15 0.3 4.5 86 

Cycle 1, st. 3 388 15 0.3 4.5 86 12.5 0.2 2.5 155 

Cycle 3, st. 1 388 11 0.35 3.85 101 7 0.4 2.8 139 

Cycle 3, st. 2 388 7 0.35 2.45 158 5 0.3 1.5 259 

Cycle 3, st. 3 388 12 0.3 3.6 108 4 0.35 1.4 277 

    Submerged grid without 

vegetation 

 Submerged grid with 

vegetation 

Cycle 1, st. 1 388 4.5 0.6 2.7 144 1.5 0.25 0.37 1035 

Cycle 1, st. 2 388 5 0.5 2.5 155 1.5 0.2 0.3 1293 

Cycle 1, st. 3 388 4 0.55 2.2 176 1 0.2 0.2 1940 

Cycle 3, st. 1 388 2 0.4 0.8 485 3 0.35 1.05 370 

Cycle 3, st. 2 388 3.5 0.35 1.23 317 1.5 0.35 0.52 739 

Cycle 3, st. 3 388 3.5 0.3 1.05 370 3.5 0.3 1.05 370 
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Figure 4.15: Graph showing the ratio of shear strength to shear stress for six sampling 

locations for four different grid conditions by using Annadale’s Method. 

 

Figure 4.15 shows that for all the sampling stations, the ratio of shear strength to 

shear stress is much higher in the case of submerged grid with the presence of vegetation. 

The ratio of shear strength to shear stress is the lowest in the case of dry grid without 

vegetation. The calculated values of shear strength to shear stress ratio for all the 

sampling locations was far greater than 1 which shows that all sampling stations were 

safe from mass erosion during storm conditions of Hurricane Ike. If we analyze the 

overall scenario as “with vegetation” and “without vegetation”, we can see that the ratio 

of shear strength to shear stress for a location is always higher in the presence of 

vegetation. This indicates that the shoots of the vegetation significantly help to increase 

the resistance of soil against erosion by reducing the maximum bed shear stress. 
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CONCLUSION AND FUTURE WORKS 

 

Soil reinforcement study by vegetation is a complex system involving the 

interaction of several factors. Results from all the tests and analyses on rooted soil 

illustrate the importance of Spartina alterniflora roots in enhancing the shear strength of 

dredged soil. 

Direct shear test on rooted soil and plain soil samples show the decreasing root 

reinforcement with depth for all the sampling stations. For Cycle 1, reinforcement 

provided by roots of Spartina alterniflora increased the cohesion of the soil by 

approximately 130% for Layer 1 (0-8 cm), 70% for Layer 2 (8-16 cm) and only 12.5 % 

for Layer 3 (17-24 cm). Likewise, for Cycle 3, root reinforcement increased the cohesion 

of soil by approximately 127% for Layer 1, 124% for Layer 2 and almost no increase in 

cohesion for Layer 3.  

Vane shear test results show the corrected value of undrained shear strength and 

root area ratio, decreases with increasing depth for all the sampling locations. This 

indicates the direct significance of roots on the un-drained shear strength of soil. The 

tensile test results show a higher peak load value of large diameter roots. However, when 

this load value was proportioned with the root diameter, smaller diameter roots had 

relatively higher tensile strengths.  
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Wu et al. model and the FBM model were used to estimate the root reinforcement 

value analytically. The results from these models show that even though the FBM model 

was relatively more accurate over the Wu et al. model, both the model still highly 

overestimated the root reinforcement. Both model put root tensile strength and its 

diameter as contributing factors to the soil reinforcement. However, they do not account 

for the slipping effects where root’s tensile strength is not fully mobilized. Likewise, it is 

hard to account for the orientation of roots with failure plane and the distortion angle of 

sheared roots which are vital parameters in such analytical models. These models only 

consider the root’s tensile strength treating the roots as a stretched cable. They do not 

account for the bending and compression strength of the roots (Mao et al. 2014). 

Therefore, the results from these analytical models should either be used after proper 

analysis or for preliminary estimation. 

Results obtained from Delft3D Wave FLOW coupled model encompassing the 

hydrodynamics of Lake Calcasieu estuarine system, with Hurricane Ike forcing was 

analyzed (Shahriar 2017).  Four different scenarios were considered and the time-period 

during peak surge was chosen for the study. Two different methods were used to 

calculate the ratio of shear strength to shear stress. For both the methods, the ratio of 

shear strength to shear stress was found to be relatively higher in the presence of 

vegetation. This trend can suggest that the shoot of the vegetation can help to increase the 

erosion resistance potential of the soil by absorbing some of the wave energy. 

All the results from the in-situ test (vane shear test), lab test (direct shear test), 

analytical model and numerical analysis using Delft3D demonstrate that the roots of 

Spartina alterniflora provide significant reinforcement to the coastal soils. These results 
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indicate that Spartina alterniflora can be used as a vital reinforcing asset in the newly 

created dredged lands of coastal Louisiana.  

This research experience also suggests that root reinforcement from grass species 

can be more reliably measured if in-situ direct shear test machine or large-scale direct 

shear machine, which can measure shear strength of large size samples, can be used. The 

Pull-out tests of the roots can give more accurate value of the soil reinforcement provided 

by the roots. Sampling of soil and root specimens should be done at different seasons of a 

year to get a more realistic value of reinforcement provided by the vegetation.  

Further research can also be done to correlate the root reinforcement with root 

density, salinity, pH of soil, aboveground biomass, and distance from the marsh’s edge. 

The critical shear stress of the soil at the marsh bed can be calculated in-situ if a cohesive 

strength meter can be used. Using the jet-erosion test and/or hole erosion test on the 

rooted soil samples to calculate the erodibility of the rooted soil is the other 

recommended options. 

 As for the numerical analysis, the study can be done with a high-resolution grid 

and a more accurate vegetation model in Delft3D to calculate the wave induced bed shear 

stress at different locations. Sensitivity analysis of the wave-induced bed shear stress with 

the variation in distributions of vegetation cover, density and stem diameter in the 

marshes can be done. Likewise, finite element analysis tools like ANSYS, PLAXIS or 

ABACUS can be used to study the vegetation reinforcement effect by analyzing the 

elasto-plastic response of the soil subjected to wave induced bed shear stress. 
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APPENDIX 

ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

 
ASTM   American Society for Testing Materials  

c   Cohesion 

cm   Centimeter(s)  

CPRA   Coastal Protection and Restoration Authority 

FBM   Fiber Bundle Model 

FEM                            Finite Element Method 

ft.   foot (feet) 

FS   Factor of Safety 

in.   inch(es) 

kN                               kilo Newton(s) 

kPa   kilo pascal 

lb.   pound(s) 

m   meter(s) 

mm                             millimeter(s) 

MPa   Mega Pascal 

PI   Plasticity Index 

PVC   Poly Vinyl Chloride 

RAR   Root Area Ratio 

Su   Undrained Shear Strength 

Tr   Tensile strength of root 

u   Pore water pressure 

φ   Angle of internal friction of soil 

𝜇   Coefficient of friction  

2D   Two-dimensional 

3D   Three-dimensional 
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