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Abstract

Originally, closed-orbit theory was developed in order to analyze oscillations in the near ionization

threshold (Rydberg) densities of states for atoms in strong external electric and magnetic fields.

Oscillations in the density of states were ascribed to classical orbits that began and ended near

the atom. In essence, observed outgoing waves following the classical path return and interfere

with original outgoing waves, giving rise to oscillations. Elastic scattering from one closed orbit

to another gives additional oscillations in the cross-section. This study examines how quantum

theory can be properly used in combination with classical orbit theory in order to study inelastic

scattering for atoms in an external field. At Rydberg states, an electron wave function can be

modeled numerically through semiclassical means, using the Coulombic interaction from the atom,

but as it approaches lower states, it must be modeled quantum mechanically, using a ‘Modified

Coulombic’ potential.
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FIG. 1: A sketch illustrating the theory of how a Rydberg atom behaves in a magnetic field.

INTRODUCTION

In 1969, Garton and Tomkins studied the excited states of Barium in a magnetic field.

At lower energies, the structure of the spectrum is determined relatively easily as linear.

However, as energy is increased, oscillations begin to occur and a sinusoidal behavior arises

in the probability of absorption. Effects of an external magnetic field continue to add

complexities, and remain unsolved. One positive to this model: most atoms in Rydberg

states can be modeled similarly to Hydrogen, simplifying the process immensely. In an

atom, if a photon with the right energy hits a valence electron, it will be sent up to higher

energy states, and in some cases be ionized. However, the electron can also be sent to a

near-ionization state, known as a Rydberg state. At such a state, the electron still does not

have sufficient energy to escape the potential well of the atom. This lack of energy results

in a classical orbit that comes back to the nucleus of the atom.
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FIG. 2: The absorption spectrum of Barium in a magnetic field.

METHODS

Using a predetermined outgoing wave function determined from a purely quantum me-

chanical calculation, we can determine the returning wave semiclassically:

Ψret(~q) =

∫
G(~q, ~q′;E)Ψout(~q

′)d~q′ (1)

Where G is a Green’s function operating on Ψout, and gives a complex Ψret we can write as:

Ψret = AeiS (2)

The density of states can be shown as:

σ = σ0 + σosc (3)

Where the oscillatory part is represented as the imaginary overlap of the returning and

outgoing wave functions:

σosc ∝ Im < Ψret|Ψout > (4)

∝ ΣkAk(~q, ~q
′)sin(Sk(~q, ~q

′) + µk
π

2
) (5)

The amplitude depends on the stability matrix J and S on the kth classical path. J21 → 0

at bifurcations of an orbit unless higher order terms included in A and S.
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Ak = 1
|J21|1/2

= 1

| ∂2S̃
∂v2
|1/2

Sk =
∫
~pqd~q

The system hamiltonian can be represented by:

H =
p2

2
− 1

ρ
+

1

2
LzB +

1

8
B2ρ2 (6)

This system is not separable in any orthogonal coordinate system, so it must be solved

via perturbation theory.

The new Semiparabolic coordinate system is described as:

ρ = uv (7)

z =
(u2 − v2)

2
(8)

pρ =
1

u2 + v2
(vpu + upv) (9)

pz =
1

u2 + v2
(upu − vpv) (10)

The new coordinate system gives rise to a new Hamiltonian:

h = (u2 + v2)(H − E) + 2 (11)

Which, when expanded, is seen as:

h =
p2u
2

+
p2v
2

+
1

8
B2u2v2(u2 + v2) (12)

+
1

2
F (u4 − v4)− E(u2 + v2) = 2

The phase space is a planar slice of the 4-D system, plotting pv against v at the u = 0

surface.

FIG. 3: An example of a phase space portrait.

K. Vedala
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The linearized dynamics on the Poincaré map is given by the Jacobian matrix:

J(j) =

 ∂qf
∂qi

∂qf
∂pq,i

∂pq,f
∂qi

∂pq,f
∂pq,i

 =

 J11 J12

J21 J22

 (13)

The mapping preserves area, so det(J) = 1, and the eigenvalues are complex when

|Tr(J(j))| < 2, and purely real when |Tr(J(j))| > 2. Thus, when |Tr(J(j))| > 2, J12(j)

grows exponentially, and the orbit becomes unstable.

The properties of J encode the dynamics of the linear system:

If ~q = (u, v, pu, pv) such that d~q
dt

= J ~q + ΩNL

Neglecting the nonlinear terms, we get solutions that look like:

~q = e
~λt, with a diagonalized J =

 λ1 0

0 λ2


Then, for λ ∈ C, λ = α + iβ. So, if α = 0, we have oscillatory motion, and if β = 0, we

have instability.

Bifurcation theory is used to analyze how a dynamical system changes with respect to a

varying parameter - where and when fixed points arise and disappear. A pitchfork bifurcation

occurs when a pair of fixed points appears/disappears symmetrically.

FIG. 4: A pitchfork bifurcation, varied by a parameter r.

Strogatz

Theoretical mappings of systems of this form look like: The Hartman-Grobman Theorem

states that in a neighborhood around a hyperbolic fixed point, the phase space of a dynamical

system is homeomorphic to another of the same form.From this, we can approximate the
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FIG. 5: A chart of normal forms.

Ozorio de Almeida

dynamics of a nonlinear system near its fixed points. Furthermore, we can draw parallels

between two dynamical systems that share the same form.

Since the Hamiltonian cannot be separated in any coordinate system, it must be dealt

with numerically.The numerical integrator uses a fourth order Runge-Kutta method to solve

the system.

Recall:

σosc = ΣkAk(~q, ~q
′)sin(Sk(~q, ~q

′) + µk
π

2
) (14)

The calculations of Ak, Sk, and µk involve classical paths. The equations of motion as

shown are integrated, which becomes a summation of the classical orbits, giving the density

of states.

CONCLUSION

The trace, as varied with scaled energy is shown in Figure 6. The phase space is shown

in Figures 8-23.

It is seen that the dynamical system modeled mirrors that of the expected normal form,

and thus, through time, satisfies the Hartman-Grobman Theorem near the origin. Near

the fixed points are points at v = 0, in the neighborhood of the surface of section u → 0.

In order to fit the Hamiltonian to a normal form, we define a canonical transformation

H(u, −∂S̃
∂pv

, ∂S̃
∂u
, pv)

Such that S̃(u, pv), and:
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FIG. 6: Trace plotted against scaled energy.

v = −∂S̃
∂pv

pu = ∂S̃
∂u

For orbits along the pv axis in a B-field,

S̃ = u
√

2E − p2v + F (pv) (15)

Where:

F (pv) =
∑

n
a2n
2n
p2nv ,n ∈ N

We approximate using our quartic terms:

F (pv) =
a2
2
p2v +

a4
4
p4v (16)

We can rewrite F (pv) as:

F (pv) =
a4
4

(
2a2
a4
p2v + p4v) (17)

And re-parameterize, such that λ := 2a2
a4

, then for λ ∈ {−1,−.5, 0, .5, 1}, F takes the form:
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FIG. 7: Bifurcation as λ is varied.

The final returning wave function is represented as:

Ψret = AeiS̃ (18)

Which is including the nonlinearities, resulting in a lack of singularity in Ψret, since Ak 9∞

as J21 → 0 in the nonlinear approximation to the kth orbit.

Therefore, we have a successful way to numerically integrate the returning wavefunctions

of the Rydberg Hydrogen atom in a magnetic field.
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APPENDIX

FIG. 8: ε = −.45

FIG. 9: ε = −.44

FIG. 10: ε = −.43

FIG. 11: ε = −.42

FIG. 12: ε = −.41

FIG. 13: ε = −.40

FIG. 14: ε = −.39 (Critical Point)

FIG. 15: ε = −.38
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FIG. 16: ε = −.37

FIG. 17: ε = −.36

FIG. 18: ε = −.35

FIG. 19: ε = −.34

FIG. 20: ε = −.33

FIG. 21: ε = −.32 (Critical Point)

FIG. 22: ε = −.31

FIG. 23: ε = −.30

FIG. 8-23: Phase space portraits of orbits at u = 0 surface of section.
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