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ABSTRACT 

Protein sequence data has been produced at an astounding speed. This creates an 

opportunity to characterize these proteins for the treatment of illness. A crucial 

characterization of proteins is their post translational modifications (PTM). There are 20 

amino acids coded by DNA after coding (translation) nearly every protein is modified at 

an amino acid level. We focus on three specific PTMs. First is the bonding formed 

between two cysteine amino acids, thus introducing a loop to the straight chain of a 

protein. Second, we predict which cysteines can generally be modified (oxidized). 

Finally, we predict which lysine amino acids are modified by the active form of Vitamin 

B6 (PLP/pyridoxal-5-phosphate.) Our work aims to predict the PTM's from protein 

sequencing data. When available, we integrate other data sources to improve prediction. 

Data mining finds patterns in data and uses these patterns to give a confidence 

score to unknown PTMs. There are many steps to data mining; however, our focus is on 

the feature engineering step i.e. the transforming of raw data into an intelligible form for 

a prediction algorithm. Our primary innovation is as follows: First, we created the Local 

Similarity Matrix (LSM), a description of the evolutionarily relatedness of a cysteine and 

its neighboring amino acids. This feature is taken two at a time and template matched to 

other cysteine pairs. If they are similar, then we give a high probability of it sharing the 

same bonding state. LSM is a three step algorithm, 1) a matrix of amino acid probabilities 

is created for each cysteine and its neighbors from an alignment. 2) We multiply the 
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square of the BLOSUM62 matrix diagonal to each of the corresponding amino acids. 3) 

We z-score normalize the matrix by row. 

Next, we innovated the Residue Adjacency Matrix (RAM) for sequential and 3-D 

space (integration of protein coordinate data). This matrix describes cysteine's neighbors 

but at much greater distances than most algorithms. It is particularly effective at finding 

conserved residues that are further away while still remaining a compact description. 

More data than necessary incurs the curse of dimensionality. RAM runs in O(n) time, 

making it very useful for large datasets.  

Finally, we produced the Windowed Alignment Scoring algorithm (WAS). This is 

a vector of protein window alignment bit scores. The alignments are one to all. Then we 

apply dimensionality reduction for gains in speed and performance. WAS uses the 

BLAST algorithm to align sequences within a window surrounding potential PTMs, in 

this case PLP attached to Lysine. In the case of WAS, we tried many alignment 

algorithms and used the approximation that BLAST provides to reduce computational 

time from months to days. The performances of different alignment algorithms did not 

vary significantly. 

The applications of this work are many. It has been shown that cysteine bonding 

configurations play a critical role in the folding of proteins. Solving the protein folding 

problem will help us to find the solution to Alzheimer's disease that is due to a misfolding 

of the amyloid-beta protein. Cysteine oxidation has been shown to play a role in 

oxidative stress, a situation when free radicals become too abundant in the body. 

Oxidative stress leads to chronic illness such as diabetes, cancer, heart disease and 

Parkinson's. Lysine in concert with PLP catalyzes the aminotransferase reaction. 
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Research suggests that anti-cancer drugs will potentially selectively inhibit this reaction. 

Others have targeted this reaction for the treatment of epilepsy and addictions. 



 vi GS Form 14 

  (8/10) 

APPROVAL FOR SCHOLARLY DISSEMINATION 

The author grants to the Prescott Memorial Library of Louisiana Tech University 

the right to reproduce, by appropriate methods, upon request, any or all portions of this 

Dissertation.  It is understood that “proper request” consists of the agreement, on the part 

of the requesting party, that said reproduction is for his personal use and that subsequent 

reproduction will not occur without written approval of the author of this Dissertation.  

Further, any portions of the Dissertation used in books, papers, and other works must be 

appropriately referenced to this Dissertation. 

Finally, the author of this Dissertation reserves the right to publish freely, in the 

literature, at any time, any or all portions of this Dissertation. 

 

Author _     NORMAN "JOHN" MAPES JR.     _ 

 

Date ____ OCTOBER 8, 2018      _________________ 

 

 

 

 
 



vii 

 

DEDICATION 

This dissertation is written for those who love to learn. In memory of Dr. Tom 

Higginbotham and his wonderful wife Kathleen who have always been encouraging so 

many to pursue their dreams in higher education.  

 



viii 

 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iii 

APPROVAL FOR SCHOLARLY DISSEMINATION .................................................... vi 

DEDICATION .................................................................................................................. vii 

TABLE OF CONTENTS ................................................................................................. viii 

LIST OF FIGURES ......................................................................................................... xiii 

LIST OF TABLES .......................................................................................................... xvii 

ACKNOWLEDGMENTS .................................................................................................. 1 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 Overview of Dissertation and Organization ....................................................... 1 

1.1.1 Local Similarity Matrix Based Feature Engineering ...................................... 1 

1.1.2 Residue Adjacency Matrix Based Feature Engineering ................................. 2 

1.1.3 Windowed Alignment Scoring Based Feature Engineering ........................... 2 

1.1.4 Innovative Approaches to Data Mining .......................................................... 3 

1.1.5 Post Translational Modifications of Amino Acids in Protein ......................... 3 

1.1.6 Dataset Curation or Creation .......................................................................... 4 

1.1.7 Computational Challenges and Approximations ............................................ 4 

1.2 Statistical Methods .............................................................................................. 4 

1.2.1 Paired T-Test ................................................................................................... 4 

1.2.2 Two Sample Kolmogorov Smirnov Test ........................................................ 5 

1.3 Data Mining Definitions ..................................................................................... 6 

 



ix 

1.3.1 Data mining and Feature Engineering ............................................................ 6 

1.3.2 Classification................................................................................................... 7 

1.3.3 Clustering ........................................................................................................ 7 

1.3.4 Regression ....................................................................................................... 7 

1.3.5 Validation (Specifically N-Fold Cross Validation) ........................................ 8 

1.3.6 Dimensionality Reduction .............................................................................. 8 

1.4 Metrics of Performance ...................................................................................... 9 

1.4.1 Receiver Operating Characteristic Curve (ROC Curve) ................................. 9 

1.4.2 Area Under the ROC Curve (AUC) ................................................................ 9 

1.4.3 Matthew's Correlation Coefficient ................................................................ 10 

1.4.4 Q2 / Qp / Qc .................................................................................................... 10 

CHAPTER 2 CYSTEINE DISULFIDE CONNECTIVITY AND THE LOCAL 

SIMILARITY MATRIX ................................................................................................... 11 

2.1 Overview ........................................................................................................... 11 

2.2 Introduction ....................................................................................................... 12 

2.2.1 Prior Works ................................................................................................... 15 

2.3 Methodology ..................................................................................................... 17 

2.3.1 Feature Extraction ......................................................................................... 18 

2.3.1.1 Position Specific Scoring Matrix PSSM vs. Local Similarities .......... 18 

2.3.1.2 Distance Oxidized Cysteines ............................................................... 22 

2.3.1.3 Cysteine Separation Profiles ................................................................ 23 

2.3.1.4 Modeller............................................................................................... 24 

2.3.1.5 PSS - Predicted Secondary Structure................................................... 26 

2.3.2 Normalization ............................................................................................... 27 

2.3.3 Regression ..................................................................................................... 28 

2.3.4 Maximum Edge Weight Perfect Matching and Performance Metrics .......... 29 



x 

2.3.5 Random Forest Regression ........................................................................... 31 

2.4 Results ............................................................................................................... 34 

2.4.1 Local Similarity vs. PSSM ............................................................................ 34 

2.4.2 Performance on three Datasets...................................................................... 36 

2.4.3 Prior Work Performance Comparison .......................................................... 41 

2.4.4 Modeller Percent Identity Threshold ............................................................ 43 

2.5 Conclusion ........................................................................................................ 45 

CHAPTER 3 CYSTEINE REDOX SUSCEPTIBILITY AND THE RESIDUE 

ADJACENCY MATRIX .................................................................................................. 46 

3.1 Overview ........................................................................................................... 46 

3.2 Introduction ....................................................................................................... 47 

3.2.1 Prior Works ................................................................................................... 48 

3.3 Methods ............................................................................................................ 50 

3.3.1 Dataset Creation ............................................................................................ 51 

3.3.2 RAMseq ........................................................................................................ 52 

3.3.3 BLAST Alignments ...................................................................................... 55 

3.3.4 PSSM ............................................................................................................ 56 

3.3.5 PSS - Predicted Secondary Structure ............................................................ 57 

3.3.6 MODELLER ................................................................................................. 58 

3.3.7 RAMmod - Residue Adjacency Matrix from MODELLER Data ................ 59 

3.3.8 PROPKA - Protein pKa Data ........................................................................ 59 

3.3.9 SASA Data .................................................................................................... 60 

3.3.10 Normalizing the Data .................................................................................. 60 

3.3.11 Classification and Metrics of Performance ................................................. 61 

3.4 Results ............................................................................................................... 61 

3.4.1 RAM vs. D .................................................................................................... 62 



xi 

3.4.2 RAM vs PSSM .............................................................................................. 63 

3.4.3 Prior Works ................................................................................................... 65 

3.4.4 Using an n of 6 for RSC758 .......................................................................... 67 

3.4.5 Choosing an optimal Matthew's Correlation ................................................ 68 

3.5 Discussion ......................................................................................................... 69 

CHAPTER 4 PREDICTING PYRIDOXAL-5-PHOSPHATE LYSINE POST-

TRANSLATIONAL MODIFICATION ON THE PLP SWISSPROT DATABASE 

USING WINDOWED ALIGNMENT SCORING ........................................................... 71 

4.1 Overview ........................................................................................................... 71 

4.2 Introduction ....................................................................................................... 72 

4.2.1 Biological Significance and Background Information ................................. 72 

4.2.2 Summary of Data and Computational Challenges ........................................ 74 

4.2.3 Dataset Creation ............................................................................................ 76 

4.2.4 Relevance to Biological Workflows ............................................................. 76 

4.2.5 Hypothesis..................................................................................................... 77 

4.3 Methodology ..................................................................................................... 77 

4.3.1 The Original Engineered Feature Windowed Alignment Scoring (WAS) ... 77 

4.3.2 Computational Challenges and Approximations .......................................... 79 

4.4 Results ............................................................................................................... 81 

4.5 Conclusion ........................................................................................................ 90 

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ................................................. 92 

5.1 Contribution to Feature Engineering with LSM and the Cysteine Disulfide 

Connectivity Problem ................................................................................................... 92 

5.2 Contribution to Feature Engineering with RAM and the Cysteine Redox 

Susceptibility Problem .................................................................................................. 93 

5.3 Contribution to Feature Engineering with WAS and the Lysine Pyridoxal-5-

Phosphate Prediction Problem ...................................................................................... 93 



xii 

5.4 Future Work ...................................................................................................... 93 

APPENDIX A BLAST AND DATA CHARACTERISTICS ..................................... 95 

APPENDIX B CYSTEINE SEPARATION PROFILES FOR THE LOCAL 

SIMILARITY MATRIX ................................................................................................... 97 

APPENDIX C TABLES COMPARING THE LOCAL SIMILARITY MATRIX TO 

PREVIOUS WORKS...................................................................................................... 100 

APPENDIX D VISUALIZATION, FEATURE CORRELATIONS AND PRIOR 

WORK COMPARISONS FOR RESIDUE ADJACENCY MATRIX ........................... 102 

BIBLIOGRAPHY ........................................................................................................... 106 

 



xiii 

 

LIST OF FIGURES 

Figure 2-1: Protein Sequence with unbonded cysteines to potential bindings. ............... 13 

Figure 2-2: Block diagram of process.............................................................................. 17 

Figure 2-3: Depiction of insertions and omissions. ......................................................... 18 

Figure 2-4: Example PSSM or Local Similarity Matrix. ................................................. 19 

Figure 2-5: Analytic Solution for the PSSM. .................................................................. 21 

Figure 2-6: Linear Regression Approximation of Local Similarity Matrix with 

Conservation. .................................................................................................................... 22 

Figure 2-7: Histogram showing the number of proteins at each divergence separated 

by bonding and nonbonding for SP39. There is a high degree of homology because 

most of the proteins had low divergence and were bonding. This was not the case for 

PDBCYS and IVD-54. Qualitatively this shows the dataset has the potential to be 

solved at a higher Qp and Qc metric of success. .............................................................. 24 

Figure 2-8: Equidepth binning of Modeller at 40 percent identity comparing bonding 

to nonbonding cysteines. ................................................................................................... 26 

Figure 2-9: Maximum Edge Weight Perfect Matching Graph Combination Problem, 

Combination 2, A-C and B-D have the highest sum, so this pairing is maximum and 

would be chosen. ............................................................................................................... 30 

Figure 2-10: Algorithm for generating splits for the trees in a random forest regressor 

for continuous valued features. ......................................................................................... 33 

Figure 2-11: The differences between PSI-Blast's PSSM and Local Similarities at the 

40% identity threshold for all three datasets. .................................................................... 36 

Figure 2-12: Seven regressors were chosen for the three datasets falling into two 

categories. The first category consisted of ordinary least squares regressors such as 

LassoCV, Bayesian Ridge and Ridge Regression. The second category was random 

forest regression, support vector regression, neural networks and K-nearest neighbor 

regression. The first two datasets SP39 and PDBCYS performed better with the 

second type of regressor while the IVD-54 did so with the first type of regressor. ......... 38 



xiv 

Figure 2-13: Prior works compared for SP39. ................................................................. 42 

Figure 2-14: Prior works compared for PDBCYS-R. ...................................................... 42 

Figure 2-15: Prior works compared for IVD-54. ............................................................. 43 

Figure 2-16: Modeller identity thresholds effect on Qp. ................................................. 44 

Figure 3-1: Description of process via flowchart diagram. ............................................. 50 

Figure 3-2: Typical Residue Adjacency Matrix computed from protein 

APEX_HUMAN1. Depicted is RAMseq based on Cysteine 99, that is involved in 

reversible disulfide bonding and glutathionylation. The sequence is ...ETKCSEN… 

where cysteine 99 is centered. Note the values do not strictly increase, because when 

there is not enough amino acids of the correct type, the mean of the previous amino 

acids is used. These matrices are used to template match each other, where similar 

matrices have similar redox sensitivity. ............................................................................ 54 

Figure 3-3: A comparison of the area under the receiver operating characteristic 

curve and Matthew’s Correlation Coefficient. Both RAM and D had the SASA, pKa 

values, the PSSM and the PSS included as additional features. Therefore, the only 

difference between the two feature systems is RAM and D. ............................................ 62 

Figure 3-4: Matthew’s Correlation Coefficient and area under the receiver operating 

characteristic curve. No other features are included. ........................................................ 64 

Figure 3-5: A comparison of RAM with all supplementary features against the other 

two methods (RSCP and COPA) on our 3 datasets (RSC758, BALOSTCdb and 

OSTCdb). RAM has the highest MCC of all methods on all datasets. ............................. 66 

Figure 3-6: Matthew's Correlation Coefficient as a function of threshold. We chose 

the optimal threshold for MCC after varying classifier, classifier parameters and 

feature parameters for optimal AUC................................................................................. 69 

Figure 4-1: First half transimination reaction of PLP with the protein’s lysine. Step 1 

of the transamination reaction. .......................................................................................... 73 

Figure 4-2: Second half transimination reaction of PLP with the protein’s lysine. 

Continuation of step 1 of the transamination reaction. ..................................................... 73 

Figure 4-3: Hydrolysis and completion of transamination reaction. ............................... 73 

Figure 4-4: Flowchart overview of experimental procedure. .......................................... 79 

Figure 4-5: The relationship between homology level of dataset to performance. The 

y-axis is the 10-fold cross validation metric of success and the x-axis is the percent 

homology threshold from the CD-HIT clustering. ........................................................... 84 



xv 

Figure 4-6: The relationship between homology level of dataset to performance for 

protein and transcript level existence. Same description as prior figure. ......................... 85 

Figure 4-7: The relationship between homology level of dataset to performance for 

protein and transcript level existence. Same description as before. ................................. 86 

Figure 4-8: Comparing NW to BLAST performance metrics. The y-axis is the metric 

of success for a ten fold cross validation and the x-axis is the top scoring similarities 

retained. ............................................................................................................................. 88 

Figure A-1: Protein length does not affect the number of matches returned by a 

BLAST Search. Based on a linear regression mode,l the length of a protein predicts 

0.3% of the variability of the number of BLAST matches returned. The p-value is not 

significant at the 0.1 significance level. Thus  the length of a protein is not a good 

predictor of the number of matches returned by BLAST in which the adjusted R-

squared is 0.003. The figure is for the RSC758 dataset. ................................................... 95 

Figure A-2: Protein length predicts accuracy negatively for cysteine redox 

susceptibility on the RSC758 dataset with a p-value of 0.02, but this only explains 1% 

of the variability in the data where the adjusted R-squared is 0.01 and the p-value is 

0.02. The mean number of amino acids in a protein is 525.8. .......................................... 96 

Figure B-3: Histogram showing the number of proteins at each divergence separated 

by bonding and nonbonding for SP39. There is a high degree of homology because 

most of the proteins had low divergence and were bonding. This was not the case for 

PDBCYS and IVD-54. Qualitatively, this shows the dataset has the potential to be 

solved at a higher Qp and Qc metric of success. .............................................................. 97 

Figure B-4: Cysteine separation profile divergence and bonding for PDBCYS-R. 

Lower homology is noted by the low divergences which do not make up a majority of 

the data as they did for SP39. This qualitative fact indicates a more challenging 

dataset than SP39. ............................................................................................................. 98 

Figure B-5: Cysteine separation profile divergence and bonding for IVD-54. The 

least low divergences of the three datasets. This qualitatively indicates the most 

challenging dataset confirmed by Qp and Qc metrics of success. .................................... 99 

Figure D-6: In the image above, the sulfur atoms of reactive cysteines (residues 201, 

338, and 72) in the protein 1ADO are emphasized with a blue sphere. The red spheres 

in the protein correspond to the sulfur atoms of the non-reactive cysteines. .................. 102 

Figure D-7: Note that the radar chart shows that RAM sits on the outer edges of the 

chart compared to other features. This indicates that the features have a higher 

performance on every dataset compared to all features in prior works. ......................... 103 

Figure D-8: Shown below is the probability density function approximated using the 

statistical software R. The density function in the stats package was used with default 



xvi 

parameters. Note the vertical lines for SASA and PROPKA are one dimensional 

features therefore, the correlation pdf is a vertical line .................................................. 104 

Figure D-9: By transforming the PDF to a CDF we can see the probability of a 

feature's correlation being equal or less than a particular value. We make this 

transform so that we can run a statistical test, the Two Sample Kolmogorov-Smirnov 

test or simply KS test. Our p-value is < 2.2e-16 comparing RANDOM to RAMseq 

and RANDOM to RAMmod. .......................................................................................... 105 

  



xvii 

 

LIST OF TABLES 

Table 2-1: Summary Description of Data ........................................................................ 14 

Table 2-2: Predicted Secondary Structure. ...................................................................... 27 

Table 2-3: Local Similarity Performance......................................................................... 35 

Table 2-4: SP39 Results. .................................................................................................. 39 

Table 2-5: PDBCYS-R Results. ....................................................................................... 40 

Table 2-6: IVD-54 Trained on SP39 Results. .................................................................. 41 

Table 2-7: Varying Modeller Identity Threshold for SP39 Dataset. ................................ 44 

Table 3-1: Summary description of data. The special case RSC758 6,6 is RAM 

chosen with n = 6 for both RAMseq and RAMmod. ........................................................ 48 

Table 3-2: Results obtained comparing RAM vs D. Including the SASA, pKa values, 

the PSSM and the PSS for both RAM and D.................................................................... 63 

Table 3-3: Results obtained comparing RAM vs PSSM without any other features. ...... 65 

Table 3-4: Comparison of RAM to prior works COPA and RSCP. NA indicates data 

not provided by prior works. ............................................................................................. 67 

Table 3-5: Results from adjusting the n parameter on both RAMseq and RAMmod. .... 68 

Table 4-1: Summary of PLP Swissprot Database. ........................................................... 74 

Table 4-2: Summary of PLP Swissprot Database with evidence of existence at two 

levels, transcript and protein level. This is a stricter level of existence that support 

experimentally derived results. ......................................................................................... 75 

Table 4-3: Example WAS features for 5 proteins A-E. ................................................... 78 

Table 4-4: Results from the experiment. There are ten replications. Randomness is 

introduced from SMOTE, shuffling cross validations and random forest. The 95% 

confidence intervals +/- were 0.01 or less using the following formula: 2.26 (t-

distribution on 9 degrees of freedom) * s.d. / sqrt(10)...................................................... 81 



xviii 

Table 4-5: Same as the above table but results from the transcript and protein level 

experimental existence. ..................................................................................................... 82 

Table 4-6: Same as before with results from the protein level experimental existence 

only. .................................................................................................................................. 83 

Table 4-7: The performance at the 40% homology level of the dataset comparing the 

two algorithms BLAST and Needleman-Wunsch, suggesting that BLAST, although 

not quite as effective as NW, is a good approximation saving computational time. ........ 87 

Table 4-8: Prior Works and their salient contributions. ................................................... 90 

Table C-1: Data describing the prior works results on SP39 dataset compared to 

Local Similarity Matrix................................................................................................... 100 

Table C-2: Data describing the prior works results on PDBCYS dataset compared to 

Local Similarity Matrix................................................................................................... 100 

Table C-3: Data describing the prior works results on IVD-54 dataset compared to 

Local Similarity Matrix................................................................................................... 101 

 

 



 

xix 

 

ACKNOWLEDGMENTS 

Special thanks to my supportive wife Monique and my father, Norman. The best 

comes from our Lord Jesus.  I never could have achieved this dream without Dr. Sumeet 

Dua, Dr. Jim Palmer and Dr. Pradeep Chowriappa believing in me. Special thanks to 

Chris Rodriguez. I also would like to thank Dr. Jean Gourd, Dr. Weizhong Dai, Dr. Tom 

Bishop, Dr. Galen Turner and Dr. Ben Choi and all the faculty at Louisiana Tech 

University for their wonderful courses that helped me in my studies. I especially 

appreciated all of the professors' ability to explain difficult concepts so well. I'd also like 

to thank all the staff and students that have helped me in ways that differed but were so 

helpful, especially Rodney "Roman" Bozeman, Hatwib Mugasa, Richard Appiah and 

Marsha Smith. 

 

 



 

1 

 

CHAPTER 1 

 

INTRODUCTION 
 

1.1 Overview of Dissertation and Organization 

The common thread in all three of the major sections, Chapters 2, 3 and 4, is 

original contributions in feature engineering, innovative approaches to data mining, 

predicting post-translational modifications of amino acids in a protein, dataset curation or 

creation and overcoming computational challenges.  

Chapter one is contains important background information, definitions and 

explanations of the techniques. Chapter 2 is the feature engineering process as applied to 

the cysteine bonding problem using the Local Similarity Matrix. Chapter 3 is concerned 

with the cysteine oxidation prediction problem where we present the Residue Adjacency 

Matrix. Chapter 4 is using Windowed Alignment Scoring based feature engineering on 

the lysine-PLP PTM prediction problem. Chapter 5 covers the novel contributions and 

directions for future research. 

 

1.1.1 Local Similarity Matrix Based Feature Engineering 

Domain knowledge of evolutionary patterns in proteins was used to formulate a 

new source of features. There are three major steps in this process. 1) The probability of 
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each residue occurring in a window surrounding cysteine was recorded in a matrix. The 

probability tables were generated by creating a list of proteins that have evolved in 

different organisms yet are sufficiently conserved. 2) The two matrices are joined 

(augmented) to describe the bonding state of a cysteine pair. The number of features is 

2*20*(2*k+1). There are two tables joined, twenty amino acids, 2 halves of the window, 

k residues to the left or right and one cysteine. We multiply the square of the 

BLOSUM62 matrix diagonal to each of the corresponding amino acids (both matrices 

have entries for specific amino acids). 3) Finally, we row z-score normalize the 

augmented matrix. 

1.1.2 Residue Adjacency Matrix Based Feature Engineering 

The domain knowledge that cysteine distances to neighboring amino acids was 

used to generate a source of features. In particular, the amino acids, cysteine and 

tryptophan, are conserved throughout evolution. The distances of these conserved amino 

acids and others were recorded in a matrix. Scalability was linear with the number of data 

points in a dataset for sequential distances. Then we integrated 3-D coordinate data from 

the Protein Data Bank and used MODELLER to create coordinate files if they did not 

exist. Using these coordinate files, we extracted the Euclidean distance of cysteine to 

each of the remaining amino acids. The number of features is compact. This is very 

useful for large scale predictions such as phosphorylation of serine, threonine and 

tyrosine on the Uniprot/Trembl Dataset. 

1.1.3 Windowed Alignment Scoring Based Feature Engineering 

This algorithm has four major steps, as applied to the lysine-PLP PTM. 1) We 

cluster the proteins extracted from the Swiss-Prot database to the desired level of 
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homology. 2) We window each lysine. This is accomplished by extracting the residues 

neighboring the lysine into a file. This process is repeated for the entire protein until all 

the lysines have been windowed. We repeat this process for each protein in the dataset. 3) 

We  generate a vector of bit score alignments by aligning each file to all the remaining 

files. If the alignments do not have sufficient similarity, a zero is returned. 4) We reduce 

the dimensionality of all the vectors. 

1.1.4 Innovative Approaches to Data Mining 

We took a "standing on the shoulder of giants" approach to data mining to 

construct methods by integrating prior works as much as possible. Howeve,r when they 

were not sufficient we created our own tools. For example, we drew on the Position 

Specific Scoring Matrix (PSSM) for many of our original ideas, but when we noticed that 

they have been used to do most of the heavy lifting of predicting PTM's in the last 30 

years, we modified it with an entirely new approach. Notably we discarded the inverse 

amino acid frequency, incorporated conservation of amino acids. After all that is what 

PSSM was designed for (See section 2.4.1). We continued to innovate as much as 

possible and wrote several thousand lines of code for data mining frameworks and have 

made them available for others to reproduce our work. 

1.1.5 Post Translational Modifications of Amino Acids in Protein 

Our focus is on two amino acids, cysteine and lysine. Cysteine can bond to other 

cysteines creating a disulfide bridge that bonds the two cysteines together. Cysteine can 

undergo oxidation to form new molecules. Lysine is found in enzymes that catalyze the 

transamination reaction using PLP. These PTMs do not show up in sequencing data and 

need expensive and time consuming methods such as NMR, X-ray crystallography and 
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tandem mass spectrometry. Unfortunately, many of the results are of highly similar 

proteins. We hope our work will help to redirect the flow of wet-lab techniques to more 

distant proteins and let our data mining approaches find PTMs for highly similar proteins, 

and even some distantly related ones. 

1.1.6 Dataset Curation or Creation 

When available, we used datasets that were referenced in reputable publications 

so that we could make fair comparisons of our techniques to previous works. When 

unavailable or an indepedent test dataset was needed, we created it from quality 

repositories such as the Swiss-Prot database. See Sections 2.2, 3.3.1 and 4.2.3. 

1.1.7 Computational Challenges and Approximations 

There were many computational challenges to our work. Oftentimes, experiments 

required days to months to complete and making changes was time consuming. To 

alleviate these obstacles, we would often draw on the expertise of others and incorporate 

multi-processing approaches. When these were not sufficient to overcome our time 

constraints, we would incorporate an approximation, especially if the performance did 

not degrade significantly (see 4.3.2 and 4.5 for a salient example). Our hope is that others 

may find these approximations on challenging problems and use them as an opportunity 

to improve their approach. 

1.2 Statistical Methods 

1.2.1 Paired T-Test 

We must first establish a null hypothesis and alternative hypothesis H0 and H1, 

respectively. The goal is to reject or fail to reject the null hypothesis. The values for mu 

are the means of the difference from each group taken a pair at a time: 
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          Eq. 1-1 

          Eq. 1-2 

The test statistic for our hypothesis is t0 and p-values can be found in the appendix 

of [1]. n is the number of samples in each group. y is the measurement in group one or 

two at the j'th observation: 

 
 
   

  

     

 
Eq. 1-3 

     
 

 
   

 

   

 Eq. 1-4 

             Eq. 1-5 

     
          
   

   
 

   

 Eq. 1-6 

This statistic is crucial for determining if a method is significantly different than another 

method on a collection of datasets. It is also useful for showing that a computational 

approximation is not significantly different and therefore appropriate. 

 

1.2.2 Two Sample Kolmogorov Smirnov Test 

The two sample KS test is a non-parametric test used for determining if two 

empirical cumulative distribution functions (F1 and F2) are from the same distribution. 

The test statistic is Dn as follows: 

    
        

 
              Eq. 1-7 
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The p-values and distribution can be obtained from the R software stats package. This 

test can be used to predict if the correlations of an engineered feature to a class label is 

the same as another engineered feature. 

1.3 Data Mining Definitions 

1.3.1 Data mining and Feature Engineering 

Data mining is a misnomer, in the same way that gold mining would be called dirt 

mining. Data is the substrate from which patterns are extracted. The process involves 

selecting and integrating data into a set of parameters that each uniquely describe the data 

point. Next, feature engineering transforms the data into a meaningful representation for 

the classification, regression or clustering algorithm (1.3.2,1.3.3,1.3.4) (Classification, 

regression and clustering are pattern recognition techniques). Feature engineering 

transformations include cleaning, normalizing, organizing and applying algorithms to the 

data. In our work, we compute probabilities from sequence alignments, perform matrix 

operations on extracted probabilities, window sequences, calculate Euclidean distances 

from sequences and 3-D coordinates, row normalize, reduce dimensionality and perform 

conditional operations on selected features. Classification, regression and clustering all 

need to be validated. A simple method of holding out a portion of the data for training 

and another portion for testing may be utilized or a slightly more complicated and 

immensely useful n-fold cross validation (see 1.3.5). Following validation of 

classification, regression and clustering a metric of performance is assigned such as the 

ratio of the sum of squares for "between" and sum of squares of "total" for clustering, 

accuracy for classification and R
2
 for regression. More complicated and very important 

methods are described in section 1.4. 
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1.3.2 Classification 

Classification takes each known data point's features and class label to generate a 

model that describes each of the unknown data point's labels. For example, cysteines may 

oxidize or not, corresponding to a 1 or 0 class label. We can then take the features such as 

a Residue Adjacency Matrix to describe each data point. A model will be created to 

predict which cysteines oxidize that were not trained on in the model. Often, it is useful 

to generate a confidence score for each unknown cysteine either for human interpretation 

or for more advanced metrics of success. 

1.3.3 Clustering 

Clustering is an unsupervised learning approach to data. Given a set of features 

without class labels, the algorithm will construct class labels for each data point. For 

example, clustering can be used to generate a class label for a set of proteins that have 

lysine-PLP PTM(s). We can specify the percent homology of our clusters and return one 

protein from each cluster. This is effective at reducing homology bias, because if there 

are proteins too similar in the data set, then a fair comparison of the data mining 

framework to other data mining frameworks is not possible. Highly similar datasets will 

show an increase in performance while low homology datasets will have lower 

performance with all other factors being equal. 

1.3.4 Regression 

Regression takes a set of data points and operates on the independent variables to 

predict the dependent variable. We use regression to predict the probability of a pair of 

cysteines bonding using the Local Similarity Matrix as the independent variables. In the 

case of random forest regression, we attempt to find the most important variable that will 
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describe the class label and create a binary tree at a split that allows the independent 

variable to predict the dependent variable best. We repeat this process until a termination 

criteria is met. Predicting new points is done by following the tree from root to leaf in a 

series of if-else statements, then averaging all the trees together. This is an involved 

algorithm and is detailed in 2.3.5. 

1.3.5 Validation (Specifically N-Fold Cross Validation) 

. Validation can be done by holding out a percentage of data for prediction while 

using the remaining data for "training". Cross validation is a more sophisticated 

technique that we employ, the most common form being 10-fold. For the case of ten-

folds, we find patterns in 90 percent of the data, then we predict on the remaining 10 

percent. We repeat this process until all of the data has a prediction value. Finally, we 

compare the predicted value to the known value and "grade" our results using a 

performance metric such as accuracy. Often, accuracy is not enough. We need to describe 

our performance in terms of how many false positives, false negatives, true positives, true 

negatives there are and equations using the same. We take our confidence score 

(predicted value) and vary the threshold for classifying a point as one of the four 

possibilities (FP,FN,TP,TN) to generate a better description of our results. 

1.3.6 Dimensionality Reduction 

Dimensionality reduction is the process of taking a large number of features for a 

dataset and reducing the number of features. This technique can be useful to either speed 

the remaining data mining (less data) or for improving performance (curse of 

dimensionality) of the data mining technique. The curse of dimensionality refers to the 

fact that as the points increase the dimensions then so does the space between them. This 



9 

results in a sparse dataset. Sparse datasets in effect have less combinations of values 

describing a class label or dependent variable making comparisons of one data point to 

another less meaningful and reducing the predictive power of the data mining. 

1.4 Metrics of Performance 

1.4.1 Receiver Operating Characteristic Curve (ROC Curve) 

The ROC curve shows the effect of varying the threshold for generating a 

confusion matrix  on the confidence scores output from a classifier for a binary 

classification problem. A confusion matrix contains the total number of true positives, 

true negatives, false positives and false negatives (TP,TN,FP,FN). Plotted on the y-axis is 

sensitivity and the x-axis is 1 - specificity. This conveniently shows that if most of the 

data points are classified in the 0 class, then you have a highly specific result. The 

corollary is that if the threshold is selected so that most points fall into the 1 class then 

you have a highly sensitive results. For example, a cancer test should be highly specific 

so that healthy patients do not undergo chemotherapy and surgery. On the other hand, an 

Ebola test should be highly sensitive because the consequences of one un-quarantined 

individual greatly increases the chances of the disease spreading. This ROC curve 

follows the left and top corner for a perfect test and is a diagonal line for random 

predictions. This makes sense because there is a tradeoff between sensitivity and 

specificity. By visualizing this, you can determine what the situation warrants and 

provide the desired level of either sensitivity or specificity and let the other one vary. 

1.4.2 Area Under the ROC Curve (AUC) 

There is a single number that describes the ROC curve. By taking the integral of 

the ROC curve, you can describe the chart regardless of what threshold is chosen. It is 
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often important to have this single number for convenience of comparing two models 

against one another. AUC generally varies between 0.5 for random predictions and 1.0 

for a perfect prediction. It is possible to get a number between 0 and 0.5, and if it is close 

to zero then you can reverse the predictions of your model. Although this rarely happens, 

it is a good diagnostic of a model building error. 

1.4.3 Matthew's Correlation Coefficient 

Matthew's Correlation Coefficient (MCC) is a single number that describes the 

confusion matrix much as AUC and the ROC graph. It varies between -1 and 1, with 0 

being a model with no predictive power, 1 being perfect and -1 indicating the model 

should be reversed. MCC is a commonly reported statistic for the quality of a model. It is 

defined in 3.3.11. 

1.4.4 Q2 / Qp / Qc 

These are the accuracy ratios used in Chapter 2. Q2 is defined as the overall 

accuracy or the ratio of correct to total. Qp is defined as the ratio of proteins whose 

bonding states are predicted with 100% accuracy to the number of proteins tested. Qc is 

the ratio of bonds correct to the total number of bonds in the dataset. 

.
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CHAPTER 2 

 

CYSTEINE DISULFIDE CONNECTIVITY AND THE LOCAL 

SIMILARITY MATRIX 

 

2.1 Overview 

Accurately predicting three-dimensional protein structures from sequences would 

present us with targets for drugs via molecular dynamics that would treat cancer, viral 

infections and neurological diseases. These treatments would have a far reaching impact 

to our economy, quality of life and society. The goal of this research was to build a data 

mining framework to predict cysteine connectivity in proteins from the sequence and 

oxidation state of cysteines. Accurately predicting the cysteine bonding configuration 

improves the TM-Score, a quantitative measurement of protein structure prediction 

accuracy. We provided state of the art  Qp and Qc on the PDBCYS and IVD-54 Datasets. 

Furthermore, we have produced a Local Similarity Matrix that compares favorably to the 

default PSSMs generated from PSI-Blast in a statistically significant way. Our Qp for 

SP39, PDBCYS and IVD-54 were 90.6, 80.6 and 68.5, respectively. 
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2.2 Introduction 

 Protein folding errors cause cancer, heart disease and Alzheimer’s Disease [2, 3, 

4]. Predicting how and why a protein arranges itself in three-dimensional space over time 

through molecular dynamics [5, 6] is crucial to understanding the diseases caused by 

aberrant folding and in turn their potential treatments. One of the most important amino 

acids for protein folding is cysteine. Cysteine residues form strong disulfide bonds with 

each other, causing the protein to impose rigid constraints on the folding. A disulfide 

bond is a covalent bond between sulfur atoms of two cysteines. 

It is computationally challenging to predict the connectivity of cysteines in a 

protein due to the high order graph search that is detailed below. Our hypothesis is if we 

generate a local similarity matrix, then we will achieve higher scores than using the 

default PSSM generated by PSI-Blast. We aim to create a more effective method for 

predicting the cysteine disulfide bond pattern on the SP39, IVD-54, and PDBCYS 

benchmarks than exists currently in the literature for fewer than 6 bonds. The benchmarks 

were based on the publically available datasets. Some important proteins in these datasets 

are P05067 amyloid beta A4 protein for Alzheimer's disease and HIV protein P12506. 

Disulfide bond prediction has several steps. First, it must be determined if the 

cysteine will even bond. Cysteines that form disulfide bonds with other cysteines are 

called oxidized cysteines and those that do not are called reduced cysteines. Secondly, it 

must be determined which of the oxidized cysteines will form pairs. If both of these 

predictions are correct, the known disulfide bonds can be a powerful indicator of the 

protein’s shape as evidenced by increased template modeling scores (TM-score) in [7]. 

TM-score is a measure of similarity between two proteins, the actual protein and the 
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predicted model protein. The score is used to assess the quality of a model and is 

independent of protein length unlike a traditional root mean squared deviation (RMSD) 

measure. These measures are a metric of success different than specificity, sensitivity and 

accuracy in that the global topology of the proteins are measured for correct folding. A 

high level overview of the problem is seen in Figure 2-1. 

  

Figure 2-1: Protein Sequence with unbonded cysteines to potential bindings. 

This study focuses on predicting cysteine bonding patterns once the oxidation 

state of the cysteines are known. Provided these parameters, we hope to develop a more 

accurate technique for connectivity prediction in order to improve the accuracy of 
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existing programs like DiANNA [8] and Disulfind [9] that already handle the oxidized 

pair prediction.  

Given the volume of protein sequences available in the post-genomics era, a data 

mining approach can be used to solve the three dimensional structure of proteins in order 

to create novel proteins, advance the treatment of disease by improved drug designs and 

lower the cost and time of performing X-ray crystallography and NMR. Furthermore, it is 

more efficient computationally than molecular dynamics simulations. Prior works have 

introduced the data mining approach to disulfide connectivity prediction in [10, 11, 12]. 

The methods used in this paper can be combined with other prediction methods to output  

more accurately a three-dimensional shape of a protein given that protein’s amino acid 

sequence as seen by the constraints given to Quark to  improve TM-Scores [7].  

It is important to note that although we list many different sources and sizes of 

each feature, only 4 sources of features were found to be useful, the PSSM modified as 

Local Similarities LS, the distance of oxidized cysteines DOC, the angstrom distance 

provided by Modeller [13] and the cysteine separation profile, CSP [14], that was binary 

coded to provide 1 for divergence less than 4 and 0 for divergence greater than 4. The 

salient features of our data is seen in Table 2-1. 

Table 2-1: Summary Description of Data 

Dataset No. Proteins Instances Bonds Imbalance 

SP39 446 7923 1371 4.8 

PDBCYS-R 263 4688 804 4.8 

IVD-54 54 386 146 1.6 
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2.2.1 Prior Works 

P. Fariselli and R. Casadio [15] were among the first to determine disulfide 

connectivity computationally from protein sequences alone. In our survery of the 

literature, they appear to have established the 446 protein dataset, SP39, its four-fold 

cross validation and metrics of performance Qp and Qc. Furthermore, their work focused 

on predicting the edge connectivity with prior knowledge of the oxidation states of 

cysteines [16]. Determining the bonding state of cysteines was pioneered by Muskal et al 

in his work [17] using neural networks. This work was built upon in [18, 15, 19] by Fiser 

et al. Fariselli et al. and Fiser and Simon, respectively. 

 Next, A. Vullo and P. Fransconi introduced the recursive neural network, RNN, a 

connectionist model to work with the position-specific scoring matrix PSSM from PSI-

Blast [20]. Vullo's model incorporated a patternwise search rather than pairwise. Pairwise 

being the predominant method in the literature is composed of two windows centered 

around designated cysteines and carries local information [31]. Patternwise carries global 

information and ranks alternative connectivity patterns but are limited by the availability 

of information because there are few bonding configurations available as the number of 

bonds increase [21]. CysView is a webserver that compares known annotated databases 

to the query sequence. 

 Distance of oxidized cysteines were incorporated into the PreCys pairwise SVM 

model in [21] by C.H. Tsai. DiANNA webserver was brought online that both predicted 

the oxidation state and the connectivity pattern using wmatch for Edmond-Gabow's 

Algorithm [22]. They utilized the now commonly used PSIPRED [23] software for their 
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secondary structures. Likewise, the SCRATCH protein structure server was introduced 

with DIpro disulfide bridge prediction. 

DISULFIND debuted in [9] with a SVR and bidirection recurrent neural network, 

BRNN, for the prediction of bonding state. Then the connectivity pattern is  assigned to a 

score with a regression mode recurrent neural network rather than using Edmond-

Gabow's Algorithm. B.J. Chen et al. [24] began using the normalized cysteine separation 

profile for SP39 and a two level framework that first assigns pairwise SVM, and then the 

second level uses patternwise SVM with the CSP. 

 J. Song et al. employed multiple sequence feature vectors to encode each 

cysteine pair in a pairwise manner using SVR and Edmond-Gabow's Algorithm [25]. 

Their work improved upon the SP39 Qp and Qc and laid the groundwork for the 

following efforts to improve cysteine connectivity prediction. C.H. Lu continued the 

work of J. Song by introducing a genetic algorithm and replacing Edmond-Gabow’s 

Algorithm with a connectivity matrix [26].  

Disulfide connectivity prediction from protein sequences using Modeller was first 

used by H.H. Lin in his seminal conference paper. The metrics of performance Qc and 

Qp reached a record that still holds today for SP39. His work utilized the now common 

EG Algorithm and genetic algorithms for SVR tuning [27]. It is unclear if they limited 

their identity thresholds for sequence alignments that Modeller requires. Most notably,  

the search sequences themselves were included. D.J. Yu incorporated random forest into 

their regression algorithm. Using random forest regression is novel and also what we 

found to perform optimally [28]. 
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2.3 Methodology 

The key components of our methodology is feature extraction, normalization, 

regression, high order weighted graph matching and cross validation found in Figure 2. 

Together, these processes predict the final cysteine connectivity from the protein 

sequence and prior knowledge of the bonding state of the cysteines. Notable is the local 

similarities that we created. The cross validation n-folds are set to those found in prior 

works so that an objective comparison can be made. The flow chart of our process is 

illustrated in Figure 2-2. 

 

Figure 2-2: Block diagram of process. 
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2.3.1 Feature Extraction 

In the following sections, we describe the 523 dimensional vector's composition 

and its derivation from the data. We produce a 520D local similarity matrix, a 1D  

distance of oxidized cysteines, a 1D Modeller angstrom distance and a 1D cysteine 

separation profile. 

2.3.1.1 Position Specific Scoring Matrix PSSM vs. Local Similarities 

The local similarity matrix is obtained by calculating the probabilities of an amino 

acid occurring at a position relative to two possibly-bonding cysteines. BlastP sequence 

alignment was performed on the target sequence in order to find sequences that are 

similar to the target sequence with an E-value of less than 0.005. The returned sequences 

might have insertions (amino acids that occur in the returned sequences but not the target 

sequence) and omissions (amino acids that occur in the target sequence but not the 

returned sequence) as seen in Figure 2-3. 

  

Figure 2-3: Depiction of insertions and omissions. 

Insertions are removed from the returned sequence, and if the alignment occurs at 

the termini of the original sequence, then the tails are padded to the left and right with 

dashes. The dashes are not counted when summing the occurrences of the amino acids for 

the probabilities in the Local Similarity Matrix. We then focus on the k amino acids 
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neighboring a given cysteine. For our experiments, we chose a value of 6 for k. This 

equates to 13 positions: the 6 positions to the left of the cysteine, the 6 to the right of the 

cysteine, and the cysteine position itself. Including the position for the cysteine is 

important because BlastP may return a mutated amino acid instead of a cysteine. The 

frequency of each of the 20 amino acid occurrences at each of the 13 neighboring 

locations is calculated by summing the number of occurrences in all of the returned 

sequences. These frequencies are then converted to a probability by dividing the total 

number of  sequences. If the returned sequence has an omission at a given position, it is 

not counted in the total number of sequences at that position. Figure 2-4 details the 

process of obtaining a table of probabilities. 

 

Figure 2-4: Example PSSM or Local Similarity Matrix. 

 The final table of probabilities is a 2D matrix of 20 amino acids by 13 positions 

(260 elements). A table like this must be created to model the neighborhood of every 

oxidized cysteine. A row instance is created by combining the elements of two of these 
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tables. The number of rows that are created for each input sequence is equal to the 

number of possible cysteine pairs (n choose 2). The number of possible pairs can be 

calculated by the following equation:  

  
 
 
      

  

         
 Eq. 2-1 

 

Where n is the number of cysteines in the sequence. A row of data has 520 columns (the 

result of concatenating the two 260 element tables together), which will be used for our 

features. The order of concatenations of the 260 dimensional row did not result in better 

scores. In other words, training on C1-C2 versus C2-C1 did not improve our Qp. 

Also, the decision was made to use simple probabilities instead of applying a log 

transform to the probabilities as in Equation (2) where bk = 1/k and k = 20 which by 

definition is a PSSM. The PSSM stands in contrast to our Local Similarity (LS) Matrix as 

shown in Figure 2-4. Probabilities with ignored padding dashes, omissions and removed 

insertions defines the LS matrix: 

 
                

      

  
  

 

Eq. 2-2 

We found the accuracy to be higher with the simple probabilities. When PSI 

BLAST is set to return a PSSM, it returns the log probabilities instead of the simple 

probabilities, so care must be taken when using those outputs from the program.  

The difference in accuracy when using e-values greater than 0.005 was also 

negligible, but we did progressively increase the e-value to 100 for short sequences that 

did not return any similar sequences in order to obtain enough data for testing. Using the 

Swissprot database whose size was 197 megabytes uncompressed was as good as the 
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Trembl database whose size was 24 gigabytes. We attempted to use weighted averages 

using both the distance and inverse distance for the weights. Neither of these methods 

generalized well to increase the scores. Figures 2-5 and 2-6 show the calculation of 

PSSM and LSM from their variables RIF, PPM and Conservancy. 

 

Figure 2-5: Analytic Solution for the PSSM. 
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Figure 2-6: Linear Regression Approximation of Local Similarity Matrix with 

Conservation. 

 

We incorporate a second variable into the local similarity matrix, conservation 

times the PPM value. Conservation is measured as the degree to which an amino acid is 

inversely substituted. This value is found on the diagonal of the BLOSUM62 matrix, a 

matrix used for BLAST alignment scoring. This variant is called the local similarity 

matrix with conservation or LSMC. This model performs better on the SP39 and 

PDBCYS-R datasets but was not confirmed by the IVD-54 dataset. 

2.3.1.2 Distance Oxidized Cysteines 

We can also use the one-dimensional distance of our two cysteines in the 

sequence (DOC) as yet another feature. We take the sequence index of our first cysteine 
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as i and the sequence index of our second cysteine as j and then we find the distance 

between them via the absolute value of i-j.  

2.3.1.3 Cysteine Separation Profiles 

Cysteine separation profile used a divergence threshold of 4 for all data sets. The 

method was calculated per Zhao et al. in [14]. Cysteine separation profiles are defined for 

protein i, with n bonds, 2n cysteines C, and separation s: 

 

                        
                                       

 

Eq. 2-3 

Then divergence, D, between two proteins i and j is calculated as: 

          
    

  

 

 Eq. 2-4 

Finally, the one dimensional feature is a 1-NN (nearest neighbor) search to find 

the protein with a divergence less than 4 that is minimal. If it is found, then the feature is 

assigned for all bonds in protein i matching the bonds in protein j a 1 and 0, otherwise. In 

the event of a tie for divergence, then one protein is selected randomly. Figure 2-7 shows 

a histogram of CSP divergence as it relates to bonding and nonbonding proteins. 

Borrowing from the graph problem notation in Equations 2-10,2-11 and 2-12, we assign a 

1 to the edges in protein i that intersect the edges in protein j and all other edges a 0: 

        
               

     
                        

                                                      
  Eq. 2-5 
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Figure 2-7: Histogram showing the number of proteins at each divergence separated 

by bonding and nonbonding for SP39. There is a high degree of homology because 

most of the proteins had low divergence and were bonding. This was not the case for 

PDBCYS and IVD-54. Qualitatively this shows the dataset has the potential to be 

solved at a higher Qp and Qc metric of success. 

2.3.1.4 Modeller 

Next, we use the Modeller software to extract the predicted 3D coordinates of the 

protein. As a result, we have a 1-D feature by taking the Euclidean distance between the 

two cysteines. Modeller produces the predicted 3D structure by using structures of 

proteins that are similar to the target protein and whose structures are known through    

X-ray crystallography and similar methods. The similarity is measured by identity output 



25 

from a BlastP sequence alignment. The highest identities up to the thresholds were 

chosen for each protein. Once the tertiary structure is produced, we extract the 3D 

coordinates of the two possibly binding cysteines that are being modeled. We compute 

the Euclidean distance (12) between them and use this as a one dimensional feature: 

                                              Eq. 2-6 

Modeller requires an alignment of the target sequence, and this was selected as 

the ten alignments with the highest identity below the threshold. The thresholds are 

described in Table 2-7 and Figure 2-11, their values were 40%, 60%, 80% and 100%. 

100% identity included all available data except the sequence itself. If the alignments did 

not satisfy the constraints that Modeller imposes we dropped the lowest identity 

alignment repeatedly. If all alignments were dropped, then the E-Value output by BlastP 

was increased and the process was repeated until Modeller's constraints were satisfied. 

The PDBAA database whose size was 25 megabytes compressed was used for 

alignments. Figure 2-8 illustrates the effect of the identity of the alignments and therefore 

the corresponding quality of the PDB's used to generate the feature. 
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Figure 2-8: Equidepth binning of Modeller at 40 percent identity comparing bonding 

to nonbonding cysteines. 

2.3.1.5 PSS - Predicted Secondary Structure 

In order to improve accuracies, the data on the Predicted Secondary Structure 

(PSS) can also be a useful predictor. In the same way that data was produced from the 

frequency of amino acids occurring at positions relative to the cysteine, data can also be 

produced by the frequency of the secondary structure (alpha helix, beta sheet, or coil) 

which is for each amino acid position.  This produces a probability table of the three 

possibilities for secondary structure by the 26 positions being viewed, as shown in Table 

2-2. Compressed down to a single row of data, this gives us 78 more features to analyze 

for a k of 6. Although it has a Qp of nearly 60 by itself, it was not incorporated into the 

final model due to confounding results. 
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Table 2-2: Predicted Secondary Structure. 

Cysteine 1 1 1 1 2 2 2 

Position k-6 k-5 … k+6 k-6 ... k+6 

Alpha 

Helix 
0.98 0.68 … 0.28 0.2 … 0.45 

Beta 

Sheet 
0.01 0.02 … 0.4 0.7 … 0.15 

Coil 0.01 0.4 … 0.32 0.1 … 0.4 
 

 

2.3.2 Normalization 

To improve the accuracy of our regression algorithms, the raw probabilities of 

each LS/PSSM can be converted into z-scores, with a high z-score indicating a strong 

probability of a particular amino acid occurring at its relative position: 

 
            

                

    
 

 

Eq. 2-7 

Equation (7) is the equation for z-score normalization, and note that the whole 

LS/PSSM data row for each of the proteins (520 elements) was used as the set for the z-

score scaling instead of just the 20 amino acid probabilities for each position. Z-score 

normalization gave zero means and standard deviation of unity for each row instance of 

the local similarity 520 dimensional feature.  

Various normalization attempts were made to the Local Similarity Matrix, most 

notably sigmoid and min-max normalization. These did not result in a higher Qp or Qc. 

Whem log transformations were also implemented, the scores did not improve with this 

method. 
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2.3.3 Regression 

We formulate the regression problem as follows: 

 
                             

 i = 1,2,...,|instances| 
Eq. 2-8 

Here yi is selected to be 1 for a bonded data row i and 0 for a nonbonding data row i. 

Each data row consists of a 520 dimensional LS/PSSM that specifies 260 = (20*13) 

floating point numbers for each cysteine. One dimension for each of two cysteines 

distance in the primary structure DOC, angstrom distance in the tertiary structure from 

Modeller, and the cysteine separation profile divergence nearest neighbor's bonding state. 

We included secondary structure helix, sheets and coils and taken alone were valuable in 

predicting the correct edge set but did not improve the results as a fifth source of features. 

An ensemble of regressors was used to improve the scores. The ensemble 

consisted of a layered approach where all the regressors were trained and their score was 

used as a feature to a final regressor. For instance, we had used the 523D data for each of 

the 7 regressors. These 7 regressors would then output one feature each. These 7 features 

were then used by a final regressor to output the final score that was used by the Edmond 

Gabow Maximum Weight Matching Algorithm. We tried each of the seven regressors as 

the final regression. Unfortunately, the ensemble approach was found not to be effective.  

Furthermore, unsupervised K-means clustering was used on the datasets with a sparse 

coded class label prior to inputting to the regressors and was found to have no effect.  

For cross validation, we considered each vertex set independently and breaks 

were chosen at the closest protein. Otherwise, there would be mixing of the edge sets 

across the validation sets. 
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2.3.4 Maximum Edge Weight Perfect Matching and Performance Metrics 

The bonding of cysteines can be reduced to a maximum edge weight perfect 

matching graph problem where the cysteines are vertices in the graph, the potential bonds 

among them are the edges, and the likelihood of these bonds are the edge weights. To 

predict which oxidized cysteines will bond with each other, we first must determine a list 

of all possible bond patterns by running through all combinations of two element 

groupings in the oxidized cysteine list,             
 
 
 , possibilities exist where n is the 

number of vertices or oxidized cysteines. The bond pattern is a list of cysteine bonding 

pair tuples that represents how all cysteines in a sequence are bonded. Because every 

cysteine must bond with exactly one other cysteine, there are n/2 bonding pair tuples in a 

bond pattern (where n is the number of oxidized cysteines in the sequence). The number 

of possible bonding patterns is calculated via (n-1)!! where !! represents the factorial of 

the odd integers and n is still the number of oxidized cysteines. Figure 2-9 shows an 

example of all possible bond patterns (three) for a protein sequence with four cysteines. 

For only 10 cysteines, there are five  bonding pairs and 9×7×5×3×1 or 945 possible 

bonding patterns: 

                    
         

 Eq. 2-9 

Randomly guessing the correct bond pattern for 4 cysteines is 33% likely. 

Randomly guessing the correct bond pattern for 10 cysteines has a probability of 1/945 or 

about 0.1%. In order to make accurate predictions, each bonding pair obtained in the 

previous section is run through a regression model to obtain a real number score. Recall 

that each instance represents the bond between two cysteines, so the score returned can 

be thought of the likelihood of that bond occurring. We sum the scores for each bond in a 



30 

bond pattern in order to get the total score for that bond pattern. The bonds that are part 

of the bond pattern with the highest score are then chosen as the predicted bonds. 

  

Figure 2-9: Maximum Edge Weight Perfect Matching Graph Combination Problem, 

Combination 2, A-C and B-D have the highest sum, so this pairing is maximum and 

would be chosen. 

Gabow-Edmond’s Maximum Edge Weight Perfect Matching algorithm [8, 29, 30] 

was used. The algorithms's worst case computational complexity is bounded at O(v3) 

where v is the number of vertices or oxidized cysteines for a particular protein. Figure 2-9 

illustrates the problem that is solved by Gabow-Edmund's algorithm. 

Formulating the dataset as a graph theory problem, there is a dataset D that 

contains the actual and predicted (*)  undirected graphs: 

            and   
        

   Eq. 2-10 

where Vi is the vertex set (cysteines) of Gi and Ei is the connectivity pattern of Gi. The 

predicted edge set Ei* contains the connectivity pattern output from regression and 

Gabow-Edmond Algorithm. Performance measures are formally computed as follows: 

 
   

       
   

      
      

 

Eq. 2-11 
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Eq. 2-12 

Here Ei = Ei* is 1 if the sets are exactly identical and 0 if the sets are not exactly equal. 

Ei* is computed from edge e, belonging to all possible edge sets ε whose cardinality is 

Equation (9). Edmonds-Gabow is used to calculate (13) by completing the maximum 

weight matching problem: 

   
     

   
         Eq. 2-13 

The regressor R is used in (14): 

                
 

 Eq. 2-14 

Together, Equations (13,14) specify the final predicted disulfide connectivity pattern. 

Equations (11,12) are the performance metrics that are used in place of specificity, 

sensitivity or accuracy because they prioritize the bonding state rather than the accuracy 

as a whole that would include the nonbonding state. The nonbonding state is class 

imbalanced and Qc would be high if nonbonding predictions were included. 

The cardinality of any E is equal to B, the cardinality of any V is equal to 2B and 

the degree(v) = 1 for any v V, thus perfect matching, where B is the number of bonds in 

a protein and 2B is the number of oxidized cysteines. 

2.3.5 Random Forest Regression 

In our experiments, we used the bagging approach , where each tree is constructed 

using a bootstrap sample of the data and the output is an average of all regression trees 

output. This is in contrast to the boosting approach where successive trees depend upon 

earlier trees [31]. Breiman introduced an extra layer of randomness to the bagging. Each 

tree is constructed using a subset of the features whose cardinality is mtry or 
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max_features in sklearn (our setting was 20). A standard regression tree uses the entire 

set of features to find the best split at each node [32]. 

The expression to maximize in a random forest regressor [33] at each split is: 

 
  
 

  
 

  
 

  
             

  

          
  

 Eq. 2-15 

Where nL and nR are the number of data points to the left of the split and the right of the 

split, respectively. DL and DR are the data points that lie to the left and right of the split 

as well. This is iteratively solved by the following dynamic programming algorithm in 

Figure 2-10: 
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Input: Real-valued N   data matrix    
Output: The next if-else rule on which the trees of a regression forest are built, also 

providing feature importance scores implicitly. 

function BestSplit(X,y) 

 1: best ← 0;  

 2: for Column in X 

 3: Sr ← sum(y); Sl ← 0; nR ← length(y); nL ← 0 

 4: Sort Column and y by Column 

 5: for Xi,yi in sorted data 

 6:  Sl ← Sl + yi; Sr ← Sr-yi 

 7:  nR ← nR-1; nL ← nL+1 

 8:  if Xi != Xi+1: 

 9:   split ← Sl2/nL+Sr2/nR 

10:   if split > best 

11:    best ← split 

12:    cut ← (Xi+Xi+1)/2 

13: Split X and y according to cut into XL, XR, yL, yR 

14: Set Variable LeftTermination, RightTermination 

15: if LeftTermination 

16: Leaf(yL) 

17: else 

18: BestSplit(XL,yL) 

19: if RightTermination 

20: Leaf(yR) 

21: else 

22: BestSplit(XR,yR) 
 

Figure 2-10: Algorithm for generating splits for the trees in a random forest regressor 

for continuous valued features. 

The columns are the parameters and the rows are the data instances. The recursive 

nature of BestSplit is that it calls itself until all the nodes are pure or their termination 

criteria have been met. Once terminated, the leaf nodes are created. Creating the tree 

itself is a matter of tracking the nodes created and has been omitted to keep the algorithm 

clear and concise. To implement the bagging, one must randomly select a subset of the 

data (bootstrapped) and then enter the function BestSplit. To create multiple trees in a 

forest, it is necessary to call BestSplit on the bootstrapped data once for each estimator 
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desired. The mtry parameter was not included in the algorithm, but basically it is a simple 

limit to the number of columns (features) explored for each BestSplit run. After training 

the trees and then the output, h, from the random forest, the regression model is the 

unweighted average of all the estimators T with individual trees t: 

      
 

 
      

   

   
 Eq. 2-16 

2.4 Results 

2.4.1 Local Similarity vs. PSSM 

Modeller's identity threshold was set at 40 percent to show the effect of Local 

Similarity vs. PSSM.  Higher Modeller thresholds brought the Qp above 90 and the 

difference was still present but the difference was not as pronounced. Table 2-3 shows 

the results of our experiment  
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Table 2-3: Local Similarity Performance. 

Dataset Method B=2 B=3 B=4 B=5 B=2-5 

  Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc 

SP39 
Default 

PSSM 
83.3 83.3 70.5 78.3 76.8 84.3 51.1 64.9 74.4 79.0 

SP39 
Local 

Similarity 
91.7 91.7 82.2 86.1 78.8 85.6 60.0 73.8 82.5 85.2 

PDBCYS 
Default 

PSSM 
75.0 75.0 55.3 66.7 43.9 61.6 16.2 44.3 55.5 62.6 

PDBCYS 
Local 

Similarity 
82.0 82.0 55.3 65.9 58.5 70.1 24.3 54.6 61.6 68.2 

IVD-54 
Default 

PSSM 
65.5 65.5 66.7 73.3 0.0 35.7 33.3 46.7 55.6 60.3 

IVD-54 
Local 

Similarity 
79.3 79.3 80 82.2 14.3 32.1 33.3 53.3 68.5 68.5 

 

 

The differences of each dataset's treatment was then run through statistical 

analysis software and found to be statistically significant with a p-value of 0.0041 for a 

one-sided paired t-test. The mean difference for the default PSSM vs. Local Similarity 

was 7.47 points Qp. The 95 percent confidence interval was in the range of 5.47 to 

infinity. Figure 2-11 shows a comparison of LSM vs PSSM. 
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Figure 2-11: The differences between PSI-Blast's PSSM and Local Similarities at the 

40% identity threshold for all three datasets. 

2.4.2 Performance on three Datasets 

We ran the amino acid sequences of the SP39, PDBCYS-R, and IVD-54 datasets 

through the process described in the methodology section to obtain a table of features that 

various regression algorithms could utilize. We used Support Vector Regression from 

both the R and Python libraries, Random Forest Regression in both R and Python, K 

Nearest Neighbor Regression, Neural Network, LassoCV, Ridge Regression and 

Bayesian Ridge from Sklearn. A 4-fold cross-validation was used with the SP39 dataset, 

20-fold cross validation was used with the PDBCYS-R dataset, and the models that ran 

on the IVD-54 dataset were trained on the SP39 dataset. The Qp accuracy is the 

percentage of complete bond patterns that the model predicted correctly. The Qc 

accuracy is the percentage of cysteine bond pairs that the model predicted correctly out of 

all the positive (cysteine bonding) instances (Equations 11,12). For a sequence with only 

four oxidized cysteines (two bridges, B = 2), Qp is equal to Qc because if the model 
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predicts the right bond pattern. The bond pairs must be correct, and if the model predicts 

the wrong bond pattern, there is no possible way for any of the predicted bond pairs to be 

correct, as no pair is shared between the three bond patterns of a sequence with four 

cysteines. Qc is greater than Qp for sequences with more than four oxidized cysteines 

because, if the pattern is predicted correctly, all bond pairs are predicted correctly, and if 

the pattern is incorrect, that pattern may still happen to contain bond pairs that are 

correct. The overall results are listed in Figure 2-12. 

The Random Forest parameters were 500 trees and a maximum of 20 features per 

split were utilized. SVR utilized a cost of 5 and a gamma of 0.005 using the radial basis 

function kernel exp(-gamma*|u-v|2). LassoCV utilized default parameter settings. Neural 

networks had 5,000 hidden units. KNN regression was weighted by inverse distance and 

the number of neighbors varied on the datasets from 5 to 30 neighbors. Ridge Regression 

utilized an alpha of 1000 and Bayesian Ridge was set to default parameters. Feature 

selection was implemented but did not have a beneficial effect likely due to Random 

Forest Regression selecting the best features in the algorithm itself. Restricted Boltzmann 

Machines and Principal Component Analysis were used to generate additional features as 

well as stand alone inputs. This information was input to the regression models and was 

not found to improve Qp or Qc. The results of our experiment with different regressors is 

shown in Figure 2-12, Table 2-4, 2-5 and 2-6. 
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Figure 2-12: Seven regressors were chosen for the three datasets falling into two 

categories. The first category consisted of ordinary least squares regressors such as 

LassoCV, Bayesian Ridge and Ridge Regression. The second category was random 

forest regression, support vector regression, neural networks and K-nearest neighbor 

regression. The first two datasets SP39 and PDBCYS performed better with the second 

type of regressor while the IVD-54 did so with the first type of regressor. 
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Table 2-4: SP39 Results. 

SP39 4-

Fold CV 
B=2 B=3 B=4 B=5 Overall 

Model Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc 

Random 

Forest 
94.9 94.9 88.4 91.1 88.9 93.7 86.7 91.1 90.6 92.7 

Support 

Vector 
96.2 96.2 89.0 91.6 85.9 90.9 84.4 90.7 90.4 92.3 

Neural 

Network 
95.5 95.5 87.0 90.0 83.8 89.9 75.6 83.6 88.1 90.2 

KNN 

Regression 
96.8 96.8 87.0 90.4 81.8 88.1 71.1 85.8 87.7 90.4 

Ridge 

Regression 
85.3 85.3 80.8 85.8 77.8 86.6 46.7 71.1 78.3 83.5 

Bayesian 

Ridge 
85.3 85.3 76.7 82.0 72.7 83.6 42.2 64.9 75.3 80.4 

LassoCV 66.7 66.7 37.7 45.4 27.3 38.9 26.7 43.6 44.4 48.1 
 

 

 

SP39's CSP displayed the highest homology and as expected showed the greatest 

Qp and Qc. Random forest  regression was found to be optimal with SVR closely 

following as seen in other publications [28]. 
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Table 2-5: PDBCYS-R Results. 

PDBCYS 

20-Fold 

CV 

B=2 B=3 B=4 B=5 Overall 

Model Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc 

Random 

Forest 
90.0 90.0 80.0 85.5 68.3 78.0 70.3 80.5 80.6 84.0 

Support 

Vector 
90.0 90.0 83.5 87.1 61.0 75.0 67.6 79.5 80.2 83.6 

KNN 

Regression 
93.0 93.0 81.2 84.7 58.5 77.4 59.5 79.5 79.1 84.1 

Bayesian 

Ridge 
91.0 91.0 81.2 85.5 56.1 72.6 64.9 77.3 78.7 82.3 

Ridge 

Regression 
91.0 91.0 81.2 85.5 56.1 72.6 64.9 77.3 78.7 82.3 

LassoCV 89.0 89.0 78.8 83.9 58.5 75.6 67.6 75.1 77.9 81.5 

Neural 

Network 
90.0 90.0 80.0 83.9 58.5 72.0 51.4 69.7 76.4 79.7 

 

 

Again random forest regression with SVR closely following were the optimal 

regressors. 
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Table 2-6: IVD-54 Trained on SP39 Results. 

IVD-54 

Trained 

SP39 

B=2 B=3 B=4 B=5 Overall 

Model Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc 

LassoCV 79.3 79.3 80.0 82.2 14.3 32.1 33.3 53.3 68.5 68.5 

Ridge 

Regression 
79.3 79.3 80.0 82.2 0.0 35.7 33.3 46.7 66.7 68.5 

Bayesian 

Ridge 
79.3 79.3 80.0 82.2 0.0 35.7 33.3 46.7 66.7 68.5 

Neural 

Network 
75.9 75.9 80.0 80.0 0.0 14.3 0.0 26.7 60.3 63.0 

KNN 

Regression 
72.4 72.4 53.3 60.0 0.0 28.6 33.3 40.0 55.6 56.8 

Support 

Vector 
69.0 69.0 53.3 62.2 0.0 42.9 33.3 46.7 53.7 59.6 

Random 

Forest 
55.2 55.2 53.3 60.0 14.3 21.4 33.3 46.7 48.1 49.3 

 

 

Curiously, IVD-54 achieved the highest Qp and Qc using modified ordinary least 

squares regressors. Paradoxically, Modeller identities of less than 40 percent for both the 

SP39 training and IVD-54 testing were found to be optimal. IVD-54 was trained on SP39 

rather than cross validation in keeping with the literature methods. 

2.4.3 Prior Work Performance Comparison 

The metrics of success Qp and Qc are compared with previous works across the 

differing datasets. This is not an exhaustive list but only the most competitive scores were 

included.  The comparisons between our work and previous works are found in Figures 

2-13, 2-14 and 2-15. 
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Figure 2-13: Prior works compared for SP39. 

 

Figure 2-14: Prior works compared for PDBCYS-R. 
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Figure 2-15: Prior works compared for IVD-54. 

2.4.4 Modeller Percent Identity Threshold 

It was noted that varying the identity produced marked differences in the Qp and 

Qc. It is not clear what was used in previous research regarding 100% identity and if 

identical sequences are included. Table 2-7 and Figure 2-16 show the effect of varying 

Modeller's alignment identities and therefore the quality of PDB's used in the experiment. 
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Table 2-7: Varying Modeller Identity Threshold for SP39 Dataset. 

Dataset: 

SP39 
B=2 B=3 B=4 B=5 Overall 

 Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc 

40 91.7 91.7 82.2 86.1 78.8 85.6 60 73.8 82.5 85.2 

60 91.7 91.7 81.5 85.3 81.8 85.6 64.4 75.1 83.4 85.2 

80 93.5 93.5 84.9 88.1 83.8 87.9 73.3 81.8 86.5 88.3 

100 94.9 94.9 88.4 91.1 88.9 93.7 86.7 91.1 90.6 92.7 
 

 

  

Figure 2-16: Modeller identity thresholds effect on Qp. 

Less than 100 percent identity means there was no threshold and all matches were 

included except for those matching the protein identically. It is assumed that the proteins 

for which pdb's do not exist would use all available information except for their own pdb 

that is unknown. 
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2.5 Conclusion 

This paper provides methods to improve accuracy of cysteine bond prediction 

against the existing benchmarks. As evidenced by the accuracies shown in the Results 

section, we managed to outscore the results of many prior works which contained the 

most accurate method to predict cysteine bonds to date. We believe this was due to a 

combination of z-score normalization and the local similarities instead of default PSSMs. 

In addition to simply improving on the accuracies from the prior works, we also give a 

more straightforward breakdown of cysteine bond prediction. Our goal was to provide a 

new benchmark of cysteine bond prediction accuracy for future researchers to build upon.  

In summary, the sources of the features that can be used to predict cysteine 

bonding are correlated mutations (CM) of the sequence, distance of oxidized cysteines 

(DOC) from the amino acid sequence, position specific scoring matrix (PSSM) or Local 

Similarity Matrix (LS) from the PSI Blast software, predicted three-dimensional distance 

between two cysteine residues (PDTCR) using Modeller software; predicted secondary 

structure (PSS) through the PSI Pred software. 

Prior work utilized SVM, neural nets and random forests to achieve accuracies as 

shown in the tables above. The random forest regressor and lassoCV regressors were 

determined to be optimal. 
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CHAPTER 3 

 

CYSTEINE REDOX SUSCEPTIBILITY AND THE RESIDUE 

ADJACENCY MATRIX 
 

3.1 Overview 

Free radicals that form from reactive species of nitrogen and oxygen can react 

dangerously with cellular components and are involved with the pathogenesis of diabetes, 

cancer, Parkinson’s, and heart disease. Cysteine amino acids, due to their reactive nature, 

are prone to oxidation by these free radicals. Determining which proteins are affiliated 

with oxidized cysteines is crucial to our understanding of these chronic diseases. Wet lab 

techniques, like differential alkylation, to determine which cysteines oxidize are often 

expensive and time-consuming. We utilize machine learning as a fast and inexpensive 

approach to identifying cysteines with oxidative capabilities. 

We created the original features RAMmod and RAMseq for these machine 

learning algorithms. We also incorporated well known features such as PROPKA, SASA, 

PSS and PSSM. Our algorithm requires only the protein sequence to operate; however, 

we do use template matching by MODELLER to acquire 3D coordinates for additional 

feature extraction. There was a mean improvement of RAM over D by 20.45%. It was 

statistically significant with a p-value of 0.0078 and a mean improvement of 0.078 
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Matthew’s Correlation Coefficient. The 95% confidence interval for the one-sided paired 

student’s t-test was 0.049 to infinity. RAM provided a MCC increase of 0.173 over 

PSSM with a p-value of 0.040 and an average 70.08% improvement. 

3.2 Introduction 

Free radicals are known to adversely alter various biological structures (like lipid, 

proteins, and DNA) by introducing uneven charge distributions over these complex 

molecules. If these free radicals become too abundant, then a condition known as 

oxidative stress occurs. This condition can lead to various chronic illnesses. Oxidation 

susceptible cysteines in the mitochondria have been proven to play a critical role in 

defense against free radicals by absorbing these species [34]. Cysteines also assist the 

body’s antioxidant defense responses by inducing the glutathione response pathways 

[35]. Due to cysteine’s critical role in combating oxidative stress, there has been a 

growing interest in determining oxidation susceptible cysteines [36].  

Cysteine is a unique amino acid that is a functional site in many proteins. It can be 

nitrosylated and glutathionylated, and can form sulfinic acid, sulfenic acid, sulfonic acid, 

disulfide bonds, selenocysteine, coordinate metals as well as other less common 

oxidations [37]. Our research and the prior works to which we compare our results are 

limited to the former six chemistries. Some additional distinguishing properties of 

cysteine are its chemical plasticity, nucleophilicity, high reactivity, relative rarity, 

involvement in structural stabilization, catalytic activity, its status as a most common 

metal coordinator, and its high degree of conservation [38, 39]. Cysteine plays an 

interesting role in redox regulation and signaling, but this role is not completely 

understood. Through our prediction and scoring of cysteines that are redox susceptible, 
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our hope is that researchers can more easily understand the role of cysteine in free radical 

and disease states for the advancement of treatment options. 

Our tools seek to assist researchers who wish to profile oxidized cysteines in 

order to better understand the complications that arise from oxidative stress and how to 

relieve the condition. We hypothesize that  RAMseq (Residue Adjacency Matrix for 

sequences) and RAMmod (Residue Adjacency Matrix for MODELLER) features 

outperform known feature sources. We also incorporate PROPKA, SASA, PSS, and 

PSSM in addition to RAMseq and RAMmod. Our technique notably includes both 

features from a template matched 3D model (PROPKA, SASA, and RAMmod) and 

techniques that just require the amino acid sequence (PSS, PSSM, and RAMseq). A 

description of the data used is in Table 3-1. 

Table 3-1: Summary description of data. The special case RSC758 6,6 is RAM chosen 

with n = 6 for both RAMseq and RAMmod. 

Data 
Oxidized 

Cys 

Reduced 

Cys 
RAMseq n 

RAMmod 

n 
Features 

RSC758 758 758 12 18 901 

BALOSCTdb 161 161 6 7 561 

OSCTdb 161 376 5 6 521 

RSC758 6,6 758 758 6 6 541 
 

 

3.2.1 Prior Works 

DISULFIND [9] and DIANNA [8] were among the first to incorporate machine 

learning techniques to predict the oxidation state of cysteines in proteins. They operated 

only using the amino acid sequence information as inputs. These tools first predicted 

which of the inputted cysteines would form disulfide bonds via an SVM. Their work 
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focused solely on the ability to discriminate disulfide bonds from non-disulfide bonds and 

did not consider other oxidation states of the cysteines. After the SVM finished its 

predictions, the bonding state of the oxidized cysteines was determined and returned to 

the user with a confidence score. 

After DISULFIND and DIANNA, COPA (Sanchez et al., 2008) was invented to 

classify cysteines into the four potential reactivity groups: those that form disulfide 

bonds, those that coordinate with metals, those that remain in the reduced state, and those 

that are susceptible to reversible oxidation. Their program required 3-D coordinates, so it 

could only work on proteins that have their structural information provided in the Protein 

Data Bank. ROCD [40], Reversibly Oxidized Cysteine Detector, was created to work in a 

similar fashion to COPA. The program also required 3-D coordinates to operate. Lee’s 

study focused on redox regulatory networks in order to better understand oxidative stress.  

Doulias, in his 2010 paper [41], characterized nitrosocysteine using solvent accessible 

surface area, pKa, and predicted secondary structure in order to determine the post-

translational role of nitric oxide in proteins. 

Hydrogen bonding and its relation to pKa was investigated for redox sensitive 

cysteines to gain biochemical insights into signaling [42]. Thiol chemistry and 

specifically cysteine redox susceptibility was studied using quantum mechanics 

computational simulations for finding catalysis and regulation [43]. RSCP [44], Redox 

Sensitive Cysteine Prediction, was made to predict redox-sensitive cysteines. RSCP was 

slightly less accurate than COPA and ROCD, but the program was applicable to a wider 

range of proteins because it only required the amino acid sequence, eliminating the need 

for expensive wet-lab techniques like X-Ray Crystallography or NMR. 
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CPIPE was invented next to provide a comprehensive computational platform on 

which to study various properties of cysteine residues [45]. The program attempts to tie 

together several machine learning approaches to determine cysteine reactivity. It can 

work with either the sequence data alone or with both the sequence data and additional 

structural data. Our work improves accuracies of the tools that already exist by utilizing 

new features, RAMseq and RAMmod, to feed into our machine learning algorithms. 

3.3 Methods 

 

Figure 3-1: Description of process via flowchart diagram. 

 Fig. 3-1 highlights the major components of our data mining framework.  In 

general terms, our tool takes amino acid sequence data as an input, compares it to 
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databases of related sequences for additional data, extracts 6 features from the collected 

data (for a total of 541 dimensions to be used in our predictors). These features are then 

sent to a trained classifier. Finally, a list of the cysteines from the original sequence that 

are the most likely to oxidize are returned along with their confidence scores. Our tool is 

not only a useful aggregation of the most prevalent features to date but is also more 

accurate than previous tools because of our inclusion of our originally engineered 

features: RAMseq and RAMmod.  

We decided to take only the amino acid sequence of the protein as input, and not 

the 3-D coordinates of the protein. Researchers have extracted sequence data from around 

93 million proteins, whereas only 130 thousand proteins have known 3-D structures as of 

the date of this writing. Our work, therefore, remains general enough to be useful to a 

larger portion of the proteomics community. Our hope is that researchers who do not 

have access to expensive techniques like X-ray Crystallography can still get accurate 

estimates of cysteine oxidation from the sequence data alone. 

Although we start with only the primary amino acid sequence, we do use 

predictive algorithms to estimate the secondary and tertiary structures for use in some of 

our features. These predictive algorithms (like MODELLER and PSSPred) estimate 

structural information from the original sequence in order to use them in additional 

features. If structural information of the protein exists in the Protein Data Bank, we can 

then use that information directly instead of relying on estimations from MODELLER. 

3.3.1 Dataset Creation 

In order to score and validate our methods, we decided to use two datasets: 

BALOSCTdb, and RSC758. Sanchez and his team [46] created the independent dataset 
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OSCTdb (Oxidation susceptible cysteine thiol database) in 2008 by using the blastall 

program of the BLAST software package [47] to reduce similar records that had 

identities greater than 35% and e-values less than unity. OSCTdb has 161 oxidation-

susceptible cysteines, 301 oxidation-non-susceptible cysteines, and a total of 100 

polypeptides. The BALOSCTdb (BALanced OSCTdb) dataset was created from OSCTdb 

by limiting the non-oxidation-susceptible cysteines to 161 and matching them to the 161 

cysteines that undergo oxidation in order to balance the number of oxidization-

susceptible cysteine thiols with the number of non-oxidation-susceptible cysteine thiols. 

RSC758, Redox-Sensitive Cysteine 758, [44] was created next and was intended to be 

similar to BALOSCTdb but with a greater number of entries. RSC758 has 758 entries for 

both oxidized and non-oxidized cysteines, and, like BALOSCTdb, it ensures a balance 

between the number of oxidation-susceptible cysteines and cysteines which are not 

susceptible to oxidation. We only use the sequence data from the datasets; however, the 

3-D structures for some of these proteins have been identified and are available in the 

template databases that we use. 

3.3.2 RAMseq 

The RAMseq (Residue Adjacency Matrix from sequence data), an original feature 

used in this work, can be calculated on the raw sequence data without any other 

accompanied data (like 3-D coordinates or the secondary structure). The RAMseq is 

calculated by taking the absolute value of the distance from the target cysteine to each of 

the twenty amino acids found in human proteins. We attempt to find the n nearest amino 

acids of each type. In other words, the distance of the target cysteine to each amino acid 

in the sequence is recorded along with the type of the amino acid. We choose the n 
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shortest distances for each type. This forms a matrix that is twenty rows long (one row 

for each amino acid) and n columns wide;. n is chosen for each dataset for optimal 

performance, although leaving it at a constant six largely does not affect the accuracy.  

RAMseq is similar to a cysteine separation profile [14], but is used for all amino 

acid residues instead of solely cysteine. RAMseq is a type of homology match because 

similar RAM matrices result in similar reactivities of  thecysteine. This attribute makes 

RAMseq effectively act as a template matching process. The data for cysteine and 

tryptophan distances consistently score as one of the most prominent features. 

Interestingly enough, these are the two most conserved amino acids residues, as indicated 

by the diagonals on the BLOSUM62 matrix (a substitution matrix used for sequence 

alignment of proteins) [48]. 

RAMseq compliments a PSSM (Position Specific Scoring Matrix) in several key 

ways. Firstly, RAMseq measures amino acid residue proximity to the target cysteine, 

whereas a PSSM only measures the frequency of each amino acid in a certain window. 

RAMseq’s data can also extend to positions that are further away than a PSSM reaches 

without oversaturating models with redundant data. As n increases, the dimensionality of 

a PSSM increases by 20*n, whereas the size of RAMseq increases by simply n. RAMseq 

works directly on the inputted sequence data without relying on sequence alignments like 

a PSSM must, which results in features that are much more relevant to studying the 

protein in question as well as a much shorter processing time. An example of our RAM 

calculation is shown below in Figure 3-2. 
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Figure 3-2: Typical Residue Adjacency Matrix computed from protein 

APEX_HUMAN1. Depicted is RAMseq based on Cysteine 99, that is involved in 

reversible disulfide bonding and glutathionylation. The sequence is ...ETKCSEN… 

where cysteine 99 is centered. Note the values do not strictly increase, because when 

there is not enough amino acids of the correct type, the mean of the previous amino 

acids is used. These matrices are used to template match each other, where similar 

matrices have similar redox sensitivity. 
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   Eq. 3-1 

In Equation 3-1 shown above, RAM is the value of the residue adjacency matrix, 

C is the index of the cysteine in question, and AA is the index of the amino acid. When 

there are not enough amino acids of the specified type to fill the matrix, an ARIMA 

Model, Auto Regressive Integrated Moving Average, can then be utilized. ARIMA is a 

time series statistical technique that can provide the missing data points. Using the 

forecast package from R and selecting (p, d, q) according to the PACF and ACF plots 

gives us either a trend or a mean prediction. Although means had a strong positive 

performance capability, trends were not found to improve the scores. If two cysteines 

have a similar mean distance to every amino acid of a certain type, then the two likely 

share similar reactivity. For instance, the mean of every tryptophan’s distance to cysteine 

was chosen as an important feature by the random forest classification model for 

determining reactivity. As an example, given the n shortest distances of 

[6,12,NA,NA,NA,NA], the final RAMseq is taken as [6,12,9,9,9,9]. In the rare case that 

no amino acids of a certain type are present in the protein, then the mean distance of the 

n-nearest of all the other types of amino acids is copied along the row n times. 

3.3.3 BLAST Alignments 

BLAST (Basic Local Alignment Search Tool) is a widely used software tool that 

allows one to query a database for a list of similar sequences to a target sequence. Many 

of the features that we use (including the PSSM and the PSS tables) require sequence 

alignments. All of our 3-D features also implicitly rely on BLAST because MODELLER 

requires BLAST alignments to make its predictions on the tertiary structure of the target 
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proteins. In fact, RAMseq was the only feature that we used which did not require a 

BLAST alignment to work. BLAST uses heuristic methods to search large databases for 

sequence matches quickly. Although it does not necessarily find the optimal alignments 

(like the Smith-Waterman algorithm can), the speed with which it can search huge 

genomes make it a practical choice for our purposes.  

BLAST works by first making a k-letter word list from the target sequence (for 

instance, with k=3 and a sequence of PLDAG, BLAST would make a word list of PLD, 

LDA, and DAG). Next, possibly matching words are scored for each entry by use of a 

substitution matrix (usually BLOSUM62). Words that exceed a given threshold are 

designated as "high-scoring words" and are used for the remaining searches. The database 

is scanned for an exact match with one of the high-scoring words. On a hit, a window of 

the neighbors of the exact hit is expanded and scored (using the same substitution matrix 

from before) until the score decreases (i.e. an unlikely substitution is caught). 

The score of this window is recorded, and if found significant, it is combined with 

other so-called high scoring pairs into a longer alignment. The expect score (the 

probability that an unrelated sequence would obtain a higher score by chance) is 

calculated for the alignment, and the alignments with e-values above the threshold are 

returned. 

3.3.4 PSSM 

PSSMs (Position Specific Scoring Matrices), also known as Position Weight 

Matrices, are a useful data structure that captures the amino acid frequency profile of a 

certain window in a protein sequence. They were first introduced by Gary Stormo and his 

colleagues in their 1982 paper [49] to explore patterns in E-coli nucleotide sequences. We 
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use PSSMs as a feature in our machine learning algorithms in order to capture the amino 

acid compositions of sequences that are similar to our target sequence.   

A PSSM is calculated from alignments at a position by dividing the observed 

substitutions of a certain amino acid by the expected number of substitutions. A ratio 

greater than one indicates that the amino acid substitution is favored. Ratios less than one 

indicate that the amino acid substitution is not favored [50].  For a window size of 2*k+1 

(k positions to the left of the target cysteine, k to the right, and the target cysteine position 

itself) and the twenty major amino acids, we get a matrix that is twenty rows long and 

2*k columns wide for a total of 20*(2*k+1) features. We chose 6 for k, so our final 

PSSMs had a row dimension of 260 entries. Blastp was used from the BLAST software 

suite with an e-value of 0.005, and the out_pssm setting enabled. The PSSM output from 

blastp is comparable to a manual calculation with a local similarity matrix but with an 

amino acid inverse frequency multiplication and log base 2 transform applied. 

PSSMs reveal evolutionary patterns in a local (position specific) manner. Proteins 

are known to generally conserve their structure as they mutate, so cysteine reactivity 

being conserved through small mutations is a logical extension. Therefore, our use of 

PSSMs should effectively increase the amount of data that can be fed to our machine 

learning algorithms because the similar sequences that we gather probably have 

identically oxidized cysteines.  

3.3.5 PSS - Predicted Secondary Structure 

Segments of amino acids can arrange themselves into unique local 3-D structures. 

These structures generally fall into three classes: alpha helices, beta sheets, or coils. In 

the same way that we can computationally estimate 3-D structural information from our 
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protein sequences, we can also predict which type of secondary structure that the amino 

acid at a certain position belongs. We used the PSIpred software to make these 

predictions. PSIpred builds two neural networks. The first network has 315 input neurons 

and 3 output neurons, and the second network has 60 input neurons with 3 output 

neurons. PSIpred requires an alignment outputted from a BLAST to operate. We use a 

window size of thirteen positions (the target cysteine plus the six positions to the left and 

the six positions to the right) for the PSS matrix. The final matrix is then thirteen by three 

(the confidence score for the three classes of secondary structures) which results in a 

thirty-nine dimensional feature source for the classifier. 

3.3.6 MODELLER 

We used the MODELLER software through a Python API to estimate the 3-D 

structure of a protein using a technique known as comparative modeling. Comparative 

modeling predicts the 3-D structure of a protein based on BLAST alignments to other 

proteins which have a known structure. The comparative modeling algorithm that 

MODELLER utilizes consists of four general steps: fold assignment, target-template 

alignment, model building, and model evaluation. MODELLER first obtains an 

alignment of a target sequence and a database of template structures. MODELLER then 

automatically calculates a model containing all non-hydrogen atoms and returns a PDB 

file containing the estimated 3-D coordinates of the target protein. 

In our work, we used MODELLER with the default settings. We decided to take 

the ten closest protein structures as our template database for MODELLER. If the protein 

of interest has a 3-D structure available, it was used in the template. However, the 

MODELLER algorithm was still run on the sequence (in essence, estimating a structure 
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that is already known). Sometimes, the alignments that we chose to feed into 

MODELLER had insufficient overlap, which caused the model building to fail. If the 

templates that we chose broke MODELLER in this way, then we simply dropped the 

offending template or templates and tried again. 

3.3.7 RAMmod - Residue Adjacency Matrix from MODELLER Data  

RAMmod is the second original feature that we used in our work. Like RAMseq, 

RAMmod works by building a proximity matrix of the n-nearest amino acids. Rather than 

using the simple positional differences like RAMseq, RAMmod uses the Euclidean 

distance of the target cysteine to the residues obtained from the protein’s 3-D structure. 

For each amino acid, we take the n closest Euclidean distances to the cysteine to build the 

matrix. Like RAMseq, if there are not n amino acids in the whole sequence of a certain 

type, then the mean of the Euclidean distances for the available amino acids of the 

specified type is used to fill in the remainder of the row. If no amino acids of a certain 

type exist, then that row is filled with the mean distance of every other amino acid type. 

RAMmod is a 20*n dimensional matrix like RAMseq.  Like RAMseq, the data for 

cysteine and tryptophan distances score as the most prominent features. 

3.3.8 PROPKA - Protein pKa Data 

We determined the pKa values of our target cysteine sulfur atoms by using the 

PROtein PKA software, PROPKA [51, 52, 53]. The equation for determining pKa values 

is shown in Equation 3-2: 

                  Eq. 3-2 

pKModel is set at 9.00 while  pKa was determined from hydrogen bonds, 

desolvation, and charge interactions. PROPKA requires 3-D coordinates, which we 
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provide from MODELLER. The pKa values typically vary from 0.00 to 14.00, but we 

assign a special value of 99.99 to indicate a disulfide bond. The pKa was determined to 

be an important feature for determining the reactivity of cysteine. It was the third best 

discriminator in COPA’s decision tree. A pKa value greater than nine strongly indicates 

the reactivity of cysteine. 

3.3.9 SASA Data 

The solvent-accessible surface area (SASA) is the surface area (measured in 

square angstroms) of a molecule that is available to a given solvent. We used FreeSASA 

[54] with the Naccess [55] settings in order to determine the SASA of our target proteins. 

FreeSASA requires 3-D coordinates which, again, we gather through MODELLER. The 

SASA value of a protein is helpful for determining the reactivity of a target cysteine. 

Proteins with similar SASA scores are likely to have similar redox sensitivity. SASA was 

the second most important discriminator in COPA’s decision trees. Values greater than 

1.3 angstroms squared tend to indicate a reactive cysteine. 

3.3.10 Normalizing the Data 

Before we inputted our features into our machine learning algorithms, we 

experimented with applying both Z-score Normalization (Eq. 3) and Min-Max 

Normalization (Eq. 4) to our data. We normalized on the sets of each feature array at each 

row. Features with a dimensionality of one (like SASA) were not normalized. Z-score 

Normalization was found to be more effective than Min-Max Normalization. 

Normalizing the entire feature matrix or the entire row was ultimately found to be less 

effective. 
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 Eq. 3-3 

    
           

             
 Eq. 3-4 

3.3.11 Classification and Metrics of Performance  

We experimented with classification using a random forest algorithm, an SVM, 

and KNN. Random forest was ultimately found to be the most effective. Random forests 

are resistant to overfitting due to bootstrapping and a limit on the number of features 

considered at each split. Pruning the trees (by setting the max_depth parameter) in the 

random forest can help to prevent overfitting. Random forests can also rank features by 

their importance. A collection of binary decision trees each evaluate the reactivity of our 

target cysteine. The average of the trees is then evaluated to a receiver operating 

characteristic curve, ROC. This curve plots the sensitivity against the false positive rate 

(1 - specificity). The area under this curve, AUC, is a single number that describes the 

ability of the classifier to separate the data into two classes (in our case, cysteines that 

undergo oxidation and those that do not). A confusion matrix is then made to determine 

the Matthew’s Correlation Coefficient using Equation 3-5. 

     
              

                             
 Eq. 3-5 

3.4 Results 

We provide the following figures to show the ability of RAMseq and RAMmod to 

determine more accurately the oxidation susceptibility of cysteines. In the figures below, 

we use RAM to refer to the combined feature matrix of RAMseq and RAMmod.  The 

feature D is the absolute value of the distances of the n nearest cysteines to the target 



62 

cysteine. D provided the highest discriminative ability of redox susceptible cysteines 

before this work. 

3.4.1 RAM vs. D 

A comparison between D and RAM is made using the metrics of success MCC 

and AUC for three datasets in Figure 3-3, the actual numbers we experimentally 

determined are in Table 3-2. 

 

Figure 3-3: A comparison of the area under the receiver operating characteristic curve 

and Matthew’s Correlation Coefficient. Both RAM and D had the SASA, pKa values, 

the PSSM and the PSS included as additional features. Therefore, the only difference 

between the two feature systems is RAM and D. 
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Table 3-2: Results obtained comparing RAM vs D. Including the SASA, pKa values, 

the PSSM and the PSS for both RAM and D. 

RAMseq + RAMmod + SASA + PROPKA + PSSM + PSS 

 

Dataset ACC SN SP MCC AUC 

RSC758 0.679 0.569 0.789 0.367 0.743 

BALOSCTdb 0.773 0.621 0.925 0.574 0.851 

OSCTdb 0.703 0.547 0.859 0.422 0.763 

D + SASA + PROPKA + PSSM + PSS 

 

Dataset ACC SN SP MCC AUC 

RSC758 0.627 0.45 0.805 0.272 0.669 

BALOSCTdb 0.742 0.578 0.907 0.513 0.822 

OSCTdb 0.683 0.646 0.721 0.345 0.733 
 

 

3.4.2 RAM vs PSSM 

PSSM is a frequently used method in proteomics and genetics. Because RAM has 

been shown below to outperform PSSM, there is a great deal of promise for using RAM 

in broader applications. When we compared RAM to PSSM we experimentally 

determined the difference as seen in Figure 3-4 and Table 3-3. 



64 

  

Figure 3-4: Matthew’s Correlation Coefficient and area under the receiver operating 

characteristic curve. No other features are included. 
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Table 3-3: Results obtained comparing RAM vs PSSM without any other features. 

RAMseq + RAMmod 

Dataset ACC SN SP MCC AUC 

RSC758 0.676 0.496 0.856 0.378 0.743 

BALOSCTdb 0.748 0.683 0.814 0.501 0.785 

OSCTdb 0.674 0.472 0.875 0.378 0.709 

PSSM 

Dataset ACC SN SP MCC AUC 

RSC758 0.586 0.745 0.426 0.181 0.612 

BALOSCTdb 0.711 0.627 0.795 0.428 0.774 

OSCTdb 0.567 0.752 0.383 0.130 0.564 
 

 

3.4.3 Prior Works 

In the following section, we make comparisons between RAM, RSCP and COPA. 

RSCP’s primary contribution was the ability to use sequential features without the need 

of solved 3-D structural data. RSCP, therefore, is more broadly applicable than 

algorithms like COPA, which requires a PDB to predict cysteine redox susceptibility. 

However, COPA’s accuracy was higher than RSCP’s accuracy. RAM is a hybrid 

approach that accepts structural features but is able to use MODELLER predictions when 

only sequential data is given. When we compared self-reported results of RAM to two 

other prior publications we found the following differences in Figure 3-5 and Table 3-4. 
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Figure 3-5: A comparison of RAM with all supplementary features against the other 

two methods (RSCP and COPA) on our 3 datasets (RSC758, BALOSTCdb and 

OSTCdb). RAM has the highest MCC of all methods on all datasets. 
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Table 3-4: Comparison of RAM to prior works COPA and RSCP. NA indicates data not 

provided by prior works. 

RAM 

Dataset MCC AUC ACC SN SP 

RSC758 0.383 0.743 0.687 0.573 0.800 

BALOSCTdb 0.574 0.851 0.773 0.621 0.925 

OSCTdb 0.422 0.763 0.703 0.547 0.859 

RSCP 

Dataset MCC AUC ACC SN SP 

RSC758 0.362 0.727 0.679 0.602 0.756 

BALOSCTdb 0.522 0.821 0.761 0.770 0.752 

OSCTdb 0.322 NA 0.629 0.789 0.561 

COPA 

Dataset MCC AUC ACC SN SP 

RSC758 NA NA NA NA NA 

BALOSCTdb 0.572 0.823 0.786 0.776 0.795 

OSCTdb NA NA NA NA NA 
 

 

3.4.4 Using an n of 6 for RSC758 

We defaulted to a value of n = 6 but found RAMseq n = 12 and RAMmod n = 18 

gave us the highest accuracy for the RSC758 dataset. Optimizing the values of n for 

RAMseq and RAMmod increased the AUC by 4.5% and MCC by 16.8%. However, 

optimizing the value of n may lead to overfitting the data. The performance metrics are in 

Table 3-5. 
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Table 3-5: Results from adjusting the n parameter on both RAMseq and RAMmod. 

RAMseq + RAMmod + SASA + PROPKA + PSSM + PSS 

Dataset and n ACC SN SP MCC AUC 

RSC758 6,6 0.646 0.460 0.831 0.314 0.711 

RSC758 12,18 0.679 0.569 0.789 0.367 0.743 
 

 

3.4.5 Choosing an optimal Matthew's Correlation  

Below in Figure 3-6 is the effect of varying the classification threshold of 

confidence scores for the confusion matrix on Matthew's Correlation Coefficient. 
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Figure 3-6: Matthew's Correlation Coefficient as a function of threshold. We chose the 

optimal threshold for MCC after varying classifier, classifier parameters and feature 

parameters for optimal AUC. 

3.5 Discussion 

Our results clearly show the benefit of applying our original features, RAMseq 

and RAMmod, to machine learning approaches for cysteine reactivity predictions. By 

every metric on which we scored, a feature system including RAM outperformed a 

system simply using D. D is a subset of RAM, so this performance increase is expected. 

While data mining solutions for predicting cysteine oxidation are certainly not new, we 

hope the methods presented here will serve as another step towards more accurate and 

generalizable techniques that are useful for a large range of researchers. Our work 

achieved state-of-the-art accuracies, yet only required the primary amino acid sequence 
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of the target proteins. The simplicity of our program allows for accurate estimations of 

cysteine redox state without having to resort to expensive techniques like X-ray 

crystallography or NMR. Still, if one does have structural data of the target protein, our 

techniques can use that information to produce even more accurate predictions.   

RAM is readily comparable to a PSSM. Because of the prevalence of PSSM’s in 

thecurrent literature, a similar feature such as RAM could be useful in improving the 

accuracies of a great deal of proteomic and genetic machine learning techniques. PSSM 

does well conducting local searches but will frequently fail on distant conserved regions 

due to its small window size. RAM can handle these distant conserved regions quite well. 

RAM is more global in nature, while still acting as a local feature.  

RAM can be applied to just about any problem a PSSM can be applied to. For 

instance, RAM can be modified to work with DNA. For DNA, the matrix is 4*n, and has 

the rows A, T, C and G. Future work where RAM data is used for DNA may yield results 

surpassing those of PSSM for genetic problems as has been shown in this work for 

cysteine reactivity. 
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CHAPTER 4 

 

PREDICTING PYRIDOXAL-5-PHOSPHATE LYSINE POST-

TRANSLATIONAL MODIFICATION ON THE PLP SWISSPROT 

DATABASE USING WINDOWED ALIGNMENT SCORING 

4.1 Overview 

Post translational modifications (PTM) are an extension of the repertoire of 

proteins' building blocks (the twenty amino acids). PTMs are involved in regulating 

protein activity, signalling the degradation of the protein, biomarkers of oxidative stress, 

etc. Alzheimers, for instance, is a result of hyperphosphorylation and glycosylation of tau 

protein. Both of these modifications are PTMs. Immune function and its dysfunction 

autoimmune disease, blood sugar regulation and its pathogenic state, diabetes, are also 

dependent upon proper post translational modification. This body of work predicts the 

pyridoxal-5-phosphate (PLP) lysine PTM for further research by those dependent on 

expensive techniques like tandem mass spectrometry. These techniques cannot keep pace 

with the discovery of newly sequenced proteins: thus a data mining approach is utilized 

that can relatively quickly discern which lysines are post-translationally modified by PLP 

in proteins. To accomplish these means Windowed alignment scoring, WAS, an original 

engineered feature source, was introduced. However, it is computationally expensive 

taking months to evaluate the experiments posed below. To reduce the computation time, 

an approximation was utilized. This reduced the time to two days and was found to be 
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statistically equivalent in terms of performance by failing to reject the null hypothesis 

that the two methods are different with a p-value of 0.24. Its ability to determine the PLP 

Lysine PTM was 0.89 sensitivity and 0.98 specificity at 85% homology threshold. 

4.2 Introduction 

4.2.1 Biological Significance and Background Information 

The role of pyridoxal-5-phosphate’s post-translational modification of lysine 

residues is involved in the transamination reaction. All aminotransferases are catalyzed 

the same way. Specifically, there are three steps to complete the reaction. For the first 

transimination, see the figures below; then tautomerization and finally hydrolysis 

producing an alpha keto acid from the substrate amino acid. Selective inhibitors of this 

reaction has been implicated in the treatment of cancer [56]. Furthermore, GABA 

aminotransferase inhibitors cause the buildup of GABA in the synapse of neurons. Low 

GABA levels have been associated with Parkinson’s [57], epilepsy [58], Huntington’s 

[59] and Alzheimer’s diseases [60]. Potential therapeutic inhibitors could target this 

reaction and have been created specifically for the treatment of epilepsy [61] and 

addictions [62].  

More recently, it has been shown that the Pdxl subunits of the PLP synthase 

complex utilize the basic lysines 98 and 166 to catalyze the reaction of glyceraldehyde-3-

phosphate and ribose-5-phosphate to PLP [63]. Generally, the transimination reaction can 

be seen in the following chemistry: PLP first joins to the amine functional group of lysine 

using a Schiff Base Link, then the amine of a free amino acid (or any amine ion) bonds to  

the PLP catalyzed by the lysine residue. M. Rodrigues et al. states, “A conspicuous gap 

in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-
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group-containing intermediates, despite their wide use in enzymatic catalysis.” This 

suggests strongly that determining which lysines are active would shed light on this 

problem, hence our data mining and feature engineering solution. An overview of this 

reaction is illustrated in Figures 4-1, 4-2 and 4-3. 

  

Figure 4-1: First half transimination reaction of PLP with the protein’s lysine. Step 1 

of the transamination reaction. 

 

Figure 4-2: Second half transimination reaction of PLP with the protein’s lysine. 

Continuation of step 1 of the transamination reaction. 

 

Figure 4-3: Hydrolysis and completion of transamination reaction. 
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4.2.2 Summary of Data and Computational Challenges 

Table 4-1: Summary of PLP Swissprot Database. 

Pyridoxal Phosphate Swissprot Annotation Dataset 

PLP Swissprot Database 
 

Summary Description of Data 

Percent 

Homology 

Threshold 

Number of 

Datapoints 

Number of PLP 

Lysines (positive 

class) 

Time 

BLAST 

(minutes) 

Time NW 

(minutes) 

40 11,459 483 11 513 

(measured) 

50 21,595 924 44 1,822 

(estimated) 

60 35,218 1,549 136 4,846 (est.) 

70 50,800 2,264 291 10,082 

(est.) 

80 65,916 2,957 481 16,975(est.) 

85 74,340 3,351 564 21,591 

(est.) 

90 83,136 3,759 671 27,002 

(est.) 

95 93,236 4,198 859 33,962 

(est.) 
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Table 4-2: Summary of PLP Swissprot Database with evidence of existence at two 

levels, transcript and protein level. This is a stricter level of existence that support 

experimentally derived results. 

 

Pyridoxal Phosphate Swissprot 

Existence at Protein or 

Transcript Level Annotation 

Dataset 
 

Summary Description of Data 

Pyridoxal Phosphate Swissprot 

Existence at Protein Level Only 

Annotation Dataset 
 

Summary Description of Data 

Percent 

Homology 

Threshold 

Number of 

Datapoints 

Number of PLP 

Lysines (positive 

class) 

Number of 

Datapoints 

Number of PLP 

Lysines (positive 

class) 

40 7,150 298 6784 279 

50 10,519 426 9489 386 

60 13,452 543 11841 483 

70 16,236 649 13549 553 

80 18,765 734 14901 606 

85 20,680 806 15980 647 

90 22,109 856 16851 678 

95 24,268 936 18029 724 
 

 

In Tables 4-1 and 4-2 we described the data used in our experiments. The 85% 

homology threshold is used as the representative due to it being the average homology 

percent of homo sapiens to mus musculus. In other words, discoveries of PLP lysines in 

humans would be inferred by this knowledge based system at that level. Average class 

imbalance is 21.6X. Running all of the experiments using the Needleman-Wunsch 

Algorithm would take a total of 81 days and requires more than 32 GB of RAM. 
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4.2.3 Dataset Creation 

The Swiss-Prot Database was curated from swiss-prot extracting “N6-(pyridoxal 

phosphate)lysine.” search from the FT lines from the uniprot_sprot.dat found at (Uniprot 

2018) on the 12th of June 2018. Furthermore, the Swiss-Prot Existence Database was 

created on June 30, 2018 in a similar fashion but restricted only to those proteins that 

have proof of existence at the protein or transcript level. The CD-HIT clustering 

algorithm [64] reduces the number of positives that are nearly identical. A representative 

of each cluster is chosen and the remainder of each cluster is discarded due to a 

homology threshold. Higher homology thresholds have more small clusters and lower 

homology thresholds have fewer large clusters. Datapoints in the dataset are those 

proteins that contain at least one PLP lysine PTM. 

4.2.4 Relevance to Biological Workflows 

Similar organisms have similar proteins and by homology predictions can be 

made for newly sequenced proteins, thus directing the biological experimental workflow 

to more distantly related organisms can be made. “On average, the protein-coding regions 

of the mouse and human genomes are 85 percent identical; some genes are 99 percent 

identical while others are only 60 percent identical” [65]. Eighty-five percent homology 

threshold was chosen due to the resemblance of human to mouse proteomes, but this 

threshold could also be useful for choosing experiments where a choice must be made 

between an organism and another so that highly confident results are not duplicated 

unnecessarily. One hundred percent homology means duplicates are allowed and 

therefore is not a good measure of accuracy. 
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4.2.5 Hypothesis 

The null hypothesis is that Windowed Alignment Scoring (WAS) using a blast 

approximation is the same as an optimal global alignment using the Needleman-Wunsch 

algorithm [66] which is similar to the Smith-Waterman algorithm,[67, 68]. We will test 

this hypothesis using a Student’s T-Test on a fraction of the PLP Swissprot database. The 

alternative hypothesis is that local alignment searches (BLAST)[47] on the highest 

scoring alignments of the data differ from a global alignment (Needleman-Wunsch) for 

WAS. Practically, a complete global alignment of the PLP Swissprot higher percent 

homology databases was not feasible, so the 40 percent homology was chosen to validate 

the hypothesis. 

4.3 Methodology 

4.3.1 The Original Engineered Feature Windowed Alignment Scoring (WAS)  

A window of 100, i-50 to i+50 was chosen where i is the index of the lysine of 

interest. Sometimes a window could not be exactly 100 residues long. In this case, the 

longest sequence fragment possible was returned. Windows of sizes 50 and 200 were also 

experimented with but did not provide optimal results. The Needleman-Wunsch 

algorithm is used when the global alignment quality is of utmost importance. 
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Table 4-3: Example WAS features for 5 proteins A-E. 

Example Windowed Alignment Scoring (WAS) Features 

 A B C D E 

A 1 0.7 0.9 0.3 0.2 

B 0.7 1 0.65 0.12 0.3 

C 0.9 0.65 1 0.25 0.25 

D 0.3 0.12 0.25 1 0.9 

E 0.2 0.3 0.25 0.9 1 
 

 

In Table 4-3 we show protein segment (centered on a lysine) A and C are similar 

because they share alignment scores with each other so they will show up in the classifier 

to have a high score. If A is modified, then C is likely to be modified or vice versa. 

However A-E and C-E are not likely to share a likelihood  of being modified because of 

their higher Euclidean distance and dissimilarity of alignment scores. Random Forest and 

SVM operate similar to Euclidean distance voting of the k nearest neighbors. 

Advantages include insertions and deletions common in proteins do not impact 

the score as dramatically as other methods like PSSM. The number of components 

retained was chosen optimally at 50; 25 and 100 components were chosen and did not 

perform as well. Truncated Singular Vector Decomposition was chosen over PCA due to 

its extreme efficiency on large sparse matrices. The feature generation is n^2 where n is 

the size of the dataset. The classifier chosen was Random Forest with 40 trees and 10 

features considered at each split using the Sklearn package [69]. Validation was 10-fold 

cross. We illustrate the flowchart of our data mining process in Figure 4-4. 
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Figure 4-4: Flowchart overview of experimental procedure. 

4.3.2 Computational Challenges and Approximations 

Because the dataset was 20:1, imbalanced synthetic minority oversampling 

technique (SMOTE) [70] was used only to generate additional training data and not 

testing data. To validate our hypothesis, we completed an entire nXn square and plot 

performance against percent of highest scoring alignments. Matthew’s Correlation 

Coefficient, MCC, was the metric of choice because predicting all negative class resulted 

in an accuracy of 95% while the same prediction would give an MCC of 0. 
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When we use a sparse matrix for storing the blast results, all sequences not 

meeting an e-value of 0.001 are left as zero. Alternatively, we considered replacing it 

with the mean; further testing is needed to determine which missing values should be 

imputed. An e-value is like the p-value of a statistical test in its likelihood of a match 

occuring due to random chance. In other words, only the best matches that are 0.001 

probable are entered into the sparse matrix. We considered replacing alignment scores 

with zero, the mean for each window overlapping by n, for both the query and subject 

and take the highest value other than itself for each protein as its true score in the 

complete global alignment scheme. By blasting there is no need to find more distantly 

related sequences due to the fact that only the most similar sequences are returned. 
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4.4 Results 

Windowed Alignment Scoring based features provide a novel approach to 

classifying PTMs. The Lysine PLP PTM has been an interesting dataset and our hope is 

that the results we obtained can be generalized to other datasets. Results obtained from 

these methods indicate that BLAST alignments are on par with Needleman-Wunsch and 

Smith-Waterman Algorithms statistically. Tables 4-4, 4-5and 4-6 as well as Figures 4-5, 

4-6 and 4-7 show the results of our experiments. 

Table 4-4: Results from the experiment. There are ten replications. Randomness is 

introduced from SMOTE, shuffling cross validations and random forest. The 95% 

confidence intervals +/- were 0.01 or less using the following formula: 2.26 (t-

distribution on 9 degrees of freedom) * s.d. / sqrt(10). 

Performance Metrics using 10 fold Cross Validation for BLAST 0.5% Results 

Full Swissprot 

Percent 

Homology 

Threshold 

Mean 

MCC 

Mean 

AUC 

Mean 

Sensitivity 

Mean 

Specificity 

40 0.44 0.92 0.57 0.96 

50 0.59 0.96 0.72 0.97 

60 0.68 0.98 0.81 0.98 

70 0.75 0.98 0.85 0.98 

80 0.78 0.99 0.88 0.98 

85 0.80 0.99 0.89 0.98 

90 0.81 0.99 0.90 0.99 

95 0.83 0.99 0.91 0.99 
 

 

  



82 

Table 4-5: Same as the above table but results from the transcript and protein level 

experimental existence. 

Performance Metrics using 10 fold Cross Validation for BLAST 0.5% Results 

Swissprot Protein and Transcript Evidence Only 

Percent 

Homology 

Threshold 

Mean 

MCC 

Mean 

AUC 

Mean 

Sensitivity 

Mean 

Specificity 

40 0.36 0.88 0.5 0.95 

50 0.49 0.93 0.61 0.96 

60 0.54 0.95 0.67 0.97 

70 0.59 0.96 0.72 0.97 

80 0.62 0.97 0.75 0.97 

85 0.65 0.97 0.78 0.98 

90 0.64 0.97 0.78 0.97 

95 0.68 0.97 0.82 0.98 
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Table 4-6: Same as before with results from the protein level experimental existence 

only. 

Performance Metrics using 10 fold Cross Validation for BLAST 0.5% Results 

Swissprot Protein Evidence Only 

Percent 

Homology 

Threshold 

Mean 

MCC 

Mean 

AUC 

Mean 

Sensitivity 

Mean 

Specificity 

40 0.34 0.86 0.46 0.95 

50 0.43 0.91 0.57 0.96 

60 0.51 0.94 0.65 0.96 

70 0.57 0.95 0.70 0.97 

80 0.59 0.96 0.73 0.97 

85 0.60 0.96 0.73 0.97 

90 0.63 0.97 0.76 0.97 

95 0.64 0.97 0.78 0.97 
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Figure 4-5: The relationship between homology level of dataset to performance. The 

y-axis is the 10-fold cross validation metric of success and the x-axis is the percent 

homology threshold from the CD-HIT clustering. 
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Figure 4-6: The relationship between homology level of dataset to performance for 

protein and transcript level existence. Same description as prior figure. 
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Figure 4-7: The relationship between homology level of dataset to performance for 

protein and transcript level existence. Same description as before. 

Eighty-five percent homology threshold is a fair assessment of the 

performance because that is the level of homology between humans and mouse 

protein coding genomes. In other words, mouse Active Vitamin B6 (PLP) Lysine 

PTMs should also occur in humans with a sensitivity of 0.89 and a specificity of 

0.98.  
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Table 4-7: The performance at the 40% homology level of the dataset comparing 

the two algorithms BLAST and Needleman-Wunsch, suggesting that BLAST, 

although not quite as effective as NW, is a good approximation saving 

computational time. 

40% Homology Threshold Retaining Top Percent Similarities for 

Needleman-Wunsch 

NW Top % 

Similarities 

MCC AUC Sensitivity Specificity 

0.1% 0.2 0.74 0.33 0.93 

0.5% 0.45 0.92 0.57 0.96 

1% 0.47 0.93 0.55 0.97 

10% 0.44 0.92 0.53 0.97 

20% 0.41 0.92 0.5 0.97 

30% 0.42 0.91 0.5 0.97 

40% 0.43 0.92 0.52 0.97 

50% 0.4 0.9 0.48 0.97 

60% 0.41 0.91 0.49 0.97 

70% 0.37 0.91 0.45 0.97 

80% 0.4 0.91 0.48 0.97 

90% 0.41 0.92 0.49 0.97 

100% 0.42 0.93 0.48 0.97 

BLAST 0.1% 0.12 0.67 0.25 0.92 

BLAST 0.5% 0.44 0.92 0.57 0.96 

BLAST 1% 0.45 0.93 0.56 0.97 

 

Interestingly, without Truncated SVD decomposition, the results are 0.10 
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MCC lower for NW even though 10X more trees were used. More trees did not 

improve performance. Also noteworthy is that the lower scoring alignments 

(Higher NW Top % similarities) reduced the performance of the model. This 

suggests that lower scoring alignments add unnecessary noise to the model and 

only top alignments should be used. Because 0.001 results in a large performance 

degradation, it seems there are too many alignments discarded. Unlike BLAST, 

Needleman-Wunsch must compute the full similarity matrix ascertain the top 

percent retained. Table 4-7 shows the difference between Needleman Wunsch and 

BLAST. Figure 4-8 shows how retaining only the top percent affects metrics of 

success. 

 

Figure 4-8: Comparing NW to BLAST performance metrics. The y-axis is the 

metric of success for a ten fold cross validation and the x-axis is the top scoring 

similarities retained. 
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Although Needleman-Wunsch Global Alignments have slightly better scores than 

BLAST, the difference is not significant; thus, we fail to reject the null hypothesis. The 

speedup approximation by using BLAST seems appropriate. 

A paired t-test was performed at the 0.1%, 0.5% and 1% level for Needleman-

Wunsch and 0.1% 0.5% and 1% for BLAST using the e-values of 1e-20, 1e-3, and 1. 

data: c(0.12, 0.44, 0.45) and c(0.2, 0.45, 0.47) 
t = -1.6775, df = 2, p-value = 0.2354 

alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 

-0.13071460 0.05738127 
sample estimates: 

mean of the differences 
-0.03666667 

 

We found works in related areas of Lysine PTM research in Table 4-8. 
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Table 4-8: Prior Works and their salient contributions. 

Prior Studies for Prediction of Lysine Post-translational Modifications 

Body of Work Features/Classifier Numerosity Significance 

iSuc-PseAAC 

[71] 

Lysine 

Succinylation 

PseAAC 

SVM  

26,649 Peptide Position-

Specific Propensity 

NetGlycate 

[72] 

Lysine Glycation 

Lysine Position and 

Amino Acid 

Composition 

Neural Networks 

215 Use of Balloting of 

Votes from 

Ensemble of Neural 

Networks 

LysAcet  

[73] 

Lysine Acetylation 

Protein Sequence 

Coupling Patterns 

SVM 

11,474 Innovated Coupling 

Pattern Features 

RUBI 

[74, 75] 

Lysine 

Ubiquitination 

SVM Bidirectional 

Recurrent Neural 

Networks 

Multiple Sequence 

Alignment 

Frequencies 

304,443 Most Datapoints 

This Work 

Lysine Pyridoxal-

5-Phosphate 

BLAST, Random 

Forest, Truncated 

SVD 

74,340 Introduced 

Windowed 

Alignment Scoring 

and PLP Swissprot 

Database 
 

 

4.5 Conclusion 

A paired student’s t-test was performed comparing the BLAST approximations to 

the NW Global Alignments at percent complete. There is not a statistical difference 

between the two methods p-value = 0.24. This indicates that the heuristics and 

approximations that we have chosen are suitable. Thus, we fail to reject the null 
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hypothesis The standard methods of finding lysine-PLP PTMs is time consuming and is 

the least preferred method. A relatively quick and inexpensive data mining approach 

using the engineered feature source WAS can help to redirect biological workflows so 

that more distantly related and therefore less well characterized proteins can be done. Our 

approach will then fill in the gaps. It can be seen that at the 85% homology level using 

BLAST, we are able to obtain a MCC of 0.88 and AUC of 0.99 on the full Swiss-Prot 

database. These results indicate that our method can generalize well to unknown lysine-

PLP PTMs. 

 

.
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
 

Our goal in this work is to develop novel solutions in feature engineering through 

data mining frameworks on the problem of predicting post-translational modifications of 

proteins. We have tested each approach on multiple datasets and therefore believe each 

has the potential to be applied to new problems such as genetic sequences. We have 

performed statistical tests in each of the major chapters, thus providing a solid basis for 

other researchers to adopt our work and even improve it. Some of the specific 

contributions and results are as follows: 

5.1 Contribution to Feature Engineering with LSM and the Cysteine Disulfide 

Connectivity Problem 

The Local Similarity Matrix based feature engineering is an innovative solution to 

a well known problem, cysteine connectivity. We have presented an entire framework 

that encompasses other's works and have shown statistical significance of our work 

compared to all other works (except on one dataset). PSSM has appeal beyond cysteine 

connectivity, and the verification of our results on three datasets indicates it may compete 

with a thirty year established use of PSSM. 
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5.2 Contribution to Feature Engineering with RAM and the Cysteine Redox 

Susceptibility Problem 

The Residue Adjacency Matrix is an approach that was built upon the work of 

others. The nearest n cysteines to a possible PTM were calculated and found to be useful. 

We expanded upon this idea and found the n nearest of each residue to a potential PTM. 

This approach to feature engineering could be expanded to other techniques. By 

broadening a subset of any problem, it is possible to attain a result that has potential 

beyond its capability. The cysteine oxidation problem is crucial to the treatment of 

oxidative stress diseases such as cancer, diabetes and heart disease. By improving the 

quality of predictions for which cysteines undergo oxidation, researchers can use this as 

the basis of discovering treatments. 

5.3 Contribution to Feature Engineering with WAS and the Lysine Pyridoxal-5-

Phosphate Prediction Problem 

One of the core challenges of making predictions is to work on reasonable 

timeframes. An experiment that takes a quarter of a year is not workable for others to 

build upon. We have found an approximation that takes two days and gives room for 

further experimentation. This approximation did not significantly differ in terms of 

performance from the other methods tried; thus, its use is justified. Researchers that are 

utilizing the lysine-PLP pathway in their drug design or otherwise treating illness may 

incorporate our work to further their progress. 

5.4 Future Work 

New datasets for new problems in proteomics and genetics are a promising 

avenue where we could focus our future efforts. There may even be applications in any 
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sequence data; for instance, natural language processing and time series analysis both 

operate on sequences. We hope that these methods can be applied in many different ways 

and not just in the bioinformatics community.
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APPENDIX A  
 

BLAST AND DATA CHARACTERISTICS 

 

Figure A-1: Protein length does not affect the number of matches returned by a 

BLAST Search. Based on a linear regression mode,l the length of a protein predicts 

0.3% of the variability of the number of BLAST matches returned. The p-value is not 

significant at the 0.1 significance level. Thus  the length of a protein is not a good 

predictor of the number of matches returned by BLAST in which the adjusted R-

squared is 0.003. The figure is for the RSC758 dataset. 
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Figure A-2: Protein length predicts accuracy negatively for cysteine redox 

susceptibility on the RSC758 dataset with a p-value of 0.02, but this only explains 

1% of the variability in the data where the adjusted R-squared is 0.01 and the p-

value is 0.02. The mean number of amino acids in a protein is 525.8. 
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APPENDIX B  
 

CYSTEINE SEPARATION PROFILES FOR THE LOCAL 

SIMILARITY MATRIX 

 

Figure B-3: Histogram showing the number of proteins at each divergence separated 

by bonding and nonbonding for SP39. There is a high degree of homology because 

most of the proteins had low divergence and were bonding. This was not the case for 

PDBCYS and IVD-54. Qualitatively, this shows the dataset has the potential to be 

solved at a higher Qp and Qc metric of success. 
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Figure B-4: Cysteine separation profile divergence and bonding for PDBCYS-R. 

Lower homology is noted by the low divergences which do not make up a majority of 

the data as they did for SP39. This qualitative fact indicates a more challenging 

dataset than SP39. 
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Figure B-5: Cysteine separation profile divergence and bonding for IVD-54. The least 

low divergences of the three datasets. This qualitatively indicates the most 

challenging dataset confirmed by Qp and Qc metrics of success. 
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APPENDIX C  
 

TABLES COMPARING THE LOCAL SIMILARITY MATRIX TO 

PREVIOUS WORKS 

Table C-1: Data describing the prior works results on SP39 dataset compared to Local 

Similarity Matrix. 

B 
PreCYS 

[21] 
CH Lu Et 

al. [26] 
J.Song et 

al. [25] 
Zhu Et 

al. [76] 
Target 

Disulfide [28] 
HL Lin Et 

al. [77] 
Our 

Work 

2 79 85.7 86.5 85.3 92.3 94.2 94.9 

3 53 74.6 67.1 69.9 78.1 89.0 88.4 

4 55 63.2 78.8 79.7 82.8 90.9 88.9 

5 58 47.6 46.8 55.9 62.2 86.7 86.7 

2-5 63 73.9 74.4 76.0 82.5 91.0 90.6 
 

 

Table C-2: Data describing the prior works results on PDBCYS dataset compared to 

Local Similarity Matrix. 

B 
Dislocate 

[78] 
C. Savojardo Et Al. 

[79] 
Target Disulfide 

[28] 
Cyscon [7] 

Our 

Work 

2 75 76.0 83.0 N/A 90 

3 48 55.3 76.4 N/A 80 

4 44 51.2 53.7 N/A 68.3 

5 19 32.4 21.6 N/A 70.3 

2-5 54 59.3 67.7 72.3 80.6 
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Table C-3: Data describing the prior works results on IVD-54 dataset compared to Local 

Similarity Matrix. 

B 
Dianna 

[8] 
DBCP [77] Disulfind [9] Target Disulfide [28] Our Work 

2 10.3 10.3 13.8 69.0 79.3 

3 0.0 13.3 13.3 66.7 80.0 

4 0.0 0.0 0.0 14.3 14.3 

5 0.0 0.0 0.0 0.0 33.3 

2-5 5.6 9.3 11.1 57.4 68.5 
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APPENDIX D  
 

VISUALIZATION, FEATURE CORRELATIONS AND PRIOR 

WORK COMPARISONS FOR RESIDUE ADJACENCY MATRIX 
 

 

Figure D-6: In the image above, the sulfur atoms of reactive cysteines (residues 201, 

338, and 72) in the protein 1ADO are emphasized with a blue sphere. The red spheres 

in the protein correspond to the sulfur atoms of the non-reactive cysteines. 
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Figure D-7: Note that the radar chart shows that RAM sits on the outer edges of the 

chart compared to other features. This indicates that the features have a higher 

performance on every dataset compared to all features in prior works. 
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Figure D-8: Shown below is the probability density function approximated using 

the statistical software R. The density function in the stats package was used with 

default parameters. Note the vertical lines for SASA and PROPKA are one 

dimensional features therefore, the correlation pdf is a vertical line 

The probability of a correlation existing in a range is found by taking the integral 

between the min and max of any two points. With this in mind, the plot indicates that 

RAMmod and RAMseq have a large probability of a correlation with the class label, albeit 

negative. This suggests that the goodness of the features can be observed using non-

classification tools such as ordinary least squares (OLS). It is important to note that each 

curve has an area below it equal to one. 
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Figure D-9: By transforming the PDF to a CDF we can see the probability of a 
feature's correlation being equal or less than a particular value. We make this 

transform so that we can run a statistical test, the Two Sample Kolmogorov-Smirnov 

test or simply KS test. Our p-value is < 2.2e-16 comparing RANDOM to RAMseq 

and RANDOM to RAMmod. 
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